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Summary

� The phytohormones cytokinin and auxin orchestrate the root meristem development in

angiosperms by determining embryonic bipolarity. Ferns, having the most basal euphyllo-

phyte root, form neither bipolar embryos nor permanent embryonic primary roots but rather

an adventitious root system. This raises the questions of how auxin and cytokinin govern fern

root system architecture and whether this can tell us something about the origin of that root.
� Using Azolla filiculoides, we characterized the influence of IAA and zeatin on adventitious

fern root meristems and vasculature by Nomarski microscopy. Simultaneously, RNAseq analy-

ses, yielding 36 091 contigs, were used to uncover how the phytohormones affect root tip

gene expression.
� We show that auxin restricts Azolla root meristem development, while cytokinin promotes

it; it is the opposite effect of what is observed in Arabidopsis. Global gene expression profiling

uncovered 145 genes significantly regulated by cytokinin or auxin, including cell wall modula-

tors, cell division regulators and lateral root formation coordinators.
� Our data illuminate both evolution and development of fern roots. Promotion of meristem

size through cytokinin supports the idea that root meristems of euphyllophytes evolved from

shoot meristems. The foundation of these roots was laid in a postembryonically branching

shoot system.

Introduction

Roots are a key innovation of vascular plants. They probably
arose twice, once in the fern lineage and once in lycopods (Pires
& Dolan, 2012). Hence, the emergence of the complex sporo-
phyte body was accompanied by the emergence of roots (Graham
et al., 2000; Doyle, 2013). Phylogenetically early-branching
bryophytes also form root-like rhizoids. Regardles of whether
they are uni- or multicellular (Jones & Dolan, 2012), rhizoids are
elementary structures that grow through tip growth in the same
manner as root hairs (Menand et al., 2007). Gametophytes of
ferns form rhizoids, too (Banks, 1999), but in contrast to the
bryophytes, their life cycle is dominated by the sporophytic stage
(as in angiosperms), in which they build proper roots (Gunning
et al., 1978; Banks, 1999). During the evolutionary transition to
a sporophyte-dominated plant life cycle, regulators of gameto-
phyte development were recruited for sporophyte development
(Menand et al., 2007; Frank & Scanlon, 2015). Gametophyte

and sporophyte development in basal land plants share control
mechanisms (Landberg et al., 2013; Bennett et al., 2014; Viaene
et al., 2014), but we know little about complex roots of basal vas-
cular plants beyond that.

Two major apical meristems determine complex plant growth:
the shoot apical meristem (SAM) and the root apical meristem
(RAM). Exploring the root’s origin is therefore exploring the
origin of the RAM. Apical development through a SAM-like
structure precedes the emergence of the RAM (Graham et al.,
2000; Prigge & Bezanilla, 2010) and regulation of the SAM and
RAM show striking similarity (Stahl & Simon, 2010). It has
therefore been speculated that the initial RAM evolved from the
SAM (Stahl & Simon, 2010), a transition that must have hap-
pened in the early vascular plants. To understand this transition,
we explored the molecular regulation of the fern RAM in com-
parison to that of angiosperms.

The Arabidopsis RAM has become the model system to study
angiosperm meristem function (Petricka et al., 2012). While
Arabidopsis forms a taproot system (allorhizy) that is dominated
by the embryonic primary root, other plants such as grasses*These authors contributed equally to this work.

� 2015 The Authors
New Phytologist � 2015 New Phytologist Trust

New Phytologist (2016) 209: 705–720 705
www.newphytologist.com

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited.

Research

http://creativecommons.org/licenses/by/4.0/


develop a fibrous root system (secondary homorhizy). Regardless
of the mature root system architecture, angiosperms establish a
primary root (and RAM) during early embryogenesis, serving
angiosperm seedlings of both allorhizic and homorhizic species
(Bellini et al., 2014). Angiosperm embryos establish the apical–
basal polarity already at the two-cell stage, a process orchestrated
by polar auxin flow (Friml et al., 2003; Petrasek & Friml, 2009).
Next to auxin, root identity in embryogenesis is determined by
master regulators such as WUSCHEL RELATED HOMEOBOX
(WOX) genes (Haecker et al., 2004; Schlereth et al., 2010; Rado-
eva & Weijers, 2014). Angiosperm roots develop longitudinally
in three different zones: the meristematic zone (MZ), from which
all root tissues arise, the elongation zone (EZ), where the cells
reach their final size, and the differentiation zone (DZ), where
elongated cells reach full maturation according to their respective
fate (Dolan et al., 1993).

All tissues of the root originate from the stem cell niche’s
(SCN) initials (Petricka et al., 2012) that line the quiescent centre
(QC), which itself remains mitotically inactive but maintains the
meristematic activity of its surroundings (Clowes, 1954; van den
Berg et al., 1997). Activity and establishment of the SCN are
orchestrated through a few key regulators such as PLETHORA
(PLT; Aida et al., 2004), SHORTROOT (SHR) and
SCARECROW (SCR; Scheres et al., 1995; Sabatini et al., 2003).
PLT is a further key determinant of the meristem size (Galinha
et al., 2007). Activity and size of the RAM are regulated by the
antagonists auxin and cytokinin (Blilou et al., 2005; Dello Ioio
et al., 2007, 2008). While auxin promotes the MZ size through
cell proliferation (Blilou et al., 2005), cytokinin restricts it by
promoting earlier cell differentiation (Dello Ioio et al., 2007,
2008). The Aux/IAA auxin signalling repressor (Tian & Reed,
1999) SHORT HYPOCOTYL 2 (SHY2) (that is also targeted
by the cytokinin signalling components RESPONSE
REGULATOR 1 (ARR1) and ARR12; Sakai et al., 2001; Ishida
et al., 2008; Moubayidin et al., 2010) determines the position of
the transition zone (TZ; marking the border between MZ and
EZ) and therefore the size of the MZ (Dello Ioio et al., 2008;
Moubayidin et al., 2010; Perilli et al., 2012). The same appears
true for the formation of adventitious roots in angiosperms,
where auxin promotes and cytokinin hinders adventitious rooting
(Werner et al., 2003; Gutierrez et al., 2012; Bellini et al., 2014).

