View metadata, citation and similar papers at core.ac.uk

A Dynamical System Approach for
Catching Softly a Flying Object: Theory
and Experiment

Seyed Sina Mirrazavi Salehian*, Mahdi Khoramshahi,
and Aude Billard

Abstract—Catching a fast flying object is particularly challenging as
consists of two tasks: it requires extremely precise estimation of the
object’s motion and control of the robot motion. Any small imprecision
may lead the fingers to close too abruptly and let the object fly away from
the hand before closing. We present a strategy to overcome for sensori-
motor imprecision by introducing softness in the catching approach. Soft
catching consists of having the robot moves with the object for a short
period of time, so as to leave more time for the fingers to close on the
object. We use a dynamical systems (DS) based control law to generate
the appropriate reach and follow motion, which is expressed as a Linear
Parameter Varying (LPV) system. We propose a method to approximate
the parameters of LPV systems using Gaussian Mixture Models, based
on a set of kinematically feasible demonstrations generated by an off-line
optimal control framework. We show theoretically that the resulting DS
will intercept the object at the intercept point, at the right time with
the desired velocity direction. Stability and convergence of the approach
are assessed through Lyapunov stability theory. The proposed method
is validated systematically to catch three objects that generate elastic
contacts and demonstrate important improvement over a hard catching
approach.

I. INTRODUCTION

Dynamic motions such as catching [1]-[8], juggling [4], [9], hitting
[3], [10] and throwing [9] require accurate motion planning and motor
control. Perfect control can never be satisfied in practice. Devising
control strategies to offer more robustness in the face of imprecise
sensing and actuation is important. Catching objects in flight is a
particularly challenging task as the time to move toward the object
is extremely short, lasting usually about a quarter of a second. The
time at impact is even shorter, leaving less than a few milliseconds
for the hands to close on the object to secure it tightly in the grip. We
propose a compliant strategy to catch objects, that is less sensitive to
timely control of the interception. The soft catching strategy consists
of having the robot moves with the object for a short period of time
(Fig. 1). This leaves more time for the fingers to close on the object
and avoids failure due to imprecise control of the time and position
at which the hand intercepts the object.

Previous works on catching objects focused on a hard catching
approach, in which the hand intercepts and stops the object instanta-
neously [4], [6], [11]. Such strategy generates enormous intercept
forces which may cause the object to bounce out of the hand,
before the fingers have a chance to close on the object [12]. This
is particularly the case when the weight of the arm is greater than
that of the object by an order of magnitude and when the object is
made of hard material. In this case, the shock is quasi-elastic and
the object is seen flying away from the hand as soon as it hits the
palm. In contrast, in soft catching, the hand meets the object at an
intercept point, but then continues moving, aligning its speed to that
of the object, and slowly reduces its speed to zero. Since soft catching
provides more time to grasp, it is more robust against uncertainties in
the hand orientation as well as fingers closure initiation; i.e. it allows
readjustments for hand, palm, and fingers posture.

The soft catching strategy we propose here assumes that the arm-
hand-object system has no mechanical compliance or that the inherent

All authors are with the School of Engineering, Ecole Poly-
technique Federale de Lausanne (EPFL), Switzerland. {sina.mirrazavi;
mahdi.khoramshahi;aude.billard} @epfl.ch

*Corresponding author

brought to you by .{ CORE

provided by Publications at Bielefeld University

Fig. 1: Schematic of the soft catching strategy. The arm starts from an initial
point and moves to the infercept point, where it meets the object. It then
continues its motion aligning its trajectory with that of the object and slowly
reducing its velocity, while the fingers close on the object.

mechanical compliance of the system is negligible in comparison to
the strength of the interaction forces. Compliance is then provided
through active control of the arm motion.

To successfully catch an object softly, the arm must intercept
the object on time, at the right place, and with a specific velocity.
Although reaching on time implies that soft catching is a time-
dependent system, the motion can be made time-invariant by coupling
the motion of the robot arm with the object’s dynamic. This makes the
system more robust in the face of changes in the estimated dynamics
of the object’s flight.

Planning a trajectory that satisfies the above three constraints
in time, position and velocity can be done using standard optimal
control approaches [11]. This is however time consuming and cannot
be performed within the few milliseconds at our disposal. Here,
we leverage the properties of autonomous dynamical systems for
immediate re-planning of motion [13]. The dynamical system (DS)
is expressed as a Linear Parameter Varying (LPV) system subject
to stability constraints to ensure that the resulting system converges
asymptotically to the object’s trajectory. To estimate the parameters of
the LPV, one can use arbitrary regressive techniques for estimating the
parameters. Here, we use a probabilistic approach through Gaussian
Mixture Regression. To train the system, we generate off-line a set
of the fastest possibly kinematically feasible trajectories.

This paper presents a theoretical analysis of the stability and
convergence of the proposed DS control law and an empirical
evaluations against hard catching approaches.

II. RELATED WORK

In order to accomplish a soft catching task, solutions to two
problems are required. First, a feasible intercept posture must be
determined. Second, a precise soft catching motion subject to the
robot constraints needs to be generated.

