
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 326–336,
Valencia, Spain, April 3-7, 2017. c©2017 Association for Computational Linguistics

Joint, Incremental Disfluency Detection
and Utterance Segmentation from Speech

Julian Hough and David Schlangen
Dialogue Systems Group // CITEC // Faculty of Linguistics and Literature

Bielefeld University
firstname.lastname@uni-bielefeld.de

Abstract

We present the joint task of incremen-
tal disfluency detection and utterance seg-
mentation and a simple deep learning sys-
tem which performs it on transcripts and
ASR results. We show how the constraints
of the two tasks interact. Our joint-task
system outperforms the equivalent indi-
vidual task systems, provides competitive
results and is suitable for future use in con-
versation agents in the psychiatric domain.

1 Introduction

Artificial conversational systems promise to be a
valuable addition to the existing set of psychi-
atric health care delivery solutions. As artificial
systems, they can ensure that interview protocols
are followed, and, perhaps surprisingly, due to
being “just a computer”, even seem to increase
their interlocutors’ willingness to disclose (Lucas
et al., 2014). Interactions with such conversational
agents have been shown to contain interpretable
markers of psychological distress, such as rate of
filled pauses, speaking rate, and various tempo-
ral, utterance and turn-related interactional fea-
tures (DeVault et al., 2013). Filled pauses and dis-
fluencies in general have also been shown to pre-
dict outcomes to psychiatric treatment (Howes et
al., 2012; McCabe et al., 2013).

Currently, these systems are only used to elicit
material that is then analysed offline. For offline
analysis of transcripts with gold standard utter-
ance segmentation, much work exists on detecting
disfluencies (Johnson and Charniak, 2004; Qian
and Liu, 2013; Honnibal and Johnson, 2014). To
enable more cost-effective analysis, however, and
possibly even let the interaction script itself be de-
pendent on an analysis hypothesis, it would be bet-
ter to be able to work directly off the speech sig-

nal, and online (incrementally). This is what we
explore in this paper, presenting and evaluating a
model that works with online, incremental speech
recognition output to detect disfluencies with var-
ious degrees of fine-grainedness.

As a second contribution, we combine incre-
mental disfluency detection with another lower-
level task that is important for responsive con-
versational systems, namely the detection of turn-
taking opportunities through detection of utter-
ance boundaries. (See for example (Schlangen
and Skantze, 2011) for arguments for incremen-
tal processing and responsive turn-taking in con-
versational systems, and (Schlangen, 2006; At-
terer et al., 2008; Raux, 2008; Manuvinakurike
et al., 2016, inter alia) for examples of incremen-
tal utterance segmentation). Besides both being
relevant for interactive health assessment systems,
these tasks also have an immanent connection, as
the approach typically used for turn-end detection
is simply waiting for a silence of a certain dura-
tion, and hence is mislead by intra-turn silent dis-
fluencies. Similarly, without gold standard seg-
mentation, disfluent restarts and repairs may be
predicted at fluent utterance boundaries. We hence
conjecture that the tasks can profitably be done
jointly.

2 Related Work

As a separate task, there has been extensive work
on utterance segmentation. Cuendet (2006) re-
ports an NIST-SU utterance segmentation error
rate result on the Switchboard corpus at 48.50,
using a combination of lexical and acoustic fea-
tures. Ang et al. (2005) report NIST-SU scores
in the region of 34.35–45.92 on the ICSI Meet-
ing Corpus. Martı́nez-Hinarejos et al. (2015) re-
port state-of-the-art dialogue act segmentation re-
sults on Switchboard at 23.0 NIST-SU, however

326

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications at Bielefeld University

https://core.ac.uk/display/211859201?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

this is not on the level of full dialogues, but on
pre-segmented turn stretches. For the equivalent
task of sentence boundary detection, Seeker et al.
(2016) report an F-score of 0.7665 on Switchboard
data, using a joint dependency parsing framework,
and Xu et al. (2014) implement a deep learning
architecture and report an 0.810 F-score and 35.9
NIST-SU error rate on broadcast news speech us-
ing prosodic and lexical features using a DNN for
prosodic features, combined with a CRF classifier.
However scaling this to spontaneous speech and
the challenges of incrementality explained here, is
yet to be tested.

Strongly incremental approaches to the task are
rare, however (Atterer et al., 2008) achieve a word-
by-word F-score of 0.511 on predicting whether
the current word is the end of the utterance (dia-
logue act) on Switchboard, and using ground-truth
syntactic information indicating sentence structure
information achieve 0.559.

Disfluency detection on pre-segmented utter-
ances in the Switchboard corpus has also had a
lot of attention, and has also reached high per-
formance (Johnson and Charniak, 2004; Georgila,
2009; Qian and Liu, 2013; Honnibal and John-
son, 2014). On detection on Switchboard tran-
scripts, Honnibal and Johnson (2014) achieve
0.841 reparandum word accuracy using a joint
dependency parsing approach, and Hough and
Purver (2014) in a strongly incrementally operat-
ing system without look-ahead achieve 0.779, us-
ing a pipeline of classifiers and language model
features. The potentially live approaches tend to
use acoustic information (Moniz et al., 2015) and
do not perform on a comparable level to their
transcription-based task analogues, nor achieve
the same fine-grained analysis of disfluency struc-
ture, which is often needed to identify the disflu-
ency type and compute its meaning.