Fern embryos do not develop in a bipolar manner (Hou &
Hill, 2002). The embryonic RAM is only briefly present and the
permanent fern roots arise adventitiously from a shoot, a process
termed primary homorhizy (Goebel, 1930; Schneider, 2013) that
is clearly distinguished from (secondary) homorhizic angiosperms
with long-living embryonic roots (Hou & Hill, 2002; Bellini
et al., 2014). Instead of bearing a QC-centred SCN, fern roots
have a single root apical cell (RAC) that gives rise to root tissues
(Gunning et al., 1978; Hou & Blancaflor, 2009). Our knowledge
about the molecular mechanisms underlying the function of the
fern RAC is limited, but Nardmann & Werr (2012) could show
that WUSCHEL-related transcription factors act in the RAC of
Ceratopteris, demonstrating them to be ancient master regulators
of plant development that radiated even before the angiosperm–
gymnosperm split (Hedman et al., 2013). Studies on Ceratopteris

showed that auxin did not alter lateral root formation, but inhib-
ited parent root growth (Hou et al., 2004). Yet the molecular
framework that underpins fern meristem regulation remained hid-
den. We used Azolla filiculoides, famous for its unique symbiosis
with a nitrogen-fixing cyanobacterium (Rai et al., 2000; Car-
rapic�o, 2010), to characterize how the key developmental regula-
tors auxin and cytokinin influence fern root development. While
the longitudinal organization of the Azolla root resembles that of
angiosperms, we found that the phytohormonal meristem regula-
tion through auxin and cytokinin is reversed. Our results shed
light on the evolutionary origin of the RAM in euphyllophytes.

Materials and Methods

Azolla culture and phytohormone treatment

Azolla filiculoides Lam. was cultivated in floating culture in a
beaker containing 250 ml filtered water (pH 7.0) under
450 lmol quanta m�2 s�1 16 h 24°C : 8 h 20°C, light: dark,
day : night, and 75% relative humidity. For phenotypic analysis,
2 d after root removal (hereafter defined as 2 dpc) roots were
treated with 2.7 ll EtOH (mock), 0.1 lM IAA (Carl-Roth; IAA,
Karlsruhe, Germany) and 0.5 lM trans-Zeatin (Sigma-Aldrich;
CK) for 24 h.

Phenotypic analysis

For differential interference contrast (DIC) analyses, roots were
mounted in a chloral hydrate solution (5 : 2 : 1, chloral
hydrate : glycerol : H2O) and bleached (i.e. tissues were cleared)
for several days. Images were taken on a Nikon Ti Eclipse micro-
scope (Nikon DS-Qi1Mc camera). Root lengths (entire 3 dpc
root) were determined via dissection microscopy (Nikon SMZ
745T; Nikon DS-Ri1 camera). Images were processed using the
NIS-Elements BR 4.20.00 software (Nikon, Tokyo, Japan) and
Adobe Photoshop and Illustrator CS6. Statistical analysis was per-
formed using R 3.0.2 (R Core Development Team 2013), nor-
mality was tested using a Shapiro–Wilk test (Shapiro & Wilk,
1965) and, accordingly, a Mann–WhitneyU-test (Mann &Whit-
ney, 1947) was performed. Amyloplasts were stained using 5%
Lugol’s iodine and pictures were taken on a Zeiss Axiophat micro-
scope with an AxioCam ICc 5 camera, using the ZEN 2012 soft-
ware (Zeiss). Dissection micrographs were generated using a
SteREODiscovery V8 (Zeiss) microscopy with a AxioCAM ICc 5
and processed using the ZEN 2012 software (Zeiss).

Global gene expression analysis

For RNAseq analysis, 66 hpc roots were treated as described
above but for 6 h; 3–4 mm root tips were collected and extracted
using the SpectrumTM Plant Total RNA Kit (Sigma) according to
the manufacturer’s instructions. RNA was extracted for each
treatment in triplicate (n ≥ 100 root tips each), always at the same
time of the day. RNA quality was assessed using a formamide gel
and shipped on dry ice to BGI Tech Solutions (Hong Kong),
where RNA quality assessment by BioAnalyzer (Agilent
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Technologies, Waldbronn, Germany), library preparation using
the TruSeq kit (Illumina, San Diego, CA, USA), and 100 bp
paired-end sequencing via the Illumina HiSeq2000 system were
performed. After removal of low-quality reads, we obtained a
total of 270 866 324 reads (Supporting Information Table S1).
The Transcriptome Shotgun Assembly project has been
deposited at DDBJ/EMBL/GenBank under the accession
GBTV00000000 and the National Center for Biotechnology
Information (NCBI) Single Read Archive (PRJNA264391). The
version described in this paper is the first version,
GBTV01000000.

Read quality was assessed using FASTQC v.0.10.1 (FASTQC
2012) and trimmed using Trimmomatic 0.32 (Bolger et al.,
2014; settings: ILLUMINACLIP:TruSeq3-PE.fa:2:30:10;
HEADCROP:10; TRAILING:3; SLIDINGWINDOW:4:20;
MINLEN:36). All reads were paired-end assembled using Trinity
r20131110 (Grabherr et al., 2011; Haas et al., 2013), resulting in
153 400 contigs (≥ 300 bp). Reads were mapped onto the contigs
using the CLC Genomics Workbench 7 (CLC Bio). Contigs
were annotated based on a BLASTx approach (Altschul et al.,
1997) against the TAIR 10 peptide release (Lamesch et al.,
2011); based on the false discovery rate, the e-value cutoff was set
to 10�7. Filtering for contigs with ≥ 150 mapped reads yielded
36 091 contigs (Table S2). Potential contamination was omitted
by retaining only contigs that had best BLASTx hits (vs RefSeq;
Pruitt et al., 2012) to streptophytes.

Gene onthology (GO) term analysis was performed based on
the Arabidopsis annotations (e- value < 10�7) using the Gene
Ontology enRIchment anaLysis and visuaLizAtion tool
(GORILLA; P < 10�3) (Eden et al., 2009).

