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Abstract

When describing routes not in the current environment, a
common strategy is to anchor the description in configura-
tions of salient landmarks, complementing the verbal descrip-
tions by “placing” the non-visible landmarks in the gesture
space. Understanding such multimodal descriptions and later
locating the landmarks from real world is a challenging task
for the hearer, who must interpret speech and gestures in par-
allel, fuse information from both modalities, build a mental
representation of the description, and ground the knowledge
to real world landmarks. In this paper, we model the hearer’s
task, using a multimodal spatial description corpus we col-
lected. To reduce the variability of verbal descriptions, we
simplified the setup to use simple objects as landmarks. We
describe a real-time system to evaluate the separate and joint
contributions of the modalities. We show that gestures not
only help to improve the overall system performance, even
if to a large extent they encode redundant information, but
also result in earlier final correct interpretations. Being able
to build and apply representations incrementally will be of
use in more dialogical settings, we argue, where it can enable
immediate clarification in cases of mismatch.

Introduction
Navigating robots with natural route descriptions is a goal
researchers have long aspired to. While good performances
have been achieved on interpreting pure language navi-
gations (e.g., “near the second door on your right”) and
multimodal commands in the shared space (e.g., “go over
there+[hand pointing to the destination]”) (Kollar et al.
2010; Skubic et al. 2004; Williams et al. 2016), not much
attention has been paid to the scenario of understanding mul-
timodal route descriptions when the described route is not in
current view.

In such cases, anchoring the destination in configurations
of landmarks and indicating their relative spatial layout with
deictic gestures pointing into the empty gestural space is
a common practice (Emmorey, Tversky, and Taylor 2000;
Alibali 2005; Cassell et al. 2007). For example, to help the
listener identify a hotel in a busy town centre, a speaker
might produce a multimodal description like the following:
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(1) Here[deixis] is the bus stop, a bit left of it[deixis] is a
church and right in front of that[deixis] is the hotel.

Figure 1: Providing a multimodal description (left) of a
scene (right).

The deictic gestures map the spatial layout of the land-
marks from the speaker’s mental image to the shared gesture
space (McNeill 1992). Together with the verbal descriptions,
a listener can build a mental representation of the landmarks,
later navigating itself by comparing the mental representa-
tion with real-world landmarks.

While the verbal descriptions provide important informa-
tion about the denoted objects (e.g., entity name: the bus
stop, relative position: a bit left of ), the deictic gestures
complement the verbal content with spatial information (i.e.,
points with coordinates in the gesture space, standing in for
the real locations of the referents, and indicating their spa-
tial relation). Only together do gestures and words receive
a definite meaning (e.g., how much left is a bit left, relative
to below). Hence, the resolution task in this setting goes be-
yond previous works in which gestures can be grounded to
objects present in the environment (Stiefelhagen et al. 2004).

Psycholinguistic studies show that humans process ges-
tures and speech jointly and incrementally (Campana et al.
2005). While descriptions unfold, listeners immediately in-
tegrate information from co-occurring speech and gestures.
Moreover, to apply they interpretation later, it’s essential to
form a hypothesis in mind, making it a very demanding cog-
nitive, language-related tasks (Schneider and Taylor 1999).

In this paper, we model the joint and incremental interpre-
tation of multimodal spatial descriptions, using a simplified
spatial description task. Specifically, we address following
questions: 1) to what degree can deictic gestures improve the
interpretation accuracy; 2) how gestures benefit the interpre-
tation of spatial descriptions on the incremental level. We
collected a multimodal spatial description corpus which was
elicited with a simplified scene description task (see details
in Data collection). The corpus includes hand motion and
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natural verbal descriptions of objects in simple scenes. With
the collected data, we built a real-time system that concur-
rently processes speech and gestures, where deictic gestures
are treated as denoting attributes of and relations between
referents. The results show that as compared to using only
language information, incorporating gestures enables more
accurate understanding of the descriptions and earlier final
correct retrieving decision. The corpus is publicly available.1