Live incremental approaches to both tasks have
not been able to benefit from reliable ASR hy-
potheses arriving in a timely manner until recently.
Now the arrival of improved performance, in terms
of low Word Error Rate (WER) and better live per-
formance properties is making this possible (Bau-
mann et al., 2016). In this paper we define a
joint task in a live setting. After defining the task
we present a simple deep learning system which
simultaneously detects disfluencies and predicts
up-coming utterance boundaries from incremental
word hypotheses and derived information.

3 The Tasks: Real-time disfluency
prediction and utterance segmentation

3.1 Incremental disfluency detection
Disfluencies, in their fullest form as speech re-
pairs, are typically assumed to have a tripartite
reparandum-interregnum-repair structure (terms
originally proposed by Shriberg (1994)), as exhib-
ited by the following example.

John [likes︸ ︷︷ ︸
reparandum

+ { uh }︸ ︷︷ ︸
interregnum

loves]︸ ︷︷ ︸
repair

Mary

(1)

If reparandum and repair are absent, the dis-
fluency reduces to an isolated edit term. In the
example given here, the interregnum is filled by
a marked, lexicalised edit term, but more phrasal
terms such as I mean and you know can also occur.

The task of disfluency detection then is to recog-
nise these elements and their structure, and the
task of incremental disfluency detection adds the
challenge of doing this in real-time, from “left-to-
right”. In that latter setting, detection runs into
the same problem as a human processor of such
an utterance: Only by the time the interregnum
is encountered, or possibly even only when the
repair is seen, does it become clear that earlier
material now is to be considered as “to be re-
paired” (reparandum).1 Hence, the task cannot be
set up as a straightforward sequence labelling task
where the tags “reparandum”, “interregnum” and
“repair” are distributed left-to-right over words as
indicated in the example above; in this example, it
would unfairly require the prediction that “likes”
is going to be repaired, at a point when no evi-
dence is available for making it.

We follow Hough and Schlangen (2015) and use
a tag set that encodes the reparandum start only at
a time when it can be guessed, namely at the onset
of the actual repair. This is illustrated in Figure 1
in the “disfluency (complex)” row. Here, the word
at the repair onset, “to”, gets tagged as repair on-
set (rpS) and, at the same time, as repairing mate-
rial beginning 5 tokens in the past (-5, yielding the
complex label rpS-5). Additionally, we annotate
all repair words (as rpMid, if the word is neither
first nor last word of the repair, and together with
the disfluency type, if it is the final word; here, the

1Looking at it from a different perspective, this problem
has been called the continuation problem by Levelt (1983):
the repair material can only be integrated with the previous
material, if it is identified as replacing the reparandum.

327

| A uh flight [to Boston + { uh I mean } to Denver] on Friday | Thank you |
Disfluency (simple) f e f f f e e e rpS f f f f f

Disfluency (complex) f e f f f e e e rpS−5 rpESub f f f f

Utterance segmentation .w- -w- -w- -w- -w- -w- -w- -w- -w- -w- -w- -w. .w- -w.
Joint task (simple) .f- -e- -f- -f- -f- -e- -e- -e- -rpS- -f- -f- -f . .f- -f .
Joint task (complex) .f- -e- -f- -f- -f- -e- -e- -e- -rpS−5- -rpESub- -f- -f . .f- -f .

Figure 1: An utterance with the traditional repair disfluency and segmentation annotation in-line
(Shriberg, 1994; Meteer et al., 1995) and our incrementally-oriented tag schemes

label is rpESub for substitution),2 editing terms (e)
and fluent material (f) as well. From the complex
tag set, we can reconstruct the disfluency structure
as in (1) in a strongly incremental fashion. We
also define a reduced tag set (shown in Figure 1 as
“disfluency (simple)” that only tags fluent words,
editing terms, and the repair onset.

3.2 Incremental utterance segmentation
We formulate incremental utterance segmentation
as the judgement in real time as to when the
current utterance is going to end, and so like
(Schlangen, 2006; Atterer et al., 2008), we move
from purely reactive approach, signalled by si-
lence, to prediction. To allow prediction to be
possible we use four tags for classifying stretches
of acoustic data (which can be the time spans of
forced aligned gold standard words, or the word
hypotheses timings provided by an ASR), which
are equivalent to a BIES (Beginning, Inside, End
and Single) scheme for utterances– see Table 1.

The tag set allows evidence from the prior con-
text of the word (the acoustic and linguistic infor-
mation preceding the word) to be used to predict
whether this word continues a current utterance
(the - prefix) or starts anew (the . prefix), and
also permits the online prediction of whether the
next word (or segment) will continue the current
utterance (the - suffix) or the current word ends
the utterance (the . suffix). From these utterance
boundary predictions can be derived when -w. or
.w. is predicted (i.e. “will end utterance”). The
tag set is summarized in Table 1 and an example is
in Fig. 1, row “utterance segmentation”.

3.3 Defining the joint task
Studying the two phenomena in natural dialogue
corpora, for example in terms of rich transcription
mark-up in the SWBD annotation manual (Meteer
et al., 1995), there are several constraints:

2The other repair type is delete rpEDel. Verbatim
reparandum-repair repetitions are subsumed by rpESub.

-w- -w. .w- .w.
f 1 1 1 1
e 1 1 1 1

rpS 1 1 0 0

-w- -w. .w- .w.
f 1 1 1 1
e 1 1 1 1

rpS-[1-8] 1 0 0 0
rpMid 1 0 0 0
rpESub 1 1 0 0
rpEDel 1 1 0 0

rpS-[1-8]ESub 1 1 0 0
rpS-[1-8]EDel 1 1 0 0

Figure 2: The joint tag set for the task. 1= tag in
set, simple (top) and complex (bottom).