Differential regulation and statistical analysis were performed
based on negative binomial probability distribution and Ben-
jamini–Hochberg correction using edgeR (Robinson et al.,
2010). Wordles were generated using wordle.net. Phytohormone
signalling pathways were manually curated based on Arabidopsis
homologues (Liscum & Reed, 2002; Lamesch et al., 2011; Bren-
ner & Schm€ullig, 2012). Quantitative reverse transcription poly-
merase chain reaction (qRT-PCR) was performed using the
Power SYBRTM Green kit and a StepOnePlusTM (Applied Biosys-
tems) system and analysed according to Pfaffl (2001). AfTufA
(AzfiRT00021) and AfCAM5 (AzfiRT00154) were selected as
reference genes based on their steady expression (confirmed dur-
ing qPCR analysis on equal amounts of RNA) in the RNAseq
data (see Table S3 for primer sequences).

Protein family matrix

Protein data were extracted from current genome releases (The
Arabidopsis Genome Initiative, 2000; Merchant et al., 2007;
Rensing et al., 2008; Schnable et al., 2009; The International
Brachypodium Initiative, 2010; Banks et al., 2011; The Potato
Genome Sequencing Consortium, 2011; Nystedt et al., 2013;
Amborella Genome Project, 2013) from NCBI and Joint
Genome Institute (JGI) and the longest open reading frames
(start to stop; ≥ 100 aa; in silico translated using EMBOSS v.6.6.0;
Rice et al., 2000) of RNAseq and expressed sequence tag (EST)

data from Spirogyra pratensis (Timme & Delwiche, 2010),
Marchantia polymorpha (Nagai et al., 1999), Ceratopteris richardii
(Bushart et al., 2013; same filtering as for the Azolla RNAseq
dataset) and Pteridium aquilinum (Der et al., 2011). Orthologous
protein families were determined using a bidirectional best hit
(Tatusov et al., 1997) all-against-all BLASTp v.2.2.29+ approach
(e-value ≤ 10�10; global sequence identity ≥ 30% calculated by
EMBOSS v.6.6.0 Needle; Rice et al., 2000) and clustered using the
Markov Cluster Algorithm (MCL) (Enright et al., 2002). Results
were displayed in a MATLAB R2014a (MathWorks, Natick, MA,
USA)-generated matrix.

Hierarchical clustering of expansin expression and
phylogeny

An expansin dataset was generated based on best-BLASTx hits
against the Azolla root transcriptome and sequences from Sampe-
dro & Cosgrove (2005), Li et al. (2002), the NCBI and the Ara-
bidopsis Information Resource (TAIR; Table S4). Protein
sequences were generated using the sequence manipulation suite
(Stothard, 2000), aligned using Multiple Alignment using Fast
Fourier Transform (MAFFT) v.7.127b L-INS-I (Katoh & Stand-
ley, 2013) and MEGA5.2.2 (Tamura et al., 2011) and modified to
include only the conserved middle region of the protein
sequences. Sequences containing only parts of the conserved
region were removed. A maximum-likelihood phylogeny was
computed using WAG +G + I (best-fit substitution model deter-
mined by MEGA5.2.2; five discrete gamma categories, 1000 boot-
strap replicates, partial deletion site coverage cutoff: 99%).
Sequences were annotated based on best BLAST hits to
Arabidopsis expansins, unless annotation was given. Hierarchical
clustering on the normalized expression data was performed by
using log2(FC) data. Data for 3 h CK- and IAA-treated
Arabidopsis thaliana seedlings were extracted from The Bio-Ana-
lytic Resource for Plant Biology (BAR) (Toufighi et al., 2005;
Winter et al., 2007). Clusters were generated using the CLC
main workbench 7.0 (CLCbio, Qiagen) and Euclidean distance
measures with single linkage.

Results

Azolla has adventitiously emerging shoot-borne roots

Azolla roots emerge adventitiously as shoot-borne roots (cf. Groff
& Kaplan, 1988) from a node that contains a ventral and a dorsal
leaf lobe (Fig. 1a). Roots of angiosperms can be longitudinally
separated into the DZ, EZ and MZ (Dolan et al., 1993), a parti-
tioning that we also used for the roots of Azolla. The largest and
uppermost segment of the Azolla root is made up by the DZ,
where the cells reached their final size, the xylem is differentiated
and root hairs are prominent. The EZ begins with cells that are
approximately twice as long as those of the MZ (from
8.7� 2.5 lm of the three outer cortex cells before the doubling
to 16.8� 4.5 lm of the three outer cortex cells after the dou-
bling, marking the TZ; Fig. 2a). At the tip lies the MZ, housing
the RAC. Trichoblasts, from which the root hairs later emerge,
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are already distinguishable in the MZ as a result of their triangu-
lar appearance; proper differentiation of the root hairs occurs at
the end of the MZ and subtending the inner root cap (Fig. S1).
Azolla roots bear an outer (Fig. 2a green arrowhead) and an inner
root cap (Figs 1b, 2a yellow arrowhead). The outer root cap ends

approximately at the TZ, while the inner root cap ends approxi-
mately at the transition between EZ and DZ. Potassium iodide
(KI) staining revealed no statocytes where one would expect a col-
umella, but instead several basipetal amyloplasts lining the stele

1 mm

2 cm

Dorsal

Ventral Detail
D

V

0.5 mm
A

(a) (b)

Fig. 1 Emergence of shoot-borne Azolla filiculoides roots. (a) Stereoscopic
micrographs of Azolla filiculoides sporophytes in floating culture, showing
a dorsal (upper panel), ventral (lower left panel) and detailed view (lower
right panel). Arrows mark the shoot-borne, adventitious emergence of
roots. The detailed view shows the nodes containing a dorsal (D) and a
ventral (V) leaf lobe. (b) Schematic drawing of the Azolla root that
highlights the outer root cap (brown), the inner root cap (yellow), the
apical cell (A), and differentiation of the xylem strands in dashed lines
(outer thin lines represent protoxylem, and inner thick lines represent
metaxylem).
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Fig. 2 Azolla root meristem cell number is elevated upon cytokinin and
decreased upon auxin treatment. (a) Nomarski interference contrast
micrographs of Azolla filiculoides roots treated with solvent (control),
0.5 lM trans-zeatin (CK) and 0.1 lM IAA. Open arrows mark the root
apical cell (RAC) and closed arrows mark the end of the outer cortex
meristematic zone (MZ). Inserts show an enlarged view of the outer cortex
transition zone (TZ), marking the end of the MZ and giving the average
length of the last three cells of the MZ and the first three cells of the
elongation zone (EZ) in µm (� SD; cells are retraced by dashed lines).
Numbers at the apex give the average length of the first 10 outer cortex
cells in lm (� SD). The green arrowhead marks the outer root cap, the
yellow arrowhead marks the inner root cap. (b) Quantification of the outer
cortex MZ cell number in mock (control)-, 0.5 lMCK- and 0.1 lM IAA-
treated 3 d post-cut (dpc) roots; significance groups a–c (P < 0.001) were
determined using Mann–Whitney U-statistics. (c) Quantification of the
root length in mock (control)-, 0.5 lMCK- and 0.1 lM IAA-treated 3 dpc
roots; significance groups a and b (P < 0.001) were determined using
Mann–Whitney U-statistics. Box-plots in (b) and (c) display the
interquartile range (IQR; 50� 25%) of the data; horizontal lines in each
box mark the median (50%), whiskers extend to the furthest data points
within the 1.59 IQR range, and circles mark outliers. (d) Photographs of 3
dpc A. filiculoides sporophytes in floating culture upon mock (control),
0.5 lMCK and 0.1 lM IAA treatment. All presented data points are
derived from evaluation of at least 40 roots per treatment (n = 40).
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(Fig. S2). In contrast to the fern Ceratopteris (Hou et al., 2004;
Hou & Blancaflor, 2009), Azolla does not have lateral roots.