Related work
Enabling robots to understand navigation instructions and
spatial relations is an active research topic. Previous works
have shown that natural language is efficient for construct-
ing spatial-semantic representations of known environments
(Kollar et al. 2010; Hemachandra et al. 2014; Boularias et
al. 2016; Mei, Bansal, and Walter 2016; Tellex et al. 2011).
These works require a semantically labeled representation of
the environment. A more challenging task is to understand
instructions in an unknown environment. To understand
such instructions, a robot/agent needs to ground natural lan-
guage instructions to the situated environment and conjec-
ture spatial relations between entities which are potentially
unknown to the robot (Duvallet, Kollar, and Stentz 2013;
Williams et al. 2016; 2016; 2015; Duvallet et al. 2016). In
this work, we aim to build a system that can understand mul-
timodal spatial descriptions of unknown environment. The
work goes beyond previous works by incorporating abstract
deictic gestures.

Interpreting multimodal navigation instructions has been
widely studied. Most previous works focus on understand-
ing navigations in situated environment. (Skubic et al. 2004)
described a multimodal interface which understands spatial
relations using natural language, deictic and demonstrative
gestures as input. (Stiefelhagen et al. 2004) focuses on inter-
preting spontaneous reference expression (speech, pointing
and head gestures) when interacting with the situated envi-
ronment, rather than interpreting spatial descriptions not in
the environment. (Whitney et al. 2016) proposed a Bayesian
model to continuously understand pointing gestures and lan-
guage referential expressions. The approach was evaluated
with a final referential accuracy. (Matuszek et al. 2014) pre-
sented a high-level architecture of interpreting unscripted
deictic gesture and natural language for human-robot inter-
actions, in which all referents are represented to the robot. In
this paper, we investigate how deictic gestures benefit inter-
pretations on the incremental level. We found that besides a
higher final accuracy, incrementally interpreting deictic ges-
tures also leads to an earlier final correct decision.

Data collection
Task description
We designed a simple scene description task to elicit natural
multimodal descriptions, as shown in Figure 1. To focus on
the natural and incremental nature of the descriptions, we
designed in a somewhat idealised setting (similar to (Roy

1https://pub.uni-bielefeld.de/data/2913177

2002)), replacing landmarks as they would appear on a real-
world map with simple geometric shapes. This is intended to
reduce the cognitive load of participants and variance of the
verbal descriptions, while keeping the spatial complexity.

We generated 100 such scenes, each composed of two cir-
cles and a square. The size, shape and colour of each object
were randomly selected when the scenes were generated.
Object sizes are evenly distributed between 0.05 and 0.5 (as
ratio to the image scene size). There are 6 colours and 2
shapes. Each of them had equal chance to be assigned to an
object. The object positions were randomly generated and
adjusted until none of the objects overlap with other objects.

For each description episode, a scene was displayed on a
computer screen. Participants were asked to describe it ver-
bally (spoken; in German), possibly also using deictic ges-
tures. Colour, shape, size and relative spatial relations be-
tween the objects were suggested to be described. To provide
some feedback to the participants and create some impres-
sion of interactivity (rather than of making a passive record-
ing), after each description a score was shown on the screen,
ostensibly reflecting the degree of understanding of an auto-
mated system. In reality, the score was given by a confed-
erate who had the instruction to reward when all attribute
types were mentioned.

Recording setup
In the experiment, hand motion was tracked by a Leap sen-
sor, a USB peripheral device composed of two monochro-
matic cameras and three LED infrared sensors.2 The hand
motion data was recorded with MINT Tools (Kousidis,
Pfeiffer, and Schlangen 2013). Audio and video were
recorded by a camera. Timestamps were recorded in videos
and hand motion data.

