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Abstract

A key feature of autonomous systems is the ability to solve computationally
intensive tasks while adapting to changes in the environment; therefore, in
these systems learning is needed to predict the responses of the environ-
ment to the system actions, thus guiding the system to achieve its goals.
However, the learning capabilities required for this feature are underdevel-
oped in artificial systems, especially when compared to those of humans and
animals.

Highly-computational processors are embedded in chip technology (i.e. CPU
and GPU) which every year uses lower dimension transistors yielding high
speed, low leakage power, and low cost per transistor. However, the conven-
tional approach to computation, based on the von Neumann architecture with
separate units for information storage and processing, is still outperformed
in energy efficiency by biological nervous systems in cognitive tasks, such as
classification and prediction, where the input data is characterized by ambi-
guity and uncertainty. In this sense neuromorphic engineering solves specific
tasks which are easily performed by biological systems using computational
models discovered in biological organisms and where classical processors’
architecture would have difficulties.

This thesis aims at the implementation of biologically inspired learning al-
gorithm to be embedded in full-custom VLSI spiking neural networks with
the goal of constructing compact real-time low-power learning systems with
potential application in computational neuroscience basic research investi-
gation, and applications where input data is ambiguous such as in patter
recognition.

The starting point of this research is based on recent studies that demon-
strated a key role of calcium ions for long term synaptic plasticity. These
experimental results have inspired mathematical models and hardware im-
plementations of calcium based learning algorithms. Here I present two
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prototypes of a novel Very-large-scale Integration (VLSI) implementation
of a recently proposed calcium-based learning algorithm, its circuital and
computation model simulation results and comparison with the mathematical
model. The second improved circuit corrects errors observed in the first chip
and it is connected to a low-power neuron in a small array.

The elaboration of this learning system embedded in a chip provides insight
and significant progress in the complex task to understand how to build
brain-like integrated systems. This system can be used also as a tool for
validating hypotheses arising from experimental observations of biological
systems and computational models.
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1Introduction

1.1 Microprocessor Evolution and
Technology Challenges

Over the past few decades a rapid evolution in microprocessor performance
indicators [1] (Fig. 1.1) such as speed, power consumption and components
integration (this last as Moore’s law predicted [2]) was achieved mainly
due to three factors: transistor scaling, core microarchitecture techniques
and cache memory [3]. This microprocessor evolution has driven drastic
improvements in electronic hardware with high computational power.

The transistor scales down by 30% (0.7x) every two years having as basis
to keep the electric field constant everywhere; the benefits of this are the
increase of energy efficiency (MIPPS/watt) by the cube of the scaling fac-
tor due to increased speed (40% faster) and reduced power consumption
(50% lower) [4]. In 1974, Dennard [5] described this scaling principle us-
ing the scale factor as the only parameter by transforming three variables:
dimension (insulator thickness, junction depth, channel length and width),
voltage applied to the device and substrate doping concentration. However,
when transistors reach node technologies below 65nm [6] (a process node
denotes a specific semiconductor manufacturing process, and in general it
characterizes the minimum transistor feature size) more challenges need to
be overcome; one is that the voltage scaling, which is limited by threshold
voltage, produces considerable sub-threshold leakage currents; similar prob-
lem occurs when scaling the gate oxide thickness, here tunneling current is a
considerable percentage of power consumption because of its small dimen-
sions [7]. Therefore, the end of Dennard scaling poses a serious problem for
computing’s status quo. Post-Dennard scaling yields limited energy efficiency
gains in each new device generation, which results in a significant amount
of underutilized, or “dark” silicon [8]; furthermore, supply-voltage scaling
increases considerably device variability which could leads to unreliable sys-
tems. Some progress in this field has been achieved by using Fully Depleted
Silicon On Insulator (FDSOI) [9] and Fin Field Effect Transistor (FinFET) [10]
technologies which appear below 22nm node process. FinFET is a 3D struc-
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ture gate that envelopes the transistor channel; however, its use increases
significantly the design complexity. FDSOI which consists of a substrate un-
derneath each transistor as well as a shallower channel provides dynamic
control of the transistor threshold by polarizing its substrate however its
production cost is high. Nowadays CMOS processes have reached even 10nm
node technology; however, forecast predict to reach in 2020 the scaling limit
of 2-3-nanometre [11].

Microarchitecture techniques such as multicore increases computational
throughput, however their benefits are at the expense of energy efficiency
where an excessive amount of cores added to a high frequency operation
could reach prohibitive power consumption levels [12]; it is also important to
highlight that processors should implement parallelism among their cores in
order to spread computation tasks and therefore gain speed. Complementary
to multicore, customization can be used to reduce execution latency, this
strategy increases computational performance by exploiting hardwired for
data movement, therefore reducing the number of instructions per operation.
The challenges in parallelism and customization for future microprocessor
will be to reduce the energy expended for data movement (keep data locally
as much as possible) as well as reducing processors synchronization.

Dynamic Memory Technology (DRAM) density has doubled nearly every
two years; however, the access time to store/readout data has improved
slower giving as result a gap between processor and DRAM speed which is
now the primary obstacle to improve computer system performance. For
instance a processor spends 75% of its time in memory operations and if the
clock of a system increases, the processor could spend even larger fraction
of application time waiting for memory processing. The unification of logic
and DRAM on a single chip provides potential improvements by provinding
higher bandwidth, low latency and better energy efficiency, which leads to
considerable cost savings from removing unnecessary memory and reducing
board area [13].

It is clear that radical innovation is necessary in either device technology
or system architecture to continue historical performance improvements. A
potential source of inspiration for new directions comes from neuroscience
[8]. Conventional von Neumann architectures, which separate memory and
computation, are outperformed by biological systems for typical cognitive
tasks. These tasks (inference, classification, goal-based control, etc.) are often
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Fig. 1.1: 40 Years of Microprocessor Trend Data. Original data up to the year 2010
collected and plotted by M.Horowitz, F. Labonte, O. Shacham, K. Olukotun,
L. Hammond, ad C. Balten; New plot and data collected for 2010-2015
by K. Rupp. A slow down evolution in the performance parameters is
observed in the last decade.

performed in environments featuring uncertainty and ambiguity. Evolution
has tuned neural architectures and learning structures to perform highly
efficiently in these environments. This efficiency comes from the brain’s
highly parallel co-location of computation and memory and its ability to learn
the statistics of its environment.

Furthermore, in digital processors, circuit blocks are implemented by using
transistors as switch devices (digital gates), ignoring the analog nature and
hence advantages of this device. On the other hand, the macroscopic con-
ductance of the voltage-gate ion channels, which set the permiability of the
neuron cell membranes [14] has the same physical principles applied to the
conductance of a transistor operated in weak inversion regime (we will de-
scribe this analog operation region in a following chapter) as an exponential
dependence on the applied voltage; therefore, this characteristic could be
exploited.

Neuroscience can also take advantage of this full-custom analog Very-Large-
Scale Integration (VLSI) approach to test hypothesis concerning the computa-
tion performance in the brain. It is believed that this computation is organized
by a finite set of primitives [15] and if we are able to reproduce them we will
progress in the complex task to understand how to build brain-like integrated
systems.

1.1 Microprocessor Evolution and Technology Challenges 3



1.2 Learning in Autonomous Systems

One of the most amazing properties of our brain is its capability to pro-
gressively learn from experiences and consequently predict responses of the
environment to system actions. This mechanism is usually described as plas-
ticity and take place in the nervous systems specifically in the modification of
the synaptic strength which set the information flow among neurons [16].

In order to build autonomous cognitive systems, it is required to equip them
with plasticity characteristics that let them adapt to a constantly-changing
environment. This adaptability requires significant computational resources
devoted to learning, and current artificial systems are lacking in these re-
sources when compared to humans and animals. It is here that Neuromorphic
engineering as a multidisciplinary field aims to build such cognitive agents
which feature learning structures similar to those in biology, with the goal
of achieving the performance and efficiency of natural systems. Here we
present a novel VLSI implementation of a calcium-based synaptic plasticity
model, comparisons between the model and circuit simulations, and mea-
surements of the fabricated circuit. Applications of this model into a small
neural network are also presented.

1.3 The Neuromorphic Approach

Neuromorphic engineering’s goal [17] is to create electronic systems which
emulate both the architecture and functional primitives of the nervous system
such as interconnections betweens synapses and neurons whereupon it in-
tends also to reduce the gap between computing performance and technology
scaling in the fields of parallelism, energy, memory and reliability [18].

The neuromorphic approach proposed by C. Mead in the late eighties led to
the development of subthreshold VLSI chips which typically feature parallel
and distributed computation, asynchronous event-driven communication,
and the co-location of computation and memory via the interconnection of
artificial synapses and neurons; however, few of them integrate the ability to
learn and adapt to the environment through synaptic plasticity.
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To equip autonomous systems with cognitive capabilities comparable to those
of biological systems, particular efforts have to be made to mimic their ability
to learn from experience and adapt to changing environmental conditions.
The theoretical neuroscience research community has produced a plethora of
learning models, and some of them have been translated into analog VLSI
circuits [19–22].

Furthermore, some large-scale neuromorphic systems have already been
implemented, they emphasize diverse characteristics such as neuron model,
synapse model and communication architecture which lead to strengths in
flexibility or low-power consumption as described below.

The Spiking Neural Network Architecture (SpiNNaker) [23] is a System-on-
Chip (SoC) hardware that runs in biological real time, it was designed with
digital Electronic Design Automation (EDA) tools (Synopsys and Silistix) and
each chip (node) uses 18 ARM968 cores each one with local and shared RAM
running at 200MHz. One of the cores is in charge of system management
tasks, 16 of the other cores are used for neuromorphic computation, and an
extra core is available to improve the manufacturing yiel. The fabrication
process was UMC 130nm CMOS and a node dissipates up to 1W [24]. The
system is programmed in high level description language with PyNN [25].
Each core is able to model 1000 neurons each with 10 000 inputs synapses.
The internode communication in the SpiNNaker is via packets that transmit
the spike events. In order to address each package, each chip integrates
a router component that uses Address-Event Representation (AER) [26]
protocol to transmit them. If the router finds a packet delayed (two time
phases old), this is move to a garbage collection mechanism.

The TrueNorth chip [27] is a brain inspired processor that consumes 65mW
and operates in real-time, highly-parallel and is scalable. It contains 4096
cores and each core includes 256 input axons, 256 neurons and 64k synaptic
crossbars. The design methodology for all the communication and control
circuits is asynchronous whereas for computation it is synchronous. The
asynchronous circuits which use request and acknowledge handshaking bits
to transmit data without clock, allows to save power consumption by only ex-
ecute switching activity when there is a required operation. The clock signals
for the synchronous circuits are generated in each core by an asynchronous
control circuit thereby reducing the number of clock transitions and therefore
minimizing power consumption. For asynchronous design, they selected a
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Quasi-Delay-Insensitive (QDI) approach which are circuits almost invariant to
the delays of any wire or component and are described using Communicating
Hardware Processes (CHP) description language [28]. From here they man-
ually decomposed in production rules and then into transistors netlist by
academic tools. The TrueNorth chip, was fabricated using Samsung’s 28nm
LPP CMOS process technology [29]. However, one drawback of this design is
that it does not include plasticity, so this is performed off-chip.

Other neuromorphic hardwares include the Reconfigurable On-Line Learning
Spiking (ROLLS) neuromorphic processor [30] which consists of 265 neu-
rons and 126K synapses with a bi-stable spike-based plasticity mechanisms
that provides on-line learning abilities, the Neurogrid chip [31] designed
with a mixed-signal approach, the BrainScaleS chip [32] which operates in
accelerated mode, and the event-based neural network with asynchronous
programmable synaptic memory chip [33] which consist of Integrate-and-
Fire (IF) neurons and excitatory and inhibitory synapses where the synaptic
strength is stored in a Static Random Access Memory (SRAM) module (off-
chip plasticity).

This thesis presents a novel implementation of a scalable aVLSI neural net-
work which integrates theoretical models of synaptic plasticity such as learn-
ing algorithms with local event-based mechanisms of weight update, which
makes them especially suited for neuromorphic implementations. In par-
ticular, I explore the calcium-based model because it reproduces a variety
of experimental protocols not explained by phenomenological models [34].
Here I describe the initial steps of the project consisting of a computational
model implementation of the synapse up to its behaviour in a fabricated
small VLSI neural network array that comprises low power IF neurons and
calcium-based plasticity synapses communicated through the AER protocol.
The blocks were designed using fully analog Computer Aided Tool (CAD)
tools and the implemented learning circuit is based on a recently proposed
computational model [35] that accounts for plasticity behaviours evoked
by different features of the pre- and post-synaptic activities (e.g. spike tim-
ing as in Spike Time Dependent Plasticity (STDP), firing rate as in Hebbian
learning).
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1.4 Outline of this Thesis

The work in this thesis covers the main stages of a VLSI chip project, from the
conception of the theoretical model going through establishing the electrical
and layout characteristics for a successful tapeout up to the chip measurement
and performance characterization in specific tasks.

In the second chapter, I present a general overview of neuron and synapse
biological characteristics as well as previous learning computational models
such as classical STDP, finally I describe the important role of calcium ions
Ca2+ to generate Long-Term Depression (LTD) and Long-Term Potentiation
(LTP) in biology and how computational models take in account this variable
to come up with generalized learning models.

The third chapter, deals with VLSI topics starting from explaining the princi-
ples of weak inversion operation model in CMOS transistors. This operation
region characterizes for low-power consumption and provides similar charac-
teristics to its biological counterpart, transmitter ions, such as exponential I-V
behaviour. Later I describe the electrical and mismatch CMOS characteristics
for the selected technology AMS 0.18µm. The last part of this chapter presents
the basics circuit topologies that are used to build neuromorphic learning
block.

In the fourth chapter, I present in detail the first fabricated VLSI calcium-
based plasticity learning circuit. This synapse consists of three main blocks
calcium, synapse core and bistability; and the electrical characteristics for
each of them are explained. Finally, measurement results are presented with
discussions about trade-off considerations and ultra-low power techniques.

In the fifth chapter, I present the analysis of a second improved VLSI chip
which overcomes the observed problems of the first learning circuit and in
addition contains a small neural network. Here, additional circuit blocks are
included such as a synaptic weight linearizer whose target is reducing single
synapse current contribution in the network, and a bandgap which improves
bias control compared to direct fixed voltages supply in the parameter signals.
For all of them, circuit architecture, simulation results and measurements are
presented.
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In the sixth chapter, I present and analyse neural network operations using
the calcium-based learning circuit of the second chip. These experiments
include a single synapse connected to a neuron as well as two synapses
connected to one neuron (single perceptron).

In the seventh chapter, I describe an improved version of the second chip
focusing on mismatch reduction which ended up being the main constraint
of the neural network. Here I estimate variability of each model parameter.

The conclusions and future work are presented in the last chapter based on
the analysis of the previous ones.

1.5 Acknowledgement to the Contributors

For the development of the project presented in this thesis and in related
publications [36, 37], the contributions of Prof. Elisabetta Chicca and Dr.
Stephen Nease were insightful. Throughout this thesis I use the term “we” to
refer the three of us. Despite all of us contributed in every stage of the project,
I would like to highlight the support of Prof. Elisabetta Chica in the theoretical
neuroscience and neuromorphic circuit background. Likewise, Dr. Stephen
Nease provided meaningful ideas in low power consumption techniques, he
also together with the Neuromorphic Cognitive Systems lab at the Institute
of Neuroinformatics (University of Zurich and ETH Zurich) implemented
the top-level configuration and layout of the testchips which include bias
generator circuits and bound-pads routing; in addition, he designed the PCB
setup for the testchips. My contribution to this work was providing support
in the layout routing of top circuit blocks, PCB verification and components
soldering.
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2Models of Synaptic Plasticity

Synaptic plasticity is considered the essential element in learning and mem-
ory; therefore, in order to understand its behaviour we must figure out how
experience and training modify synapses and how their modifications change
neural firing patterns. The starting point was proposed by Donald Hebb [38]
who concluded that if the input of one neuron contributes to the firing of
a second one, the synapse from the first to the second neuron should be
strengthened. The original Hebb’s suggestion was generalized and currently
includes also decreases in synaptic strength. Subsequent measurements in
brain regions such as in hippocampus and neocortex showed that constant
amplitude stimulation in the synapse can produce changes on it that last for
more than 15 min [39]. In order to reach stability when interconnecting
neurons, synaptic strengths need to be scaled and upper and lower bonds
set. Typically synaptic plasticity occurs only if the difference in the pre- and
postsynaptic spike times falls within a window time lower than ± tens of
milliseconds. More recently experiments reported that synaptic modification
as a function of these spikes timing (STDP) is just one mechanism for the
induction of long-term changes and that biological plasticity is significantly
more complex [40]; consequently, the design of biological synapse models can
considerably increase the amount of information per memory [41] as well as
the number of storable memories [42]; however, these types of synapses are
hard to implement in silicon and the area occupied can be so wide that larger
number of simple synapse would end up been more efficient [43]. Synaptic
rules are represented as differential equations describing the synaptic weight
variation as a function of pre- and post- spikes (although other parameters
can also be added) which generally model a slow process that gradually
modifies synaptic weights. Neuromorphic circuits which are implemented
with Complementary Metal Oxide Semiconductor (CMOS) transistors in VLSI
take advantage of these formulations to emulate the electro-physiological
properties of biological neurons in hardware.

I start this chapter by describing the spiking neuron model which later will be
used to implement neural networks and whose outputs are used to generate
synaptic modifications; later I describe two synapse models starting from
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the classical STDP and then explaining in detail a more complex model
“calcium-based learning” which is the target of this work.

2.1 The Spike Response Model

Action potentials are the result of currents that flow through ion channels
in the cell membrane. Hodgkin and Huxley [44] measured these currents
and described their dynamics in terms of differential equations. However, the
system of equations that they proposed was too complex to analyse given that
it consisted of four dimensional nonlinear differential equations which make
the variables’ waveform hard to visualize. Simplified models [45] aim to
reduce the number of differential equations which consequently reduces their
processing time when implementing them as algorithms. The Spike Response
Model (SRM) shown in Fig. 2.1 is a generalization of the phenomenological
leaky IF neuron model [46]. While in the IF model the potential is expressed
as a function of a voltage, in the SRM parameters depend on the relative time
from the last output spike; this model presents a formulation of the membrane
potential by using an integral over the past which is the explicit solution of
the differential equations, thus reducing computation complexity.

The neuronal signals consist of short electrical pulses which are called action
potentials or spikes which are generated whenever the membrane potential
u crosses a threshold v from below [47]. The waveform of this signal does
not vary through its propagation along the axon. We define the moment a
membrane potential u crosses a threshold v as the firing time t(f).

t(f) = u(t(f)) = v and
du(t)
dt

∣∣∣∣∣
t=t(f)

> 0. (2.1)

The mathematical expression of the membrane potential is given in eq. 2.2.
Here ε describes its evolution for incoming spikes, η defines the decrease after
the membrane reaches the threshold and urest defines the resting potential at
steady state [45]. In circuit design η can be implemented as a current source
charging a RC or C circuit which results in an exponential waveform in the
voltage as function of time.
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Fig. 2.1: Membrane potential dynamics for spike response model. η describes its
response for an input spike, ϑ defines its decrease after reaching a threshold
(extracted from [45]).

ui(t) = urest + η(t− t̂i) +
∑
j

wij
∑
f

ε
(
t− t̂i, t− t(f)

j

)
, (2.2)

where η(t− t̂) = −η0e
−(t−t̂)/τrefrH(t− t̂), t(f)

j are spikes of presynaptic neurons
j and wij the synaptic efficacy; H denotes the heaviside step function. All
the terms depend on t − t̂i, the time since the last output spike, wij is the
synaptic strength and determines the amplitude of the postsynaptic response
to an incoming action potential. wij is the term that provides plasticity to a
neural network, the modification of this factor leads to the learning process
which is the main topic of this thesis. Nevertheless, this neuron model
provides insightful information about how spikes are originated providing
also considerable details to resemble its biological counterpart. In a following
chapter network experiments will be presented which are implemented by
using synapses and neurons in hardware.

2.2 Synaptic Plasticity

In the brain there are two main classes of synapses: electrical and chemical.
The chemical synapse is more common given that this is the principal media-
tor of targeted neuronal communication [48]. Its advantages are that it can
produce either excitatory or inhibitory actions and it can amplify neuronal
signals, allowing a small presynaptic nerve terminal to modify the potential
of a large postsynaptic cell [14].
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The synaptic transmission mechanism consists of a presynaptic spike that
depolarizes the synaptic terminal which produces calcium ions flow through
the presynaptic calcium channels, causing vesicles of neurotransmitters to
be released into the synaptic cleft. The neurotransmitters bind tempo-
rally to postsynaptic channels, opening them and allowing ionic current
to flow across the membrane as shown in Fig. 2.2 [49]. Typical excitatory
receptors are α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid Recep-
tor (AMPA) and N-Methyl-D-Aspartate Receptor (NMDA) neurotransmitters
while γ-Aminobutyric Acid (GABA) receptors are inhibitory [43].

LTP induction is obtained by simultaneous presynaptic neurotransmitter
release and postsynaptic depolarization. Presynaptic stimulation at a low
frequency produces Excitatory Postsynaptic Potential (EPSP) which does not
change its magnitude when it is followed by postsynaptic depolarization
[50, 51]. On the other hand, a high presynaptic rate with simultaneous
postsynaptic hyperpolarization leads to a persistent potentiation (Posttetanic
Potentiation (PTP)). Only when synaptic input is paired with postsynaptic
depolarization is LTP induced. In addition, the induction of LTP requires
activation of NMDA receptors which are directly gated by both voltage and
neurotransmitter, so that they let current flow only when the membrane
is depolarized sufficiently to relieve a block by magnesium ions. Synaptic
depression occurs when there is a decrease in the probability of transmitter
release as result of a moderate increase of postsynaptic Ca (low frequency
stimulation of afferents [52]); in this case the amount of depression depends
not on the number of presynaptic action potentials but on the number of
vesicles released [53].

Some experiments have also demonstrated that the induction of synaptic
potentiation and depression depends on the timing between pre- and post-
synpatic spikes. When this timing is positive (tpost − tpre > 0) we can obtain
potentiation, and similarly in the opposite case we obtain depression [54]. In
addition, modification in synaptic strength occur when pre- and post- spikes
are close enough each other. Two experimental protocols to induce LTP one
for high frequency and the other for different timing tpost − tpre are shown in
Fig. 2.3 and Fig. 2.4 respectively.

In Fig. 2.3, a pre- spike is applied to measure the synaptic strength of the
postsynaptic response as shown in (A). This pulse generates postsynaptic
potential but not action potential. Later an input spike train with high
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frequency is supplied which generates postsynaptic firing as shown in (B).
Finally again the neuron is stimulated with the pre- spike and a considerable
increase of the postsynaptic potential is observed as shown in (C) [55].

Fig. 2.4 shows the experimental results obtained in [54] in terms of the in-
duced synaptic modification depending on the correlated timing between pre-
and post- synaptic spikes. As can be seen if the presynaptic spike occurs before
a postsynaptic action potential, a LTP is generated; however, if a postsynaptic
spike occurs before a presynaptic action potential, a LTD is generated. A
common approximation of this data is an exponential decay with positive
and negative coefficients for potentiation and depression respectively.

Computational models of biological synapses were successfully described by
Destexhe [56]. He used a first-order kinetic equation for the neurotrans-
mitters’ dynamic of a synapse, obtaining hence exponential functions to fit
Excitatory Postsynaptic Current (EPSC).

