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Abstract
In standard cosmology a background geometry is used to interpret observations of the
large scale structure of the Universe. The background means a homogeneous, isotropic
and flat Friedmann-Lemaître (FL) Universe, neglecting the details at small scales and
local inhomogeneities of mass density.
Observational cosmology is based on light trajectories and the paths of light are null

geodesics. One of the significant effects of inhomogeneity is on the light trajectories. Some
aspects of this are very well understood and studied in great depth. For instance, CMB
photons are related to density fluctuations by the Sachs-Wolfe effect, and gravitational
lensing plays an important role for light propagation in the Universe.
Cosmic structures determine how light propagates through the Universe and conse-

quently must be taken into account. In the standard cosmological model at the largest
scales, such structures are either ignored or treated as small perturbations to an isotropic
and homogeneous Universe. This isotropic and homogeneous model is commonly assumed
to emerge from some averaging process at the largest scales.

However, averaging in general relativity is not a simple operation, due to the covariance
of the theory and the non-linearity of Einstein equations. We review previous studies of the
averaging and backreaction problem in cosmology. We also discuss some recent attempts,
which addressed the averaging problem through propagation of light. Unfortunately,
those works are restricted to either a toy model or a perturbative approach.
We then present our work on a more general result for the propagation of light in an

averaged Universe. We assume that there exists an averaging procedure that preserves
the causal structure of space-time. Based on that assumption, we study the effects of
averaging the geometry of space-time and derive an averaged version of the null geodesic
equation of motion. For the averaged geometry we then assume a flat FL model and find
that light propagation in this averaged FL model is not given by null geodesics of that
model, but rather by a modified light propagation equation that contains an effective
Hubble expansion rate, which differs from the Hubble rate of the averaged space-time.
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1. Introduction
The standard model of modern cosmology describes large-scale structures as perturbations
of an isotropic and homogeneous Universe, the Friedmann-Lemaître (FL) model. In this
way, confirmed by many observations, the Lambda Cold Dark Matter (ΛCDM) model
of the Universe has been established to be the standard model. measurements of the
Cosmic Microwave Background (CMB) from the Wilkinson Microwave Anisotropy Probe
(WMAP) [1], and Planck [2], Supernova measurements [3, 4] and the Baryon Acoustic
Oscillation (BAO) observations [5] confirm that the standard model is a good description
of the Universe.
Despite of its success, the FL model is only a large scale approximation to highly

non-linear structures at small scales. Consequently, one can ask how to justify this high
degree of symmetry at the largest scales and how to connect the smallest scales to the
largest ones. Eventually, we must not ignore the effects of local inhomogeneities from
which an averaged space-time with certain symmetries seems to emerge. By local we refer
to scales on which gravitationally bound structures exist, i.e. from ∼ 100 Mpc down to the
Planck scale. Above the 100 Mpc, the Universe appears to be statistically homogeneous
and isotropic, but on smaller scales, unlike the FL model, it is inhomogeneous. For
testing large-scale homogeneity, several tests have been applied to the data from the
Sloan Digital Sky Survey [6] and the WiggleZ Dark Energy Survey [7]. In both cases a
transition to homogeneity at scales of about 100 Mpc is found.

In this thesis, we are specifically interested on the effects of the local inhomogeneities
at and below the 100 Mpc scale on the propagation of light.
The thesis is organized as follows:
Before turning to the main topic of this work, the theoretical framework of cosmology

based on an isotropic and homogeneous description of the Universe is reviewed in the
following sections of chapter 1.

Chapter 2 highlights the necessary formalism of large scale structure, the perturbation
theory and the results from the Planck mission up to now (October 2014).
Chapter 3 introduces the averaging problem in cosmology and presents a review of

procedures to account the backreaction of inhomogeneity on the background have been
addressed in them.

Chapter 4 contains the result of my research on trajectories of light-rays in the averaged
Universe, some of it published in [8].

Finally, the conclusions are presented in chapter 5 and outlook for further research is
given.
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1. Introduction

1.1. History of the Universe

The discovery of the expansion of the Universe by Edwin Hubble in 1929 was a big
breakthrough in cosmology. This discovery is approved by observational cosmology and
it is found that the Universe was hotter and denser in its past. At very early times
the temperature was high enough to ionize the material that filled the Universe. The
Universe therefore consisted of a plasma of nuclei, electrons and photons, and the number
density of free electrons was so high that the mean free path for the Thomson scattering
of photons was very short. As the Universe expanded, it has cooled, and transitioned
from radiation dominated to matter-dominated state. Eventually, at a temperature of
about 3000 K, the photon energies became too low to keep the Universe ionized. At this
time, known as recombination, neutral atoms were ingredients of the Universe instead of
the primordial plasma. Initial inhomogeneities present in the primordial plasma grew
during the matter-dominated era into the structures we observe in the Universe today.
This scenario after 13.7 billion years later has entered an epoch of accelerated expansion,
with its energy density dominated by dark energy. Fig. 1.1 emphasizes the main events
during the evolution history of the Universe. These events along the timeline of the
Universe are summarized in Table 1.1.

The idea that the Universe was hot and dense in the past and has cooled by expansion
is described by the Big Bang theory. The observational topics underlying the Big
Bang theory are the Hubble diagram, Big Bang Nucleosynthesis (BBN) and the Cosmic
Microwave Background (CMB).

However, several properties of the Universe such as anisotropies of the CMB, dark
matter and dark energy cannot be explained within the standard model.

t ρ1/4 Event
10−42 s 1019 GeV Inflation begins
10−32 s 1013 GeV Inflation ends
100 s 0.1 MeV Nucleosynthesis (BBN)
104 yr 1 eV Matter-radiation equality
105 yr 0.1 eV Photon decoupling and formation of the CMB
1 Gyr 10−3 eV First structures form
14 Gyr 10−4 eV Present time

Table 1.1. Corresponding time and energy density scales to the key events of the history
of the Universe. Table re-provided from [9].
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1.1. History of the Universe

Figure 1.1. Key events of history of the Universe during the evolution.
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1. Introduction

On the largest scales, the Universe is assumed to be uniform (i.e. there is no preferred
direction and no preferred observing position). This idea is called the cosmological
principle implying the isotropy and homogeneity of the Universe.

The observational evidences have indicated that the Universe is expanding. This means
that early in the history of the Universe, the distant galaxies were closer to us than they
are today. It is convenient to describe the scaling of the coordinate grid in an expanding
Universe by time dependent scale factor a(t). In a smooth, expanding Universe, the scale
factor connects the coordinate distance with the physical distance.
The observed Universe has the following properties:

• The Universe is homogeneous and isotropic when averaged over the largest scales.

• It is expanding with the Hubble rate.

• It was hotter in the past.

• It is locally inhomogeneous today (locally means on the scales smaller than 100Mpc).

• Its curvature is negligible.

• It contains a large percentage of unknown “dark energy”, which causes acceleration.

We shall address these properties later in this chapter.

1.2. The metric
Most of the cosmology can be learnt with knowledge of general relativity (GR). We will
need the concepts of metric and geodesic lines. Then we can apply Einstein equations
to the Robertson-Walker metric, relating the metric parameters to the energy density
of the Universe. In this section of the thesis, we will apply Einstein equations to the
homogeneous Universe.
The metric is an essential tool to make quantitative predictions in an expanding

Universe. In classical Newtonian mechanics, gravity is an external force, and particles
move in a gravitational field. In GR, gravity is encoded in the metric, and the particles
move in a curved space-time. Therefore a free falling particle follows a geodesic in
space-time. The metric links the concepts of geodesic and space-time:

ds2 =
3∑

µ,ν=0
gµνdx

µdxν , (1.1)

where ds2 is the proper interval, gµν is the metric tensor, and xµ is a four-vector whereby
µ, ν → 0, 1, 2, 3. x0 = t represents the timelike coordinate, and xi stands for the spacelike
coordinates (i = 1, 2, 3).
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1.3. The geodesic equation

If the Comoving distance today is x0, the physical distance between two points at some
earlier time t was a(t)x0. In a flat Universe, the metric must be similar to the Minkowski
metric (i.e. ηµν = diag(−1, 1, 1, 1)), except that the distance must be multiplied by the
scale factor a(t). Thus, the metric of a flat, expanding Universe is the Robertson-Walker
metric:

gµν = diag(−1, a2(t), a2(t), a2(t)). (1.2)
The evolution of the scale factor depends on the density of the Universe. When pertur-
bations are introduced (see section 2.1), the metric will become more complicated, and
the perturbed part of the metric will become determined by the inhomogeneities in the
matter and the radiation.

1.3. The geodesic equation
1.3.1. Christoffel symbol
In Minkowski space, particles travel in straight lines unless they are acted upon by an
external force. In more general space-times, the concept of a straight line gets replaced
by the geodesic, which is the path followed by a particle in the absence of any external
forces. The Newton’s law with no forces, d2~x

dt2
= 0, must be generalized to the expanding

Universe. We will start with particle motion in an Euclidean 2D plane. In Cartesian
coordinates xi = (x, y) the equations of motion for a free particle are

d2xi

dt2
= 0. (1.3)

We start from the Cartesian equation and transform:
dxi

dt
=
[
∂xi

∂x′j

]
dx′j

dt
, (1.4)

where the term in the brackets is a transformation matrix going from one basis to another.
The basis vectors for polar coordinates are r, θ̂. This can be written as

d

dt

[
dxi

dt

]
= d

dt

[
∂xi

∂x′j
dx′j

dt

]
= 0. (1.5)

If the transformation was linear, the derivative acting on the transformation matrix
would vanish, and the geodesic equation in the new basis would still be d2x′i/dt2. In
polar coordinates, the transformation is not linear, and using the chain rule, we have

d

dt

[
∂xi

∂x′j

]
= dx′k

dt

∂2xi

∂x′k∂x′j
. (1.6)

The geodesic equation therefore becomes,
d

dt

[
dxi

dx′j
dx′j

dt

]
= ∂xi

∂x′j
d2x′j

dt2
+ ∂2xi

∂x′j∂x′k
dx′k

dt

dx′j

dt
. (1.7)
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1. Introduction

Multiplying by the inverse of the transformation matrix, we obtain the geodesic equation
in a non-Cartesian basis is:

d2x′l

dt2
+
[(

( ∂x
∂x′

)−1
)l
i

∂2xi

∂x′j∂x′k

]
dx′k

dt

dx′j

dt
= 0. (1.8)

The term in the brackets is the Christoffel symbol,

Γljk =
[(

( ∂x
∂x′

)−1
)l
i

∂2xi

∂x′j∂x′k

]
, (1.9)

which is symmetric in j, k. In Cartesian coordinates, Γljk = 0 and the geodesic equation
is simply d2xi/dt2 = 0. In general Γljk 6= 0 describes geodesics in non-trivial coordinate
systems. The geodesic equation is a useful concept, because in a non-trivial space-time
e.g. the expanding Universe, it is not possible to find a fixed Cartesian coordinate system.
So we need to know how particles travel in the more general case.
Considering an affine parameter λ , the geodesic equation becomes:

d2xµ

dλ2 + Γµαβ
dxα

dλ

dxβ

dλ
= 0. (1.10)

Rather than the previous definition of the Christoffel symbol obtained by transforming a
Cartesian basis, it is more convenient to obtain it from the metric:

Γµαβ = 1
2g

µν
[
∂gαν
∂xβ

+ ∂gβν
∂xα

− ∂gαβ
∂xν

]
. (1.11)

The components of the Christoffel symbol in the flat FL Universe are:

Γ0
00 = 0, Γ0

0i = 0, Γiij = δij ȧa, Γi0j = ȧ

a
δij, Γijk = 0, Γi00 = 0, (1.12)

where overdots denote d/dt.

1.3.2. Particles traveling in an expanding Universe
In this section we apply the geodesic equation to a single particle. All observations in
cosmology have to do with intercepting photons. Therefore we will consider a massless
particle, which has four vector, pα = (E, ~p), and use this to define the parameter λ:

pα = dxα

dλ
, (1.13)

by noting that d
dλ

= dx0

dλ
d
dx0 = E d

dt
, and the zero component of the geodesic equation,

E
dE

dt
= −Γ0

ijp
ipj = −δij ȧapipj. (1.14)
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1.3. The geodesic equation

For a massless particle, the energy-momentum vector has zero magnitude:

gµνp
µpν = −E2 + δija

2pipj = 0. (1.15)

Since ~p measures motion on the comoving grid, the physical momentum which measures
changes in the physical distance is related to ~p by a factor of a. This leads to

dE

dt
+ ȧ

a
E = 0. (1.16)

We note that the energy of a massless particle decreases as the Universe expands:

E ∝ 1
a
. (1.17)

On the other hand, the energy of a photon with a frequency ω is given by

E = ~ω, (1.18)

where ~ is equal to the Planck constant h divided by 2π, i.e. ~ ≡ h/2π.
The frequency of a photon emitted with ωem will therefore be observed with a lower

frequency ωobs as the Universe expands:

ωobs
ωem

= aem
aobs

. (1.19)

1.3.3. Redshift

Measuring the redshift of distant objects is one of the most basic observation. The above
equation (1.19) can be explained in terms of the redshift z between two events, defined
by the fractional change in wavelength:

z = λobs − λem
λem

= ωem − ωobs
ωobs

. (1.20)

If the observation takes place today (aobs = a0 = 1), this implies

aem = 1
1 + z

. (1.21)

So the redshift of an object gives us information about the scale factor when the photon
was emitted.
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1. Introduction

1.4. The Einstein equations
Gravitation can be described by a metric. This is one important aspect of General
Relativity which connects the metric to the matter and energy. It is described by the
Einstein equations, which relates geometry to energy:

Gµν = Rµν −
1
2gµνR = 8πGTµν , (1.22)

where Gµν is the Einstein tensor, Rµν is the Ricci tensor

Rµν = Γαµν,α − Γαµα,ν + ΓαβαΓβµν − ΓαβνΓβµα, (1.23)

and R = gµνRµν is the Ricci scalar. Finally, the energy-momentum tensor Tµν is a
symmetric tensor describing the constituents of the Universe.

Einstein general theory of relativity is somehow the starting point for a mathematical
description of the Universe. However, solving the above Einstein equations (1.22) in
general is highly complex. In practice, one should start with an ansatz for the metric
gµν in order to simplify that. Some of the earliest models of the Universe to incorporate
Einstein’s general relativity were proposed independently by Alexander Friedmann in
1922 and Abbe Georges Lemaître in 1927. They derived solutions to Einstein’s field
equations which predicted that galaxies should be receding from each other due to cosmic
expansion.
Howard Robertson and Arthur Geoffrey Walker explored the problem further during

the 1930s. In 1935 Robertson and Walker proved that their obtained metric is the only
one on a space-time that is spatially homogeneous and isotropic.
Hereby in this thesis, regarding this historical point of view, we call the standard

model of cosmology as Friedman-Lemaître (FL) model and its corresponding metric,
Robertson-Walker (RW) metric.

1.4.1. Energy momentum tensor
In Einstein equations, matter is incorporated through the energy momentum tensor T µν .
This is a symmetric tensor, such that T µν ≡ gναT µα = T νµ.

On large scales of the Universe, matter can be approximated as a perfect fluid. The
general form of the energy-momentum tensor for a perfect fluid is:

T µν = (ρ+ p)uµuν + pgµν , (1.24)

where ρ denotes the energy density, and p is the pressure of the fluid and uµ = (1, 0, 0, 0)
is the fluid four velocity. p and ρ depend on t and uµuµ = −1. This equation reduces
to T µν = diag(ρ, p) in the rest frame, and is a tensor equation, therefore coordinate-
independent and it must be valid in any frame. The choice of perfect fluid allows us to
describe a wide variety of cosmological fluids, given their equation of state by

w = p

ρ
. (1.25)

18



1.5. Friedmann-Lemaître cosmology

Dust has p = 0, w = 0, radiation has p = ρ
3 , w = 1

3 and for vacuum energy T µν = −ρvacgµν ,
Pvac = −ρvac, w = −1. For the case where there is no gravity and velocities are negligible,
the pressure and energy evolve as

Continuity Equation : ∂ρ

∂t = 0, (1.26)

Euler Equation : ∂p
∂xi = 0. (1.27)

Promoting this to a 4-component conservation equation for the energy-momentum tensor
gives

∂T µν
∂xµ

= 0. (1.28)

However, in an expanding Universe, this must be modified, such that the conservation
implies the vanishing of the covariant derivative

T µν;µ ≡
∂T µν
∂xµ

+ ΓµαµTαν − ΓανµT µα . (1.29)

Thus the conservation law becomes

T µν;µ = 0. (1.30)

An important consequence for ν = 0 yields the continuity equation:

∂ρ

∂t
+ 3 ȧ

a
(ρ+ p) = 0. (1.31)

1.5. Friedmann-Lemaître cosmology
1.5.1. The cosmological principle
At sufficiently large scales, the cosmological models are based on the idea of the Copernican
principle which tells us that the Universe looks the same everywhere. This is encoded
more rigorously in the following two statements:

• Isotropy : at each specified point on the manifold, space looks the same in every
direction.

• Homogeneity : the metric is the same throughout the manifold.

If a space is smooth and isotropic everywhere, then it is also homogeneous. If a space
is isotropic around one point and also homogeneous, it will be isotropic everywhere [10].
The CMB shows that the Universe is isotropic on the order of 10−5 [1], and since by the
Copernican principle, we do not believe that we are the centre of the Universe.
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1. Introduction

1.5.2. Friedmann equations in a flat Universe
The scale factor is one of the fundamental concepts in general relativity and cosmology.
Thus understanding the evolution of the scale factor in a homogeneous expanding Universe
has a special significance. In this context, we consider the time-time component of the
Einstein equation:

R00 −
1
2g00R = 8πGT00, (1.32)

leading to the first Friedmann equation for a spatially flat Universe:(
ȧ

a

)2
= 8πG

3 ρ. (1.33)

The second Friedmann equation can be derived by considering the space-space component
of Einstein equation:

Rij −
1
2gijR = 8πGTij. (1.34)

Using the flat FL terms with gij = δija
2, for the left hand side gives

δij[2ȧ2 + äa]− δij
a2

2 6
 ä
a

+
(
ȧ

a

)2
. (1.35)

The right hand side is obtained by noticing the perfect fluid energy-momentum tensor
we see:

8πGTij = 8πGgikT kj = 8πGa2δijp. (1.36)

Equating these terms gives
ä

a
+ 1

2

(
ȧ

a

)2
= −4πGp. (1.37)

Combining with the first Friedmann equation (1.33), this leads us to the second Friedmann
equation:

ä

a
= −4πG

3 (ρ+ 3p). (1.38)

1.5.3. General RW metric and general Friedmann equations
Let us consider the line element

ds2 = −dt2 + a2(t)dσ2, (1.39)

where t is a timelike coordinate, a(t) is the scale factor, and dσ2 is the metric on a
maximally symmetric 3-manifold Σ:

dσ2 = γijdx
idxj, (1.40)
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1.5. Friedmann-Lemaître cosmology

where (x1, x2, x3) are coordinates on Σ, and γij is a maximally symmetric 3D metric.
The general RW metric on space-time describes one of these maximally symmetric

hypersurfaces evolving in size:

ds2 = −dt2 + a2(t)
[

dr2

1− kr2 + r2dΩ2
]
, (1.41)

where k can take the values [−1, 0, 1].
However, the Copernican principle only applies in space, not in time. Thus the

maximally symmetric space-time (related to the perfect cosmological principle ) does not
describe our expanding Universe. With the assumption of the Universe being spatially
homogeneous and isotropic, we thus replace the maximally symmetric with spherically
symmetric space-time. So the metric can be written as

dσ2 = dr̃2

1− kr̃2 + r̃2dΩ2, (1.42)

where r̃ denotes the radial coordinate, and Ω2 = (dθ2 + sinh2 θdφ2) is the metric on the
2-sphere. This become more convenient to redefine the radial coordinate as

dχ = dr̃√
1− kr̃2

, (1.43)

so that
dσ2 = dχ2 + f 2

k (χ)dΩ2, (1.44)
where f(χ) is defined as

f(χ) =


sinχ k = +1
χ k = 0
sinhχ k = −1

(1.45)

Now the metric

ds2 = −dt2 + a2(t)(dχ2 + fk(χ2)(dθ2 + sin2 θdφ2)), (1.46)

represents a slicing of space-time with spatial slices Σ that are simply rescaled by the
scale factor a as time goes on. If k = 0, we have a flat space, if k = +1, the space Σ
describes a sphere, while if k = −1 we have an hyperbolic space.
We can also change coordinates in time to something called conformal time

η =
∫ t

0

dt

a(t) , (1.47)

so that the RW metric becomes

ds2 = a(η)2[−dη2 + dχ2 + fk(χ2)(dθ2 + sin2 θdφ2)]. (1.48)

21
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For general k, the first Friedmann equation (1.33) becomes:(
ȧ

a

)2
= 8πG

3 ρ− k

a2 , (1.49)

and the second Friedmann equation does not change due to k:

ä

a
= −4πG

3 (ρ+ 3p). (1.50)

Notice that, in an expanding Universe (i.e. ȧ > 0) filled with ordinary matter (i.e. matter
satisfying the strong energy condition: ρ+ 3p ≥ 0), the second Friedmann equation (1.50)
implies ä < 0. Of course, this conclusion relies on the assumption that general relativity
and the Friedmann equations are applicable to high energies. However, this assumption
is certainly not true, and it is expected from the paradigm of inflation, that the Universe
in its earliest stages undergoes a period of accelerated expansion i.e. ä > 0 [11, 12, 13].