After introducing the task, participants were seated in
front of a desk. A monitor was on the right of the desk to
show scenes. A Leap sensor was on the desk in front of par-
ticipants to track hand motion. Due to the small effective
tracking area of the sensor (about 600 mm above and 250
mm to each side of the device), we set a monitor in front of
participants to display hand movements. Participants were
encouraged to keep their hands in the tracking area while
gesturing. This helps to track all hand movements. None of
them reported unnatural gestures due to the limited tracking
area. Participants had several minutes to play with the sensor
before the experiment so that they knew the boundaries of
the effective tracking area. When the experiment started, the
monitor on the right displayed a scene. Participants started
to describe after watching it for a few seconds. There was
no time limit for each scene description. After each descrip-
tion, a score was shown on the screen for 10 seconds, then
the wizard advanced to the next scene. In total, 13 partici-
pants (native German speakers) took part in the experiment.
Each described for 20 minutes.

Data Processing
A sample multimodal description is shown below:

2www.leapmotion.com



(2) a) Hier[deixis] ist ein kleines Quadrat, in rot, hier[deixis] ist
ein hellblauer kleiner Kreis und hier[deixis] ist ein blauer
grosser Kreis.

b) Here[deixis] is a small square, red, here[deixis] is a light
blue small circle and here[deixis] is a blue big circle.

The recordings were manually transcribed by native speak-
ers, then temporally aligned with the recording on a word-
by-word level using an automatic forced alignment ap-
proach, using the InproTK toolkit (Baumann and Schlangen
2012). Utterances for each object were manually annotated
with the referred objects for training the language in NLU
module (see below for more details). For example “hier ist
ein kleines Quadrat” in the example above might be anno-
tated as referring to object1 in the scene.

The deictic gestures were manually annotated based on
hand movements in videos with ELAN, a software for anno-
tation.3 They were also annotated with referred objects in the
same way as the utterance annotation. With recorded times-
tamps, hand motion data were aligned with videos. Aligned
data frames in hand motion data were labeled as stroke hold
frames (hand stays at the targeted position (Kendon 1980))
or non-stroke hold frames (hands in movements or not re-
fer to any target object). The annotated labels were used for
training the deictic gesture detector (described in (2)).
Scene representation Each described scene was repre-
sented as a composition of three objects. Each object is
represented with four attributes: colour, shape (circle and
square), size (discretised into small, big, medium according
to their size) and position (x, y). The position is further dis-
cretised as vertical position (top, middle, bottom) and hori-
zontal position (left, centre, right) to be grounded to verbal
descriptions (see NLU section).
Varied gesture behaviours We observed that, when de-
scribing an object, participants gestured either with one hand
to denote the location or with two hands together to show the
relative position between two objects. In both cases, the spa-
tial layout of objects are encoded in gestures. The frame rate
of hand motion data was around 100 frames per second as
recorded by the Leap. Hence, the hand motion data is suffi-
cient for real-time and incremental processing.
Varied verbal descriptions Although participants were
strongly encouraged to mention colour, shape, size and rela-
tive positions of the objects, they were allowed to formulate
descriptions in their own way. In other words, the verbal de-
scriptions are, within these constraints, natural descriptions.
The vocabulary size is 291 and participants do indeed vary
in how the information was formulated and ordered: 1) Var-
ied colour descriptions. Participants used different words to
describe the same colour. For instance, purple and cyan ob-
jects were also described as lilac and light blue, respectively;
2) Flexible information sequence. Participants encode the in-
formation sequence as position, colour, size, shape or other
sequences; 3) Flexible gesture/speech compositions. While
some participants supplement deictic gestures with position
words like “bottom left”, they also described with words like
“a bit lower”, “here” or simply did not encode position in-

3http://tla.mpi.nl/tools/tla-tools/elan/

formation in verbal descriptions.

Real-Time Multimodal Understanding System
In this section, we describe our real-time multimodal under-
standing system. As shown in Figure 2, the system is com-
posed of two separate pipelines for speech and gesture pro-
cessing which take speech and hand motion data as input
respectively. A fusion module yields a joint interpretation
by combining outputs of the two pipelines. We will first se-
quentially describe individual components of each pipeline,
then describe how the speech and gesture information are
fused and applied to a scene retrieving task.

