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Abstract

Intelligent Tutoring Systems (ITSs) are adaptive learning systems that aim to
support learners by providing one-on-one individualized instruction. Typically,
instructing learners in ITSs is build on formalized domain knowledge and, thus,
the applicability is restricted to well-defined domains where knowledge about the
domain being taught can be explicitly modeled. For ill-defined domains, human
tutors still by far outperform the performance of ITSs, or the latter are not appli-
cable at all. As part of the DFG priority programme “Autonomous Learning”, the
FIT project has been conducted over a period of 3 years pursuing the goal to de-
velop novel ITS methods, that are also applicable for ill-defined problems, based
on implicit domain knowledge extracted from educational data sets. Here, ma-
chine learning techniques have been used to autonomously infer structures from
given learning data (e.g., student solutions) and, based on these structures, to de-
velop strategies for instructing learners.

1 Introduction
Intelligent Tutoring Systems (ITSs) have made great strides in recent years. The goal of
these educational technology systems is to provide intelligent, one-on-one, computer-
based support to students as they learn to solve problems in a type of instruction that
is often not available because of scarce (human) resources [21]. The basic rationale
underlying traditional ITS systems is that by using formalized domain knowledge and
dynamic student models, comparing student’s problem solving steps to the explicit
domain models, it is possible to adapt instruction to the needs of specific students
and effectively support their learning. Two prominent approaches that both use such
explicit domain models have demonstrated impressive practical success in teaching
domains such as algebra, geometry, programming, database design or UML [13, 14]:
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Constraint-Based Tutors [20] rely on checking student solutions for the fulfillment of
certain correctness constraints (and give feedback, should these be violated), Cognitive
Tutors [2] are based on a detailed and formalized cognitive model that represents the
process of building correct solutions.

While leading to impressing results, e.g., in mathematics education in U.S. High
Schools, ITS research still faces two problems: (i) current ITS systems have their ad-
vantages only in well-structured and comparably narrow domains since they need to
judge whether and why a given student answer is correct or wrong; (ii) to achieve
this goal, current ITS systems require an exact formalization of the underlying domain
knowledge which is usually a substantial amount of work: researchers have reported
on 100-1000 hours of authoring time needed for one hour of instruction [19].

In order to extend the applicability of ITSs to more ill-structured problems and to
reduce the effort for building such systems, the overarching goal of the FIT project has
been to research novel approaches that do not require explicit domain models but infer
domain knowledge autonomously from educational data sets.

2 Challenges & Objectives
If ITSs cannot rely on explicit models or complete domain knowledge, it may be possi-
ble to acquire information about the domain in terms of educational data sets consisting
of examples (e.g., solution attempts made by students or sample solutions created by
experts) how to solve a given problem. Here, machine learning constitutes a key tech-
nology to infer meaningful information from given examples. Due to the nature of
ill-defined domains and the inherent noise and errors in typical application data (i.e.
student solution attempts), statistical machine learning techniques in unsupervised or
semi-supervised settings such as data clustering seem appropriate. There are two chal-
lenges for machine learning methods that aim at structuring educational data sets:

1. Typical data in ITSs is not given by Euclidean vectors as is common in statistical
machine learning. Rather, structural elements play an important role.

2. Models inferred by machine learning should constitute an interface towards hu-
man understandable feedback mechanisms. This rules out typical black box
techniques which could be used to learn a function (such as whether a student
solution is correct) but which do not explain why they take a decision.

To account for model interpretability, we decided to focus on intuitive prototype-based
techniques, which represent the data in terms of typical examples, and which base their
result on a comparison of the given data to the learned prototypes. Considering both
challenges, we identified four objectives. First, prototype-based machine learning tech-
niques need to be enhanced for tree structured data (e.g., XML documents) instead of
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simple vectors such that flexible and interpretable statistical machine learning becomes
possible in the context of complex structural representations. Second, machine learn-
ing methods need to be devised to autonomously adapt (alignment) metrics for data
comparison simultaneously to the inference of data clusters. The metric has to take
into account structural constituents such as basic texts and their relation as represented,
e.g., by XML documents, possibly incorporating problem dependent invariances. An
expected result of the first two objectives is the ability to automatically cluster (sample)
solutions of ill-defined problems, resulting in sets of similar and good solutions (with
possibly different solution pathways and strategies) and sets of similar but incorrect
attempts (with different errors made, and different strategies pursued by the students).
Therefore, third, it needs to be determined how, based on this material, learners can
be instructed (e.g., by providing relevant and helpful feedback to learners in case of
mistakes) under the condition of uncertainty and without explicit domain models. The
main goal of any Intelligent Tutoring System is to deliver efficient and effective train-
ing to students. Consequently, as the fourth objective, machine learning methods and
ITS methods need to be tested in empirical studies for their strengths and weaknesses.
Here, the measurements we are interested in include both tutoring effectiveness and
efficiency in terms of student’s learning gains as well as cost-benefit studies, compar-
ing the development costs for tutors that use this novel approach to those of other ITS
systems.