A robotic arm with large and convex workspace and high degree
of redundancy in joints configuration makes it possible to intercept
a flying object at any point along its trajectory. However, most of
these assumptions are not true in practice. In our previous work [6],
we proposed a framework to extract feasible postures to intercept
general shaped objects. We reuse this method in this work. In this
previous work, we however considered only a hard catching motion.
Besides, we could not ensure that the robot would catch the object
at a precise time. We extend this work by offering a soft catching
procedure that is more resilient to imprecisions in controlling the arm
and we ensure that the arm reaches the object at the desired point
and at the desired time. Finally, in this previous work, we estimated
only a first order DS, hence controlling for velocity. This had the
drawback to generate trajectories with too high an acceleration and

https://core.ac.uk/display/211853876?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Off-line
Learning dynamics of the
arm motion (Algorithm 2)

!

Forced dynamical
system (Eq.5)

On-line

Inverse kinematic solver

and the filter

The feasible intercept ()
posture prediction [6]
Maximizing the softness
(Algorithm 1)

Robot arm

Intercept point extraction Motion generation

Fig. 2: Block diagram for robotic soft catching.

that could not be followed. In this paper, the DS is second order and
models feasible acceleration profiles.

Planning a fast motion with equality point constraints, such as
in catching or hitting a flying object, has been extensively studied
in the literature. Fitting a polynomial trajectory to predetermined
points —initial, intercept and stop— has been proposed and used in
[1], [5], [14]. Even though this method is computationally efficient
and can ensure to get at the desired position on time, it utilizes
time as an explicit variable. As a result, it is highly sensitive to
imprecise estimate of the catching position and time, and would
require a complete re-planning as a new desired intercept point is
provided. Besides, there is no guarantee that the generated trajectory
is feasible for a robot to track. Optimal control can address some
of these issues, see [11], [12], by taking into account the terminal
constraints and the kinematic limitations of the robot. However, these
are iterative procedure with no insurance to convergence in a small
enough number of time steps to ensure extremely fast reactivity. Also,
the convergence is highly dependent on the initial guess. Imitation
learning is also applicable to this problem, see [2], [6]. By using
machine learning techniques, one can approximate an expert’s set of
demonstrations and use this approximation to model the requested
dynamics of motion [13]. If human demonstrations are provided
directly, through kinesthetic teaching, this ensures that the motions
are kinematically feasible [6]. However, the demonstrations can
never be exhaustive and generalization away from the demonstrations
is prone to error. Here, we generate a comprehensive dataset of
“expert’s” trajectories off-line and in simulation so as to span the
space of kinematically and dynamically feasible trajectories. We then
learn an approximation of these trajectories through probabilistic
techniques used usually in learning from demonstration.

A soft catching motion is composed of two motions; in the
first phase, reaching and tracking. During the reaching motion, the
end-effector starts from the initial point and intercepts the object’s
trajectory at the desired intercept point. After the interception,
the end-effector tracks the predicted object trajectory while slowly
reducing the object velocity. Although reaching motion results in
hard catching, combining a reaching motion with a tracking motion
results in a smooth motion which rejoins the object at the desired
intercept point and then continues moving with the object; i.e.
soft catching. One possible solution for combining these motions
is to use hybrid systems. Hybrid control technique have two main
shortcomings: (1) the switching between the modes would yield
high non-linearities and discontinuities; (2) initiating the switches
from inspection requires significant intelligence and insight [15].
This paper proposes a method where the two motions are smoothly
integrated in one dynamical system which generates implicitly this
smooth switching from reaching to tracking.

In the first part of this work, we formulate our control law as a
LPV based dynamical system to generate soft catching motion. LPV
systems have been proposed as a promising avenue for approximating
a single model of a plant in multiple operating conditions [16].
One typically choice is to approximate LPV systems by the use of

linear regression models. The most popular approaches to perform
this approximation use polynomial or periodic functions [17]. In this
paper, we use a probabilistic approach to estimate the parameters
of the LPV using Gaussian Mixture Models (GMM), so as to
account for the inherent stochasticity of the training data-points.
We analytically prove that the generated soft catching motion and
consequently the end-effector intercept the object trajectory at the
desired intercept point and follow it thereafter. Moreover, with the
purpose of maximizing the softness at the interception subject to
the kinematic constraints of the robot, a closed loop optimal control
problem is suggested. The performance of the proposed method is
validated in a real-world experiment with KUKA LBR IIWA (7
degree of freedom arm robot).

This paper is organized as follows. Section III formalizes the
LPV dynamical system. In addition, the closed loop optimal control
problem is introduced. In Section IV, the switching parameters are
approximated by GMM parameters and stability and convergence
of the proposed system are studied. We also present the algorithm
for generating a data-set used later for training the LPV dynamical
system. The proposed method is validated by the experimental set-up
in Section V. Discussion is presented in Section VI.

III. THE SOFT CATCHING DYNAMICAL SYSTEM

Dynamical systems are popular and powerful methods for au-
tonomously generating stable and robust motions according to train-
ing data-points [13]. DSs are applicable for various robotic manip-
ulations which need an accurate and fast re-computing of motions.
Formulating DSs as LPV systems allows modeling a wide class of
nonlinear systems and the use of many tools from the linear systems
theory for analysis and control [18]. LPV systems can be thought of
as a weighted combination of linear models, each valid at a specific
operating point. We consider a class of continuous-time LPV systems
given by the following model:

E(r) = A (041 (1)E(1) + A2(8,0 (1) E(r) +ulr)
NOETAHGINIO

Where &(t) € RP is the state of the dynamical system; e.g. in
robotic arm manipulators & (1) € RS is the position and the orientation
of the end-effector. u(z) is the control input vector. y(¢) is the plant
output vector. 4 € RK1*1 i€ {1,2) are the vector of scheduling
parameters';

€y

T
B4 = [GA’i O, }

Al RK — RP*P i € {1,2} are the affine dependences of
the state-space matrices on the scheduling parameter and the state
vectors:

vie{1,2} 2

K
AB) =Y 004 A eRPP g, eRM!