NLUASR

Utterance 
segmenter

Gesture 
detection

Fusion & 
Application

Gesture 
interpretation

here is a small red 
square, here is a 
yellow circle…

…Leap sensor

Language processing

Gesture processing

Figure 2: Multimodal system architecture.

Gesture processing: Gesture detector
The gesture detector takes hand motion data frames as in-
put and labels each frame as stroke hold or non-stroke hold.
Hence, it’s a binary classifier with hand motion features as
input. The training process was supervised by the annotated
gesture labels. As soon as a hand motion frame is labeled
as stroke hold, the gesture detector sends the hand position
to the Gesture interpretation module, which interprets the
gesture meaning with the stroke-hold coordinates.

Gesture features In the classification task, we represent
each data frame with 92 raw features (as provided by the
Leap SDK and recorded as above) as follows:
• hand velocity: the speed and movement direction of the palm in

millimetres per second (3 features).
• hand direction: the direction from the palm position toward the

fingers (3 features).
• palm normal: a vector perpendicular to the plane formed by the

palm of the hand (3 features).
• palm position: the center position of the palm in millimeters

from the Leap Motion Controller origin (3 features).
• grab strength: strength of a grab hand pose which ranges from

0 to 1(1 feature). Provided by Leap sensor.
• finger bone directions: the direction of finger bones (60 fea-

tures).
• finger bone angles: “side-to-side” openness between connected

finger bones (15 features). Provided by Leap sensor.
• finger angles: the angles between two neighbouring fingers (4

features).

While it might seem that hand velocity on its own al-
ready would give sufficient information to detect stroke hold
frames, we found that sometimes participants placed hands



in the gesture space without referring to any object. Us-
ing velocity alone for classification would cause many false
positive detections. We observed that, when not gesturing,
hands are usually in a relaxed status with downward palms
and smaller finger bone angles. Therefore, we represent each
hand data frame with the above 92 features and model stroke
hold recognition as a sequence classification task with a long
short-term memory (LSTM) network (implemented using
Keras (Chollet 2015)).

We selected a time window size of 200 ms before each
frame. Every other frame was dropped in the window to
reduce the load of the gesture detector. The sampled data
frames compose a sequence as input for an LSTM classifier.
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Figure 3: Stroke hold detection.

LSTM classifier The LSTM classifier includes two hid-
den layers and a sigmoid dense layer to give predictions. The
first hidden layer has 68 nodes whose outputs are defined by
tanh activation functions. The second hidden layer has 38
nodes and outputs via the dense layer. A dropout layer is ap-
plied to the second layer to enable more effective learning.
50% of the input units are randomly selected and set to 0 to
avoid overfitting. We chose a binary cross entropy loss func-
tion optimised with a rmsprop optimiser. The training was
stopped when validation loss stopped decreasing.

Figure 3 shows a sample of stroke hold detection results.
As a stroke hold often lasts for several frames, we take the
average hand position of all available frames, classified as
being in a stroke hold, as the position for the stroke hold. As
a result, we can compute and update the position of a stroke
hold while it is still going on.

Gesture processing: Gesture interpretation
According to stroke hold positions detected by the Gesture
detector, the gesture interpretation module resolves refer-
ences of deictic gestures and evaluates how well the spatial
configurations of the gestures and the objects fit with each
other in a real scene, as shown in Figure 4.

Interpreting individual gestures For the 2-D scene de-
scription task in this work, we only considered the gesture
position information on x and y plane and ignored the depth

information along z axis. We represent the gesture space of a
speaker as {(x, y) ∈ R2 : xmin ≤ x ≤ xmax, ymin ≤ y ≤
ymax}, where xmin, xmax, ymin, ymax are the boundaries
of a speaker’s gesture space estimated from all the gestures
of the speaker.