C1 Repair onsets cannot begin an utterance (by
definition of first position repairs needing a
preceding reparandum).

C2 Repairs must be completed within the utter-
ance in which they begin.

C3 Utterances can be interrupted or abandoned,
but these are different to within-dialogue-act
repairs.

Given these constraints, we can generate a joint
tag set as a subset of the cross product of both tag
schemes. The utterance segmentation tags in Ta-
ble 1 are combined with the simple strongly in-
cremental disfluency tags described in §3.1. The
joint set for both the simple and complex tasks
is in Fig. 2, where 1 indicates the tag is in the
set and 0 otherwise. In the simple task, there are
10 tags. The joint set for the full task including
disfluency structure detection has 53 possible tags
(rather than the full cross product, which would
be 92). In reality, in the training corpus, only 43
of these possible combinations were found, so this
constituted our tag set in practice. See Fig. 1 (bot-
tom 2 rows) for example sequences.

3.4 Research questions
Given the formulation of the joint task, we would
like to ask the following questions of scalable, au-
tomatic approaches to it:

328

-w- a word which continues the current utterance and whose following word will continue it
-w. a word which continues the current utterance and is the last word of it
.w- a word which is the beginning of an utterance and whose following word will continue it
.w. a word constituting an entire utterance

Table 1: The tag set for the continuity of each word within a dialogue act

Q1 Given the interaction between the two tasks,
can a system which performs both jointly
help improve equivalent systems doing the
individual tasks?

Q2 Given the incremental availability of word
timings from state-of-the-art ASR, to what
extent can word timing data help perfor-
mance of either task?

Q3 To what extent is it possible to achieve a good
online accuracy vs. final accuracy trade-off in
a live, incremental, system?

To address these questions we use a combi-
nation of a deep learning architecture for se-
quence labelling and incremental decoding tech-
niques which we will now explain.

4 LSTMs and Incremental Decoding for
Live Prediction

Our systems consist of deep learning sequence
models which consume incoming words and use
word embeddings in addition to other features to
predict disfluency and utterance segmentation la-
bels for each word, in a strictly left-to-right, word-
by-word fashion. We also use word timings as in-
put to a separate classifier whose output is com-
bined with that of the deep learning architecture in
an incremental decoder. See Fig. 3 for the over-
all architecture. We describe the elements of the
system below.

4.1 Input Features
In our systems we use the following input features:
• Words in a backwards window from the most

recent word (transcribed or ASR)
• Durations of words in the current window

(from transcription or ASR word timings)
• Part-Of-Speech (POS) tags for words in cur-

rent window (either reference, or from an in-
cremental CRF tagger)

For incremental ASR, we use the free trial ver-
sion of IBM’s Watson Speech-To-Text service.3

The service provides good quality ASR on noisy
3https://www.ibm.com/watson/

developercloud/speech-to-text.html

hidden
layer t

hidden layer t-1

embeddings
for words
t-(n-1)..t

output
softmax
layer t

window of
timings
t-(n-1)..t

Markov
Model

decoder

copy/
storage

window of
words t-(n-1)..t

timings classifier softmax t

memory unit t-1

copy/
storage

memory
unit t

ot

 ft

 it

Figure 3: Schematic structure of the system.

data- on our selected heldout data on Switchboard,
the average WER is 26.5%. The Watson service,
crucially for our task, does not filter out hesita-
tion markers or disfluencies, which is rare for cur-
rent web-based services (Baumann et al., 2016).
The service also outputs results incrementally, so
silence-based end-pointing is not used. The ser-
vice also returns word timings, which upon man-
ual inspection were close enough to the reference
timings to use as features in the live version of our
system. In this paper, the durations are not features
in the principal RNN but in an orthogonal logistic
regression classifier– see §4.3.

For POS-tagging, we use the NLTK CRF tag-
ger, which when trained on our training data and
tested on our heldout data achieves 0.915 accuracy
on all tags, which was sufficiently good for our
purposes. Crucially, for the label UH, which is im-
portant evidence for an edit term, it achieves an
F-score of 0.959.

4.2 Architectures
We use two well-studied deep learning architec-
tures for our sequence labelling task– the El-
man Recurrent Neural Network (RNN) and the
Long Short-Term Memory (LSTM) RNN. Archi-
tecturally the RNNs here reproduce approximately
the identical set-up as described in (Mesnil et al.,
2013; Hough and Schlangen, 2015).

Input and word embeddings Following (Mes-

329

nil et al., 2013), we use 1-of-N, or ‘one-hot’, vec-
tors as our raw input to the network, which provide
unique indices to dense vectors in a word embed-
ding matrix. The initial word embeddings were
obtained from Switchboard data using the python
implementation of word2vec in gensim,4 using
a skip-gram context model. The training data for
the initial embeddings was cleaned of disfluencies,
effecting a ‘clean’ language model (Johnson and
Charniak, 2004). These embeddings were then
further updated as part of the objective function
during the task-specific training itself. Instead of
single word/POS inputs we use context windows
which, like n-gram language models, are back-
wards from the current word. The internal rep-
resentation of context windows of length n in the
network is created through the ordered concatena-
tion of the n corresponding word embedding vec-
tors of size 50, resulting in an input to the network
of dimension R50n. We use n =2 in our experi-
ments here.

