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Abstract

Purpose—The evidence of a relation between folate intake and one-carbon metabolism (OCM)

with pancreatic cancer (PanCa) is inconsistent. In this study, the association between genes and

single-nucleotide polymorphisms (SNPs) related to OCM and PanCa was assessed.

Methods—Using biochemical knowledge of the OCM pathway, we identified thirty-seven genes

and 834 SNPs to examine in association with PanCa. Our study included 1,408 cases and 1,463

controls nested within twelve cohorts (PanScan). The ten SNPs and five genes with lowest p

values (<0.02) were followed up in 2,323 cases and 2,340 controls from eight case-control studies

(PanC4) that participated in PanScan2. The correlation of SNPs with metabolite levels was

assessed for 649 controls from the European Prospective Investigation into Cancer and Nutrition.

Results—When both stages were combined, we observed suggestive associations with PanCa for

rs10887710 (MAT1A) (OR 1.13, 95%CI 1.04-1.23), rs1552462 (SYT9) (OR 1.27, 95%CI

1.02-1.59), and rs7074891 (CUBN) (OR 1.91, 95%CI 1.12-3.26). After correcting for multiple

comparisons, no significant associations were observed in either the first or second stage. The

three suggested SNPs showed no correlations with one-carbon biomarkers.

Conclusions—This is the largest genetic study to date to examine the relation between germline

variations in OCM-related genes polymorphisms and the risk of PanCa. Suggestive evidence for

an association between polymorphisms and PanCa was observed among the cohort-nested studies,

but this did not replicate in the case-control studies. Our results do not strongly support the

hypothesis that genes related to OCM play a role in pancreatic carcinogenesis.
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Introduction

Impaired DNA methylation is known to cause cancer through induction of chromosomal

instability [1]. Folate and related nutrients (homocysteine, cysteine, methionine, cobalamin,

and vitamin B6) are thought to influence carcinogenesis through the one-carbon metabolism

(OCM) pathway, which is involved in DNA repair, nucleotide synthesis, and methylation
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[2]. In particular, low folate levels may result in decreased S-adenosyl-methionine levels, the

primary donor for methylation reactions. It has been hypothesized that hypomethylation may

occur as result of altered folate metabolism [3]. One-carbon metabolites (i.e., folate and

related nutrients) have been associated with several types of cancer [4–8] and inverse

associations with pancreatic cancer (PanCa) have been observed for dietary folate, although

study results have been inconsistent [9–16]. In addition, previous studies in association with

PanCa for OCM-related SNPs observed a positive association with PanCa for the MTHFR

677TT genotype [17] and for two SNPs on the MTRR gene (rs162049 and rs10380) [18].

Genome-wide association studies (GWAS) of PanCa have not identified associations with

genes involved with OCM [19–24].

In the present study, we used a two-stage approach to evaluate whether 31 genes thought to

play a role in the OCM pathway (http://wikipathways.org/index.php/Pathway:WP241) were

associated with PanCa. Additionally, genes (ALPL, CPS1, CUBN, FUT2, PRICKLE2, and

TCN1) that included SNPs previously observed to predict one-carbon metabolite levels in

GWAS [25–27] were also included. The first stage included nested case control studies from

twelve cohorts that participated in the National Cancer Institute (NCI) Pancreatic Cancer

Cohort Consortium genome-wide association study (PanScan1) [19]. The second stage, used

for replication, included eight case-control studies with GWAS data that participated in the

Pancreatic Cancer Case-Control Consortium (PanC4) and were part of PanScan 2 [22].

Methods

The methods for PanScan1 and PanScan2 are described elsewhere [19,22]. The study

population included PanCa cases and control participants from the previously conducted

GWAS in the PanScan1 and PanC4 [19,22]. The first stage of our analyses included 1,408

incident cases and 1,463 controls from the twelve cohort studies that participated in

PanScan1 [19]. The second stage included 2,323 cases and 2,340 controls from eight case-

control studies that participated in PanC4 and were part of PanScan1 and PanScan2 [19,22].

All included studies had available dietary and lifestyle data. Cases were defined as

participants diagnosed with primary adenocarcinoma of the exocrine pancreas and controls

were matched to cases according to birth year, sex, and self-reported race/ethnicity and were

free of PanCa at the time of recruitment [19,22]. Genotyping was performed by the NCI

Core Genotyping Facility using the Illumina HumanHap550 and HumanHap550-Duo SNP

arrays (PanScan1) and Illumina Human 610-Quad arrays (PanScan2) [19,22]. Each

individual study obtained informed consent from study participants and approval from local

institutional review board. The Special Studies Institutional Review Board of the NCI

approved the pooled PanScan study [19,22].