R + T
α
⇀↽
β
TR∗, (2.3)

where R and TR∗ are the unbound and bound forms of the post-synaptic
receptor, α and β are the forward and backward rate constants for transmitter
binding. Considering that the change in neurotransmitter concentration T in
the cleft occurs in a brief pulse, and defining r as the fraction of receptors in
the activated state, we obtain a first-order differential equation of the kinetic
model.

dr

dt
− α[T ](1− r)− βr, (2.4)

The electrical current that results from the release of a unit amount of
neurotransmitter at time ts is

Isyn(t) = gsyn r(t) (V (t)− Esyn) , (2.5)

where gsyn r(t) is the synaptic conductance change in the postsynaptic mem-
brane because of the effect of a transmitter binding to an opening postsynaptic
receptors and gsyn is its amplitude. V(t) is the voltage across the postsynaptic
membrane and Esyn is the reversal potential of the ion channels that mediate
the synaptic current. Simple waveforms are used to describe r(t) since the ar-
rival of a presynaptic spike which include alpha functions, single exponential
decays and dual exponential functions [48]; the former is the most precise
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representation and it is stated in Eq. 2.6. In a synaptic model, the weight
wij could be used as a scaling factor for the maximum postsynaptic receptor
conductance gsyn.

r(t) = t− ts
τ

exp
(
−t− ts

τ

)
, (2.6)

Multiple learning models have been proposed for explaining synaptic changes
and some have also a corresponding implementation in VLSI circuits. How-
ever, hardware models that show how the dynamics of the postsynaptic
calcium alone determine the outcome of synaptic plasticity are still uncov-
ered. Recently “A calcium-based plasticity model” that determine a large
diversity of spike timing-dependent plasticity by varying the parameters that
define the calcium dynamics has been proposed [35].

In computational models we define the synaptic strength as wij which con-
nects neuron j to neuron i and by modifying its value we can optimize a
neural network performance. Learning consist of modifying this value and
the function that correlate this variation with respect to the input spikes is
called learning rule. The most common phenomenological learning model is
STDP which defines the variation of the synaptic strength as a function of the
timing between pre and post spikes by exponential functions. Mathematically
we can simplify the synaptic dynamics as stated in Eq. 2.7.

d

dt
wij(t) =Sj(t)

[∫ ∞
0

W pre,post(s)Si(t− s) ds
]
+

Si(t)
[∫ ∞

0
W post,pre(−s)Sj(t− s) ds

]
,

(2.7)

where Sj(t) = ∑
f δ(t−t

(f)
j ) and Si(t) = ∑

f δ(t−t
(f)
i ) are pre- and postsynaptic

spike trains, respectively. The terms containing W (s) describe the form of the
"learning window". The kernel W post,pre gives the amount of weight change
when a presynaptic spike is followed by a postsynaptic action potential with
delay. The kernel W pre,post describes the amount of change if the timing is the
other way round [45].

The learning waveform W (t) is defined by:

W (t) =
{
A+e

−(t−tpre)/τ1 for tpost > tpre
A−e−(t−tpost)/τ2 for tpre > tpost

(2.8)
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Fig. 2.2: Schematic illustrating the signaling cascade underlying synaptic tranmis-
sion. In response to a presynaptic action potential, calcium enters the
presynaptic terminal via voltage-gated calcium channels and triggers the
release of glutamate-containing vesicles. Glutamate diffuses into the synap-
tic cleft and activates postsynaptic AMPA and NMDA receptors, ionotropic
receptors that act via opening of an ion channel permeable to sodium,
potassium and calcium, givin rise to a fast excitatory postsynaptic current
(EPSC) (figure extracted from [43]).

with constants A+ > 0, A− < 0 that represent the maximum increment and
decrement of the synaptic strength respectively, and τ1,2 which denotes the
time decay of the exponential function.
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Fig. 2.3: LTP protocol. In (A) a single spike is injected to generate postsynaptic
potential. In the second step in (B) a spike train with enough high fre-
quency stimulates the neuron to induce postsynaptic firing. In (C) the
postsynaptic response is compared with the one observed in (A) and an
increase is observed (figure extracted from [55]).

Fig. 2.4: Spike-Timing-Dependent Plasticity. During this protocol both neurons are
stimulated to fire at a fixed time. After the spikes pair, the presynaptic
neuron is stimulated again to compare the initial synaptic potentiation
with the initial. A synaptic change ∆wij is obtained when the pre- and
post- spikes are close enough, and LTD is observed when the pre- spike
fires after the post- spike, similarly LTP is obtained when post- spike fires
after pre- spike (figure reproduced STDP article on scholarpedia, which is
based on original from [54]).

The STDP rule is a phenomenological model which is successfully used to
resolve many computational task implying neural networks; however, it
lacks to reproduce biophysical properties of the synapse and therefore is
not suitable for exploring the role of calcium concentration in information
processing.
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An algorithm that incorporates the STDP learning rule in a neural network
simulation was proposed in [57]; this pair-based STDP rules is implemented
with two local variables for the low-pass filtered presynaptic and postsynaptic
spikes respectively as shown in Eq. 2.9 and Eq. 2.10. A decrease of the
synaptic weight is set when yi is sampled for tj pre-spikes; similarly, an
increase of the synaptic weight is set when xj is sampled for ti post-spikes
which is expressed in Eq. 2.11. The simulation results of [57] are reproduced
using Matlab in Fig. 2.5 and its learning waveform is shown in Fig. 2.6. The
figures confirm an exponential increase/decrease of the synaptic weight as a
function of the pre- and post- spike timing.

dxj
dt

= −xj
τx

+
∑
tfj

δ
(
t− tfj

)
, (2.9)

dyi
dt

= −xi
τx

+
∑
tfi

δ
(
t− tfi

)
, (2.10)

dwij
dt

= −F−(wij) yi(t) δ
(
t− tfj

)
+ F+(wij) xj(t) δ

(
t− tfi

)
, (2.11)

where F±(wij) describes the dependence of the update on the current weight
of the synapse.

2.3 The Simplified Calcium-based
Learning Model

In 2001, Liesman proposed that modifications in synaptic plasticity depends
on the amount of calcium Ca2+ concentration [58]; some experiments later
demonstrated that high Ca2+ elevation triggers LTP, moderate Ca2+ elevation
triggers LTD and lower level Ca2+ do not change the synaptic strength [59].
In addition, long term modification can be observed when the density of
NMDA receptors is modified, consequently varying the calcium flux [60].
Fig. 2.7 shows this effect by partially blocking the calcium-permeable NMDA
receptors from an initial LTP originated by a high calcium flux to an induced
LTD originated by a lower calcium flux.

An initial biological model that tried to mimics the synapse dependence on
Ca2+ was proposed by Shouval et al. [40] and later its simplification as a
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Fig. 2.5: Simulation results for pair-based STDP rule proposed in [57]. Two local
variables are used to trace pre- spike (xpre) and post- spike (ypost), the
synapse decreases when xpre is sampled for each pre- spike and similarly
it increases when ypost is sampled for each post- spike. tpre − tpost > 0 is
observed for the first spike pair and tpre− tpost < 0 in the second spike pair,
additionally overlap effect when consecutive spikes arrive is shown for post-
spikes around 0.78s. For this simulation results the chosen parameters are:
τx = 22ms, τy = 22ms, F+ = 1, and F− = 1.

phenomenological model was proposed by M. Graupner et al. [35]. My work
is based on this last model which we will refer as Calcium-based plasticity
learning model. The advantage of this model is that it can explain a plethora
of learning waveforms that are found in the different areas of the brain [61],
these waveforms are shown in fig. 2.8 and include only depression (D), only
potentiation (P) and a mix of them DP, DPD and PDP. The selection of one
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Fig. 2.6: Learning waveform W (tpre − tpost) for the spike-based STDP rule, as ob-
served an increase of synaptic weight is obtained when tpost− tpre > 0, and
a decrease for tpost − tpre < 0. The waveform is normalized with respect
to the maximum value of ∆wij instead of the maximum wij . Parameter
values here are the same than in Fig. 2.5.

Fig. 2.7: Interaction between NMDA receptors and calcium scale of synaptic plastic-
ity. In (a) large calcium influx generate potentiation, a reduction of this
turns to depression and finally a small amount do not produces change.
(b) Blocking NMDA receptors reduces the influx of calcium and induces de-
potentiation B1 and point a, in B2 the number of NMDA is reduced which
reduces the influx of calcium and is expressed as a movement to point b,
to get more depotentation, the concentration of nmda receptor antago-
nist must be decreased (B3) which increases the calcium flux (extracted
from [60]).

of these waveforms depends on the assigned calcium variables which are
explained below.
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Fig. 2.8: Diversity of STDP curves in response to spike pair Stimulation (extracted
from [35] ). (A) Compound calcium transients evoked by a pair of pre-
nad postsynaptic spikes for two values of ∆t. (B)Fraction of time spent
above the depression and potentiation. (C and D) The shape of STDP
curves varies as a function of the pre- and postsynaptic calcium amplitudes
Cpre and Cpost (extracted from [35]).

The model describes the temporal dynamics of the synaptic efficacy w by
using a first order differential equation as a function of potentiation and
depression terms that depend on calcium concentration [62]. Pre- and
post-synaptic pulses produce calcium peaks that decay exponentially in the
absence of spikes. The long-term memory property is achieved through
a bistability factor [63] which drives w to only two possible values. The
temporal dynamics of the synaptic efficacy w are described by the following
equation:

τ
dw

dt
= −w(1− w)(w∗ − w) + γp(1− w)H

[
c(t)− θp

]
−γd(w)H

[
c(t)− θd

]
+Noise(t), (2.12)
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where τ is the time constant of the synaptic efficacy w, w∗ is the boundary
between the basins of attraction of the two stable states, γp and γd are the
potentiation and depression coefficients respectively, θp and θd are the calcium
potentiation and depression thresholds respectively, H denotes the Heaviside
function, and c(t) is the calcium concentration. Given that our main goal is
comparing the theoretical and hardware synaptic dynamics, the noise term
included in [35] is omitted here. The bistable term −w(1−w)(w∗−w) pushes
the synaptic efficacy w towards zero or one at a rate that depends on 1/τ and
w. When w is lower than w∗, w tends towards zero, and when w is greater
than w∗, w tends towards one. The rate at which w moves towards these
bistable states is approximately zero as w approaches toward zero, w∗, or one.
w∗ is an unstable fixed point, so noise or any significant synaptic activity will
push w away from w∗. The second term γp(1−w)H

[
c(t)−θp

]
implements LTP.

The synaptic efficacy increases by a factor γp(1− w) whenever the calcium
concentration c(t) is greater than the threshold θp. This factor approaches
zero as the synaptic efficacy is close to one. The third term γd(w)H

[
c(t)− θd

]
implements LTD. The synaptic efficacy decreases by a factor γd(w) when c(t)
is above θd. This last factor approaches zero as the synaptic efficacy is close
to zero.

The simulation results obtained for Graupner and Brunel in [35] are shown in
Fig 2.8, where we shows the calcium dynamics for tpost < tpre and tpost > tpre

in A, and the learning waveforms obtained as results of different parameter
values such as Cpre, Cpost, θp, θd. Classical STDP (Depression-Potentiation) is
given when cpre < θd < cpost < θp.

We designed a novel analog circuit based on the plasticity model proposed
in [35], so as a first step we simplified the model to make it more suitable
for hardware implementation. The original model imposes soft bounds on
the weight by multiplying the potentiation and depression factors by (1− w)
and (w), respectively. We replaced these soft bounds with hard bounds [64],
which more accurately model the behavior of CMOS circuits, because they
often feature slewing behaviour up to a power rail. This simplification can be
expressed as the following:

τ
dw

dt
= −kbsw(1− w)(w∗ − w) + γpH

[
c(t)− θp

]
−γdH

[
c(t)− θd

]
, (2.13) w > 1→ w = 1

w < 0→ w = 0
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where kbs is a constant that scales the bistability dynamics, and the hard
bounds are implemented by the conditional expression. We compare this
mathematical model with our circuit simulations in Sec. 4.1.1. With this
equation, potentiation and depression are independent of the synapse value
except near saturation values 0 and 1. Similarly, kbs sets the bistability slope
independently of τ , γp, and γd. The introduction of this variable allows a more
direct comparison with the circuit design. kbs can be in fact interpreted as the
bistability slew rate set by the bias current of a wide range transconductance
amplifier (see Sec. 4.1). Furthermore, the simplified dynamics for the calcium
variable proposed in [35] are considered for the hardware implementation:

dc

dt
= − c

τCa
+ Cpre

∑
i

δ(t− ti −D) + Cpost
∑
j

δ(t− tj), (2.14)

where c is the total calcium concentration, τCa is the calcium decay time
constant, Cpre and Cpost are the pre- and post-synaptic calcium amplitudes, D
is the delay in the response to pre-synaptic spikes, ti and tj are the pre- and
post-synaptic spikes, and δ denotes the Dirac delta function. The temporal
derivative of c(t) is given by the sum of three terms. The first term − c

τCa

describes the decay of the calcium concentration. In the absence of pre- or
post-synaptic spikes the solution of the differential equation is a decaying
exponential function. The second term Cpre

∑
i δ(t − ti − D) produces an

instantaneous rise in the calcium variable after a time D from the time
of occurrence of a pre-synaptic spike (ti). The third term Cpost

∑
j δ(t −

tj) produces an instantaneous rise in the calcium variable at the time of
occurrence of a post-synaptic spike (tj).

In Eq. 2.14, pre- and post-synaptic spikes are idealized as Dirac impulses. In
physical systems, pulses have a duration, and particularly in analog circuits
the pulse width is important because it can be used to define the time window
in which a current flow occurs. This current usually charges a capacitor, and
a saturation occurs if the time window is too long (the integrated voltage hits
the supply rail). In the more realistic assumption of finite duration pulses,
the calcium dynamics can be described as follows:

c(t) = Cpre

∫ ∞
0

F (s−D)
∑
i

Pi(t− s−D)ds+

Cpost

∫ ∞
0

F (s)
∑
j

Pj(t− s)ds,
(2.15)
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where F (t) = e
− t
τCaH(t) models an exponential decay after one spike and

can also be described as the solution of Eq. 2.14 for one post-synaptic spike
with calcium amplitude 1, and Pi(t) = H

[
t− ti

]
−H

[
t− (ti + ∆tpw)

]
is the

i-th pulse with duration ∆tpw. We compare this mathematical model with
our circuit simulations in Sec. 4.1.1.

The simulation result for the simplified calcium-based model is shown in
Fig. 2.9 which demonstrates that we can generate STDP by setting parameter
values of an intermediate calcium variable in specific ranges. Here pseudo
random pre- and post- spikes were generated to demonstrate the effect of
plasticity due to timing (near 0.4s in the graphic) and frequency (near 0.8s
in the graphic). In addition, the negative and positive slopes generated by
the bistability are observed in the synaptic weight plot confirming that the
system can only reach two possible values for long periods of time.

2.4 Discussion

I started this chapter by describing the computational model of the biological
synapse; later I showed former experiments that demonstrate that synaptic
strength can be modified by the pre- and post-synaptic spikes timing (STDP)
as well as by the input spike rate. Finally, I presented a novel model obtained
by simplifying the Calcium-based learning model proposed in [35] which
is capable of reproducing timing and rate dependency in the synapse by
implementing an intermediate calcium variable. This simplified version in
addition to reproduce a plethora of learning rules depending on its parameters
setup is also suitable for VLSI implementations.

This simplified calcium model uses hard bounds which are more accurately
modelled by CMOS circuits; however, it is also important to highlight that the
dynamics of the CMOS transistor depend on its operation point. For example
in the case of a NMOS transistor in saturation, if we reduce Vds, its current
Ids will slightly decrease (because of channel length modulation effect) and
eventually the operation region will move to triode when Vds < 4UT (for
weak inversion). In this latter region a stepper decay in the current occurs
when further reducing Vds, reaching leakage current levels at Vds ≈ 0. As we
will see in the next chapter, the synaptic strength is modified by sourcing or
sinking a current flow through a capacitor by using a PMOS or NMOS as the
bias device respectively.
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Fig. 2.9: Simulation results for the simplified calcium-based model programmed
in Matlab. Pre- and post- spikes are generated pseudo randomly to show
the effects of spikes timing and rate. When only a pre- spike appears,
the calcium signal rises after a delay D and it does not reach any of the
threshold θp and θd values (see graphic near the time 0.05s). In the case
of a only post- spike, the calcium signal rises instantly and reaches values
above both thresholds, Cpost and γp/γd are set in the way that the time that
the calcium signal spends above θp and θd balance the total potentiation
and depression without modifying the final synaptic strength (see graphic
near the time 0.2s). In the block (A) the pre- and post- spikes are far each
other therefore they do not generate an overlap in the calcium signal and
the synaptic weight remains constant. In the block (B) the pre- and post-
spikes are enough close each other and their calcium signal components
are overlapped, for the first pre-post pair the timing tpost − tpre is negative
thus depression is generated in the synaptic weight, on the contrary in the
last pair tpost − tpre is positive therefore generating potentiation. In the
group (C) the effect of increasing the spike frequency is observed, for the
first group the calcium signal remains above θd but below θp generating
only depression, when the pre- spike frequency increases the calcium signal
rises to values higher than the threshold θp generating more potentiation
than depression. Bistability effect occurs at any synaptic weight value, in
the graphic its effect is more noticeable for synaptic weight values around
0.3 or 0.7 (see graphic around 0.8s), for lower values than 0.5, the synaptic
goes down slowly to 0, and for values higher than 0.5 it goes up to 1.

In order to compare the soft and hard bounds effect in the synaptic modi-
fication lets define the synaptic strength as w in a range of [0 − 1]. In the
case of soft bounds when potentiation or depression occurs, w is modified
as w → w + q+(w) or w → w − q−(w) respectively, where the step size q+
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and q− are variable and defined as q+(w) = α(1− w) and q−(w) = αw. On
the other hand, in the case of hard bounds we define a constant step size
for potentiation and depression independent on the value of synaptic state,
then q+(w) = q−(w) = α. A more detailed explanation of bounded synapses
is described in [64].

By comparing the previous bounds definitions with the CMOS dynamics, we
can argue that using soft bound near the power rails (|Vds| < 4UT ) resembles
a triode region operation in CMOS; however, for the most of the swinging
range, the operation is reasonably approximated to hard bounds.
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3Neuromorphic Circuits Blocks

I start this chapter by giving a theoretical analysis of the CMOS transistor
transfer function followed by its detailed characterization for the technology
used in this work. This provides a solid background for the following sections,
in which I use the obtained results such as threshold voltage, current values
for weak and strong inversion and leakage current levels to implement the
desired waveforms.

The MOS transistor consists of a low lightly doped semiconductor called
body substrate (p-type for NMOS and n-type for PMOS) and two high doped
semiconductors called drain and source diffusions implanted in the substrate
(n-type for NMOS and p-type for PMOS) separated by a distance L. Through-
out this distance an insulator with oxide thickness (tox), width W and length
L is formed above the substrate. A polysilicon layer is grown above the oxide
generating a fourth terminal called gate.

In order to describe the physical effects in CMOS transistors some definitions
are stated in this paragraph. The flatband voltage (Vfb) is defined as the
required gate-body voltage (Vgb) to keep the semiconductor everywhere
neutral by cancelling the effects of the contact potentials and the parasitic
charge. The surface potential (ψs) is defined as the total potential drop
across the region defined from the surface to a point in the bulk outside the
depletion region as depicted in Fig. 3.1 [65].

If Vgb increases above the Vfb, the total charge on the gate (Qg) becomes
positive1 and this difference in the charge on the gate per unit area (Q′g)

2 is
balanced by a negative change in the charge of the semiconductor under the
oxide per unit area (Q′c). This positive change in Vgb causes also an increase
in the potential drop across the oxide (ψox) and ψs. For values slightly higher
than Vfb, the holes are driven away from the surface leaving a depletion
region. As Vgb increases further, ψs becomes sufficiently positive to attract
a significant number of free electrons to the surface and eventually, with a

1To be more precise a slight parasitic charge (Q0) which is mainly located at the oxide-
semiconductor interface should also be considered. At flatband condition Qg=-Q0,
however for the matter of simplicity we neglect this term here.

2An apostrophe (′) after Qx denotes charge per unit area.
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Fig. 3.1: MOS terminal structures in inversion region (extracted from [66]). (a)
A MOS two-terminal (MOS capacitor), if Vgb is higher enough inversion
(charge QI) and depletion (charge Qb) regions are formed, this leads to a
potential ψs between the surface and a point outside the depletion region.
(b) A four-terminal MOS transistor, the added drain (D) and source (S)
terminals unbalance the Q

′
b and Q

′
I charges and the potential ψs with the

distance, the depletion region formed by the reverse bias Vds is greater
than the one formed by Vsb since Vdg > Vsb.

sufficiently high Vgb voltage, the density of electrons can exceed the one of
holes at the surface.

The inversion layer in MOS transistors is created when Vgb is high enough
to repel majority carriers in the substrate and even attract minority carriers
to its surface giving as a result a path of same carriers that allows current
flow between the substrate surface and the drain and source terminals. Here
Q
′
c consists of the deplexion charge Q′b plus the inversion Q

′
I charge. The

inversion region is divided into weak, moderate and strong inversion. In weak
inversion practically all the charge below the oxide is due to Q′b and the sur-
face potential reaches smaller values than two times the Fermi potential (φF )
which allows to approximate Q′I to a exponential function of ψs. In strong
inversion the surface potential ψs is assumed to be constant (independent of
Vgb values); this leads to a simplified linear relationship between Q′I and Vgb.
In moderate inversion none of the previous simplifications is valid; therefore,
the Q′I(Vgb) is neither a straight line nor an exponential [66].

A similar characteristics to the exponential function of the transistor in weak
inversion configuration is found in the ions conductance of neuron cells
with respect to its membrane potential [44]. Therefore, this configuration
is suitable in the neuromorphic field to mimic conductance dynamics [67].
Furthermore when CMOS are operated in the subthreshold domain they draw
small currents producing low power consumption. The disadvantages of the
subthreshold region are that mismatch effects are stronger and transistors
cannot operate at high frequencies [68].
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3.1 CMOS Operation in Inversion Region

For a better understanding of MOS transistor operation, first a two-terminal
structure usually named MOS capacitor (Fig. 3.1a) is explained and then the
results are extended to a four terminals structure which is the real fabricated
device in silicon (Fig. 3.1b). In this latter, the current flow is derived as a
function of the voltages in its terminals.

Mathematically the charge Q
′
c as a function of ψs is calculated by using

the Poisson’s equation considering dopant ions and electron contribution
in the surface (for the general derivation refer to [66]). The expressions
for Q′c, Q

′
b and Q

′
I in inversion region are given in Eqs. 3.1, 3.2 and 3.3,

where q = 1.602× 10−19C is the electron charge, εs = 1.05× 1012F/cm is the
permittivity for silicon, NA is the acceptor concentration (≈ 1017− 1018cm−3),
UT is the thermal potential (UT = 25mV at room temperature) and γ is the
body effect coefficient.

Q′c = −
√

2qεsNA

√
ψs + UT e

ψs−2φF
UT (3.1)

Q′b = −
√

2qεsNA

√
ψs (3.2)

Q′I = Q′c −Q′b = −
√

2qεsNA

√ψs + UT e
ψs−2φF
UT −

√
ψs

 (3.3)

ψs ≈

−γ2 +
√
γ2

4 + Vgb − Vfb

2

, weak inversion (3.4)

ψs ≈ φ0 = 2φF + ∆φ, strong inversion (3.5)

These equations are plotted as a function of ψs in Fig 3.2. For ψs values lower
than 2φF practically all the surface charge is caused by the charge in the
depletion region. As ψs increases above 2φF , |Q′I | starts to become significant
and strong inversion takes place from φ0 = 2φF + ∆φ, (∆φ is considered a
constant between 5UT to 6UT ). In weak inversion region | Q′I |<<| Q′b | is
considered and Q′b is approximated to a constant value along the channel. In
strong inversion the depletion region charge is assumed to have reached a
maximum value of Q′b0 = −

√
2qεsNA

√
φ0.

