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Abstract

Background: During evolution, genomes are modified by large scale structural events, such as rearrangements,
deletions or insertions of large blocks of DNA. Of particular interest, in order to better understand how this type of
genomic evolution happens, is the reconstruction of ancestral genomes, given a phylogenetic tree with extant
genomes at its leaves. One way of solving this problem is to assume a rearrangement model, such as Double Cut and
Join (DCJ), and find a set of ancestral genomes that minimizes the number of events on the input tree. Since this
problem is NP-hard for most rearrangement models, exact solutions are practical only for small instances, and
heuristics have to be used for larger datasets. This type of approach can be called event-based. Another common
approach is based on finding conserved structures between the input genomes, such as adjacencies between genes,
possibly also assigning weights that indicate a measure of confidence or probability that this particular structure is
present on each ancestral genome, and then finding a set of non conflicting adjacencies that optimize some given
function, usually trying to maximize total weight and minimizing character changes in the tree. We call this type of
methods homology-based.

Results: In previous work, we proposed an ancestral reconstruction method that combines homology- and
event-based ideas, using the concept of intermediate genomes, that arise in DCJ rearrangement scenarios. This
method showed better rate of correctly reconstructed adjacencies than other methods, while also being faster, since
the use of intermediate genomes greatly reduces the search space. Here, we generalize the intermediate genome
concept to genomes with unequal gene content, extending our method to account for gene insertions and deletions
of any length. In many of the simulated datasets, our proposed method had better results than MLGO and MGRA, two
state-of-the-art algorithms for ancestral reconstruction with unequal gene content, while running much faster,
making it more scalable to larger datasets.

Conclusion: Studing ancestral reconstruction problems under a new light, using the concept of intermediate
genomes, allows the design of very fast algorithms by greatly reducing the solution search space, while also giving
very good results. The algorithms introduced in this paper were implemented in an open-source software called
RINGO (ancestral Reconstruction with INtermediate GenOmes), available at https://github.com/pedrofeijao/RINGO.
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Background
With the increased availability of assembled genomes,
methods that can analyse whole genome data and recon-
struct phylogenetic trees based on large sctructural vari-
ations become increasingly relevant. A problem of great
interest is the reconstruction of ancestral genomes based
on gene order data. This is a classical problem in the
field of genome rearrangements, where a large amount
of research has been devoted, and still poses many chal-
lenges. In this problem, we are given a phylogenetic tree
with extant genomes at its leaves, and need to recon-
struct the gene orders at the internal nodes of the tree,
corresponding to ancestral genomes.
We can broadly divide approaches of solving this

problem in two categories. The first is a parsimonious
approach, called event- or distance-based, were a rear-
rangement distance is given and the aim is to find
ancestral genomes that minimize the length of the tree,
defined as the total number of rearrangement events on all
edges of the tree. Since BPAnalysis [1], the first proposed
method, which was based the breakpoint distance, many
other distance-based methods were developed, with dif-
ferent distances, such as the reversal distance (GRAPPA
[2] and MGR [3]), the double cut and join (DCJ) distance
[4, 5] (PATHGROUPS [6], GASTS [7] and MGRA [8, 9]),
and the single cut or join (SCJ) distance [10] (SCJ Small
Phylogeny [11]), just to cite a few examples.
Another category can be called homology-based, where

methods usually do not apply rearrangement models
directly, but instead treat conserved structures between
the input genomes, such as conserved adjacencies or
gene clusters, as binary characters (presence and absence).
These characters can also have weights that represent a
confidence or probability measure, and ancestral genomes
are found by optimizing an objective function that might
combine factors such as maximization of weights or prob-
abilities, and minimizing character changes in the tree.
Notable examples include the pioneer InferCARs [12],
as well as GapAdj [13], ANGES [14], PMAG+ [15, 16],
ProCARs [17] and PhySca [18].
In our recent contribution to this field, we proposed a

method that combines ideas from homology-based meth-
ods, namely adjacency weights, with the DCJ rearrange-
ment model, by defining intermediate genomes, genomes
that arise in optimal DCJ scenarios. We obtained promis-
ing results with this aproach, both in terms of running
time and quality of the ancestral reconstruction [19].
Our previous approach, as well as most of the afore-

mentioned methods (MGRA, GapAdj and PMAG+ are
exceptions), assume that all the input genomes have the
same gene content, with just one copy of each gene,
which is of course not a very realistic assumption, but it
does make the problem much less complicated. In recent
years, the focus has been shifted to include also gene

content operations, such as gene insertion and deletions.
MGRA and PMAG+, for instance, are updates of pre-
vious methods that dealt only with same gene content
genomes.
In this direction, in this paper we extend the intermedi-

ate genome definition to unequal gene content genomes,
by using the DCJ indel model [20]. Using this model,
we study theoretical in “Preliminaries”, “Intermediate
genomes” and “Ancestral reconstruction” sections and
practical aspects in “Ancestral reconstruction algorithms”
and “Results” sections. The complexity of the problem is
unknown but we show that, depending on certain features
of breakpoint graph we know how to solve the problem
in polynomial time and in all other cases we have a FTP
algorithms when we parameterize by the number c of
the chromosomes. The ideas from this studying are par-
tially used inspiring a description of a heuristic that has
shown very good results regarding quality and time. In
the last “Discussion” and “Conclusion” sections we discuss
obtained results.

Preliminaries
Genes and genomes
A gene g is a sequence of two elements gtgh or ghgt . So,
gtgh and ghgt represent the same gene g with different ori-
entation. We call gh and gt extremities, gt is a tail and gh
is a head of g. Two different genes don’t share extremi-
ties. If G is a set of genes, denote G± = ∪g∈G{gt , gh}. So, if
|G| = n, then |G±| = 2n.
A chromosome C is a sequence of genes that can be lin-

ear or circular. Denote by VC the set of genes in C. If C is
linear we represent it by adding a telomere, represented by
the symbol ◦, at its endpoints. An adjacency in C is a pair
xy ≡ yx such that x and y are in V±

C ∪ {◦}, implying that
two genes are consecutive in C. If x or y is a telomere, this
represents an extremity of a linear chromosome, and this
type of adjacency is called a telomeric adjacency.
A genome is a set of chromosome and it is represented

by the union of adjacency sets of their chromosomes. A
genome is circular (linear) if all its chromosomes are cir-
cular (linear). For two genomes A and B, if VA = VB, we
say that they have the same gene content. Conversely, if
VA �= VB, they have unequal gene content.