1.5.4. Dynamics of the FL Universe
The expansion rate of the FL Universe is characterized by the Hubble parameter,

H(t) = ȧ

a
. (1.51)

The expansion rate at the present epoch, H(t0), is called the Hubble constant. The usual
convention of writing the Hubble constant at the present day is

H0 = 100 h km s−1 Mpc−1, (1.52)

where the dimensionless number h should not be confused with Planck’s constant. The
astronomical length scale of a megaparsec (Mpc) is equal to 3.0856× 1022m.

From the measurements of Planck + WMAP + BAO, the value of the Hubble constant
is [14]

H0 = 67.80± 0.77 km s−1 Mpc−1. (1.53)
The cosmological scales are set by the Hubble length,

dH = H−1
0 c = 9.25× 1025h−1m = 4.22× 103h−1Mpc. (1.54)

The Hubble time is,

tH = H−1
0 = 4.35× 1017h−1s = 13.8× 109h−1yr. (1.55)

Since we usually set c = 1, H−1
0 is referred to both the Hubble length and the Hubble

time. The deceleration parameter,

q = −aä
ȧ2 , (1.56)
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1.5. Friedmann-Lemaître cosmology

measures the rate of change of the expansion.
The density parameter

Ω = 8πG
3H2 ρ = ρ

ρcrit
, (1.57)

counts the energy density from all forms of constituents of the Universe.
The critical density

ρcrit = 3H2

8πG, (1.58)

changes with time, and is so called because the Friedmann equation can be written as

Ω(a)− 1 = k

H2a2 . (1.59)

Thus the sign of k is defined by the sign of (Ω− 1):

• ρ < ρcrit ↔ Ω < 1↔ k < 0↔ Open

• ρ = ρcrit ↔ Ω = 1↔ k = 0↔ flat

• ρ = ρcrit ↔ Ω > 1↔ k > 0↔ closed

The density parameter tells us which of the three FL geometries describes our Universe.
Our observations are consistent with the flat case.

1.5.5. Evolution of the scale factor
Combining the two Friedmann equations, one can derive the continuity equation, which
we previously obtained from the conservation of the energy-momentum tensor:

dρ

dt
+ 3H(ρ+ p) = 0. (1.60)

This also follows from the first law of thermodynamics

dU = −pdV
d(ρa3) = −pd(a3)

⇒ d ln ρ
d ln a = −3(1 + w), (1.61)

where w is the equation of state from (1.25). The continuity equation can be integrated
to give

ρ ∝ a−3(1+w). (1.62)
Together with the Friedmann equation (1.49), this leads to the time evolution of the
scale factor,

a ∝ t
2
3 (1+w). (1.63)
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component wi ρ(a) a(t)
non-relativistic matter 0 a−3 t2/3

radiation/relativistic matter 1
3 a−4 t1/2

curvature -1
3 a−2 t

cosmological constant -1 a0 e(Ht)

Table 1.2. Corresponding components of the Universe to the equation of state, energy
and scale factor.

In particular, constituents of our Universe have the following scalings (see Table 1.2):
Thus the present ratio of the energy density relative to the critical density is defined as

Ωi,0 ≡
ρi0

ρcrit,0
, (1.64)

and the corresponding equations of state

wi ≡
pi
ρi
. (1.65)

This allows one to rewrite the first Friedmann equation as(
H

H0

)2
=
∑
i

Ωi,0a
−3(1+wi) + Ωk,0a

−2, (1.66)

which implies ∑
i

Ωi + Ωk = 1. (1.67)

The second Friedmann equation evaluated at t = t0 becomes(
ä

a

)
t=t0

= −H
2
0

2
∑
i

Ωi(1 + 3wi). (1.68)

Combined with results from prior experiments, Planck has revealed its first result that
dark energy comprises 68.3% of the energy content of the Universe, down slightly from
earlier estimates of 72.8%. Similarly, dark matter’s contribution was boosted to 26.8
percent, while ordinary matter’s share went from 4.5% to 4.9% [2].

1.6. Inflation
Inflationary cosmology has been introduced by Guth [11] in 1980. The theory was
developed to overcome the problematic shortcomes of the hot big bang model of the
Universe, like flatness, horizon and monopole problems. However, it also provides an
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1.6. Inflation

explanation for the origin of the structures. According to this theory, the Universe at very
early stages of its evolution inflated rapidly. This led to an exponential growth of the scale
factor a(t). The theory of inflation has been accepted as the standard paradigm for the
generation of the seed perturbations for the origin of structure in the Universe. Density
perturbations were produced from quantum fluctuations, generated during inflation and
seem to have a Gaussian distribution. After the era of inflation, the particles, which
surround us, were produced and density perturbations grew into the observed large scale
structure.
The theory is usually associated with a scalar fields that is slowly rolling down its

potential. The slow roll inflation leads to an almost scale invariant power spectrum.
In a better construction, inflation theory predicts an almost scale invariant, highly
Gaussian spectrum of adiabatic perturbations, which can be probed experimentally
by the measurements of temperature fluctuations in the CMB radiation as well as
observations of large scale structure.
We assume that the flat homogeneous Friedmann Universe is filled by a spatially

homogeneous scalar field (known as the inflation field). The energy density ρ and
pressure p of a single field, φ(t), with potential V (φ) are

ρ = 1
2 φ̇

2 + V (φ), (1.69)

p = 1
2 φ̇

2 − V (φ). (1.70)

The Friedmann equations read 3H2 = 8πGρ and Ḣ = −4πGφ̇2. The Klein-Gordon
equation is

φ̈+ 3Hφ̇+ ∂V (φ)
∂φ

= 0. (1.71)

As long as the Universe is expanding, ȧ is positive. The Friedmann equations can also
be into

ä

a
= −4πG(ρ+ 3p). (1.72)

So the condition for accelerated expansion is ρ+ 3p < 0. For

1/2φ̇2 � V, (1.73)

which is the first slow-roll condition, the condition ρ+ 3p < 0 is satisfied.
If we want the first slow-roll condition to hold over an extended period, we must

impose that the time derivative of this condition also holds |φ̈| � |∂V/∂φ|, which can be
rewritten, by means of equation (1.71) as

|φ̈| � 3H|φ̇|, (1.74)

which is the second slow-roll condition.
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When these two conditions hold, the Friedmann and Klein-Gordon equations become

3H2 ' 8πGV (φ), (1.75)

Hφ̇ ' −1
3
∂V

∂φ
. (1.76)

The quantization of the scalar field φ, can be reduced to a harmonic oscillator. H
is almost constant during inflation. This implies that the quantum fluctuations are
Gaussian, as the only non-trivial information is encoded in the two-point function and
they are scale invariant as H is constant [20].

1.7. Time and distance
Measuring distances in an expanding Universe has difficulties. These difficulties are
simply because it is not easy to see which distance one should consider. Some obvious
definitions of distances are:

• comoving distance which remains fixed as the Universe expands.

• physical distance which grows simply because of the expansion.

However, neither of these definitions is practically useful; e.g. a photon leaves a quasar
at z ∼ 6 when the scale factor was 1

7 of its present value, and arrives on the earth today,
when the Universe has expanded by a factor of 7. Thus the question is how one can
relate the luminosity of the quasar to the observed flux.

1.7.1. Luminosity distance
A classical way of measuring distances in astronomy is to measure the flux from an object
of known luminosity, a standard candle. The observed flux F at a distance dL from a
source of known luminosity L is

F = L

4πd2
L

. (1.77)

However, this is in a case that the expansion has been neglected. In a flat FL Universe,
the flux will be diluted.
The dilution comes from the fact that the individual photons redshift by a factor

(1 + z) and from the time dilation effect between the emitter and the detector. Therefore
we must have

F

L
= 1

(1 + z)2A
. (1.78)

We now use equation (1.46) and consider that the physical distance between an observer
at χ = 0 and an object at comoving radial coordinate χ is a(t)f(χem), where f(χem) is a
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1.7. Time and distance

function of the comoving distance χem from the object to the observer. Then the area A
of a sphere centered at a comoving distance χem can be derived from the coefficient of
dΩ2 in (1.46) and yields

A = 4πa2
0(t)f 2(χem), (1.79)

we consider a0(t) = 1 because the photons are being observed today. The obtained
luminosity distance is

dL = (1 + z)f(χem). (1.80)

Using equations (1.39) and (1.44), on a radial null geodesic, we have

ds2 = −dt2 + a2dχ2, (1.81)

where ds2 = 0, so that

χ =
∫ dt

a
=
∫ da

a2H(a) . (1.82)

Converting the scale factor to redshift by using a = 1/(1 + z) leads to

χ(z) =
∫ z

0

dz′

H(z′) , (1.83)

where
H(z′) = H0

√
Ωm(1 + z′)3 + Ωk(1 + z′)2 + ΩΛ. (1.84)

Thus we can write the luminosity distance in terms of measurable cosmological parameters
as

dL = (1 + z)
H0

( ∫ z

0

dz′√
Ωm(1 + z′)3 + Ωk(1 + z′)2 + ΩΛ

)
. (1.85)

Given the observables H0 and Ωi, we can calculate dL to an object at any redshift z;
conversely we can measure dL(z) for objects at a range of redshifts, and from that extract
H0 or Ωi,0.

1.7.2. Angular diameter distance

Another distance measurement in cosmology is to measure the angle δθ of an object of
known physical size l, known as a standard ruler (see Fig. 1.2).
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Figure 1.2. An object of a given size l at comoving distance χem from an observer. The
emitted photons from the observer at time t propagate along radial geodesics will arrive
to the observer with an angular separation ∆θ. Figure credit: [15].

The angular diameter distance is defined as,

dA = l

∆θ , (1.86)

where ∆θ is small. Assume we are sitting at χ = 0 of a comoving coordinate χ, and
the object is at redshift z the time that the light is emitted. From the angular part of
the metric, l = a(t)f(χem)∆θ, and comparing with equation (1.86), we have the angular
diameter distance as

dA = af(χem) = a
dL

1 + z
. (1.87)

Furthermore, we can express dA in terms of cosmological parameters, or simply in terms
of luminosity distance as

dA = (1 + z)−2dL. (1.88)
Let us compare two cases of a Universe with and without a cosmological constant, for
a fixed H0. Since the energy density and the expansion rate, are smaller in a Universe
with a cosmological constant, both distances, dA, dL are larger in a such universe rather
than in one without. Small H (i.e. slower expansion) on the early stages means that
light had more time to travel from distant objects to us. Distant objects will therefore
appear fainter in a Λ-dominated Universe than in a matter-dominated Universe today.
Using this fact and using supernovae of Type Ia as standard candles lead to the Nobel
prized discovery of dark energy at the end of the 1990’s [3].
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2. Large Scale Structure Formation

The real Universe is far from homogeneous and isotropic except on the largest scales.
Fig. 2.1 shows slices through the 3D distribution of galaxy positions from the 2dF galaxy
redshift survey [16] to a comoving distance of around 800 Mpc. The distribution of
galaxies is not homogeneous; instead they are arranged into a cosmic web with galaxy
clustering along filaments and leaving huge empty voids in between. However, if we
smooth this picture on large scales to ∼ 100 Mpc, it starts to look more homogeneous.
Furthermore, during cosmological inflation, the initial perturbations were likely produced
by quantum effects, and we know from the CMB that at the time of recombination, the
Universe was smooth and fluctuations were at the level of only few parts in 105.

The aim of this part of the thesis is to study the growth of large-scale structure in an
expanding Universe acting on small initial perturbations.
In section 2.1, we study the evolution of linear perturbations. In section 2.2, we aim

to explain how the initial power spectrum of density fluctuations is processed by the
evolution of the Universe, using linear perturbation theory. In section 2.3, we discuss
the basic statistical properties of cosmological fields by assuming the physics of initial
fluctuations. In section 2.5, we shortly review some main results of Planck. Surveys of
the late time structure formation are introduced in section 2.6.

2.1. Perturbation from homogeneity

In the previous chapter, we have discussed the background solutions to the Einstein
field equations assuming perfect homogeneity and isotropy. However, the real Universe
is not perfectly homogeneous, and the structures have grown under the small matter
perturbations since the early stages of the Universe.

In the early Universe, deviations from the homogeneous and isotropic FL background
are small enough to be treated as first order perturbations. As the evolution goes
on to the later time, other orders of perturbations become important and non-linear
perturbation theory is needed to be taken account for transition from small scales to
large scale structures. However, a full treatment of cosmological perturbation theory is
beyond the scope of this chapter of the thesis.
The formalism to this subject can be found in a more details in [18, 19, 20].
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2. Large Scale Structure Formation

Figure 2.1. Slices through the 3D map of galaxy positions from the 2dF galaxy redshift
survey. Figure credit: [17].

2.1.1. Evolution of perturbation
We account for deviations from the FL background by writing the perturbed metric as

gµν = ḡµν + δgµν , (2.1)

where ḡµν is the background metric and δgµν is a small perturbation. Then the Einstein
equations can be written as

δRµν −
1
2 ḡµνδR−

1
2δgµνR̄ = 8πGδTµν , (2.2)

where δRµν , δR and δTµν denote the first order perturbations.
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2.1. Perturbation from homogeneity

In this limit the Universe is homogeneous and isotropic, and its energy momentum tensor
has the perfect fluid form, see equation (1.24). The energy momentum tensor continues
to have the perfect fluid form and its perturbations are defined by the perturbations δρ,
δp and δuµ = (0, vi), where vi is the three velocity of the fluid.

As it was first realized by Lifshitz in 1946, Einstein field equations yield a set of linear
partial differential equations involving the metric perturbations, δρ, δp and vi. For the
case of critical density, each perturbation can be expanded as a Fourier series. Note that
the background geometry is isotropic and homogeneous, and to keep the Fourier analysis
simple, we consider only the flat (K = 0) background case.
The following modes thus propagate independently:

• The perturbations δρ and δp, and the irrotational part of vi.

• The rotational part of vi (vorticity).

• Gravitation waves, characterized by the traceless transverse part of δgµν .

Because of the spatial transformation properties of the metric components, these modes
can be referred to as scalar, vector and tensor modes respectively; or more specifically,
they are labeled as density, vorticity and gravitational wave modes, respectively.
Here, we are focused only on the density perturbation mode, which describes the

perturbation in the density and motion of the matter and radiation in the Universe.
For a given perturbed geometry, the perturbations in the metric and the energy

momentum tensor are defined when a definite coordinate choice has been made. A
coordinate choice (or a set of coordinate choices) is called a gauge. For the density mode
the choice of gauge has a strong influence on the appearance of the equations.
One of the widely used gauges is the synchronous gauge. This can be thought as a

slicing of space-time into spatial hypersurfaces with constant time coordinate. The time
coordinate is considered to be orthogonal to the hypersurfaces. Thus we have a choice of
δgoi = 0 and δg00 = 1 in equation (2.1). In the limit of early times, the solutions of the
synchronous gauge equations are given with the corresponding geodesics [21].

Another important gauge is “comoving gauge”. In this gauge, comoving worldline are
used instead of geodesics, along with the hypersurfaces orthogonal to them, which are
termed as “comoving hypersurfaces” [22].

Since we are interested only in scalar perturbations, we use the conformal Newtonian
gauge (longitudinal gauge) in which the line element is

ds2 = a2(t)
[
− (1 + 2φ)dt2 + (1− 2ψ)dxidxj

]
. (2.3)

This gauge is restricted as it does not include vector or tensor perturbations. An
advantage is that ψ corresponds to the standard gravitational potential in the Newtonian
limit. Also ψ and φ are related to the variables φA and φH of Bardeen [22]. Note that in
the absence of anisotropic stresses, φ = ψ in equation (2.3).
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2.2. Structure formation
In order to be able to use the framework for tracking the evolution of perturbations
outlined in the previous section, we need to specify the perturbations at some initial
time. The perturbations are believed to have originated as quantum fluctuation during
an era of inflation. Such a mechanism yields an adiabatic Gaussian perturbation with an
almost, but not precisely, scale invariant spectrum [23, 24].

The initial power spectrum of density fluctuations from inflation is called Pi(k). This
spectrum is processed by the evolution of the Universe, using linear perturbation theory.
The processing is quantified in terms of the transfer function

δk(t0) = T (k)δk(ti)⇒ P (k) = T 2(k)Pi(k). (2.4)

Related to this subject, in the following section we provide some basic formulas of key
concepts of the power spectrum, the correlation function and the angular power spectrum,
which will be needed to follow the discussion of the CMB anisotropies in section 2.4 and
the Planck result in section 2.5.

2.3. Statistic of random fields
In cosmological theories, the fluctuations are treated as stochastic random variables,
and theoretical predictions are made about the probability distribution functions of
the perturbations. This probability distribution functions can be specified in terms of
the spatial n-point correlation functions of the random fields. Thus the assumption of
homogeneity and isotropy for the unperturbed Universe is replaced by the assumption of
statistical homogeneity and isotropy of the perturbations.

2.3.1. Random fields in 3D Euclidean space
First of all let us consider a random field f(x) where at each point f(x) is some random
number, and it has zero mean, 〈f(x)〉 = 01. The probability density of realizing field
configuration is P [f(x)], i.e.

∫
DfP [f ] = 1. Correlators of fields are expectation values

of products of fields at different spatial points. Thus the two point correlator is

ξ(x,y) ≡ 〈f(x)f(y)〉 =
∫
DfP [f ]f(x)f(y), (2.5)

where the integral is a path integral over field configurations.

• Statistical homogeneity means that the statistical properties of the translated field,

T̂af(x) ≡ f(x− a), (2.6)
1Note that the statistical average notation 〈 〉 here, is different from the spatial average 〈 〉 in chapters
3-5.
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are the same as the original field, i.e. P [f(x)] = P [T̂af(x)], where T̂a denotes the
translation function. For the two-point correlation, this gives

ξ(x,y) = ξ(x− a,y− a)⇒ ξ(x,y) = ξ(x− y). (2.7)

• Statistical isotropy means that the statistical properties of the rotated field,

R̂f(x) ≡ f(R−1x), (2.8)

where R is a rotation matrix, are the same as the original field, P [f(x)] = P [R̂f(x)].
For the two-point correlator, it gives

ξ(x,y) = ξ(R−1x, R−1y). (2.9)

Combining statistical homogeneity and isotropy gives us

ξ(x,y) = ξ(R−1(x− y))
⇒ ξ(x,y) = ξ(|x− y|), (2.10)

so the two-point correlator depends only on the distance modules between the two points.
To constrain the form of the correlators in Fourier space, we consider the symmetric

Fourier convention, such that

f̃(k) =
∫ d3x

(2π)3/2f(x)e−ik.x and f(x) =
∫ d3k

(2π)3/2 f̃(k)eik.x. (2.11)

Note that f̃(k) = f̃ ∗(−k) for real fields. Under translations, the Fourier transform
becomes

T̂af̃(k) =
∫ d3x

(2π)3/2f(x− a)e−ik.x

=
∫ d3x′

(2π)3/2f(x′)e−ik.x′e−ik.a

= f̃(k)e−ik.a.

(2.12)

Invariance of the two-point correlator in Fourier space, this implies

〈f̃(k)f̃ ∗(k′)〉 = 〈f̃(k)f̃ ∗(k′)〉e−i(k−k′).a, (2.13)

thus we can write
〈f(k)f ∗(k′)〉 = F (k)δ(k− k′), (2.14)

with F (k) being a real function. Equation (2.13) tells us that different Fourier modes
are uncorrelated, if the function f is statistically homogeneous.

33



2. Large Scale Structure Formation

Under rotations, the Fourier transform becomes

R̂f(k) =
∫ d3x

(2π)3/2f(R−1x)e−ik.x

=
∫ d3x

(2π)3/2f(R−1x)e−i(R−1k).(R−1x)

= f(R−1k).

(2.15)

Additionally, applying invariance of the two-point correlator under rotations implies

〈R̂f(k)[R̂f(k′)]∗〉 = 〈f(R−1k)f ∗(R−1k′)〉
= F (R−1k)δ(k− k′)
= F (k)δ(k− k′),

(2.16)

where we have used δ(R−1k) = detRδ(k) = δ(k) here. Thus F (k) = F (k). Therefore
the band power spectrum, Pf (k), of a homogeneous and isotropic field, f(x), is defined
as

〈f(k)f ∗(k′)〉 = 2π2

k3 Pf (k)δ(k− k′). (2.17)

The normalization factor 2π2/k3 in the definition of the power spectrum has been chosen
for convention and will be clear from the following. The correlation function is the Fourier
transform of the power spectrum:

〈f(x)f(y)〉 =
∫ d3k

(2π)3/2
d3k′

(2π)3/2 〈f(k)f ∗(k′)〉eik.xe−ik′.y

= 1
4π

∫ dk

k
Pf (k)

∫
dΩke

ik.(x−y). (2.18)

We can evaluate the angular integral by taking x− y along the z-axis in Fourier space.
Setting k.(x− y) = k|x− y|µ, the integral reduces to

2π
∫ 1

−1
dµeik|x−y|µ = 4πj0(k|x− y|), (2.19)

where j0(x) = sin(x)/x is a spherical Bessel function of order zero. It follows that

ξ(x,y) =
∫ ∞

0

dk

k
Pf (k)j0(k|x− y|), (2.20)

which only depends on |x− y| as required by equation (2.10). The variance of the field
is ξ(0) =

∫
d ln kPf(k). A scale free spectrum has Pf(k) = P(k/k0)n−1, with n = 1

denoting the scale-invariant case. k0 is called the pivot scale.
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2.3.2. Gaussian random fields
For a Gaussian random field, P [f(x)] is a Gaussian functional of f(x). The probability
density function for f is specified by the correlation function:

〈fifj〉 = ξ(|xi − xj|) ≡ ξij, (2.21)

where fi ≡ f(xi) and

P (f) ∝ e−fiξ
−1
ij fj√

det(ξij)
. (2.22)

Since f(k) is linear in f(x), the probability distribution for f(k), i.e. Pf(k) is also a
Gaussian field. Because different Fourier modes are uncorrelated as expressed by equation
(2.13), f̃(k) and f(x) are statistically independent for Gaussian fields. Thus for the
Gaussian fields, Pf (k) contains all information.
Gaussian matter distributions are important in cosmology, because the initial fluc-

tuations seem to have been Gaussian to a high degree of accuracy. Inflation predicts
fluctuations that are very close to Gaussian. This property is preserved by linear evolution
and observations of the CMB anisotropies which indicate that any non-Gaussianity, if
present, is small.