=1 k k

X, (3)
AXOp) =) BpAL ATERPP 6, e R

k=1

As we discussed in Section I, soft catching can be achieved as a
combination of fracking and reaching motions. To achieve this, the
following control input vector u(z) is proposed.

u(t) =y(1)5% — A1 (,1)7(1EC — A%(8,2) (¥(1)E° +7(1)E°)
+27()E° +7(1)°
IThe scheduling parameters can be a function of time (¢), states of the

system (&(¢)) or external signals d(t), i.e. 0,1 (¢,&(r),d(t)). In the rest of the
paper, the arguments of 6,; Vi € {1,2} are dropped for simplicity.

“

Where the state the object is denoted by £C. 0 < ¥(r) < 1 is
called softness and it is a continuous and continuously differentiable
parameter. The origin is located on the desired interce}r)t point and
must be reached at time 7*; i.e. £9(T*) = [0 0]". To ensure
smooth tracking of the object’s motion, the combination of the
position, velocity and acceleration of the object with the affine
dependences is chosen as the control law. By substituting, (4) and
(3) into (1), we have:

() —v()E° () =270 E (1) — ()£ (1) =
A0 (& (1) = 7(NEC (1)) +A(8,2) (E (1) — (V(1)E° (1) +7(1EC (1))
YO =C[E() &)

(5)
Theorem 1: The dynamical system gi;)en by (5) asymptotically
converges to [}/(t)§0 y(t)§0+?(t)§0] sle.

Jim & () — Y0 £ 1) =0 ©
lim € () ~ (0)E0) + 7(1)E (1))} =0 ™

if (5) meets the following constraints:
Ap+@ALT =<0 AL +(AL)T <0
Ab = (AT vkl e {1,...,K;}
OSGAbgl, O§9AZ2§1

V2 e {1,....K} (8)

where < 0 refers to negative definiteness of a matrix.
Proof: see Appendix A.

If we assume that 7y(r) is constant, (5) is a combination of
two motions; i.e. reaching and tracking. In this equation, setting
=0 yields a reaching dynamical system; i.e. lim [E@) &E@)] =

T . L .
[E9(T*) Oi1xp] . Hence, the position constraint is satisfied and the
time and velocity constraints are not satisfied. Setting Y = 1 results in
a tracking motion with an error decreasing asymptotically according
to:

() —E()=A" (64 (0)(E(1) —E°(1)) +A% (842 (1) (E(1) —£°(1)
©)

By varying the value of the gamma parameter, one can ensure
that we reach the object not only with the right velocity, but that
we reach it at the right location and at the right time. This is
summarized in the following corollary:

Corollary 1: The dynamical system given by (5) reaches the
desired intercept point (§O(T*.)) asymptotically with a velocity
aligned with that of the object, &(T*) ~ yE9(T*).2

Proof: The intercept point is located along the object’s trajectory
and so is the origin. As Y§9(T*) = [0 O]T is also at the
origin, YE© crosses € at the desired intercept point. Since the arm
is ensured to reach asymptotically &9, it is ensured to pass through
the object at the desired intercept point (Theorem 1). Moreover, it
will do so with a velocity vector proportional to that of the object,
ie. E(T*)~yE(T*). M

2We assume that the dynamical system (5) is fast enough to converge to
the acceptable neighbourhood of the desired trajectory y[éo 5‘0} " before
the catching time; ie. [|E(T*) — yEO(T*)||< & and |E(T*) — y£O(T*) —
YEO(T*)||< €, where ¢ is a small positive number.

Algorithm 1 Pseudo-code for the optimal control formulation for
maximizing the softness of catching.

Do for each step i

Pli+1] =argm$x(}/[i+ 1])

subject to:

o<yli+1]<1 (Alg-1-1)
Y <7yi+1]<Y (Alg-1-2)
Y+ 1] = Y]+ yli+ 1]Ar (Alg-1-3)
i+ 1] = yi] + 7[i + 1]Ar (Alg-1-4)
Eli+1] is calculated from (5) (Alg-1-5)
‘/(q[i])Qmax < é[i‘i' 1] < J(‘][_i])qmax (Alg‘l'G)

—J(q[]))dmax = I (@[] Gmax < E[i+1] < J(gi])dmax +J (q[i))dimar (Alg-1-7)
6 < p(E[i+1];6w) (Alg-1-8)

By increasing the value of ¥, on the one hand, the end-effector’s
velocity at the intercept point will get closer to the object velocity
hence provide more softness in catching. On the other hand, the
generated trajectory may be kinematically infeasible for the robot. In
order to generate a kinematically feasible trajectory with maximum
softness in catching, we propose a closed loop optimal control which
is formulated in Algorithm 1. The goal is to maximize the softness
(7(r)) while ensuring that the trajectory is kinematically feasible for
a robot to track. This introduces a constrained optimization problem
at each step which can be formulated as a Nonlinear Programming
(NLP) problem.