DCJ operation and the breakpoint graph
Let A be a genome, and xy �= vw two adjacencies in A. A
double cut and join operation (DCJ) [4] on genome A is
an operation that cuts two adjacencies of A and joins the
free extremities in a different way. Many common rear-
rangement operations, like reversals and translocations,
can be represented by a DCJ. Formally, a DCJ transforms
A into genome A − {xy, vw} ∪ {vy, xw}. There is also the
special case of A − {xy} ∪ {◦x, ◦y} and the reverse case
A − {◦x, ◦y} ∪ {xy}, for x, y �= ◦. For two genomes A and B
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with same gene content, the DCJ distance between A and
B is the minimum number dDCJ(A,B) of DCJ operations
that transforms A into B. The distance dDCJ(A,B) can be
found with the breakpoint graph of A and B, denoted by
BP(A,B), which is an edge-colored graphG = (V±

A ,A∪B),
that is, the vertices are the gene extremities, and edges
the adjacencies of both genomes (ignoring telomeric adja-
cencies). Edges from A have one color and edges from B
have a different color. By definition, the breakpoint graph
is collection of color alternating cycles and paths. Figure 1
shows and example of a breakpoint graph.
The DCJ distance is given by

dDCJ(A,B) = n − c(A,B) + peven(A,B)

2
, (1)

where n = |G| is the number of genes, c(A,B) and
peven(A,B) are the number of cycles and the number of
paths with even number of edges in BP(A,B) respectively,
which can be found in linear time [5].
For genomes A and B with unequal gene content (VA �=

VB), extra operations are required for inserting and delet-
ing genes in A in order to transform A into B. Genes
in VB − VA are called unique genes of B, and conversely
VA − VB is the set of unique genes of A. An insertion in
A consists in inserting a contiguous sequence of genes of
VB − VA in A, and a deletion in A is the inverse operation,
i.e, removing a contiguous sequence of genes of VA − VB
fromA. An indel is a general expression meaning an inser-
tion or a deletion. The DCJ-indel distance between A and
B is the minimum number of DCJs and indels required to
transform A into B, and it is denoted as dindDCJ(A,B). This
distance can also be found in polynomial time, using two
different approaches (Compeau [20] and Braga et al. [21]).
Here, we use Compeau’s approach, which is based creating
prosthetic chromosomes [22] in each genome, formed by
the unique genes of the other, creating two new genomes
with the same gene content.

DCJ distance for unequal content genomes
For genomes A and B with unequal gene content, let G =
VA∪VB be the set of genes from both genomes. The break-
point graph has a similar definition as before, changing

Fig. 1 Breakpoint graph BP(A, B) of genomes
A = {◦1t , 1h2t , 2h3t , 3h4t , 4h◦, ◦5t , 5h6t , 6h7t , 7h◦}

and
B = {

1h2h , 2t3h , 3t4t , 4h1t , ◦6t , 6h5t , 5h7h , 7t◦}
. Edges of A are green,

of B are blue

only the vertex set, that is, BP(A,B) = (G±,A ∪ B), which
means that new types of vertices and paths will be present.
A vertex a in BP(A,B) is A-open if a �∈ V±

A , it is B-open
if a �∈ V±

B and it is not-open otherwise. As well as telom-
eres, a missing gene in A or B appears as a endpoint of a
path as we can see in Fig. 2. For a path p in BP(A,B), we say
that p is even if the number of edges of p is even and it is
odd otherwise; p is not-open if its endpoints are both not-
open; p is an AA-path (BB-path) if its endpoints are both
A-open (B-open); p is an AB-path if it has one A-open and
one B-open endpoint; p is an A-path (B-path) if it has one
A-open (B-open) and one not-open endpoint. Define pAB
as the number of AB-path and poA as the number of odd A-
paths. Other notation for the number of odd/even-length
paths (poA, p

e
B and poB) are defined analogously. When com-

paring two genomes A and B, a singleton is a circular
chromosome C composed only by unique genes from one
of the genomes, that is, VA ∩VC = ∅ or VB ∩VC = ∅. The
number of singletons for A and B is denoted by sing(A,B).
Clearly, we can obtain sing(A,B) in polynomial time.
A completion for A and B is a pair of genomes A′ and

B′ obtained from A and B by adding artificial singletons
(prosthetic chromosomes) in A and B in such way the
VA′ = VB′ = G.
Compeau [20] showed that the DCJ-indel distance is

given by

dindDCJ(A,B) = min
A′,B′

{
dDCJ(A′,B′)

} + sing(A,B). (2)

A completion A′ and B′ for A and B such that minimize
dDCJ(A′,B′) is called optimal.
In order to find optimal completions, consider the fol-

lowing definitions. For a set A, a matching M is a collec-
tion of disjoint subsets of A. M is a perfect matching of A
or simply a perfect matching if the union of all sets in M
is A. M is a k-matching if every set in M has k elements.
A completion can then be seen as a perfect 2-matching
of A-open vertices joined with a perfect 2-matching of B-
open vertices in BP(A,B). In Fig. 3, we have an example of
a breakpoint graph and a completion.

Fig. 2 Breakpoint graph BP(A, B) of circular genomes GA = (1,−3, 5)
and GB = (1, 2, 3, 4), with adjacency sets A = {

1h3h , 3t5t , 1t5h
}
and

B = {
1h2t , 2h3t , 3h4t , 4h1t

}
. Edges of A are green, and of B are blue.

There is one AA-path and two AB-paths
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Fig. 3 The unique optimal completion C of BP(A, B) from Fig. 2,
where A-open (B-open) vertices are joined by green (blue) double
edges, closing the AA-path and linking both AB-paths, which makes
dindDCJ(A, B) = n − c = 3. The orange edgesM′ = {1h2t , 2h4h ,
4t3h , 3t1t , 5t5h} form a set of non-crossing chords covering all vertices
of C. By Claim 2,M′ leads to an intermediate genome. Notice that
S = {5t5h} is an artificial singleton, that is, a circular chromosome with
only unique genes of A. Therefore,M = M′ − S = {

1h2t , 2h4h , 4t3h ,
3t1t

}
, representing the circular chromosome (1, 2,−4,−3), is an

intermediate genome.M is present in the optimal scenario
S = {M0 = A,M1 = (1,−3),M2 = (1, 2,−4,−3),M3 = B},
composed by one deletion, one insertion, and one reversal (DCJ)

Let C be the set of all completions for A and B. If
nA = |VB − VA| and nB = |VA − VB| are the num-
ber of unique genes in both genomes, then BP(A,B) has
2nA A-open vertices and 2nB B-open vertices. Since there
are (2nA − 1)! ! different 2-matchings for the A-open ver-
tices and (2nB − 1)! ! different 2-matchings for the B-open
vertices, we have that

|C| = (2nA − 1)! ! ·(2nB − 1)! ! , (3)

which is exponential on the number of unique genes of
A and B. However, an optimal completion can be found
in polynomial time, which implies, since we can obtain
sing(A,B) in polynomial time, that (2) can also be com-
puted in polynomial time [20].