RNN architecture and activation functions In
addition to the embedding layer, we use a (re-
current) hidden layer of 50 nodes and an output
layer the size of our training tag sets (43 nodes
for the complex task and 10 nodes for the simple
task). The standard Elman RNN dynamics in the
recurrent hidden layer at time t is as in (3), where
the hidden layer h(t) is calculated as the Sigmoid
function (2) of the addition of the weight matrix
U ′ applied via dot product to the current input vec-
tor x(t) and the weight matrix V ′ applied via dot
product to the stored previous value of the hidden
layer at time t−1, i.e. h(t−1).

s(x) =
1

1 + e−x
(2)

h(t) = s(U ′x(t) + V ′h(t−1)) (3)

We use the standard softmax function for the
node activation function of the output layer.

At decoding time, the compression of the con-
text into the hidden layer allows us to save the cur-
rent state of the decode live compactly from ASR
results as they become available to the network.
In order to integrate the new incoming words and
POS tags with the history, it is only necessary to
store the current hidden layer activation h(t) (and
the output softmax layer too, if that is being used
by another process), and wait for new information
to the input layer.

4http://radimrehurek.com/gensim/

LSTM unit In our LSTM, we include recurrent
LSTM units that uses the input x(t), the hidden
state activation h(t−1), and memory cell activa-
tion c(t−1) to compute the hidden state activation
h(t) at time t. It uses a combination of a mem-
ory cell c and three types of gates: input gate i,
forget gate f , and output gate o to decide if the in-
put needs to be remembered (using the input gate),
when the previous memory needs to be retained
(forget gate), and when the memory content needs
to be output (using the output gate). For each
time step t the cell activations c(t) and h(t) are
computed by the below steps, whereby the � is
element-wise multiplication.

i(t) = s(W
′
i x(t) + U

′
ih(t−1) + V

′
i c(t−1)) (4)

f(t) = s(W
′
f x(t) + U

′
f h(t−1) + V

′
f c(t−1))

c(t) = f(t)� c(t−1) + i(t)� tanh(W
′
cx(t) + U

′
ch(t−1))

o(t) = s(W
′
ox(t) + U

′
oh(t−1) + V

′
oc(t))

h(t) = o(t)� tanh(c(t))

While many more weight matrices need to be
learned (all the W ′, U ′ and V ′ subscripted matri-
ces), as with the standard RNN, at decoding time
it is efficient to store the current decoding state in
a compact way, as it is only neccessary to save the
activation of the memory cell c(t) and the hidden
layer h(t) to save the current state of the network.
See Fig. 3 for the schematic overall disfluency de-
tection architecture for the LSTM.

Learning: error function and parameter up-
date As is common for RNNs (De Mulder et al.,
2015) we use negative log likelihood loss (NLL)
as a cost function and use stochastic gradient de-
scent over the parameters, including the embed-
ding vectors, to minimize it. We use a batch size
of 9 words, consistent with our repair tag scheme.
Both networks use a learning rate of 0.005 and L2
regularisation on the parameters to be learned with
a weight of 0.0001.

4.3 Incremental decoding and timing driven
classifier

Markov model For decoding optimization we use
Viterbi decoding on the sequence of softmax out-
put distributions from the network in the spirit of
(Guo et al., 2014). We use a Markov model which
is hand-crafted to ensure legal tag sequences are
outputted for the given tag set. In our joint task,
this permits ‘late’ detection of an utterance bound-
ary if the probability for a -w. and following
.w- or .w. tag on their own are not the arg
max, but their combined probability permits the

330

best sequence. Similarly, in the complex task, re-
pairs where evidence of a repair end tag is strong,
but the repair onset tag was not the arg max can
be detected at the repair end. From an incremental
perspective, in Viterbi decoding there is the danger
of output ‘jitter’. We investigate how different out-
put representations have different effects on output
prediction stability in our evaluation.

Timing driven classifier As an edition to the
decoding step, we experimented with an indepen-
dent timing driven classifier which consumes the
durations of the last three words and outputs a
probability that this is a fluent continuation or the
beginning of a new utterance. We train a logistic
regression classifier on our training data. Combin-
ing this two-class probability with the probability
of the relevant utterance segmentation tags in de-
coding boosted performance considerably.

5 Evaluation Criteria

Accuracy On transcripts, we calculate repair
onset detection accuracy FrpS, where applicable
reparandum word accuracy Frm, and F1 accuracy
for edit term words Fe, which includes interregna.
For utterance segementation we also use word-
level F1 scores for utterance boundaries (end-of-
utterance words) FuttSeg. Carrying out the task
live, on speech recognition hypotheses which very
well may not be identical to the annotated gold-
standard transcription, requires the use of time-
based metrics of local accuracy in a time win-
dow (i.e. within this time window, has a disflu-
ency/utterance boundary been detected, even if
not on the identical words?)– we therefore cal-
culate the F1 score over 10 second windows of
each speaker’s channel. While this window-ing
can give higher scores on certain phenomena, it
tends to follow the word-level F-score so is a good
time-based indicator of accuracy.

For utterance segmentation, for comparison to
previous work we also use NIST-SU error rate
(Ang et al., 2005). NIST-SU is the ratio of the
number of incorrect utterance boundary hypothe-
ses (missed boundaries and false positives) made
by a system to the number of reference boundaries.

For a more coarse-grained metric which in-
cludes both tasks, which is useful in our target do-
main of interactions in a clinical context (Howes et
al., 2014), we look at the rpS : UttSeg ratio per
speaker correlation (Pearson’s R). This gives us
the best approximation as to how good the system

is at estimating repair rate per utterance.