3 Advances & Results
We initially preprocessed existing data sets (Java programs, UML diagrams and argu-
mentation maps) in order to achieve a structure that is capable of representing different
data types (e.g., plain text or XML based data). This resulted in a common represen-
tation: an annotated graph with nodes representing structural elements in a solution
and edges representing dependencies between those nodes [15]. A subset of the data
set was manually coded in terms of quality for the purpose of later comparison with
automated assessments. Also, we defined the term “solution space” in more detail,
including both a technical dimension on how to analyze such spaces of learner (and
sample) solutions using machine learning techniques, and a pedagogical dimension on
how to give useful feedback to a learner’s solution within such a space [10]. In addi-
tion, we identified several evaluation methods (e.g., pre-/post-testing) and criteria (e.g.,
learner’s action after and before next instruction) that are suitable for measuring the
impact of FIT ITS methods on human learning.

To provide meaningful automated feedback via machine learning methods, the rep-
resentation of input data is a key factor. We have taken a general approach, which relies
on a data representation in terms of pairwise proximities only. The proximity values are
provided by dissimilarity measures, which offer several benefits over a classical feature
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description of the data: When processing a pair of solutions, dissimilarity measures can
take into account structural aspects in the given encoding, and treat the solutions’ con-
stituents in direct comparison with each other. Dissimilarities are also not restricted
to distances in a Euclidean vector space, and they are not necessarily metric. We only
assume symmetry and vanishing self-dissimilarities, to ensure that a pseudo-Euclidean
embedding exists, which provides a sound theoretical basis to represent the underlying
data space.

Regarding objective 1, we developed a general framework which allows to transfer
prototype-based machine learning methods to dissimilarities [11]. Therein, prototypes
are represented implicitly by linear combinations in the underlying pseudo-Euclidean
space. We have shown that these relational clustering and classification techniques can
structure solution spaces, and yield prototypical solutions for a direct interpretation
of the data-driven model [15, 10]. Regarding objective 2, we developed a domain-
agnostic dissimilarity measure, based on a highly parameterized sequence alignment1

over traversals of subgraphs. To adapt this measure to a given domain or learning
task, the parameters (in this case the scoring of the alignment function) have to be
adjusted accordingly. We proposed an approach for an autonomous adaptation of the
scoring parameters, in conjunction with classifier training [18, 16, 17]. This facilitates
model accuracy for the given solution space and also offers the possibility to interpret
semantic implications of the adapted dissimilarity measure.

With respect to objective 3, we investigated how, based on structured solution
spaces, learners can be instructed in problem solving processes. We identified, im-
plemented and (partially) tested three main principles so far.

(I) Example-based learning is suitable for situations where explicit domain knowl-
edge is not available but example solutions provide an implicit description of the so-
lution space. It has been shown to be effective, encouraging learner’s self-reflection
by guiding her through the learning process using (worked) examples [22]. In FIT,
self-reflection and example based learning can be implemented by asking learners
to compare their own solution to a similar (but not identical) element of the solution
space, to self-explain the observable differences and to think about possible mistakes
and how to fix them.

(II) Model-tracing ITSs have shown to successfully support learning in well-defined
domains. In these systems, a learner is supported via feedback provision which is cal-
culated based on a cognitive model which consists of correct and buggy rules. We
adapted this approach to ill-defined domains by using the solution space as a heuris-
tic data driven substitute for the cognitive model. The underlying principle is that if
a learner asks for feedback, the solution space is searched for an element that is not
only similar to the learner solution, but (even more) likely a next step in a correct (or
buggy) solution process. The system then uses this element for feedback provision –

1http://openresearch.cit-ec.de/projects/tcs
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e.g., by contrasting it to the current student solution, or by highlighting the elements in
the student solution where it differs from its counterpart.

(III) Since a solution space consists of solutions of several learners, another possi-
ble form of feedback provision for FIT ITSs is to bring learners together and stimulate
collaborative learning interactions. For instance, peer tutoring or peer reviewing ses-
sions can lead to a fruitful learning. The FIT solution space can be used for these
approaches: it not only contains information about users, but also about the similar-
ity of learner solutions which can be used for the assignment of peer reviews or the
formation of learning groups.

To apply and test these feedback provision strategies in multiple domains and with
heterogeneous tools, we designed a middleware architecture [6] that provides typical
components of ITSs and prototype-based machine learning via standard interfaces. It
implements the typical components used in ITSs: a student model stores information
about learners and their actions; a pedagogical module contains pedagogical strategies
implementing the above mentioned feedback principles.