In Algorithm 1, < corresponds to the component-wise inequality.
Y is a large positive number. Ar is the time step. gl[i] is the joint
configuration which is corresponding to the end-effector position
and orientation &[i]; i.e. £[i] = F(q[i]) where F is the robot forward
kinematic function. (Alg-1-1) satisfies the velocity constraint in a soft
catching motion. (Alg-1-6) and (Alg-1-7) guarantee that the velocity
and acceleration of the generated motion is kinematically feasible for
the robot, respectively. The feasibility of the generated motion at the
position level is guaranteed by (Alg-1-8), where the workspace of the
robot is modeled through a probabilistic representation of the feasible
postures (p(&;0y)) [6]. In order to generate the training dataset, all
the possible postures of the robot are simulated by testing all the
displacements of its joints. A probabilistic model of these positions
and orientations are constructed by using a Gaussian Mixture Model
as follows:

K,
p(&:0w) =Y m A (E8 |, X))
=1

(10)
where 7, 1;,X; correspond to the prior, mean and covariance matrix
of the [= 1...K, Gaussian functions, respectively, and they are
calculated by using the Expectation-Maximization algorithm [19].
& is classified as a feasible configuration if p(&;6y) exceeds a
minimum likelihood threshold §, which is determined such that
the likelihood of 99% of the training points are higher than the
threshold, for more information see [6].

Example: Consider (5) as the following 1-D dynamical system with
one scheduling parameter.

27_ . .
{31 ~ o sE=—nE-asitul)

(1)
This is a critically damped system which asymptotically converges
to zero from an arbitrary initial condition (£(0) =2, £(0) =0). Let’s
assume the following dynamic model for the object.

E0@)=01 E%0)=1 £°(0)=-3

The solutions of (5) for this example are illustrated in Fig. 3 for
different values of y and 7. It shows that for all the values of y, 7
and ¥, the generated trajectories join the object’s trajectory on time at
the origin. Moreover, by increasing the value of 7, the end-effector’s

(12)

= 6T
—£,7=0,%=0
all 4 s 38
— — ¢, L=
E 2 E 2 The virtual boundary|
3H g =
=0 =0
8 8
~ ~
2 2 .
z -4 -4
& o 2 4 6 [2 4
ETTR Time [s] Time [s]
Z A\
)
2N ® ©
N\ == 1.2
‘ Sammes =" -
N p 1 1
AN - 4
\eeet 0.8 0.8
2l -]| =ose =06
0.4 0.4
3 L L L L L 0.2 0.2
0 1 2 3 4 5 6
e o
Time [s] o 2 4 6 % 2 4 6
Time [s] Time [s]
(a) d
@ ©

Fig. 3: The behavior of 1-D forced dynamical system subject to the value of ¥y and . =0 in (a). (b) and (c) show the behavior of the 1-D system when y
is constant and time-varying, respectively. (d) and (e) show the corresponding value of ¥ in (b) and (c), respectively. In (c), the virtual workspace constraint

is satisfied as Algorithm 1 is used to optimize the value of 7.

Algorithm 2 Pseudo-code for generating the fastest kinematically
feasible demonstrations.

Step 1: Initialization

Set i =1 and define a fixed initial end-effector position r;.

ém [l] =T, ém m = [O]7 ‘Sm [l] = [O]

qlif =F""(rr), 4l =10], gli]=10]

Randomly define an attractor (rp) inside the workspace of the robot.
Step 2: Trajectory planning

While ||rp —&n[i]]|> ¢

gli+1] =argmax([lq(i+1]{])
subject to:
- i]‘max < UI[1+ 1} < qmax (Alg'z'l)
- qmax S CI[H' 1} S qmax (Alg'2'2)
qgli+ 15] = q[l] +Atq[1 +1] (Alg-2-3)
D ,,l J(g I
=gl - et < e (Alg-2-4)

Calculate the next joint configuration:
dli+ 1] = g{i] + Argi+ 1]
qli+1] = qli] + Argli +1].
Smli+1] =F(qi+1]).
Enli+1) = J(gli+1])li+1].
ém[wrll]:J(LI[HIDIJ[H1]+J(q[i+1DQ[i+1]~
i=i+1.
End

velocity is getting closer to the object velocity: compare the black
line with the purple line in Fig. 3a. Fig. 3c shows an example of
use of Algorithm 1 to generate a feasible trajectory where there is a
geometrical constraints on the motion of the dynamical system.

In order to use the LPV dynamical system (1) to successfully catch
a flying object softly, the scheduling parameters must be accurately
and precisely modeled. Next, we propose a GMM based second order
dynamical system and reformulate it to model the unforced LPV
dynamical system (1).

IV. ESTIMATING THE SWITCHING PARAMETERS OF LPV-BASED
DYNAMICAL SYSTEM

In this section, we introduce a new approach for approximating the
parameters of the LPV based dynamical systems (1) from a training
data-set. Approximating a dynamical system via a GMM from a
training data set is popular approach since stability and convergence
of the dynamical system can be analytically guaranteed [13]. To
estimate a LPV dynamical system via a GMM, the parameters of the
DS become the priors 7%, the means p* and the covariance matrices
¥* of the k € {1,...,K} Gaussian function, K denotes the number
of Gaussian components. A representation of an unforced LPV
dynamical system (1) with Gaussian mixture model is formulated

K K))
Z E)ALE+by) + Y hi(E)(AZE + 1Y)
& & (13)
VE, & EcRP
where
=T F) Egé(y‘]é)_l
bk = 1f — Agug bk = uf — Ajug
A OP(x , (14)
W) = SWEEY e 0,6),0.6))
EIPJ(I')PJ(XII')