Timeliness and diachronic metrics Crucial for
the live nature of the system, we measure latency
(i.e. how close to the actual time a disfluency or
boundary event occurred has one been predicted?)
and also stability of output over time (i.e. how
much does the output change?). For latency we
use Zwarts et al. (2010)’s time-to-detection met-
ric: the average distance (in numbers of words)
consumed before first detection of gold standard
repairs from the repair onset word, TDrpS.5 We
generalize this measure to the other tags of interest
to give TDe and TDuttSeg and also, particularly
crucially for the ASR results, report the metrics in
terms of time in seconds.6

For stability, incorporating insights from the
evaluation of incremental processors by Baumann
et al. (2011), we measure the edit overhead (EO)
of the output labels– this is the percentage of un-
necessary edits (insertions and deletions) required
to get to the final labels outputted by the system.

6 Experimental Set-up

We experiment with the 2 joint output representa-
tions in Fig. 1 and implement an RNN and LSTM
using Theano (Bergstra et al., 2010) as an exten-
sion to the code in Mesnil et al. (2013). We also
run the 3 individual versions of the tasks with
the tag sets shown in Fig. 1 for comparison. We
also train a word timings driven classifier which
adds information to the decoding step as explained
above to try to answer Q2.7

Data We train on transcripts and test on both
transcripts and ASR hypotheses. We use the
standard Switchboard training data for disflu-
ency detection (all conversation numbers begin-
ning sw2*,sw3* in the Penn Treebank III release:
100k utterances, 650K words) and use the stan-
dard heldout data (PTB III files sw4[5-9]*: 6.4K
utterances, 49K words) as our validation set. We
test on the standard test data (PTB III files 4[0-
1]*) with punctuation removed from all files.8 For

5Our measure is in fact one word earlier by default than
Zwarts et al. (2010) as we take detection after the end of the
repair onset word as the earliest possible detection point.

6These measures only apply to repairs and utterance
boundaries detected correctly.

7All experiments are reproducible. The code
can be downloaded at https://github.com/
dsg-bielefeld/deep_disfluency

8We include partial words as these may in theory become
available from the ASR in the live setting.

331

Eval.
Method

System Frm

(per
word)

Frps

(per
word)

Frps

(per
10s
win-
dow)

Fe

(per
word)

Fe

(per
10s
win-
dow)

FuttSeg

(per
word)

FuttSeg

(per
10s
win-
dow)

NIST
SU
(word)

rps /
uttSeg
/
speaker
correl.

Transcript

LSTM +timing - 0.719 0.764 0.918 0.889 0.748 0.707 43.64 0.91
LSTM - 0.720 0.766 0.915 0.890 0.688 0.666 51.89 0.92
LSTM(complex)
+timing

0.601 0.693 0.730 0.91 0.888 0.707 0.685 50.07 0.82

LSTM(complex) 0.599 0.686 0.727 0.907 0.889 0.638 0.638 58.91 0.84
RNN +timing - 0.683 0.730 0.909 0.886 0.704 0.710 52.42 0.86
RNN - 0.685 0.728 0.908 0.884 0.647 0.635 57.75 0.87
RNN(complex)
+timing

0.572 0.663 0.715 0.908 0.882 0.699 0.669 50.89 0.83

RNN(complex) 0.568 0.659 0.713 0.905 0.882 0.621 0.613 60.74 0.81

ASR

LSTM +timing - - 0.551 - 0.727 - 0.685 - 0.72
LSTM - - 0.548 - 0.726 - 0.630 - 0.79
LSTM(complex)
+timing

- - 0.555 - 0.721 - 0.665 - 0.68

LSTM(complex) - - 0.557 - 0.721 - 0.601 - 0.67
RNN +timing - - 0.542 - 0.718 - 0.681 - 0.69
RNN - - 0.540 - 0.718 - 0.627 - 0.68
RNN(complex)
+timing

- - 0.543 - 0.718 - 0.663 - 0.72

RNN(complex) - - 0.540 - 0.718 - 0.577 - 0.81

Table 2: Non-incremental (dialogue-final) results on transcripts and ASR results.
Eval.
Method

System Frps

(per
word)

Frps

(per 10s
window)

Fe

(per
word)

Fe (per
10s
window)

FuttSeg

(per
word)

FuttSeg

(per 10s
window)

NIST
SU
(word)

Transcript
LSTM (uttSeg only) - - - - 0.727 0.679 46.17
LSTM (disf only) 0.711 0.760 0.912 0.886 - - -
LSTM (joint task) 0.719 0.764 0.918 0.889 0.748 0.707 43.64

ASR
LSTM (uttSeg only) - - - - - 0.657 -
LSTM (disf only) - 0.531 - 0.721 - - -
LSTM (joint task) - 0.551 - 0.727 - 0.685 -

Table 3: Comparison of the joint vs. individual task performances

the ASR results evaluation, we only select a subset
of the heldout and test data whereby both chan-
nels achieved below 40% WER to ensure good
separation– this left us with 18 dialogues in the
validation data and 17 dialogues for testing.

We train all RNNs for a maximum of 50 epochs
else halt training if there is no improvement on the
best Frm score on the transcript validation set after
10 epochs.

7 Results and Discussion

Our dialogue-final accuracy results are in Table 2.
On transcripts, our best per-word FrpS reaches
0.720 and best Fe reaches 0.918. For utterance
segmentation, perword accuracy reaches 0.748
and the lowest NIST-SU error rate is 43.64. This
is competitive with (Seeker et al., 2016)’s 0.767
F-score and out-performs (Cuendet, 2006) on the
Switchboard data. The best rpS : uttSeg correla-
tion per speaker reaches 0.92 (p<0.0001).