Size of the Azolla root MZ is increased by cytokinin and
decreased by auxin

Auxin and cytokinin are key regulators of the MZ’s activity in
angiosperms and thus we analysed their effect on the Azolla root’s
MZ. To make sure that only meristems of the same age and
developmental stage were analysed, roots were first removed. At 1
dpc, Azolla roots had replaced the removed roots but showed
nonuniformal phenotypes. We used the distinct TZ to evaluate
the Azolla MZ (starting from first emergence, cells of the outer
cortex file were counted until they had doubled in size) and deter-
mined that 3 dpc roots showed the steadiest MZ size (Fig. S3),
which were thereafter used for all analyses. Ferns were kept in
floating culture for 2 dpc and transferred to a new culture con-
taining either solvent (mock treatment) or 0.1 lM IAA or
0.5 lM trans-zeatin (CK) for 24 h. The concentrations were cho-
sen based on previous studies on meristem size in Arabidopsis
(R�u�zi�cka et al., 2009; Dello Ioio et al., 2012; Moubayidin et al.,
2013), as well as preliminary experiments determining the mini-
mal concentrations resulting in clear phenotypes. Mock-treated
roots (3 dpc) had an MZ cell number of 77� 12 (Fig. 2a,b).
Exogenous 0.1 lM IAA application led to roots with a significant
reduction (P < 0.001) in MZ size (62� 12; Fig. 2a,b). By con-
trast, application of 0.5 lM CK increased the MZ size
(111� 19, P < 0.001; Fig. 2a,b). Application of the phytohor-
mones also influenced the lengths of the MZ cells (Fig. 2a). In
mock-treated roots, the first 10 outer cortex cells had an average
length of 5.4� 1.4 lm; IAA treatment increased this to
6.9� 1.4 lm (P < 0.001), while CK treatment decreased cell size
to 4.7� 1.7 lm (P < 0.001). Control 3 dpc roots were
6.81� 3.1 mm in length. While 0.5 lM CK – although chang-
ing the meristem cell number – led to no significant change in
root length (6.81� 2.7 mm; n = 40), 0.1 lM IAA resulted in a
significant decrease (P < 0.001), to 3.73� 1.6 mm (Fig. 2c,d).

Auxin and cytokinin affect xylem formation

Auxin and cytokinin are also key regulators of root vasculature in
Arabidopsis (Bishopp et al., 2011) and we therefore analysed their
influence on xylem morphology under the same conditions as
applied earlier (n = 40). Azolla roots bear two narrow protoxylem
and two wide metaxylem strands (Fig. 1b). The protoxylem is c.
4 lm in diameter, progressing from scalariform ornamentation
to annular ornamentation (Fig. 3). Protoxylem differentiates, on
average, seven stele cells above the apex. One protoxylem strand
differentiates before the other (approx. two cells), and differenti-
ating either earlier on IAA or later on CK treatment (Fig. 3d).
Metaxylem shows a scalariform ornamentation. First metaxylem
strands differentiate as wide cell files (c. 8 lm in diameter) more
tipwards, and second metaxylem strands differentiate as even
wider cell files (c. 13 lm in diameter) more shootwards, than the
rim of the inner root cap (Fig. 1b). Upon either phytohormone
treatment, both metaxylem strands differentiated more towards

the tip than in the untreated roots. The relative appearance of the
second compared with the first metaxylem strand was also altered
such that both strands appeared to start closer to each other (CK
and IAA), or even simultaneously (IAA; Fig. 3f). This was accom-
panied by a change in the perforation plate angle, resulting in
orthogonal instead of rhomboid-shaped metaxylem cells
(Fig. 3g). In addition, IAA caused the secondary cell wall deposi-
tion leading to the scalariform ornamentation being closer to
each other (Fig. 3h). Both phytohormes resulted in a widening of
the second metaxylem strand (Fig. 3i). Although varying
marginally in size along the root, the second metaxylem strand
was always wider than the first.

Embryophyte developmental regulators of the Azolla root

Plants colonized land at least 470 million yr ago (Gensel, 2008)
and many regulators that shape plant bodies are ancient (Pires &
Dolan, 2012). To understand which growth regulators support
fern root development, > 270 million paired-end reads of mRNA
isolated from 3-mm-long A. filiculoides root tips – and under
three different conditions (see later) – were sequenced. The de
novo transcriptome data were assembled into 190 000 contigs,
then filtered for those that were supported by ≥ 150 reads and an
assembled length of ≥ 300 bp, resulting in 36 091 contigs
(Fig. 4a; Table S1). To test for the depth and breadth of key
developmental regulators among Azolla transcripts, we clustered
all proteins derived from available genome, RNAseq and EST
data (≥ 100 amino acids long) of a variety of streptophytes
(Fig. 4) and Chlamydomonas reinhardtii as an outgroup using a
bidirectional BLASTp approach. Screening this dataset for clus-
ters that contained orthologues to 353 known A. thaliana devel-
opmental denominators resulted in 161 clusters that contained at
least one orthologue from another species, 40 of which contained
homologues expressed in the A. filiculoides root. In comparison,
proteins from the genomes of Selaginella moellendorffii and Picea
abies were detected in 36 and 58 clusters, respectively, and pro-
teins from the transcriptomes of C. richardii and Pteridium
aquilinum were detected in only 10 and 14 clusters, respectively.
Thus, sequence depth of our de novo transcriptome was sufficient
to detect developmental master regulators, such as homologues of
WOX13 (AzfiRT13282, AzfiRT23190, AzfiRT23355; e-value
< 10�47), bearing the characteristic ancestral NVYNWFQN
peptide sequence at the second turn of the recognition helix
(Nardmann & Werr, 2012). Key denominators of true root
meristems known from angiosperms, such as three homologues
of PLT (AzfiRT20391, AzfiRT31772, AzfiRT33493; e-value
< 10�95), were identified (Table S5), accounting for the readout
of the meristem regulon. But does differential expression of these
key regulators translate into the different phenotypes observed
upon phytohormone treatment?

