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Abstract. Goal Babbling is a recently introduced method for direct
learning of the inverse kinematics within few hundred movements even in
high-dimensional sensorimotor spaces. This paper investigates if random
selection of movement directions in goal space can be used for Goal Bab-
bling without pre-specifying goals, instead, the goals will be generated
along the chosen direction. This so-called Direction Sampling was pre-
viously developed for a 2D workspace with a simple planar arm model,
whereas we scale it to full 3D and a complex 9-DOF humanoid robot
(COmpliant huMANoid - COMAN) integrating simplified walking be-
havior by means of a simulated robot-floating base. The paper evaluates
how much of the workspace can be discovered, what the performance
of the learned inverse model is, and how the different degrees of free-
dom can be constrained by changing the exploration noise model. The
results show that the combination of Goal Babbling and Direction Sam-
pling works even under these difficult conditions, but has limitations in
performance if the workspace is not fully explored.
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1 INTRODUCTION

With the advent of humanoid and other robots with many degrees of freedom,
motion control and in particular movement skill learning has attracted renewed
attention recently. Historically, movement skill learning has been a topic in ma-
chine learning, robotics and neuroscience since the 90th, where it is widely ac-
cepted that human motor control is organized on the basis of forward and inverse
models [1]. A number of schemes have been developed for learning of such inter-
nal models, among them the seminal work on distal teachers [2] and on feedback
error learning [3]. However, these models were applied to simple robots only and
assume that first a forward model is learned or is already available which converts
actions into predicted outcomes, before learning an inverse model, that converts
goals, e.g. positions to reach, into motor commands. These models cannot de-
scribe how to learn from scratch, i.e the first phase of motor learning when a good



body coordination is not yet established. Therefore, a number of works have pro-
posed an initial learning phase to obtain a forward model by random exploration
of motor commands under the notion of motor babbling [4], [5]. This appears
unrealistic, however, for robots with many degrees of freedom. The respective
high-dimensional spaces for motor commands cannot be explored randomly or
systematically because of a combinatorial explosion. Furthermore, there is an
evidence from infant studies that already neonates perform goal directed action
from the very beginning of learning [6]. Apparently, they learn how to reach by
trying to reach, and they adapt their motion by iterating their tries [7]. These
insights motivated researchers to turn to the idea of direct learning of inverse
models [5], [7], [8]. Such models directly yield a motor command to achieve a
goal and do not depend on a previously learned forward model. But they have
to deal with both the problem of redundancy, which is the problem that a re-
dundant robot has many possible ways to achieve a goal and needs to make a
selection from these. And they need to assure the scalability in high dimensions.
A particularly efficient has been introduced under the notion of Goal Babbling
[9]. Goal Babbling follows the approach to explore rather the low-dimensional
space of goals, e.g. target positions in space to be achieved for a robot hand.
This is in contrast to exploring the much higher dimensional action space of
motor commands that motor babbling explores. Goal Babbling systematically
generates consistent samples for supervised learning of the inverse model, for
which typically a local linear map [7] or a neural network [10] is employed as
learner. It has been shown that Goal Babbling scales to high dimensions (up to
50 DoF for a planar arm [7]), it has been applied to learn the body coordination
of the humanoid robot ASIMO [9], and its online version [7] has for instance
been applied to learn the inverse kinematics of an soft elephant trunk robot [11]
in a truly ”learning-while-behaving” fashion.
One limitation of Goal Babbling is that the algorithm needs a predefined set of
goals to achieve, for instance a grid of positions to reach in the task space. If the
workspace is not fully known a priori or unreachable goals are devised, either
only parts of the work space are explored or it can be time consuming to ask
the robot to achieve unreachable goals. To overcome this drawback, in [12] an
extension of Goal Babbling to discover and determine the reachable workspace
while learning the inverse model was introduced as ”Direction Sampling”. The
algorithm is based on random selection of movement directions to explore while
learning the inverse kinematic mapping along the way. A planar arm was used for
evaluation the effectiveness of this direct sampling. In this case, the workspace
is 2D and thus very limited, whereas random directions in 2D are easy to follow.
The current paper investigates, if direction sampling can be used for a realistic
humanoid robot by simulating the robot COMAN (Compliant Humanoid) that
can move in space in order to discover its 3D workspace autonomously. This
obviously is a harder problem, which is further complicated by the fact that the
robot has very different types of movement available. It can ’walk’, which we
simulate by means of a simple linear x-y translation in space, and reach with its
full upper body with nine degrees of freedom.