Enumerating all optimal completions
The intuition behind finding an optimal completion is
that Eq. (2) is minimized when the number of cycles and
even paths of BP(A,B) is maximized. This guides the
linking of components with A- and B-open vertices into
creating as many cycles and even paths as possible. There-
fore, AA-paths and BB-paths are always closed directly
by linking their own A- or B-open vertices, since each
becomes a cycle. AB-paths are usually linked in pairs, cre-
ating one cycle per pair. A-paths are also paired, ideally
two paths with opposing parity, since this creates an even
pair, and similarly for the B-paths. In many cases, this
simple strategy is already enough to find optimal comple-
tions. Unfortunately, this can get more complicated when
in some cases a triplet of components, specifically one A-
path, one AB-path and one B-path can be linked in an
optimal completion. In the following, we enumerate the

space of all optimal completions, summarizing the results
introduced by Compeau [20].
Let C∗ be the space of all optimal completions for A and

B. Using results from [20] we define a hypergraph H rep-
resenting C∗. The vertices represent components of the
breakpoint graph, and hyperedges of H represent linked
components that form a new component in a completion.
In any completion, components without open vertices
are not linked with other components. Also, AA-paths
(BB-paths) become cycles by adding an edge between the
two A-open (B-open) vertices in any optimal completion.
Therefore, these components are not inH.
In the following definitions, we use the notation of

Cartesian product, but exclude pairs of identical elements,
since a component can not be linked to itself. Let V be
the set of vertices of H. V is the union of the following
sets, representing components of the BP(A,B): �o, �e,
ϒ , �o and �e, the set of odd A-paths, even A-paths, AB
paths, odd B-paths and even B-paths respectively. Con-
sider the set of hyperedges of H that is the union of sets
T1 = �o ×�e; T2 = �o ×�e; T3 = ϒ ×ϒ ; T4 = �o ×�o;
T5 = �e × �e; T6 = �o × �o; T7 = �e × �e; T8 =
�o × ϒ × �o; T9 = �o × ϒ × �e; T10 = �e × ϒ × �o;
T11 = �e × ϒ × �e.

1. if pAB is even, poA ≤ peA and poB ≥ peB, an optimal
completion is any perfect matching using hyperedges
in T1 ∪ T2 ∪ T3 ∪ T5 ∪ T6.

2. if pAB is even, and poA ≥ peA and poB ≤ peB, an optimal
completion is any perfect matching using hyperedges
in T1 ∪ T2 ∪ T3 ∪ T4 ∪ T7.

3. if pAB is odd, and poA ≤ peA and poB ≥ peB, an optimal
completion is any perfect matching using only one
hyperedge in T10 and hyperedges
T1 ∪ T2 ∪ T3 ∪ T5 ∪ T6.

4. if pAB is odd and poA ≥ peA and poB ≤ peB, an optimal
completion is any perfect matching using only one
hyperedge in T9 and hyperedges in
T1 ∪ T2 ∪ T3 ∪ T4 ∪ T7.

5. if poA < peA and poB < peB, an optimal completion is
any perfect matching using hyperedges in
T1 ∪ T2 ∪ T3 ∪ T5 ∪ T7 ∪ T11.

6. if poA > peA and poB > peB, an optimal completion is
any perfect matching using hyperedges in
T1 ∪ T2 ∪ T3 ∪ T4 ∪ T6 ∪ T8.

Claim 1 Let n = |G| and c the sum of the number of
chromosomes in A and B. Then, there are at most ((2c)! )2 ·
O(nc) different ways to choose a 3-matching in an optimal
solution inH.

Proof Each set with three components represents one
A-path, one AB-path and one B-path. Since each A-
path and B-path has one telomere each and we have
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c chromosomes, there are i ≤ c triples in a solution.
Considering that i = 0, . . . , c, there are at most

(
n
0

)
+

(
n
1

)
+ . . . +

(
n
c

)
= O(nc)

different ways to choose a set of AB-path to obtain triples
in a optimal completion.
Once chosen a set of AB-path and we have to choose no

more than 2c A-path and no more than 2c B-path. So, we
have a total of no more than ((2c)! )2 ·O(nc) different ways
to choose a 3-matching in an optimal solution inH.

Methods
In our previous approach, we used the concept of interme-
diate genomes to propose a new ancestral reconstruction
method, in the context of genomes with same gene con-
tent [19]. We extend this approach here to genomes with
unequal gene content, by dealing with gene insertion and
deletion events.
In the following sections, every key aspect of the pro-

posed method will be explained. Basic properties of inter-
mediate genomes are described, based on existing results,
and new properties for the case of genomes with unequal
gene content are shown. Then, we show how the clas-
sic problems of small phylogeny and genome median can
be reformulated adding intermediate genome constraints,
also proposing a new problem, the Maximum Weight
Intermediate Genome, that is at the core of our method.
Practical aspects such as estimating tree branch lengths

and finding adjacency weights at each internal node of
the tree are described. Finally, we describe the main algo-
rithm, that iteratively reconstructs ancestors at internal
nodes in a bottom-up approach, by using intermediate
genome properties and adjacency weights.

Intermediate genomes
In this section, we review some key combinatorial proper-
ties of intermediate genomes and extend the definition for
genomes with unequal gene content, assuming that gene
deletions and duplications have occurred.