By adding the drain and source terminals to the MOS capacitor and connect-
ing them to different voltages as depicted in Fig. 3.1b, the attractiveness of
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c

Fig. 3.2: Surface potential ψs and charges Q
′
I , Q

′
b and Q

′
c vs. gate-body voltage

Vgb for two-terminals MOS transistor. For low ψs values a considerable
change ∆ψs is required to modify Q

′
c. For high ψs values a slight ∆ψs

generates considerable variation in Q
′
c due to the steepness of Q

′
I . In weak

inversion the slope dψs/dVgb is nearly constant and in strong inversion ψs
is practically constant (extracted from [66]).

the surface for the electrons depends on how large ψs is in comparison to
Vcb, where Vcb(0) = Vsb and Vcb(L) = Vdb; this leads to a vertical shift of ψs in
Fig. 3.2 (right plot) by Vcb. In addition, a horizontal field component (much
smaller than the vertical one) is generated.

The current flow between the drain and source terminals in inversion region
consist of drift and diffusion components as stated in Eq. 3.6. To obtain a
simple explicit solution for Ids, ψsa is approximated by a linear function in
weak inversion where source (source-referenced model) [69, 70] or body
(body-referenced model) [71] are chosen as the reference voltage. In the
case of strong inversion, ψsa is considered constant and the source-referenced
model is generally used.

Ids = W

L


∫ ψsL

ψs0
µ(−Q′I)dψs︸ ︷︷ ︸
drift

+UT

∫ Q
′
IL

Q
′
I0

µdQ
′

I︸ ︷︷ ︸
diffusion

 (3.6)

In weak inversion, due to the constant depletion region, the electric field has
a zero horizontal component so no drift current is generated. Since φs < 2φF ,
the Eq. 3.3 can be simplified to an exponential function of ψsa. The ψsa

expression given in Eq. 3.5 is also approximated to a linear function; one
approach is to expand this function from the point M (top weak inversion
limit) which leads to a more precise model as explained in [66]. Other
approach is to expand ψsa from Vgb = 0 [71]; this last approximation is more
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commonly assumed in the neuromorphic field. With this two simplifications

Q
′
I = Q

′
Me

κM (Vgb−Vmb)
UT for expansion in M or Q′I = Q

′
0e

(κ0Vgb−Vsb)
UT for expansion

in Vgb = 0. The solution of Eq. 3.6 with the simplified charge function
using the body-referenced model and expanding ψsa linearly from Vgb = 0
gives the explicit mathematical expression for Ids shown in Eq. 3.7, where
I0 = qDN0e

−q φ0
KT

W
L

is the leakage current when Vgs = 0. Saturation region is
considered if Vds > 4UT , this condition leads to the simplified Eq. 3.8 where

the term e
−Vds
UT is neglected.

Ids = I0e
kVgb−Vsb

UT

(
1− e

−Vds
UT

)
, (3.7)

Ids = I0e
kVgb−Vsb

UT (3.8)

In strong inversion Eqs. 3.3 and 3.5 are rewritten including drain and source
voltages as ψs(x) = φ0 + Vcb(x) and Q′I = −C ′ox(Vgb− Vcb(x)− VT0). Thus, the
drain current is assumed to be due to drift. Using the source-reference model,
the solution of Eq. 3.6 results in Eq. 3.9

Ids = µCox
W

L

[
(Vgs − Vth)Vds −

1
2V

2
ds

]
, (3.9)

where
Vth = Vth0 + γ

(√
|φ0 + Vsb| −

√
|φ0|

)
(3.10)

is the threshold voltage with Vth0 = VFB +φ0 + γ
√
φ0. If Vds is slightly greater

than Vgs−Vth, then the inversion layer stops at a distance x ≤ L (pinch-off) so
Eq. 3.9 is taken until L−∆L where Vds = Vgs − Vth. A firs-order relationship
between ∆L/L and Vds is commonly assumed giving as result the Eq. 3.11;
this effect is called channel-length modulation where λ is its coefficient [70].
Another important effect occurs when the source voltage is different from
the substrate; if the gate voltage increases from an initial value equal to the
substrate, the depletion region in the body also increases (Q′b). Therefore,
in order to get the initial Q′b, the voltage in the gate should increase; this
phenomenon is called body-effect and it is represented as an increase of
the threshold voltage as stated in Eq. 3.10 where γ is the representative
coefficient. The terms µCox and µCox

W
L

are usually referred as K and β

respectively.

Ids = 1
2µCox

W

L
(Vgs − Vth)2(1 + λVds) (3.11)
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3.2 MOSFET Characterization

In order to use the deduced model equations of the previous section (quadratic
and exponential Ids functions), appropriate parameters values need to be
estimated; the procedure to obtain this data is called characterization. In the
previous equations, some parameters do not have an exact theoretical value
i.e. φ0, Vth and γ, so the most suitable values for them depend on the desired
operation point. In a good model the parameter values are reasonable close
to the physical ones. The technology used in our circuits implementation
is AMS 0.18µm; therefore, the characterization has been performed in this
node.

Differences between the model and real data occur because ideal situations
were considered in the model i.e. the previous equations were obtained for
constant doping substrate, however small technologies like 0.18µm uses halo
implants which creates a higher doping concentration in the substrate near
the source and drain which decreases the mobility in these areas, inaccurate
flatband voltage and/or empirical parameters assumption and approximation
also leads to mismatch errors. However, in computational models a constant
lateral doping is assumed. Another discarded effect is that the transistor
dimensions’ W and L are the electrical channel width and length, which are
slightly smaller than the corresponding layout versions.

In order to set the parameter values, an optimization process is used to
minimize the error between modelled and measured values. A common
approach is to minimize drain current errors through least mean square
error fit (linear regression), although more complex approaches using least
mean square error fit with weighting coefficients are used in computational
models. Since wide and long transistors are closer to the ideal behaviour,
they are generally used to extract the parameters. Another option is to extract
parameters from transistor’s dimensions and biases that are important for the
circuit operation (in our case W/L = 1µm/0.5µm) [66].

The Eqs. 3.7- 3.11 are useful for hand calculation; however, in computational
models equations are more complex [72,73]. A first step to set the parameters
is to define the inversion regions. The onset of weak, moderate and strong
inversion are denoted by VL, VM and VH in Fig. 3.3(d). Despite Vth appears in
the strong inversion, the MOS transistor is not in strong inversion at Vgb = Vth,
the beginning of strong inversion is taken after Vth (≈ 2% error between the
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(a)

(b)

(c)

(d)
Fig. 3.3: NMOS inversion limits and characterization for VS = VB = 0, VD =

1.3V and W/L = (1/0.5)µm, results obtained for strong inversion are
Vth = 0.364V , K = 1.63× 10−4A/V 2; in weak inversion I0 = 14.1pA and
κ = 0.7, inversion limits are VH = 0.494V and VM = 0.338V . (a) Ids
takes off in strong inversion in which the current has values from ≈ 3.2µA.
(b) In strong inversion, the parameters values are obtained with a linear
regression on

√
Ids from Vgs = VH , the intersection point of the regression

with the origin determines the threshold Vth value, (c) In weak inversion
the linear regression is evaluated with log(Ids) until Vgs = VM . (d) VM
and VH are calculated when the regression and simulation data start to
diverge, logarithmic plot of Ids is useful to observe current values in weak
inversion.

regression and data in Fig. 3.3(b) [69]). In weak inversion Ids has low values
and is exponential dependent on Vgs; thus, log(Ids) depends linearly on Vgs.
By using a linear regression from Vgs = 0 until VM , parameters κ and I0 are
obtained as shown in Fig. 3.3(c).
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Fig. 3.4: Channel length modulation for (a) weak inversion and (b) strong inversion.

NMOS parameters are: (W/L) = (1µm/0.5µm). Characterization results
are shown in Table 3.1.

One approach to calculate the threshold voltage is setting Vgs to a high value
so that the transitor is configured in strong inversion and Vds (for Vsb = 0)
should be set to a small value to considerably reduce the effective mobility.
Under these assumptions Eq. 3.9 can be simplified to Ids = W

L
µ0Cox(Vgs −

Vth)Vds and the extrapolation of the linear fit for Ids in Ids = 0 gives the Vth
value (more precisely the value Vth − 0.5Vds). Another technique is plotting√
Ids vs. Vgs in strong inversion and saturation (Eq. 3.11) which predicts also

a straight line. Since triode is less common than saturation operation, the
second technique is preferred; however, the drawback is that in saturation,
Vth decreases considerable for short channel devices due to drain-induced
barrier lowering [74] and velocity saturation [75]; therefore, a general Vth
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Table 3.1: Approximate ideal current Ids = Isat and channel-length modulation
coefficient λ for Fig. 3.4. Vgs voltages around 0.3− 0.5V belong to mod-
erate inversion therefore they do not follow a cuadratic nor exponential
waveform. For weak inversion the channel-effect is almost negligible.

Inversion Vgs(V ) Isat(A) λ(V −1)

Weak

0 12.9p 0.0577
0.1 190p 0.0577
0.2 2.86n 0.0586
0.3 42.4n 0.0692

Strong

0.5 2.51µ 0.131
0.6 7.43µ 0.113
0.7 15.8µ 0.0974
0.8 27.9µ 0.0857

value without considering slight variations because of physical dimensions
or voltages configuration is obtained in triode while a specific threshold is
estimated for saturation in Fig 3.3(b).

Two second order effects, “channel-length modulation” and “body effect”, are
characterized in Figs. 3.4 and 3.5, and Table 3.1 describes the approximate
ideal current and the channel-length coefficient. In order to obtain these
values, linear regressions in saturation region for different Vgs voltages were
calculated where the raw data was gotten from the spectre simulator. The
ideal Ids = Isat was calculated in the operation point Vds = Vgs − Vth +
∆V , where ∆V is a small value that ensures saturation region with an
approximated linear function in the current Ids.

3.3 Mismatch

Due to the nature of fabrication process, a statistical variation in the CMOS
transistor operation is expected. Mismatch analysis allows to estimate this
by calculating CMOS parameters fluctuation. Pioner research in [76] de-
duced that the main source of mismatch in the threshold voltage Vth was
the variation in the depletion charge density ∆Q′b; likewise, variations in the
dimensions, channel mobility and gate oxide capacitance were related to
mismatch in β. Lakshmikumar et al. also proposed the classical

√
WL rela-

tionship for Vth and Ids. Pelgrom et al. [77] included body effect coefficient,
and based on Fourier analysis they described the relationship of σ(Vth) and
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Fig. 3.5: Body effect as result of variations of Vsb, as observed Vth increases when
Vsb also increases, the obtained results are Vth0 = 0.37V and γ = 0.39V 1/2,
the parameter values for VD, VB and (W/L) are the same than in Fig. 3.3,
additionally φF = 0.35. (a) Ids is shown for different values of Vg and
Vs (data obtained with spectre simulation). (b) Previous data in (a) was
processed to show

√
Ids as function of Vgs, then we apply linear regression

to the points in the curve that are in strong inversion to obtain the threshold
points for each Vsb. (c) The obtained threshold points in (b) are plotted as
function of

√
|Vsb + 2φF |+

√
|2φF | to obtain the approximated parameters

of body effect γ and Vth0.
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σ(Ids) with
√
WL and the distance between transistors as stated in Eqs. 3.12

and 3.13.

σ2(∆Vth) =
A2
Vth

WL
+ S2

Vth
D2 (3.12)

(
σ∆β
β

)2

=
A2
β

WL
+ S2

βD
2 (3.13)

where AVth, Aβ are the area proportionality constants for parameters Vth
and β. SVth and Sβ describe the variation of parameters Vth and Sβ with the
spacing. All the previous constants are process-related.

The most important contribution to AVth is the fluctuation number of doping
atoms in the depletion layer (AV th α∆Q′B/Cox); therefore, this coefficient can
be reduced by decreasing tox; on the other hand, a higher substrate doping
level leads to a larger AVth . ∆β is related mainly to the mobility variation. The
reduction of Avth by scaling down the technology provides better matching for
devices considering the same dimensions (W/L); however, this advantage is
vanished due to power supply scaling. When considering minimal size device
of technology nodes, the transistor area is reduced quadratically with the
feature size while the reduction in Avth is only linear; therefore, the matching
of the the minimal size device (W/L) degrades with scaling [78]. Despite
Vth and β share some common process parameters, experimental data shows
a low correlation between them and is normally accepted as independent
random variables [79] although other results argue that neglecting this
correlation can lead to an overestimated factor as large as two [80].

Previous mismatch equations were obtained based on transistors in strong
inversion and then extending the same relationships to weak inversion, so it
is expected that Eqs. 3.12 and 3.13 are less precise outside strong inversion.
A mismatch model that consider all regions operation was proposed in [78]
deriving Eqs. 3.14 and 3.15. Parameters definition and approach are based
on [81]. (

σ∆Ids
Ids

)2

=
(
σ(∆β)
β

)2

+
(
gm
Ids

)2

σ2(∆Vth) (3.14)

σ2(∆Vgs) = σ2(∆Vth) + 1
(gm/Ids)2

(
σ(∆β)
β

)2

(3.15)
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where gm is the transistor transconductance, Ids is the mean Ids of the
sampled data

These expressions provide insight to get error values when designing bias
transistors in circuit blocks. In the case of voltage biased pair (current mirror),
the ∆Ids error is obtained; and in current bias pair (differential pair), the
∆Vgs.

In the case of wide transistors, the main cause of mismatch is the high channel
dopant concentration compared to the bulk dopant concentration which
defines the threshold voltage of the transistor, so neglecting distance effect
and for typical bias voltages, mismatch in threshold voltage Vth is greater
than β mismatch. Considering a bias value (gm/Ids)x where the condition
(gm/Ids) = Aβ/AV th is fulfil, this leads to a equal mismatch contribution of the
factors σ(∆β/β)2 and (gm/Ids)2σ2(∆Vth); therefore, using bias values higher
than (Vgs − Vth)m provides small mismatch; however, (Vgs − Vth)m is limited
by the power supply. This effect is explained when the gate overdrive voltage
Vod = Vgs − Vth increases; in this case the parameters that affect Vth have less
impact on the Ids mismatch [78].

Fig. 3.6 shows mismatch simulation results of a nMOS transistor for technol-
ogy AMS 0.18µm considering the effect of local and global sources. A single
transistor with different geometry dimensions was configured to bias voltage
and current. As expected for wide and long channel and high voltage/current
mismatch decreases. The mismatch is reduced considerable for W > 1µm
and L > 1µm.

By considering the type of CMOS transistor, the lower mobility of pMOS
requires larger |Vgs| values to generate the same reference current, therefore
pMOS provides less mismatch than nMOS in the case of current bias. However,
in the case of voltage, it is not possible to set a relationship.

Most mismatch models are based on simple MOS transistor equations (level
1 model) in the saturation region, so it is arguable that its extension to other
regions can lead to considerable error. In addition, smaller technologies
than 0.18µm uses halo implant ions which modifies original length and width
channels dimensions for effective ones. A more complex model that deals
with these cases (proposed in [80,82]) is compatible with SPICE and can
be used for different geometry and inversion region conditions, including
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Fig. 3.6: Mismatch estimation for a single transistor configured as bias device using

AMS 0.18µm [78]. (a)-(b) Voltage biasing where transistor variations result
in variations in the drain-source currents, figures plot σ(∆Ids/Ids) vs. Vgs
for L = 1µm and W = 1µm respectively. (c)-(d) Current biasing where
transistor variations result in variations in the gate-source voltages, figures
plot σ(∆Vgs) vs. Vgs for L = 1µm and W = 1µm respectively. Simulations
were obtained using Virtuoso ADEXL with Montecarlo Analysis for variation
in process and mismatch, random sampling method with 200 number of
points was used. For voltage biasing the transistor was connected to
Vds = 1.3V to ensure saturation operation and Vgs was swept from 0 to
1.2V. For current biasing the transistor source terminal was connected to
an ideal current source swept from 0 to 25µA for L = 1µm and from 0
to 90µA for W = 1µm. Simulation results show that by increasing the
channel length/width, the mismatch is reduced.

phenomena such as source/drain series resistance, body bias effects, short and
narrow channel effects, mobility degradation and graded-channel effects.

Variations in the current Ids are modelled considering local and global error
sources. Local parameters have short correlation with the distance; there-
fore, the error sources are considered independent (no correlation between
them) and its variance depends on the transistors size (W and L). Among
the process that affect its mismatch are ion implantation, oxide growth
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and lithography [83]. Interdie variation is simulated by using montecarlo
analysis.

For global error sources (long correlation distance), parameters variation are
related to device fabrication steps that occur radial to the wafer such as gate
oxide growth and polysilicon etching. Therefore, placing i.e. two transistors
in the direction of the parameter gradient increases the mismatch effect; on
the other hand, if the transistor pair is placed orthogonally, the global error
source does not contribute to mismatch. However, we can not predict the
direction so a uniform placement simulates situations in which the position
of the die on the wafer is unknown, and in that case the variance can be
simplified to a quadratic relationship with the distance between transistors
as in Eqs. 3.12 and 3.13 [83]. Die to die variations is simulated by corner
analysis using best and worst cases.

In addition to process variables, systematic mismatch (deterministic variation)
is produced depending on the layout style. Therefore, it is important to
consider layout techniques like cross couple, strip pair, adding dummy devices
and place devices with same orientation [84]. Alternative techniques like
interdigitated waffle, common centroid and finger demonstrate considerable
decrease of mismatch [85]. Another strategy to consider is using transistor
multipliers or fingers; in this case the process parameter variance component
increases by a factor of n given that each MOSFET has its own local parameter
variation; on the other hand, the squared density decreases by a factor of n2

because each device has less impact of the current; consequently, the total σIds
decreases by a factor of

√
n [80]. An additional systematic mismatch effect

is produced due to the different thermal expansion coefficients between the
substrate and the silicon die (strain mismatch) given that the substrate has
higher thermal expansion coefficient than the die which generates stress and
strain on the substrate bending the structure; this mechanical stress causes
variation of the carrier mobility and therefore in the Ids current, nonetheless
strain mismatch is lower in the center of the die [83]. The well proximity is
another systematic variation that affect the threshold voltage of MOSFETs;
during the implant process, some atoms scatter laterally from the edge of the
photoresist mask and insert in the silicon surface around the vicinity of the
well edge; therefore, the well surface concentration changes with the lateral
distance from the mask edge; this non-uniform well doping causes MOSFET
threshold voltages variations depending on the distance of the transistor to
the well edge [86].
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3.4 The Diff-Pair Integrator Circuit (DPI)

The Diff-Pair Integrator (DPI) originally proposed in [87] is a current-mode
circuit that has log-domain filter properties [88]; the schematic and simula-
tion results of this circuit are shown in Figs. 3.7 and 3.8 respectively. The
output current Iout of the circuit responds exponentially to an input spike
spkin. During the time in which the signal is active (charge phase) a current
(Iin − Iτ ) charges the internal capacitor C with high slew rate giving as result
a linear decrease of Vc and an exponential increase in Iout (M6 configured in
weak inversion). Similarly, when the pulse ceases the capacitor C discharges
linearly (discharge phase) through M5 which returns Vc to its initial state and
decreases the output current Iout exponentially until reaching zero. The DPI
circuit includes a scaling factor that can be used to amplify (or attenuate) the
charge phase response amplitude [89]. Simulation results are correlated with
the theoretical equations although slight variations occur because of second
order effects in the transistors such as channel length modulation and body
effect.

The mathematical expressions for Iout considering all transistors in weak
inversion is obtained as follow:

In charge phase:

The current in M4 is obtained analysing the transistors M1, M2, M3 and M4

Iin = Iw

1 + e
κ(Vthr−Vc)

UT

= Iw
1 + Iout

Igain

, (3.16)

where Igain = I0e
−κ(Vthr−Vdd)

UT .

The current in M5 is set to be considerable lower than Iin so that IM6 can
implement an ideal linear system. Considering the substrate connected to the
source, then

Iτ = I0e
κ(Vdd−Vτ )

UT

(
1− e

−(Vdd−Vc)
UT

)
= Iτ0

(
1− e

−(Vdd−Vc)
UT

)
(3.17)

For Vc < (Vdd − 4UT ) we can consider that M5 is in saturation, so Iτ is
simplified to the constant value

Iτ = I0e
κ(Vdd−Vτ )

UT (3.18)
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Fig. 3.7: Diff-pair integrator circuit. The circuit consist of two transistors in stack
M1 and M2 operating as a bias current source for the differential pair
M3 −M4, the M4 and M5 transistors are connected to a C capacitor to
charge and discharge it linearly respectively. The transistor M6 converts
the linear voltage waveform Vc in exponential when it operates in weak
inversion or quadratic when it operates in strong inversion. When spkin is
in high level, Iw current flow is generated with a value depending on Vw,
(Iin − Iw) current charges C reducing the Vc voltage. The DPI circuit is set
for Iw >> Iτ . For Vc > Vth, Iin ≈ Iw, and the Vc saturation value is set by
Vth voltage.

The total current flowing in the capacitor C is

C
dVc
dt

= −(Iin − Iτ ) (3.19)

For any pMOS transistor in weak inversion and saturation the differential
equation 3.20 can be demonstrated

dIsd
dt

= −Isd
κ

UT

dVg
dt

(3.20)

Then by replacing dVc
dt

(Eq. 3.19) in dVg
dt

(Eq. 3.20) we obtain

τ
dIout
dt

+ Isyn = Iw
Iτ

Iout

1 +
(
Iout
Igain

) (3.21)

Considering Iτ << Iin and Igain << Iout, a simplified differential equation is
obtained

τ
dIout
dt

+ Iout = IwIgain
Iτ

(3.22)
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Fig. 3.8: Simulation results for the DPI circuit, (W/L)p = (W/L)n = (1µm/0.5µm),
M5 and M6 source voltage are connected to V ddll = 1.5V , M1 source
is connected to gndll = 0.3V to reduce leakage current, M3 drain is
connected to Vdd = 1.8V , Vτ = 1.35V , Vth = 0.5V , the spike pulse width is
20µs. Iout pin is connected to a Vdc source which is swept from Vout = 0.4V
to Vout = 1.4V . During the input spike Vc decreases (and Iout increases)
from its initial resting voltage 1.5V to a lower value (higher value for Iout)
depending on the set V w value, after the spike ceases Vc returns to its
resting voltage linearly and Iout exponentially. As observed, non-ideal
effect takes place when Vout varies giving slight Iout amplitude differences.

with solution

Iout(t) = IgainIw
Iτ

(
1− e−

(t−t−
i

)
τ

)
+ I−oute

−
t−t−

i
τ (3.23)

In discharge phase:

Eq. 3.22 can be solved for Iw = 0 giving as result

Iout(t) = I+
oute

−
t−t+

i
τ (3.24)

3.5 The Operational Transconductance
Amplifier (OTA)

A transconductance amplifier is a circuit that converts a differential input
voltage into an output current; this circuit also provides high rejection to the
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Fig. 3.9: Operational transconductance amplifier. Transistor Mnb implements a
current bias for the differential pair Mn1 −Mn2, the current I1 generated
in Mn1 is mirrored by he current mirror configuration Mp1 −Mp2, finally
Iout is obtained as the different of the current flows I1 and I2. The
values I1 and I2 have a quadratic (strong inversion) or exponential (weak
inversion) relationship with respect to the voltages V inP and V inM

voltage supply noise and to the common mode of the input terminals [69].
The OTA circuit shown in Fig. 3.9 subtracts the two currents generated in a
differential pair I1 and I2; this subtraction is generated by mirroring one of
the differential pair currents to the complementary one. The terminal Vout
is connected to a load, in our case a capacitor. Simulation results for this
circuit are shown in Fig. 3.10; here both currents I1 and I2 together with their
difference Iout are presented. The waveforms in this graphic approximate to
hyperbolic functions when the transistors are configured in weak inversion.