In this formulation, P;(k) = nj-‘ Vj € {1,2} is the prior probability
of each Gaussian component and Pj(x[k) = N (x| pk, Z5) v(jx) €
{(1,€),(2,&)} denotes the conditional probability distribution func-
tion (pdf) corresponding to the k" Gaussian function. 0 < hi (x) <1
is a continuous and continuously differentiable function. The second
order dynamical system (13) subject to the following constraints:

Ak AbT <0 vie{1,2}
Ak = (AbT Vke{l,....K} (15)
ug =Aku; ug _Akﬂé

is equivalent to the unforced LPV dynamical system (1) subject to

the stability constraints (8). Hence, the dynamical system (5) can be

rewritten’:

27(1)E°(1) — () E° (1) =
NOE(1)ALE () = 7()E (1) +

E—y(1)E°(r) -
K

Y m (&) -
k=1

K> .

kZ R (E)AR(E(r) —
=1

vE E EcRP

We seek to train our system using a set of training data-points
{&n,&Em,Em} that encompass examples of kinematically and dynam-
ically feasible trajectories of the end-effector to the intercept point.

(16)
(VD)% (1) +7()E° (1))

3Theorem 1
Lyapunov

can be proven
Cdl’ldiddte v = 1 -

(o7 X Mot) o

by the fo]lowmg
10 — 7)E -

non-negative

780 — 789) —

As it would be difficult to have these provided by a human expert,
as kinesthetic teaching would not make it possible to move the
arm at its maximal speed, we opt for generating off-line through
an optimal control problem the desired demonstrations. Moreover,
as catching is an extremely rapid action, the training trajectories
should be representative of the fastest feasible motions of the robot.
Accordingly, we propose Algorithm 2 to generate the training data
set. The algorithm consists of two main steps. In step 1, the initial
r; and the final rp positions of the robot are chosen inside the
workspace of the robot. In step 2, the end effector is moved with
maximum acceptable velocity and acceleration along a straight line
from the initial position to a set of intercept points rp located in its
workspace. Since the maximum feasible velocity and acceleration of
the end-effector depend on the joint configuration, these need to be
calculated at every step. To relax the constraints of the optimization
problem, (Alg-2-4) is defined as an inequality constraint. (Alg-2-1)
and (Alg-2-2) guarantee the feasibility of the motion in the velocity
and acceleration levels, respectively. Note that, this algorithm does
not minimize the motion duration, but it generates a motion which is
the fastest at each configuration. In Algorithm 2, q, ¢max, Gmax € R™
are the joint configuration, the maximum acceptable joint velocity
and acceleration, respectively. &, is the end-effector position and
orientation. IF : R” — R® is a known forward kinematic function for
the robot. J(g) € R®*™ is the Jacobian matrix. ¢ is a small positive
number.

A. Learning Second Order Asymptotically Stable Models

In order to estimate the parameters of the dynamical system given
in (13), the following optimization problem is proposed, which uses
Mean Square Error as a means to quantify the accuracy of the
estimation:

M .. .o
minC(©) = min Y €. —E|? (17)
e} o =
subject to :

' ‘ ko oxhi
AL+ (AT <0 N

U a7 B M
Ay, = (Ag) A Ko

)) i i =1 (18
ug =ALug YoTy) Lm0y

g ¢ 0= sb gk k=1

o<nfi<1
<m' <

for Vk; € {1,...,K;} and Vi € {1,2}. C(®) is the cost function and @
is the GMM parameters. M is the number of the training data-points.
E is computed directly from (13).The group of constrains on the
left-hand-side of (18) ensures asymptotic stability, while the group
of constraints on the right-hand-side follows from the definition of
positiveness and bounded integrality for the GMM density; see [13].

Since the NLP problem (17) is not convex, the initialization of the
parameters affects the quality of the solution found by the solver.
Note that there is always a feasible solution for these NLP problems,
but performance of the constructed dynamical system depends on the
initial guess of the NLP problem. We used the initialization method
which is proposed by [13] for initializing (17) and the interior-point
algorithm [20] to find the minimum of the constrained nonlinear
multi-variable function. This method uses penalty functions which
act as a barrier and prevent the iterates from leaving the feasible
region. An overview of the proposed framework for catching an
object softly is illustrated in the schematic of Fig. 2.

vs ‘ . S v
. L . O SR
- . AT :
Ny * 2 . /
. « The object trajectory
0.9 - . * * The soft catching motion
£ 4 The Initial end effector position
e . + The desired intercept point
0.8 | - 7
v \\"\W
0
05 01 0 0.1
X [m] T 504 0.3 02 T Y m)

Fig. 4: The final intercept points in the soft catching experiments. The
initial position of the palm is [—0.05 0.00 1.134]m. For clarity of the
illustration, only seven examples of the soft catching motions and the object
trajectories are shown. The object trajectories are plotted from the first points
till the stop points. The first point is the first object position which is used
for predicting the feasible intercept position. The experimental results verifies
that the catching motion intercepts the object at the desired point with the
desired velocity.

V. EMPIRICAL VALIDATION

The performance of the proposed framework is evaluated on a
real platform, 7 DOF robot arm, KUKA LBR IIWA mounted with
a 16 DOF Allegro hand. The output of the dynamical system (5)
is converted into the 7-DOF joints state using the velocity based
control without joint velocity integration [21]. In order to avoid high
torques, the resultant joint angels are filtered by a critically damped
filter. The robot is controlled in the joint position level at a rate of
500 Hz. As the joint position controller of the robot is a hight gain
perfect tracking controller and to avoid unexpected noises and delays
in measuring the joint position of the robot, (5) runs in closed-loop
via computing the current end-effector position by using the filtered
resultant joint angels; see Fig. 2.