As the hand movement was tracked by a Leap sensor, the
stroke hold positions are defined in Leap sensor coordinate
system. To compare spatial configurations between gesture
and speech, gesture positions must be mapped to the image
coordinate system. Given a stroke hold (x, y), we mapped
it to the image coordinate system {(x, y) ∈ R2 : 0 ≤ x ≤
W, 0 ≤ y ≤ H}, and represented the new coordinate as:

G =

(
W ∗ (x− xmin)

xmax − xmin
,
H ∗ (y − ymin)

ymax − ymin

)
(1)

(a)

O1 O3

G1

G2

G3

(b)

O2
O2

(c)

O1

G1

G2

O3 G3

Figure 4: Mapping stroke hold positions from gesture space
to scene coordinate system. (a) shows the gestures in the ges-
ture space (Leap sensor coordinate system). In (b), gestures
are mapped to the target scene where objects O1 and O2 fit
with gestures G1 and G2 respectively. In (c), gestures are
mapped to a distractor scene, where G1 and G2 can not fit
to objects O1 and O2 as well as in the target scene in (b).

In this task, we assume each deictic gesture is meant to
refer to one object in the scene. The closer a mapped gesture
to an object, the more likely that the object is the referent of
the gesture. We trained a Gaussian kernel density estimation
(KDE) model f to turn the distance between an object Oi

and the gesture G into a probability which indicates how
likely the stroke hold fits the object:

p(Oi|G) = f(||G−Oi||) (2)
Details of training and evaluating of the model are described
in the evaluation section.

Spatial configuration Individual gestures show how well
each gesture fit with a candidate referent. With more than
one gestures, the spatial configuration of the sequence of
gestures can show how well the spatial configuration of
the gestures fit with the spatial configuration of objects. As
shown in Figure 4(b) and 4(c), the better the spatial configu-
rations of gestures and objects fit with each other, the smaller
the angle between the two vectors.

Given two gestures, we estimate the most likely referents
with the KDE model and measure how well the gestures fit
with the referents by cosine similarity. With n (n ≥ 2) ges-
tures in a scene description, the probability can be computed
as follows:

p(O1, · · · , On|G1, · · · , Gn) =

n∏
i=2

i−1∏
j=1

(Gi −Gi−j) · (Oi −Oi−j)

||Gi −Gi−j || ||Oi −Oi−j ||
(3)



If there is only one gesture, no spatial configuration infor-
mation is conveyed, therefore the probability is 1. In this
way, we incrementally apply gesture information to evaluate
how well the gestures fit with a scene.

Language processing: Utterance segmentation
Given word sequences, the segmenter identifies words that
start a new description, labels previous word with SEG and
informs the NLU module.

We model the segmenter as a sequential classification
task, as a new description only starts after previous de-
scription is over. Hence, the classifier must therefore learn
over a sequence of words to predict segment boundaries.
We trained an LSTM network for the task (also using
Keras (Chollet 2015)). The network was fed the current
word using a one-hot encoding (vocabulary size 266), and
had one hidden layer and a sigmoid dense layer that gives
the prediction. There are 100 nodes in the hidden layer.

A dropout layer was applied to it to enable more effective
learning. 30% of the output units from the hidden layer were
randomly selected and set to 0 to avoid overfitting. The loss
function of the model was a binary cross entropy loss func-
tion. It was optimised with a rmsprop optimiser. The training
was stopped when validation loss stopped decreasing.

Note that, the descriptions in the corpus are limited to
simple scenes where each description includes three object
descriptions, which usually end with object names such as
“kreis” (circle) and “quadrat” (square). Hence, the words
are predictive of segmentation boundaries. However, due to
the variability of natural descriptions, they also occur in the
middle or at the beginning of a segment. For example, seg-
ments like “a red circle here” or “circle, on the left, red” also
occur in our corpus. We adopted a simple rule-based seg-
menter which simply segments object descriptions based on
the keywords “kreis” and “quardrat” as our baseline model,
and compared it with the LSTM model (see Evaluation).