2.3.3. Random fields on the sphere
Spherical harmonics form a basis for integrable functions on the sphere as:

f(n̂) =
∞∑
l=0

l∑
m=−l

flmYlm(n̂). (2.23)

Here the Ylm represents the position-space of the eigenstates of L̂2 = −∇2 and L̂z = −i∂φ
(from quantum mechanics)

∇2Ylm = −l(l + 1)Ylm
∂φYlm = imYlm, (2.24)

with l ≥ 0 and m and |m| ≤ l. The spherical harmonics are orthonormal over the sphere,∫
dn̂Ylm(n̂)Y ∗lm(n̂) = δll′δmm′ , (2.25)

such that the spherical multipole coefficients of f(n̂) are

flm =
∫
dn̂f(n̂)Y ∗lm(n̂). (2.26)
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For the two-point correlator, it turns out that in the case of an isotropic distribution of
the real function f(n̂), we have

〈flmf ∗l′m′〉 = Clδll′δmm′ , (2.27)

where Cl is the angular power spectrum of f , and

〈f(n̂)f(n̂′)〉 =
∑
lm

∑
l′m′
〈flmf ∗l′m′︸ ︷︷ ︸
Clδll′δmm′

〉Ylm(n̂)Y ∗l′m′(n̂′)

=
∑
l

Cl
∑
m

Ylm(n̂)Y ∗lm(n̂′)︸ ︷︷ ︸
2l+1

4π Pl(n̂.n̂′)

= C(θ), (2.28)

where n̂.n̂′ = cos θ. Here an addition theorem for spherical harmonics to express the sum
of products of the Ylm in terms of the Legendre polynomials Pl(x) has been used. It
follows that the two-point correlation function depends only on the angle between the
two points, as required by statistical isotropy. The variance of the field is

C(0) =
∑
l

2l + 1
4π Cl ≈

∫
d(ln l) l(l + 1)Cl

2π . (2.29)

It is conventional to plot l(l + 1)Cl/(2π) which we see is the contribution to the variance
per log range in l and is called the angular band power. Finally we note that we can
invert the correlation function to get the power spectrum by using orthogonality of the
Legendre polynomials:

Cl = 2π
∫ 1

−1
d(cos θ)C(θ)Pl(cos θ). (2.30)

2.4. CMB anisotropies
Most of the background photons in the Universe are Cosmic Microwave Background
photons. Their spectral distribution is in excellent agreement with the Planck spectrum
of a black body at a temperature of 2.7255±0.0006K [25]. This is in good correspondence
with the prediction of Big Bang model of the Universe.

In the early universe, baryons and photons were strongly coupled by Thomson scattering
of photons, where the temperature of the Universe became less than 3000K, the cosmic
plasma recombined and the ionization rate xe fell from 1 at z > 1100 down to xe < 10−3

at z < 1100. Consequently, the Universe became transparent to the background photons
and these photons were propagating freely through the Universe. After that, only a small
fraction of the electron density could be re-scattered. Therefore today we observe a thin
shell of last scattering around us. From this last scattering surface, we know that the
majority of photons have been interacting with baryons at a redshift of 1100, when the
Universe was 380000 years old.
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2.4. CMB anisotropies

The temperature of the CMB is not exactly the same in all directions (i.e. it is
anisotropic). An observed fractional deviation in temperature ∆T/T is only of order of
∼ 10−5. However, the temperature anisotropies ∆T (n̂) ≡ T (n̂)− T0 provide important
information about the nature of primordial perturbations and the content of the Universe
at late times 2.
The CMB temperature anisotropy is a function over a sphere. So the temperature

anisotropy in direction of n̂ in terms of spherical harmonics Ylm(n̂) is

∆T (n̂)
T0

=
∑
lm

almYlm(n̂), (2.31)

where the sum runs over l = 1, 2, ...∞ and m = −l, ..., l, giving 2l + 1 values of m for
each l. The multipole coefficients alm are

alm =
∫
Y ∗lm

∆T
T0

dn̂. (2.32)

Summing over the m corresponding to the same multipole number l in equation (2.25)
we have ∑

m

|Ylm|2 = 2l + 1
4π Pl. (2.33)

We also need the expansion of a plane wave in terms of spherical harmonics,

eik.x = 4π
∑
lm

iljl(kx)Ylm(x̂)Y ∗lm(k̂), (2.34)

where x̂ and k̂ are the unit vectors in the direction of x and k, and jl is the spherical
Bessel function.
The CMB anisotropy is due to the primordial perturbation, hence it has a Gaussian

nature. The alm are also Gaussian random variables. In theory we define the angular
power spectrum, Cl as

Cl ≡ 〈|alm|2〉 = 1
2l + 1

∑
m

〈|a2
lm|〉. (2.35)

Similar to equation (2.27), we have the relation 〈alma∗l′m′〉 = δll′δmm′Cl. The function Cl
is analogous to P (f) of Gaussian perturbations. Cl contains all the statistical information

2Also the velocity of the observer with respect to the Universe produces a dipole anisotropy with
∆T/T = v/c by the Doppler shift. The observed dipole indicates that the Solar System has speed
3.68 × 105 m/s−1 relative to the last scattering surface. The dipole is usually removed from the
CMB map before analyzing it.
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about the CMB temperature anisotropy. From equation (2.28) we can write〈
(∆T
T

)2
〉

=
〈∑
lm

almYlm
∑
l′m′

a∗l′m′Y
∗
l′m′

〉
=
∑
ll′

∑
mm′

YlmYl′m′〈alma∗l′m′〉

=
∑
l

Cl
∑
m

|Ylm|2

=
∞∑
l=1

Cl
(2l + 1

4π
)
Pl.

(2.36)

Although the expectation values, 〈|alm|2〉, from the random process is predicted in theory,
we can observe only one realization of this random process. The observed angular power
spectrum is the average of the observed values

Cobs
l = 1

2l + 1
∑
m

|alm|2. (2.37)

Therefore, the variance of the observed temperature anisotropy is the average of
(
∆T/T

)2

over the celestial sphere,
1

4π

∫ [∆T
T

]2
d2n̂d2n̂′ = 1

4π

∫
d2n̂d2n̂′

∑
lm

almYlm
∑
l′m′

a∗l′m′Y
∗
l′m′

= 1
4π

∑
lm

∑
l′m′

alma
∗
l′m′

∫
d2n̂d2n̂′YlmY

∗
l′m′

=
∑
l

Cobs
l

(2l + 1
4π

)
Pl.

(2.38)

The expectation value of the observed spectrum, Cobs
l , is equal to Cl, i.e. 〈Cobs

l 〉 = Cl.
The expected squared difference between Cobs

l and Cl is called the cosmic variance.
For adiabatic initial perturbations, the initial conditions can be specified in terms of

the potential φ in the conformal Newtonian gauge.
The gravitational redshift of photons and the change in the rate of expansion of the

Universe (both due to φ) cause the well known Sachs-Wolfe effect (SW) [26]. This shifts
the value of the redshift at which the Universe reaches the decoupling temperature
∼ 3000K. The total effect is (see for example [27] for the detailed calculation)(∆T (n̂)

T

)
= 1

3φ+ 2
∫
φ̇dt. (2.39)

The first part, 1
3φ is called the Sachs-Wolfe effect, and the second part, 2

∫
φdt, the

integrated Sachs-Wolfe effect (ISW), since it evolves integrating along the line of sight.
As mentioned before, the CMB photons have travelled freely since last scattering, only

redshifing due to the expansion of the Universe. Thus the anisotropies that we observed
today arise from the following sources:

38



2.5. CMB observations from Planck

• Temperature fluctuations in the photon-baryon plasma at the time of last scattering
at z ∼ 1100.

• The Doppler effect of bulk velocities of the photon-baryon plasma at the last
scattering.

• The gravitational redshift of photons due to fluctuations in the gravitational
potential φ at last scattering i.e. SW effect.

• The gravitational redshift of photons due to time dependent fluctuations in φ along
the line of sight between the last scattering surface and us, known as Integrated
Sachs-Wolfe effect (ISW) (see [26] for more details).

2.5. CMB observations from Planck
In this part we discuss some aspects of the Planck project, as announced on March, 2013.
This project is a very precise measurement of the temperature anisotropies of the Cosmic
Microwave Background (CMB).

In the following sections, we describe some of the steps to obtain the results. Some of
the relevant data from full sky maps at 9 different frequencies are also explained.

2.5.1. Pre-Planck CMB experiments
In the early Universe, quantum fluctuations generated the seeds for giving rise to the
large scale structure (LSS) which we see today. The evolution of primordial fluctuations
can be accurately followed. In order to account for the formation of large scale structure,
their imprint as temperature fluctuations should have an rms of ∼ 10−4K in the presence
of cold dark matter. Because of the smallness of these fluctuations it took long time to
first detect them. The angular power spectrum Cl from spherical harmonics (see section
2.3), or the angular correlation function from temperature contrast δT is needed to be
compute, in order to analyze the statistical properties.
The first detection of the CMB anisotropies was made by the DMR instrument in

a satellite called Cosmic Background Explorer (COBE) in 1992 [28, 29]. COBE was
orbiting the earth, with a ten degree beam and a signal to noise per resolution element
around unity. This detection was done for the large scale, low frequency, Sachs-Wolf
effect at low multipole. The first acoustic peak of the spectrum was drafted by 1999.
Later on, many other aspects of inflationary cosmology were probed by several ground
and balloon experiments.

The later detection result of nine years of operation was done by a space experiment,
Wilkinson Microwave and Anisotropy Probe (WMAP) and its findings were released in
2012 [30, 31]. (For more detailed explanations about CMB experiments before Planck,
see [32]).
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2. Large Scale Structure Formation

Figure 2.2. Angular power spectrum of the primordial fluctuations of the CMB tempera-
ture field. The angular power is given in terms of the magnitude of the coefficients Cl
in the expansion of the two-point correlation function into spherical harmonics. Figure
Credit: WMAP7 [1].

Until the release of the data from the Planck Satellite, the best measurement of the
cosmic microwave background at large scales was from the WMAP. The angular power
spectrum of the temperature field is shown in Fig. 2.2. Arcminute Cosmology Bolometer
Array Receiver (ACBAR) and QUEST at DASI (QUaD), in this figure, are two South
Pole based CMB experiments.
The fit of the theoretical curve in Fig. 2.2 to the measured data was already very

precised and the measurement of the temperature correlations had a high accuracy.

2.5.2. The Planck mission

The Planck project was selected by the European Space Agency (ESA) in March 1996,
contemporary with WMAP which was selected by NASA. The Planck satellite was
launched on May 2009, and the first results were released on March 2013.
The goals of the Planck experiment include a coverage of the full sky and a good

angular resolution in order to access all scales on which that CMB anisotropies contain
cosmological information. This also includes a coverage of a large frequency range to be
able to remove the astrophysical foreground contributions. These tasks require to map
the full sky at 9 frequencies from 30 GHz to 1 THz, to determine the CMB properties
(see Fig. 2.3).
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2.5. CMB observations from Planck

Figure 2.3. Nine sky maps of combination of coverage, sensitivity, resolution and accuracy
from Planck data. Figure Credit: [2].

In order to achieve the high resolution and sensitivity in each frequency band, the
Planck team proposed the High Frequency Instrument (HFI) [33, 34]. 52 detectors
were used in the HFI instrument, surrounded by the 11 larger detectors from the Low
Frequency Instrument (LFI) [35, 36]. The LFI detectors cover three bands at 30, 40 and
70 GHz.

One of the contribution in the detector data is from the Solar dipole which is referred
to cosmological dipole and is induced by the motion of the Solar system through the
CMB. Another contribution comes from the orbital dipole induced by the motion of the
satellite within the Solar system. This is not constant on the sky and must be removed
before creating the sky map. The Solar dipole is used as a calibration source at lower HFI
and all LFI frequencies. The dipoles are computed in the non-relativistic approximation.
Furthermore, the multiplicative effect on the angular power spectrum is encoded in

the effective beam window function [37] which includes the appropriate weights of each
multipole for analyzing maps across detector sets or frequencies. Fig. 2.4 displays an
example of positional variation of the effective beam at 100 GHz.
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2. Large Scale Structure Formation

Figure 2.4. The best Gaussian fit of the 100 GHz effective beam across the sky in Galactic
coordinates. Figure Credit: [2].

2.5.3. CMB maps
In order to clean the background CMB map from foreground emissions, Planck has used
four different approaches which combine the various frequency maps differently.
The first approach is a parameterized model approach in pixel space. This was used

to obtain Galactic foregrounds maps.
For CMB non-Gaussianity studies, a harmonic space approach, called SMICA has

been used to generate the CMB map.
The third approach called NILC allows checking the benefits of spatial localization.
And finally a spatial template based approach, SEVEM, allows producing different

CMB maps.
Each different approach produces a CMB map, a so-called mask i.e. confidence map

and and a noise estimate map.
The analyses are based on model fitting firstly by a Bayesian parameter fitting approach

which works in the pixel domain. This can be done by fitting a parameterized model of
the CMB and the foreground contribution to the data. This model fitting has been used
for frequencies from 30 to 353 GHz.
The second model fitting approach is SMICA, which performs spectral matching in

the harmonic domain. In this sense the CMB model and noise contributions can be fit
to the auto-spectra and cross-spectra of the maps from 30 to 857 GHz.

NILC stands for internal linear combination (ILC) working in wavelet (needlet) domain.
This makes an internal linear combination at each wavelet independently. This has been
used for frequencies from 44 to 857 GHz.
SEVEM is based on minimizing the variance of the CMB component by template

fitting. The templates are used to clean the 143 and 217 GHz maps.
Based on the simulation performance, the SMICA map has been selected for the high

resolution CMB map, which has minimized the sum of noise and foreground residuals at
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each scale (Fig. 2.5).

Figure 2.5. Planck CMB map by SMICA. Figure Credit: [2].

2.5.4. CMB spectra and likelihood

Planck uses a pixel-based maximum likelihood approach to map the CMB sky. This is a
straightforward approach to check whether a given theoretical angular power spectrum
Cl is a good match to the Planck determination of the CMB spatial distribution. Details
of the approach are explained in [38].

The full Planck CMB likelihood is given by the product of the low frequency pixel-based
likelihood and of the high frequency pixel-based, with a transition at l = 50. The resulting
foreground-subtracted temperature power spectrum is displayed in Fig. 2.6. The power
spectrum at low multipoles i.e. l = 2− 49 is plotted on a logarithmic multipole scale in
Fig. 2.6. Multipoles at 50 ≤ l ≤ 2500 plotted on a linear multipole scale which shows
the best fit CMB spectrum. The blue points show averages in bands of width ∆l ≈ 31
with 1σ errors. The red line shows the temperature spectrum for the best fit based on
ΛCDM model. The green lines in the lower panel shows the ±1σ errors on the power
spectrum estimates at high multipoles.
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Figure 2.6. Planck foreground subtracted temperature power spectrum with foreground
parameters fixed to their best fit values for the standard ΛCDM model. Figure Credit :
[14].

2.5.5. CMB lensing spectrum

The large scale structures of the Universe between us and CMB last scattering surface
induce small but coherent deflections of the observed CMB temperature and polarization
anisotropies [39]. These so-called gravitational lensing effects blur the acoustic peaks [40]
and generate non-Gaussianity [41]. It also convert a portion of the E-mode polarization
to B-mode [42].

Some methods to calculate the effects of lensing on the CMB power spectrum have been
investigated in [43]. Also some optimal estimators for the distinct statistical signatures
of lensing exist [44].
The resulting spectrum of individual 143 and 217 GHz reconstructions and their

minimum variance combination is shown in Fig. 2.7. They are in good agreement with
the best fit ΛCDM model, and with the determination from ACT (Atacama Cosmology
Telescope [45] and SPT (South Pole Telescope) [46].

The use of the lensing map and cross correlations with the ISW effect and other probes
has been further explained in [47].
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Figure 2.7. Planck measurement of the lensing power spectrum compared to the prediction
for the best fitting Planck+WMAP+ΛCDM model parameters, and to the SPT and ACT
bandpowers. All three experiments are consistent between them and with the ΛCDM
predictions. Figure Credit: [47].

2.5.6. The cosmological consequences

By using the Planck likelihood on temperature and lensing, we find a good match
with the standard ΛCDM model with a minimal set of cosmological parameters i.e.
ωb, ωc, θ, τ, ns, As. The Planck cosmological parameters are explained in Table 2.2. The
detailed description can be found in [14].

Fig. 2.8 shows the constraints on pair of these parameters. This also allows comparing
their posterior marginals, in case of using Planck alone (CMB+lensing, in color coded
samples), or adding WMAP polarization information (red contours) where both of which
are more precise than the WMAP-9 alone constraints (grey contours).
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Figure 2.8. Comparison of the standard ΛCDM model parameters for Planck+lensing
only (color code samples), and the 68% and 98% constraint contours adding WMAP
low-l polarization (red contours), compared to WMAP-9 (grey contours). Figure Credit:
[14].

The Planck (CMP+lensing) constraints on the standard ΛCDM model are displayed
in Table. 2.1. It is worth noting that the 68% limit on the power law index of the scalar
spectrum ns, by Planck alone is 0.9635± 0.0094 (i.e. 0.9% accuracy), this means that
the exact scale invariance is excluded at the 3.9σ level. One should also note that Planck
leads to a low value of H0 = 67.9±1.5kms−1 Mpc−1, a matter density Ωm = 0.307±0.019
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and an Universe with an age of 13.796± 0.058 Gyr which is also fully consistent with
BBN constraints, but in tension with local determinations of H0, which forms values of
H0 = 72.7± 2.0 km s−1 Mpc [3, 141].

In other words, within the standard ΛCDM context, the Planck CMB fit is completely
compatible with BAO data, and shows some tension with some of the measurements of
H0 and Ωm from low redshift measurements. Note that BAO stands for Baryon Acoustic
Oscillation, which are the analogue to the wiggles in the CMB power. They form when
the over-density in the baryons from the initial sound waves are distributed in the whole
matter distribution [5].

Table 2.1. Cosmological parameter values for the Planck-only best-fit 6-parameter ΛCDM
model (Planck temperature data plus lensing) and for the Planck best-fit cosmology includ-
ing external data sets (Planck temperature data, lensing, WMAP polarization [WMAP]
at low multipoles, high frequency experiments, and BAO, labelled [Planck+WMAP+high-
l+BAO]). The six fitted parameters are above the line; those below are derived. Table
from [14].

Table. 2.3 illustrates the Planck status of some extensions to the standard ΛCDM
model. This has been done regarding single parameter extensions. The current table also
exhibits the constraints from Planck+WMAP alone when either BAO or high frequency
CMB information, or both are added. When not specified, the numbers in the text below
are 95% confidence level from the joint constraints from Planck+WMAP+High-l+BAO.
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Parameter Definition
ωb ≡ Ωbh

2......................... Baryon density parameter today
ωc ≡ Ωch

2 ........................ Cold dark matter density parameter today
ΩK ................................... Curvature parameter today with Ωtot = 1− ΩK

ΩΛ ................................... Dark energy density parameter today
Ωm ................................... Matter density today divided by the critical density
z∗ ..................................... Redshift for which the optical depth equals unity
r∗ = rs(z∗) ....................... Comoving size of the sound horizon at z = z∗

100θMC ............................ 100× approximation to r∗/DA

100θ∗ ............................... 100× angular size of sound horizon at z = z∗(r∗/DA)
τ ...................................... Thomson scattering optical depth due to reionization
ns .................................... Scalar spectrum power-law index (spectral index)
As .................................... Amplitude of primordial scalar perturbations
ln(1010As) ....................... Log power of the primordial curvature perturbations
σ8 .................................... RMS matter fluctuations today in linear theory
zre ................................... Redshift at which Universe is half reionized
H0 ................................... Current expansion rate in km s−1Mpc−1

zdrag ................................ Redshift at which baryon-drag optical depth equals unity
rdrag = rs(zdrag) ............... Comoving size of the sound horizon at z = zdrag

w ..................................... Dark energy equation of state parameter∑
mv ............................... The sum of neutrino masses in eV

Neff .................................. Effective number of neutrino-like degrees of freedom
YP .................................... Fraction of baryonic mass in helium
dns/d ln k ......................... Scale dependence of the spectral index
r0.002 ................................. Ratio of tensor primordial power to curvature power

Table 2.2. Explanation of cosmological parameters from Planck analysis, used in Fig. 2.8
and tables 2.1 and 2.3. Table re-provided from [14].

Fig. 2.9 allows comparing the constraints in the ns − r plane with predictions from
a number of common inflation models. The figure shows that concave potentials are
preferred, with both φ̇2 and φ̇2/ρ increasing during slow-roll inflation. Main analyses and
results of this context is presented in [48].
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Table 2.3. Constraints on one-parameter extensions to the base ΛCDM model. Table
from [14].
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Figure 2.9. Marginalized 68% and 95% confidence levels for ns (the scalar spectral index
of primordial fluctuations) and r0.002 (the tensor to scalar power ratio at the pivot scale
k = 0.002 Mpc−1 ) from Planck+WMAP, alone and combined with high frequency and
BAO data, compared to the theoretical predictions of selected inflationary models. Figure
Credit: [48].