Details of the collection of data across the cohorts are described elsewhere [19]. A total of

37 genes and 834 SNPs were included in the study. From all studies, data on the

participant’s age and gender were obtained. In addition, five effective principal components

or eigenvectors determined from the GWAS data were included as quantitative covariates to

correct for population structure.
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Data on one-carbon metabolite biomarkers (homocysteine, cysteine, methionine, folate,

cobalamin, and vitamin B6) measured in plasma were available for 327 controls of the case-

control study nested within the EPIC cohort. Biomarker levels were analyzed by MS-based

methods in the laboratory of BEVITAL AS (http://www.bevital.no) in Bergen, Norway [28].

In the first stage, the association for each SNP with PanCa was examined within the cohorts

of PanScan using unconditional logistic regression, adjusted for age and sex. To correct for

population stratification, analyses were also adjusted for cohort and five principal

components of population stratification. Allelic additive models were used where the risk

allele was the least frequent allele. p values were adjusted for multiple testing using the

permutation-based closed step-down minP procedure [29]. Genes were evaluated separately

using the adaptive rank truncated product (ARTP) method [30] with 20 truncation points,

using 10,000 permutations. This captures potential multiple association signals within a

gene, accounting for gene size and LD structure. Gene ARTP p values were adjusted for

multiple comparisons using a false discovery rate [31].

The ten SNPs and five genes that showed lowest p values for the association with PanCa in

the cohort data were followed up in eight case-control studies from PanC4, using similar

analyses. Because fewer comparisons were performed in this second stage, a Bonferroni

correction was applied to both SNP and gene p values to adjust for multiple comparisons.

Finally, a combined analysis of both stages was performed. Because combined results were

mainly driven by cohort results, these were adjusted for multiple comparisons using similar

techniques as applied to the first stage.

Adaptive rank truncated product p values also were computed for the total OCM pathway in

all stages using the top 5 genes as truncation points. An adjusted p value below 0.05 was

considered statistically significant.

Modification of the top ten SNPs by dietary intake of folate (in tertiles) was assessed in the

cohorts by testing the statistical significance of the multiplicative interaction terms using

likelihood ratio tests. Differences in least-squares means for plasma metabolite levels

(homocysteine, cysteine, methionine, folate, cobalamin, and vitamin B6) were compared per

genotype for each SNP by a pairwise t test in controls only.

Results

In the first stage of our analyses (cohort studies), rs10887710 (MAT1A) showed the lowest p

value of all tested SNPs (allelic OR 1.24, 95%CI 1.08-1.41, p 0.002) (Table 1). However,

after correcting for multiple comparisons, none of the SNPs were statistically significant.

None of the top ten SNPs for the first stage showed a relation with PanCa in the second

stage (case-control studies), with all p values greater than 0.2. When all studies were

combined (cohort and case-control), statistically significant associations were found for

rs10887710 (MAT1A), rs1552462 (SYT9), and rs7074891 (CUBN). However, after

correcting for multiple comparisons, the associations were not statistically significant.

Two genes (MAT1A, p 0.021 and TYMS, p 0.033) showed statistically significant ARTP P-

values in the first stage (Table 2). In the replication stage, none of the genes showed an
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association with PanCa. When both stages were combined, MTRR (p for cohort stage: 0.19)

showed a significant p value (p 0.05). After adjustment for multiple comparisons, no

significant associations were found in all stages. Additionally, the pathway analysis showed

ARTP-adjusted p values above 0.50 in all stages.

There were no significant interactions of the top one-carbon pathway SNPs or genes by

dietary folate. Within the subset of EPIC participants with the one-carbon biomarkers,

several associations were observed between one-carbon biomarkers and the ten SNPs with

the lowest p values in the cohort stage. For three SNPs in TYMS (rs3819101, rs11873007,

and rs3786355) that were in high linkage disequilibrium, the TT genotype correlated with

higher methionine levels than the CT (28.46 vs. 25.34 μmol/L; p 0.01) or CC genotype

(25.45 μmol/L; p 0.01). The AA genotype at rs1835898 (PRICKLE2) was associated with

higher folate (17.26 vs. 14.55 nmol/L for AG; p 0.04) and higher pyridoxal phosphate (PLP)

concentrations (63.44 vs. 44.45 nmol/L for AG; p 0.02 and 41.35 nmol/L for GG, p 0.02),

when compared to the AG or GG genotypes. The AC genotype at rs222338 (PRICKLE2)

was associated with higher cobalamin levels than the CC genotype (477.45 vs. 379.26

pmol/L; p 0.03) (data not shown).

Discussion

This is the largest genetic study to date examining the relation between germline variations

in OCM-related genes and PanCa risk. In the first stage of this study (cohort studies),

evidence for an association between genes (MAT1A and TYMS) and SNPs (most notably

rs10887710 [MAT1A]) involved in OCM with PanCa was observed. However, after

correcting for multiple comparisons, these associations were not statistically significant, nor

did the suggestive evidence replicate in the second stage (case-control studies) of this study.