In order to coordinate the motions of all joints —the arm and the
fingers joints—, the coupled dynamical system (CDS) model [22] is
utilized to generate the fingers motion. This approach consists of
coupling two different dynamical systems; i.e. the end-effector motion
and the fingers motion. The motion of the end-effector is generated
independently from the fingers states, while the fingers motion is a
function of the state of the end-effector and the object. The metric of
the coupling is the distance between the end-effector and the object
(||€ — EO|]). As a result, the fingers close when the object gets inside
the hand and they reopen when the object moves away.

We choose three objects with different stiffness; a very stiff small
plastic ball, a stiff fabric brick and a semi-stiff toy. The objects are
almost impossible to catch with the hard catching approach [6] as they
bounce out of the hand instantaneously, see accompanying video*.
The position of the objects are captured by the Optitrack motion
capture system from Natural point at 240 Hz. Since the control loop
is faster than the capturing system, the predicted position of the object
is used as the object position in (5).

The feasible intercept point (£9(T*)) is estimated by the catching
point prediction algorithm proposed in [6]. This algorithm follows
three steps. First, the graspable areas on the object is determined by
sampling from a probability distribution of feasible postures. As the
objects have approximately a spherical shape, the graspable areas in
our case encompass the entire object surface. The orientation of the
catching is however constrained to force the palm to face opposite the
trajectory of the object. Note that this could be relaxed when using
industrial hands, in place of the humanoid hand we use here, and
that do not have preferred orientation for finger closing. Second, the

4The video is available at http:/lasa.epfl.ch/~sina/Soft_Catching.mp4

n

E o i il 1.2
>
2 L L L L L L 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Time [s] 0.8
0.5 T T j—
— E£,06 . -
€ e ~N —The Object Trajectory
> 0.4 - —The Desired soft catching motion
0 | ‘ ‘ ‘ ‘ ‘ . % The Intercept point
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.2 -
Time [s])
2 0-
Eof]
N
'20 0‘1 0‘2 0‘3 0‘4 0‘5 0‘6 0.7 " X [-0].5 0 03 ! 01
Time [s] Y Iml

Fig. 5: The position of the end-effector generated by the dynamical system (5). The illustrated object trajectory is the predicted trajectory of the uncaught
object. This trajectory is illustrated from the first point till the stop point. The initial value of y is 0.2 and Algorithm 1 maximizes it with respect to the
kinematic constraints of the robot. As expected, the output of (5) softly intercepts the objects trajectory at the desired intercept position. In order to stop the
robot, the velocity of the robot is linearly reduced during the post-interception period (0.3s).

(® ® (& ()

Fig. 6: The brick is thrown. In (a), the object trajectory prediction algorithm is being initialized. (b) is approximately the first point. (e) is the
interception. One can stop the robot the robot in (g) as the fingers are closed. But it might damage the robot. A corresponding video is available at
http://lasa.epfl.ch/~sina/The_uncut_video.mp4.

TABLE I: The details of the soft catching experiments. All the position is in respect to the base of the robot. The throwing positions are randomly chosen.
The robot does not move till the first intercept point is calculated. As the first 0.4m of the throwing in x direction is used to initialize the object predication
trajectory [23]. Time of the flight is the duration of the object flight from the first point till the intercept position. Softness is the softness of the object
interception. All the object are thrown 20 times and are caught by the hard [6] and our soft catching algorithms.

Stiffness Throwing position (m) First point (m) Time of flight (s) Softness (y) Soft catching success rate Hard catching success rate
The small ball Too stiff —1.68+0.14 —0.07£0.02 1.1840.06 [-129+0.14 —0.03£0.03 1.3040.05] 0.32£0.03 0.67£0.06 %70 900.0
The brick stiff —1.84+0.07 —0.05+£0.02 1.11£0.04 [-1.46£0.07 —0.01£0.03 1.25+0.030] 0.33+0.02 0.66+0.04 %70 900.0
The toy semi-stiff —1.52+£0.62 —0.02+£0.07 1.14+£0.27 [71.14:&0.62 0.03+0.07 1.22:&0.39] 0.324+0.00 0.50+0.02 %75 %5.0

optimal area in the reachable workspace of the robot is determined
through gradient ascent on the likelihood of a probability distribution
representing the reaching space (10). Finally, a feasible configuration
along the object trajectory is determined by combining the set of
feasible postures with the set of points in the reachable and graspable
workspace which the object will travel through. See [6] for a complete
description.

To validate the algorithm, the experiment was repeated 20 times
for each object. The objects were thrown by a human operator. Data
of the experimental results are summarized in Table I. The initial
position of the object is randomly changed. As the plastic ball and
the brick are stiffer than the toy, a softer interception is required for
accomplishing the catching. Hence, the experimenter placed himself
farther away from the robot than when throwing the toy. First, the
prediction of the object’s trajectory requires some time and uses
almost all of the first 0.4 meter of the object flight in x [23]. In
addition, to ensure that the object travels at a reasonable speed,
leaving enough time for the robot to travel to the desired position,
a distance between the robot and the initial position of the object

should be no more than 1.5m which approximatively results in 0.33s
flight time. Due to imperfect prediction of the object trajectory, the
feasible intercept point needs to be updated and redefined during the
catching. The new feasible intercept point is chosen in the vicinity
of the previous one to minimize the convergence time and improve
the success rate of catching. The feasible intercept point is updated
approximately 29 times during the flight time. The intercept points
are illustrated in Fig. 4. In this figure, the origin is the position of the
robot base. As the right hand of the Allegro hand is used, we throw
the objects mostly to the right side of the robot.