Planck in [48] provided the constraints when r0.002 and other extensions (Neff , YP, w,mv)
were allowed to vary for various data combination. Introducing Nf and YP shift the
preferred value of ns to higher values and weak the exclusion of the ns = 1 to only two
sigma. Because of uncertainties from the end of inflation to the end of entropy generation,
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Planck explored a number of scenarios to see how ns − r constraints can be modified.
First they searched for features by performing a reconstruction of the primordial scalar
spectrum or of the best fitting inflation potential.
Concerning these results, we find that the standard ΛCDM model with 6 cosmolog-

ical parameters is in a good match with Planck temperature spectra with parameters
(ns,Ωb,Ωc, θ) with the remaining (As, τ) reduced by adding the large scale polarization
constraint from WMAP.
The standard ΛCDM model is fully consistent with CMB lensing and polarization

power spectra observations from Planck.
Considering CMB from Planck+WMAP polarization+ACT and SPT+BAO constraints,

exact scale invariance is excluded at ∼ 7σ.
The single field slow-roll inflation model survived the tests of Gaussianity performed

to data.

2.6. Experiments on large scale homogeneity

Large scale structure surveys determine the distribution of galaxies and question the
homogeneity at different scales. In contrast to the measurement of the initial conditions
of structure formation, by looking at the CMB, these experiments are applied to the
late times of the Universe. The known large scale structure surveys are the 2dF survey
[16], the Sloan Digital Sky Survey (SDSS) [49], the WiggleZ survey [50] and the Baryon
Oscillation Spectroscopic Survey (BOSS) [51].
The analysis of an estimation of the two-point correlation function from the seventh

data release of the SDSS project has been done in [52] The comparison with the ΛCDM
model correlation function shows good agreement on small and intermediate scales.
Besides the estimation of the correlation function, one can also determine the power
spectrum of the fluctuations from the data [53]. The result is shown in Fig. 2.10.

Baryon acoustic oscillations act as standard ruler for the determination of the angular
diameter distance. They can also be probed in all epochs of the Universe by measuring
the matter correlation function at the respective time. Existence of the BAO has first
been detected in [5]. Later on, the corresponding data from SDSS as it is shown in Fig.
2.10 made a strong confirmation for their existence. They have also been found in the
WiggleZ [50] and in the BOSS [51] data. In [54] it has been explained how their existence
make strong constraints on deviations of the distance redshift relation from the ΛCDM
prediction.
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Figure 2.10. Measurements of the BAO in the SDSS DR5 galaxy data. The first detection
of the BAO peak by using the correlation function is shown in the left plot, and by using
the estimation of the power spectrum is shown in the right one. Figure Credit: The left
plot from [5] and the right one from [53].
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3. Averaging Problem in Cosmology
The reader might have skipped reviewing the basic knowledge which has been explained
in the first two chapters of this thesis. In order to proceed the problem of averaging in
cosmology, here we shortly point out some of the topics of interest from the previous
chapters, in section 3.1. Then we open up the discussion of averaging problem in section
3.2. The history of studying this subject is presented in section 3.3. To make progress in
solving this problem, it is first essential to have a reliable averaging scheme at hand. We
therefore highlight two of the most important directions of dealing with the mentioned
problem. First, the spatial scalar averaging approach of Buchert in sections 3.4 and 3.5
and the recent attempt of Skarke in 3.6. Finally the second direction, which is a fully
tensorial averaging approach, introduced by Zalaletdinov, is explained in section 3.7.

3.1. Introduction
Einstein’s theory of general relativity is the most accepted fundamental theory of gravity,
and its application to cosmology has been studied by many, including Einstein himself,
deSitter, Lemaître, Friedmann, etc.

A simple model of the Universe is described by the homogeneous and isotropic geometry,
characteristic for the Friedmann-Lemaître (FL) model with the so-called Robertson-
Walker (RW) metric. Describing the FL space-time by the ΛCDM model of the Universe
(or as it is called the concordance model) is the highly successful attempt to fit a large
amount of cosmological observations. The hot Big Bang theory tells us that the Universe
was very hot and dense at early times and cooled as it expanded, with tiny fluctuations
in the era of recombination that have grown to form structures such as galaxies today.

A central assumption in the standard model of cosmology is that the Universe on large
scales is homogeneous and isotropic [19]. But the real Universe on the small scales is
neither homogeneous nor isotropic; we see a rich variety of structure around us from
galaxies to clusters of galaxies and even larger structures in different directions [55].
In the previous chapter, we discussed the so-called cosmic structure. In the follow-

ing items we only briefly review some aspects of that to address the importance of
inhomogeneity and anisotropy.

• The CMB anisotropies is one of the most central topic of cosmology. These
anisotropies have primordial origin, and they are generated in the early Universe i.e.
at the epoch of recombination. The COBE [28], WMAP [1] and recently Planck [2]
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3. Averaging Problem in Cosmology

collaborations have provided a precise picture of the observed Universe. In fact,
study of the anisotropies of the CMB is a useful and suitable way to understand
the gravitational fluctuations imprinted on the last scattering surface in the early
times of the Universe.

• Different from CMB anisotropies, the distribution of matter at the present time
of the Universe have been probed by redshift and galaxy surveys. Filaments of
galaxies known as great walls have been observed for instance by the CfA Redshift
Survey [56]1. Up to now, the largest structure is the Sloan Great Wall, based on
the SDSS result [17] 2.

• Devoid of rich clusters of galaxies, we also have some mostly empty places in our
Universe, known as voids. Study of these voids in theoretical and observational
parts of research have made us quite sure that there exists some huge large voids.
Among them, the Northern Local Void is the closest super-void, and the Boötes
Super-void with an approximately spherically shaped region is known as great void
[57].

As we see from the first item above, the CMB observations hold the assumption of
homogeneity unchanged, nevertheless the Universe is no longer locally homogeneous,
when density perturbation become non-linear at late times. The formation of these
non-linear structures from primordial perturbations has been most studied in GR using
linear perturbation theory, or accompanied with analytical work in Newtonian gravity by
means of Newtonian N-body and fluid simulations. Perhaps one of the biggest successes
in this area of research is the explanation of how statistical properties of the large scale
structure (e.g. statistical homogeneity and isotropy, statistical Gaussianity) arise [58].
The relevant calculations are largely based on linear perturbation theory (i.e. linearizing
Einstein equations around the smooth FL solution) which is valid at all length scales
of interest at early times and on large scales at late times [15, 20]. Dynamics on small
scales at late times involves non-linear theory. One should have in mind that the effects
of perturbations at the linear order vanishes on average by construction, but they have a
significant effect on the expansion rate once they enter the non-linear regime [59]. In
chapter 4, we will investigate their effect on the propagation of light-rays.

Based on the second and third items above, we can say the Universe is a collection of
regions with high matter density (walls) and regions with low matter density (voids). In
particular, the homogeneous and isotropic, spatially flat model ΛCDM model fits obser-
vations of the distance scale and the expansion rate well by introducing vacuum energy.
However, the Universe is known to be far from exact homogeneity and isotropy at late
times due to the formation of non-linear structures. We can refine these inhomogeneities

1This has been done in 1989. In fact the (CfA) Redshift Survey was the first attempt to map the
large-scale structure of the Universe.

2These filaments are as large as a few hundred Mpc.
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through a process of averaging also known as smoothing. These inhomogeneities can
affect the curvature of the space and cause an extrinsic curvature, additional to the Ricci
curvature tensor. However, this curvature has been assumed to averaged out to zero,
while passing to the Friedmannian picture. We express this extrinsic curvature in terms
of an expansion tensor, later in section 3.4.

3.2. The averaging problem

We go from the local scale to the large scale by averaging. In order to do so, the first
trivial question that comes to mind is: how can we obtain the averaged values of the
cosmological parameters? Theoretically, this could be done by obtaining the average of
their values in different regions with voids and walls in the Universe. However, averaged
and time-evolving are not commutative operations i.e. [∂t, 〈 〉D] 6= 0. Non-commutativity
of average and time evolution for an arbitrary operation, O, gives us, 〈Ȯ〉 6= 〈O〉̇, as time
evolution is non-linear (e.g. Ȯ = O2 ⇒ 〈O〉̇ 6= 〈O〉2).
Moreover, since most of the cosmological parameters are tensorial objects, another

problem is how to average a tensor.
Regarding these problems, we have two options. First, in the classical approach to

standard cosmology, we first obtain the average of matter distributions and geometries
in different regions at the early Universe, and then plug these smooth quantities into
the Einstein equations to derive the homogeneous geometry from the evolution in the
time of average. However, the more proper approach would be to let the parameters
evolve with time in different regions and then obtain an average of the evolved values in
the late time Universe; so that we first plug the inhomogeneous quantities into Einstein
equations and solve these equations for different regions’ geometries, then let the results
evolve in time, and then average over the final results.

Because the Einstein equations are non-linear, these two approaches are not equivalent:

〈Gµν(gαβ)〉 6= Gµν(〈gαβ〉), (3.1)

where 〈 〉 stands for averaging. The content of equation (3.1) is that the average behavior
of an inhomogeneous space-time is not the same as the behavior of the corresponding
smooth space-time.
Fig. 3.1 shows a scheme that the result of the two approaches would not coincide at

the end of the day3.

3 Recently, Skarke [60, 61] realized that one could avoid the non-commutativity of averaging and time
evolution of scalars by utilizing a mass weighted averaging scheme. We shall explain this model in
section 3.6.
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3. Averaging Problem in Cosmology

Figure 3.1. Sketch of the difference of the averaged inhomogeneous model to the ho-
mogeneous FL model, due to the non-commutativity of time derivations and spatial
averaging. Figure credit: Julien Larena, a given talk in the second Kosmologietag,
Bielefeld University [63].

The influence of inhomogeneity and anisotropy on the average behavior is also known
as backreaction term. In order to correct the problem of tensorial equations that appears
when we first average the matter density in different regions and then solve Einstein
equations, we have to introduce a term of correction, which is known as backreaction
term.
As we mentioned, averaging involves the integration of tensors. Therefore, changing

the coordinates will change the result in an arbitrary way. One can try to handle this
problem by defining a covariant averaging procedure, (e.g. via bi-tensors) which has
complexities in its algebra, or one can use part of field equations which only involves
scalars.

Another worth to mention problem is the conceptual meaning of the scale factor. As we
have been convinced, the reason behind using a homogeneous and isotropic model is that
the Universe appears to be homogeneous and isotropic when averaged over sufficiently
large scales. While the FL scale factor has been very successful in fitting observations, it
is difficult to understand the matter content implied by the FL equations which relate to
the scale factor. Noticing the fact that the averaged properties of the Universe are well
described by an overall scale factor does not imply that the scale factor entirely evolves
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according to the Friedmann equations, since the Universe is not completely homogeneous
and isotropic.

These difficulties do not allow us to take a straight forward averaging procedure in the
context of general relativity and cosmology. In the next section, we shortly introduce the
historical attempts to solve the averaging problem in cosmology.

3.3. History of the averaging problem
The problem of averaging in general relativity has a history going back 1960’s. It was for
the first time introduced by Shirkov and Fisher in 1963 [64]. They proposed a space-time
averaging procedure, but it was not covariant such that a tensor did not remain to be a
tensor after applying averaging.
A few years later, the problem of second order effects of gravitational waves on the

large scale background metric was studied by Isaacson in 1968 [65]. Isaacson used an
averaging operation which he called the “BH assumption” after Brill and Hartle [66],
which was suited to studying the effects of perturbative gravitational waves in a region
surrounded by different wavelengths. An attempt to generalize Isaacson’s results was
made by Noonan [67], which could be applied to perturbative inhomogeneities. However,
the issue of averaging problem was not very well known until 1984 when Ellis gave a
comprehensive description of the concept of backreaction from small to large structures
[68]. He called that task of finding the smooth metric which best fits the average of the
real clumpy Universe the fitting problem.
The question was further considered for instance by Zotov and Stoeger [69], whose

procedure was equivalent to the one by Shirkov and Fisher, hence not covariant and by
Futamase [70, 71] who studied the gravitational correlation by employing the metric
perturbations. Futamase introduced a spatial averaging procedure after performing a 3 +
1 splitting of space-time, and computed backreaction terms arising from averaging second
order perturbations. Another example is the work of Boersma [72], who attempted
to construct a gauge-invariant (i.e. coordinate independent) averaging procedure in
perturbation theory, and also estimated that backreaction effects remain negligibly small
at the present day. The reader might be interested in other early works done on this
subject [73, 74, 75, 76].
Two breakthroughs in the study of the averaging problem and backreaction were

achieved by Zalaletdinov [77, 78] in a covariant and exact way and by Buchert [79, 80],
who restricted the problem to scalar quantities only.

Nowadays we know despite of its success, the FL model is only a large-scale ap-
proximation to highly non-linear structures at small scales. Releasing more data has
revealed more certainty that at small scales, the standard model does not agree with
observations. Therefore, the study of backreaction became more and more important in
[81, 82, 83, 84, 85].
In the next two sections, we introduce the concept of averaging of scalar quantities,
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3. Averaging Problem in Cosmology

Figure 3.2. A pictorial representation of expansion and shear, while considering in the
real inhomogeneous Universe. The fluctuations in the local expansion and shear generate
a kinematical backreaction Figure credit: Buchert and Carfora [86].

based on Buchert’s approach. The kinematics of the procedure is restricted to the
irrotational dust Universe, explained in section 3.4.

We then proceed the dynamics of the current procedure in section 3.5. Another attempt
on scalar averaging, different from Buchert’s approach is discussed in 3.6. Finally, the
exact and covariant tensor averaging approach of Zalaletdinov is explained in 3.7.

3.4. Kinematics of scalar averaging
In order to understand the kinematics of the Universe, one should consider not only
the expansion, but also the shear and rotation. These geometrical variables have been
detailed in this section. In the next section 3.5 we will neglect the rotation (see Fig. 3.2).

We consider a set of observers comoving with the cosmic medium with the 4-velocity
uµ ≡ dxµ/dτ , where τ is the proper time.

For the comoving observers we can set uµuν;µ = 0, and we define hµν ≡ δµν + uµuν , where
hµν projects orthogonally to uµ. Now we can describe the kinematics of the Universe as

uµ;ν ≡ θµν = hµαh
β
νu

α
;β = wµν + σµν + 1

3h
µ
νθ, (3.2)

where wµν , σµν and θ are the rotation tensor, shear tensor and expansion scalar respectively,
and are defined as (see e.g. [87])

wµν ≡
1
2h

µ
αh

β
ν(uα;β − u

;α
β ), (3.3)

σµν ≡ hµαh
β
ν(

1
2u

α
;β + u ;α

β )− 1
3h

α
βu

λ
;λ, (3.4)
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3.4. Kinematics of scalar averaging

Figure 3.3. Foliation of the space-time by a set of spacelike hypersurfaces. Each line
xi = const of the Coordinates, xi, on the hypersurfaces, Σt, cuts across the foliation.
Figure credit: Gourgoulhon, [89].

θ ≡ uλ;λ. (3.5)

Here we restrict our attention to the irrotational Universe, i.e. wµν = 0 (see [88] for the
case of non-zero rotation), and use the synchronous coordinate system (see the review
discussion in [89]). As we mentioned earlier, the choice of synchronous gauge allows us
to foliate the space-time to constant time hyperspheres with τ = t and set the time axis
orthogonal to them (see Fig. 3.3).
The metric of the inhomogeneous Universe thus can be expressed in terms of syn-

chronous coordinates:
ds2 = −dt2 +(3) gµνdx

µdxν , (3.6)

where now dτ = dt, and (3)gµν is the metric on hypersurfaces of constant t. The coordinate
system in the three hypersurfaces is attached to the cosmic fluid and therefore called
comoving. The 4-velocity uµ of comoving observers becomes

uµ = (1, 0), uµ = (−1, 0). (3.7)

From equation (3.2) we have

θµν = σµν + 1
3θδ

µ
ν . (3.8)

Notice that from equation (3.8) we get σµµ = 0, and the shear scalar can be defined as

σ2 ≡ 1
2σ

µ
νσ

ν
µ = 1

2(θµνθνµ −
1
3θ

2). (3.9)
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One should keep in mind that two types of curvature, i.e. an extrinsic curvature and
an intrinsic curvature, arise from the formalism. The extrinsic curvature tensor, Kµ

ν , is
equivalent to the expansion tensor, i.e. Kµ

ν ≡ θµν = hµαh
β
νu

α
;β. The intrinsic curvature

tensor, Rµ
ν , comes from Einstein equation, Gµν + Λgµν = 8πGTµν , and is expressed as

gµνRµν = gµν
(
Γρνµ,ρ − Γρµρ,ν + ΓρµνΓερε − ΓεµρΓρνε

)
+ gµν

(
Γ0
µν,0 + Γ0

µνΓ
ρ
0ρ − Γρ0µΓ0

νρ − Γ0
µρΓ

ρ
0ν

)
≡ R+ gµν

(
Γ0
µν,0 + Γ0

µνΓ
ρ
0ρ − Γρ0µΓ0

νρ − Γ0
µρΓ

ρ
0ν

)
,

(3.10)

where R is the Ricci curvature of the spatial hypersurfaces, and the spatial 3-dimensional
curvature tensor is

Rµ
ν ≡ gµκ

(
Γερν,ε − Γερε,ν + ΓερνΓκεκ − ΓκρεΓενκ

)
. (3.11)

To proceed to the dynamics of scalar averaging procedure, we need the following decom-
position of the Einstein equations, only in the scalar parts (for irrotational dust: wµν = 0,
p = 0) [90]4:

θ̇ + 1
3θ

2 = −4πGρ− 2σ2 + Λ, (3.12)

1
3θ

2 = 8πGρ− 1
2R+ σ2 + Λ, (3.13)

ρ̇+ θρ = 0, (3.14)
where the overdots stand for a derivative with respect to the time t. Note that we have
neglected the term w in equations (3.12) and (3.13).
The Raychaudhuri equation (3.12) shows the local acceleration, equation (3.13) is

equivalent to the flat Friedmann equation for the case that p = 0. The continuity equation
(3.14) shows that the energy density is proportional to the inverse of the volume.

Similar to equation (3.9), we decompose the 3-dimensional Ricci tensor into its trace
part (i.e. the Ricci scalar R) and its traceless part rµν [61],

Rµ
ν = R3 δ

µ
ν + rµν . (3.15)

The time evolution of the 3-dimensional Ricci tensor gives us

Ṙµν = θεµ;νε + θεν;µε − θµν;ελg
ελ − θ;µν , (3.16)

where the semicolon denotes covariant spatial derivative. Splitting equation (3.16) into
its trace and traceless parts and using equation (3.9-3.16) we arrive at the evolution
equations for R and rµν as

Ṙ+ 2
3θR = −2σµν rνµ, (3.17)

4The Arnowitt-Deser-Misner (ADM) formalism is used in Buchert’s approach to decompose the Einstein
equations into the time- and spatial components, in the scalar parts.
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ṙµν + 2
3θr

µ
ν = −5

4σ
µ
ε r

ε
ν + 3

4σ
ε
νr
µ
ε + 1

6δ
µ
νσ

ε
λr
λ
ε + Y εµ

ν;ε, (3.18)

where last term in equation (3.18) is given by

Y ε
µν = 3

4(σεµ;ν + σεν;µ)− 1
2gµνσ

ε λ
λ; − σ ε

µν; . (3.19)

3.5. Dynamics of scalar averaging
A technically simple approach has been proposed by Buchert. He decomposed Einstein
equations into a set of dynamical equations for scalar quantities. We now turn to the
dynamics of Buchert’s scalar averaging approach. We first review the averaging definition
based on this approach in subsection 3.5.1. We then yield the modified Friedmann
equations5 in subsection 3.5.2. We assume that the matter is a pressureless ideal
irrotational fluid, or dust (for discussion of non-dust matter see [80, 88, 91, 92, 93, 94])
and the four-velocity of observers, uµ is comoving with the dust. We express the
integrability condition for the backreaction term in subsection 3.5.3 and consequences on
the cosmological parameters in the last subsection 3.5.4.

3.5.1. Averaging procedure
The spatial average of a scalar physical quantity f(t,x) on hypersurfaces of a comoving
domain D is defined as [79]

〈f〉D(t,x) = 1
VD

∫
D
d3x

√
g(t,x)f(t,x), (3.20)

where VD(t) ≡
∫
D d

3x
√
g(t,x) is the volume of the domain. The averaged scale factor is

defined via the comoving volume on spatial hypersurfaces

aD(t) =
( ∫D d3x

√
g(t,x)∫

D d
3x
√
g(t0,x)

)1/3
'
( VD(t)
VD(t0)

)1/3
. (3.21)

Using equation (3.21) we find

〈θ〉D = 1
VD

∫
D
θ
√
g(t,x)dx = V̇D

VD
= 3 ȧD

aD
. (3.22)

The effective Hubble expansion rate is thus defined as

HD ≡
ȧD
aD

= 1
3〈θ〉D. (3.23)

5These equations are known in the literature as the Buchert equations.
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A key point corresponding to equation (3.20) here is that the time evolution and spatial
averaging do not commute

∂t〈f〉 − 〈∂tf〉 = 〈fθ〉 − 〈f〉〈θ〉, (3.24)

which causes the existence of the backreaction terms in following subsection.