To connect the phenotypic observations to molecular mecha-
nism, RNA was sequenced in triplicate from 3mm root tips
treated for 6 h with 0.1 lM IAA, 0.5 lM CK or solvent (mock).
The 6 h treatment was chosen to detect the established readout
over initial signalling components of the phytohormone response
(Goda et al., 2004). Observed trends in expression were
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confirmed by two-step qRT-PCR (Fig. S4). To our knowledge,
this is the first global gene expression profiling on a fern root, so
we first ran a GO term enrichment analysis (P < 10�3) on the top
2000 highest expressed genes from all root datasets and compared

this with sequence data available from the Azolla sporophyte
(Brouwer et al., 2014) based on homology to Arabidopsis proteins
(e-value < 10�7). The most evident difference is the expression of
photosynthesis and pigment metabolism GO terms, detected
only in the photosynthesising sporophyte system (Fig. 5a;
Table S6). The root expression profiles were enriched for various
kinds of transport GO terms, including multifaceted ion trans-
port. Intriguingly, photorespiratory genes were highly expressed
in the Azolla root, a phenomenon that was recently discussed for
angiosperm roots as well (Nunes-Nesi et al., 2014).

Using a ranked GO term enrichment analysis highlighted the
differential responses towards IAA and CK (Fig. S5). GO terms
for RNA biosynthesis were prominent, indicating that both treat-
ments triggered strong and specific transcriptional responses by
the fern. Performing a ranked comparison of genes up- and
down-regulated by CK in comparison to IAA highlighted the
antagonistic action of the phytohormones. Not only were GO
terms for regulation of meristem growth up-regulated upon CK,
but so too were cell cycle regulation and inositol metabolism,
which are well-known growth regulators (Stevenson et al., 2000).
Importantly, no GO terms associated with stress responses were
highlighted. Hence, the reduction of meristem size observed
upon auxin treatment is governed by developmental control and
not stress.

Auxin and cytokinin differentially shape Azolla roots
through cell wall modification

To detect key players and candidate genes for future studies
involved in governing Azolla root development upon IAA and
CK, we pursued a top-down approach. Screening among contigs
with homology to nuclear land plant genes, and which were sig-
nificantly regulated (Benjamini–Hochberg corrected P-value
< 0.05), identified several homologues (e-value < 10�7) to
Arabidopsis growth regulators (Fig. 5b; Table S6). As indicated by
the GO terms (Fig. S5) in particular, ‘information processing’
was up-regulated upon treatment. This included RNA processing
such as the RNA splicing SR45 homologue (e-value
1.749 10�09) and ribosomal proteins in general. Notable was
the 54-fold up-regulation of a CYTOCHROME 450 71A20
(CYP71A20) homologue, whose orthologue in A. thaliana is
down-regulated upon auxin treatment (Goda et al., 2004).

Both phytohormone treatments resulted in pronounced
expression changes of the cell wall-modifying expansins (e.g.
EXPA4 CK vs mock, 0.3-fold up in contrast to 2.1-fold down
in IAA vs mock; P < 0.05). The a-expansins, in particular,
were enriched among Azolla root transcripts, whereas only one
b-expansin and one a-expansin-like were detected. Conserved
regions of Azolla expansins (Fig. S6b) match well with
those of higher embryophytes (Li et al., 2002; Sampedro &
Cosgrove, 2005), including the a- and b-specific insertions (Li
et al., 2002). Phylogenetic analysis using 93 protein sequences
from 10 embryophytes show a clear distinction between the
a- and b-expansins, the expansin-like sequences clustered with
the b-expansins (Fig. S6). By contrast, other expansin phyloge-
nies (Sampedro & Cosgrove, 2005), expansin sequences of
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Fig. 3 Azolla root xylem development upon cytokinin and auxin
treatments. (a–c) Nomarski interference contrast micrographs of
Azolla filiculoides roots treated with solvent (control), 0.5 lM trans-zeatin
(CK) and 0.1 lM IAA; blow-ups of marked positions along the root show
details of the xylem phenotypes, marked with arrowheads. A, root apical
cell; PX, protoxylem; MX, metaxylem. (d–i) Quantification of observed
alterations in the xylem phenotype after control, 0.5 lMCK and 0.1 lM
IAA treatment. Data points are derived from evaluation of at least 40 roots
per experiment (n = 40). Root cap (RC).
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Azolla filiculoides, Physcomitrella patens, Marsilea quadrifolia and
Regnellidium diphyllum formed lower plant-specific clades
instead of being equally dispersed throughout the a-sequences.
We hierarchically clustered normalized expression data of a-ex-
pansins upon auxin and cytokinin treatment in A. thaliana and
A. filiculoides. Four of the 10 clusters obtained were species-
specific, and only one for Azolla (Fig. 6a). The remaining six
clusters were dominated by one species, four out of six by
A. filiculoides. To analyse putative subfunctionalization after
species-specific duplications, we identified potential ortho-
logues, co-orthologues and paralogues in A. filiculoides and
A. thaliana and estimated pairwise distances within those
groups using ORTHOMCL (Li et al., 2003). In agreement with
our phylogenetic analysis (Fig. S6) we obtained only a few
orthologues and a larger group of co-orthologues. When plot-
ting the pairwise distances of each pair against its absolute

expression differences, there was little correlation (Fig. 6b). All
in all, the data support the conclusion that, based on a com-
mon expansin set in all land plants, ferns – perhaps also
mosses – have advanced their expansin repertoire, governing a
differential use.

