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Abstract

Myoelectric signals (EMG) provide an intuitive and rapid interface for
controlling technical devices, in particular bionic arm prostheses. How-
ever, inferring the intended movement from a surface EMG recording is a
non-trivial pattern recognition task, especially if the data stems from low-
cost sensors. At the same time, overly complex models are prohibited by
strict speed, data parsimony and robustness requirements. As a compro-
mise between high accuracy and strict requirements we propose to apply
Echo State Networks (ESNs), which extend standard linear regression
with 1) a memory and 2) nonlinearity. Results show that both features,
memory and nonlinearity, independently as well as in conjunction, improve
the prediction accuracy on simultaneous movements in two degrees of free-
dom (hand opening/closing and pronation/supination) recorded from four
able-bodied participants using a low-cost 8-electrode-array. However, it
was also shown that the model is still not sufficiently resistant to external
disturbances such as electrode shift.

1 Introduction
Robotic arm prostheses support upper limb amputees in everyday life tasks
[3]. Such prostheses are controlled through myoelectric signals derived from
the patient’s muscles in their residual limb. However, commercially established
products are restricted to activating only a single degree of freedom (DoF) at
a time and require tiresome mode-switching to execute movements in multiple
DoFs [3]. More advanced prosthetic control systems acquire the user’s muscle
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signals via an array of surface electrodes, infer the intended movement as well
as the intended intensity via machine learning models and translate it to more
natural prosthetic movements [7, 9, 17]. However, the requirements imposed on
such a machine learning model are high: It should be complex enough to provide
accurate prediction, but also require few patient training data, few electrodes, be
robust to outside disturbances and provide real-time predictions with low delay
[3]. Especially electrode shift has been found to be a limiting factor in reliable
prosthetic control, as it occurs every time the device is re-attached. Therefore,
even though nonlinear regression techniques promise better recognition results,
the strict requirements prohibit overly complex models [4]. So far, no machine
learning model has yielded reliable enough predictions to be realized within a
commercially available prosthesis.

In this contribution we analyzed whether extending a simple linear regression
model [4] with two key features, namely memory (in time) and nonlinearity, of-
fers significant improvement with respect to recognition accuracy without sacri-
ficing too much in terms of speed and robustness. We applied Extreme Learning
Machines (ELMs) [5] and Echo State Networks (ESNs) [6] to assess the bene-
fit of nonlinearity and memory respectively. We evaluated the test recognition
accuracy on undisturbed data as well as data which was disturbed by electrode
shift. Our data set consisted of simultaneous movements in two DoFs from
four able-bodied participants, recorded using the Thalmic Myo (Thalmic Labs,
Canada) armband, a commercially availabe, low-cost 8-electrode array, which
has already shown promising applications in the area of prosthetic training and
control [8, 13].

2 Methods

2.1 From Linear Regression to Echo State Networks
We introduce Echo State Networks (ESNs) as a systematic extension of linear
regression (LR) by nonlinearity and memory. Let ~xt ∈ RK denote the input
at time step t (i.e. the K features computed on from the myoelectric signal at
time step t) and let ~yt ∈ Rn be the desired output at time t (i.e. the desired
movement in each of the n degrees of freedom). We can write these as matrices
of the form X = (~x1, . . . , ~xT ) ∈ RK×T and Y = (~y1, . . . , ~yT ) ∈ Rn×T . Then,
linear regression assumes a direct, linear relationship between input- und output
of the form Y = W · X for some matrix W ∈ Rn×K which is set to W =
Y ·XT · (X ·XT )−1 in order to minimize the squared error [2].

We can equivalently describe linear regression as a feedforward neural net-
work with a single hidden layer. Let ~ht ∈ Rm denote the value of the m hidden
layer neurons at time t. This value is computed as ~ht =W in · ~xt for some input
weight matrix W in ∈ Rm×K . Similarly, the output of the network is computed
as W out ·~ht for some output weight matrix W out ∈ Rn×m. Due to linearity, the
network output is fully described by the product matrix W =W out ·W in which
we can optimize as before.
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This analytical optimal solution is no longer possible if we introduce a non-
linearity in the hidden layer; that is, we compute the value of the hidden neurons
as ~ht = σ

(
W in · ~xt

)
where σ() denotes the component-wise application of some

nonlinear function σ, e.g. the tanh function. Here, one relies on gradient-based
optimization methods such as backpropagation, which are prone to local optima.
An alternative strategy is to not train the input weights W in at all, but to keep
them fixed at some random value. Then, one can preprocess the input data via
H = σ(W in · X) and obtain an optimal solution for the output weights as in
linear regression by setting W out = Y ·HT · (H ·HT )−1. This is the Extreme
Learning Machine (ELM) model, which has been shown to be a universal ap-
proximator with good generalization properties [5] and to be competitive with
nonlinear classification models on EMG data [1].