3.5.2. Buchert equations
The formalism introduced above leads to the modified Friedmann equations or the
so-called Buchert equations [79], see also [80, 81, 95] for a more detailed discussion. For
an irrotational dust Universe6 with a cosmological constant, the equations are:

3 ȧ
2
D
a2
D

= 8πG〈ρ〉D −
1
2〈R〉D −

1
2QD + Λ, (3.25)

3 äD
aD

= −4πG〈ρ〉D +QD + Λ, (3.26)

where RD denotes the 3-Ricci scalar, and QD is the kinematic backreaction term, defined
as

QD ≡
2
3(〈θ2〉D − 〈θ〉2D)− 2〈σ2〉D. (3.27)

The quantities QD and 〈R〉D have to obey to the integrability condition (introduced in
the next subsection). Note that equations (3.25) and (3.26) can be obtained by averaging
the equations (3.12) and (3.13).
From the above equations we see that the evolution of the inhomogeneous Universe

strongly depends on three quantities of 〈ρ〉D, QD and 〈R〉D.
To compare the original Friedmann equations for a spatially flat Universe with the

equations (3.25) and (3.26), we may introduce the effective energy density ρeff and
pressure peff as

ρeff ≡ 〈ρ〉D −
QD + 〈R〉D

16πG , (3.28)

peff ≡ −
1

16πG

(
QD + 1

3〈R〉D
)
. (3.29)

6Another example model of a space-time filled with an irrotational dust perfect fluid is the Swiss-cheese
model [96, 97, 98]. The model describes a Universe dominated by many voids, and the cheese regions
are the over-dense matter content. One of the solutions in the context of Swiss-Cheese models is by
using the Lemaître metric, known as Lemaître-Tolman-Bondi (LTB) solution. The LTB solution
describes a spherically symmetric space-time for the case of irrotational dust Universe. This model is
a useful toy for studying backreaction effects because of the advantage of the symmetry property
which allows quantitative studies without any use of approximations. However, it remains merely far
away from a realistic description of the real Universe.
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Thus equations (3.25) and (3.26) become

HD = 8πG
3 ρeff + Λ

3 , (3.30)

äD
aD

= −4πG
3
(
ρeff + 3peff

)
+ Λ

3 . (3.31)

One should keep in mind that the above set of averaged equations has a different physical
meaning than the Friedmann equations due to the different meaning of the scale factor.
The scale factor a(t) in the standard Friedmann equations is part of the metric and the
evolution of any volume in the space is given by the same scale factor, while the scale
factor aD(t) in Buchert’s equations is not part of the metric, and it only corresponds to
the volume of a the region which the average is taken7.
Moreover, we can define the modified equation of state as

ωeff ≡
peff

ρeff
= 〈R〉D − 3QD

2〈θ〉2D
. (3.32)

3.5.3. Integrability condition
The averaged quantities QD and 〈R〉D, which determine the evolution of the inhomoge-
neous Universe, can be related by an integrability condition.
The continuity equation (3.14) for an irrotational dust Universe can be written as

ρ̇ = −θρ, (3.33)

which after spatial averaging gives us

〈ρ̇〉D + 〈θρ〉D = 〈ρ〉̇D + 〈θ〉D〈ρ〉D = 0. (3.34)

From the Buchert’s equations (3.30) and (3.31) and equation (3.34), we obtain the
integrability condition for QD and 〈R〉D as [79]

a−2
D

(
a2
D〈R〉D

)̇
+ a−6

D

(
a6
DQD

)̇
= 0. (3.35)

The integrability condition is an exact result and QD and 〈R〉D have to obey it. This
condition is essential in Buchert’s formalism so that it can be applied to any order in
perturbation theory.

7Differences between a(t) from Friedmann equations and aD from averaged equations will be discussed
in more details in section 3.6.
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3.5.4. Cosmological parameters
The quantities QD and 〈R〉D in the right hand side of Buchert’s equations can be
considered as terms in the modified energy momentum tensor. For our discussion we
introduce four averaged energy densities for the large scale

ΩDm ≡
8πG〈ρ〉D

3H2
D

, ΩDΛ ≡
Λ

3H2
D
, ΩDR ≡ −

〈R〉D
6H2
D
, ΩDQ ≡ −

QD
6H2
D
. (3.36)

We shall call them cosmological parameters, but they are scale dependent variables. The
normalization condition thus reads

ΩDm + ΩDΛ + ΩDR + ΩDQ = 1. (3.37)

To compare ΩDR and ΩDQ with the contribution of curvature parameter in the standard
model, we shall introduce the pair [99]

ΩDk ≡ −
kDi
a2
DH

2
D
, ΩDQN ≡

1
3a2
DH

2
D

∫ t

ti
dt′QD

d

dt′
a2
D(t′), (3.38)

which are related to the previous pair of parameters by ΩDk + ΩDQN = ΩDR+ ΩDQ. Therefore,
the normalization condition from equation (3.37) becomes

ΩDm + ΩDΛ + ΩDk + ΩDQN = 1. (3.39)

The most important result of Buchert’s approach is that it is possible to cast a spatially
volume averaged irrotational dust model in the form of a FL model with an effective mass
density and pressure. The disadvantage of this approach is that firstly an assumption like
an effective equation of state has to be introduced. Secondly, the set of scalar equations
is not closed. This means there are four unknown variables, aD, 〈ρ〉D, 〈Q〉D and 〈R〉D,
and only three independent constraints (two of them are the Buchert equations and one
is the integrability condition). In order to close them, introducing another relation based
on some physical statement is necessary. This has been done by means of cosmological
perturbation theory in [100].

3.5.5. Arguments on perturbations
Attempts to address the averaging problem for an irrotational dust Universe are in
general in non-perturbative frameworks [99, 101, 102, 103, 104, 105, 106]. However, this
leads to a complexity which requires simplifying assumptions. The problem has been
furthermore analyzed mainly within perturbation theory [100, 85, 107, 108, 109, 110],
where one can assume that the Universe is describable by the split into a background
that is the standard homogeneous case and small perturbations to this background. The
main result at the first perturbative level is that the corrections are perturbatively small
and their contribution to the energy is of the order of 10−5 at the Hubble scale.
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Although the average of first order perturbation vanishes [84, 112], the effect on the
average expansion rate is not negligible at higher order [111, 107].
Simply put, metric perturbations around FL space-time are small at all times. This

might imply the smallness of metric perturbations causes the average evolution to remain
close to the FL case. However, this does not necessarily mean that backreaction would be
small at the perturbative level, because the perturbation of the expansion rate depends
on first and second derivative of metric perturbations. Thereby the second derivation of
metric perturbations i.e. perturbations of the curvature might not be small; e.g. there is
a deviation of order unity in the local expansion rate and in the spatial curvature [113].
However, as we mentioned earlier in this chapter and also according to [111], there

have been doubts concerning the validity of perturbation theory in the late Universe,
whereby all orders of perturbations become important. In [100, 114], the backreaction
effect as a function of averaging scale in a perturbative approach up to higher order has
been studied. The result show that the effects on the second order are as efficient as
the first order, such that the averaged kinematical backreaction term, 〈Q〉D, found to
be a second order term, and the averaged spatial curvature, 〈R〉D, has both the first
and second order terms. However, the dominant contribution comes from 〈R〉D, up
to scales of ∼ 200Mpc. Also, the kinematical backreaction, 〈Q〉D, due to second order
perturbations becomes important, within ∼ 30Mpc. This indicates that the perturbative
approach cannot be applied to both too small or too large scales, where non-perturbative
effects dominate, but only in a range of ∼ 30− 200Mpc.
Calculation of the averaged physical quantities up to third order of perturbation can

be found in [115].

3.5.6. Mimicking dark energy by backreaction
Connecting dark energy to backreaction was first proposed by [83] and proceeded by
[85, 116, 117, 107], who attempted to explain dark energy by means of a backreaction
of small scale structures on the large scale evolution of the Universe. However, such
claims have been controversial. A number of authors have argued that the backreaction
cannot lead to acceleration of the scale factor [118, 119, 120, 121, 122, 123, 124, 112].
The question is still open. So far nobody could present a proof that would exclude this
idea and nobody could prove that the backreaction effects are large enough to explain
dark energy. However, it seems to be generally accepted that backreaction effects cannot
be neglected if one is interested in precision cosmology. The idea has been later on
discussed in [125, 126, 127, 100, 108, 128] and many others.
To make the topic of this section more clear, let us highlight some of the related

discussions:
In order to mimic dark energy by backreaction terms, one should consider the case of

a vanishing cosmological constant, Λ, and ask whether the backreaction terms can mimic
Λ or at least have influence on the evolution of background space-time.

Consider the effective fluid ρeff in equation (3.28) with dust and dark energy. Let us
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consider the number density of dust particles as n and their corresponded mass as m,
then we have 〈n〉D = 〈n〉D0(aD0/aD)3 for any comoving domain. We know that the energy
density of the dust Universe is ρ(t,x) = mn(t,x), thus we denote ρm ≡ 〈ρ〉D = m〈n〉D.
The energy density of dark energy contribution according to equation (3.28) would thus
be

ρde = −〈Q〉D + 〈R〉D
16πG , (3.40)

and from equation (3.32) we get

ωde ≡
pde
ρde

= peff
ρeff

= −1
3 + 4〈Q〉D

3(〈Q〉D + 〈R〉D) . (3.41)

The latter equation leads to the claim that if

〈Q〉D = −1
3〈R〉D, (3.42)

we will have ωde = −1, corresponding to Λ = 〈Q〉D [101]. This states that the effects of
the inhomogeneities appear to be large enough to let the terms QD and ΩDQ replace Λ
and ΩDΛ [107].

One of the criticism to this claim is that the probable magnitude of the backreaction is
not large enough to explain the apparent expansion of the Universe and as a consequence,
the backreaction is not a possible substitute for dark energy [129].

Similar calculation as [129] in [130, 131] shows that the effects of backreaction are real,
but insufficient to explain the accelerated expansion of the Universe. Therefore dark
energy cannot be an effect of the backreaction.

In 2007, Li and Schwarz presented some estimates regarding these effects [108], which
show that the effects of the backreaction on the Hubble constant are scale dependent, i.e.
the variation of the Hubble constant depends on the inverse square distance (QD ∼ 1/r2).
Moreover, the above result from equation (3.42) could only happen at third order of the
perturbation [115].
One should have in mind that the above result is only valid for the perturbative

approach. In fact in the non-perturbative regime, 〈Q〉D and 〈R〉D are strongly coupled
in a morphon field description [101].

3.6. Scalar averaging based on mass weighted average
method

Another method for analyzing the dynamics of an inhomogeneous irrotational dust
Universe was presented recently by Skarke [60, 61].
The model is in line with [107, 127] and [132], and tries to relate the accelerated

expansion to inhomogeneity effects. However, its construction differs completely from
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Buchert’s approach. While one uses the ordinary volume average of scalar quantities
in Buchert’s approach, this method uses the mass weighted average instead, and its
advantage is that averaging commutes with taking time derivatives.

The basic idea is, if we consider a large domain D in an irrotational dust Universe, by
means of synchronous gauge, we could divide the domain D into a number of infinitesimal
regions Dn. In fact, these regions are small in cosmic terms, but large enough for the
usage of irrotational dust approximation. One can thus obtain the volume of D, VD, by
adding the contribution of the volume of each of regions Dn.

3.6.1. The local scale factor
The scale factor which has been used in the analysis of the current model plays a different
role than aD in Buchert’s approach (and the one in the homogeneous and isotropic FL
model). We shall specify them in the following:

• The scale factor used in the homogeneous Universe, aFL(t), is related to the metric
gµν such that, gµν = diag(−1, a2

FL(t), a2
FL(t), a2

FL(t)). Yet, on the level of linear
perturbation, where the metric is modified by tiny Gaussian perturbations, we use
the same scale factor aFL(t) to treat the perturbations.

• The scale factor used in Buchert’s scalar averaging approach, aD(t), for a given
domainD characterizes the evolution of the volume VD and their relation is described
as

aD(t) =
(
VD(t)
VD(t0)

)1/3
. (3.43)

• The local scale factor used in Skarke’s approach, al(t, x), is expressed in terms of a
fixed quantity of energy density, ρ̂, and is defined as

al(t, x) =
(

ρ̂

ρ(t, x)

)1/3
, (3.44)

where ρ(t, x) is the energy density. The connection between al and aD can be seen
in equation (3.49) below.

From the expansion scalar θµν ≡ θ = (√−g )̇/√−g and the continuity equation ρ̇+ θρ = 0
(see the kinematics of dust Universe introduced in section 3.4), we find

d

dt

(
ρ(t, x)

√
−g(t, x)

)
= 0, (3.45)

and therefore we obtain the mass content mD as

mD =
∫
D
ρ(t, x)

√
g(t, x)d3x, (3.46)
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which is a time-independent quantity i.e. ṁD = 0.
Now we can introduce the mass weighted average definition [60] of a scalar quantity

F (t, x) as
〈F 〉mD (t) = 1

mD

∫
D
F (t, x)ρ(t, x)

√
g(t, x)d3x, (3.47)

which as mentioned earlier has the property that averaging and time derivation do
commute, 〈F 〉̇D = 〈Ḟ 〉D.
Therefore, the volume VD can be computed as

VD =
∫
D

√
g(x, t)d3x = mD〈ρ−1〉mD = mD

ρ̂
〈a3
l 〉m, (3.48)

and since aD can be written as aD =
(
VD/VD0

)1/3
, the relation between the latter two

scale factor is
a3
D = 1

VD0

(mD
ρ̂

)
〈a3
l 〉. (3.49)

Equation (3.49) shows that in general aD 6= al and the relation aD = 〈a3
l 〉1/3 holds only if

VD0 ≡ mD/ρ̂.

3.6.2. Evolution of the local scale factor
With considering the kinematics of the irrotational dust Universe and equations (3.8-3.14),
the definition of the local scale factor in equation (3.44) together with the continuity
equation (3.14) gives the following expression for the expansion rate θ

θ(t, x) = − ρ̇(t, x)
ρ(t, x) = 3 ȧl(t, x)

al(t, x) . (3.50)

The scale factor al as a solution of this equation for some initial time tin [60] is:

al(t, x) = ain(x) exp
(1

3

∫ t

tin
θ(t̃, x)dt̃

)
. (3.51)

We now introduce the rescaled quantities (with hatted sign)

ρ̂ = a3
l ρ, σ̂µν = a3

l σ
µ
ν , R̂ = a2

lR, r̂µν = a2
l r
µ
ν , (3.52)

with the evolution equations

˙̂ρ = 0, ˙̂σµν = −alr̂µν ,
˙̂
R = −2a−3

l σ̂µν r̂
ν
µ,

˙̂rµν = a−3
(
− 5

4 σ̂
µ
ε r̂

ε
ν + 3

4 σ̂
ε
ν r̂
µ
ε + 1

6δ
µ
ν σ̂

ε
λr̂
λ
ε

)
+ a2

l Y
εµ
ν;ε,

(3.53)

which are needed to compute the evolution of the local scale factor al [61].
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Therefore, equation (3.13) can be written in terms of the new rescaled quantities as

θ2 = 8πGρ̂a−3
l + σ̂2a−6

l −
1
2R̂a

−2
l + Λ. (3.54)

Moreover, we can compute the evolution of R̂ from equation (3.53) for some initial time

R̂(t) = R̂(tin)− 2
∫ t

tin
a−3
l (t̃) σ̂µν (t̃) r̂νµ(t̃) dt̃

= R̂(tin) + 2
∫ t

tin
a−4
l (t̃) σ̂µν (t̃) ˙̂σνµ(t̃) dt̃

= R̂(tin) + 2 a−4
l (t) σ̂2(t)− 2a−4

l (tin)σ̂2(tin)

+ 8
3

∫ t

tin
θ(t̃)a−4

l (t̃) σ̂2(t̃)dt̃.

(3.55)

Using the latter expression together with equation (3.54) we finally obtain the evolution
of the local scale factor

3( ȧ
2
l

a2
l

) = a−6
l

(
σ̂2
in −

4
3

∫ t

tin
θ(t̃)σ̂2(t̃)dt̃

)
+ a−3

l (8πGρ̂)− a−2
l (1

2R̂in) + Λ. (3.56)

The assumptions on initial values are compatible with linear perturbation theory. Simply
put, one can refer to the linear perturbation regime to compute the initial values ain,
σ̂in and R̂in in equation (3.56). The initial scalar perturbations can be parameterized
in terms of scalar Gaussian random fields, where the resulting contributions can be
expressed in only one time-dependent function [100]. So that for the case of a flat FL
background, the first order expressions for the perturbed metric, the Ricci and expansion
tensors depend only on this single function. Using the results from linear perturbation
theory, one is able to find the initial values of the mentioned quantities and to compute
the volume of the domain VD, which is in general a function of time t, the cosmological
constant Λ and the background curvature (see [61] for the detailed calculations). In order
to completely fix the evolution of the volume of the Universe and compare the results
with the observations, the case of zero cosmological constant and flat background has
been considered; so that the scale of the time parameter only needs to be determined.
Fig. 3.4 displays different lines corresponding to a plot of aD over t.
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3. Averaging Problem in Cosmology

Figure 3.4. The diagram of aD plotted over t for the case of λ = 0 and zero curvature
background. The blue line corresponds to an Einstein-de Sitter (EdS) Universe. The
green line corresponds to a scenario where the inhomogeneities have been taken into
account, in the case of zero shear and ignoring the traceless part of the Ricci tensor. The
red line corresponds to an inhomogeneous scenario where the inhomogeneous part of
the rescaled Ricci tensor, r̄ is modelled as constant. The line close to the previous one
colored in cyan, indicates again an inhomogeneous scenario, however with considering
the evolution of the non-constant r̄. Figure credit: Skarke, [61].

3.7. Zalaletdinov’s macroscopic gravity

In this section, we explain the concept of the covariant averaging of tensors and discuss
what has been achieved in the work by Zalaletdinov.

As we saw earlier in this chapter, since Buchert has introduced his averaging approach
in 2000, it has been used by many authors to explore the effects of backreaction, including
the perturbative contexts mentioned in subsection 3.5.5, and has also been compared
with observations [62]. The reason for the amount of attention it has since received,
perhaps is its simplicity of application. In contrast, Zalaletdinov’s averaging approach,
which was developed even earlier than Buchert’s work, is a technically rather challenging
approach to handle. Its strength against Buchert’s approach however lies on the fact of
a fully covariant prescription which yields a tensorial object to remain to be a tensor
after the process of taking averages. One important example is introducing a so called
averaged metric on an averaged manifold. This eventually allows one to make physically
exact statements about averaging in general relativity.
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3.7.1. Introduction
There are a number of averaging procedures that have been introduced to resolve the
averaging problem. An exact, non-perturbative and covariant approach that allows
tensor quantities to be averaged, as well as scalars, was provided by Zalaletdinov [77]
[78] and is called macroscopic gravity. The name comes from the analogy to Maxwell’s
electrodynamics (i.e. the Lorentz theory of electrons and Maxwell’s electrodynamics are
the microscopic and macroscopic theories respectively). Analogously, the goal of the
macroscopic gravity formalism is to provide a link between the microscopic geometry of
space-time, and the macroscopic averages that are used in cosmology. In this section,
we will briefly summarize the macroscopic gravity formalism. In a better construction,
the microscopic description is based on a discrete matter model, while the macroscopic
description is based on a smooth continuous matter distribution [133].

This approach involves averaging the geometrical objects that exist on the space-time
manifold, and constructing field equations for these averaged quantities based on averaging
Cartan equations of the pseudo-Riemannian geometry of microscopic space-time.

In the real lumpy Universe with a discrete matter distribution on each physically distinct
scale (of galaxies, clusters of galaxies, etc.), the stress-energy tensor Tµν = T (discrete)

µν can
be adequately approximated by a smoothed one as

Tµν = 〈T (discrete)
µν 〉, (3.57)

usually taken to be in the form of a perfect fluid.
As T (discrete)

µν → 〈T (discrete)
µν 〉 on the right-hand side of Einstein equations, the structure

of the field operator in the left-hand side is kept unchanged under such a change and
therefore the field equations hold:

Rµν −
1
2gµνR = 8πG〈T (discrete)

µν 〉, (3.58)

where gµν , Rµν and R are the metric, Ricci tensor and scalar curvature of a pseudo-
Riemannian space-time geometry describing now the corresponding geometry created by
the smoothed energy momentum tensor 〈T (discrete)

µν 〉.
However, for an exact proceeding, the Einstein equations themselves must have been

consequently averaged out:

〈Rµν〉 −
1
2〈gµν〉〈g

αβ〉〈Rαβ〉+ 〈Cµν〉 = 8πG〈T (discrete)
µν 〉, (3.59)

where the new variable Cµν is a connection correlation function [134].
Let us call the averaged metric tensor 〈gµν〉 the macroscopic metric tensor ḡµν . The

macroscopic Einstein equations of macroscopic gravity become the Einstein equations of
general relativity, for the macroscopic metric tensor 〈gµν〉

Mµν −
1
2〈gµν〉〈g

αβ〉Mαβ = 8πG〈T (discrete)
µν 〉, (3.60)

where Mµν is the macroscopic Riemannian curvature tensor.
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3.7.2. The averaging operator
The starting point is “how can one average tensors while retaining their transformation
properties under coordinate changes?” If the averaging operation is to involve an integral
over a space-time region, then clearly only scalar objects can be averaged, since they
change in a trivial way under coordinate transformation. However, averaging involves
the integration of tensors over a (space-time or spatial or null) volume V , and is not
easily well defined, because the result can change by changing the coordinates and is
typically not unique. For treating this problem in a covariant way one needs to introduce
some additional structure in the formalism (for a detailed review see [135] and [131]).
This is achieved by using bilocal averaging operators over compact regions of space-time,
Σ, that contain the supporting point x.