Other cell wall modifiers were specifically regulated by the
phytohormones as well. A homologue of the cellulose biosynthe-
sis-associated gene RADIAL SWELLING3 (RSW3; e-value 0) was
down-regulated significantly (P < 0.05), when comparing CK
with IAA treatment (3.6-fold down), and Arabidopsis rsw3
mutants display a severe root phenotype (Baskin et al., 1992;
Burn et al., 2002). An IRX12 (IRREGULAR XYLEM 12, an
enzyme involved in lignin biosynthesis) homologue (e-value
1.749 10�166) was significantly (P < 0.05) down-regulated upon
IAA (2.6-fold) and only marginally down-regulated upon CK.
Arabidopsis irx12 mutants have strong alterations in xylem
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Fig. 4 RNAseq of Azolla root tips and identification of orthologues to known developmental regulators across 14 species of Chloroplastida. (a) Workflow
of the RNAseq analysis of Azolla filiculoides root tips starting with the filtered reads obtained by illumina paired-end (PE) sequencing followed by assembly
using the Trinity pipeline, annotation and filtering via BLASTx and read mapping using the CLC workbench. For downstream analyses (protein clustering,
expression wordles of significantly regulated genes or gene ontology (GO) term enrichment via GORILLA), only contigs that had their best BLASTx hit to
streptophytes were used. (b) Protein data were extracted from nine genomes (black species names) and five RNAseq and expressed sequence tag (EST)
libraries (red species names), and clustered; Chlamydomonas reinhardtii serves as an outgroup. Clusters were generated from all-against-all bidirectional
best BLASTp hits. Those clusters were screened for 353 Arabidopsis thaliana proteins from 10 gene families (top row) and 161 clusters that contained at
least one other species were extracted. The global identity of the identified homologues is displayed as a gradient colour. Note the high number of
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formation, displaying collapsing vessel elements (Brown et al.,
2005), and regulation of Azolla IRX12 homologues might there-
fore be correlated with the observed xylem phenotypes.

Key players for the correct xylem cell differentiation are cel-
lulose deposition-guiding microtubules (Oda & Fukuda, 2012).

The expression of several MICROTUBULE ORGANISATION
1 homologues (MOR1; e-values < 1.189 10�107) increased
upon IAA and CK treatment (4.4-, 4.1- and 3.9-fold up and
4.1-, 3.8- and 3.7-fold up, respectively; Fig. 5b). A
TORTIFOLIA1 homologue (TOR1; e-value 1.029 10�24) that
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Fig. 5 Gene expression changes in the Azolla root tip after auxin and cytokinin treatments. (a) Gene ontology (GO) enrichment analysis (P < 10�3) based
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mediates microtubule-directed cell wall development
(Buschmann et al., 2004) was significantly down-regulated by
auxin (2.8-fold down; P < 0.05). Gene expression changes asso-
ciated with vascular function were also detected. This included
regulation of the ABC transporter ABCB15 (AzfiRT08887; e-
value 0; 1.9-fold down upon IAA treatment) that is expressed
in developing vasculature and associated with auxin transport
and secondary cell wall development (Kaneda et al., 2011) and
the phloem amino acid transporter BAT1 homologue (Az-
fiRT35714; e-value 0), which was 3.7-fold up-regulated upon
CK treatment (P < 0.05). Intriguingly, nitrate transport-associ-
ated homologues were up to eightfold down-regulated upon
CK treatment (SLAH2; AzfiRT18705, AzfiRT19565), which
could be explained by the link between CK biosynthesis and
nitrogen availability (Takei et al., 2004). IAA and CK, there-
fore, shape the root of Azolla radially and longitudinally by the
differential regulation of cell wall-loosening and -reinforcing
enzymes.

Auxin and cytokinin activate specific signalling components
in Azolla roots

Root meristems are subject to a tight regulation by auxin and
cytokinin. CYTOKININ RESPONSE 1 (CRE1) is a key compo-
nent in cytokinin signalling (Inoue et al., 2001; Fig. 7; Table S6)
and Arabidopsis cre1 mutants have severe root phenotypes
(M€ah€onen et al., 2000; Ueguchi et al., 2001). Three homologues
of CRE1 (e-values 2.519 10�72, 4.139 10�39 and
3.829 10�39) were found to be regulated upon CK treatment,
two up- (1.8- and 2.0-fold), one down-regulated (3.4-fold;
P < 0.05). A total of 14 contigs with homology to CRE1 (e-values
< 10�14) were detected in total, only seven of which are predicted
to represent isoforms. No other cytokinin signalling component
showed a strong response, except for an A-type RESPONSE
REGULATOR 9 (ARR9) homologue (AzfiRT12218; e-value
4.339 10�50; Figs 5, 7) that was up-regulated 2.2-fold
(P < 0.001) upon CK treatment.

Expression of three known auxin signalling factors was sig-
nificantly altered upon auxin treatment (Figs 5, 7). Two Aux/
IAA homologues were detected, grouping with the B-group
Aux/IAA proteins of Arabidopsis (Fig. S7; Remington et al.,
2004) that are known for their importance in primary and
lateral root development. One Azolla Aux/IAA homologue
showed its highest identity to IAA13 (AzfiRT01636; e value
6.649 10�35; up-regulated almost two-fold upon auxin treat-
ment), known to be important for root initiation during
embryogenesis and later expressed in the stele (Weijers et al.,
2005). Besides its phylogenetic placement in the B-group, the
other homologue showed highest identity to IAA14 (Solitary
root; AzfiRT00243; e value 1.849 10�35; up-regulated almost
two-fold upon auxin treatment). IAA14 is a known regulator
of lateral root formation and Arabidopsis iaa14 mutants do
not generate any lateral roots (Fukaki et al., 2002). Finally, a
transcript of an AUXIN RESPONSE FACTOR was found to
be down-regulated upon IAA treatment, showing highest iden-
tity to ARF7 that is known to be a crucial regulator of lateral

root formation (Okushima et al., 2007). Also a homologue of
the transcription factor SHOOT REDIFFERENTIATION
DEFECTIVE 2 (SRD2; e value 1.409 10�10) was found to
be up-regulated upon CK treatment (5.4-fold; P < 0.05) and
Arabidopsis srd2 mutants are known to have impaired lateral
and primary root growth (Ohtani & Sugiyama, 2005). Thus,
while several components of the CK and IAA signalling path-
way are expressed by the Azolla root, only specific factors
showed a strong reaction after 6 h of the respective phytohor-
mone treatment, many of which are associated with lateral
root formation in Arabidopsis.