Considering V inP > V inN and same transistor dimensions (W/L) for Mn1

and Mn2. Then, since (Vgs − Vth)Mn1>(Vgs − Vth)Mn2 the majority part of
the current Ib will flow through Mn1. Given that in strong inversion the
relationship between Ids and Vgs is quadratic while in weak inversion it is
exponential, a small variation in the differential voltage causes a considerable
variation in the difference of the currents.
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Fig. 3.10: Simulation results for the transconductance amplifier in weak inversion.
In the figure I1, I2 and Iout = I1 − I2 are plot as a function of VID =
V1 − V2. Parameter values are Vb = 0.2V , Vcm = 0.9V , V dd = 1.8V ,
(W/L)p = (W/L)n = 1µm/0.5µm, V out pin is connected to a Vdc source
with value Vout = 0.9V . As observed the direction of the current flow
Iout is given for the higher value between V1 and V2.

The swing output voltage is limited in the range V satMnb +V satMn2 < Vout <

Vdd − V satMp2; if more swing range is required a wide-range OTA can be
used [71].

Considering the input diferential voltage VID = V1−V2 and the input common
mode voltage Vcm = V1+V2

2 ; it can be demonstrated that for strong inversion
the relationship between Iout and VID [69] is:

Iout = Ib

(
βV 2

ID

Ib
− β2V 4

ID

4I2
b

)1/2

(3.25)

The previous relationship is only useful for VID < 2 (Ib/β)1/2, since outside of
this range the transistors move to triode region.

For weak inversion, the Iout can be simplified to a hyperbolic relationship
respect to VID as follow:

Iout = Ib × tanh
(
κn

2VT
VID

)
(3.26)
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For small differential voltages Eq. 3.26 is approximately linear:

Iout = gmVID, (3.27)

where
gm = Ibκn

2VT

For large differential voltage Iout saturates to ±Ib values.

3.6 The Winner-take-all Circuit

The Winner-Take-All (WTA) circuit was originally proposed by Lazzaro et
al. [90]. This circuit (shown in Fig. 3.11) compares two input currents Iin1

and Iin2 (or voltages V in1 and V in2) and generates two output currents
Iout1 and Iout2 where one of them is practically zero (if the input signals
are different) and the other one has the same value than the bias current Ib.
The branch where the current flows is decided by the higher input voltage;
therefore, this circuit works as a comparator with output current. Transistors
Mp1, Mp2 and Mnb generate ideal current sources where the first two are
the input signals and the last one the bias current of the circuit. Simulation
results for this circuit are shown in Fig. 3.12 which shows practically only
two possible current values at each output terminal.
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transistor Mnb. For a considerable difference between the Iin1 and Iin2
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Fig. 3.12: Simulation result for the circuit in Fig. 3.11. The parameters are Vcm =
1.6V , Vb = 0.2V , V dd = 1.8V , (W/L)p = (W/L)n = 1µm/0.5µm, the
source of transistors V21 and V22 are tied to V dd = 1.8V . As result of the
common mode 1.6V and the swept in the differential mode, V in1 swept
from 1.55V to 1.65V and V in2 from 1.65V to 1.55V . Fig. (a) shows Vout
vs VID = V1 − V2, V out reaches just after few millivolts of difference in
VID 0 or a linear region. Fig. (b) shows Iout vs VID, here also just after
few millivolts Iout reaches two values 0 or Ib.
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Considering first V in1 = V in2 (or Iin1 = Iin2 = Im), then transistors Mn11

and Mn12 have the same voltages in their terminals, so the currents generated
at the output terminals are Iout1 = Iout2 = Ib/2.

Considering all transistors in weak inversion. Then in Mn21 and Mn22 the
output voltage can be expressed as:

Vout = Vt
κ2 ln

(
Im
I0

)
+ Vt
κ
ln
(
Ib
2I0

)
(3.28)

This equation differs from the original work [90] since the MOS physical
model used here is the body-reference while in Lazzaro et al. the source-
reference model is used.

If now Iin1 is increased to Im + δI, Vc also increases; however, the transistor
Mn12 should sink Im current for the same increased voltage; in order to drive
Im current Mn12 has to move from saturation to triode region decreasing
V out2 voltage. Since now we have that V out1 > V out2, the current flow in
the differential pair Mn21 −Mn22 is unbalanced while more current flows
in Mn21. For a considerable difference between V out1 and V out2 we can
consider that all the current Ib will flow for only one of the two branches of
the winner-take-all.

The output voltage and current as function of the difference of the input
voltages V in1 − V in2 is plot in Fig. 3.12a and Fig. 3.12b respectively. When
V in1 > V in2 an inverse relationship is obtained in the input currents Iin2 >

Iin1 because PMOS are used as current sources. This difference of currents
set a high voltage in V out1 which also generates a current flow Iout1 in Mn21.
When V in2 starts to increase and eventually turns greater than V in1, V out1
decreases until sourcing only leakage current. The output voltage contains a
small slope for considerable differences in the input voltages because a raise
in V out1 is driven by an increment in V c to keep Vgs(Mn21) and therefore
Iout1 is constant (the current flow in Mn21 is approximated to Ib when Iin1

is considerable greater than Iin2).

3.7 Discussion

In this chapter I introduced the basic principles of CMOS operation and I
characterized it for the technology used to fabricate our chips. Special focus
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was given to subthreshold regime (only weak inversion) which is a region that
has similar characteristics to its biological counterparts such us exponential
dependency on the gate voltage.

An important aspect when replicating same circuit cells to obtain a matrix
of blocks is avoiding excessive mismatch; therefore, variations in a single
transistor as function of its size and bias values were also presented to
understand trade-off considerations at the moment of implementing the
layout. In addition, good layout techniques to avoid systematic mismatch
were discussed.

Furthermore, I presented the essential circuits such as DPI, OTA and WTA that
are used to build up the synapse block. Those circuits were modified from
their original proposal version to obtain our desired operations. For instance
in the DPI circuit an additional branch was added to have two discharge paths
that are activated for the pre- and post- synaptic spikes, or an additional stage
was included in the Operational Transconductance Amplifier (OTA) to reduce
the headroom voltage thus obtaining a better output swing range. Other
modifications will be shown in the second fabricated version chip which was
improved according to previous measurement results.

Finally, it is important to mention that the mathematical formulation for
each circuit neglected second order effects as well as mismatch contribution;
therefore, they are ideal results which deviate from the measured ones and
vary in different degree depending on design constraints.
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4First Synapse Circuit
Implementation

Model choice is a critical step in the design of neuromorphic systems. Design-
ers must decide which model details are critical for the application and which
are superfluous. For example, we choose synaptic plasticity models which can
be implemented with local event-based weight updates because this allows for
extremely low-power systems that easily fit into the neuromorphic paradigm.
As we described before, VLSI technology that uses CMOS transistors in weak
inversion shares the same primitives of neural computing, we can recognize
that these models easily fit into hardware and are compatible with biology.

Implementation of a model into a physical system poses similar constrains
than its biological counterpart such as finite power supply, optimization of
energy consumption and the need for space optimization when wiring com-
putational structures, these constraints do not exist in simulation; therefore,
they force the researcher to be more biological realistic. Most modern neuro-
morphic systems [23,30,91] implement some form of the STDP [54] model,
which states that synaptic weight change is a function of the timing between
the pre- and post-synaptic spikes. LTP is an increase of the synaptic weight
induced when the post-synaptic spike follows the pre-synaptic spike, and
its magnitude is an exponentially-decaying function of the time difference;
LTD is a decrease of the synaptic weight induced when the order is reversed
and is also an exponential function of the time difference. While this is an
attractive model because of its simplicity and success in performing useful
computations in simulation, it does not explain certain aspects of biological
synaptic plasticity. For example, as the rate of stimulation increases, LTP tends
to be induced regardless of spike timing. Therefore, more recent research has
emphasized that synaptic plasticity is a multi-factor phenomenon, depending
on several parameters.

The change in the synaptic strength as a function of the spike time difference
tpost − tpre is considered a form of Hebbian learning because presynaptic
neurons that are active slightly before the postsynatic neuron are those which
take part in firing it, while those that fire later do not contribute to the post-
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synaptic action potential [45]. Alternative learning rules in nature are also
possible such as in the electric fish which implement an opposite dependence
on the timing between presynaptic and postsynaptic spike generally called as
anti-Hebbian plasticity.

VLSI circuits used in neuromorphic implementations offer the advantage of
dedicated hardware that perform massively parallel computation; design con-
ditions can also be implemented to obtain real-time and low power operations
by using long-time constants and weak inversion configurations respectively.
On the other hand, VLSI systems require a long development time and high
costs. Ideally one should figure out the most general model so that the
implemented hardware can model the plethora of learning phenomenologies
observed in the neural system. Some computational models implement biopy-
sically realistic synapses with the intention to capture the multiple learning
mechanims that coexist in a single cell including STDP and its dependence
on stimulation frequency by considering the location of the synapse along
the dendrite [92] and homeostatic process [93]; however, given their math-
ematical complexity which is translated into high power consumption and
wide silicon area in VLSI, they are not suitable for hardware implementation.
The work presented in [21] is closer to the synapse model implemented here
because the weight update is triggered by the presynaptic spike and depends
on the post-synaptic membrane potential. A calcium concentration variable
only depending on the post-synaptic activity is used in [22] to decide when
the neuron should stop learning [94]. In contrast, the calcium concentration
in our circuits depends on both pre- and post-synaptic spiking activity and is
crucial for determining the sign and strength of the change in weight.

I present here an analog VLSI circuit based on one multi-factor model [34]
which shows how plasticity’s dependence on these factors (i.e. rate and
timing) could be explained by the behavior of a single variable, calcium
concentration. This differs from most of the VLSI learning models pre-
sented in the past, which typically belong to one of two classes: models
which explicitly measure the time difference between pre- and post-synaptic
spikes [19,20,95] and models which compute synaptic weight change by us-
ing some variable besides spike timing (such as membrane voltage or calcium
concentration) [20–22,30,96,97]. The proposed circuit offers several advan-
tages over these previous designs. Its advantage over the first class of models
is that it reproduces certain biophysical properties of synaptic behavior not
captured by those models, such as the dependence of plasticity on stimulation
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frequency. Pfister et al. [98] showed that STDP rules which are based purely
on the difference between the arrival times of a pair of pre- and post- synap-
tic spikes do not reproduce biological data as the frequency of stimulation
increases. As opposed to other models [19, 20], synaptic plasticity in the
calcium-based model emerges from the calcium variable’s dynamics, and any
spike can generate a change in the calcium concentration. This approach
could yield more biologically-realistic network behavior. Our circuit’s benefit
over both model classes is that it can produce several types of STDP learning
profiles also observed in different brain regions and across layers within one
region [61], expanding the available selection of learning behaviors. The
second class of models uses the calcium variable to generate an eligibility
trace for learning, essentially acting as a switch to enable or disable learning
depending on the neuron’s activity. This minimizes the resources used for
the learned inputs. In contrast, the model used here relies on the calcium
variable to define the direction of learning (depression or potentiation).

Several VLSI approaches focus on implementing alternative signal processors
compared to traditional computing architectures; these systems are useful
for neuroscience modelling given that they can accelerate the simulation of
complex computational neuroscience models; however, we aim to implement
energy efficient and real time systems with biologically realistic time constants
(on the order of a few up to hundreds milliseconds) which are more naturally
realized with analog circuits in comparison with digital circuits with high
frequency clock. Our synapse is bistable on long time scales, therefore
equivalent to one bit, nevertheless on short time scales the synaptic weight
is fully analog. It has been demonstrated that synapses that have two stable
states can dynamically learn with optimal storage efficiency mantaining its
memory for an indefinitely long time as palimpsets paradox state (synapse
should be very plastic to encode quickly new memories but not too plastic to
avoid erasing old memories) [99].

In this chapter we broaden the work presented in [36], where our design of
a calcium-based plasticity circuit was originally proposed and compared to a
mathematical calcium-based plasticity model using Cadence Spectre simula-
tions. The changes in the model proposed with the purpose of making it more
suitable for a compact circuit implementation were described in full details
in Sec. 2.3. In Sec. 4.1 we describe the calcium synapse circuit [36], with a
focus on its ideal behaviour. Spectre simulations of the circuit are compared
with the model in Sec. 4.1.1. Calcium state variable can be expressed as a
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voltage or as a current signal, in [36] we presented the first option while here
and in [37] we show it as a current value which approximates better with the
theoretical model. We also present here an in-depth characterization of the
plasticity mechanism and evaluate deviations from the model by analysing
the weight change’s dependence on initial conditions. The frequency depen-
dence of the learning dynamics is also characterized and discussed in this
section. Due to the successful synapse characterization we proceeded with
the full chip design by adding I/O interfaces and implementing the full layout
circuit which was later sent to fabricate to a foundry. A custom PCB was also
designed, produced and populated with discrete devices including voltage
regulators, DAC converters and USB interfaces. The PCB had to be integrated
in a testing system with measurement equipments such as oscilloscope and a
firmware programs implemented in python to control input signal values and
spike timings from a PC. Section 4.2 presents the first measured silicon data
available for our circuits which was fabricated using a standard AMS 180 nm
1-poly, 6-metal technology, here we replicated the most important simulation
results and characterized the response as a function of stimulation frequency.
In the last section we discuss our results and future work.

4.1 The Calcium Synapse Circuit

We designed a novel learning circuit that mimics the model described in
Section 2.3. This is to our knowledge the first attempt to implement neuro-
morphic VLSI hardware based on this model. The full circuit comprises 40
transistors and 3 capacitors organized in three functional blocks: Calcium,
Synapse Core and Bistability (gm) as shown in Fig. 4.1. The Calcium block
responds to digital pre- and post-synaptic pulses (Spkpre and Spkpost) and
produces the current Ica which mimics the calcium concentration described
in Eq. 2.15. The output of the Calcium block (Ica) is fed to the Synapse Core,
which implements potentiation and depression depending on the status of
the calcium current. The gm block is a wide-range OTA in positive feedback,
which implements bistability and weight saturation. The Synapse Core and
gm block together define the synaptic weight Vw.

The Calcium block, as shown in Fig. 4.2, computes the calcium concentration
Ica (see Fig. 4.2b). The calcium waveform is generated by a differential
pair integrator (DPI) circuit [87] with two inputs (SpkpreD and Spkpost).
Initially Vca is at its resting potential V cref and the output current Ica is null.
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Fig. 4.1: Learning circuit block diagram. The circuit is composed of a calcium
block, a synapse core block and a bistability block (implemented with an
OTA with positive feedback). The calcium variable is represented by the
current Ica produced by the calcium block in response to pre- and post-
synaptic spikes and fed to the synapse core. The synapse core produces the
appropriate changes in the synaptic weight (represented by voltage Vw).
Long term memory is guaranteed by the bistability amplifier which drives
the synaptic weight to its stable state in the absence of changes produced
by the synapse core block.

Delayed pre-synaptic pulses SpkpreD and post-synaptic pulses Spkpost turn on
transistors Ms11 and Ms21 respectively and charge can accumulate on the
capacitor Ccal. The amount of charge accumulated during an input pulse
depends on the initial charge, the bias voltages V thca, V τca, V cpre and V cpost
(for pre- and post-synaptic spikes respectively), and the pulse duration [87].
The capacitor voltage is then converted into a current via the pFET Mpx2.
Ideally, Mpx2 operates in its subthreshold regime so that linear changes in
capacitor voltage cause exponential changes in the current. However, if Vca
gets pulled too low, Mpx2 may enter strong inversion, and the relationship
will become quadratic, adding a nonideality to the dynamics. In the absence
of input pulses Ccal discharges through the current flowing in transistor Ms5

at a rate set by the bias voltage V τca.

The delayed pre-synaptic pulse is generated by the delay circuit shown in
Fig. 4.2a. Upon arrival of a pre-synaptic pulse, the transistor Md1 is turned
on and the capacitor Cdel is fully charged. When the input pulse ends, the
capacitor is discharged linearly over time by the current flowing through
transistor Md2 and set by the bias voltage Vdel. The triangular pulse on Cdel
is amplified and shifted to the operation range [0− vdd] by a buffer labelled
B1 which consists of two inverters in cascade. The resulting output V out1
is a wider version of Spkpre. The NOR gate generates a short pulse when
V out1 transitions low and the common-source amplifier is charging V out1τ .
Simulation results for the delay circuit operation are shown in Fig. 4.4. One
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Fig. 4.2: The calcium block circuit is composed of (a) a delay circuit and (b) the

calcium core circuit. The delay circuit generates a digital pulse SpkpreD
in response to an input pulse Spkpre, with a delay controlled by the bias
voltage Vdel and a duration set by the bias voltage Vpw. The calcium core
circuit generates the calcium dynamics in response to delayed pre-synaptic
spikes SpkpreD and post-synaptic spikes Spkpost. The amplitude of the
response is set by V cpre and V cpost respectively. V thca is an independent
gain control for the effect of input pulses, and V τca sets the time constant
of the calcium current Ica.

disadvantage of this delay circuit is that the gain of the buffer is not very high.
Thus the time of V out1’s transition from high to low varies with the slew
rate of V cdel. This dependence causes the output pulse width to be slightly
dependent on Vdel. This circuit could be improved by increasing the gain of
the first buffer. In addition, we should note that if the pulse width is too large,
Vca will eventually stop decreasing linearly as it approaches V thca because
of the operation of the differential pair. This saturating effect could lead to
model inaccuracies. One way to avoid it is by implementing pulse extenders
that fix the spikes’ width.

The synapse core implements Eq. 2.13, and its schematic is shown in Fig. 4.3.
This circuit is based on the WTA circuit proposed by Lazzaro et al. in the
late ’80s [90] and is similarly used in other spike-based learning circuits
(e.g. [100]). V w represents the synaptic weight, which is increased or
decreased depending on the value of the current Ica representing the calcium
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Fig. 4.3: The synapse core circuit generates the synapse dynamics for V w based on
Ica, which represents the calcium concentration. A WTA circuit compares
Ica with Ithp. When Ica > Ithp, a current proportional to V pot is gener-
ated in Mn15 and is mirrored through Mp13−14 to charge Csyn. Similarly,
Ica is compared with Ithd. When Ica > Ithd, a current proportional to Vdep
is generated in Mn25 and then mirrored through Mp23−24 and Mn26−27
to discharge Csyn.

concentration and produced by the Calcium block (Fig. 4.2). When Ica is
higher than Ithp, the WTA circuit implemented by transistors Mn11−15 and
Mp11−12 generates an output current which is copied by transistors Mp13−14

to charge the capacitor Csyn. Similarly, when Ica is higher than Ithd, the WTA
circuit implemented by transistors Mn21−25 and Mp21−22 generates an output
current which is copied by transistors Mp23−24 and Mn26−27 to discharge the
capacitor Csyn.

Leakage current is present in Mp14 and Mn27 even when they do not perform
charge or discharge operations in Csyn. These leakage currents affect V w,
which therefore cannot retain its value for a long time. In order to reduce this
effect, the source voltages of Mp14 and Mn27 are decreased and increased,
respectively. We label the new source voltages V dd∗ and gnd∗. This leads
to V gsMn27 < 0 and V sgMp14 < 0, which reduces the leakage current when
the transistor operates in the cutoff region. Fig. 4.5 shows this effect, for
V dd∗ = 1.5V and gnd∗ = 0.3V , the leakage current is reduced by more than
3 decades.

When V dd∗ and gnd∗ have the same values as the power supply (1.8V and 0V),
a considerable leakage current around 15 pA produced by Mp14 and Mn27
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Fig. 4.4: Simulation results for the delay circuit. After Cdel charges fast when a pre-
spike arrives, it discharges slow with a slope set by Vdel. When the V cdel
signal reaches the threshold of the inverter B1, V out1 switches its level
and its inverter version V out1τ is generated after a delay set by V pw.

flows in the capacitor Csyn. As a result, Csyn cannot retain the information
for long and discharges in approximately 20ms. Improvement is observed by
reducing V dd∗ and increasing gnd∗, which reduces the leakage current and
increases the discharge time. For V dd∗ = 1.5V and gnd∗ = 0.3V the leakage
current is reduced to less than 10fA, which leads to an increase in retention
time up to 50s. For values smaller than V dd∗ = 1.5V and greater gnd∗ = 0.3V
the leakage current reduction is not significant. We also note that shifting
these sources reduces the gain of the current mirrors. Alternative techniques
to replicate very low currents can be used [101].

The bistability and saturation components of Eq. 2.13 are implemented by
an OTA with positive feedback and saturation values Vwh and Vwl as shown
in Fig. 4.1. The wide range transconductance amplifier shown in Fig. 4.6 is
based on [102] and is similarly used in [100]. Mp22 and Mn22 are connected
to Vwh and Vwl with two main purposes: first to reduce the current flow, and
second to limit the voltage range of V w. The OTA injects or leaks current
to/from Csyn as a function of (V w − V thw):

dVw
dt
∝ Ib
Csyn

tanh

(
κ(V w − V thw)

2UT

)
, (4.1)

where κ is the capacitive coupling ratio from gate to surface potential and
UT is the thermal voltage. Eq. 4.1 has a proportionality factor because the
unequal source voltages at the output current mirrors give them a gain less
than one. Since the transconductance amplifier is connected to V w, it sets the
saturation limits of V w. For values V w ≈ V thw Eq. 4.1 is well approximated
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Fig. 4.5: Leakage current simulation results. We estimate the current in Csyn when
there are no pre- or post-synaptic spikes and bistability is disabled. (a) DC
simulation results obtained by replacing Csyn with a voltage source and
sweeping V w for different vddll and gndll values. (b) Transient analysis
for VW is shown for two initial V wini values (0.6 and 1.3V ) and different
vddll and gndll. The waveforms are plotted on a logarithmic scale. Results
show that for vddll = 1.5V and gndll = 0.3V , the capacitor reaches steady
state in 50s.

by a linear function, as is the bistability term in Eq. 2.12; when V w is
considerably higher or lower than V thw, a constant current flow is generated;
when V w reaches saturation values the output current is reduced to zero.
Simulation results for the OTA shown in Fig. 4.7 reproduce approximately the
hyperbolic function of the Eq. 4.1 and leads the input voltage V w in positive
feedback to only two stable values in the extremes voltages of the x-axis (gnd∗

and V dd∗) where the current is zero. Despite the fact that a constant current
flow is not reached because of the channel length modulation effect in the
CMOS transistors connected to the output terminal, the circuit reproduce
faithfully a bistable mechanism.
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Fig. 4.6: A wide range transconductance amplifier which operates in positive feed-
back is connected to Csyn. The source voltage of Mp1 is set below V dd
to achieve small current flow. Similarly, we reduce the source voltages
of Mp22 and Mn22 to limit V w to [Vwl, Vwh] and to limit their leakage
currents.

4.1.1 Simulation Results

We simulated the proposed circuit with Cadence’s Spectre simulator to char-
acterize its performance. The simulation data was compared to the simplified
theoretical model (Eqs. 2.13,2.15) in Matlab. In order to directly compare
these, we must use the same units. The only parameters in [35] which were
assigned units were those of time (s) and frequency (Hz). All other quanti-
ties were unitless. Here we report those mathematical model parameters in
arbitrary units (arb. u.) In the circuit model, the synaptic weight is a voltage
(V w) between Vwl and Vwh. To compare this voltage to its equivalent quantity
in the model, we offset and normalize it, and we refer to this value as “per
unit” (pu) as follows:

V w(pu) = V w(V )− Vwl(V )
Vwh(V )− Vwl(V ) (4.2)

We set Vwl = 0.3 V and Vwh = 1.5 V . To further ease comparisons to the
model, the calcium current Ica is plotted as positive.