Our intent is to introduce a rigorously defined geometric averaging procedure that
captures the intuition of averaging as integrating a quantity over Σ, and dividing by
volume VΣ. When we average a tensorial object P , in order for the averaged object 〈P 〉
to transform tensorially, P could be parallel transported from each point x′ within Σ to
a common reference point x. However, no specific unique path has been identified here,
such that the parallel transformation can be referred to.
For a vector field v(x), this takes the form

ṽa(x′, x) = Aaa′(x, x′)va
′(x′). (3.61)

The object Aaa′(x, x′) is an operator that maps a vector at point x′ into the transported
vector at reference point x.

One possibility is to define the operator as the product of a basis of vector fields (the
tetrad fields) at two different points x and x′ in Σ:

Aaa′(x, x′) = eaI(x)eIa′(x′), (3.62)

where the index I labels the basis vectors.
In particular, for this choice it can be noted that Aaa′(x, x′) depends only on the initial

and final point and not on the choice of curve connecting the two points. We can follow
this procedure for tensorial objects. The bilocal operator is then used to define the
“bilocal extension” of an object. So the extension of P a

b is

P̃ a
b (x′, x) = Aac′(x′, x)P c′

d′ (x′)Ad
′

b (x′, x). (3.63)

For higher rank tensors the bilocal extension works on each space-time index and the
average is defined analogously

T̃ a1...an
b1...bm = Aa′a′1 ...A

an
a′n
Ab
′
1
b1 ...A

b′n
bn
T
a′1...a

′
n

b′1...b
′
m
. (3.64)

To begin with, we require that this bilocal operator be idempotent (i.e. square to itself)

Aab′′(x, x′′)Ab
′′

a′ (x′′, x′) = Aaa′(x, x′), (3.65)
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and have coincidence limit
lim
x→x′
Aaa′(x, x′) = δaa′ . (3.66)

This ensures that Aaa′(x, x′) has the inverse operator Aa′a (x′, x).
We now define the average of a tensor field P a

b (x) as

〈P a
b (x)〉 = 1

VΣ

∫
d4x′

√
−g′P̃ a

b (x′, x), (3.67)

and in general
〈T a1...an

b1...bm (x)〉 = 1
VΣ

∫
d4x

√
−g′T̃ a1...an

b1...bm , (3.68)

where VΣ is the volume of the region Σ,

VΣ =
∫

Σ
d4x′

√
−g′. (3.69)

With this definition we can now consider the average of various geometrical objects.
Especially this allows us to define the bilocal extension of the metric tensor and the
definition of an averaged metric.

3.7.3. The averaged manifold
With the averaging operation in place, we can turn to the description of an averaged
geometry.
First we define a line element for the macroscopic space-time

ds2 = 〈gµν〉dxµdxν , (3.70)

where the macroscopic metric tensor is used to calculate the macroscopic Christoffel
symbols, denoted by 〈Γµνα〉. The so defined macroscopic Christoffel symbols guarantee
that the macroscopic space-time is a Riemannian manifold itself [136]. Thus the averaged
metric tensor 〈gµν〉 and the averaged inverse metric tensor 〈gµν〉 can be identified as
metric tensors (we shall use this property, later in section 4.4). As we will explain there,
it is essential for our work that a covariant procedure to average a space-time metric
exists. However, it is irrelevant for our purpose how this is defined in detail.
If we assume that our microscopic space-time is a manifold M with metric gµν , a

Levi-Civita connection Γµνα, and Riemann curvature tensor Rµ
ναβ = 2Γµν[β,α] + 2Γµε[αΓενβ],

macroscopic gravity is based on the idea that the average of the Levi-Civita connection
onM yields a Levi-Civita connection for the averaged or smoothes manifold M̄. Given
〈Γµνα〉, one can locally determine a metric 〈gµν〉 for M̄ compatible with 〈Γµνα〉.
To proceed with the averaging, a correlation 2-form is defined as

Zα µ
β[γ νσ] = 〈Γαβ[γΓ

µ
νσ]〉 − 〈Γαβ[γ〉〈Γ

µ
νσ]〉, (3.71)
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where underlined indices are not included in anti-symmetrization, and Zα
µνβ ≡ 2Zα ε

µ[ε νβ].
This definition for connection correlation satisfies the algebraic conditions below [136]8:

• The antisymmetry in the third and sixth indices,

Zα µ
βγ νσ = −Zα µ

βσ νγ. (3.72)

• The antisymmetry in inter-change of the index pairs,

Zα µ
βγ νσ = −Zµ α

νγ βσ. (3.73)

• The algebraic cycle identities
Zα µ
β[γ νσ] = 0. (3.74)

• The equi-affinity property,
Zε µ
εγ νσ = 0. (3.75)

• And the algebraic symmetry of inter-change of the index triples from (3.72) to
(3.73),

Zα µ
βγ νσ = Zµ α

νσ βγ. (3.76)

Solving the differential equations for the connection correlation tensor Zα µ
βγ νσ

Zα µ
β[γ νσ||λ] = 0, (3.77)

where || is the covariant derivative with respect to 〈Γαβγ〉, we find a set of connection
correlation functions.
We have chosen ḡµν = 〈gµν〉 as the averaged metric on the averaged manifold M̄. In

general however, we have ḡµν 6= 〈gµν〉, and can define the tensor Uµν = ḡµν − 〈gµν〉 to
keep track of this differences. However, we can say that when the averaged manifold is
highly symmetric, as in the case of a manifold with homogeneous and isotropic spatial
sections, which we will consider, one finds that Uµν = 0.
The average of the curvature 2-form Rµ

ναβ is denoted 〈Rµ
ναβ〉 and the Ricci curvature

2-form on the averaged manifold M̄ is denoted Mµ
ναβ,

Mµ
ναβ = ∂α〈Γµνβ〉 − ∂β〈Γµνα〉+ 〈Γµσα〉〈Γσνβ〉 − 〈Γ

µ
σβ〉〈Γσνα〉, (3.78)

where Mµ
ναβ 6= 〈R

µ
ναβ〉, in general. Likewise, it is assumed that there exists a non-metric

(i.e. ∇µḡνρ 6= 0) and symmetric connection, Πµ
νρ, such that

〈Rµ
ναβ〉 = ∂αΠµ

νβ − ∂βΠµ
να + Πµ

σαΠσ
νβ − Πµ

σβΠσ
να, (3.79)

where Πµ
να 6= 〈Γµνα〉, in general.

8These properties are directly mentioned from Zalaletdinov’s paper [136].
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Macroscopic parameter Definition
Aaa′ ........................ Bilocal transformation operator
〈gµν〉 ..................... Averaged metric tensor
〈Γµνρ〉 ..................... Averaged Levi-Civita connection
Πµ
νρ ....................... Non-metric connection

Zα µ
βγ νσ ................. Connection correlation tensor

Mµ
ναβ .................... Riemannian curvature tensor

〈Rµ
ναβ〉 .................. Non-Riemannian curvature tensor

Qµ
ναβ ..................... Polarization tensor

Aµναβ ..................... Affine deformation tensor
〈T µν〉 ...................... Averaged energy momentum tensor

Table 3.1. List of quantities and their definitions, used in Zalaletdinov’s averaging
approach on macroscopic gravity.

The difference between the macroscopic Riemannian curvature tensors Mµ
ναβ and the

average of the non-Riemannian tensor 〈Rµ
ναβ〉 is expressed as a polarization tensor Qµ

ναβ,
so that

Qµ
ναβ = 〈Rµ

ναβ〉 −M
µ
ναβ = 2〈Γµε[αΓενβ]〉 − 2〈Γµε[α〉〈Γενβ]〉. (3.80)

Equation (3.80) shows that Qµ
ναβ is a connection correction tensor,

Qµ
ναβ = −2Zε µ

να εβ. (3.81)

From the relation Zε
µνγ = 2Zε σ

µ[σ νγ], one can obtain

Qµν = Qσ
µνσ. (3.82)

The difference between the averaged connection and the connection of the averaged
Riemann tensor yields an “affine deformation tensor”

Aµνα = 〈Γµνα〉 − Πµ
να. (3.83)

Solving the field equations for the non-Riemannian curvature tensor, Rµ
ν[αβ||λ] = 0, holds

Aεν[αR
µ
εβλ] − A

µ
ε[αR

ε
νβλ] = 0, (3.84)

and gives us a set of affine deformation functions.
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3.7.4. The averaged Einstein equations
Under the assumption that the connection 〈Γµνα〉 is symmetric and compatible with the
metric 〈gµν〉, and that we assume the following splitting rules for products of connection
and metric, 〈Γµναgστ 〉 = 〈Γµνα〉〈gστ 〉 and 〈Γαβ[γΓ

µ
νρ]g

σ
τ 〉 = 〈Γαβ[γΓ

µ
νρ]〉〈gστ 〉, one can construct

the field equations of macroscopic gravity.
The system of field equations of macroscopic gravity includes the macroscopic (averaged)

Einstein equations. There is a system of equations for the macroscopic gravitational
metric and connection correlation tensors.

〈gβε〉Mγβ −
1
2δ

ε
γ〈gµν〉Mµν = 8πG〈T εγ〉 − (Zε

µνγ −
1
2δ

ε
γQµν)〈gµν〉, (3.85)

where 〈T εγ〉 is the averaged energy-momentum tensor. We assume that it can be written
as

〈T µν 〉 = (ρ+ p)uµuν + p〈gµν 〉+ Σµ
ν , (3.86)

where ρ, p and Σµ
ν are the energy density, isotropic pressure and anisotropic stress of the

fluid, respectively. The 4-vector uµ exists in the manifold with averaged geometry 〈gµν〉,
and is the velocity 4-vector of the fluid.
The averaged Einstein equations of macroscopic gravity agrees with the Einstein

equations of general relativity for the macroscopic metric tensor 〈gµν 〉 with a smoothed
energy-momentum tensor only if all macroscopic gravitational metric and connection
correlations vanish [134].

3.7.5. Macroscopic FL solutions
The solutions to the modified Einstein equations (3.85) have been studied by Coley,
Pelavas and Zalaletdinov [137] and in a fully detailed discussion by Van den Hoogen
[138], (see also [139] for the solutions at the perturbative level).
The macroscopic line element is assumed to be

ds̄2 = 〈gµν〉dxµdxν = −dt2 + a2(t)[dx2 + dy2 + dz2]. (3.87)

They further assumed isotropy and homogeneity for the structure of the connection
correlation tensor Zα µ

βγ νσ.
The macroscopic field equations (3.85) thus give

ȧ2

a2 = 8πG
3 ρ− K

2

a2 , (3.88)

ä

a
= −4πG

3 (ρ+ 3p), (3.89)

where overdots denote differentiation with respect to t, and ρ is the macroscopic energy
density that obeys

ρ̇+ 3 ȧ
a

(ρ+ p) = 0, (3.90)
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and K comes from the correction part of the field equations and it is different from k in
the standard model. The non-trivial components of the connection correlation and affine
deformation tensors are

Zj k
jj jk = Zj k

kj kk = Zj j
jj kk = Zk k

jj kk = − 2
10K

2, (3.91)

Zi k
jj ik = Zj i

ij kk = Zi i
jj kk = Zj k

ij ik = − 1
10K

2, (3.92)

where [ijk] can be ordered in of the triples of [1, 2, 3], [2, 3, 1], [3, 1, 2] and

A0
ii = Ka(t); Aii0 = A0

00 = K
a(t) , (3.93)

where i takes 1,2,3 values [139].
The macroscopic geometry therefore evolves like the FL solution of Einstein equation

with an extra spatial curvature term in the macroscopic equivalent of the Friedmann
equation, even though the macroscopic geometry is spatially flat.
Thus, the averaged Einstein field equations for a spatially flat, homogeneous, and

isotropic macroscopic space-time geometry take the form of the Friedmann equations of
general relativity for a non-flat FL geometry.
In any case, Zalaletdinov’s approach leads to a complex set of equations that despite

some valiant attempts have not been productive in terms of the cosmological backreaction
problem yet.

3.7.6. Observational constraints
The observational consequences of the solution, explained above, have been recently
investigated by Clarkson et al [140]. The spatial curvature of the macroscopic space-time
is decoupled from the spatial curvature that appears in the macroscopic Friedmann
equations. This is an important difference from the standard approach to cosmology,
where it is assumed that Einstein field equations hold whatever the smoothing scale is,
and that the spatial curvature in the Friedmann equation is therefore identical to the
spatial curvature of the macroscopic space-time.
Writing the line element of the macroscopic geometry as

ds2 = 〈gµν〉dxµdxν = −dt2 + a2(t)[ dr2

1− kgr2 + r2dΩ], (3.94)

where the geometrical curvature, kg, is in general, a function of the scale of Σ. The scale
factor a(t) is that of the macroscopic space-time. On scales larger than Σ the macroscopic
field equations then become

H2 = ȧ2

a2 = 8πG
3 ρ− kd

a2 + Λ
3 , (3.95)
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where the dynamical curvature, kd is again a function of scale, and includes both spatial
curvature in the metric, kg, and the correlation tensor, Zα µ

β[γ νσ]. We recover the case of
usual result kg = kd, if and only if the contribution from Zα µ

β[γ νσ] vanishes.
More generally, in a space-time that is inhomogeneous on small scales, we do not expect

these two spatial curvature terms to be equal. Defining Ωkg = − kg
a2

0H
2
0
and Ωkd = − kd

a2
0H

2
0
,

the macroscopic Friedmann equation becomes Ωm + Ωkd + ΩΛ = 1 where Ωm and ΩΛ are
the usual expressions for the fraction of the energy content of the Universe in matter
and the cosmological constant, respectively.
Using the solutions to the macroscopic Friedmann equation (3.95) together with

integrating a null trajectory in (3.94), one can derive the luminosity distance distance-
redshift relation in the macroscopic geometry

dL(z) = (1 + z)
H0
√
|Ωkg |

fkg

( ∫ 1

1
1+z

√
|Ωkg |da√

Ωkda
2 + ΩΛa4 + Ωma

)
, (3.96)

where fkg(x) = sinh(x), x or sin(x) for the case of kg > 0, kg = 0 and kg < 0, respectively.

Figure 3.5. Constraints on the two curvature parameters, Ωkg and Ωkd from CMB+H0
for h = 0.9, 0.7 and 0.5 at 68% and 95% confidence level for the shaded areas. The
constraints are weakened compared to the case of the standard model where Ωkd and Ωkd

are considered to be identical. Figure credit: Clarkson et al. [140].

Allowing the effects of Ωkg and Ωkd to be independent has considerable consequences
for the measurement of cosmological parameters. As we see in Fig. 3.5, if we consider
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CMB+H0 constraints on spatial curvature in the standard model, we find that due
to a degeneracy between the effects of Ωkg and Ωkd in equation (3.96) the significant
constraints on spatial curvature that are obtained in the standard model, are gone. The
combined constraints on Ωkg and Ωkd using data from the HST [141], the WMAP 7 year
data of the temperature-temperature correlations in the CMB [1], the Union 2 [142] and
SDSS SNIa data sets [143], and the constraints on the ‘volume distance’ from the BAOs
[144] are shown in Fig. 3.6.

Figure 3.6. The left-hand plot shows the constraints on Ωkg and Ωkd from the CMB
(gray), SNIa-Union2 (blue), and SNIa-SDSS (hollow and dashed), as well as the combined
constraints including HST (orange). The one on the right-hand shows the combined
constraints from these different data set including the BAO. The geometrical curvature
is noticeably constrained rather than the dynamical one. The constraints from the CMB
and SNIa individually are weak, but get more tight when combined with HST data.
Figure credit: Clarkson et al. [140].
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4. Effects of Inhomogeneity on the
Propagation of Light

The aim of this chapter is to investigate the effects of averaging on light propagation in
the Universe, or how to derive the equation of motion of light in an averaged description
of the Universe from the null geodesic equation in the inhomogeneous Universe. Therefore
we ask if some effects can be seen in observations in the lumpy Universe. For example
how do averaged inhomogeneities affect the redshift of photons.
In the standard cosmology the background geometry is used for observing the large

scale of Universe. Speaking of background means the homogeneous isotropic flat FL
Universe with neglecting the details of small scales and local inhomogeneities.
Observational cosmology is based on light trajectories and the paths of light are on

null geodesics. Inhomogeneity affects the light trajectories. Therefore we should see these
effects on observations in the lumpy Universe.
Some aspects of this are very well understood and studied in great depth, e.g. CMB

photons are related to density fluctuations by the Sachs-Wolfe effect. The integrated
Sachs-Wolfe effect [26] is caused by gravitational redshift. The gravitational lensing [39]
plays an important role in interpreting the effects of light propagation.

The motion of photons in an averaged geometry has already been studied in [145] and
in a more precise way in [103, 146]. Yet in a different approach using a gauge-invariant
formalism, the averaged geometry on the past null cone has been introduced [92, 147].
This allows to average the luminosity-redshift relation [149, 151, 152]. The study of light
propagation in inhomogeneous Swiss-Cheese models by simulating Hubble diagrams has
been probed recently in [153, 154, 155].

In this chapter, we shortly introduce the three works mentioned above, respectively in
sections 4.1, 4.2 and 4.3.
In later sections, we follow a new approach and present our own work, which is the

most general approach to trace the trajectories of light in the averaged Universe and
includes some of the results of the mentioned works above.

In section 4.4 we outline the topic of the geodesic equation of motion in the averaged
Universe and its differences to the background case. We do not limit the calculations
to the spatial averaging model. In fact, it is essential for our work that a covariant
procedure to average a space-time metric exists and thus the obtained results can be used
for a general averaged model of the Universe. We make the plausible assumption that
an averaging procedure that respects the causal structure of space-time exists. Though
we are not able to explicitly construct it, it is obvious that the FL model is a good
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description of the observed Universe at large scales. If this is the result of an average
process, causality seems to be respected. Based on this and a second (more technical)
assumption specified in that section, we derive an effective equation for light propagation
in an averaged Universe.
We continue in section 4.5 to evaluate that equation for a Universe that can be

described by a flat FL model after averaging. Finally, the last two sections 4.6 and 4.7
contain an estimation for the obtained effective Hubble expansion rate and a comparison
to previous works.

4.1. Light propagation in an irrotational dust Universe
In studies of backreaction, the average expansion rate and other spatial averages have
often been considered without relating them to observable quantities such as redshift
and distance. Quantitative studies of light propagation were consistent with the idea
that in statistically homogeneous and isotropic models, in which the average expansion
rate is close to the FL case, deviations in the redshift and distance are negligible and
results for light propagation are close to the FL case.
In contrast to these studies, Räsänen has assumed that the average expansion rate

is not the same as in the exactly homogeneous and isotropic FL model of the Universe
[103].

Here we explain the achievements of his work, where light propagates in an irrotational
dust Universe, which is statistically homogeneous and isotropic (see [146] for the full
discussion). We will see that redshift and distance are determined by an averaged
expansion rate and the null geodesic shear.

4.1.1. The redshift
Let us consider the tangent vector uµ for the general space-time geometry, determined by
the Einstein equations. The light propagation in such a space-time traced by photon null
geodesics with tangent vector kµ. On the other hand, the redshift z of a source is defined
by (1.20). The wavelength is proportional to the inverse of the frequency ω, so that

1 + z = ωs
ωo
, (4.1)

where ωs and ωo denote the frequency of the source and the observer, respectively.
The energy is related to the observer’s velocity and can be defined as ω = −uµkµ. We

can further decompose the tangent vector kµ into its amplitude and the direction eµ

which is a unit vector, i.e. eµeµ = 1 and it is orthogonal to the tangent vector uµ such
that uµeµ = 0, thus

kµ = ω(uµ + eµ). (4.2)
The vector eµ is spatial, i.e. hµνeν = eµ.
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4.1. Light propagation in an irrotational dust Universe

Note that hµν ≡ gµν + uµuν and thus hµνuν = 0. The covariant derivative of uµ in an
dust Universe can be written as [156, 87]

∇νuµ = θµν + wµν = 1
3hµνθ + σµν + wµν , (4.3)

where θµν is the symmetric part of the expansion tensor and wµν is the vorticity tensor.
Note that wµν = 0 for irrotational dust.
Now by means of equations (4.2) and (4.3) and taking into account kµ∇µk

ν = 0, we
can take the derivative of ω with respect to an affine parameter λ, to see how it evolves
along the null geodesic

∂λω ≡ kµ∇µω = −kµkν∇µuν

= −kµkνθνµ
= −ω2eµeνθµν

= −ω2
(1

3θ + σµνe
µeν

)
.

(4.4)

Integrating the above equation gives us ω ∝ exp
( ∫

dλ ω θµνe
µeν

)
. We then get the

following expression for the redshift, by using equation (4.1)

1 + z = exp
( ∫ λo

λs
dλ ω[13θ + σµνe

µeν ]
)
, (4.5)

where the integral is from the source to the observer along the geodesic. Since in the FL
model, the result does not depend on the direction of the null geodesic, the shear also
vanishes there, and the only remaining contribution must come from the expansion rate
of the first term in the right hand side of equation (4.5).