Algorithm 1 Online Goal Babbling

INPUT: home postures qhome, targets X∗, and forward kinematic function FK.
1: for number of iteration
2: for each target x∗

3: generate a temporary path
4: for each temporary point along the path x∗

t

5: estimate joints’ value q̂∗t
6: add exploratory noise E: q+t = q̂∗t + E(x∗

t , t)
7: x+

t = FK(q+t )
8: end for
9: end for

10: end for
OUTPUT: learner ←− (q+t , x+

t )

2 The Goal Babbling Algorithm

The algorithm is given in Algo. 1. Goal babbling starts with an initial inverse
estimate g, which has parameters θ adaptable by learning, and is initialized in
t = 0 such that it always suggests some comfortable home posture: g(x∗ ,θ0)
= const = qhome . Then, continuous paths of target positions x∗t are iteratively
chosen by interpolating between the K representative points located on the
grid of predefined goals. The system then tries to reach for these targets, which
roughly corresponds to infants’ early goal-directed movement attempts. For that
purpose, the current inverse estimate is used to generate a motor command q∗t .

The command q∗t is sent to the robot and executed, the outcomes (q+t , x
+
t )

are observed, and the parameters θt of the inverse estimate are updated online
before the next example is generated. It is crucial to make the distinction between
q∗t and q+t at this point: the command q∗t might not be executable, or might
not yet be reached at the time of measurement. Hence, only (q+t , x

+
t ) but not

(q∗t , x
∗
t ) represents a sample of the ground truth forward function that is useful

for learning. The perturbation term E(x∗t , t) adds exploratory noise in order
to discover new positions or more efficient ways to reach for the targets. This
allows to unfold the inverse estimate from the home posture and finally find
correct solutions for all positions in the volume of targets X∗

For learning, a regression mechanism is needed in order to represent and
adapt the inverse estimate g(x∗). The goal directed exploration itself does not
require particular knowledge about the functioning of this regressor, such that
in principal any regression algorithm can be used. For an incremental online
learning, a local-linear map has been chosen. The inverse estimate consists of
different linear functions gk(x), which are centered around prototype vectors and
active only in its close vicinity which is defined by a radius d. The function g(x∗)
is a linear combination of these local linear functions, weighted by a Gaussian
responsibility function [7].

spanned by the
predefined goals [11]. The most efficient movement will be learned by using the

weighting scheme, which helps out to solve the redundancy problem.



2.1 Direction Sampling

Discovering the workspace could be done by using Motor Babbling, i.e. random
motor commands are executed, and their outcomes are observed. However, the
robot will discover the workspace without learning it. In contrast, the Goal
Babbling uses inverse model which suggests a motor command necessary to
achieve a desired outcome and learns it. However, a limitation of Goal Babbling is
the need to pre-specify the goals. To this aim, targets must be known beforehand
or there is a risk to waste time and to distort the learned inverse model by trying
to achieve unreachable targets. To tackle this issue, in [12] Direction Sampling
was presented, which is an approach to discover the reachable workspace while
learning the inverse kinematic mapping during the discovery. It employs Goal
Babbling while generating targets in the workspace instead of predefining them.
A random direction 4x will be chosen, and the targets will be generated along
this path as given in (1):

x∗t = x∗t−1 +
ε

‖∆x‖
·∆x, (1)

where ε is a step-width, t is a time-step, x∗t is a generated target, and x∗t−1 is the
previous one. The robot starts exploration from its home position xhome, which
is corresponding to some initial joints’ values qhome. It tries to explore along the
desired direction until it reaches an unachievable target i.e. the current position
deviates from the desired goal by more than 90 degrees, given in (2):

(x∗t − x∗t−1)
T

(xt − xt−1)< 0, (2)

where xt is the current position, and xt−1 is the previous observed movement.
In this case, a new direction will be chosen and the agent will try to follow
it again [12]. Every 100 times the initial position qhome is used as a target to
avoid drifting. While this mechanism is simple and worked well to explore a 2D
workspace, it is not apparent that in full 3D and with a complex robot this
mechanism is sufficient to explore a reasonable part of the workspace.