We first characterized the calcium dynamics in response to isolated pre- and
post-synaptic spikes. In Fig. 4.8 the model and circuit implementation of
the calcium variable are compared. The dynamics of the waveforms are
qualitatively similar. After a delay D following the pre-synaptic pulse, the
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Fig. 4.7: Simulation results for the wide range transconductance amplifier with
simple current mirrors and short channel length MOS. The output net
V w is connected to the positive input, in addition a dc voltage source is
connected between V w and gnd to apply a swept signal, V inN is set to
0.9V. As observed the output current deviates considerable from an ideal
antisymmetric waveform with reference axes V inN because of variations
in channel length modulation in PMOS and NMOS.

calcium variable quickly rises to a value lower than the depression threshold
and then decays exponentially. Immediately after the post-synaptic spike,
the calcium variable quickly rises above both thresholds and then decays
exponentially. Given the good match of circuit behavior and model data
demonstrated above for the calcium dynamics in response to single pulses,
we proceeded to more realistic testing with repeated pre-/post-synaptic pulse
pairs as shown in Fig. 4.9. As demonstrated in [35], depending on the
calcium concentration parameters Cpre and Cpost, threshold values θp and
θd, and potentiation γp and depression γd coefficients, a plethora of STDP
curves can be generated. In these measurements we set the parameters to
achieve a classical STDP curve [54] (Cpre < θd < θp < Cpost). A complete list
of parameters used is provided in Fig. 4.9.

Fig. 4.9a shows the expected LTP of the synaptic weight in response to
pairs of pulses with (tpost − tpre) = 12ms presented at a frequency of 5 Hz.
The synaptic weight was initialized to V w = 0 pu at the beginning of the
experiment. Similarly, LTD is demonstrated by providing input pre-/post-
synaptic pulse pairs with (tpost − tpre) = −14ms and frequency 5 Hz, after
initializing the weight to V w = 0.75 pu.
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Fig. 4.8: Simulated response of the calcium variable to a pre- (top) or post-synaptic
(bottom) pulse for the simplified model (blue) and hardware (red). In
order to obtain STDP waveforms the condition Cpre < θd < θp < Cpost is
required [35]. See Fig. 4.9 for detailed parameters.

A saturation effect takes place near the upper boundary of the synaptic weight
variable which can invert the effect of input spikes. For example, the last spike
pairing in Fig. 4.9a results in a small depression, even though the pairing
should produce potentiation under normal circumstances. This phenomenon
is explained by the calcium dynamics. To undergo LTP, the calcium variable
rises above θp and increases the weight. When the stimulus ceases, the
calcium variable falls below θp, but it is still above θd for a brief time. This
causes a small amount of depression. As long as the calcium is above θp for
long enough, the synapse will achieve a net potentiation. However, if V w is
close to 1, it cannot increase any further because it’s physically limited by
V dd∗. Thus, the small amount of depression will dominate and the weight
will decrease slightly as shown in Fig. 4.10b. If V w is close to 0, a further
LTD leads V w to its minimum value, contrary to the previous case, here the
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(a) (b)
Fig. 4.9: Synapse evolution for spikes with frequency 5Hz (a) potentiation (tpost −

tpre) = 12ms. (b) depression (tpost − tpre) = −14ms. The comparison
between circuit (red) and simplified model (blue) simulations verifies that
synapse dynamics depend on the calcium concentration and bistable term.
The bistable term generates a slow increase or decrease of the synaptic
weight, depending on whether the weight is above or below a threshold
value w∗ = 0.5. The capacitor values are Cdel = 100fF , Cca = 574fF
and Csyn = 100fF , and the transistor parameters are (W/L)Mpx3−x4 =
(W/L)Mn26−27 = (1/0.54)µm. The parameters for the circuit simulation
are spike width tspk = 20µs, Vthca = 0.5V , Vτca = 1.39V , VCref = 1.5V ,
VCpre = 0.544V , VCpost = 681mV , Vdel = 316mV , Vpw = 1.65V , Vpot =
305mV , Vdep = 269mV , Vthp = 1.1V , Vthd = 1.23V , Vwh = 1.5V , Vwl =
300mV , V thw = 925mV , and Vbias = 1.22V . The parameters for the
theoretical simulation are tspk = 2ms, τ = 2s, τca = 27ms, kbs = 9,
Cpre = 0.59, Cpost = 1.5, θp = 0.4, θd = 0.27, γp = 35, and γd = 17.3.

first spike increases V w without restriction and the second spike decreases
V w as shown in Fig. 4.10a.

The very good match between model and circuit shown in Fig. 4.9b is not
replicated in Fig. 4.9a. The main cause of these deviations is channel length
modulation in Mp14 and Mn27, which makes ICsyn dependent on V w. This
effect is more pronounced when the transistors move into the Ohmic regime.
Another cause of nonidealities is that the bistability circuit’s OTA does not
implement a third-order polynomial, but rather a hyperbolic tangent function.
Additionally, this bistability component is asymmetric, which will be discussed
in more detail later in this section. Finally, the mathematical equivalence of
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Fig. 4.10: Synapse saturation effect when (a) depression occurs near 0 and (b)

potentiation occurs near 1. For depression, the synapse is reduced until
it reaches the bottom limit value. On the other hand, in potentiation, it
even decreases the synapse value.

the two systems’ calcium dynamics assumes that all transistors operate in
the subthreshold regime, which is not always the case. In order to operate
the transistors in weak inversion, Vca should swing no lower than V dd −
V th, where V th for a standard pFET in this process is around 0.37V . Vca’s
maximum value is set by V cref in the calcium circuit, which should be lower
than V dd to reduce leakage currents. Therefore, in the calcium circuit Vca
swing range is limited to approx. V cref−(Vdd−V th) when transistors operate
in weak inversion.

The model proposed in [35] provides a mechanistic understanding of how the
calcium signal gives rise to the observed multitude of synaptic plasticity forms,
and it accounts for plasticity data measured in hippocampus and neocortex
in response to stimulation protocols characterized by various spike timing
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Fig. 4.11: Synapse learning waveforms from the simplified model (blue) and hard-
ware simulation (red). The parameters in this figure are the same as in
Fig. 4.9. In the simplified model, the learning waveform is independent
of the initial w value. On the other hand, shifts of the learning waveform
in the circuit simulation are produced because variations of V w produce
slight variations in its current supplies Mp14 and Mn27. The inset figure
shows the change in synaptic weight for tpost − tpre = −40ms and dif-
ferent initial V w values. The Matlab model shows a relatively constant
change in weight, while the circuit model shows significant variation with
V wini.

and frequency patterns. The authors thoroughly characterized the parameter
space and provided clear definitions of the boundary between different kinds
of STDP learning curves. In particular, they showed that classical STDP is
achieved in the parameter space region defined by Cpre < θd < θp < Cpost. We
chose a set of parameters within the classical STDP region and characterized
the STDP behaviour as follows. To guarantee that the measured synaptic
weight changes are only due to the weight updates triggered by the calcium
dynamics, we disabled the bistability circuit, which is equivalent to setting
kbs to zero in Eq. 2.13. In the circuit, the bistability is disabled by setting
|V gs|Mp1 ≤ 0. Values smaller than 0 are used to reduce the leakage current.
We then applied a classical stimulation protocol [54] to the calcium synapse
circuit by providing a single pre- and post-synaptic pulse pair and measured
the synaptic weight variation in response to the stimulus. The measured
synaptic weight is first normalized as described by Eq. 4.2. The change in
normalized weight is plotted in Fig. 4.11 for tpost − tpre values between −100
and +100 ms. As a reference, the model response to the same stimulation is
plotted using Matlab.
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Spectre

Matlab

Fig. 4.12: Bistability slew rate (dw/dt) vs. synapse value. In the simplified math-
ematical model, the slope is a third-degree polynomial. In the circuit
model, this slope is created by the current from an OTA in positive feed-
back with a small bias current, which ideally implements a hyperbolic
tangent function. The plot is shown for kbs/τca = 4.5 in the mathematical
model and for Vbias = 1.22V in the circuit model. The non-ideal shape of
the circuit’s slope is caused by channel-length modulation and saturation
of the output transistors at large and small weight values.

The inset of Fig. 4.11 shows that the weight change depends on the value
of the weight. This is also seen by the three different STDP curves in the
figure: each one was measured for a different initial weight, and it is clear
that the curves are shifted vertically depending on the weight. This shift is
caused by channel-length modulation: as the weight increases, the current
sourced by Mp14 decreases and the current sunk by Mn27 increases. So if
depression and potentiation are perfectly balanced for a particular value of
∆t at V w = 0.5 pu, the STDP curve will be biased towards potentiation at
V w < 0.5 pu and towards depression at V w > 0.5 pu. At the boundaries
(V wini near zero and one), the vertical shift is larger, which can be seen in
the inset of Fig. 4.11 near V wini = 1pu. This problem can be improved by
using cascode current mirrors in the synapse core circuit and increasing the
lengths of the mirror transistors.

Fig. 4.12 shows the bistability term’s effect on the synaptic weight. The
rate of change of the weight dw/dt is plotted as a function of the weight.
In the mathematical model, this function is the polynomial −kbsτ−1w(1 −
w)(w∗ − w). In the circuit, this function is provided by an OTA, which ideally
implements a hyperbolic tangent V-I transfer function when operated in
subthreshold, until the amplifier’s output transistors move out of saturation,
at which point the current reduces to zero. It can be observed that the
transconductance amplifier does not maintain a constant current flow in
Csyn for high values of V w as expected. This is caused by channel length
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Fig. 4.13: Change in synapse strength for spike trains with different frequencies and
pair timings. The synapse weight is measured after 2.1s. For frequencies
around 5Hz the system operates as classic STDP predicts. However, when
the frequency increases, the calcium variable is higher than θp more often
than it is below, and therefore only potentiation is observed. In order to
provide high stimulus frequencies, the delay preD was reduced to zero.
All other circuit parameters are as in Fig. 4.9.

modulation in Mp22 and Mn22, which have short lengths. Because the degree
of channel length modulation in the two transistors is different, the bistability
curve is asymmetric. This is undesired because the strength of the synaptic
weight attractors will differ, which could affect the relative probabilities of
LTP and LTD. Cascode current mirrors and an increment of transistor lengths
could be employed to greatly reduce the effects of channel length modulation.

The calcium-based model is compatible with the observation that biological
synapses are sensitive to both firing rate and timing. Previous work [103]
found that in some cells, LTD disappears above 40 Hz and that LTP increases
with frequency. We tested this behaviour in the calcium synapse circuit by
extending the experiments shown in Fig. 4.11 with repeated pulse stimulation
at varying frequency. In each experiment, the synapse converges to a steady-
state oscillatory behavior when the jump caused by the calcium and synapse
core is exactly offset by the change caused by the bistability circuitry. Lower
frequency stimuli take longer to converge than higher-frequency stimuli.
We determined the time to convergence for our lowest-frequency stimulus
(2.1s in these simulations) and ran all simulations for that amount of time.
Fig. 4.13 shows our results. Each data point is the average of the maximum
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Fig. 4.14: Layout data for the synapse circuit which was fabricated in 180 nm
technology. The majority of the area is covered by the capacitors.

and minimum weights in the steady-state oscillation. As expected only
potentiation is observed for high frequencies. This effect starts showing
up when the inverse of the frequency of stimulation becomes comparable
with the time constant of the calcium variable. In this condition and for
higher frequencies of stimulation the calcium variable does not have time
to return to its resting value before the next pair of pulses is presented.
The calcium variable spends more time above the potentiation threshold for
intermediate frequencies than for low frequencies, and it is always kept above
the potentiation threshold for frequencies higher than 16Hz.

In our circuit the maximum frequency of operation is limited by the delay
circuit: if the Interspike Interval (ISI) between two pre-synaptic spikes is
smaller than the delay set in the circuit, the delayed version of the second
spike is not generated by the circuit. Therefore, we set the delay to zero
to perform this experiment. This limitation poses an upper bound on the
pre-synaptic spike frequency at 1/D (as in Eq. 2.15). If higher frequencies
are desired, a digital delay circuit based on registers could be employed.
However, this is a limitation common to physical systems, and we expect
the biological counterpart to also have an upper bound. Therefore, it would
be sufficient to match the upper bound of the circuit implementation to the
biological limitations.

The calcium-based learning model can create other learning waveforms
besides the classic STDP curve (also known as the Depression-Potentiation
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(DP) curve). One such curve is the Depression-Potentiation-Depression (DPD)
waveform, where the synapse is potentiated for small ∆t and depressed
for larger ∆t, regardless of spike order. In order to obtain this curve, the
parameters should fulfill the conditions cpre, cpost < θd < θp. In addition,
the time constant τca is increased to cover the same timing operation range
(200ms) as in the DP curve. While we were able to obtain a simulated DPD
curve, we do not present those results here because of space limitations.
Rather, we present a measured DPD curve in Section 4.2.

4.2 Hardware measurement results

We designed and fabricated a testchip which contains all the three com-
ponents of the calcium plasticity circuit in 180 nm technology. Fig. 4.14
shows the layout of our first prototype circuit. The dimensions are 53.75µm×
30.48µm, and the majority of the area is occupied by the capacitors.

The chip was placed on a custom PCB featuring CPU-controlled DACs. We
pinned out the calcium, weight, and delayed pre-synaptic spike voltages
because voltage measurement makes data acquisition simpler, requiring only
an oscilloscope. Thus the calcium measurements that follow are not the same
state variables as the simulations in Section 4.1.1, but rather are proportional
to the natural log of the calcium current (assuming subthreshold operation).
Nonetheless, these measurements provide useful insight into the behavior of
the calcium circuitry. For ease of comparison with the simulations, we plot
VCref − V ca. Weight measurements are normalized as described in Eq. 4.2
and reported in pu. As in the simulations, Vwl = 0.3 V and Vwh = 1.5 V .

With the aim of replicating simulation results in silicon, we first programmed
the CPU-controlled DACs to provide the same bias voltages used in Spectre.
Fine tuning was then used to closely match simulation data. We provided
precisely timed pre- and post-synaptic spikes using a dual-output function
generator. The synaptic weight dynamics for potentiation and depression are
shown in Fig. 4.15. Before stimulation, the synaptic weight was initialized
to 0 pu for the potentiation experiment (Fig. 4.15a) and to 0.71 pu for the
depression experiment (Fig. 4.15b). The calcium variable was always initial-
ized to zero. Synaptic potentiation is shown in Fig. 4.15a for pre/post spike
pairings with a time difference of 10 ms; depression is shown in Fig. 4.15b
for pairings with ∆t = −45 ms.
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Fig. 4.15: Measured calcium and weight for potentiation and depression experi-

ments. Calcium is plotted as VCref − V ca, and weight is normalized
to pu. The waveforms were measured for (tpost − tpre) = (a) 10ms
(b) -45ms. For positive timing potentiation is observed, while neg-
ative timing generates depression. The parameters for the measure-
ments are tspk = 20µs, Vthca = 0.5V , Vτca = 1.424V , VCref = 1.5V ,
VCpre = 526mV , VCpost = 669mV , Vdel = 353mV , Vpw = 1.7V ,
Vpot = 323mV , Vdep = 321mV , Vthp = 1.1V , Vthd = 1.23V , Vwh = 1.5V ,
Vwl = 300mV , V thw = 906mV , and Vbias = 1.8V .

Despite a qualitative match of the measured dynamics with the simulated
data, minor deviations can be observed. The measurements indicate that
the maximum synaptic weight is lower than expected from simulation. The
weight cannot reach Vwh because the leakage currents are larger than the
transconductance amplifier’s output current at high output voltages. The
circuit can be improved with stacked transistors, cascodes, and a larger
Csyn.

We characterized the classical STDP learning behaviour as already done in
simulation (see Sec. 4.1.1). The bistability block was disabled and single pre-
/post-synaptic pulse pairs were presented to the circuit after the initialization
procedure described in the following. The calcium voltage Vca was initialized
to VCref and the synaptic weight voltage Vw was set to an initial weight
V wini = 0.5 pu. This initial voltage was set with a transmission gate connected
to the V w node. The synaptic weight was measured before the first input
spike and after the calcium decreased below V thd. The change in the weight
as a function of the time difference between the pre- and post-synaptic pulses
(for a single pulse pair) is shown in the main plot of Fig. 4.16. The inset of
Fig. 4.16 shows how the change in weight for a given tpost− tpre (indicated by
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Fig. 4.16: Main plot: the measured STDP learning curve is similar to the simulation
results. The bistability is disabled for these measurements. All other
parameters are as in Fig. 4.15. Each measurement begins by setting V w
to a nominal value of V wini = 0.5 pu. The weight is then measured before
and after a single pre/post spike pairing, and the difference between the
normalized weights is plotted. This data presents one experiment trial, for
which the variation was minor. Inset: the steady-state value of the weight
depends on the frequency of stimulus presentation. Bistability is enabled
for these measurements (Vbias = 1.268V ). The weight was initialized to
V wini = 0.5 pu. The relative spike timings were tpost − tpre = −35 ms
(corresponding to the green box in the main figure). This stimulus
was presented at various frequencies. The weight was recorded after it
reached a steady-state oscillatory behavior. Points represent the difference
between the average of the maximum and minimum weights measured
during steady-state oscillation and V wini. The error bars do not represent
statistical variation, but rather the difference between the maximum
and minimum weights encountered in the steady-state oscillation. Rare
outliers encountered during frequency measurements are not included in
the dataset because they are infrequent. These outliers could be caused
by noise, and focusing on noise reduction techniques could shield the
circuit more effectively.

the green box in the main figure) is a function of stimulus frequency. These
measurements are comparable to the simulation results and demonstrate that
the circuit is able to reproduce the synaptic weight dynamics described by
the model.

We next characterized the frequency-dependent behavior of the circuit. We
repeated a similar experimental protocol to the one used for Fig. 4.13. We
first initialized the weight to 0.5 pu. We then provided pairs of spikes with
a fixed timing tpost − tpre = −35ms and varied the pair repetition frequency
using the dual-output function generator. The bistability circuit was enabled
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Fig. 4.17: The calcium plasticity circuit can display DPD behavior. Main figure:
we applied the same experimental protocol as in Fig. 4.16 but with
the following set of parameters: tspk = 20µs, Vthca = 0.5V , Vτca =
1.445V , VCref = 1.5V , VCpre = 630mV , VCpost = 630V , Vdel = 500mV ,
Vpw = 1.7V , Vpot = 323mV , Vdep = 310mV , Vthp = 1.17V , Vthd = 1.23V ,
Vwh = 1.5V , Vwl = 300mV , V thw = 906mV , and Vbias = 1.8V . This
results in a learning waveform that features potentiation for small time
differences and depression for larger differences, regardless of the order
of spike presentation. Inset: the DPD curve depends on frequency of
presentation. We repeated nearly the same experiment as in the inset
of Fig. 4.16 but with the modified parameters, a timing difference of
tpost− tpre = −40ms (corresponding to the green box in the main figure),
and the bistability enabled (Vbias = 1.268V ). The resulting data confirms
that an increase of stimulus frequency causes net potentiation.

for this experiment. We then waited for the synapse to reach a steady-state
oscillation. The inset of Fig. 4.16 shows our measurements. Each data
point is the difference between the average of the maximum and minimum
weights encountered in the steady-state oscillation and the initial weight
(V wini = 0.5 pu). The vertical bars do not represent statistical variation, but
rather the difference between the maximum and minimum weights during
steady-state oscillation. Thus the bars show the amplitude of the oscillation.
Our results are as expected from simulation. When the spike frequency is 4Hz,
the synapse depresses; but when the spike frequency increases, a transition
from depression to potentiation occurs. We encountered rare outlying cases
of synapses undergoing significantly larger changes than expected. These
are not included in the dataset because they are infrequent. They could
potentially be eliminated using noise reduction techniques.
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In addition to STDP’s classic DP learning curve, our circuit is able to display
a DPD curve. This was achieved by modifying the circuit’s parameters (a full
list of parameters is given in the caption). We used the same experimental
protocol as in earlier STDP experiments: single pairs of spikes were sent to
the synapse, the weight was measured before and after stimulation, and the
difference between the two weights was calculated. The results are presented
in Fig. 4.17. As expected, potentiation occurs for time differences near zero,
while depression occurs for larger differences.

We also characterized the DPD curve’s frequency dependence. The experi-
mental protocol is nearly the same as in the earlier STDP experiment: the
weight is initialized to V wini = 0.5pu, a train of pre-/post pairs of spikes
was sent to the synapse with a fixed timing of −40 ms, and we waited until
the synapse’s behavior reached a steady-state oscillation. We then plot the
difference between the average of the maximum and minimum voltages
seen during oscillation and V wini. We use the vertical bars to represent the
amplitude of the oscillations. Our results are shown in the inset of Fig. 4.17.
The data shows that an increase in the spike frequency causes potentiation
for a timing that previously gave depression.

4.3 Discussion

In a theoretical learning, learning process should be slow enough to ensure
equal distribution of memory resources (both recent and older experiences
should be well remembered). On the contrary, faster learninig could strongly
reduce memory lifetime [94]. Small plasticity steps leads to improved mem-
ory lifetimes. However, there is a minimum step size below which no further
improvement in memory occurs. The minimum limit is also dependent on the
signal to noise ratio. The ratio between potentiation and depression should
be chosen to find an equilibrium point that generates an equal probability of
potentiation and depression [64]. Our circuit bias voltages produce calcium
and synapse dynamics comparable to the ones used in theoretical work, which
gives rise to biologically plausible transition probabilities. The values are
chosen to achieve a STDP window which is 200ms wide (τCa parameter) and
causes no change in the synaptic weight for tpost− tpre = 0 (delay parameter).
kbs and τ are set to get a maximum bistability slope of 0.2pu/s. γp and γd are
related to the amplitude of the change in synaptic weight, so we set to get
a maximum rate around 0.1pu. The choice of Cpre, Cpost, θp and θd should
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follow the condition C ′pre < θd < θp < C
′
post, where C ′pre,post are the maximum

peaks of the calcium dynamics (Fig. 4.8b, 4.8e) when the spike ends. We
have more flexibility in the choice of these values, but their relationships are
important for obtaining the desired symmetry in the STDP characteristic.

The bias voltages were selected so that the circuit exhibits a similar STDP
curve to the model (Fig. 7). After fitting this curve, we fine-tuned the
parameters like Vbias and V thw to obtain similar results in the potentiation,
depression and bistability experiments (Fig. 6b). We ran our initial chip
experiments using the same bias voltages we used in simulation, and we
fine-tuned them based on their deviations from the expected behavior. The
capacitor values are Cdel = 100fF , Cca = 574fF and Csyn = 100fF were
chosen such that we could achieve capacitor discharge rates similar to the
model with bias voltages no smaller than 100 mV . Measured data was
obtained using 16-bit Digital to Analog Converters (DACs) with a voltage
reference of 3.3V which gives us a resolution near 50µV .

L. Abbott et al. in [61] show different learning waveforms found in neocortex-
layer 5, 2/3, ELL of electric fish, GABA-ergic neurons in hippocampal culture
and neocortex-layer 4 spiny stellates. One may argue that the brain has
developed several STDP learning profiles to deal with different learning tasks
in different brain areas and animals. The model implemented in our work
proposes a general mechanism underlying the various learning profiles which
is appealing both as a model for understanding learning in biology and as a
substrate for the construction of artificial learning systems.