If we assume statistically homogeneous and isotropic Universe, and split the expansion
rate θ(t, x) into the average value on the hypersurface of constant time at each point
along the geodesic, so that θ(t, x) ≡ ∆θ + 〈θ〉(t). The redshift expression thus can be
written as

1 + z ≈ exp
( ∫ t0

t,λ
dt[13〈θ〉(t) + 1

3∆θ(t, x)]
)
. (4.6)

Equation (4.6) corresponds to the first and higher orders of approximations for 1/a(t).
However, in the FL case, the contribution ∆θ has been neglected, since we do not

relate the redshift to any specific geodesic in homogeneous and isotropic model of the
Universe. Thus the redshift to first approximation there, is given by

1 + z ≈ 1 + 〈z〉 ≈ 1
a(t) . (4.7)
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4.1.2. The angular diameter distance
Generally, the redshift should be related to other observable quantities such as luminosity
distance, angular diameter distance, or the age of the Universe. Here we discuss the
change in angular diameter distance. Following the same construction as (4.3), we can
decompose the covariant derivative of kµ as

∇νkµ = θ̃µν = 1
2 h̃µν θ̃ + σ̃µν , (4.8)

where θ̃ = ∇µk
µ = h̃µν∇µk

ν is the expansion rate and σ̃µν = h̃ γ
µ h̃

δ
ν∇γkδ − 1

2 h̃µν θ̃ is the
shear. The vorticity of a light bundle vanishes, because unlike uµ, kµ is a gradient of a
scalar.
By use of equation (4.8), the Einstein equation Rµν − 1

2gµνR = 8πGTµν = 8πGρuµuν
and the null condition kµ∇µk

ν , we take the derivative of θ̃ with respect to λ

∂λθ̃ ≡ kµ∇µ∇νk
ν = kµR νγ

µν kγ + kµ∇ν∇µk
ν

= −Rµνk
µkν −∇νk

µ∇µk
ν

= −8πGρω2 − 2σ̃2 − 1
2 θ̃

2

= −2µ2 − 1
2 θ̃

2,

(4.9)

where σ̃2 = 1
2 σ̃µν σ̃

µν and µ2 = 4πGρω2 + σ̃2. This will be used later on to determine the
evolution of the angular diameter distance along the null geodesic.
On the other hand, according to [157] the angular diameter distance is proportional

to the linear size of the null geodesics, DA ∝ s, and the expansion rate is expressed as
θ̃ = 2∂λs/s. Thus

DA ∝ exp
(1

2

∫
dλθ̃

)
. (4.10)

Using equation (4.9) together with (4.10), we obtain the relation below for the angular
diameter distance

∂2
λDA = −(4πGρω2 + σ̃2)DA = −µ2DA. (4.11)

Due to the assumption of spatial symmetry, the distance does not depend on the spatial
position, so that ∂λDA = ω∂tDA = −ω(1 + z)H(z)∂zDA, where H(z) is the Hubble
expansion rate.
Considering ω ∝ 1 + z and ρ ∝ a−3 ∝ (1 + z)3, equation (4.10) can be written as

H∂z
[
(1 + z)2H∂zDA

]
= −4πGρDA = −4πGρ0(1 + z)3DA, (4.12)

where energy density ρ should be replaced by 〈ρ〉 in the averaged case.
As a result of equation (4.12), we see that the distance is determined by the Hubble

expansion rate H(z). Therefore the equation for the average angular diameter distance

84



4.2. The light cone averaging procedure

in terms of H(z) in a statistically homogeneous and isotropic dust Universe is the same
as in the FL model, only if we did not have any changes in the average Hubble expansion
rate (and also in the average energy density). However, backreaction is not expected to
produce an expansion rate identical to the FL model.

In Räsänen’s work, both equations (4.6) and (4.12) rely on Buchert’s scalar averaging,
and cannot be generalized to the real Universe with tensorial geometries. We will derive
a more general result for propagation of light in an averaged Universe in section 4.4.

4.2. The light cone averaging procedure
A covariant prescription for scalar averaging on null hypersurfaces has been proposed by
Veneziano and collaborations [92, 147, 149]. This can be applied to the past light cone
of an observer in the context of an inhomogeneous metric. In order to do so, a geodesic
light cone frame has been introduced, where the averaging prescription can be simplified.

This prescription has been called as “the light cone averaging procedure”. Two possible
applications to this procedure are the averaging of the redshift parameter and the
luminosity-redshift relation. Here we briefly review this procedure (see [151, 152] for
further discussions).
Let us consider a four dimensional integral of a scalar, F (x), as

I(F,Ω) =
∫

Ω
d4x

√
−g(x)F (x) ≡

∫
M4

d4x
√
−g(x)F (x)WΩ(x), (4.13)

where the integration region Ω, is defined in terms of a suitable scalar window function,
WΩ.

Now let us recall the three-dimensional spacelike hypersurface Σ(A) and assume the
hypersurface is defined via a scalar field, A(x), with timelike gradient, ∂µA(x). The
window function, W, selects a region with temporal boundaries determined by the
hypersurfaces Σ(A). Also, the spatial boundary determined by the coordinate condition
B < r0, where B is a scalar function of the coordinates with spacelike gradient ∂µB,
satisfying ∂µB∂µB = 0, and r0 is a positive constant. Thus the window function can be
written as [150]

WΩ(x) = nµ∇µΘ(A(x)− A0)Θ(r0 −B(x)), (4.14)
where Θ is the Heaviside step function, and the unit normal nµ is

nµ = − ∂µA√
−∂νA∂νA

; nµn
µ = −1. (4.15)

Using the window function in equation (4.14), the gauge-invariant definition of the
integral of a scalar function F (x) in (4.13) becomes

I(F ;A0) =
∫
d4x

√
−g(x)δ(A(x)− A0)

√
−∂µA∂µA Θ(r0 −B(x)) F (x). (4.16)
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Another hypersurface integral, which indicates the volume integral is

I(1;A0) =
∫
d4√−gΘ(r0 −B)δ(A− A0)

√
−∂µA∂µA, (4.17)

where the integration region describes the causally connected section of Σ by varying the
light cone hypersurface.

Therefore, the averaging prescription for a scalar F (x) on the hypersurfaces of constant
A, following [147], is defined as

〈F 〉A0 = I(F ;A0)
I(1;A0) . (4.18)

4.2.1. Geodesic light cone coordinate
The integral equations and their averages can take a simpler form in a so-called geodesic
light cone (GLC) coordinates, where the averaging prescription greatly simplifies, while
keeping all the required degrees of freedom. This is in analogy with choosing the
synchronous gauge coordinates for spatial averaging, such that the timelike coordinate of
the GLC gauge can be identified with the cosmic time t of the synchronous gauge. The
coordinates, xµ = (τ,w, θα), specifies the metric of GLC coordinates as

ds2 = Υ2dw2 − 2Υdwdτ + γαβ(dθα − Uαdw)(dθβ − Uβdw), (4.19)

where Υ is an arbitrary function, Uα is a two dimensional vector and γαβ is a symmetric
tensor of which α, β = 1, 2. One can choose w as a null coordinate, i.e. ∂µw∂µw = 0, and
∂µτ as a geodesic flow, so that (∂ντ)∇ν(∂µτ) ≡ 0.

In a more familiar way, these parameters can be easily written in a limiting case of the
spatially flat Robertson-Walker metric be setting

w ≡ r + η; τ ≡ t;
Υ ≡ a(t); Uα ≡ 0;

γαβdθ
αdθβ ≡ a2(t)r2(dθ2 + sin2 θdφ2),

(4.20)

where η is the conformal time of the homogeneous metric (dη = dt/a(t)).
Finally, from equation (4.18), the average of a scalar quantity F (τ,w, θα) over the

compact surface Σ, defined by the intersection of our past light-cone w = w0 with the
spacelike hypersurface τ = τs is given by [147, 148]

〈F 〉w0,τs =
∫
Σ d

4x
√
−gδ(w − w0)δ(τ − τs)F (τ,w, θα)|∂µτ∂µw|∫

Σ d
4x
√
−gδ(w − w0)δ(τ − τs)|∂µτ∂µw|

=
∫
d2θ

√
γ(w0, τs, θα)F (w0, τs, θ

α)∫
d2θ

√
γ(w0, τs, θα)

,

(4.21)

where γ = det γαβ.
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4.2.2. Luminosity-redshift relation
The next step is to apply the light cone averaging formalism to some physical applications
such as the luminosity-distance relation.
In GLC, the null geodesics connecting sources and observer are characterized by the

tangent vector, kµ = gµν∂νw = −δµτ Υ−1, where the photons reach the observer travelling
at constant w and θα. Consider a light ray emitted at the intersection between the past
light-cone of the observer, w = w0 and the spatial hypersurface τ = τs, and received to
the observer at τ = τ0 > τs. The redshift parameter zs in GLC coordinates becomes

1 + zs = (kµuµ)s
(kµuµ)o

= Υ0

Υs

, (4.22)

where Υ0 = Υ(w0, τ0, θ
α) and Υs = Υ(ω0, τs, θ

α).
For light-cone averages on surfaces of redshift z = zs, equation (4.21) becomes

〈F 〉w0,zs =
∫
d2θ

√
γ(w0, τ(zs,w0, θα), θβ)F (w0, τ(zs,w0, θ

α), θβ)

d2θ
√
γ(w0, τ(zs,w0, θα), θβ)

. (4.23)

The luminosity-redshift relation has been studied within a gauge-invariant approach for
linearly perturbed FL model of the Universe in [158].

The luminosity distance dL of a source at redshift z is related to the angular distance
dA of the source, as dL = (1 + z)2dA.
One can obtain the average value of the luminosity distance, dL, on the two-sphere

embedded in the light cone, by inserting this result into equation (4.23) (see [147, 148]
for the full discussion). The expression for 〈dL〉 as a function of zs, in the GLC gauge is

〈dL〉w0,z = (1 + zs)2
∫
d2θ

√
|γ(w0, τ(zs,w0, θα), θβ)| dA(w0, τ(zs,w0, θ

α), θβ)∫
d2θ

√
|γ(w0, τ(zs,w0, θα), θβ)|

. (4.24)

The latter equation shows the effects of inhomogeneities on observables related to light
cones, with the use of light like hypersurfaces and two-surfaces embedded on a past light
cone.
The second order expression for 〈dL〉 has been studied in [152].

4.3. Propagation of light in Swiss-Cheese models
One of the relativistic toy models for the inhomogeneous Universe is known as Swiss-
Cheese model [96, 97, 98]. This scenario is constructed by removing spherical regions
from a homogeneous FL background (the cheese) and replacing them with inhomogeneous
density distributions with the same gravitating mass (mass-compensated voids).
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One of the solution in Swiss-Cheese models for the Einstein equations is the Szekeres
model [159, 160]. Results of the impact of inhomogeneities on the expansion rate (which
is a good description of light propagation) for the exact dust solutions in the Szekeres
model can be found in [161] where the authors claim the results remain close to the
background case.

Another solution in the context of Swiss-Cheese models is the Lemaitre-Tolmann-Bondi
(LTB) solution, which is a general spherically symmetric solution to Einstein equations
for dust. The later model is a useful toy for studying backreaction effects, because the
symmetry allows quantitative studies without the use of approximations. Moreover,
it is a suitable choice to model the observed voids in the Universe. Therefore, it is
perhaps the most studied model in this context. In the earliest work [162] the author
used the LTB model to obtain a reasonable fit to supernovae luminosity densities and
showed that the acceleration implied by the supernovae data can be explained by a
large scale inhomogeneity without the need for a cosmological constant. A later study
[163] showed that backreaction slows down the expansion if measured in terms of the
proper time, but speeds it up if measured in terms of the energy density or the scale
factor. However, although there are many other studies about the averaged luminosity
and angular diameter distances (see for example [164, 165, 166, 167]) in this model, it
remains a toy model which is not suitable to describe the real Universe.

The propagation of light in a Swiss-Cheese model was first studied by Kontowski [168]
and in a wider investigation by Dyer and Roeder [169]. It was shown in both works that
in a clumpy Universe, a lower deceleration parameter appears on the Hubble diagram,
and the luminosity-redshift relation will be different with respect to the one from the
purely homogeneous Universe1.
Moreover, the inhomogeneities in Swiss-Cheese models are used to address to the

so-called Ricci-Weyl focussing problem. The FL model of the Universe contains a non-
zero Ricci tensor, but a vanishing Weyl tensor, while the real Universe must contain a
non-vanishing Weyl tensor as well. Since the Ricci tensor vanishes inside the holes, we
consider the Swiss-Cheese models with zero Ricci tensor and non-zero Weyl tensor.

The approach presented by Fleury and his collaborators [153, 154] is justified for this
class of Swiss-Cheese models (i.e. it is in the line with [168] and [169]), yet keeps a
well-defined FL averaged behavior, so that one starts from a spatially homogeneous
and isotropic FL geometry, then considers individual masses embedded in a spatially
homogeneous fluid. Each of these masses are lying at the center of a spherical voids where
a light beam can travel through them (see Fig. 4.1). This keeps the same dynamics and
average properties for the model as the FL model. However, conversely to the FL model
where a beam of light experiences the Riemannian curvature via contribution from the
Ricci tensor, here the Weyl tensor dominates.

1This differs from the case for the sub-model of Swiss-Cheese with LTB solution inside the holes
where the luminosity-redshift relation remains unchanged with respect to the homogeneous Universe
[170, 171].
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Figure 4.1. A light beam travels through a Swiss-Cheese Universe from a source to an
observer. The dynamics of the model is identical to the FL model, yet with a zero Ricci
tensor and non-vanishing Weyl tensor converse to the FL case. Figure credit: Fleury et
al. [153].

The geometry outside the holes is described by the standard FL geometry and RW met-
ric. Inside the holes however, the geometry is described by an extension of Schwarzschild
metric with a cosmological constant, known as the Kottler solution [172] (see also [173]
for a review).
Indeed, a light beam is described by a bundle of null geodesics encoded in a 2 × 2

matrix DAB called the Jacobi map [153]. Thus the angular and luminosity distances read

DA =
√
|detDAB|; DL = (1 + z)2DA. (4.25)

The evolution of the Jacobi map with light propagation is governed by the Sachs equation
[174], where an observer with four velocity uµ has been considered and the wave vector
kµ satisfies the geodesic equation. The Sachs basis (sµA)A=1,2 has been then introduced
as an orthogonal basis of a plane orthogonal to uµ and kµ,

sµAuµ = sµAkµ = 0, (4.26)

such that it spans a screen on which the observer projects the beam of light. The Sachs
equation thus read

d2

dv2D
A
B = RA

CDCB, (4.27)
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where v denotes an affine parameter along the geodesics, and RAB = Rµναβk
νkαsµAs

β
B is

the projection of the Riemann tensor. As the same way that the Riemann tensor can be
decomposed into a Ricci part Rµν and a Weyl part Cµναβ, we can also split RAB into
Ricci and Weyl focussing parts as

(RAB) =
(

Φ00 0
0 Φ00

)
+
(
−ReΨ0 ImΨ0
Imψ0 ReΨ0

)
, (4.28)

with

Φ00 ≡ −
1
2Rµνk

µkν ; Ψ0 ≡ −
1
2Cµναβ(sµ1 − isµ2)kνkα(sβ1 − isβ2 ). (4.29)

From equations (4.27) and (4.28) one can claim that the Ricci term tends to isotropically
focus the light beam, while the Weyl term tends to shear and/or rotate the beam2.

Compared to the FL model, propagation of light through such a Swiss-Cheese model
goes along with a reduced Ricci focussing and thus an increased luminosity distance for
high redshifts (see equations (4.25-4.28)). These changes due to the inhomogeneities will
affect the Hubble diagram in a way that the determination of cosmological parameters is
biased. Consider the given Swiss-Cheese Universe where its FL regions are characterized
by the background cosmological parameters (Ωm,Ωk,ΩΛ). If an observer sits in the
homogeneous part and observes a supernovae in this inhomogeneous Universe and fits the
FL luminosity-redshift relation, he will obtain a set of apparent cosmological parameters
(Ω̄m, Ω̄k, Ω̄Λ), which differ from the background values. An example of a mock Hubble
diagram corresponding to the given Swiss-Cheese model with (Ωm,Ωk,ΩΛ) = (1, 0, 0) is
plotted in Fig. 4.2, where it has been compared to a homogeneous universe with the
same parameters and with (Ωm,Ωk,ΩΛ) = (0.3, 0, 0.7).

The results of the current model has been furthermore compared to the Dyer-Roeder
approximation in [155], which shows both procedures are in a good agreement for
predicting the distance-redshift relation.

2The problem of how Weyl focussing associated with point-like matter sources is converted into Ricci
focussing of smooth matter sources, has been discussed in a great detail in [175].
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Figure 4.2. Hubble diagram of a Swiss-Cheese Universe (plotted with dots), in comparison
with the displayed DL(z) for homogeneous Universes of EdS and ΛCDM background.
The EdS case with parameters (1, 0, 0) is plotted as a blue solid line and the ΛCDM
model with (0.3, 0, 0.7) is the black dashed line. Figure credit: Fleury et al. [153].

4.4. Propagation of light in an averaged space-time
The work presented below contains the main result of my thesis. The essence of it has
been published in [8].

The crucial issue is how we justify the smaller scales to the background geometry and
transform from a lumpy Universe to the smoothed one.
A problematic aspect of spatial averaging is that we do not observe spatial volumes,

but rather null volumes and that Buchert’s, Skarke’s and Zalaletdinov’s approaches
neglect possible effects on the propagation of photons. Also, the work of Räsänen and
Veneziano is restricted to the perturbation level and the work of Fleury is based on a toy
model.
The key point here will be to use an averaged metric that describes the smoothed

manifold. This allows us to consider the paths of light propagation in the averaged space-
time. But the metric tensor cannot be averaged easily, and many current approaches of
averaging cannot be used to construct such an averaged metric [8]. The exception is the
averaging procedure defined by Zalaletdinov and we view it as a proof of existence of
such an average. Thus we are going to assume that the average of a metric is a metric.
Zalaletdinov showed that an average procedure with that property exists, but it is not
unique.

According to Zalaletdinov, a line element for the macroscopic space-time is defined as

ds2 = ḡµνdx
µdxν , (4.30)
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4. Effects of Inhomogeneity on the Propagation of Light

where ḡµν is the macroscopic metric tensor, which is used to calculate the macroscopic
Christoffel symbols. The so defined macroscopic Christoffel symbols guarantee that the
macroscopic space-time is a Riemannian manifold itself and that there are no metric
correlations [136]. Thus the averaged metric tensor 〈gµν〉 and the averaged inverse metric
tensor 〈gµν〉 can be identified as

〈gµν〉 = ḡµν , 〈gµν〉 = ḡµν . (4.31)

As a second critical assumption, we are proposing that the averaged space-time agrees
perfectly with the causal structure of the microscopic space-time. We think that this is a
plausible assumption. At least this assumption is implicitly made in modern cosmology
when it is assumed that the light-rays in the Universe that is assumed to be isotropic
and homogeneous on large scales are null in a FL model. The example of the bilocal
extension, based on the tetrad fields (3.62) has this property. Unfortunately, it is not
useful for our purpose as it gives 〈gµν〉 = gµν . Nevertheless, this proves that at least one
bilocal extension that satisfies both required properties exists.
Let kµ denote a null vector field. Its geodesic equation reads

kµ;νk
ν = 0, (4.32)

whereby the covariant derivative can be split into the normal derivative and the Christoffel
symbols Γµνρ as

kµ,νk
ν + Γµνρkνkρ = 0. (4.33)

The Christoffel symbol can be calculated from the metric,

Γµνρ = 1
2g

µσ(gσρ,ν + gσν,ρ − gνρ,σ). (4.34)

We cancel out the inverse metric in (4.33) by a multiplication with gλµ, to avoid non-
linearities in the metric,

gλµ

(
kµ,νk

ν + 1
2g

µσgσρ,νk
νkρ + 1

2g
µσgσν,ρk

νkρ − 1
2g

µσgνρ,σk
νkρ

)
= 0. (4.35)

Simplifying the latter equation we get

gµλk
µ
,νk

ν +
(
gνλ,µ −

1
2gνµ,λ

)
kµkν = 0. (4.36)

Now we use the null condition gµνkµkν = 0. Its derivative is also equal to zero. This can
be expressed as (

kµgµνk
ν
)
,λ

= kµ,λgµνk
ν + kµgµν,λk

ν + kµgµνk
ν
,λ = 0. (4.37)

Using this expression in the last term of equation (4.36) gives us

gµλk
µ
,νk

ν + gνλ,µk
µkν − 1

2
[ (
kµgµνk

ν
)
,λ︸ ︷︷ ︸

= 0

−gµνkµ,λkν − gµνkµkν,λ
]

= 0. (4.38)
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4.4. Propagation of light in an averaged space-time

From equation (4.38), we thus arrive at a more convenient form of the geodesic equation
for null vector fields as

(kµ,νgµλ + kµ,λgµν + kµgµλ,ν)kν = 0. (4.39)

The big advantage for our purpose is that this form is linear in the metric.
As a next step, we average this equation in the following sense: We consider a particular

light-ray, so kµ is not subject to the averaging, but the metric and its derivative are.
In contrast to other approaches, this is not necessarily an average over a space-time

region, it could also be an average over many realizations of space-times between a source
and an observer, i.e. the bilocal extension operator could be viewed as connecting a given
space-time to all its possible deformations and in this sense we can arrive at an average
metric.