Discussion

Understanding meristem regulation is key to understanding plant
development. The RAM of Arabidopsis has become a priced
model to uncover the basic principles of angiosperm develop-
ment (Petricka et al., 2012), but our knowledge about the evolu-
tionary earlier fern root development is rather scarce (Hou &
Blancaflor, 2009). Our results highlight the fundamental differ-
ences in the control of the Azolla RAM by the key regulators
cytokinin and auxin.

Auxin, cytokinin and the reciprocal regulation of the root
system in Azolla

Similar to Arabidopsis (Dolan et al., 1993), we found that Azolla
has a DZ, EZ and MZ. While auxin is known to increase
Arabidopsis MZ cell number (Blilou et al., 2005), cytokinin is
known to reduce it (Dello Ioio et al., 2007). Similar applies to
Arabidopsis’ adventitious roots, which one can assume constitute
the more obvious analogue to the Azolla root. Auxin is a known
inductor and promoter of adventitious roots, while cytokinin acts
antagonistically (Bellini et al., 2014). Surprisingly, application of
IAA and CK to the Azolla adventitious roots resulted in the
opposite effect. Root growth inhibition through auxin is well
known in the fern Ceratopteris (Hou et al., 2004) and also in
Arabidopsis, where it acts on cell elongation (Rahman et al.,
2007). Yet the exogenous auxin naphthaleneacetic acid (NAA;
acting in a similar manner to IAA on root meristems; Rahman
et al., 2007) increases MZ cell number in the latter and shows
inhibitory effects only at very high concentrations (R�u�zi�cka et al.,
2009). While decreasing MZ size through earlier differentiation
(Dello Ioio et al., 2007), cytokinin affects root length in
Arabidopsis only at high concentrations (R�u�zi�cka et al., 2009). In
the case of Azolla, CK did not alter root growth but it did alter
MZ cell number. This might be explained by a CK-induced
delay in differentiation and a simultaneous restraint on cell
length.

In summary, IAA influenced both cell elongation (in MZ and
TZ) and MZ cell number. This resulted in its significant impact
on root length, whereas phenotypes triggered by CK were mainly
governed by changes in cells of the MZ and not the elongation in
Azolla roots. This is further supported by the xylem phenotypes
that displayed either a delayed or a premature differentiation of
proto- and metaxylem. More densely ornamented xylem and
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orthogonal instead of rhomboid metaxylem cells observed upon
IAA treatment might be the simple consequence of a delayed or
impaired elongation. All of these are linked to the relative posi-
tion to the apex and are thus probably a direct cause of longitudi-
nal alterations. Our information is limited with regard to

understanding the upstream molecular regulation that elicits
these phenotypic alterations. For example, the RNAseq analysis
revealed CYP71A20 to be differently regulated upon auxin treat-
ment in comparison to its A. thaliana homologue (Goda et al.,
2004). This might suggest a possible difference in the upstream
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Fig. 6 Comparison of Azolla filiculoides and
Arabidopsis thaliana expansin expression
patterns in relation to their relatedness. (a)
Relative expression of the expansin gene
family after trans-zeatin (CK) vs mock
treatment (left column) and IAA vs mock
treatment (right column) in A. thaliana
seedlings and A. filiculoides roots (in red
letters) was clustered hierarchically using
Euclidean distance measures and single
linkage. Expansin expression is shown in red
for up und blue for down and was calculated
as log2(fold change). Both species-specific
and mixed clusters were obtained, but
clusters rarely formed among evolutionarily
related expansins. To confirm this relatedness
of expansins to each other, a substitution
rate per site, estimated with JTT +G + I with
five discrete gamma categories (pairwise
differences), was correlated to the absolute
value of difference in expression between
each two expansin genes (Dexpression). (b)
No correlation between the pairwise
differences and the absolute value of
expression differences was observed in any
tested phylogenetic category (purple and
yellow, paralogues; blue, orthologues; red,
co-orthologues) under CK vs mock
treatment. Under IAA vs mock treatment,
only a negative correlation for orthologous
expansin genes was observed, indicating
that, sequence-wise, highly similar
orthologous genes are used differently in
ferns and dicots.
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perception of auxin in the Azolla root, but it is just as likely that
auxin and cytokinin signalling acts downstream on very specific
factors. Azolla is currently not accessible for genetic studies. Nev-
ertheless, based on sequence homology, a set of genes were
detected that can be associated with the observed phenotypes
induced by the phytohormones; that provide information about
the Azolla root developmental regulon and identity; and that are
valuable candidate genes for future studies on fern root develop-
ment.

Regulon of Azolla roots

The rigid cell walls of plants pose a challenge when a change in
phenotype is required. We found that the most strongly regulated
genes in Azolla roots were those involved in cell wall modifica-
tion, a major group of which were the expansins that are involved
in virtually all processes during plant cell remodelling and growth
(Sampedro & Cosgrove, 2005). Of all expansins, the a-expansins
are thought to be the most gene-rich group in the common
ancestor of embryophytes (Sampedro & Cosgrove, 2005). The
same is true for the transcriptome of the Azolla root. We did not
find many orthologous a-expansin genes between A. thaliana and
A. filiculoides, but we did find co-orthologous ones. This suggests
that after an initial round of expansin family inflation in the com-
mon ancestor of embryophytes, several subsequent rounds of

lineage-specific radiations occurred. Expansins influence cell wall
loosening, which is linked to the auxin-mediated acid-growth
hypothesis (Rayle & Cleland, 1992; Link & Cosgrove, 1998;
Catal�a et al., 2000; Cosgrove, 2000). Yet exogenous auxin is
known to reduce root length in Arabidopsis through altering the
cell elongation (Rahman et al., 2007; R�u�zi�cka et al., 2009). IAA-
induced reduction in root length and down-regulation of
expansins suggest that the same occurs in Azolla roots. Cell wall
modification and cellulose deposition are further mediated
through microtubule organization (Wasteneys, 2004). Intrigu-
ingly, both CK and IAA lead to similar changes with regard to
xylem phenotypes and up-regulation of MOR1 homologues.
Owing to the direct link between xylem phenotype and micro-
tubule organization (Oda & Fukuda, 2012), both phenotypes
could be explained through the same mechanism: genetically
controlled cell wall modification that shapes the Azolla root.

