
Adaptive structure metrics for automated

feedback provision in Java programming

Benjamin Paassen, Bassam Mokbel and Barbara Hammer ∗

CITEC centre of excellence

Bielefeld University - Germany

(This is a preprint of the publication [15], as provided by the authors.)

Abstract

Today’s learning supporting systems for programming mostly rely on

pre-coded feedback provision, such that their applicability is restricted to

modelled tasks. In this contribution, we investigate the suitability of ma-

chine learning techniques to automate this process by means of a presen-

tation of similar solution strategies from a set of stored examples. To this

end we apply structure metric learning methods in local and global align-

ment which can be used to compare Java programs. We demonstrate that

automatically adapted metrics better identify the underlying program-

ming strategy as compared to their default counterparts in a benchmark

example from programming.

1 Introduction

Intelligent tutoring systems (ITSs) have made great strides in recent years; they
offer the promise of individual one-on-one computer based support in the context
of scarce human resources such as common e.g. for MOOCs [14]. However,
researchers have reported 100 - 1,000 hours of authoring time for one hour of
instructions in ITSs [12]; in addition, ITSs usually require an underlying domain
theory such that their applicability is limited in areas where problems and their
solution strategies are not easy to formalise [9]. Besides ill-defined domains such
as argumentation or writing, this also applies to more classical scenarios such
as programming due to different programming styles or algorithmic strategies
[4].

In the domain of programming, many ITSs generate feedback based on ex-
plicit modelling such as compiler instructions or constraints [7, 8]. This restricts
their applicability to settings where declarative knowledge about the underlying

∗Funding by the DFG under grant numbers HA 2719/6-1 and HA 2719/6-2 and the CITEC
center of excellence is gratefully acknowledged.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications at Bielefeld University

https://core.ac.uk/display/211856271?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Preprint of the publication [15], as provided by the authors. 2

programming strategies is available, but it rules out appropriate feedback if the
student follows a different strategy as compared to the pre-coded model. It
has been shown that, as an alternative, example based feedback provision, by
highlighting or contrasting a student solution to a known exemplar from a list
of examples gathered over time, can offer valuable feedback in such cases [5].

Such techniques, besides data, require a suitable metric based on which to
compare solutions. In this contribution, we will investigate how to efficiently
obtain a metric based on which to compare programs and distinguish their
underlying solution strategy. Thereby, we will face two problems. (1) Solutions
are typically non-vectorial, such that structure metrics have to be used. We
will rely on the approach [10], which compares programs by an alignment of
the basic ingredients as present in their syntax trees. Unlike previous work, we
will allow alignment strategies which enable a skip of irrelevant parts at low
costs. (2) A structure metric crucially depends on the metric parameters; we
will investigate efficient strategies how to autonomously learn these parameters.
Based on the work [11] which transfers the powerful concept of metric learning
from vectorial data such as summarised in [1] to the structural domain, we will
investigate the effect of relevance learning for different alignment metrics.

2 Data representation of programming tasks

In this contribution, we will rely on the following empirical observation investi-
gated e.g. in [5, 4]: in the absent of explicit models, feedback strategies which
contrast a learner solution by a structurally similar known solution are efficient.
Hence we face the following machine learning problem: how to compare two
programs such that structurally similar solutions are identified, while different
programming strategies are judged as dissimilar? We will focus on the domain
of Java programming. The similarity of programs cannot be decided based on
its computed function only, since the same functionality can be realised based on
different programming principles (e.g. iterative versus recursive programming).
Therefore, we will rely on a comparison of syntactical and structural differences.

In [10], an efficient technique to compare two programs based on their syntax
only has been proposed. Program code can be transferred to an abstract syntax
tree (e.g. using the Oracle Java Compiler API). Every vertex of this parse tree
is characterised by a feature vector encoding characteristic properties. For Java
code, nine features are provided: the vertex type, the scope, the parent vertex,
code position, name, class name, return type, external references, and internal
references (number of edges). We represent this tree as a string by using its
prefix notation. This way, the ordering of vertices corresponds to their natural
sequential order when executing the program. More importantly, a comparison
of programs can then be based on string alignment as suggested in [11, 10].