In comparison to incremental approaches, we

outperform (Atterer et al., 2008)’s 0.511 accuracy
on end-of-utterance. Their work allows no predic-
tion lag in a strictly incremental setting, so is at a
disadvantage, however our result of 0.748 on tran-
scripts is reported alongside the average time to
detection of 0.399 words, which suggests on aver-
age the uttSeg when predicted correctly, is done so
with no latency.

With the exception of one metric, the LSTM
outperforms the RNN on transcripts. The sys-
tems using the timing model in general outperform
those with lexical information only on the utter-
ance segmentation metrics, whilst not having an
impact on disfluency detection.

According to the window-based accuracies, on
ASR results there is significant degradation in ac-
curacy for repair onsets (best FrpS=0.557) how-
ever utterance segmentation did not suffer the
same loss, with the best system achieving 0.685
accuracy. The rpS : uttSeg Pearson’s R correla-
tion per speaker reaches 0.81 (p<0.0001) in a sys-
tem with otherwise poor performance– the second

332

Eval.
method

System TTDrps

(word)
TTDrps

(time
in s)

TTDe

(word)
TTDe

(time
in s)

TTDuttSeg

(word)
TTDuttSeg

(time in
s)

EO

Transcript

LSTM +timing 0.004 0.253 0.573 0.614 0.399 1.837 11.44
LSTM 0.003 0.248 0.591 0.605 0.327 1.114 11.05
LSTM(complex) 0.093 0.281 0.114 0.348 0.283 1.107 7.63
LSTM(complex)
+timing

0.090 0.293 0.135 0.483 0.369 1.960 8.51

ASR

LSTM +timing - 0.202 - 0.734 - 3.247 20.71
LSTM - 0.199 - 0.649 - 1.645 20.44
LSTM(complex) - 0.236 - 0.341 - 2.303 20.70
LSTM(complex)
+timing

- 0.239 - 0.594 - 4.099 21.46

Table 4: Incremental results on transcripts and ASR results.

best achieved was 0.79 (p<0.0001).
For disfluency detection, standard approaches

use pre-segmented utterances to evaluate perfor-
mance, so this result is difficult to compare. How-
ever in the simple task, the accuracy of 0.720
repair onset prediction is respectable (compara-
ble to (Georgila, 2009)), and is useful enough to
allow realistic relative repair rates, in line with
our motivation. The complex tagging system per-
forms poorly on repairs compared to the litera-
ture, however the lack of segementation makes
this a considerably harder task, in the same way
as dialogue act tagging results are lower on un-
segmented transcripts (Martı́nez-Hinarejos et al.,
2015). Edit term detection performs very well at
0.918, approaching the state-of-the-art on Switch-
board reported at 0.938 (Hough and Purver, 2014).

The utility of a joint task As can be seen in
Table 3, the overall best performing systems on
the individual tasks do not reach the results in any
relevant metric of the best performing combined
system. The disfluency-only systems were run ig-
noring all utterance boundary information, which
puts this setting at a disadvantage to previous ap-
proaches, however it is clear that on unsegmented
data our posing of the task jointly is useful.

Incrementality Incrementally the differences
between the architectures was neglible– results for
the LSTM are in Table 4. The latency for repair
onset detection is very low, being detected as little
as 0.196 seconds after the onset word is finished
(or on transcripts largely directly after the word
has been consumed as TTDrps (word) = 0.003).
Utterance boundaries were detected just over a
second after the end of the last word of the previ-
ous utterance. However, the fact that TTDuttSeg

on the word level reaches 0.283 suggests the time-
based average is being weighed down by occa-

sional long silences, which could be thresholded
in future work. The EO measure of stability is
severely affected by jittering ASR hypotheses, but
given its worst result is 21.46% this is still a fairly
stable incremental system.

Error Analysis To explore the errors being
made by the systems, and how the RNN and
LSTM may differ in ability, we performed an
error analysis on the simple versions with the
timing models– see Fig. 4. One can observe
a boost in recall for various repair types in the
LSTM, where it is performing better on repairs
with longer reparanda. Characterizing repetitions
as verbatim repeats, substitutions as the other re-
pairs marked with a repair phase, and deletes as
those without one, we see the LSTM outperform-
ing the RNN on the rarer types. Whilst the prob-
lem is attenuated by the memory facility of the
LSTM, our best system still suffers the vanish-
ing gradient problem for predicting longer repairs
with reparanda over 3 words long. Also we show
in uttSeg detection all systems falter on long dis-
tance projections with coordinating conjunctions,
which would potentially be dealt with more eas-
ily in a parsing framework, or a hierarchical deep
learning framework.