The initial values of ¥ and 7 in (5) are set to 0.2 and 0, respectively.
COBYLA algorithm [24] of Nlopt library [25] is used for solving
the closed loop optimal control, where the maximum optimization
time is set 0.001s . An example of the desired robot trajectory and
the unperturbed object predicted trajectory are shown in Fig. 5. As
expected, the end-effector converges to the object at the intercept
point and continues to track the object predicted trajectory. The
snapshots of the real robot experiments is shown in Fig. 6 and Fig.
7. As the closure time of the hand is approximatively 0.1s, one can

o

(a) —0.447s (b) —0.300s (c) —0.260s

(d) —0.193s

(e) —0.150s (f) —0.077s

Fig. 7: Snapshots of the finger motions. The object is intercepted in (d) and caught in (f). It is important to note that the closure time for fingers varies with

the incoming object speed.

immediately stop the robot when the hand is closed on the object
which may damage the robot. Hence, we reduce the end-effector
velocity in 0.3s to avoid high torques.

The overall success rate of the soft catching reached %71.6, see
Table 1. To compare and to assess improvement over the catching
approach, the experiments were repeated with the similar initial
conditions for the hard catching scenario [6]. The overall success
rate was very low and did not exceed %1.6. Visual inspection of the
data and video confirmed that this poor result for the hard catching
scenario was essentially due to the fact that the objects bounce out
of the hand. The causes of failure for the soft catching strategy can
be categorized into three different categories. i) The main cause of
the failure for catching is still due to the inability to generate an
accurate joint-level motion corresponding to the desired end-effector
trajectory; the toy (3 out of 5), the brick (3 out of 6) and for the plastic
ball (2 out of 6). As the motion is too fast, the end-effector does
not accurately track the desired motion. The tracking error between
the desired and the actual end-effector 7position is approximately
[0.03i0.02 0.01£0.01 0.02i0.01] m. This error causes the
object to hit the thumb or undesired parts of the hand and bounce
away.

ii) As the Allegro hand has only four fingers, there is a space
between the fingers and the palm at the grasp configuration. The
small plastic ball can escape the grasp using this space, (2 out of 6).
For the other objects, this issue is negligible as there are big enough
to be caught with four fingers.

iii) Another cause of the failure arises when the object travels the
space too close to the robot. To track the object, all the markers
must be visible to the cameras. In five cases, the brick (3 out of 6)
and the plastic ball (1 out of 6), the tracking started very late, for
lack of visible markers. As a result, the robot was not able to reach
the desired intercept point on time and interception occurred at an
undesired point. In these cases, the side of the hand hit the object
or the interception was not soft enough. As the intercept point is
approximately updated 29 times during flight, the first prediction of
the object trajectory plays a main role in defining the intercept point.
If the initial prediction of the object’s trajectory is very inaccurate,
the updated intercept points will be far from each other. As a result,
(5) does not converge to the latest desired trajectory on time. This
was the case for trials using the toy (2 out of 5). Finally, in one trial
with the plastic ball (1 out of 6), the first point is too close to the
robot and the trajectory prediction does not work. In this case, the
object hits and bounces away. However, the robots tried to reach the
bounced object.

VI. DISCUSSION

In this paper, we proposed a framework to catch an object softly.
There are two important constraints to enable soft catching; namely
to reach the object’s trajectory with a velocity aligned with that of
the object. The motion should be fast enough to intercept the object
on time. This, of course, depends on having appropriate hardware. If
provided with a robot that can travel fast enough to travel the required

distance within the required time, then, our algorithm ensures that the
robot will catch joint the object on time, at the desired point with the
desired velocity direction.

Proof of asymptotic stability was done using Lyapunov stability
theorem. Specifically, we showed that our LPV dynamical system
asymptotically converges to the object trajectory and intercept it ex-
actly at the desired predefined point. In order to improve the softness
of catching, we proposed a closed loop optimal control problem to
maximize the value of the softness subject to the kinematic constraints
of the robot. Furthermore, a new GMM based method is proposed
for accurately approximating and modeling the parameters of LPV
systems. Approximating the parameters of the LPV systems via a
GMM based model has its own advantages and disadvantage. Using
GMM is advantageous in that it can accurately model the training
data points. Moreover, the scheduling parameters are of class C*
and the transitions between the scheduling parameters are smooth.
However, as the proposed learning algorithm is not convex; i.e. the
performance of the learned dynamical system is dependent to the
initialization.

Corollary 1 shows that the system governed by (5) converges
asymptotically to the object trajectory and intercepts it at the desired
point. As there is no constraint on the magnitude of the eigenvalues
(\QLA5_|) of Aj- v(i,j) € {(1,1),...,(1,K1),(2,1),...,(2,K3) }, there is
no guarantee that (5) is fast enough to converge to Y£¢ on time. To
successfully catch an object, the arm should arrive in a neighborhood
of the desired trajectory y[£€ EO]T before the catching time;
ie. |E(T*) —yE°(T*)||< € and ||E(T*) — vEO(T*) - 7E°(T7)||< &,
where € is a small positive number. Hence, one must choose an
intercept point and a ratio of velocity between the robot arm and
the object’s flight which leave enough time for the arm to reach
the target on time. As a simple example, consider a case in which
the workspace of the robot is a sphere of a diameter of 100cm
and the minimum flight time for the object is 0.3s with € =lcm
and assume (5) is a critically damped system, then |44:| V(i, /) €
{(1,1),...,(1,K}),(2,1),...,(2,K)} must be approximatjely greater
than 22. In practice, 22 < |44: | is not only very conservative constraint
but also may result in a dynamical system which generates kine-
matically infeasible motions. To address this challenge, a potential
direction would be extracting the desired intercept posture subject
to the dynamic constraints of the robot and the success rate of the
intercept posture.