No interaction between dietary folate and any of the ten SNPs with lowest p values in the

first stage was observed.

For several of the top ten SNPs, a correlation with one-carbon biomarkers was observed.

This indicates that the SNPs possibly directly influence biomarker levels, which could

strengthen evidence for a relation between these SNPs and PanCa. However, none of the

SNPs replicated in a second stage and correlations with biomarkers could only be calculated

from a subset of all included participants. Additionally, no clear association between one-

carbon metabolites and risk of PanCa has been observed within EPIC using the same data on

metabolites and PanCa [32].

The reason for observing no replication of the suggestive evidence observed in the first stage

of the study may have been due to differences in study designs, as cohort studies may be less

prone to survival bias. However, considering the large number of SNPs tested, it is most

likely that the significant SNPs observed in the cohort studies, which did not replicate in

case-control studies, were false-positives in the first stage of the analysis.

In conclusion, we observed suggestive associations between SNPs and genes involved in

one-carbon metabolism and risk of PanCa in the first stage of this study (cohort studies), but

none of the results replicated in the second stage (case-control studies). Our results do not
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strongly support the hypothesis that genes related to OCM play a role in pancreatic

carcinogenesis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 2

Top five genes from the cohort, with corresponding min P p-values for cohort, case-control, and combined

data, and other genes included in the pathway analysis

Genea and Chrb Subsetc P value (ARTP) P value (adjusted)

MAT1A, 10q23.1

Cohort 0.021 0.607

Replication, case-control 0.255 1.000

Combined 0.275 0.849

TYMS, 18p11.32

Cohort 0.033 0.607

Replication, case-control 0.377 1.000

Combined 0.815 1.000

GNMT, 6p21.1

Cohort 0.132 0.863

Replication, case-control 0.863 1.000

Combined 0.832 1.000

FUT2, 19q13.33

Cohort 0.150 0.863

Replication, case-control 0.546 1.000

Combined 0.431 1.000

MTRR, 5p15.31

Cohort 0.188 0.863

Replication, case-control 0.094 0.471

Combined 0.048 0.595

SLC6A5, 11p15.1 Cohort 0.194 0.863

MTHFS, 15q25.1 Cohort 0.225 0.863

MTHFR, 1p36.3 Cohort 0.230 0.863

FOLH1, 11p11.2 Cohort 0.322 0.863

SLC6A9, 1p33 Cohort 0.333 0.863

GCSH,16q23.2 Cohort 0.342 0.863

TCN2, 22q12.2 Cohort 0.357 0.863

CBS, 21q22.3 Cohort 0.404 0.863

PRICKLE2, 3p14.1 Cohort 0.405 0.863

NBPF3, 1p36.12 Cohort 0.407 0.863

AMD1, 6q21 Cohort 0.430 0.863

CTH, 1p31.1 Cohort 0.432 0.863

MAT2A, 2p11.2 Cohort 0.441 0.863

GIF, 11q13 Cohort 0.500 0.863

CPS1, 2q35 Cohort 0.504 0.863

SHMT1, 17p11.2 Cohort 0.536 0.863

FOLR2, 11q13.3-q13.5 Cohort 0.553 0.863

MTHFD1, 14q24 Cohort 0.564 0.863

SLC1A5, 19q13.3 Cohort 0.590 0.863

GGH, 8q12.3 Cohort 0.623 0.863

ALDH1L1, 3q21.3 Cohort 0.644 0.863

BHMT, 5q13.1-q15 Cohort 0.665 0.863

FOLR3, 11q13 Cohort 0.675 0.863
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Genea and Chrb Subsetc P value (ARTP) P value (adjusted)

SHMT2, 12q12-q14 Cohort 0.683 0.863

SYT9, 11p15.4 Cohort 0.700 0.863

CUBN, 10p12.31 Cohort 0.724 0.865

ALPL, 1p36.12 Cohort 0.766 0.886

TCN1, 11q11-q12 Cohort 0.826 0.901

SLC19A1, 21q22.3 Cohort 0.828 0.901

MTR, 1q43 Cohort 0.879 0.929

DHFR, 5q11.2-q13.2 Cohort 0.925 0.951

GSS, 20q11.2 Cohort 0.983 0.983

The gene-level results using the Adaptive Rank Truncated Product approach, of the 37 genes in a total of 1,407 pancreatic cancer cases and 1,463
controls. For each SNP, the logistic regression analysis used adjustment for age in ten-year categories, sex, study, five principal components of
population stratification. Adjustment for multiple comparisons was done using an FDR correction for the cohort and combined stage, and using a
Bonferroni correction for the case-control stage.

a
Gene neighborhood within 20 kb upstream and 10 kb downstream of SNP.

b
Chromosome and NCBI Human genome Build 36 location.

c
Subset; Cohort: Cohort studies, Replication, case-control: Case-control studies, Combined: all studies.
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