Basic properties of intermediate genomes
An optimal DCJ scenario between two genomesA and B is
an ordered list of genomes S = (M0,M1, . . . ,Mk) where
k = dDCJ(A,B), A = M0,Mk = B andMi can be obtained
from Mi−1 by applying a DCJ operation, for i = 1, . . . , k.
Any genome Mi ∈ S is called an intermediate genome of
A and B.
Optimal DCJ scenarios can be found by dealing with

each component in the breakpoint graph independently. A
scenario that follows this strategy will be called indepen-
dent component scenario. There are also optimal scenarios
where a DCJ operations may act on two different compo-
nents, specifically two even paths, but these are very rare

[23]. Currently, we ignore recombination of even paths,
in order to simplify the combinatorial analysis. In other
context, a method was proposed to include this type of
events [24], and we plan to add a similar extension to our
framework as well.
Given breakpoint graph BP(A,B), a circular breakpoint

graph can be obtained by transforming the paths into
cycles as follows: i) to for each even path, add a new ver-
tex ◦ and connect both extremities of the path to this
new vertex; ii) for each odd path, add two new vertices ◦1
and ◦2 with and edge connecting both, and connect each
extremity of the path to a different new vertex. This cir-
cular version of the breakpoint graph is composed only of
cycles and it preserves the DCJ distance equation given
by Eq. (1), adjusting n to n + k/2 to account for the extra
number of k artificial vertices added [19].
The main property of intermediate genomes on inde-

pendent component scenarios is given by the following
theorem:

Theorem 1 ([19]) Given genomes A and B with the same
set of genes, a genome M is an intermediate genome of A
and B in an independent component scenario if and only if
the edges of M are non-crossing chords in the cycles of the
circular BP(A,B), and M covers all vertices of BP(A,B).

In practice this makes it very easy to verify if a given
genome is an intermediate genome, or even to create one
given a choice of possible adjacencies, a key aspect of our
ancestral reconstruction algorithm.

Intermediate genomes for DCJ InDel scenarios
The definition of intermediate genomes for genomes with
unequal content is the same as the original one, just con-
sidering optimal DCJ-indel scenarios, instead of DCJ only
scenarios.
It is somewhat straightforward to extend the definition

of intermediate genomes, using the DCJ-indel model of
Compeau [20] and the concept of optimal completions.
Given an optimal completion C of a breakpoint graph
BP(A,B), we can create a circular completion by applying
the operation of transforming all paths into cycles, sim-
ilarly as done above to a breakpoint graph for genomes
with the same gene content. After a circular completion
is found, the resulting breakpoint graph is essentially the
same as a breakpoint graph for genomes with same gene
content. Therefore, we extend the results of Theorem 1 in
the following claim.

Claim 2 Given genomes A and B, a circular optimal
completion C of BP(A,B), and a set M′ of non-crossing
chords in the cycles of C, covering all vertices of C, the
genome M = M′ − S, where S is the set of the adjacen-
cies of all singletons of M′ in respect to A and B, is an
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intermediate genome of A and B. Conversely, if M is an
intermediate genome of A and B, there exists a circular
optimal completion C of BP(A,B) and a set of adjacencies
S, where M′ = M ∪ S is a set of non-crossing chords in the
cycles of C, covering all of its vertices, and S forms the set of
adjacencies of singletons of M′ in respect to A and B.

Note that this result is general, also applicable for the
same gene content genomes, since in this case we can con-
sider that the breakpoint graph is directly an unique and
optimal completion, and the set of singletons is always an
empty set. Figures 2 and 3 show an example of an optimal
completion and an intermediate genome.

Ancestral reconstruction
In this section we explore how the concept of intermediate
genomes can be used for ancestral reconstruction of gene
orders.
In the context of rearrangement distance models, the

ancestral reconstruction problem can be stated as: consid-
ering a measure distance d(A,B) between genomes A and
B, given a tree T with n extant genomes at the leaves, find
a labeling of the internal nodes corresponding to ancestral
genomes, such that the total length of the tree, defined as
the sum of all distances d(.) on the edges, is minimized.
This is usually called the small phylogeny problem.
The simplest instance of this problem happens when

only three genomes A, B and C are given, and we want to
find a genomeMminimizing d(A,M)+d(B,M)+d(C,M),
the genome median problem. Despite being NP-hard for
DCJ and many other models, it is well studied and many
exact and heuristic methods have been proposed [25, 26],
Here we investigate new definitions of both the median

problem and the small phylogeny problem that include
intermediate genomes, motivated by the fact that some
studies show that purely minimizing the tree length (or
finding median genomes) might not be the best option for
ancestral reconstruction [27].
Let IG(A,B) represent the set of intermediate genomes

between A and B. For the median problem, we can use the
fact that d(A,M) + d(B,M) = d(A,B) if M is in IG(A,B)

to give the following definition.

Problem 1 (Intermediate Genome Median) Given two
genomes A and B, and an outgroup genome C, find anM ∈
IG(A,B) minimizing d(C,M).

Problem 2 (Intermediate Genome Small Phylogeny)
Given a rooted binary tree T with n extant genomes at the
leaves, find a labeling of the internal nodes such that the
tree length is minimized, and each genome on an internal
node is an intermediate genome of its children.

Theorem 2 The DCJ Intermediate Genome Median is
NP-hard.

Proof A balanced bicoloured graph G is a graph where
each vertex has the same number of red and blue inci-
dent edges, all vertices have degree two or four, and
there is no cycle formed by edges of the same colour.
An alternating cycle in G is a cycle where red and blue
edges are alternating. The breakpoint graph decomposi-
tion problem (BGD) is to find a maximum number of
edge-disjoint alternating cycles of G. This problem is
NP-hard [28].
A proof for this theorem can be derived directly from

the original proof of NP-hardness of the DCJ median
problem, where a reduction from BGD is performed
[29]. In that proof, from an instance of the BGD with
G = (V ,B ∪ R), where V is a set of vertices and
B and R are sets of blue and red edges, the genomes
A, B and C on G are constructed. The set G contains
one gene X for each degree 2 vertex and two genes
X and X̄ for each degree 4 vertex X of G. The set of
adjacencies of A is

{
XhXt : X ∈ G

}
. The set of adjacen-

cies of B is
{
XhX̄t ,XtX̄h : X ∈ V and degree of X is 4

} ∪{
XhXt : X ∈ V and degree of X is 2

}
. The set of adjacen-

cies of C is defined adding to C an adjacency in
{
XhYh,

XhȲ h, X̄hYh, X̄hȲ h} for each XY ∈ B, and an adjacency
in

{
XtY t ,XtȲ t , X̄tY t , X̄tȲ t} for each XY ∈ R. Figure 4

shows an example of the construction of genomes from a
balanced bicoloured graph.
Defining A,B,C this way, there is a medianM ⊆ A ∪ B

that indicates the number of alternating cycles we have in
a maximum edge-disjoint alternating cycle of G [29].
As a consequence of M ⊆ A ∪ B, we have that