Thus we assume that averaging and contractions with kµ commute. This assumption
might not hold for all possible averaging schemes, but we think that this is a sensible
assumption to make. Finally, we also assume that derivatives of the wave vector are not
subject to averages. The reason is again that we take the point of view that we only
average over the metric of space-time, but consider the same light-ray in the averaged
and microscopic space-time. Thus the coordinate derivatives of the wave vector should
not be affected by this averaging procedure. In other words, the same coordinate values
correspond to the same physical event in the averaged and microscopic space-times.
Distances, angles and time intervals between physical events are different however.
A consequence of the two assumptions mentioned above is that we preserve the null

condition,
〈kµgµνkν〉 = kµ〈gµν〉kν = 0. (4.40)

Note that in general the derivative of an averaged metric is different from the average
of the derivative of the metric, i.e. 〈gµλ,ν〉 6= 〈gµλ〉,ν . As this should be the leading
correction, affecting the geodesic equation, we write

kµ,ν〈gµλ〉kν + kµ,λ〈gµν〉kν + kµ〈gµλ〉,νkν + kµ〈gµλ,ν〉kν − kµ〈gµλ〉,νkν = 0. (4.41)

Therefore we arrive at an averaged version of equation (4.39),(
kµ,ν〈gµλ〉+ kµ,λ〈gµν〉+ kµ〈gµλ〉,ν

)
kν = kµTµλνk

ν ≡ Iλ, (4.42)

where Tµλν is equal to
Tµλν = 〈gµλ〉,ν − 〈gµλ,ν〉, (4.43)

and we have called the whole expression kµTµλνkν as a new variable, Iλ. The left hand
side of (4.42) represents the equation of a null geodesic of an averaged metric and the
right hand side represents the modification due to averaging. From the right side however,
we face two important properties for Tµλν and Iλ, which we shall explain and prove in
the following:
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4. Effects of Inhomogeneity on the Propagation of Light

(I) Firstly, it turns out that the object T sym
µλν = (Tµλν + Tνλµ)/2 is a tensor. This is a

non-trivial and non-obvious statement.
Proof of the tensor property follows from a brute force argument, based on the well
know transformation properties of vectors and tensors (the averaged metric has
been assumed to be a tensor itself),

k′µ(x′) = ∂x′µ

∂xα
kα(x), (4.44)

and
〈g′µν〉(x′) = ∂xα

∂x′µ
∂xβ

∂x′ν
〈gαβ〉(x), (4.45)

and transformation properties of their derivatives
∂k′µ

∂x′ν
= ∂xβ

∂x′ν
∂x′µ

∂xα
∂kα

∂xβ
+ ∂xβ

∂x′ν
∂2x′µ

∂xα∂xβ
kα, (4.46)

and
∂〈g′µν〉
∂x′λ

= ∂xσ

∂x′λ
∂2xα

∂xσ∂x′µ
∂xβ

∂x′ν
〈gαβ〉

+ ∂xσ

∂x′λ
∂xα

∂x′µ
∂2xβ

∂xσ∂x′ν
〈gαβ〉

+ ∂xσ

∂x′λ
∂xα

∂x′µ
∂xβ

∂x′ν
∂〈gαβ〉
∂xσ

.

(4.47)

We then check explicitly that the left hand side of (4.42) is a vector. We start from(
∂k′µ

∂x′ν
〈g′µλ〉+ ∂k′µ

∂x′λ
〈g′µν〉+ k′µ

∂〈g′µλ〉
∂x′ν

)
=

∂xβ

∂x′ν
∂x′µ

∂xα
∂kα

∂xβ
∂xε

∂x′µ
∂xη

∂x′λ
〈gεη〉

+ ∂xβ

∂x′ν
∂2x′µ

∂xα∂xβ
kα

∂xε

∂x′µ
∂xη

∂x′λ
〈gεη〉

+ ∂xβ

∂x′λ
∂x′µ

∂xα
∂kα

∂xβ
∂xε

∂x′µ
∂xξ

∂x′ν
〈gεξ〉

+ ∂xβ

∂x′λ
∂2x′µ

∂xα∂xβ
kα

∂xε

∂x′µ
∂xξ

∂x′ν
〈gεξ〉

+∂x
′µ

∂xα
kα
∂xσ

∂x′ν
∂2xκ

∂xσ∂x′µ
∂x%

∂x′λ
〈gκ%〉

+∂x
′µ

∂xα
kα
∂xσ

∂x′ν
∂xκ

∂x′µ
∂2x%

∂xσ∂x′λ
〈gκ%〉

+∂x
′µ

∂xα
kα
∂xσ

∂x′ν
∂xκ

∂x′µ
∂x%

∂x′λ
∂〈gκ%〉
∂xσ

. (4.48)
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In the following, besides the null condition, one has to use the relation

∂2x′µ

∂xγ∂xα
∂xβ

∂x′µ
= −∂x

′µ

∂xα
∂2xβ

∂xγ∂x′µ
, (4.49)

obtained from ∂δµν /∂x
γ = 0.

Thus the second and fourth terms cancel out the fifth and sixth terms in the right
hand side of equation (4.48), and the remaining terms are

∂kα

∂x′ν
∂x′µ

∂xα
∂xε

∂x′µ
∂xη

∂x′λ
〈gεη〉

+ ∂kα

∂x′λ
∂x′µ

∂xα
∂xε

∂x′µ
∂xξ

∂x′ν
〈gεξ〉

+∂x
′µ

∂xα
kα

∂xε

∂x′µ
∂xη

∂x′λ
〈gεη〉
∂xσ

∂xσ

∂x′ν
, (4.50)

which shows that it preserves the tensor property of
(
kµ,ν〈gµλ〉+ kµ,λ〈gµν〉+ kµ〈gµλ〉,ν

)
kν .

Finally we can argue that as Iλ = kµTµλνk
ν is a vector, the symmetric part,

T sym
µλν = (Tµλν + Tνλµ)/2, must also be a tensor, since kν itself is a vector.

Notice that by construction Tµλν is a symmetric object under the exchange of µ
and λ, Tµλν = Tλµν , but not necessarily a tensor. Also note that T sym

µλν 6= T sym
λµν . In

fact only T sym
µλν is of relevance to the averaged null geodesic equation.

(II) Secondly, multiplying the term Iλ with kλ would give us Iλkλ = 0.

The second property, Iλkλ = 0, follows from contracting the left hand side of
equation (4.42) with kλ

kµTµλνk
νkλ = kµ,ν〈gµλ〉kνkλ + kµ,λ〈gµν〉kνkλ + kµ〈gµλ〉,νkνkλ. (4.51)

We then use the fact that the null property of the wave vector is preserved,
(
kµ〈gµλ〉kλ

)
,ν

= 0. (4.52)

Multiplying the latter equation by kν gives us
(
kµν 〈gµλ〉kλ + kµ〈gµλ,ν〉kλ + kµ〈gµλ〉kλ,ν

)
kν = 0. (4.53)

By comparing equation (4.51) with (4.53), it is straightforward that the right hand
side of (4.51) vanishes identically and thus the second statement holds.
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4.5. Propagation of light through an averaged Universe
Let us denote the metric of a FL model by ḡµν and the four-velocity of a comoving
observer (the one that sees the light-ray under consideration) by ūµ. The observed photon
frequency is then given by

ω ≡ −ūµkµ. (4.54)
We assume that 〈gµν〉 = ḡµν , as the cosmological principle tells us that we should be able
to describe the averaged Universe by an isotropic and homogeneous model. We still do
not define how this average works in detail, but we assume that it exists and argue that
observations confirm that such an approach must be possible.
Applying the cosmological principle to the tensor T sym

µλν , we can write down the most
general algebraic structure compatible with isotropy and homogeneity. It is

T sym
µλν = f1

2 (ḡµλūν + ḡνλūµ) + f2ūµūλūν + f3ḡµν ūλ, (4.55)

as ūµ and ḡµν are the only non-trivial tensors of first and second rank that can be used
to construct a third rank tensor that is symmetric in two of its indices. f1, f2 and f3
are three functions of cosmic time t only, which cannot be fixed by pure symmetry
considerations. However, only the combination

Iλ = kµT sym
µλν k

ν = f1(−ω)ḡµλkµ + f2ω
2ūλ, (4.56)

enters the averaged light geodesic equation. We further consider the contraction

Iλk
λ = −f2ω

3, (4.57)

which must vanish as shown in the previous section and thus f2 ≡ 0.
Thus the inhomogeneity of the light propagation equation is given by

Iλ = −f1ωḡµλk
µ, (4.58)

and all effects of averaging on the light propagation must be encoded in a single function
f1(t). Without any further knowledge, this generic structure of the inhomogeneity of the
null geodesic equation allows us to make some non-trivial and generic statements about
light propagation in an averaged Universe.
The Hubble rate H = ȧ/a, where a(t) denotes the scale factor of the averaged FL

metric and the dot denotes a derivative with respect to cosmic time. For a comoving
observer with ūµ = (−1, 0) we find

k0 = ω; ki = ωei/a, (4.59)

where ei is a spatial unit vector, indicating the spatial direction the light-ray is pointing
at. So that,

eµ ≡ (0, 1
a
ei), eµ ≡ (0, aei). (4.60)
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Keeping this information, we can write the derivatives of the time component and spatial
components of the vector field k as,

k0
,0 = ω̇, k0

,i = ω,i, ki,0 = 1
a

(ω̇ei + ėiω −Hωei), ki,j = ω,j
ei

a
+ ω

a
ei,j. (4.61)

Let us first look at the time component of the averaged null geodesic equation. The left
hand side is well known from the equation of null geodesic motion in the FL model,

(−ω)(ω̇ + ei

a
ω,i +Hω) = I0 = f1ω

2. (4.62)

In order to obtain equation (4.62), we have considered all possible terms with λ = 0,

2k0
,0k

0ḡ00 + k0ḡ00,0k
0 + k0

,iḡ00k
i + ki,0ḡijk

j = I0, (4.63)

where ḡij = a2γij. Trivially the terms containing ḡi0, ḡi0,j and ḡ00,i vanish.
Moreover, we have considered the conditions

γije
iej = a2, γij ė

iej = Ha2, (4.64)

obtained from the null geodesic equation ḡµνkµkν = 0 in the FL model.
Equation (4.62) might be more familiar in terms of the affine parameter

Dω

dλ = dω
dλ = kµ

∂ ω

∂xµ
= ω(ω̇ + ei

a
ω,i), (4.65)

and thus
dω
dλ +Heff ω

2 = 0, Heff ≡ H + f1. (4.66)

For f1 = 0, this reduces to the famous result ω ∝ 1/a, the redshift of photons (note that
dt = ωdλ). Thus we conclude that any f1 6= 0 leads to a modification of the redshift
of photons, so we would expect that the actual redshift of a photon in an averaged
description of an inhomogeneous Universe must differ from the redshift that the same
photon would have in the corresponding homogeneous and isotropic Universe.
Similar to equation (4.63), we derive the non-zero spatial components of (4.42), i.e.

for λ 6= 0,

kj,0k
0ḡij + kj,kk

kḡij + k0
,ik

0ḡ00 + kj,ik
kḡjk + kjk0ḡij,0 + kjkkḡij,k = I,i, (4.67)

since we consider only the flat FL case, the last term of the equation above vanishes.
The spatial components of the modified light propagation equation becomes

aγije
jω

(
ω̇ + ek

a
ω,k +Hω

)
+ aω2γij

(
ėj + ej|ke

k
)

= I,i = −ω2aγije
jf1, (4.68)
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where | denotes a covariant derivative with respect to the 3-metric γij. By means of
(4.62), equation (4.68) can be further simplified to yield

ėj + ej|ke
k = 0, (4.69)

or in terms of the affine parameter
Dei
dλ = 0, (4.70)

i.e. light-rays propagate along straight lines. This result holds for exact FL models and
for light in the averaged Universe.
To sum up, based on the principles of statistical isotropy and homogeneity, there is

one global effect on the propagation of light, which is a modification of the redshift of a
photon, which can be described by an effective Hubble expansion rate.

4.6. Estimation for the effective Hubble rate
In order to estimate the function f1(t) we consider an irrotational model without gravita-
tional waves. Then an ansatz for the metric that allows for density perturbations and
can easily be compared with the zero shear gauge (or longitudinal Newtonian gauge) of
linear perturbation theory is

ds2 = −e2φdt2 + a2(t)e−2ψγijdxidxj. (4.71)

We split the exact metric gµν = ḡµν + δgµν , where we do not make the assumption that
δgµν is small. By construction 〈δgµν〉 = 0.
As it was mentioned earlier, the only non-zero components of the symmetric tensor

T sym
µλν are T sym

000 and T sym
ij0 . We now evaluate

T sym
000 = −〈δg00,0〉 = 2〈e2φφ̇〉. (4.72)

Note that ḡ00 = −1 and thus its derivative vanishes before and after averaging. By
comparing this result with our ansatz for T sym

000 = f1 we have

f1 = 2〈e2φφ̇〉. (4.73)

Alternatively δgij = a2(e−2ψ − 1)γijψ allows us to estimate f1 from T sym
ij0 ,

T sym
ij0 = 1

2(T sym
ij0 + T sym

0ij ) = −1
2(〈δgij,0〉), (4.74)

where we compare to our ansatz for T sym
ij0 = −1

2f1a
2γij. This gives us f1 = 2〈e2ψψ̇〉.

Without anisotropic pressure, the off-diagonal components of the Einstein tensor must
vanish, which implies φ = ψ and thus both estimates are consistent with each other.
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Proof of φ = ψ in the absence of the anisotropic pressure, follows from writing the
Ricci tensor (1.23) for the metric (4.71)

Rij = ∂i∂jφ− 3∂i∂jψ + ∂iφ ∂jφ

− ∂k(−∂iψδkj − ∂jψδki + ∂mψδ
kmδij)

− ∂nφ(−∂iψδnj − ∂jψδni + ∂lψδ
nlδij)

+ 3∂nψ(−∂jψδni − ∂iψδnj + ∂lψδ
nlδij)

+ (−∂kψδni − ∂iψδnk + ∂sψδ
nsδik)(−∂nψδkj − ∂jψδkn + ∂rψδ

krδjn),

(4.75)

thus

Rij = ∂i∂jφ− 3∂i∂jψ + ∂iφ ∂jφ+ 2∂i∂jψ − ∂m∂kψδmkδij
+ ∂iφ ∂jψ − ∂jφ ∂iψ − ∂nφ ∂lψδnlδij
− 3∂iψ ∂jψ − 3∂iψ ∂jψ + 3∂nψ ∂lψδnlδij
+ 5∂iψ ∂jψ − ∂kψ ∂rψδkrδij − ∂sψ ∂nψδnsδij,

(4.76)

which at the end gives us

Rij = ∂i∂jφ− ∂i∂jψ + ∂iφ ∂jφ− ∂iψ ∂jψ + ∂iφ ∂jψ − ∂jφ ∂iψ. (4.77)

The case of φ = ψ, satisfies the condition Gij = 0 in the Einstein equation.
As already stated above, 〈e2φ〉 ≡ 1 (by construction). However, since averaging

and time derivative do not commute in general, f1 is in general non-zero. In linear
perturbation theory, φ̇ = 0 in the Einstein-de Sitter model (EdS), but this is not the case
for the ΛCDM model. For higher orders in perturbation, both the EdS and the ΛCDM
model have φ̇ 6= 0 (these are the integrated Sachs-Wolfe effect [26] and the Rees-Sciama
effect [176]). Consequently, this implies that for the fully non-linear theory we have
〈e2φφ̇〉 6= 0 in general.

Let us now estimate qualitatively what are the effects of the effective Hubble expansion
rate Heff . By means of (4.66), we get

Heff = H + 2〈e2φφ̇〉. (4.78)

In the following, we define the density contrast w.r.t. the averaged matter density ρ̄(t),
i.e.

δ(r, t) ≡ ρ(r, t)− ρ̄(t)
ρ̄(t) . (4.79)

ρ ≥ 0 implies δ ≥ −1. For an over-dense, collapsing region (δ > 0), we expect from
Newtonian reasoning that φ̇ < 0. Similarly, for an underdense, expanding region (δ < 0),
φ̇ > 0. However, if the over-dense region is virialized, its gravitational potential does
not change any more and we expect no effect. Thus it is impossible to predict the sign
of f1 without a detailed investigation. Another important aspect is that most of the
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volume of the Universe is under-dense. An arbitrary light-ray will typically pass through
a dominantly under-dense universe, and thus we expect that Heff > H at times long after
the formation of cosmic structure started. On the other hand, observed light is typically
emitted in an over-dense and observed in an over-dense region. Thus for objects at not
too far distances we expect that over-densities dominate the trajectory of the light-ray.
For a quantitative discussion, which is beyond the scope of this work, some numerical
simulations are necessary.

We can nevertheless conclude that the one-to-one association of redshift with the scale
factor and thus with cosmic time that we know from the standard model of cosmology is
not possible if the effect from the averaged description is taken into account.

4.7. Comparison to other results
Let us finally put our work in the context of the previous results. In the work of Räsänen
[146, 88] (see also section 4.1) the propagation of a bundle of light has been studied. The
redshift z ≡ (ωs − ωo)/ωo is found to be

1 + z = exp(
∫ λo

λs
dλω[13θ + σµνe

µeν ]), (4.80)

where σµν denotes the shear and θ the expansion rate and eµ denotes as above the spatial
direction of light propagation. This result agrees very well with our result in equation
(4.66), which after integration can be written as (using dt = ωdλ)

1 + z = exp[
∫ to

ts
Heff dt]. (4.81)

Räsänen argued that the shear is negligible for the averaged geometry, and that the only
important contribution would come from the averaged expansion rate. Therefore the
distance redshift relation is in terms of the averaged expansion rate. In [177] it has been
discussed that if the metric remains close to a FL model, the change in redshift with
respect to its background value is small.
In addition to the agreement with these non-perturbative investigations, we are also

able to compare our result to perturbative studies of Veneziano and his collaborations.
So that our equation (4.81) is in agreement with equation (4.24) where the use of past
null cones have been considered.

Furthermore, studies of Fleury and co-workers on the effects on the Hubble diagram in
Swiss-Cheese toy models [153] are also in line with the above results.
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In this work, we have considered the propagation of light-rays in an averaged space-time.
Our central result is a modification of the equation of null geodesic motion, see (4.42).
This new equation of motion is a fully covariant vector equation for the wave-vector kµ.
Rays describing the propagation of light in an averaged space-time are generated by this
wave vector, which is null w.r.t. the averaged space-time. In order to prove those points
we assume that the averaged space-time (pseudo-)metric is a tensor and that it respects
the causal structure of the microscopic space-time. That such averaging procedures exist
has been shown by Zalaletdinov [136]. However, the particular averaging proposed by
Zalaletdinov does not result in an isotropic and homogeneous metric. As we consider a
fixed light-ray (source and observer are fixed events on the manifold), we think that it is
justified not to average the wave vector and its derivative, but to just average the metric
and its derivatives.

We then apply this light propagation equation (recall, it is not the geodesic equation of
the averaged space-time) to a cosmological model. We assume that the averaged metric
is a flat, spatially isotropic and homogeneous (as suggested by the success of the standard
model of cosmology). We have shown that the relation between photon frequency and
affine parameter is modified. This modification can be expressed as an effective Hubble
rate, as shown in (4.66).
Thus the central finding of our work is that photons in an averaged Universe follow

a FL geodesic equation of motion, but with the Hubble rate replaced by an effective
Hubble rate that does not coincide with the Hubble rate that one would infer from the
averaging of the space-time itself. In contrast to many previous studies, this result is
not based on a perturbative approach and does not make use of a toy model. Moreover,
our result is in perfect agreement with previous non-perturbative investigations [177]
and with the results of the study of toy models, like the Swiss-Cheese model [155]. Also
perturbative studies are in line with our findings [152].
We thus have shown that the Hubble rate associated with the averaged space-time

metric does not necessarily coincide with the effective Hubble rate that should be
considered for photon propagation. A quantitative study of the order of magnitude of
the effect seems to require detailed numerical simulation, and is thus beyond the scope of
this work. The most important result of this work is that the averaging effects on light
propagation can be absorbed into an effective Hubble rate. This might be one of the
more fundamental reasons for the great success of the Friedmann-Lemaître models.
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5. Conclusion and Outlook

Some interesting lines of research opened up by this work are the following:

So far we restricted our attention to the study of a single light-ray. The next logical
step is to study the equation of geodesic deviation in order to ask if an analogous
modification occurs, which would allow us to find a modification to the luminosity and
angular diameter distances.

Furthermore, we notice that Buchert’s formalism has been considered in FL space-time
where the Weyl tensor vanishes and thus bundles of light-rays are subject to Ricci
focussing (i.e. associated with a smooth distribution of matter). However, in a clumpy
Universe, light-rays propagate in underdense regions and are sensitive to Weyl focussing
(i.e. induced by the gradient of the gravitational potential). The issue of relating Weyl
focussing of point like sources to Ricci focussing of smooth matter sources has been
considered recently in [175]. In this context it will be interesting in our work to ask if
it is true that a microscopic Weyl focussing leads to an effective Ricci focusing after
averaging.

Another interesting aspect is that we can treat the distribution of inhomogeneities as
stochastic random fields. The spatial distribution of inhomogeneities remains Gaussian.
An important property of Gaussian random processes is that the spatial averages taken
over a large volume in our Universe will be equal to expectations taken over an ensemble
of regions of the Universe, as of course we are unable to measure quantities over an
ensemble of Universes. Keeping this in mind, in our work, we can take the average over
the statistical ensembles and calculate the redshift, and check whether it is equal to
the case when we first determine the redshift for each individual distribution and then
average over all redshifts. The possible differences in the redshift will lead us to interpret
the effects of averaging on the observational data.
Difference between the observed redshift defined by spectral lines, and the model

redshift from the theory may create tension between different estimates of parameters like
H0 [178]. We showed in our work that the average over inhomogeneous distributions affects
the Hubble expansion rate. This might explain the tension between Hubble rates from
cosmological probes like WMAP and Planck and other probes like SN Ia. Consequently,
we expect that the effects could be related to explain dark energy. However, the evidence
should be probed in the cosmological experimental surveys, such as SN Ia observations
and galaxy redshift surveys. Thus an important next step is to find experimental evidence
in favour or against the existence of two different Hubble parameters.
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