2.2 Noise Scaling

In this section, we introduce a further extension of the Goal Babbling, which
is motivated from the idea that not all degrees of freedom should be employed
equally much. E.g. walking for a robot can be considered more costly than mov-
ing its hand or arm. The previous approach of Goal Babbling already used an
efficiency factor to value samples more if they feature more efficient movements.
This, however, was purely geometry based, e.g. a shoulder joint needs a smaller
deviation to achieve a significant hand movement than an elbow because of the
longer lever. But in principle, more factors should be considered such as equilib-
rium, balance, and motors’ synchronization. We therefore try to constrain the
learning dynamics to favor solutions that use or avoid certain joints by scaling
the exploratory noise for the joints’ movement as

qt = g(x∗t , θt) + Et(x
∗
t )w. (3)
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Fig. 1: Compliant humanoid (COMAN) with floating base model in Matlab Robotics
toolbox (a) and in VREP (b)

Et is the exploratory noise weighted by a coefficient vector w. The larger the
exploratory noise is in one joint variable i, i.e. the larger the respective wi, the
more likely the learning dynamics will discover a solution for reaching to a point
that employs this joint. This implements an implicit, soft constraint. We give
highest efficiency for the arm movement, less weight for the torso motion, and
the least for the lateral displacement ”walking”.

3 Setup with the COMAN robot

Unlike standard manipulators, humanoid robots are not physically fixed to a
base, there is a so-called floating base. Therefore, the workspace for the humanoid
robot is in theory unlimited. However, if we limit the movement to some amount
forward and sidewards (in the experiments: ±1.5 m), there is a limited reachable
workspace around the robot where we can expect interaction of moving, leaning
with the upper body and arm motion. We target to discover this reachable
workspace with the 3D Direction Sampling approach. Technically, we simulate
walking by replacing the actual lower body by two additional degrees of freedom
(linear forward, linear sidewards). Therefore, the floating base for the COMAN
robot is simplified to move in X-Y plane. The remaining model has 7 DOF: the
torso has 3 DOF, the shoulder has 3 DOF, the elbow has 1 DOF. Together with
the two virtual DOF for the floating base this is in total a nine dimensional
joint space. Note that the types of movement here are very different: linear in
the floating base, rotational in the torso and in the arm. The kinematic model
has been setup in MATLAB using the Robotic Toolbox [13] and in V-REP for
visualization as shown in Fig. 1(a) and Fig. 1(b) respectively.

4 Evaluation

In a first step, we verify that Goal Babbling can deal with the complex robot
setup and learn to reach 45 targets arranged in a regular 3D grid as illustrated
in Fig. 1(a): 15 targets in front of the robot at distance 30 cm, 15 at the coronal
plane, and 15 in the back of the robot at distance 30 cm as well. The vertical
distance between targets is 5 cm. Fig. 2(a) shows a typical learning curve, the



(a) (b)
Fig. 2: (a) Goal Babbling error in meter, (b) discovered workspace using Direction
Sampling