M ∈ IG(A,B) [19]. So, M ∈ IG(A,B) and minimizes
dDCJ(M,A) + dDCJ(M,B) + dDCJ(M,C) solving both the
DCJ median for this specific instance and the BGD for the
general case. It follows, since we can construct genomes

Fig. 4 Given a balanced bicoloured graph G (at left), a breakpoint
graph is constructed (at right), with genomes
A = {

1t1h , 2t2h , 2̄t 2̄h , 3t3h , 3̄t 3̄h , 4t4h
}
(in blue),

B = {
1t1h , 2t 2̄h , 2̄t2h , 3t 3̄h , 3̄t3h , 4t4h

}
(in green) and

C = {
1t2t , 2̄t3t , 3̄t4t , 1h3h , 2h3̄h , 2̄h4h

}
(in red). In this example,

M = B ⊆ A ∪ B is a median (in dashed orange edges)



The Author(s) BMC Bioinformatics 2016, 17(Suppl 14):413 Page 193 of 282

A,B,C in polynomial time and BGD is NP-hard, that DCJ
Intermediate Genome Median is also NP-hard.

Since the median and consequently the small phylogeny
problem are NP-hard also in their intermediate genomes
formulation, we propose an approach that combines adja-
cency weighting methods that are common in adjacency-
based algorithms, with the DCJ rearrangement model in
the form of intermediate genomes, but without the need
to explicitly consider searching for rearrangement events
and/or scenarios, which makes the problem much more
tractable.

Maximumweight intermediate genome
Problem 3 (Maximum Weight Intermediate Genome)

Given genomes A and B on set of genes G and a set
of adjacency weights W = {

wij | ij ∈ G± × G±}
, find a

genome M such that

M = argmax
M∈IG(A,B)

∑
δij(M) · wij

where δij(M) = 1 if ij ∈ M, 0 otherwise.

If the genomes A and B have the same genes, this prob-
lem can be solved in polynomial time, since finding a
maximum weight set of non-crossing chords in a cycle is
equivalent to finding a maximum weight independent set
on a circle graph (MWIS) [30]. Therefore, it is possible to
find an optimalM ∈ IG(A,B) by solving a MWIS for each
component of BP(A,B).
IfA and B have different gene sets, the problem becomes

much harder, since each completion of BP(A,B) will give
rise to different components and therefore different solu-
tions for the individual MWIS. The naive method of
finding the maximum weight IG for all completions is
impractical, since, according Eq. (3), there is an exponen-
tial number of completions.
A strategy to solve Problem 3 is to search a perfect

matching in the graphH that represents all possible opti-
mal completions in C∗, where the weight of each hyper-
edge is the weight obtained by solving the MWIS for the
correspondent component.
Edmonds [31] shows that the maximum weighted per-

fect 2-matching problem can be solved in polynomial
time. It follows directly from theH representation that

Claim 3 Suppose that pAB is even, and poA ≤ peA and
poB ≥ peB or poA ≥ peA and poB ≤ peB. Then, the Maxi-
mumWeight Intermediate Genome problem can be solved
polynomially.

Moreover, we have that

Claim 4 Suppose that pAB is odd, and poA ≤ peA and
poB ≥ peB or poA ≥ peA and poB ≤ peB. Then, the Maximum
Weight Intermediate Genome problem can also be solved
polynomially.

Proof Since pAB is odd, poA ≤ peA and poB ≥ peB or
poA ≥ peA and poB ≤ peB, there is exactly one hyperedge with
3 elements. The number of hyperedges with 3 elements in
H is limited by

(n
3
) = O(n3). Once one hyperedge with

3 elements is removed, according to Claim 3, finding a
perfect 2-matching in the remaining vertices of the graph
is polynomial. Therefore, an optimal solution is found in
polynomial time by repeating this for all O(n3) hyper-
edges with three elements and choosing the solution with
maximum weight.

Unfortunately, the cases where poA < peA and poB < peB,
or poA > peA and poB > peB are most likely NP-hard, due to
the presence of up to c (number of chromosomes) triple-
matchings in optimal completions, as opposed to just one.
This means that the complexity of the Maximum Weight
Intermediate Genome problem is still open for the general
case. However, considering that the number of chromo-
somes is constant, we have the following interesting result
from the theoretical point of view.

Theorem 3 There is a polynomial time FPT algorithm
for the Maximum Weight Intermediate Genome problem
when it is parameterized by the number c of chromosomes.

Proof Claim 3 and 4 guarantee that there is a polyno-
mial time algorithm if poA ≤ peA and poB ≥ peB or poA ≥ peA
and poB ≤ peB. If poA < peA and poB < peB, or poA > peA
and poB > peB, using a polynomial algorithm for maximum
weighted perfect 2-matching and claim 1, we have a FTP
algorithm with parameter c.

Ancestral reconstruction algorithms
In this section we describe the practical algorithms that
were used for our proposed ancestral reconstruction
method. First, we discuss how adjacency weights can be
obtained. Then, how these weights are used by a heuristic
to find candidate intermediate genomes for the ancestral
nodes of the input tree.

Finding adjacency weights
Adjacency weights were obtained using two methods.
First, using the software DeClone [32], that randomly
samples evolutionary scenarios and assign weights based
on how often an adjacency is present on those scenarios.
The parsimony score of a given scenario is determined
by the number of gains/losses of adjacencies along the
branches of the tree. DeClone samples scenarios depend-
ing on a parameter kT. When kT is close to zero, only