Preprint of the publication [15], as provided by the authors. 3

3 Alignment metric

Assume data (in our case programs) are encoded as sequences ā = (a1, . . . , a|ā|)
with entries ai = (ai1, . . . , a

i
n) ∈ X , the direct product of the n = 9 feature sets.

We assume that comparators dj(aj , bj) ∈ [0, 1] enable the comparison of single
features, inducing a local distance of sequence entries a, b ∈ X

dλ(a, b) =
n∑

j=1

λjdj(aj , bj)

with relevance weights λj ≥ 0 which sum up to 1. For sequences, ā and b̄, due
to their possibly different length, a direct vectorial comparison is not possible,
rather dissimilarities are induced by alignment. An alignment of two sequences
ā and b̄ consists of extensions of the sequences by the symbol gap −g such that
the resulting sequences Ā, B̄ have equal length, and not both entries Ai and Bi

equal −g. For such an alignment, fixing gap scores dλ(a,−g) = dλ(−g, b) = cg,
alignment costs are defined as

Dλ(Ā, B̄) =

|Ā|∑

i=1

dλ(A
i, Bi)

An alignment with minimum costs dλ(ā, b̄) = minĀ,B̄ Dλ(Ā, B̄) can efficiently
be computed using dynamic programming (DP) based on the recursion

dλ(ā(I + 1), b̄(J + 1)) = min{dλ(ā(I), b̄(J)) + dλ(a
I+1, bJ+1),

dλ(ā(I + 1), b̄(J)) + dλ(−g, b
J+1),

dλ(ā(I), b̄(J + 1)) + dλ(a
I+1,−g)}

where a(I) refers to the first I entries of the sequence only [13].
This alignment has the drawback that it is global, i.e. gaps have the same

costs no matter whether they are distributed or occur as block. For programs,
it is much more likely to exchange entire blocks rather than single lines. There-
fore, we consider an extension, relying on the idea of [3], where we allow cheaper
skips −s in addition to deletes. We refer to an alignment with skips as local

alignment ; formally, this refers to an extension of strings ā and b̄ by the sym-
bols −g and −s, such that the resulting sequences have the same length, every
position contains not only −g and −s, and −s occurs in blocks of length at least
k = 3 only. Provided dλ(a,−s) = dλ(−s, b) = cs < cg is fixed, this notion in-
duces an arrangement of inserts and deletes in blocks, if possible. An optimum
local alignment can efficiently be computed similar to a global one using DP,
where, due to the requirement of skip blocks having a minimum length, several
tables have to be maintained, see [3] or the more general framework [2] for its
realisation.

Preprint of the publication [15], as provided by the authors. 4

4 Adaptive alignment

Both, global and local alignment crucially depend on the metric parameters
λ which weight the relevance of the features associated to the nodes of a Java
program. Following the approach [11], we propose to automatically adjust these
parameters based on auxiliary information. Note that metric learning consti-
tutes an advanced and very powerful paradigm for vectorial machine learning
tasks, while only few methods have been proposed in the context of structure
metrics so far [1, 11, 16]. We assume that label information is available for an
example set of programs, whereby the label refers to the underlying program-
ming style or any other class of interest. We adapt metric parameters together
with an efficient, metric-based classification algorithm as provided by relational
generalised learning vector quantisation (RGLVQ), which aims for a minimi-
sation of the mislabeled examples by the model [6]. This procedure has the
advantage that metric parameters and class model can be adjusted simultane-
ously, whereby the classifier relies on a discrete representation of structured data
in term of pairwise dissimilarities only, aiming for a robust solution separation
which is characterised by a large hypothesis margin, see [6]. At the same time,
metric parameters are adapted in order to maximise the discriminative power
of the resulting representation, whereby these adjusted metric parameters can
be used independently of the underlying classification model, afterwards.