Language processing: NLU
Given words from a segment U , the NLU module applies
a simple incremental update model (SIUM) (Kennington
and Schlangen 2017; Kennington, Kousidis, and Schlangen
2013) and outputs a probability distribution over all objects
in each candidate scene to the fusion module. We opted for
SIUM for it learns a grounded mapping between words and
visual objects and can be applied incrementally:

p(O|U) =
1

p(U)
p(O)

∑
r∈R

p(U |r)p(r|O) (4)

p(O|U) indicates how likely the segment U refers to the ob-
jectO. The latent variableR takes an object property r from
a property set (i.e., colour, shape, size, vertical and horizon-
tal positions), represented as symbols in the dataset.
p(U |r) is the probability that object property r is de-

scribed by segment U . It can be learned from data by ob-
serving references to objects with that property r. p(r|O)
is a normalised distribution over all actual properties of ob-
ject O. U is represented by ngrams. During application, we
marginalised over the properties R of object O, to yield a

distribution over candidate objects in a scene. With each
word increment, we update p(O|U) by taking the previous
distribution as prior for the current step. We then combine
p(O|U) with gesture, which will now be explained.

Multimodal fusion & application
The fusion module combines the probability distributions
from the two pipelines and retrieves the scene with high-
est probability. (In the usual terminology, e.g. (Atrey et al.
2010), this is hence a late fusion approach.) Different from a
normal late fusion approach, the fusion module in this work
includes two steps: 1) multimodal fusion for reference reso-
lution (object level), 2) multimodal fusion of spatial config-
uration for each scene.

Reference resolution For each segment U , we combine
the speech and gesture probability distributions to compute
a final probability as follows:

p(Oi|U,G) = λ1 ∗ p(Oi|U) + (1− λ1) ∗ p(Oi|G) (5)

λ1 is a weight parameter. When there are no gestures aligned
with the segment U , P (Oi|G) is set to 0; λ1 is set to 1.

Since utterances are segmented into individual object de-
scriptions, we assume each segment U only refers to one
object. The object with highest probability is taken as the
estimated referent for the description (U, G):

O∗i = argmax
Oi

p(Oi|U,G) (6)

Scene description understanding For each candidate
scene C (6 candidate scenes in total, see Evaluation for de-
tails), we computed a final score by combining the spatial
configuration score with the score from previous steps:

p(C) =λ2 ∗
n∑

i=1

p(Oi)
∗

+ (1− λ2) ∗ p(O1, · · · , On|G1, · · · , Gn)

(7)

the weight parameter λ2 determines how much speech con-
tributes to the final decision.

Evaluation
We evaluated individual system components and the whole
system with a “hold-one-out” setup. Each time, data from
one participant was left as test data while other data as train-
ing data to prevent the system from learning about possible
idiosyncrasies of a speaker on whom it is tested.

Gesture detector evaluation
The gesture detector classifier achieved an F1-score of
0.85, precision 0.77, recall 0.94. The classification for each
stroke hold takes around 10 to 20 ms, correlated to the com-
putational ability of the machine.

Currently, we haven’t compared our gesture detector
model with other models. Since the main focus of this paper
is interpretation and application of the multimodal descrip-
tions, we leave it as future work to implement other models
and compare the performance with the current model.



Gesture interpretation evaluation
We evaluated the KDE model by object reference accuracy.
Namely, given a gesture position, how often does the refer-
ential object get the highest score?

We fit a Gaussian KDE model (with the bandwidth setting
to 5) using the distances between mapped gesture positions
and referential object positions in the training data.

To test the model, for each gesture in the test set, we com-
puted the distance between the mapped gesture position and
all objects in a scene. The model achieves an average ac-
curacy of 0.81, which significantly outperforms the chance
level baseline 1/3.

Utterance segmenter evaluation

Model F1-score Recall Accuracy Std of Acc.
Baseline 0.84 0.83 0.85 0.23
LSTM 0.89 0.88 0.92 0.10

Table 1: Evaluation results of utterance segmenter.

We compared our LSTM model with a rule-based baseline
model. As shown in Table 1, the LSTM model outperforms
the baseline model. It achieves a higher accuracy score and
the standard deviation of accuracy is lower which indicates
stable performances between participants. This is consistent
with our observation that the verbal descriptions are natu-
ral and there are individual differences between participants
even within the task constraints. It’s likely that with more
training data, the LSTM model will perform even better.