The Author(s) BMC Bioinformatics 2016, 17(Suppl 14):413 Page 194 of 282

optimal scenarios (with minimal parsimony score) are
sampled, and as kT increases, sub-optimal scenarios have
a higher chance of being sampled. The weights for each
adjacency at each internal node depend on how often this
adjacency is observed at this internal node. Typical values
include kT = 0.1 for sampling optimal scenarios almost
exclusively, and kT = 1 for a more balanced distribution
including non-optimal scenarios [18].
We also propose a second way of deriving adjacency

weights, inspired by the weighting scheme used in Infer-
CARs [12]. Given a rooted phylogenetic tree T, let wα(ij)
denote the weight of adjacency ij at a node α. Weights in
all nodes are recursively defined by

wα(ij) = DL · wR(ij) + DR · wL(ij)
DL + DR

(4)

where DL (DR) is the distance to the left (right) child of α,
and wL(ij) (wR(ij)) is the weight of ij at the left (right) child
of α. For leaf nodes, wα(ij) = 1 if the adjacency is present
and wα(ij) = 0 otherwise.
To define the weights in our approach, we proceed as

follows: for every internal node α, let γ be the the par-
ent node of α, and create a new tree T ′ by removing from
T the subtree defined by the node α. Then, remove the
original root and reroot T ′ at the node γ and use the
recurrence equation above to find wγ (ij) for all adjacen-
cies ij. The adjacency weights for α are then wα(ij) =
wγ (ij) for each ij. An example is shown on Fig. 5.
The motivation for using this weighting algorithm is

that, while reconstructing a particular node α, the infor-
mation from the leaves is given in the form of the
breakpoint graph, while the weights that will guide the
reconstruction of the intermediate genome should reflect
information from the “other side” of the tree. The exper-
imental results show, somewhat surprisingly, that this
simple weighting scheme not only is faster than DeClone,
but also increases the quality of the reconstruction.

Fig. 5 To find adjacency weights for node α on a tree T, a new tree T ′
is created where α and its subtree T1 are removed, and T ′ is rerooted
at γ , the parent node of α. Then, Eq. (4) is applied to find weights for
γ , which are then assigned to node α on the original tree T

Estimating branch lengths
For the InferCARs weight algorithm, branch lenghts are
needed. Since branch lengths are not always available, we
tested how different estimationmethodsmight impact the
adjacency weights and consequentely the ancestral recon-
struction. For this, we implemented two classic methods
of branch length estimation, Minimum Evolution [33] and
Fitch-Margoliash Least Squares [34], briefly described in
the following.
Let T be an unrooted tree with k leafs and n = 2k − 3

edges, with edge lengths denoted by the vector w =
(w1, . . . ,wn). Let M be a m × n matrix, where m = (k

2
)
.

Each column of M represents a branch length, and each
row a pairwise comparison between two leafs of T. An ele-
ment mij of M is 1 if the edge j is present in the tree path
from the two leafs being compared, and mij = 0 other-
wise. Let d = (d1, . . . , dm) be a vector where each element
di stores the DCJ-Indel distance of the two genomes being
compared on this row i. Therefore, for k > 3 leafs, we
have m > n and Mw = d is an over-determined equation
system. Then, as proposed by Fitch andMargoliash [34], a
good candidate for the edge weights is the vector w∗ that
minimizes the least squares error, that is,

w∗ = argmin
w∈Rn

‖Mw − d‖2.

Another idea is to assume that the pairwise distances in
d are a lower-bound for the tree traversal distances, and
find edge lengths that satisfy this restriction and havemin-
imum total sum. This method, called Minimum Evolution
by Waterman et al. [33], is based on solving the following
Linear Programming formulation:

minimize
n∑

i=1
wi

subject to Mw ≥ d
wi ≥ 0, i = 0, . . . , n

An algorithm for the IG-Indel small parsimony problem
Given a rooted phylogenetic tree with genomes at the
leaves and a set of adjacency weights, our method works
in a bottom-up fashion, by choosing two leaves with the
same parent, reconstructing the ancestor at this parent
node, and labeling this current node as a leaf, until the root
of the tree is reconstructed.
At each node being reconstructed, given the two chil-

dren genomes and a set of adjacency weights, a heuristic
for the MaximumWeight Intermediate Genome (MWIG)
problem is called, which tries to quickly find an optimal
completion with high adjacency weight.
To do that, we build the hypergraph H representing

all optimal completions C∗, but ignore triple matchings,
focusing only on 2-matchings present in optimal comple-
tions, as given by the sets Ti, i = 1, . . . , 7. The weight
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of an edge in H is given by the solution of a MWIS on
the component correspoding to the given edge. If pAB is
even, there is a perfect matching inH corresponding to an
optimal completion. We find a maximum weight perfect
matching using BlossomV [35]. Then, from each MWIS
solution for the matched components, we get adjacencies
to build a genome G that is a high weight solution for
the MWIG. If pAB is odd, we could use Claim 4 strategy
of removing every possible triplet of H and solving the
even case as described, picking then the combination with
highest weight. Since the number of triplets can be very
high, we chose to solve this in a faster way by adding three
dummy nodes va, vb, and vab to H, connected with zero
weights to all vertices corresponding to A-, B- and AB-
paths, respectively, artificially transforming H in a even
pAB case, and then finding a maximum weight perfect
matching on H. The three components that are matched
to the dummy nodes are then combined, and a MWIS is
solved for this triplet.
A pseudocode of the proposed method, which we call

IG_SMALL_PHYLOGENY, is given at Algorithm 1.

Results
We implemented our algorithms in a software called
RINGO (ancestral Reconstruction with INtermediate
GenOmes), available at https://github.com/pedrofeijao/
RINGO. We created several simulated datasets to test
our proposed algorithms and compare with other exist-
ing approaches. RINGO was ran with DeClone weights
for kT = 0.1, kT = 0.4 and kT = 0.8, and also our cus-
tom weight algorithm. For the custom weights, we used
the branch lengths given from the simulations, and also
tested with branch length estimates given by Minimum
Evolution and Least Squares.
We compared RINGO with two other methods for

ancestral reconstruction of unequal content genes,
MGRA [9] and PMAG+ [15], implemented in the tool
MLGO [16].

Simulated datasets
The simulated datasets were created using a similar pro-
cedure as in [19], with a few extra parameters to include
indel events. A birth-death model with a birth rate of
0.001 and a death rate of 0 generates an ultrametric tree
with N = 12 leaves, and the branch lengths are dis-
turbed by multiplying by ed, where d is a real number
uniformly chosen from the interval [−2,+2]. The branch
lengths are then rescaled so the tree has a diameter D ∈
{0.5n, 1n, 1.5n, 2n, 2.5n}, where n = 1000 is the number of
genes, and the diameter is themaximum distance between
two leaves.
The root node is labeled with an unichromosomal

genome with 1000 genes, and evolution is simulated
along the edges by performing a number of random