Formally, metric learning as well as model optimisation is based on the
objective function of RGLVQ. Model updates as reported in [6] result. For the
metric parameters, a gradient technique essentially relies on the gradient of the
underlying costs with respect to the involved dissimilarity measure (see e.g. [11]),
and the gradient of the dissimilarity, i.e. the alignment dλ(ā, b̄), with respect to
metric parameters λ. For the latter, we approximate the discontinuous function
min which occurs in the metric DP scheme by softmin, and compute derivatives
based on the same recursive DP scheme as the dissimilarities itself. See [11] for
the formulas in case of a global alignment, for a local alignment similar formulas
can be derived depending on its slightly more complex DP scheme.

5 Experiments

We evaluate the technique in a benchmark example from [11]: 64 Java pro-
grams from 37 different web sites are gathered, which comprise two differ-

Method Train (Std.) Test (Std.) SVM (# SV) 5-NN Sep.
global 0.75 (0.03) 0.74 (0.10) 0.65 (47) 0.77 0.88

global adapted 0.80 (0.02) 0.80 (0.09) 0.63 (46) 0.92 0.75
local 0.77 (0.03) 0.74 (0.12) 0.74 (48) 0.62 0.9

local adapted 0.85 (0.03) 0.85 (0.10) 0.78 (47) 1.00 0.74

Table 1: Mean training and test set accuracy with different adapted metrics
and resulting separation ratio

Preprint of the publication [15], as provided by the authors. 5

R

R

R

R R

R

bubble
insertion

Figure 1: t-SNE projection of the programs using the adapted local alignment.
Prototypes are marked in grey. R refers to a cluster of recursive programs.

ent sorting paradigms (35 bubble sort, 29 insertion sort, 4 resp. 2 of which
are implemented recursively, the remainder uses loops). Local comparators
dj(aj , bj) are normalised to the interval [0, 1], and gap and skip costs are fixed
as cs = 0.67 < cg = 1. We train a RGLVQ classifier with one prototype per
class, whereby the task is to predict the underlying sorting strategy (bubble
sort versus insertion sort). The initialisation of the relevance weights is uniform
1/9 with small noise added for symmetry breaking. We evaluate the results of
a repeated five fold cross-validation with five repeats and the following different
metric choices: no adaptation of metric parameters versus metric learning, and
local versus global alignment. Besides the classification accuracy of RGLVQ,
the result of an 5-NN error and an SVM is reported as well. The latter two are
based on the same metrics, whereby an SVM kernel matrix is obtained using
double centering of the dissimilarities and flip-correction of negative eigenvalues.

The resulting classification accuracy (larger is better) as well as the sepa-
ration ratio indicating class separability induced by the respective dissimilarity
(smaller is better) are reported in Tab. 1. Obviously, a local versus global align-
ment as well as adapted versus default metric parameter allow for an improve-
ment of the classification accuracy by about 10%. Interestingly, the separation
of the classes becomes much more pronounced, as can also be seen from a visual
inspection of the data: Fig. 1 displays a t-SNE projection of the data and pro-
totypes when using the adapted local alignment measure. This display clearly
shows a comparably good separation of the two classes with a large margin in
between the classes. Interestingly, the class of recursive programs clearly sticks
out as a separate cluster (marked R), albeit this information has not been used
while training. Thus, it can be expected that the resulting metric parameters
constitute a good choice based on which example solutions can be selected as
feedback mechanism in corresponding learning scenarios.

The metric learning scheme allows us to inspect the semantics of the result-
ing metric since we can project the relevance profile of features λj (normalised
by their usage in the data), see Fig. 2. Interestingly, a semantically meaningful
profile results, which marks the type and scope as most prominent structuring

Preprint of the publication [15], as provided by the authors. 6

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

type

scope

parent

codePosition

name

className

returnType

externalDependencies

numberOfEdges

Comparator Weights

Figure 2: Weight profile of the adapted metric indicating the relevance of the
node characteristics for distinguishing programming styles.

elements to distinguish programming styles. In contrast exact code position, as
well as several other features play only a very minor role. This relevance profile
carries the promise to transfer to different scenarios beyond the considered pro-
gramming task for sorting programs, such that it can induce a suitable metric
based on which to determine an exemplar for automated feedback.