The idea of using digital inverter and digital gate is commonly used by the
neuromorphic community for implementing pulse extenders, some delay
circuits are based on static-zero hazard circuits to obtain delays. Our pulse
extender circuit after the delay is similarly used in ON-Chip AER Commuica-
tion Circuits ( [43] and [104]). However, we are working with long time
constants on the order of 40ms, therefore we had to adapt this idea by adding
capacitors and low leakage voltage supplies to obtain the desired values. The
delay can be tuned by Vdel, which reduces the amount of discharge current
in Cdel; alternatively we can increase Cdel to increase the delay time. For our
dimensions the maximum delay is reached when we set Vdel = gndll. In this
case we have a delay around 79ms.
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Most of the power consumption (as estimated in Spectre simulations) is
due to the calcium (11.62µW in potentiation) and synapse (13.45µW in
potentiation) blocks. The power consumption in the bistability block (2.4nW)
is negligible in comparison. These power consumption numbers are from
the experiment of Fig. 4.9a in which V w rises from a very low level. This
power is reduced considerably when V wini is set to higher voltages. In the
calcium block, the delay circuit consumes almost all of the power, primarily
because the voltage on Cdel decreases slowly, which causes the buffer to draw
significant short-circuit power when VCdel is approximately midrail. Power
consumption could be reduced by detecting when VCdel crosses midrail and
using positive feedback to force the node low upon this condition. More
generally, power consumption reduction techniques will have to be employed
in all circuit blocks for the use of our calcium synapse in large scale neural
networks.

Capacitor size is a main drawback of this implementation of our circuit. It
is large because we used a native metal capacitor. The size of this capacitor
could be reduced by around half if it is replaced with a Metal-Insulator-Metal
(MIM) capacitor. Alternatively, we can employ techniques to reduce the bias
currents in our circuit. We can achieve the same time constants if we scale
the bias currents and capacitances down by the same factor (thus achieving
a smaller capacitor area). One way to reduce the bias currents is to use
high-threshold transistors, since they have lower leakage currents. We can
also replace each individual transistor by two transistors in series, exploiting
the “stack effect” [105] to reduce their leakage current. Alternative devices
to capacitors would be floating gates (FG) and memristors which could store
for longer time the synapse values by reducing leakage current, however
they would require a redesign (not drop-in replacements for caps), FG’s
require high voltages and specialized programming circuitry, and memristor
programming and integration is in its early stages.

Analog computation is efficient at low precision processing and digital compu-
tation at high-precision. Also, physical analog computation is more efficient
because it deals with primitives i.e. a wire can be used for adding two in-
put currents [106]. Another disadvantage of synchronous digital compared
to analog circuits is that in the former the clock is a power consumption
source. Furthermore, we aim at the implementation of real time systems
with biologically realistic time constants (on the order of a few up to hun-
dreds milliseconds) which are more naturally realized with analog circuits.
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Our synapse is bistable on long time scales, therefore equivalent to one bit.
Nevertheless, on short time scales the synaptic weight is fully analog.

We have also discussed a number of nonidealities of the presented implemen-
tation. Most importantly, the STDP curve shifts vertically depending on the
value of the synaptic weight. This is caused by channel-length modulation in
the synapse core, and it can be greatly improved by using cascode current
mirrors with large lengths. We also noticed that the weight cannot reach
a value of 1 pu. This is caused by excess leakage at the weight node. The
cascodes discussed earlier help solve this problem because of the stack ef-
fect [105]. An increase of the value of the weight capacitor can also improve
the circuit performance. Another nonideality of this circuit implementation is
that some transistors move out of the subthreshold regime and into strong
inversion. We noticed that this causes an asymmetry in the STDP learning
window. To compensate for this asymmetry, we increased the delay of the
calcium waveform’s onset as observed in Fig. 4.8.

A further nonideality not shown here but observed during our experiments is
also related to the delay circuit. The width of the output pulse is dependent
on the bias voltage Vdel used to set the delay. This is caused by the low gain
of the inverter B1 and the low gain from Vout to Vout1τ (see Fig. 4.2a). This
problem does not affect circuit operation; it merely makes setting biases
difficult because we must change V pw to compensate for any changes caused
by Vdel. Nonetheless, we can solve the problem by doubling B1’s number
of stages, as well as adding an inverter between Vout1τ and the NOR gate.
Finally, we noted that the bistability characteristic is asymmetric because
of channel-length modulation. This can be solved by using cascode current
mirrors in the bistability circuitry and increasing the transistors’ lengths.

This work offers the opportunity to test the performance of current theories of
learning in a realistic environment, overcoming the limitations of traditional
digital architectures by imitating computational primitives observed in the
brain, leading to advancements in combining models of synaptic plasticity
with network-wide activity and the scientific exploration of the role of calcium
in large-scale, real-time biologically-plausible neural networks [107].

Future designs will feature large arrays of neurons and synapses, and they
will be applied to various tasks such as unsupervised pattern recognition and
supervised classification.
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5Second Synapse Circuit
Implementation

The development of novel circuits requires several design iterations to reach
optimal performances. Our first prototype was extensively tested to identify
deviations from the desired behaviour to be addressed in a second design
cycle. These issues were improved in a second prototype comprising modifica-
tions in all circuit blocks and fabricated in the same 180 nm process used for
the first prototype. To further extend our research and investigate learning
mechanisms in a small neural network, the calcium synapse was embedded
into a neuromorphic array consisting of 8 leaky IF neurons and 120 synapses,
72 of which were calcium-based.

This second chip integrates a 22-bit on-chip bias generator [108] which has
been developed over many generations of neuromorphic chips such that it
is now quite reliable and precise. It is controlled by AER events sent to the
chip. This bias generator is typically shared among all synapses/neurons of
the same type, so there is indeed the possibility of mismatch. This variability
can be mitigated by carefully sizing the circuits and optimizing their layout.
I did not perform such optimizations for this chip but in the next chapter I
present simulation results that provide insights for further fabrications.

5.1 The Calcium Circuit

I modified the delay circuit in order to overcome the VpreD pulse width
dependence on Vdel. I addressed this problem by increasing the gain of the
first buffer by using two buffers B1 in cascode instead of only one as in
Fig. 4.2a (x4 refers to the number of inverters in cascode connection) and
moving the second buffer (x2) before the NOR gate (see Fig. 5.1a). These
changes have the effect of sharpening the two signals V out1 and V out1τ .
The pulse width is a function of the rise times of the signals driven by these
inverters, which are in turn a function of how fast their inputs change if
the gain is low. Increasing the gain therefore puts a tighter bound on the
pulse width. However, the disadvantage of this modification is that an extra
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Fig. 5.1: The calcium block circuit is composed of a delay circuit (a) and the Calcium

core circuit (b). This delay circuit overcomes the undesired output spike
pulse dependence on Vdel by increasing the gain in V out2 and V out1τ .

inverter generates additional power consumption; in order to reduce the
power consumption an additional feedback circuit to reset V cdel upon it
reaches the threshold voltage of the inverter can be added (see Fig. 4.4 V cdel
signal).

In our first calcium circuit version we used a DPI circuit for generating the
calcium waveform (Fig. 4.2b), this circuit includes an extra bias input to set
the calcium dynamics limit; however, when increasing the number of neurons
and synapses a big number of required pins can be problematic. By excluding
the differential pair Ms3 and Ms4 in the DPI V ca limit is defined by the power
rail saving an extra pin and silicon area (Fig. 5.1b); this configuration is called
Linear Charge-and-Discharge synapse and is similarly used in [109].
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Process features 0.18µm, 1 poly, 6 metal
synapse size 56.09 × 21.04 µm2

Cdel = 102fF (MIM) size 12 × 4.3 µm2

Cca = 582fF (MIM) size 12 × 24 µm2

Csyn = 402fF (MIM) size 12 × 16.6 µm2

Supply voltage 1.8 V
Table 5.1: Technology and layout features

5.2 The Synapse Core and The Bistability
Circuits

In order to address the fact that the weights do not reach the saturation
voltage, we employed cascode current mirrors in the weight update circuitry
and the bistability circuitry. The stacked transistors reduce the leakage
current [105] when no current is being sourced onto the capacitor. We also
used a larger capacitor so that we can increase the OTA’s tail current and
achieve the same bistability slew rate as before. Thus the leakage current is
negligible compared to this larger bias current.

The cascode current mirrors in the OTA also address the variation of the
bistability current for high and low weight values. They increase the device’s
output resistance, thus allowing it to source a constant current for a larger
range of weight voltages. In addition to adding cascodes, we also increased
the devices’ lengths to further increase output resistance. The improved
circuit for the synapse core and the transconductance amplifier are shown in
Figs. 5.2 and 5.3 respectively.

The final layout of the full synapse circuit is shown in Fig. 5.4 and the
technology characteristics in Table 5.1. In addition to the modified circuits, I
used Metal-Insulator-Metal (MIM) capacitors which have higher capacitance
density and use top metals enabling underneath route with lower metal layers;
however, the drawback is that contacts to connect this capacitor require
considerable distance with the device to satisfy Design Rule Check (DRC).
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Fig. 5.2: Modification of the synapse core circuit of Fig. 4.3. Cascode current
are used instead of the simple one to guide potentiation and depression
currents toward Csyn. Additionally stack effect is generated to reduce
leakage current in the capacitor.

5.3 The Linearizer

The synaptic weight voltage is usually connected to a voltage-current con-
verter block to generate a source current proportional to V w that will be
injected to the membrane potential. One example of this configuration is a
DPI [89]. Here the amplitude of the output current after a pre-spike depends
exponentially or quadratic of V w (weak or strong inversion configuration
in transistors respectively) and can reach saturation values leading to a fast
membrane charge for high values of V w. In order to reduce strong current
supply, an intermediate circuit can provide a linearizer function by generating
approximated linear currents as function of V w. A Source-Follower-Circuit-
with-Transconductance-Amplifier (TFS) circuit was proposed in [110] and is
shown in Fig. 5.5. The idea here is to bias the transistor Mn1 in saturation
region and vary the output current by taking advantage of the channel length
modulation effect where Vds is connected to V w.

Fig. 5.6 shows simulation results of the output voltage in the linearizer. As
observed the swing range is reduced from < 0.3− 1.5 > to < 0.4− 0.8 >.
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Fig. 5.4: Layout data for the second synapse circuit which was fabricated in AMS
180nm technology. Here MIM capacitors are used instead of native ones
which has higher density, however still the majority of the area is covered
by the three capacitors.

5.4 The Configurable Bias Current
Generator

In our firs tape-out we assigned a pin to each reference bias voltage, these pins
were connected to Digital-to-Analog Converter (DAC) which were controlled
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Fig. 5.6: Simulation results of the linearizer circuit. The waveform resembles a
linear function respect to V w however it was not possible to fully remove
the voltage offset because of leakage currents, furthermore it is observed
that for large gate drain voltages the current tends to move away from a
linear function toward a constant one.

by a PC. The disadvantage of this simple configuration is that the bias voltages
are sensitive to power supply ripples and also transistors’ threshold voltage
are dependent on temperature doubling the subthreshold current every 6-8
degrees [43]. In addition, if a chip requires a huge amount of bias voltages
we could run out of available pins.

In our second tape-out, we included a configurable bias current generator
circuit which is a combination of industry-standard bandgap reference cir-
cuits [70,111] and circuits developed by several research groups [43,108,
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112,113]. The final layout of this circuit was implemented by the Institute of
Neuroinformatics in Zurich.

The configurable bias current generator consists of a master bias (bandgap
reference with startup circuit), current splitter, bias buffer, sub-off-current
generator and a control system. Here I describe briefly the first three blocks
which are also depicted in Fig. 5.7.

The selected bandgap architecture is characterized for implementing a trans-
conductance independent of temperature. The classical idea here is to make
Iout independent of Vdd. For this purpose Mp1 −Mp2 current mirror copies
Ibg to Iref and likewise Mc1 −Mc2 −Mn1 −Mn2 copies Iref to Ibg; so, Ibg is
bootstrapped [70]; however, because of channel modulation effects on the
current mirrors a slight dependence on Vdd is expected. The current Ibg is
obtained by solving the condition in Eq. 5.1.

V gsMn2 = V gsMn1 + IbgR (5.1)

In case all transistor are in strong inversion, we obtain the following expres-
sion:

Ibg = 1
2µnCox (W/L)N R2 (5.2)

where µ is the electron-effective mobility and Cox is the unit-gate oxide
capacitance.

For weak inversion:
Ibg = ln(4)UT

κR
, (5.3)

where UT is the thermal potential and κ is the body effect coefficient.

Despite this circuit does not implement a temperature-independent reference,
it sets a supply-independent transconductance as deducted in Eqs. 5.4 and
5.5 avoiding problems such as noise, small-signal gain and speed [70]. Being
more strict a real resistance R varies slightly with the temperature which
could lead also to variations in the transistor transconductance.

For strong inversion:
gm = 1

R
(5.4)
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Fig. 5.7: The configurable bias generator circuit proposed in [108, 114] consists
of a startup, master bias, current splitter and a configurable buffer. The
startup circuit makes sure to activate the Master bias whenever the system
is turned on or reset. The master bias circuit uses a bootstrap configuration
with dual feedback to generate fixed current values independent of small
power supply or temperature variations. The current splitter divides the
bias current into geometric ratios. Finally the buffer add all the selected
current ratios and generate a respective Vbias voltage.

For weak inversion:
gm = κ

R
ln(4) (5.5)

The master bias circuit in Fig. 5.7 uses a nMOS cascode current mirror instead
of a single one [70] above the resistance terminal to reduce power supply
sensitivity; however, this approach is not used in pMOS to preserve voltage
swing range (the counter part of cascode configuration is that it increases the
headroom voltage).

One critical problem of this circuit is its stability given that the ratio between
the nMOS current mirror is larger than 1 (4 in our case). The resistance R
is implemented off-chip and therefore includes a several pF capacitance in
parallel with it. The circuit can be stabilized by connecting a compensation
capacitor Cn several times CR, or by adding a compensator capacitor parallel
to a precreated high impedance node [115].

Generally a startup circuit is added to the bias generator to avoid the unde-
sired solution Ibg = Iref = 0 in Eq. 5.1 [69]. The function of this circuit is
providing an initial current to the current mirror circuits when powering-up.
In fig. 5.7 the source current generated in Mk1 charges the MOS capacitor
Ck2 from an initial value Vk = 0 until it reaches Vdd; during this transition a
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current source is also generated by Mk2 which likewise activates Iref . The ca-
pacitor Ck1 avoids undesired cut-off operation in Ibg when Vdd drops suddenly.
The power control Vpd which in normal operation is connected to ground
allows also to shut off the system by setting it to Vdd, with this, the activated
Mpd transistor pulls down Vc voltage which likewise turns off the current
mirrors. Setting Vpd back to ground returns Vk to low level and therefore
restarting the startup circuit.

The current splitter circuit divides the master bias current Ibg into geometric
proportions of ratio 2−k in each k−th branch. A desired amount of current can
be obtained by switching on/off some of the current branches and add them
together. The most basic splitter configuration consists of two MOS transistors
as shown in Fig. 5.8a which share gate and drain terminals and divide the
input current Iin into I1 and I2 proportional to their device dimensions ratio
(W/L)1
(W/L)2

independently of the transistor region operation [116]. In order to
demonstrate this property, a graphical version of the complete all-region
model for the CMOS drain current can be used [66], considering the total
drain current I(x) = Idrift(x) + Idiff (x), this can be expressed in terms of the
inversion layer charge per unit area at position x as Eq. 5.6 where its implicit
component (Eq. 5.7) is plot in Fig. 5.8b.

Id = (W/L)
∫ Vc=Vd

Vc=Vs
f(Vg, Vc)dVc (5.6)

where:

f(Vg, Vc) = µ

(
Qc −

kT

q

dQc

dVc

)
(5.7)

A current injection Iin in the splitter shifts the V m voltage from an initial sate
V m1 to V m2, consequently currents ∆I1 and ∆I2 vary proportional to the
area under the function f(Vg, Vc) between V m1 − V m2 and given that this
area is the same for both currents we can cancel this term when we diving
∆I1
∆I2

resulting in Eq. 5.8.

∆I1

∆I2
= (W/L)1

(W/L)2
(5.8)
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Fig. 5.8: Basic configuration for a current splitter. (a) The circuit consist of two MOS
transistors which share at least the same gate and source terminals and
can be configure at any regime. (b) A graphical version of the All-Region
CMOS model is used to demonstrate its split proportion when a current
variation occurs, in this case if an initial Vc = V m1 voltage shift to Vm2 the
integral of the function f(Vg, Vc) shift in the same value independently of
the initial state Va or Vb and hence current variations depends only of the
area between V m1 and V m2.

Finally, considering Va and Vb grounded and (W/L)1 = (W/L)2 we demon-
strate that I1 = I2.

The buffer circuit is based on a current conveyor architecture, which decou-
ples the input current with the output voltage Vbias. Switches are included
to enable/disable alternative configurations such as cascode output (SW1),
nMOS (Inref) or pMOS (Ipref) reference voltages (SW6), and sub-off cur-
rent levels (SW2). The nMOS bias configuration reaches Vbias values of
< 0− ∼ 1V > while the pMOS bias reaches <∼ 700mV − 1.8V >.

5.5 The Neural Network Block

This second chip version comprises an array of 8 neurons, each one receiving
input from 9 calcium synapses which allows us to implement simple network
experiments. Each neuron also receives input from additional 5 synapses
(used for independent experiments of our research group) implementing
various short-term adaptation mechanisms and filtering properties (e.g. short-
term depression, short-term facilitation, band-pass filter and elementary
motion detection) and 1 inhibitory synapse. We considered two types of
calcium synapses, one that includes the linearizer circuit between the synapse
and the DPI and another that contains a comparator (implemented as a
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Fig. 5.9: Architecture of the buffer circuit which consist of different configuration
options such as NMOS-PMOS output, shifted source bias (which generates
saturation currents when Vgs < 0) and cascode configurations (which
increases the output impedance). The default option with NMOS reference
current is highlighted in the graphic. The operation is based on a current-
controlled conveyor circuit defined by the transistors Mn1−Mn3, here the
current in Mn1 sets the voltage in the node NBias independent of its drain
voltage and hence the node is clamped to a constant value ensuring that
the voltage Vbias follows faithfully the the input current from the splitter.

transconductance amplifier with a buffer) circuit instead. Monitor circuit
blocks let us measure some test signals such as Vca, Vw, Vlin and the output
spikes. The system also integrates an asynchronous comunication protocol
called AER [117–119]. In AER, a transmitter emits address events of the
spikes generated by the neurons; a receiver decodify these bits and can
stimulate designated synapses to implement recurrent connectivity patterns.
Fig. 5.10 shows the block diagram of the neural network.

5.6 Simulation Results

In the second designed version simulation results demonstrate considerable
improvement in potentiation, depression and bistability operations in terms
of swing range and symmetry. In order to test the simulation results, I used
here the same protocols than in the first chip version.
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Fig. 5.10: Block diagram of the neural network containing the calcium-based (high-
lighted) and additional synapses models. A total of 9× 8 calcium-based
synapse circuits were included together with 8 neurons. Two types of
calcium circuits were fabricated, one which includes a linearizer block
(Ca1) and another, a comparator (Ca2), those are the interface that
connect the synapse with the DPI to generate currents which charge the
membrane capacitor. Additional peripheral devices such as multiplexor
and asynchronous circuits are used to address information to a respective
synapse. Furthermore, monitoring circuits are also comprised to trace
internal voltages values in the synapse ( Vca, Vw and Vlin) and neuron
(output spikes).

5.6.1 Bistability

Simulation results for the improved OTA are shown in Fig. 5.11. As observed
the current curves approach more to an ideal antisymmetric figure, in addition
the same bias voltages Vbias now produce lower current levels compared to
Fig. 4.7; this gives the advantage to have a better bias range for the desired
voltage. In learning terms, it reaches a similar probability for getting a high
or low memory value.

The bistability circuit implements approximately an hyperbolic function ex-
cept near the boundaries where it moves to zero from a constant value; on
the other hand, the computational model implements a 3rd degree polyno-
mial; this comparison is shown in Fig. 5.12. In order to get the bistability
component in the simulation an indirect approach was considered. First in
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Fig. 5.12: Slope for the improved circuit. Here the positive and negative slope
are symmetric. This is achieved by using cascode current mirrors and
increasing the channel length of the transistors to reduce channel length
modulation effect.

the learning circuit an initial V w value is set (one slightly above 0.9v and
other below 0.9v), then V w evolution through the time is recorded, later a
high degree polynomial regression is used to approximate V w vs. time and
finally Vw (regression) vs. its first derivative is plot.
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Fig. 5.13: Synapse evolution for (a) potentiation and (b) depression in the improved
circuit. A better matching is obtained because of a more symmetric
operation in the bistability component and the generated current for
potentiation, depression and bistability is less dependent on V w as in the
previous circuit.

5.6.2 Potentiation and Depression

Synapse evolution for potentiation and depression are plot in Fig. 5.13.
Compared to Fig. 4.9, the second version resemble more to the computational
model. This occurs because potentiation and depression jumps generated
from a single spike pair are less dependent from the initial state of V w
compared to the former version and because the bistability component is
represented by a more precise antisymmetric waveform.

It was observed however that in the synapse core circuit (Fig. 5.2) Mp14

and Mn29 convey a leakage current produced in Mn15 and Mn25 when V ca
is greater than the threshold voltages. If Vpot and Vdep are greater than the
transistor threshold voltage (≈ 0.37V ) the leakage current has considerable
value and degradate the synapse performance. The system operation can be
improved by adding a feedback mechanism to turn off Mp16 and Mn27 when
V ca is greater than the depression and potentiation thresholds.

90 Chapter 5 Second Synapse Circuit Implementation



−100 −50 0 50 100
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

t
post

− t
pre

(ms)

C
ha

ng
e 

in
 s

yn
ap

tic
 s

tr
en

gt
h 

(p
.u

.)

Vw
ini

=0.25 p.u.

Vw
ini

=0.5 p.u.

Vw
ini

=0.75 p.u.

w
ini

= 0.5 p.u.

0 0.5 1
−0.2

−0.1

0

Vw
ini

(p.u.)

∆
V

w
 (

p
.u

.)

∆t=−40ms

Matlab
Spectre

Fig. 5.14: Synapse learning waveforms for Model (blue) and hardware simulation
(red) for the improved circuit. Here the learning waveforms in the hard-
ware simulations vary less for different V wini values as in Fig. 4.11,this
is achieved by improving calcium and synapse core circuit blocks.

5.6.3 STDP Waveform

The STDP waveform is generated by calculating the variation in the synapse
potential after a spike pair occurs considering different timing between pre-
and post-spikes. The change in normalized weight is plotted in Fig. 5.14 for
tpost − tpre values between −100 and +100 ms. Compared to the first version
circuit (Fig. 4.11) the results here are less dependent on V wini except for
values close to the saturation ones (V wh or V wl). The inset figure shows the
“change in synaptic strength” for timing tpost − tpre = −40ms, where the V w
values are almost constant for intermediate initial states of V wini.

5.6.4 Configurable Bias Circuit

I provide here simulation results for the Master Bias block which resemble
a switch-on operation in the power supply considering noise coupling. The
noise signal is represented by a sinusoidal waveform with amplitude 150mV
and frequency 5MHz as shown in Fig. 5.15. The setting time is reached after
≈ 5.94µs (for a 5% of accuracy), around this time Iout and Iref converge to
the same value because of both feedbacks. AC Simulation results also state
that Vdd variations at small frequencies are attenuated in −65dB in Vn, and
it reaches a worst attenuation case at 100MHz with −40.7dB (simulation
results without load).
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Fig. 5.15: Simulation results of the master bias circuit in Fig. 5.7, a turn on and
noise events are mimicked by rising the power supply voltage (vdd)
and adding a sinusoidal signal with amplitude 150mV and frequency
5MHz respectively. As observed the reference voltage V n in the bootstrap
circuit stabilizes after 15ms to 0.25V independent of the Vdd value, this
time is reached when both currents Iout and Iref get the same value as
consequence of the dual feedback.