(a) (b)
Fig. 3: Reachable workspace (a) vs Discovered workspace (b)

reaching error drops very fast and already after 200 learning epochs a decent
performance on the targets is achieved, i.e. after 800 movements the error drops
to 2 mm. The robot leans to use the lateral movement of the floating base
to reach to targets behind its body and combines it with the torso and arm
movement. Next we turn to Direction Sampling. To obtain a ground truth of
the reachable workspace, we use extensive sampling in simulation with a kind
of motor babbling to collect 3× 106 samples. Then the volume of the reachable
workspace is estimated using the alphavol MATLAB function with radius R =
0.01. The estimated volume is 11.5117m3 and is illustrated in Fig. 3(a). However,
the robot learns nothing about reachable targets in this way. Now, we apply
Direction Sampling to explore, discover, and learn the workspace simultaneously.
Although the direction sampling is very simple, the robot manages to discover
most of the workspace in few thousand steps. Fig. 2(b) illustrates the discovered
workspace after 60000 samples. The Direction Sampling algorithm is evaluated
after 104, 5 × 104, 6 × 104, 105, and 106 samples. The discovered workspace is
again estimated using alphavol function. The results are illustrated in Table.1,
and the discovered workspace after 106 samples is illustrated in Fig. 3(b). As
expected, the robot visits an increasing portion of the workspace with more
learned samples, and it performs well on the grid targets which were previously
used to evaluate the efficiency of standard Goal Babbling, as shown in Table 1.

To gain more insight about the performance relative to the distance from the
body, two further target grids for reaching are presented in front of the robot
with distance 1 m, and 0.5 m. Then targets are presented in the coronal plane,
i.e. some are inside the robot such that it must “walk”, i.e. the lateral movement



Table 1: Volume of discovered workspace averaged over 5 runs

Number of Samples
Average Volume Percentage Volume Average Error

Discovered Discovered for 45 targets

104 0.715± 0.07 6.211% 0.377 m
5× 104 2.17± 0.2 18.85% 0.0284 m
6× 104 3.18± 0.02 27.62% 0.0484 m

Goal Babbling - - 0.02

Table 2: Testing Error Measured for Different No. of Samples.

Distance

Front On Behind

No. of Samples −1 m −0.5 m 0 m 0.5 m 1 m

104 0.2091 m 0.16 m 0.17 m 0.42 m 0.2517 m

5× 104 0.2315 m 0.0234 m 0.02 m 0.074 m 0.1256 m

6× 104 0.14 m 0.127 m 0.03 m 0.158 m 2.37 m

106 0.1020 m 0.0123 m 0.0181 m 1.0625 m 7.17 m

Table 3: Discovered workspace after adding noise scaling

Factor of the
scaling noise

Percentage Volume of
the Discovered Workspace

[1 1 1 1 1 1 1 1 1] 27.62%
[0.15 0.15 0.5 0.5 0.5 1 1 1 1] 12.5%
[0.1 0.1 0.5 0.5 0.5 1 1 1 1] 10.2%

[0.01 0.01 0.5 0.5 0.5 1 1 1 1] 3.3%

in x-y direction. Finally, they are behind the robot at a distance 0.5 m, and
1 m. The performance error is illustrated in Table. 2. Apparently, the targets
behind are much more difficult to reach and in the final row, some of the targets
were out of the discovered workspace and produced large errors, as the learner
extrapolated rather badly because it is a local linear.

The final experiment is on modulating the learning dynamics to use particular
joints more or less. The noise is weighted as shown in Table. 3, which scales down
exploration with the floating base (i.e. walking) systematically. The discovered
workspace after adding the constrains was evaluated after 60000 samples. The
robot discovered less workspace, because of the constrains. For example, 0.01
limit the joint movement exploration more than 0.15 illustrated in Table 3.

5 Conclusion

We have shown that Goal Babbling with or without combination with Direction
Sampling can be used even in a complex scenario where a 9 DOF humanoid
robot discovers its 3D workspace. There were no indications of local minima or

105 3.59± 0.01 31.816% 0.047 m
106 9.338 81.18% 0.036 m



of the algorithm being captured in already explored areas, which is quite re-
markable given the complexity of the mapping to be learned. The results also
show, however, that a large number of direction changes are needed and the
learner naturally performs badly for goals in the undiscovered areas. It is inter-
esting that indirectly, through scaling of the noise, certain degrees of freedom can
be preferred. Future work shall improve the direction sampling. A more active
choice of directions towards undiscovered areas should yield better performance,
however, at the cost of an increased complexity of the algorithm.
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