6 Conclusion

We have investigated the suitability of structure metric learning for local and
global alignment strategies in the context of the classification of programming
strategies. Metric adaptation can be done efficiently based on a distance-based
classification model, which enables direct gradient techniques for its optimisa-
tion. Metric parameters itself can be adapted following the same DP scheme as
the underlying alignment. Based on a cross-validation, it is apparent that an
adapted metric allows a better separation of the strategies; whereby this result
is independent from the subsequent classifier used (LVQ, kNN, and SVM). This
observation can be substantiated by a better visualisation of the solution space,
in which not only the different strategies but also the (priorly not marked) re-
cursive strategies form well separated clusters. In addition, metric parameters
allow a semantic insight into the meaningful descriptors for program nodes. This
result lays the foundation for a semantically meaningful distance measure based
on which to select possible feedback-partners. It is subject of ongoing work in
how far the results transfer to different tasks and domains.

Preprint of the publication [15], as provided by the authors. 7

References

[1] A. Bellet, A. Habrard, and M. Sebban. A Survey on Metric Learning for Feature Vectors
and Structured Data. ArXiv e-prints, (1306.6709), 2013.

[2] R. Giegerich, C. Meyer, and P. Steffen. A discipline of dynamic programming over
sequence data. Science of Computer Programming, 51(3):215 – 263, 2004.

[3] O. Gotoh. An improved algorithm for matching biological sequences. Journal of molecular
biology, 162(3):705–708, 1982.

[4] S. Gross, B. Mokbel, B. Hammer, and N. Pinkwart. Example-bases feedback provi-
sion using structured solution spaces. International Journal on Learning Technologies,
9(3):248–280, 2014.

[5] S. Gross, B. Mokbel, B. Hammer, and N. Pinkwart. How to select an example? A
comparison of selection strategies in example-based learning. In ITS, pages 340–347,
2014.

[6] B. Hammer, D. Hofmann, F. Schleif, and X. Zhu. Learning vector quantization for
(dis-)similarities. Neurocomputing, 131:43–51, 2014.

[7] J. Holland. A constraint based ITS for the Java Programming Language. PhD thesis,
University of Canterbury, U.K., 2009.

[8] J. Jeuring, A. Gerdes, and B. Heeren. Ask elle: A haskell tutor – demonstration –.
Technical Report UU-CS-2012-010, Utrecht University, The Netherlands, 2010.

[9] C. Lynch, K. D. Ashley, N. Pinkwart, and V. Aleven. Concepts, structures, and goals:
Redefining ill-definedness. International Journal of Artificial Intelligence in Education,
19(3):253–266, 2009.

[10] B. Mokbel, S. Gross, B. Paaßen, N. Pinkwart, and B. Hammer. Domain-independent
proximity measures in intelligent tutoring systems. In EDM, pages 334–335, 2013.

[11] B. Mokbel, B. Passen, F.-M. Schleif, and B. Hammer. Metric learning for sequences in
relational lvq. Neurocomputing, page accepted, 2015.

[12] T. Murray, S. Blessing, and S. Ainsworth. Authoring tools for advanced technology learn-
ing environments: Toward cost-effective adaptive, interactive and intelligent educational
software. Springer, 2003.

[13] S. B. Needleman and C. D. Wunsch. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of Molecular Biology,
48(3):443 – 453, 1970.

[14] R. Nkambou, R. Mizoguchi, and J. Bourdeau. Advances in Intelligent Tutoring Systems.
Springer, 2010.

[15] B. Paaßen, B. Mokbel, and B. Hammer. Adaptive structure metrics for automated
feedback provision in java programming. In M. Verleysen, editor, 23rd European Sympo-
sium on Artificial Neural Networks, Computational Intelligence and Machine Learning
(ESANN), pages 307–312. i6doc.com, 2015.

[16] P. Schneider, M. Biehl, and B. Hammer. Adaptive relevance matrices in learning vector
quantization. Neural Computation, 21(12):3532–3561, 2009.