We also investigated the uttSeg detection errors
and see that the networks are generally not con-
fusing disfluencies with boundaries. However, our
best system incorrectly labelled 3.6% of the ref-
erence uttSegs as rpS (hence also affecting the
precision of the rpS prediction)– upon inspection
these were largely abandoned utterances, which
according to the constraint C3 we posited above
are not marked as disfluencies in the same way
intra-utterance repairs are in the reference. Due to
the original annotation instructions of (Meteer et
al., 1995), these are segmented and not included in
the traditional disfluency detection task. However,

333

(a)
Reparandum
length

(support) RNN
recall %

LSTM
recall %

1 (1487) 72.2 78.3
2 (477) 59.3 64.8
3 (155) 47.7 57.4
4 (73) 47.9 49.3
5 (31) 41.9 45.2
6 (15) 40.0 60.0
7 (9) 33.3 33.3
8 (4) 25.0 25.0

(b)
Repair
Type

(support) RNN
recall %

LSTM
recall %

repeat (1043) 79.1 83.4
substitution (1076) 59.2 66.4
delete (132) 19.7 30.3

(c)
uttSeg Error Type RNN

% error
LSTM
% error

FN, predicted rpS 2.9 3.6
FN, predicted e 4.9 4.4
FN, predicted CC 16.3 15.0
FN, predicted subj 7.0 6.5
FN, predicted proper 1.2 1.1
FN, predicted it 1.1 1.2
FN, predicted grounding 1.0 0.8
FN, predicted other 8.8 8.6
FN all 43.1 41.1
FP, predicted uttSeg for rpS 0.9 0.5
FP, predicted uttSeg for e 3.4 2.7
FP, predicted uttSeg for CC 5.1 3.6
FP, predicted uttSeg for subj 2.0 1.6
FP, predicted uttSeg for proper 0.9 0.6
FP, predicted uttSeg for it 0.5 0.4
FP, predicted uttSeg for grounding 0.7 0.4
FP, predicted uttSeg for other 6.9 2.7
FP all 20.4 12.5

Figure 4: Error analysis: (a) recall rates for
rpS onsets of repairs with different reparandum
lengths and (b) types, and (c) the source of errors
in uttSeg detection.

intuitively these can be construed as a disfluency
type, and in future we will treat them as a special
type of uttSeg/disfluency hybrid.

As can be seen in Fig. 4 (c) other main sources
of error are on coordinating conjunctions (CC)
such as ‘and’ and ‘or’, nouns with nominative sub-
ject marking case like ‘I’ and ‘we’ (subj), other
proper nouns, variants of ‘it’ and grounding ut-
terances like ‘yeah’ and ‘okay’. uttSeg detection
in both systems achieved high precision but rela-
tively low recall.

8 Conclusion

We have presented the joint task of incremental ut-
terance segmentation and disfluency detection and

show a simple deep learning system which per-
forms it on transcripts and ASR results. As re-
gards the research questions posed in §3.4, in an-
swer to Q1, we showed that, all else being equal,
a deep learning system can perform both tasks
jointly improves over equivalent systems doing the
individual tasks. In answer to Q2, we showed that
word timing information, both from transcripts
and ASR results, helps the utterance segmenta-
tion and the joint task across all settings whilst not
aiding disfluency detection on its own, and in re-
sponse to Q3, we achieve a good online accuracy
vs. final accuracy trade-off in a live, incremental,
system, however still experience some time delays
for utterance segmentation in our most accurate
system.

We conclude that our joint-task system for
disfluency detection and utterance segmentation
shows a new benchmark for the joint task on
Switchboard data and due its incremental func-
tioning on unsegmented data, including ASR re-
sult streams, it is suitable for live systems, such
as conversation agents in the psychiatric domain.
In future work we intend to optimize the inputs to
our networks after this exploration, including us-
ing raw acoustic features, and combining the task
with language modelling and dialogue act tagging.

Acknowledgments

We thank the EACL reviewers for their help-
ful comments. This work was supported by the
Cluster of Excellence Cognitive Interaction Tech-
nology ‘CITEC’ (EXC 277) at Bielefeld Univer-
sity, funded by the German Research Foundation
(DFG), and the DFG-funded DUEL project (grant
SCHL 845/5-1).

References
Jeremy Ang, Yang Liu, and Elizabeth Shriberg. 2005.

Automatic dialog act segmentation and classifica-
tion in multiparty meetings. In ICASSP (1), pages
1061–1064.

Michaela Atterer, Timo Baumann, and David
Schlangen. 2008. Towards incremental end-
of-utterance detection in dialogue systems. In
COLING (Posters), pages 11–14.

T. Baumann, O. Buß, and D. Schlangen. 2011. Eval-
uation and optimisation of incremental processors.
Dialogue & Discourse, 2(1):113–141.

Timo Baumann, Casey Kennington, Julian Hough, and
David Schlangen. 2016. Recognising conversa-

334

tional speech: What an incremental asr should do
for a dialogue system and how to get there. In Inter-
national Workshop on Dialogue Systems Technology
(IWSDS) 2016. Universität Hamburg.

James Bergstra, Olivier Breuleux, Frédéric Bastien,
Pascal Lamblin, Razvan Pascanu, Guillaume Des-
jardins, Joseph Turian, David Warde-Farley, and
Yoshua Bengio. 2010. Theano: a cpu and gpu
math expression compiler. In Proceedings of the
Python for scientific computing conference (SciPy),
volume 4, page 3. Austin, TX.

Sébastien Cuendet. 2006. Model adaptation for sen-
tence unit segmentation from speech. Technical re-
port, IDIAP.

Wim De Mulder, Steven Bethard, and Marie-Francine
Moens. 2015. A survey on the application of recur-
rent neural networks to statistical language model-
ing. Computer Speech & Language, 30(1):61–98.

David DeVault, Kallirroi Georgila, and Ron Artstein.
2013. Verbal indicators of psychological distress in
interactive dialogue with a virtual human. In Pro-
ceedings of SigDial 2013, pages 193–202.

Kallirroi Georgila. 2009. Using integer linear pro-
gramming for detecting speech disfluencies. In Pro-
ceedings of Human Language Technologies: The
2009 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, Companion Volume: Short Papers, pages
109–112. Association for Computational Linguis-
tics.