The NLU component is evaluated as part of the whole
system evaluation show in the next section.

Speech only Gesture only Multimodal
Human eval 0.86 / - 0.32 / - 0.77 / -
Our System 0.75 / 0.79 0.50 / 0.50 0.84 / 0.85
Baseline 0.17 / 0.41 0.17 / 0.41 0.17 / 0.41

Table 2: Evaluation results (accuracy / MRR). See text for
human eval method.

Whole system evaluation
To assess the whole system, we designed offline tests in uni-
modal and multimodal setups. We simulated the multimodal
interaction by playing back multimodal descriptions in re-
altime. The transcriptions of speech were played back, sim-
ulating output of an incremental ASR, and stroke hold po-
sitions detected from the motion data were played back as
gesture positions.

We created a test set for each scene in the corpus. Each
test set includes the target scene and 5 randomly selected
distractor scenes. Hence, the chance level accuracy of the
scene retrieving task is 0.17.

The metrics We evaluated the system performance with ac-
curacy and mean reciprocal rank (MRR):

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(8)

|Q| indicates the set of scene retrieval queries. For each
scene retrieval, we rank the candidate scenes according to
the scores from the fusion module (e.g., the scene with the
highest score got a rank of 1). ranki ranges from 1 to 6.
MRR ranges from 0.41 (the worst case) to 1 (the ideal case).

Speech only In this test, only speech contributes informa-
tion to the decision. I.e., λ1 in Equation 5 and λ2 in Equation
7 equal 1.

As shown in Table 2, the average MRR of the tests is 0.79.
It significantly outperforms the baseline. Comparing evalu-
ation score of each participants, we observed individual dif-
ferences between speakers. Given that the evaluation setups
are the same for all the participants, the difference could be
due to varied language descriptions (e.g., omitting spatial re-
lations in language descriptions and only referring to objects
with visual properties), which affects the performance of the
utterance segmenter and the NLU model.

Gesture only In this test, we set the weight of language
descriptions (i.e., λ1 in equation 5 and λ2 in 7) in the fusion
module to 0, so that only gestures contribute to making the
scene retrieving decision.

The average accuracy of all tests is 0.50. It outperforms
the baseline while underperforms the multimodal model.
Note that gestures only convey positional information and
the spatial configuration of the referents, the similarity be-
tween targeted scene and distractors also affect the results.

Speech + gesture In this test, the fusion module com-
bined information from speech and gestures. We assumed
that speech and gestures contribute equally, therefore, λ1 in
equation 5 and λ2 in 7 were set to 0.5. The average MRR
of all tests is 0.84. It shows that gestures help to improve the
system performance.

Discussion The results show that our method can success-
fully extract spatial information from gestures. The “speech-
only” condition also achieves good performance. Combin-
ing speech and gestures further improves the system per-
formance, although the improvement is somewhat limited.
One reason for this is that position information is often re-
dundantly encoded in verbal descriptions. Overlap in con-
tent between gestures and speech has been observed in pre-
vious works (Epps, Oviatt, and Chen 2004); the data col-
lection setup may have further encouraged such redundant
encoding. In real situations, it may be less likely that speak-
ers indeed mention all attributes, in which case contributions
of modalities may be more complementary. (The system, in
any case, would be ready to handle this.) In a practical sys-
tem, this redundancy might even be a useful feature. Here,
we allowed the system to incrementally access the manual
transcription of the speech. In a live system, verbal descrip-
tions would come from automatic speech recognition (ASR),
and would be more noisy. The redundancy coming from the
gestures will then help locally disambiguate the ASR output.
We will test this in future work.