Additionally, one can introduce a memory to the model, such that the value
of the hidden layer neurons is computed dependent on the previous value of the
hidden layer neurons giving rise to the equations

~ht = σ
(
W in · ~xt +W hid · ~ht−1

)
(1)

~yt =W out · ~ht (2)

for some recurrent weight matrix W hid ∈ Rm×m. Approximate analytical solu-
tions for the weight matrices are provided by [12]. Alternatively, one can again
set the recurrent weights W hid independently of the input (e.g. randomly) and
train only the output weights via linear regression. Note that one also has
to ensure that the recurrent weights W hid are set such that initial conditions
vanish over time (echo state property [18]). Such models are called Echo State
Networks (ESNs). If σ is the identity, we call the model a linear Echo State
Network (lESN). Here, we apply cycle reservoirs with jumps (CRJs) as intro-
duced by [16]. In CRJs, input and reservoir weights are set deterministically to
a single fixed value with varying signs according to an aperiodic, deterministic
sequence. Hidden neurons are connected sparsely in a large cycle and additional
jump connections between distant neurons within the cycle.

Given the strict runtime constraints of our application domain, fast models
are desirable. Fortunately, ESNs have little complexity overhead compared to
linear regression (provided that the number of hidden neurons m is sufficiently
small). For all models, a matrix inversion is required for training which has
cubic complexity in the matrix dimension, i.e. O(K3) for linear regression and
O(m3) for all other models. Prediction requires one matrix multiplication in
O(K ·n) for linear regression, two matrix multiplications in O(K ·m+m ·n) for
ELMs and three matrix multiplications in O(K ·m+m2 +m ·n) for lESNs and
ESNs, which reduces to O(K ·m+m · n) in our case due to sparsity in W hid.

2.2 Experimental Protocol
Four able-bodied participants executed a sequence of eight movements (hand
open, hand close, pronation, supination, hand open + pronation, hand open +



Preprint of the publication [15], as provided by the authors. 4

Table 1: The average classification error (between 0 and 1) across all movements
for each degree of freedom (listed as rows) and each model (listed as columns).
The standard deviation is provided in brackets. The top two rows show the
results on the original data, the bottom two rows on the shifted data.
condition DoF \model LR ELM lESN ESN

unshifted
hand close/open 0.158

(0.171)
0.072
(0.102)

0.105
(0.203)

0.042
(0.112)

pronation/supination 0.186
(0.176)

0.069
(0.097)

0.116
(0.183)

0.050
(0.126)

shifted
hand close/open 0.446

(0.226)
0.359
(0.168)

0.437
(0.231)

0.394
(0.248)

pronation/supination 0.448
(0.214)

0.336
(0.129)

0.430
(0.225)

0.383
(0.245)

supination, hand close + pronation, and hand close + supination) ten times
using their non-dominant hand. Each movement was executed between 3− 5s.
Afterwards, the electrode array was shifted for one electrode in medial direction
around the forearm, and the movement sequence was recorded four times.

We recorded the myoelectric data with the Thalmic Myo armband using all
8 channels. For each channel, we computed the log-variance and the squared
log-variance on windows of 120ms with 40ms overlap, resulting in K = 16
features. We generated a separate output signal for both DoFs (n = 2) with
three possible values each (−1, 0, and 1, i.e.: the output vector (1, 1) codes hand
open + supination, the output vector (1, 0) codes hand open). We obtained
a classification output from the regression output using simple thresholding
((−∞,−0.5] 7→ −1, (−0.5, 0.5) 7→ 0, and [0.5,∞) 7→ 1).

We evaluated the models in a leave-one-out crossvalidation over the 80 move-
ments, optimizing hyperparameters via 1000 trials of random-search on the re-
spective training data. The resulting model was then applied to the shifted
data.

3 Results
The average classification error for the unshifted data is shown in the top two
rows of Table 1. Using a Bonferrroni corrected Wilcoxon signed-rank test with
α = 0.001 over all movements of all subjects (N = 320) we obtained the follow-
ing significant differences: ELM is superior to linear regression (LR), lESN is
superior to LR, ESN is superior to all three (LR, ELM and lESN).

After the electrode shift, a significant degradation of classification accuracy
can be observed for all models, as given in the bottom two rows of Table 1.
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4 Discussion and Conclusion
We have demonstrated that extending a linear regression model with nonlinear
features and memory in the form of an Echo State Network (ESN) leads to sig-
nificant improvements in terms of recognition accuracy on sensor data obtained
from a low-cost electrode array for simultaneous movements in multiple degrees
of freedom. Further, we have demonstrated that combining both features is
superior to each single feature. As such, ESNs present a promising method for
future research as well as clinical applications. However, we have also shown
that ESNs are not sufficiently robust regarding external disturbances, namely
electrode shift. Further work would be required to address this problem, e.g.
using resistant features [11] or transfer learning [10, 14].
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