Daniel Guo, Gokhan Tur, Wen-tau Yih, and Geoffrey
Zweig. 2014. Joint semantic utterance classifica-
tion and slot filling with recursive neural networks.
In Spoken Language Technology Workshop (SLT),
2014 IEEE, pages 554–559. IEEE.

Matthew Honnibal and Mark Johnson. 2014. Joint
incremental disfluency detection and dependency
parsing. Transactions of the Association of Com-
putational Linugistics (TACL), 2:131–142.

Julian Hough and Matthew Purver. 2014. Strongly in-
cremental repair detection. In Proceedings of the
2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 78–89,
Doha, Qatar, October. Association for Computa-
tional Linguistics.

Julian Hough and David Schlangen. 2015. Recur-
rent neural networks for incremental disfluency de-
tection. In Proceedings of Interspeech 2015, pages
849–853.

Christine Howes, Matt Purver, Rose McCabe,
Patrick GT Healey, and Mary Lavelle. 2012. Help-
ing the medicine go down: Repair and adherence
in patient-clinician dialogues. In Proceedings of
SemDial 2012 (SeineDial): The 16th Workshop on
the Semantics and Pragmatics of Dialogue, page
155.

Christine Howes, Julian Hough, Matthew Purver, and
Rose McCabe. 2014. Helping, i mean assessing
psychiatric communication: An application of incre-
mental self-repair detection. In Proceedings of the
18th SemDial Workshop on the Semantics and Prag-
matics of Dialogue (DialWatt), pages 80–89, Edin-
burgh, September.

Mark Johnson and Eugene Charniak. 2004. A TAG-
based noisy-channel model of speech repairs. In
ACL, pages 33–39.

Willem J. Levelt. 1983. Monitoring and self-repair in
speech. Cognition, 14(4):41–104.

Gale M. Lucas, Jonathan Gratch, Aisha King, and
Louis Philippe Morency. 2014. It’s only a com-
puter: Virtual humans increase willingness to dis-
close. Computers in Human Behavior, 37:94–100.

Ramesh Manuvinakurike, Maike Paetzel, Cheng Qu,
David Schlangen, and David DeVault. 2016. To-
ward Incremental Dialogue Act Segmentation in
Fast-Paced Interactive Dialogue Systems. In Pro-
ceedings of the 17th Annual SIGdial Meeting on Dis-
course and Dialogue. Forthcoming.

Carlos-D Martı́nez-Hinarejos, José-Miguel Benedı́,
and Vicent Tamarit. 2015. Unsegmented dialogue
act annotation and decoding with n-gram transduc-
ers. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 23(1):198–211.

Rosemarie McCabe, Patrick GT Healey, Stefan Priebe,
Mary Lavelle, David Dodwell, Richard Laugh-
arne, Amelia Snell, and Stephen Bremner. 2013.
Shared understanding in psychiatrist–patient com-
munication: Association with treatment adherence
in schizophrenia. Patient education and counseling,
93(1):73–79.

Grégoire Mesnil, Xiaodong He, Li Deng, and Yoshua
Bengio. 2013. Investigation of recurrent-neural-
network architectures and learning methods for spo-
ken language understanding. In INTERSPEECH,
pages 3771–3775.

M. Meteer, A. Taylor, R. MacIntyre, and R. Iyer. 1995.
Disfluency annotation stylebook for the switchboard
corpus. ms. Technical report, Department of Com-
puter and Information Science, University of Penn-
sylvania.

Helena Moniz, Jaime Ferreira, Fernando Batista, and
Isabel Trancoso. 2015. Disfluency detection across
domains. In The 6th Workshop on Disfluency in
Spontaneous Speech (DiSS).

Xian Qian and Yang Liu. 2013. Disfluency detection
using multi-step stacked learning. In Proceedings of
NAACL-HLT, pages 820–825.

Antoine Raux. 2008. Flexible turn-taking for spoken
dialog systems. Ph.D. thesis, US National Science
Foundation.

335

David Schlangen and Gabriel Skantze. 2011. A Gen-
eral, Abstract Model of Incremental Dialogue Pro-
cessing. Dialoge & Discourse, 2(1):83–111.

David Schlangen. 2006. From reaction to predic-
tion: Experiments with computational models of
turn-taking. In Proceedings of Interspeech 2006,
Panel on Prosody of Dialogue Acts and Turn-Taking.

Anders Seeker, Agnieszka Björkelund, Wolfgang
Falenska, and Jonas Kuhn. 2016. How to train de-
pendency parsers with inexact search for joint sen-
tence boundary detection and parsing of entire doc-
uments. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 1923–1934, Berlin. ACL.

Elizabeth Shriberg, Andreas Stolcke, Dilek Hakkani-
Tür, and Gökhan Tür. 2000. Prosody-based au-
tomatic segmentation of speech into sentences and
topics. Speech communication, 32(1):127–154.

Elizabeth Shriberg. 1994. Preliminaries to a Theory
of Speech Disfluencies. Ph.D. thesis, University of
California, Berkeley.

Chenglin Xu, Lei Xie, Guangpu Huang, Xiong Xiao,
Engsiong Chng, and Haizhou Li. 2014. A deep
neural network approach for sentence boundary de-
tection in broadcast news. In Proceedings of INTER-
SPEECH, pages 2887–2891.

Simon Zwarts, Mark Johnson, and Robert Dale. 2010.
Detecting speech repairs incrementally using a noisy
channel approach. In Proceedings of the 23rd Inter-
national Conference on Computational Linguistics,
pages 1371–1378, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.

336