Algorithm 1 The main function IG_SMALL_PHYLOGENY
receives a tree T, an extant genomes list G, and a setW of
adjacency weights for each internal node T, and returns a
new list with the reconstructed ancestral genomes added.
In a bottom-up approach, it chooses the two closest sib-
ling leaves and reconstructs the ancestral parent node
calling MAX_WEIGHT_IG, that receives the two leaves
and the ancestral adjacency weights, and returns a high
weight intermediate genome. For cycles, paths, AA-paths
and BB-paths, solving a MWIS finds a maximum weight
set of non-crossing adjacencies. Then, for the other open
components, we build the graph H by finding all pairs of
each type of component AB-, A- and B-paths according to
sets T1, . . . ,T7, with the weight of each matching given by
solving a MWIS on the paired components. If pAB is odd,
we have to completeH with dummy vertices and edges to
guarantee there exists a perfect matching. Here, �+ and
�− represent the sets of odd and even A-paths, where
�+ is the higher cardinality set, and �− the smaller. �+
and �− are defined similarly. A MaximumWeight Perfect
Matching is then solved on H. If pAB is odd, we form the
triplet given by the components that were matched with
the dummy vertices and solve another MWIS. An inter-
mediate genome is built by collecting all adjacencies from
the MWIS solutions from the matched componenents,
and then removing artificial singletons.
1: function IG_SMALL_PHYLOGENY(T ,G,W)
2: while |T | > 2 do
3: �1, �2 ← Find closest siblings of T
4: p ← get parent node of (�1, �2)
5: G[ p]←MAX_WEIGHT_IG(G[ �1],G[�2],W[ p])
6: Remove n1 and n2 of T � p becomes a leaf.
7: return G
8: functionMAX_WEIGHT_IG(A,B,W )
9: bp ← BP(A,B)

10: for (i, j) ∈ ∪7
i=1Ti do � edges (i, j) ofH

11: Find wij solving a MWIS on component i ∪ j
12: if pAB is odd then � add dummy nodes
13: Add edge (va, i) for i ∈ �+, with wva,i = 0
14: Add edge (vb, j) for j ∈ �+, with wvb,i = 0
15: Add edge (vab, k) for k ∈ ϒ , with wvab,i = 0
16: M ← MaximumWeight Perfect Matching onH
17: if pAB is odd then
18: Find (va, i∗), (vb, j∗), (vab, k∗) ∈ M
19: Solve MWIS for i∗ ∪ k∗ ∪ j∗ and add toM
20: From the MWIS solutions inM, build genome G
21: Remove artificial singletons from G
22: return G

events defined by the edge length. Events are chosen ran-
domly between reversals, deletions and insertions, with
probability 1 − P, P/2 and P/2 respectively, with P ∈

https://github.com/pedrofeijao/RINGO
https://github.com/pedrofeijao/RINGO
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{0, 0.2, 0.4, 0.6}. The length of an indel is sampled uni-
formly from [ 1, I], with I ∈ {1, 5}. Although the expected
size of the leaf genomes is 1000, there is not guarantee that
genomes will have the same size. For each combination of
D, P and I, we generated 20 datasets.

Discussion
All algorithms were compared in terms of quality of
the reconstruction, DCJ distance to the correct ancestral
genomes, and running time.
The quality results of all simulations are summarized

on Fig. 6. Each column represents the average results of
RINGO, MLGO and MGRA on each dataset, showing
the average number of true positives and false positives,
when comparing the adjacencies of the simulated and the
reconstructed genomes, in all internal nodes of a given
tree. More detailed results are given on Table 1, that also
shows all variations of the RINGO algorithms.

In datasets with small amount of evolution (D = 0.5
and D = 1), specially with unitary indels (I = 1), MGRA
has a slightly better quality than the two others. But, as
soon as the rearrangement rate increases, MGRA quality
decreases rapidly, while RINGO andMLGOquality seems
to decrease in a slower, somewhat linear rate.
At higher rates (D > 1), MLGO has a slightly higher

number of true positives, but at the cost of a much higher
number of false positives. RINGO is a more conservative
method, with the smallest number of false positives in all
datasets.
When comparing the datasets with I = 1 versus I =

5, we notice a decrease in quality for all algorithms for
the larger indels, but MGRA has a slightly larger loss of
quality, specially at higher rates of evolution. In fact, in
most datasets with I = 1, increasing the indel probability
P also increases the quality of MGRA, while the oppo-
site happens for I = 5. We believe that this might be a

Fig. 6 Quality of the adjacency reconstruction for each dataset, with single gene indels (I = 1, top plot) and with indel size ∈[ 1, 5] (I = 5, bottom
plot). Each column group represents the average results of RINGO (with custom adjacency weights and branch length estimation with ME), MLGO
and MGRA on each dataset, with the percentage of true positives and false positives, when comparing the simulated adjacencies and the
reconstructed adjacencies in all internal nodes of the simulated trees
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Table 1 Average adjacency reconstruction, in terms of true positives (TP) and false positives (FP) for all tested algorithms, for all
datasets grouped by tree diameter

Diameter (D) 0.5 n 1.0 n 1.5 n 2.0 n 2.5 n

Adjacency results (%) TP FP TP FP TP FP TP FP TP FP

Unitary Indels

RINGO – Sim. branch lengths 99.8 0.2 99.1 0.7 94.0 3.1 87.9 4.3 81.8 5.5

RINGO – Est. branch lengths with ME 99.8 0.2 99.0 0.7 93.7 3.0 87.7 4.1 80.6 5.6

RINGO – Est. branch lengths with LS 99.8 0.2 99.0 0.7 93.4 3.0 86.7 4.1 80.7 5.4

RINGO – DeClone weights, kT = 0.1 99.6 0.6 98.1 2.0 92.1 7.8 86.9 8.7 80.7 11.0

RINGO – DeClone weights, kT = 0.4 99.6 0.6 98.1 1.9 92.5 9.1 88.4 9.9 82.7 16.8

RINGO – DeClone weights, kT = 0.8 99.2 1.2 97.5 2.9 91.8 9.9 88.0 10.5 82.5 17.1

MLGO 99.6 0.3 98.6 1.3 94.6 5.0 91.8 7.8 85.6 13.8

MGRA 99.9 0.0 99.3 0.5 95.1 3.5 85.8 12.8 70.4 26.7

Indel length ∈[ 1, 5]
RINGO – Sim. branch lengths 99.4 0.3 96.7 1.4 92.0 2.6 73.8 6.2 81.0 4.9

RINGO – Est. branch lengths with ME 99.4 0.3 96.6 1.4 91.6 2.6 71.8 5.8 79.5 4.3

RINGO – Est. branch lenghts with LS 99.4 0.2 96.7 1.4 91.4 2.6 70.2 5.1 77.0 3.8

RINGO – DeClone weights, kT = 0.1 99.3 0.7 95.4 5.7 90.6 10.4 72.0 14.1 79.3 13.4