5.7 Hardware measurement results

Given that the second version chip integrates an asynchronous communication
protocol and a programmable bias current generator, an automation systems
was implemented. We wrote python scripts to generate and send the bytes
responsible for configuring the bias values and operation mode in the chip.
This includes a learning or recall mode operation, input spikes timing and
synapse addressing. I also implemented a control system for the oscilloscope
measurements in order to record and plot the data. The python library PyIVI
was included for this purpose (http://www.ivifoundation.org/).

5.7.1 STDP Measurement Results

The first step to get the STDP graphics consist of measuring the variation in
the synaptic strength ∆V w for different spike timings. In order to facilitate
the comparison between the measurements and the computational model
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Fig. 5.16: Measurement result of the calcium voltage Vca and synaptic strength V w
when tpost−tpre = 0. As expected a higher delay time is set in the calcium
signal for the pre- spike to keep the synapse invariant at this timing. In
order to process the data an initial measurement at < 10ms − 2ms >
before the spikes is taken and another one after < 80ms−86ms > of both
spikes as denoted by the red lines, the difference of these values provide
the change in the synaptic strength, in addition its standard deviation
was calculated.

values, the calcium signal was inverted and shifted (V ′ca = V cref−Vca) and the
synaptic weight results (Vw) were normalized with respect to the maximum
(Vwh) and minimum (Vwl) headroom voltages. Vw(p.u.) = Vw−Vwl

Vwh−Vwl
. An initial

measurement is taken before any spike occurs (pre- or post-) and another
one after the spike-pair when the synapse stabilizes, then those values are
subtracted to get ∆Vw.

Fig. 5.16 shows an example for tpost − tpre = 0ms (which is applicable also
for tpre − tpost > 0). From 10ms to 4ms before tpost an average value of V wini
is calculated, and between 80ms to 86ms after tpre another average value of
V wend is obtained. Similarly, when tpost − tpre > 0 an average value V wini
from 10ms to 4ms before tpre is calculated, and around 80ms to 86ms after
tpost an average value of V wend is estimated. In both cases, a value of 80ms
was chosen to ensure that the synapse modification reaches a stable V wend
value for a range of |tpost − tpre| < 100ms with 10ms of step. Here the mean
value µsingle and standard deviation σsingle are calculated for each timing;
this variations are caused mainly by the oscilloscope precision and the signal
noise.
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Fig. 5.17: Depression-Potentiation STDP characterization of the measured data. (a)
By using the protocol in Fig 5.16, 10 groups of STDP were generated
each of them consisting of tpost− tpre timings in the range of < −100ms−
100ms >, in addition the standard deviation of each point was calculated
and shown as vertical bars. (b) The mean value of all the 10 STDP groups
is shown together with its standard deviation.

As second step I recorded 10 samples data for each timing. Then the mean
value µgroup and standard deviation σgroup for each timing group are calcu-
lated. Variations in each trial are caused by imprecisions in the hardware
operation such as latency and pulse widths mismatch. Fig. 5.17a shows the
results for all the timings grouped in STDP waveforms. Finally, the total stan-
dard deviation for each timing is calculated as σtot =

√
σ2
group + σ2

single. σtot
reaches higher values when potentiation and depression levels are maximum
as observed in Fig. 5.17b. This is because the calcium waveforms generated
from pre- and post- spikes are overlapped, consequently a slight variation in
one parameter is amplified in the final V ca waveform.

5.7.2 Potentiation and Depression

The synaptic weight dynamics for potentiation and depression are shown in
Fig. 5.18 where synapse values are normalized considering the maximum
(Vwh) and minimum (Vwl) power rails. Better symmetry at each synapse
modification due to spike pairs is observed here compared to Fig. 4.15; this
occurs because the STDP is less dependent on V wini and because of a better
antisymmetry in the bistability waveform.

Synapse can not reach the maximum value 1 because depression effect turns
stronger or equal than potentiation closer to this limit producing therefore
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Fig. 5.18: Synapse evolution (normalized) in presence of spike trains with different
tpost−tpre timings. (a) Potentiation measurements for tpost−tpre = 40ms,
an increase in the synapse after each spike pair is observed given that
the calcium signal spend considerable time above θp that overcome the
γdH (c(t)− θd) factor, in addition a change in the bistability direction is
observed when the synapse crosses W∗ = 0.5. (b) Depression measure-
ment (normalized) for tpost−tpre = −15ms timing, mainly the depression
effect is caused by each second peak in the calcium signal which generates
greater effect in the depression γdH (c(t)− θd) than in the potentiation,
in the first peak both effects cancel each other, the bistability sign is
positive for values above 0.5 while otherwise is negative.

oscillations near the top value when further spike pairs occur (≈ 4.5ms in
Fig. 5.18a). On the other hand, synapse can reach the minimum value 0
when further depression occurs near the lower limit (≈ 4ms in Fig. 5.18b).

5.7.3 Bistability

In order to characterize the operation of the bistability block, this circuit has
to be measured in abscence of spike pairs so that only the current generated
for the transconductance amplifier in positive feedback with unit gain con-
figuration drives the synapse modification; the slew rate for the bistability is
shown in Fig. 5.19. Compared with the first version chip where bistability did
not work properly above the threshold value w∗ = 0.5, here low power design
techniques reduce leakage currents therefore improving operation above the
threshold w∗, although setting very small current in the bias of the OTA can
limit its operation range (Iref and 1.37Iref in the figure). Iref is the reference
current set in the programmable bias generator current; this referential cur-
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Fig. 5.19: Bistability slew rate measurement results of the circuit in Fig. 5.3 for
different Vbias values (data normalized in V w). As observed the change
in sign occurs at W∗ = 0.5. In the case of negative values of the y-axes the
circuit resembles a constant and moves toward zero when it approximates
to the boundaries 0 and W∗. In the case of positive ones the slew rate can
only reach a constant for high enough Vbias values; this happens because
at sub-off current levels, leakage current in the opposite direction (NMOS
transistors) are not neglected.

rent is later reduced by a post-process circuit which includes a current mirror
with different transistors’ dimensions ratio and source degeneration [70].

5.7.4 Linearizer

The synaptic weight represented by the stored voltage Vw in a capacitor is
used to generate a current flow whenever a pre- spike occurs and whose
value depends on this voltage. This current charges the neuron membrane
potential and eventually generates an action potential. A common circuit for
this operation is a DPI which is characterized by a non-linear relationship
(Iout)max vs. V w (exponential in the case of weak inversion and quadratic
for strong inversion), consequently while low V w voltages generate barely
leakage currents, high V w generates saturation currents. The purpose of the
linearizer circuit is to considerably weaken saturation current values for high
V w and strength low current values when V w is low generating a smooth
transfer function [110]. However, the main drawback of the circuit is the
complexity to find the precise bias values for controlling the channel length
modulation and its offset correction factor given that these characteristics are
very sensitive. Measurement results for the linearizer are shown in Fig 5.20;
compared to the input voltage range 〈0.3− 1.5〉 the swing range is limited to
〈0.1− 0.8〉.
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Fig. 5.20: Post- processing result after measuring V w and Vlin evolution through
time without spike pulse presence. As observed the linearizer attenuates
the V w value, an inflexion point near V w = 0.8 occurs because the
Mn1 transistor of Fig. 5.5 moves from triode to saturation region in
which the function tends to be linear. The linearizer range value was
chosen in order to generate significant current values capable to increase
the membrane potential overcoming leakage current without generate
saturation currents.

5.8 Discussion

In this chapter I presented modifications of the first chip version which came
up after identifying inaccurate operations during its measurement. This
revised version intended to solve the small operation range of the bistability
component by reducing the leakage current in the capacitor that represents
the synaptic strength. In addition, a simplified circuit was proposed for the
calcium core by removing the threshold parameter V thca and thus reducing
the number of bias voltages; modifications in the delay circuit were also
presented such as adding inverters in cascode configuration to generate more
accurate preD spikes after this stage, and therefore avoiding interdependence
of parameters Vdel and Vpw. Simulation and measurement results show bet-
ter symmetry in the STDP waveform, potentiation and depression graphics.
Furthermore, some extra blocks were added such as a bias generator and an
AER which make the circuit more independent of power supply or tempera-
ture variations and allow communication among neurons respectively. The
linearizer circuit was also presented which works as an interface between the
synaptic weight and the current injection in the neuron to avoid saturation
currents levels. Concerning the layout design, some modifications included
the use of CMIM capacitors which has higher density and thus require less
silicon area than native capacitors used in the first version.
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Still there is room for improvement with respect to power consumption and
mismatch that should be considered in the next chip version. A main source
of current consumption is the transistor Md2 in the calcium core block which
sinks current from the capacitor Cdel during large time ( < 20 − 50 > ms),
here the drain voltage can be pulled down through a feedback mechanism
immediately after it crosses the threshold voltage of the embedded inverter
in the buffer x4 hence reducing power consumption. Mismatch analysis will
be described in a further chapter.
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6Network Operation

In the previous chapters I described the computational models of the neuron
and the synapse which are the basic structures of the nervous system. The
neuron is a cell that generates electric potentials to transmit information to
other cells and the synapse is a structure that connect these neurons. The
connection of neurons form a network which is characterized by a topology
and connection strengths wij (from neuron j to neuron i) among pair of
neurons. Cognitive functions such as perception and learning motor skills are
achieved by specialized networks with many neurons.

In this work we chose the calcium-based model for the synapse, which was
also implemented in VLSI. This circuit is bistable in long time scale given that
a positive feedback with low slew rate drives slowly the synaptic strength to
only two possible values. In the case of short time scale, the synaptic strength
is modified by the potentiation and depression effects, and the effect of the
bistability is negligible; therefore, infinite states are possible. If a bistable
mechanism is not provided, a huge amount of states make convergence
without a feedback mechanism unlikely [99].

Neurons in the neocortex region are organized in populations with similar
properties where each neuron receives thousands of synaptic inputs. This
synaptic connectivity can be modelled as network configurations which are ca-
pable to provide solutions to constrained problems [120]. Exploiting the use
of the Calcium-based model in this context will lead us to capture some of the
canonical principles observed in cortical networks which is therefore useful
for understanding its organization, operation and computational potential.

Recurrent neural circuits in the neocortex interconnect neurons within a
particular region [121]. Synaptic weights here are set through LTP and LTD
mechanisms [122] that take place during learning phase which characterizes
for a dominated CA31 firing pattern [123]; these weights are later used in the
network to retrieve the pattern of activation of the stored memory. In such
networks the synaptic weights provide the long-term storage of available

1CA3 is one of the subfields that compound “hippocampus proper” which is related to
memory and hippocampal learning processes.
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memory patterns and the initial network activity of memory retrieval (input
data with noise) determines which memory is recalled by choosing the most
similar.

Much of the architecture of regions of the brain are made from a proliferation
of simple local circuits with well-defined functions; therefore, by under-
standing the bridge between simple circuits and the complex computational
properties of higher nervous systems we can progress in the target of devel-
oping new computational capabilities from the collective behavior of large
number of simple processing elements [124]. Our basic fabricated neural
network consisting of 8 DPI neurons [125,126] each of them connected to 9
calcium-based synapses provides a platform for this purpose as a necessary
step to plan larger and more complex circuits which are essential for cognitive
computation.

The most commonly used storage device in computers is Random-Access
Memory (RAM) which is characterized by taking the same time to retrieve
a word irrespective of its the physical location in the array. However, many
applications require searching items in some data structures, such as a data
tables in memory; thus, if the data is very large, time-consuming is huge
because of two factors: the time used in sending information back and forth
to calculate the effective address of the necessary data word (von Neumann
bottleneck), and second, the serial nature of the processing, where each piece
of information must be handled sequentially. On the other hand, Content-
Addressable Memory (CAM) is defined as a collection of storage elements,
called associative cells, which are accessed in parallel on the basis of data
content rather than by specific address or location, overcoming in this way
the problems of RAM [127].

Associative memory, which uses the hardware principles of CAM,retrieves
a full item when partial or approximate representation of a stored item is
presented. Here, weights are adjusted in the learning phase so that the
network has a set of discrete fixed points (energy minima) identical to the
patterns of activity that represent the stored memories. Considering few
patterns stored, these fixed points can totally or closely retrieve the memory
patterns by finding the fixed-point that most closely matches the initial state
of the network [39]. The pattern that represents the stored memory can be
recalled therefore by reactivating only a small fraction of the stored memory.
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This kind of associative network such as in recurrent neural networks has
been found in the hippocampal system [128].

The study of learning comprises how synapses are affected by activity during
training. The training procedures are classified as supervised, unsupervised
and reinforced learning, in this project we focus on the former. In supervised
learning, inputs and the corresponding desired outputs are set during training
so the network provides the correct answer; this kind of learning requires
the availability of labelled data (data that belongs to meaningful class that
is desirable to know). Two basic problems addressed in learning are the
relationship between the input and output patterns provided during training,
and the appropriate outputs for inputs that were not presented during training
but are similar [39].

Here I present measurement results for one synapse connected to one neuron
as well as two synapses connected to one neuron (simple perceptron). Despite
that more than two synapse connections are required for any meaningful
classification, the experiments here provide insights of the calcium-based
synapse operation in a network and the improvements to consider in the next
design version; more complex experiments were not possible in our systems
because of mismatch effects as it will be explained in the next chapter.

6.1 Single Synapse Learning

It is believed that the neural code that conveys information processing in
the brain is correlated with modulations in firing rate of the neurons in a
population. Although the neural spiking is not very reliable and has a lot of
variability among neuronal responses, if it is seen as unique block the average
population rate is clearly different for different patterns. Therefore, mental
functions such as perception and learning motor skills are not accomplished
by single neurons alone.

A recognition process can be abstracted as mapping functions which are func-
tions of vectors that restrict the output to a limited set of values. One simple
mapping function is a look-up table where all the possible sensory input
vectors have corresponding internal representations. Mapping functions are
important in many brain processes and have dominated models in cognitive
science in the form of multilayer perceptrons [123].
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As we described in the previous section 2.1, the membrane potential of a
neuron is modelled as a function of the sum of synaptic currents generated
by firings of presynaptic cells. This sum of synaptic currents depends on the
synaptic strength value for each synapse; therefore, it is important to set a
suitable range for the current values depending on the number of synapses
that are connected to a neuron, otherwise saturation in the membrane poten-
tial can occur. Here I explore two cases were this current flow is high and
therefore one input spikes can generate instantly an output spike, likewise
I present another case where parameters are set so that neuron firing is
obtained only by an accumulation of input spikes.

In order to demonstrate the correct learning operation of a synapse-neuron
block following a supervised learning approach, a simple protocol consisting
of measuring one output neuron activity before and after learning was as-
signed. This simple experiment allows us to calibrate the system by finding
parameter constraints of the system that provide slow learning rate and
potentiation/depression jumps high enough to overcome bistability decay, as
initial step I set the same values obtained in the simulations stage previous to
the chip fabrication; however, because of fabrication mismatch and parasitic
devices this values are slight different from the estimated; therefore, this
variation is corrected in the hardware by trial an error approach. This config-
uration is shown in Fig. 6.1 where the output spikes generated by a teacher
are feedback in the synapse as post- spike which together with the input (pre-
spike) generates synaptic modification. Here two cases are analysed one
when the synaptic strength generates saturation currents and therefore one
single pre- spike is enough to rise an action potential, another case happens
when the linearizer weakens the synaptic strength effect thus action potential
is achieved only after an accumulation of consecutive pre- spikes.

Both experiments are divided into two stages which are called learning and
retrieval. The former is where training properly occurs through a teacher
signal that fires spikes with different rates depending on the desired stored
data; the output spikes generated in the neuron block are forwarded to the
input terminal in the synapse which sets the post- spike train. The synaptic
weight is driven to high or low level depending on the spike timing and the
firing rate. The learning mode is configured by setting in high level the input
pin ENlearn. In retrieval phase the ENlearn signal is set to low level which
therefore disables the teacher signal and feedback; in this case the output
data is a function of the input spikes and the synaptic weight W that was
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obtained at the end of the learning stage. This stage is executed twice, once
at the beginning for a low level W an another after W changes its value
in the learning stage. The learning rule chosen for this experiment is the
same presented in Fig. 5.14 which resembles a STDP for low firing rate, and
increases the potentiation probability when the firing rate increases.
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Fig. 6.1: Block diagram of the single synapse learning experiment. At learning
stage the teacher signal generates instant output spikes which together
with the input ones modify the synaptic strength W . At the retrieval
stage the feedback loop is deactivated and the pre-synaptic spike train
generates current pulses proportional to the stored value W which charge
the membrane capacitance.

The first experiment starts by setting W to low level and disabling learning,
so input spikes do not increase the membrane potential nor generate output
spikes given that the current that flows through the capacitor that represents
the membrane potential is zero. This experiment is shown in (Fig. 6.2a), as
observed calcium waveforms are generated following only the input spikes
but the synapse remains in zero. As second step learning stage is enabled;
therefore, the teacher signal forces the output neuron to fire at its same
frequency (current values that charge the membrane potential were set to
generate instant post-synaptic spikes), for this experiment the teacher spikes
tpost were set so that (tpost−tpre > 0) hence generating potentiation (Fig. 6.2b).
Continuous spike pairs raise the synapse level to its high bistability value
remaining there until the system is reset or shutdown, in the figure this
occurs after 4 seconds. After the new synapse value converges to high level,
a following recalling stage consisting on same previous input spikes than the
first step in absence of teaching signal is again presented. Given that the new
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synaptic strength value W is high, input spikes this time can generate current
flow in the membrane and therefore action potentials (Fig. 6.2c).

In the second experiment, a similar protocol to the first one is carried out
consisting on retrieval-learning-retrieval phases. Before, the synaptic strength
is initialized to the low level and therefore output spikes are not generated
when pre-synaptic spikes appear (Fig. 6.3a). In the learning stage the synap-
tic strength is driven to high level provided that (tteach − tpre) > 0 as shown
in Fig.6.3b. Finally, in the new retrieval phase, an output spike is generated
after a cumulative number of pre- spikes (Fig.6.3c) given that the synaptic
strength for the setting parameters generates smaller currents in the mem-
brane potential compared to the first experiment. As explained in a previous
chapter, this currents values are proportional to the linearizer limits; the
linearizer is a circuit block configured in cascade after the synapse circuit in
order to to map its weight voltage values to a smaller range; this new range
is connected to DPI to generate current pulses.
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Fig. 6.2: Measurement results for the experiment in Fig. 6.1 configured in such
way that synaptic strength generates saturation currents for the membrane
potential. (a) In an initial recall stage before learning the synaptic strength
has zero value therefore the input spikes do not generate output spikes
(b) In the learning stage the synaptic strength is driven to high level
considering a positive timing between the teacher (post-synaptic spike)
and input spikes (pre-synaptic spike). (c) This time the recalling stage has
the synaptic strength at high level therefore pre- spikes generate output
spikes.
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Fig. 6.3: Measurement results for the experiment in Fig. 6.1 configured in such way
that synaptic strength generates higher currents that make leakage ones
negligible but do not reach saturation levels for the membrane potential.
(a) In an initial recall stage the synaptic strength is initialized at zero level,
thus input spikes do not generate output ones. (b) In the learning stage
where feedback is activated teacher tpost and input tpre signals generate
potentiation in the synaptic strength. (c) This time in a recalling stage,
given that the synaptic strength turned to high level, input spikes generate
current pulses that charge the membrane capacitor, the post-synaptic
potential in this case is generated by an accumulation of those currents
(more than one input spike) instead of one as in the previous case in
Fig. 6.2.
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Table 6.1: Definition of input spikes in each synapse for pattern1 and pattern2.

• pattern1 pattern2
input1 2.86Hz 4Hz
input2 4Hz 2.86Hz

6.2 Simple Perceptron

While feedforward networks are not enough to explain cognitive functions
alone, they are an important ingredient of brain-style information processing
and have contributed greatly to the development of statistical learning the-
ory [123]. The perceptron [129] is a simple neural network model in which a
group of input neurons are connected to one output neuron; however, correct
classification is restricted to patterns that are linearly separable. Training is
provided by a repetitive presentation of patterns which drive the synaptic
weights of the network to values that the set an optimal classification of
input data. The learning rule here consists of minimizing the mean difference
between the output of the feedforward network and the desired state pro-
vided by a teacher (error function); this is achieved by changing the weight
values along the negative gradient of the error function [123]. Despite the
advantageous learning rule for training the network, there is little evidence
from biology that a synapse can differenciate between the actual and desired
output activity; therefore, the perceptron is categorized as an artificial neural
network [48]. The limit number of weight values in a single neuron re-
stricts the complexity of functions that we can represent using a single layer;
therefore, an increase in the number of nodes (multi-layer perceptron), and
thereby the number of connections with corresponding independent weight
values is commonly used [129].

The perceptron implemented in our chip consists of two synapses W1 and
W2, and a teacher signal all connected to a single neuron N ; the output of
the neuron is fed back to both synapses as post signal to generate synaptic
modification as shown in Fig. 6.4. Input spikes input1 and input2, and teacher
spikes are generated from an external PC. The neural network is trained to
recognize two different patterns pattern1 and pattern2 which differ in their
spike rate. Given that in this experiment I was working with frequency rate
instead of timing, parameter values in the chip were configured to produce
depression for frequencies lower that 3.5Hz and potentiation for higher
frequencies. Table 6.1 summarizes the input frequency for each pattern.
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As previous experiments in section 6.1, here a protocol consisting of retrieval-
learning-retrieval phases is carried out. In an initial stage synaptic strengths
W1 and W2 are initialized to low level and the teacher and feedback signals
are disabled (ENlearn = 0); therefore, input spikes in each synapse do not
generate action potential in the neuron membrane nor output spikes because
of null current flow in the membrane. Measurement results for this stage
are shown in Fig. 6.5, here pattern1 (Fig. 6.5a) and pattern2 (Fig. 6.5b)
are presented which differ in the firing rate of the input spikes in1, in2. As
expected the neuron output (out) is zero during all the time and the calcium
waveforms are generated for each synapse only when pre-synaptic spikes
appear.

During the learning stage the teacher signal force the neuron to fire at its
same frequency; these generated post- spikes are fed back into the calcium
synapses W1 and W2 which together with the pre- spikes pre1 and pre2 modify
their synaptic strengths. The network is trained with two consecutive patterns,
first pattern1 together with the teacher signal firing at teach1 = 2.86Hz are
presented for a certain amount of spikes (15) as shown in Figs. 6.6a and 6.6c.
After a short resting time pattern2 together with teacher signal firing at
teach2 = 4Hz are presented with the same amount of spikes (15) as shown
in Figs. 6.6b and 6.6d. After the presentation of both patterns the achieved
stable synaptic weights remain recorded unless the chip is reset or turned off.
For the selected parameters and data frequency W1 moves to high level and
W2 remains in low level at the end of the learning phase.