To ground our results in human performance, we ran-
domly selected 65 scene descriptions from the corpus and
asked crowd workers from the Crowdflower platform to per-
form the scene retrieving task. Using audio alone, the partic-
ipants beat our model (see Table 2); in the video-alone con-
dition, our system performs better. Interestingly, the full con-
dition (language + gestures) actually seems to be distracting
to the participants, compared to language-only. This is pre-
sumably due to the cognitive load of observing the gestures
and evaluating the scenes. We take this as support for the
assumption that in a real interaction, the delivery of such de-
scriptions would be much more interactive and delivered in
installments. To model this, a system needs to interpret in-
crementally. We evaluate our incremental performance next.

average fc

average ff

average eo

Percentage of utterance

0 0,175 0,35 0,525 0,7

speech only speech + gesture

Figure 5: Results of incremental evaluation. See text for de-
scription of metrics. Lower is better.

Incremental evaluation
We evaluated the system performance in speech only and
speech plus gesture setups on the incremental level, us-
ing incremental evaluation metrics (Baumann, Buß, and
Schlangen 2011; Buß and Schlangen 2010):
• average fc (first correct): how deep into the utterance (as per-

centage of the whole utterance duration) does the system makes
a correct decision the first time, potentially changing its mind
again later?

• average ff (first final): how deep into the utterance does the
system makes a correct final guess?

• average eo (edit overhead): ratio of necessary edits/all edits,
indicating how stable the system’s decisions are.

As shown in Figure 5, in both cases, the average fc is
0.24. Gestures cannot help to make the first correct deci-
sion earlier. It is because with only one gesture, the ges-
ture doesn’t contribute spatial configuration information to
differentiate between candidates. Speakers often start a de-
scription with speech, therefore speech comes earlier than
gestures and contributes earlier than gestures.

However, gestures do help to make the first final decision
slightly earlier, with an average ff of 0.65, comparing with
a value of 0.67 in speech only situation. For example, for
an utterance of 30 s, the precedence translates to 600 ms,
which is noticeable. In our corpus, descriptions usually end
with speech. Gestures complete earlier than speech. Given
all gestures in a description, the spatial configuration in ges-
tures contributes a lot to identify the targeted scene since all
scene candidates have different spatial configurations.

When combining speech with gestures, the average eo is
slightly higher. It shows that gestures complement speech

in the task. With the information gestures contributed, the
system risks more edits to move toward a right decision. The
reward of more edits is an earlier first final correct decision.

Figure 6 plots MRR over the course of the utterances (to
be able to average, again expressed as percentage of full ut-
terance). MRR increases continuously, indicating that for
this task, important information can still come late.
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Figure 6: Average MRR of incremental evaluation.

Discussion On the incremental level, gestures help to
achieve an earlier correct final decision. It’s promising that
in situated dialogues, the system might understand descrip-
tions from humans without waiting for all verbal descrip-
tions, thus may behave more human-like. Moreover, ges-
tures result in more overhead edits (Figure 6). This signal
can be used for clarifications in situated dialogues. For in-
stance, while a route giver notices that the system’s decision
changes to bad decisions, the route giver might change the
description strategy to make the decoding task easier, or the
system can make clarification requests. These signals will
lead to more human-like interactions.

Conclusion and future work
In this paper, we modelled the interpretation of multimodal
spatial descriptions, a common scenario in route giving
tasks. The evaluation results in uni-modal setups show that
both speech and gestures are informative. Combining speech
and gestures further improved the system performance. Fur-
thermore, we evaluated the system incrementally. The re-
sults show that gestures help to achieve earlier final correct
decisions. Hence, gestures not only contribute information,
but also benefit interpretations on the incremental level due
to its parallel nature with speech.

The language grounding model (SIUM) has been shown
to work in larger domains. We believe that our system forms
a good basis for scaling this up to online route description
understanding, for example for mobile robots. This will add
the orthogonal challenges of resolving descriptions of ac-
tual routes within the identified map areas, and resolving
more complex landmark descriptions, which may well con-
tain iconic gestures to describe building shapes (Cassell et
al. 2007). An open question is how more complex construc-
tions, for example involving quantifiers or negation, should
be modelled. In the future, we will test our system in re-
alistic human-robot interaction scenarios with more general
interpretation space.
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