RINGO – DeClone weights, kT = 0.4 99.3 0.7 95.7 5.7 91.3 11.0 75.2 19.9 82.1 16.9

RINGO – DeClone weights, kT = 0.8 99.1 1.1 95.1 6.8 90.7 12.3 74.9 20.3 81.9 17.4

MLGO 98.9 0.7 95.9 3.7 90.6 7.0 75.0 15.9 81.7 13.8

MGRA 99.3 0.3 99.7 0.3 94.8 3.8 65.5 34.5 57.4 42.4

RINGO algorithm was tested with the InferCARs adjacency weights, using the simulated tree branch lengths and with branch lenghts estimated with Minimum Evolution or
Least Squares methods. RINGO was also ran with DeClone weights, with varying kT values

consequence of the way thatMGRAmodels the prosthetic
chromosomes by adding an edge vt , vh for each missing
gene, which implicitly assumes that this gene is part of
an unitary indel. In that respect, using a DCJ indel model
such as the one in RINGO, that allows for block indels,
will give better results when block indels do occur, which
we believe is the more realistic case.
Using the DCJ-Indel distance [20], we also measured

how far the reconstructed genomes are from the sim-
ulated genomes in average, and the results are shown
on Fig. 7. As the quality results indicate, at lower rate,
specially with unitary indels, MGRA has the smallest
distances, but they increase rapidly for higher rates. Com-
paring MLGO and RINGO for the higher rates, even
though MLGO has a higher percentage of false positives,
it has the smallest distances to the ancestral genomes. We
believe that this is caused by the fact that the DCJ distance
strongly penalizes fragmentation. Therefore, comparing
conservative methods like RINGO, that have a lower
percentage of false positives, with more aggressive meth-
ods like MLGO, with more true positives at the cost of
higher false positive percentage, the latter methods will
have smaller distances. For instance, consider an ances-
tral unichromosomal genome A = (a, b, c, d), where the
letters represent four blocks. If a method correctly recon-
structs all four blocks, but not the connection between

them, that is, a fragmented genome B = (a)(b)(c)(d) with
four chromosomes, then we have that the DCJ distance
is d(A,B) = 3. Now, consider another method that also
reconstructs the four blocks correctly, but gives a wrong
ordering, such as C = (a, c, b, d). Surprisingly, we have
that d(A,C) = 2, even though this reconstruction has the
same number of correct adjacencies as the previous one,
but more false positives. Indeed, for the general case of an
ancestral genome A = (a1, a2, . . . , an) and a fragmented
reconstruction B = (a1) . . . (an), we have d(A,B) = n− 1,
which is in fact the DCJ diameter for n blocks, that is,
the maximum possible DCJ distance. Any ordering of
the blocks a1, . . . , an, even completely random, will have
an equal or smaller distance to genome A. Therefore,
aggressive methods that try to minimize fragmentation by
adding adjacencies, even with small support, will have a
smaller distance to the correct ancestral genome, but we
argue that this is no indication of a better reconstruction.
While comparing running times, for RINGO and

MGRA the determining parameter is the rate of evolution,
controlled by the parameter D. For MLGO, the running
times stayed around one minute regardless of the rate. On
Table 2, we show the average running times for all rep-
etitions and indel rates I ∈ {0, 0.2, 0.4, 0.6}, in each of
the different diameters, for the two datasets I = 1 and
I = 5. The running time of RINGO is smaller thanMLGO
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Fig. 7 DCJ-Indel distance between the simulated and reconstructed genomes, with only single gene indels (I = 1, top plot) and with indel size
∈[ 1, 5] (I = 5, bottom plot). Each column group represents the average distances of RINGO, MLGO and MGRA on each dataset

and increases in a much slower rate than MGRA, which
increases exponentially for larger rates of evolution.
In summary, these results show that algorithms based

on intermediate genomes can perform at quality levels
equal or higher than current approaches for ancestral
reconstruction, while also being much faster.

Conclusion
In this paper we proposed a new method for ances-
tral reconstruction of gene orders for genomes with
unequal gene content by expanding a previous approach

for genomes with same gene content. The IG algorithm
is faster and in many datasets has a better reconstruc-
tion quality than MGRA and MLGO, specially for higher
rates of evolution. We believe that one of the strongest
points of our approach is the use of extra information,
in the form of intermediate genomes, and not simply
relying on the parsimonious idea of minimizing tree dis-
tances.With that, not only the quality of the reconstructed
genomes is improved but also the search space is drasti-
cally reduced, resulting in faster algorithms.We also think
that a combined approach with ideas from both worlds

Table 2 Average running time of 20 runs of each algorithm and all indel rates I ∈ {0, 0.2, 0.4, 0.6}, for different tree diameters with two
different parameters I determining the size of the indels in number of genes

Dataset I = 1, unitary indels I = 5, indels with 1 to 5 genes

Diameter (D) 0.5 n 1 n 1.5 n 2 n 2.5 n 0.5 n 1 n 1.5 n 2 n 2.5 n

RINGO 3 s 3 s 5 s 7 s 7 s 3 s 4 s 5 s 7 s 8 s

MLGO 1 m 6 s 1 m 10 s 1 m 7 s 1 m 9 s 1 m 16 s 57 s 60 s 1 m 4 s 1 m 7 s 1 m 10 s

MGRA 7 s 1 m 46 s 12 m 12 s 56 m 55 s 2 h 2 m 41 s 23 s 6 m 56 s 48 m 42 s 2 h 1 m 44 s 2 h 40 m 18 s
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could deliver very good results. As an example, we could
think of combining the space reduction power of interme-
diate genomes with the strong space search techniques of
MGRA.
There are many ways that we can improve the ideas pre-

sented in this paper. For one, instead of using a heuristic
for solving the maximum weight intermediate genome,
we will test how solving this problem exactly changes the
results, whether by using a FPT such as the one described,
or resorting to an integer linear programming for the
more complex cases. We also plan to extend the current
framework to allow the presence of duplicated genes.
The proposed algorithms were implemented as Python

2.7 scripts in a software called RINGO, that can be down-
loaded at https://github.com/pedrofeijao/RINGO. Also
included are scripts to generate simulations and parse the
reconstruction results on the simulated datasets, compar-
ing RINGO with other algorithms.
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