Fern root systems are governed by adventitiously arising roots
(primary homorhizy); their primary RAM and resulting primary
root are only short-lived (Hou & Blancaflor, 2009). This stands
in clear contrast to (secondary) homorhizy in angiosperms, where
the primary root is long-living. Yet, as in angiosperms, each of
these adventitious roots has, similar to lateral roots (De Smet
et al., 2006), its own postembryonic apical meristem in form
of a RAC. Regulators of secondarily formed meristems (De
Smet et al., 2006) are thus a likely component of the Azolla
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root’s meristematic signature, not least because the control of
adventitious and lateral root formation seems to largely overlap
(Gutierrez et al., 2009; Bellini et al., 2014). Indeed, although
Azolla does not have any lateral roots, a salient amount of dif-
ferentially expressed Azolla root genes were homologous to lat-
eral root developmental regulators. In angiosperms the
determination of the lateral root founder cell identity is largely
regulated by auxin (Fukaki et al., 2005). Yet, in Ceratopteris,
auxin affects only the adventitious parent root, but not lateral
root development (Hou & Hill, 2002; Hou et al., 2004). Con-
sistent with the canonical Arabidopsis auxin signalling pathway
(Liscum & Reed, 2002), expression of b-group Aux/IAAs was
induced upon IAA, but apparently did not promote the activ-
ity of the adventitiously formed RAC in a manner that would
result in a larger MZ. Yet, cytokinin can also regulate lateral
root development. Homozygous Arabidopsis wol mutants dis-
play no lateral root emergence from the primary root, but bear
only hypocotyl-borne roots (Scheres et al., 1995). We found
WOL to be one of the most ubiquitous cytokinin signalling
components in the Azolla root. In addition, a possible homo-
logue of BREVIS RADIS (AzfiRT34406; e-value 1.019 10�06;
Table S5) was also detected, which is thought to be crucial for
cytokinin’s regulation of lateral root formation (Li et al.,
2008). What could this imply for the evolutionary origin of
the euphyllophyte root?

From thallus to cormus and from adventious to primary
roots

Apical growth took place in the common ancestor of all land
plants and precedes the evolution of roots (Graham et al.,
2000; Prigge & Bezanilla, 2010; Pires & Dolan, 2012). Even
the most basal plants, including some streptophyte algae
(Kenrick & Crane, 1997; Wodniok et al., 2011), develop
through the action of an apical cell (Graham et al., 2000).
Liverworts, or hornworts, are often discussed to be the most
ancient land plants (Gensel, 2008; Wickett et al., 2014) and
their thalli grow through marginal meristems (Hagemann,
1999), but also by the activity of apical cells (Goffinet & Buck,
2013). Both sporophytes and gametophytes of ferns (and
mosses) bear apical cells mediating their growth (Hagemann,
1999; Prigge & Bezanilla, 2010; Schneider, 2013). Although
the roots of lycophytes and euphyllophytes most probably stem
from two independent origins, both develop through an RAC
(Prigge & Bezanilla, 2010; Pires & Dolan, 2012). Sanders &
Langdale (2013) found that auxin and cytokinin act antagonis-
tically on branching in the lycophyte Selaginella kraussiana; in
that case, auxin led to a higher degree of root branching. It was
concluded that this mechanism could be homologous to lateral
root development of angiosperms, in which auxin promotes
lateral root formation. In the fern Ceratopteris, however, lateral
root development was not influenced by auxin (Hou et al.,
2004). This means that while the antagonism of auxin and
cytokinin is conserved in lycophytes and euphyllophytes, its
outcome for the respective organs is not.

A shoot-like origin for euphyllophyte roots?

Fossil records show that early vascular plant roots are strikingly
similar to shoots. Roots were therefore predicted to have evolved
through dichotomous branching from shoots (Graham et al.,
2000; Jiang & Feldman, 2005). If we now recall that moss
gametophytes and sporophytes share developmental regulators
(Menand et al., 2007; Bennett et al., 2014; Viaene et al., 2014),
it seems plausible that for the development of the basal fern-
sporophytic body, regulators also found in moss gametophore
development were recruited. This process would have then
occurred in shoot-like structures governing a shoot-first mor-
phology. It has been hypothesized that the RAM arose from the
SAM (Jiang & Feldman, 2005). Yet, plant development is often
governed by the same regulators, which can act in very different
tissues, leading to different outcomes (Prigge et al., 2005). We
detected contigs with homologies to Arabidopsis genes that could
be characteristic for either root or shoot. Whether these indicate
a more root-like or shoot-like regulation of the Azolla RAC reg-
ulon cannot be stated, not least because of the similarity in
RAM and SAM regulation (Stahl & Simon, 2010). Only genetic
studies will be able to elucidate the detailed framework that reg-
ulates fern RAMs.

The observed phytohormone effect, however, provides
intriguing implications for the evolution of root identity.
Cytokinin is known as a growth inductor of shoot branches,
while auxin inhibits this process (M€uller & Leyser, 2011).
Both shoot branches and adventitious roots arise laterally from
the shoot during postembryonic development. If we entertain
the idea of a shoot-first origin of roots, there are two lessons
to be learned from Azolla root development with regard to
the basal sporophyte root system in euphyllophytes: their
origin is adventitious and postembryonic, and they branch off
as an altered shoot supported by cytokinin. Whether these
adventitious roots are homologous to the embryonic primary
roots of seed plants remains to be proven. Yet, it is clear that
auxin’s role in the dominant organs of the Arabidopsis root
system does not apply in the same way to the fern Azolla.
Our data indicate that it might be cytokinin instead. The key
will be to determine the identity of the transiently present
RAM of the fern embryo. It further raises the question at
what point during euphyllophyte evolution the first perma-
nent embryonic roots emerged, and whether this process was
the advent of auxin’s dominance during (lateral) root develop-
mental regulation.
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