In the retrieval phase the teacher and feedback signals are disabled and
pattern1 and pattern2 are presented independently. Given that W1 is in high
level, input spikes in pre1 generate action potentials and therefore output
spikes as shown in Fig. 6.7a; on the other hand, W2 is in low level and input
spikes pre2 do not generate output spikes as shown in Fig. 6.7b. Therefore,
for pattern1 the perceptron will generate low frequency output spikes and
for pattern2 high frequency.
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Fig. 6.4: Block diagram of the perceptron experiment using two calcium-based
synapses. At the learning stage the feedbacks that connect the output
terminal with the post- spikes in each synapse are activated, additionally
the teacher signal generates instant spikes in the output terminal, therefore
the synaptic strength is modified according to STDP learning rules. In the
recalling stage the feedback is deactivated and the input spikes in 1 and 2
generate current pulses in the neuron proportional to W1 and W2 values
which increase the membrane potential and eventually generate action
potentials.
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Fig. 6.5: Measurement results of the perceptron in Fig. 6.4 before learning stage in

which the synaptic strengths W1 and W2 are initialized in zero, two input
patterns are presented as stated in Table 6.1. (a) First input pattern con-
sisting of spikes with frequencies f1 = 2.86Hz and f2 = 4Hz is presented,
however the output is null. (b) Second input pattern consisting of spikes
with frequencies f1 = 4Hz and f2 = 2.86Hz is presented, similarly here
the output is null.
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Fig. 6.6: Measurement results of the perceptron in Fig. 6.4 for the learning stage,

top and bottom figures show the evolution of W1 and W2 respectively.
Similarly in the left figures pattern 1 is presented in In1 and In2 inputs,
while in the right ones, pattern 2 is presented; a resting time between
the left and right patters of 2s is provided. (a) The pre- (in1) and post-
(teach signal) spike frequencies fpre = fpost = 2.86Hz are low therefore
depression is generated. (b) The pre1− (in1) and post- (teach signal) spike
frequencies fpre1 = fpost = 4Hz are high enough to generate potentiation.
(c) The pre- (in2) and post- (teach signal) spike frequencies fpre2 = 4Hz,
fpost = 2.86Hz are not high enough to generate potentiation. (d) The
pre- (in2) and post- (teach signal) spike frequencies fpre2 = 2.86Hz,
fpost = 4Hz are not high enough to generate potentiation.
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Fig. 6.7: Measurement results of the perceptron in Fig. 6.4 for the recalling stage
after learning. As it is observed the synaptic weights are W1 ≈ 1 and W ≈
0, therefore only input spikes in In1 generate output spikes (linearizer is
not used in this experiment). (a) Output spikes follow the same frequency
of In1 with a slight delay. (b) Similarly, output spikes follow the same
frequency of In1.

6.3 Discussion

In this chapter I presented simple network experiments such as a single
synapse connected to a single neuron and two synapses connected to a
single neuron (simple perceptron). Although these experiments can not
reproduce complex mapping functions, they are important to analyse basic
network structures that will be replicated in the next fabricated version.
These experiments also provided insight to find suitable parameter values for
a correct network operation that resemble look-up tables. I discussed two
protocols, one when the input spikes produce instant firing rate at the output
and another when cumulative input spikes are required for a single output
spike.

The setup for these experiments consisted of a hardware infrastructure (chip
and PCB), a software environment which was implemented in Python lan-
guage, a communication protocol which sends the PC data (bias values, spike
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timings and synapse and neuron addresses) to the USB port of the PCB,
and measurement instruments (oscilloscope and multimeter). The recorded
output neurons response demonstrate a correct integration of the VLSI blocks
consisting of the neural network, bias generator and the communication
circuit. The measurement results also confirmed that the calcium learning
circuit can be setup for implementing STDP and Hebbian learning as firing
rate dependency.

A main drawback observed when measuring was that input signals in same
unit blocks of the circuit matrix do not reproduce same results despite I
used similar parameter values. The main source of this variation was the
calcium core circuit in which some transistors used minimum dimensions
hence producing considerable mismatch. For relatively distanced synapse
blocks, variability in STDP characterization and bistability slew rate were so
high that good results in the experiments could not be achieved. Considering
even neighbour synapses, variability shifts the same probability of having
potentiation and depression for same spikes frequencies. For example in the
Figs. 6.6d and 6.6c where only one pre- or post- spike fires at high frequency,
the synapse strength should be driven to values slightly greater than 0 but
smaller than 0.5 so that it is moved at the end only by the bistability to 0
when spikes are over; this does not occur because mismatch goes in favour
of depression reducing the probability of potentiation. The next chapter
propose circuit improvements which considerably reduce mismatch effects
and estimates their values for the next tape out.

Finally, an improved version hardware should implement more complex
neural networks experiments in which each memory is represented by a
specific pattern of neural activity (mean firing rates) that is imposed to the
network at the time the pattern is memorized.
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7Mismatch Characterization

Measurements of neurons from the visual cortex demonstrate the ISI vari-
ability in neural responses [123,130] especially during spontaneous activity.
One reason of this is a considerable fluctuation in the input current to cortical
neurons. In the case when external stimulus changes rapidly, neurons in the
visual system react more certainly than for constant or slowly moving stim-
uli given that the majority of spikes follow the changing stimulus instantly
although some neurons do not respond with a spike or occur with delay
between the stimulus changes [45]. Variability is also found in neuronal
parameters such as threshold, membrane time constant, or length of the
refractory period which is denominated as slow noise. In order to deal with
noise effects, an additional term in the differential equation that describe the
synaptic dynamics is added. This single term estimates the effect of all the
noisy sources.

On the other hand, variability in electronic circuits consisting of CMOS
transistors occurs because different instances of the same block can not
produce identical behaviour even when they are biased with same parameter
values because of slight variations in their physical dimensions or carriers
concentration during fabrication. Despite of the inherent nature of mismatch
in the transistors, it is important to reduce their effect otherwise random
results not correlated with the external stimulus can occur.

In the previous chapter 3 output waveforms were calculated assuming circuits
with perfect symmetry; however, manufacturing variations cause electrical
parameter mismatch in CMOS that have identical dimensions, layout and bias
conditions. Main CMOS parameters affected by mismatch are the threshold
voltage, transconductance and body-effect coefficient which lead to mismatch
in gate-source voltage and drain current in different configurations such as
current mirrors and differential pairs. In this chapter I analyse local mismatch
which results from variations inside a single chip neglecting distance or
orientation factors (systematic mismatch).

In the second manufactured chip, experiments involving more than one
neuron and synapse were not successful because of considerable mismatch
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among blocks, specially those in which transistors’ dimensions were smaller
such as in the calcium core. Considerable reduction of variability is achieved
by increasing the dimensions of the most sensitive transistors in each block.
The mismatch contribution is obtained through Montecarlo analysis consid-
ering only statistical variation (without process variation). For the result in
this chapter I used Virtuosos ADXL with sampling method Latin Hypercube,
this is a quasi-random algorithm that requires less samples than the random
method, a better approach is the Low-discrepancy sequence sampling method
that stop automatically after converging, unfortunately the last method is not
available in our current Virtuoso ADXL version.

In the case of a single CMOS current mismatch, variation increases drastically
in weak inversion because of the effect of ∆VT0; additionally in absence of
body-effect when VS = 0, variation in the slope factor ∆n can be neglected
(n = 1/κ), however in the case when VS > 0 the current mismatch is increased
by the contribution of ∆n, especially in weak inversion. On the other hand, in
the case of gate voltage offset, the factors ∆β and ∆n increase considerable
in strong inversion, thus if VS > 0 the offset is further increased by an amount
VS∆n [131].

Considering circuits with more than one transistors, the most common blocks
that affect mismatch are the current mirror and the differential pairs given
that these blocks convey information in current and voltage respectively.
The main target of the current mirror is a precise copy of the current in
each branch; however, mismatch between the input and output current
occurs as a consequence of the channel length modulation and the output
impedance. Given that the drain voltages in both transistors are determine by
different bias conditions the drain currents are not the same, a considerable
improvement in this case is achieved by using a cascode configuration. In
addition, a difference in temperature between two or more transistors inside
a die which can be stationary (due to devices at different distance from a
heat source) or transient in time (due to a change of ambient temperature
that is too fast with respect to the chip thermal time constant) together with
variation of process parameters and stress result in gate voltage and current
statistical mismatch. A design hint proposed in [132] states “Current mirror
mismatch is proportional to gm/IDsat ratio therefore the most favourable
operation region is strong inversion, if the saturation voltage has to be
minimized, the design compromise can be either the limit of strong inversion
or moderate inversion operation with an increased transistor area”.
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In the case of the differential pair, the gate voltage mismatch is the most
critical variable because this is the input stage that converts the small input
signal into a current. A larger area reduces the voltage mismatch. In addition,
given that the voltage mismatch is inversely proportional to the gm/IDsat ratio,
it decreases if the transistor operates in moderate or weak inversion [132].

7.1 The Calcium Circuit

The calcium block is the main source of mismatch due to its small transistors’
dimensions. These sizes were selected focusing on minimizing silicon area
and increasing channel length modulation effect to get a stepper decay in
the calcium waveform Vca. In the delay circuit shown in Fig. 5.1a the critical
devices are the ones which define the delay threshold (Md2 and Cdel) and
the pulse width SpkpreD (Md3), thus using at least a dimension ratio of
(W/L) = (2µ/1µ), (L ≈ 4× Lmin) improves considerable the mismatch (the
remaining transistors can use at least L ≈ 3×Łmin). In the digital circuits like
the buffers and nor-gates the mismatch contribution is negligible therefore a
size increase is not required. Mismatch simulation results for the delay circuit
are shown in Fig. 7.1.

Similarly in the calcium core circuit if a ratio of W/L = 1 for at least L ≈
4× Łmin is used matching improves considerable; however, a greater delay
value needs to be set to compensate a slow slope decay in Vca.

In addition, high threshold voltages transistors were chosen and low leakage
voltages (vdd∗ and gnd∗) replaced by global power rails to reduce mismatch
contribution in the slope factor ∆n. Mismatch contribution in the calcium
circuit which are associated with delay (D), Icpre, Icpost and τca are shown in
Figs. 7.2, 7.3, 7.4.

Simulation results for the new transistors’ dimensions predict that local
mismatch for most of the parameters are lower than 10%, only Icpost (23.9%)
and τca (14.1%) are above this value, contrary to the measurement results of
the second chip where all the mismatch parameter were greater than 100%.
Therefore, similar learning waveforms are highly probably to be obtained
in neighbouring neurons for same bias values. The total variability of the
synapse model is a complex function of all these mismatch parameters, which
makes also difficult to implement a simulation that cover all the possible cases.
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Pulse width(us)
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Fig. 7.1: Montecarlo simulation results of the output spike mismatch in the delay

circuit shown in Fig. 5.1a for 200 samples. (a) The delay parameter of
Eq. 2.14 reaches a coefficient of variation of σ/µ = 4.32ms/46.4ms ≈
0.093. (b) The pulse width of the preD spike reaches a coefficient of
variation of 3.9µs/78.6µs ≈ 0.05.

Vcapre(mV)

(a)

Icapre (pA)

(b)

Fig. 7.2: Montecarlo simulation results of the cpre parameter in Eq.2.14 simulated in
the calcium core circuit shown in Fig. 5.1b for 200 samples. (a) The output
voltages reaches a coefficient of variation of σ/µ = 3.91mV/90.5mV ≈
0.043. (b) The previous voltage is converted to current levels when it is
injected to the gate of a transistor, in this case the output current reaches a
coefficient of variation of 0.32pA/4.73pA ≈ 0.067.

Alternatively, I simulated few specific samples of these parameters together
with the ones of the synapse block within the variability range obtaining
similar learning waveforms in the case of DP-STDP.
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Fig. 7.3: Montecarlo simulation results of the cpost parameter in Eq.2.14 simulated in

the calcium core circuit shown in Fig. 5.1b for 200 samples. (a) The output
voltages reaches a coefficient of variation of σ/µ = 26mV/670mV ≈ 0.04.
(b) The previous voltage is converted to current levels when it is injected to
the gate of a transistor, in this case the output current reaches a coefficient
of variation of 167nA/697.6nA ≈ 0.24.

(ms)Ica

Fig. 7.4: Montecarlo simulation results of the τCa parameter in Eq.2.14 simulated
in the calcium core circuit shown in Fig. 5.1b for 200 samples. Values
here are given as a function of the time that the current takes to return to
its zero level after an input spike. The τIca value reaches a coefficient of
variation of σ/µ = 2.17ms/15.4ms ≈ 0.14.

7.2 The Synapse Circuit

Mismatch in the synapse core circuit shown in Fig. 5.2 is mainly due to
variations in potentiation and depression currents. Isynpot is defined by
the current bias generated in Mn11 and the attenuation factor in transistors
Mp13−16, therefore increasing the size of Mn11 reduces mismatch; given the
use of cascode configuration in current mirrors, transistors’ area here can
be smaller. Nonetheless an important requirement is low leakage design
therefore a small ratio (W/L) should be consider as well as high threshold
voltage devices. A trade-off condition is found if low leakage sources are
replaced by global ones because they could increase the bistability leakage
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Fig. 7.5: Montecarlo simulation results of the γp and γd parameters in the Eq. 2.13

simulated in the synapse core circuit shown in Fig. 5.2 for 200 sam-
ples. (a) The potentiation current Iγp reaches a coefficient of variation of
1.12pA/6.35pA ≈ 0.18. (b) In the case of depression current Iγd, it reaches
a coefficient of variation of 0.40pA/2.23pA ≈ 0.18.

and set the Vw swing range to the power supply. Similar considerations
are given for Isyndep where transistors Mn21, Mn23−26 and Mn26−29 are
important. The remaining transistors can use at least L ≈ 3× Lmin.

When measuring mismatch contribution of a single parameter the other ones
should be shut down, for instance in the case of potentiation, depression
threshold voltage V thdep is set to zero (θd = 1). Similarly in depression,
potentiation voltage is set to zero. Synapse parameters variations for Ipot
and Idep are shown in Figs. 7.5a and 7.5b where values are calculated for
V w = 0.9V (middle point of power rails).

Simulation results for the new transistors’ dimensions of the synapse circuit
predict that local mismatch for both parameters are close to 18%. The effect
of these parameters in the total circuit was tested, as stated in the previous
section, together with the ones of the calcium block for few sample data
obtaining similar DP-STDP waveforms.

7.3 The Bistability Circuit

Mismatch in the transconductance amplifier shown in Fig. 5.3 affects the
output bistable current. The principal transistor that defines this current is
Mp1 therefore larger size there is required (considering that all the other
transistor have at least L > 3 × Lmin); in addition, if its standard model is
replaced by a high threshold voltage one, low leakage supply V dd∗ can also
be replaced by the global one and thus neglecting mismatch contribution
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Fig. 7.6: Montecarlo simulation results of the τIsyn and W∗ bistability parameters in
the Eq. 2.13 simulated in the full synapse circuit activating only transcon-
ductance amplifier of Fig. 5.3 in positive feedback for 200 samples. (a) Mis-
match for τIsyn is calculated as a function of the time that synaptic strength
V w takes to return to its zero level after been initialized in the mid-rail volt-
age, the coefficient of variation gets the value of 0.11ms/1.32ms ≈ 0.08.
(b) Mismatch for V w∗ is calculated as the variations in the negative termi-
nal of the OTA when its value is set through a transmission gate to V w∗, it
reaches a coefficient of variation of 3.9mV/900.18mV ≈ 0.004.

in the slope factor ∆n. A main problem in the block is the high headroom
voltage of the output stage, mainly in Mp22 −Mp24 transistors, that’s why
they should use low ration (W/L). In our case simulation results estimate that
a ratio smaller than 1/3 reduces considerable headroom voltage. Parameter
variations such as τsyn and V∗ are shown in Fig. 7.6.

Simulation results for the new transistors’ dimensions predict that local mis-
match is dominated by the τsyn parameter producing around 8% of deviation.
Mismatch in this parameter is not related with the learning waveform (as in
the two previous sections) but with the long-time convergence in absence of
input spikes. The effect of this parameter therefore was tested independently
of the other ones giving in all the cases convergence times much greater than
200ms (ISI timing for our experiments) which is expected to not interfere
with the STDP.

7.4 Discussion

When CMOS transistors operate in weak inversion, mismatch has greater ef-
fect compared to strong inversion operation [133]. As analyzed in chapter 3,
mismatch can be reduced by increasing the transistor area or by increasing
gate-voltage overdrive voltage (in the case of current bias/mirror configura-
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tion). It was also demonstrated that by using L ≥ 4Lmin in the most sensitive
transistors we can reduce considerably mismatch.

In addition, layout techniques such as common-centroid and dummies should
also be kept in mind to reduce this effect. It is also important to have a good
floorplanning to avoid excessive routing that can generate parasitic capac-
itances; similarly, it should be avoided to cross lower metal levels through
transistors’ gate because signals can be corrupted by crosstalk effect.

Variability of spike timing is a common phenomenon in cortical neurons
although the origin of this irregularity in their activity is barely understood.
In spiking neuron models such as the one presented in section 2.1, noise is
often added explicitly to mimic the unpredictability of neuronal recordings,
common ways to introduce this noise is by adding stochastic variables in the
threshold parameter, which can let the neuron fire even though the threshold
has not been reached, and in the differential equation that represent the
membrane potential dynamics (diffusive noise) [45]. Similarly, noise models
for synapse can be constructed to represent an average variability of the
system and thus predict the accuracy of network results.

In this framework, the simulation results presented here are useful for the
next circuit fabrication which will focus on reducing the neurons behaviour
mismatch and therefore obtaining similar features in the STDP learning
rules, output firing rate in neurons with same bias values and input data.
In addition, the statistical values given here provide insightful information
for computational models to create noise representations. The normalized
variability of the parameters obtained in this chapter can be included in the
differential equations that represent the synapse (Eq. 2.13) and the calcium
dynamics (Eq. 2.14) to estimate a single noise source of the computational
model that equals all the other variabilities (“Noise(t)” term in Eq. 2.12).
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8Conclusions

Through the history of neuroscience it was demonstrated that abstraction
from biological observation is a powerful tool to obtain strong technological
advance. For example, in the early 1940 simple logic gates, which were
abstract representations of neurons, connected in sequential chains could
compute effectively any required function [43]. In this sense neuromorphic
engineering aims at the development of artificial neural systems in which their
architecture and principles are based on biological systems; it provides also a
tool to understand the computational strategies used by the brain to overcome
constraints such as limited space, wiring and energy. In this framework, the
development of this project provides relevant contribution to the memory
and learning research fields by exploring biologically inspired technologies
for learning systems. While modern learning systems can achieve human-
level performance in certain well-defined tasks (e.g. image recognition,
attention, scene description, image tracking), there exists no system capable
of performing all of these tasks simultaneously, as humans do.

Furthermore, there are no real-time learning systems with power consump-
tion and size comparable to those in nature. The creation of these systems is
hindered by the use of conventional (i.e. von Neumann) computing archi-
tectures, which are fundamentally different from the biological computation
substrate. The von Neumann architecture imposes a physical separation
between the computational elements (Central Processing Unit (CPU)) and
the information storage elements (memory), which leads to the so called
von Neumann bottleneck, which denotes the limited traffic capabilities of
the communication channel between the CPU and the memory. Overcoming
the limitations of traditional digital architectures by imitating computational
primitives observed in the brain, this project offers the opportunity to test
the performance of current theories of learning in a realistic environment,
leading to advancements in combining models of synaptic plasticity with
network-wide activity.

In this thesis I presented my overall progress concerning design, fabrica-
tion, and test of two neuromorphic chips which implement a calcium-based
synaptic plasticity model together with a neural network. I simplified an
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existing model [35] in order to enable its implementation in analog VLSI
and presented both simulations and measurements of this circuit’s behavior
when stimulated with pre- and post-synaptic spikes with different relative
timings and presentation frequencies. The measurements showed that the
circuit produces the classic STDP behaviour and that an increased stimulus
frequency results in increased potentiation, as expected from the mathe-
matical model and observed in biological systems. I showed that learning
STDP waveforms can be generated by setting appropriate parameters in the
equations describing the calcium and synapse dynamics. I also showed how
saturation effects can alter the learning waveforms. In addition, I presented
a thorough comparison between the proposed circuital implementation and
the simplified theoretical model. Finally I implemented and tested a small
array of these synapses connected to aVLSI neurons to characterize their
performance in a network and observed that mismatch constraint is the most
important problem to deal with in the next chip version. Progress in this field
has been made by improving the circuit design with special consideration in
increasing transistors’ area and quantifying the standard deviation of bias
parameters that resemble its computational counterpart; this data will be also
useful for computational models of neural networks to predict reliability in
population of neurons and thus implement suitable information redundancy
blocks. The results of this characterization will guide the next chip design
and the exploitation of design techniques for minimizing these variations.
The path required to test the synapse behaviour and the simple network
experiments include also the development of communication and control
hardware infrastructure to interact with the chip and a software interface to
set parameter values and input data. In this project we successfully integrated
all these components needed for the system setup, which were developed by
different research groups throughout years.

A major challenge in my design was the reduction of leakage currents, which
are otherwise comparable with the operational currents. More advanced tech-
nologies would require stronger reduction of leakage currents and therefore
additional circuits. One simple modification is to exploit the “stack effect” by
replacing each critical transistor with two transistors in series, thus reducing
their current. Additionally, high-threshold devices could be used to reduce
leakage current. Finally, the required swing range for Vw has to be guaranteed
by an adequate rail voltage.
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Most of the chip area in my circuits belong to the capacitors (independent if
they are native or MIM capacitors). In order to reduce the silicon area one
alternative could be to employ techniques to reduce their bias currents by
using high-threshold transistors.

Although my fabricated synapse and neural network circuits are simple rep-
resentations of their biological counterpart, they reproduce basic principles
found in cortical networks which are useful to interpret more complex oper-
ations. An important advantage of my system is that it can be scaled up by
connecting repeatedly the same core blocks without degrading the overall
system performance, likewise scaling down in technology is also feasible
given that in my system transistors operate in weak inversion therefore a
lower voltage supply wont affect its behaviour.

8.1 Future Work

This work ended with the measurement results of simple neural network
experiments and mismatch considerations for further VLSI versions. During
the design of the next chip version special focus needs to be put on reducing
mismatch so that more complex experiments can be performed. In addition,
it would be also important to work in parallel to improve the hardware and
software infrastructure, i.e. monitor signals in our systems were restricted to
three testing signals which delayed our debug stage schedule; furthermore,
some of them even generated undesired leakage currents when connected to
Vw reducing bistability performance. I believe that a customized hardware
infrastructure instead of using a general one such as in [108] could simplify
the circuit analysis and let one deal faster with debug stage.

Given that in the first two chips I intended to come up with a reliable model
capable to reproduce the basic characteristics of the proposed calcium plastic-
ity synapse, I didn’t focus on reducing power consumption. However, this is
also an expected task in the next version; I have proposed some ideas i.e. a
feedback mechanism in the delay circuit which was explained in the discus
sections. Nonetheless deeper analysis in all the blocks is required.

A long term goal is the implementation of large networks with learning
capabilities suitable for autonomous systems. Such real-time compact devices
capable of supervised and unsupervised online learning [30,97] will allow
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for robotic systems which can autonomously learn the statistics of their input
stimuli (e.g. environmental signals, user input), opening up the possibility
for unprecedented adaptive capabilities of technological systems.

Together with the hardware improvement, it is also important to develop
computational methodologies that can exploit the advantages of these circuits
to achieve complex functionalities. For instance, some inspiration can be
taken from recurring canonical microcircuits found in the cortical sheet [134]
characterized by excitatory and inhibitory feedback loops shortly called as
Soft Winner-Take-All (sWTA). sWTA can be designed in aVLSI to implement
basic units of a general purpose neuromorphic processor executed through
Finite State Machines (FSMs) [135]. FSMs is a common procedure used in
digital design which consists of executing certain actions when the system is
in a specific state; a control unit is in charge to organize the order of states
to follow by the processor. By embedding state machines in neuromorphic
devices we can provide a bridge between digital processors design and neu-
romorphic engineering. In the long run neuromorphic and conventional
computing devices should be merged in hybrid systems able to dynamically
devote the most appropriate resources to the current tasks.
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