As argued in Section 1, ITSs have shown to be effective in a variety of teaching
domains. This includes several successful ITS approaches for teaching programming.
The LISP Tutor, a very early cognitive tutor for programming, helps students learn
the LISP programming language by providing feedback to learners based on cognitive
models of ideal solutions [1]. Coull and colleagues [4] propose to parse compiler mes-
sages and to compare them to a domain model in order to help learners find mistakes in
their programs. J-LATTE is a constraint-based tutor for Java programming that checks
the correctness of students’ programs using a model of precoded constraints [12].

In comparison to the above mentioned tutoring systems that make use of prede-
fined (cognitive) domain models, our approach uses machine learning techniques that
automatically infer (cognitive) states from a given solution space. We utilized the previ-
ously introduced middleware architecture to build a tutoring system for Java program-
ming. This tutor implements feedback principles (I) and (II) and provides example-
based feedback in order to help students reflect on their solutions, find mistakes and
give explanations how to solve a given problem. In contrast to the example-based
learning approach pursued by the NavEx tutor [3], our approach is based not only on
complete sample solutions but also includes steps towards a complete solution (as il-
lustrated in Fig. 1) in order to reduce learners’ cognitive load and to adaptively instruct
them depending on their actual state in problem-solving.

Focusing on pedagogical principles of feedback provision as described in (I) and
(II) and on the utility of prototype based machine learning techniques for these prin-
ciples, we conducted several pilot studies to address objective 4. In an expert survey
[5], we asked human Java tutors whether example-based feedback provision methods
as developed in FIT make sense. The results of this survey supported the hypothesis
that the example-based feedback provision methods can be beneficial for learning.

We then conducted two Wizard-of-Oz studies [10, 7] asking experts to simulate
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Figure 1: Application of feedback principles (I) and (II) in the domain of Java pro-
gramming. A student is prompted to reflect her solution attempt (illustrated on the left)
and to compare it to the next step of a correct example (illustrated on the right).

the behavior of a FIT ITS. In these studies, we examined two different example-based
feedback provision strategies in the domain of Java programming: highlighting and/or
contrasting similarities among learner solutions and sample solutions (as illustrated in
Fig. 1). The results show a positive impact of the instruction that was positively rated
by the learners [10], and the study also confirmed that manual feedback generation
indeed means a lot of work, and that the ITS feedback methods have been assessed as
potentially helpful in most cases [7].

Finally, we conducted a field study in an introductory programming course for Java
programming, comparing the appropriateness of different exemplar selection strategies
(user or sample solutions, full or partial solutions) for feedback provision. This study
yielded that examples created by experts are more beneficial to support learning than
using solution attempts of other learners as examples. Here, providing parts of sample
solutions has shown to be more beneficial for learning than revealing the complete
sample solution [8].

4 Future Research: DynaFIT
In FIT, we examined novel approaches for ITSs on how to instruct learners in prob-
lem solving processes based on implicit models of domain knowledge (represented
by structured solution spaces). Several empirical evaluations have shown a positive
impact on learning, however, we also found a limitation of this approach: since a FIT
ITS provides feedback depending on learner’s current activity in problem-solving only,
it disregards past activities. This could result in a loop where a learner receives the
same (inadequate) feedback again and again, without being able to proceed in problem-
solving. The overarching goal of DynaFIT, a successor project to FIT, is to enhance
feedback strategies in ITSs for ill-defined domains so that self-regulated learning is
supported and the activity of a learner during a sequence of learning tasks is taken into
account: the ITS system should autonomously react and adapt to this dynamic human
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learner behavior. This objective requires the development of machine learning strate-
gies which support an autonomous information transfer across different learning tasks
by means of a common representation. The following four objectives will be central
for DynaFIT:

1. Devising machine learning techniques which allow to transfer information across
different learning tasks in a given domain, this way enabling an efficient repre-
sentation and visualization of learners’ behavior in problem-solving;

2. Devising strategies for using these representation and visualization mechanisms
in order to help human learners improve their metacognitive skills (specifically,
helping them decide when best to ask for feedback);

3. Developing relevance learning techniques which can predict the potential useful-
ness of giving feedback at a certain point in time based on the learners’ behavior;

4. Investigating mechanisms for adapting the mode of feedback provision to learn-
ers specific needs considering their development over time.

The DynaFIT project started in the beginning of 2015 and will last another 3 years.
The project comprises theoretical aspects regarding machine learning techniques and
feedback principles as well as their technical implementation in Intelligent Tutoring
Systems. It also includes empirically evaluating the effectiveness of these feedback
principles. This work was supported by the German Research Foundation (DFG) under
the grant “FIT - Learning Feedback in Intelligent Tutoring Systems.” (PI 767/6 and HA
2719/6).
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