Throughout the proofs, we assume that the desired intercept point
is a fixed attractor. In practice, due to the imperfect prediction of the
object trajectory, we need to update the feasible intercept postures all
the time. However, it usually does not affect the convergence of the
system as the new feasible intercept point is chosen in the vicinity of
the previous ones; i.e. the convergence duration is too small. Besides,
thanks to the second order LPV dynamical system, the updating does
not cause discontinuity at the velocity profile.

Other compliant approaches should be considered when the mass
of the object comes close to that of the robotic arm and hence that

the force at impact may require energy dissipation. In these cases,
compliance through either hardware damping or active controlled
damping would be necessary. In this paper, we considered systems
where the mass of the object was very small in comparison to that
of the arm and the force at impact was negligible in comparison to
the robot’s natural inertia.

Finally, we are currently improving the performance of the learned
dynamical system by converting the non-convex optimization prob-
lem (17) to a convex version. By this, we can be sure that the
performance of the dynamical system is optimal and it is not sensitive
to the initializations.

APPENDIX A
PROOF OF THEOREM 1
We propose a Lyapunov function as follows:

e L (S (I)
g (K
—/0 ! (yTZ%(I)A;Qdy
=1

V is positive definite, radially unbounded, continuous and continu-
ously differentiable. The derivative of V with respect to time is as
follows:

19)

V=L = (€010 (€ - 180 -2180 - 15°)
K,)) 20)
-(€- VEO)TkZ 01 (1AL (& — vE7 — 759)
=1
Substituting (5) into (20), we have:
Ky . .
V= (&1 10T Y. 0, (A3 (E ~ 1€ - 1)
k=1
K
+(E -0 - Y. 04, ()AL (E —¥E?)
k=1

K X .
—(E=7)" Y O (A6 — 87 - %59)
k=1

K> X R . .
=Y 0,(0) (ER 180 —yEO)TARER - 80 —y£0) @D
k=1

>0 <0

<0

Therefore, dynamical system (5) is globally stable; i.e. & and 5 are
bounded as £€, £©, y and 7 are bounded. Since V is finite, Barbalet’s
lemma indicates that the attractor is globally asymptotically stable;
ie:

. - 20 SOV : _ o _
lim[€ - (O +7€0) =0, Im[E 1% =0 (22
|

To conclude, Theorem 1 is proved.

ACKNOWLEDGEMENT

This work was supported by EU projects AlterEgo (grant #600610)
and Cogimon H2020 — ICT — 23 —2014. The authors kindly thank
Alireza Karimi for his insightful comments during the development
of this work and Seungsu Kim and Ashwini Shukla for preparing the
experimental setup.

REFERENCES
[11] W. Hong and J. J. E. Slotine, “Experiments in hand-eye coordination

using active vision,” in Lecture Notes In Control And Information
Sciences. Springer-Verlag, 1995, pp. 130-139.

[2]

[3

[t}

[4

flnary

[5

=

[6]

[7

—

[8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

G.-R. Park, K. Kim, C. H. Kim, M.-H. Jeong, B.-J. You, and
S. Ra, “Human-like catching motion of humanoid using evolutionary
algorithm(EA)-based imitation learning,” in IEEE International Work-
shop on Robot and Human Interactive Communication, 2009, pp. 809—
815.

J. Kober, K. Muelling, and J. Peters, “Learning throwing and catching
skills,” in IEEE International Conference on Intelligent Robots and
Systems, 2012, pp. 5167-5168.

J. Kober, M. Glisson, and M. Mistry, “Playing catch and juggling with a
humanoid robot,” in IEEE-RAS International Conference on Humanoid
Robots, 2012, pp. 875-881.

V. Lippiello, F. Ruggiero, and B. Siciliano, “3D monocular robotic ball
catching,” Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1615—
1625, 2013.

S. Kim, A. Shukla, and A. Billard, “Catching objects in flight,” IEEE
Transactions on Robotics, vol. 30, no. 5, pp. 1049-1065, 2014.

R. Mori, K. Hashimoto, and F. Miyazaki, “Tracking and catching of 3D
flying target based on gag strategy,” in IEEE International Conference
on Robotics and Automation, vol. 5, 2004, pp. 5189-5194.

K. Deguchi, H. Sakurai, and S. Ushida, “A goal oriented just-in-time
visual servoing for ball catching robot arm,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, Sept 2008, pp. 3034—
3039.

T. Senoo, Y. Yamakawa, S. Mizusawa, A. Namiki, M. Ishikawa, and
M. Shimojo, “Skillful manipulation based on high-speed sensory-motor
fusion,” in IEEE International Conference on Robotics and Automation,
2009, pp. 1611-1612.

M. Matsushima, T. Hashimoto, M. Takeuchi, and F. Miyazaki, “A learn-
ing approach to robotic table tennis,” IEEE Transactions on Robotics,
vol. 21, no. 4, pp. 767-771, 2005.

B. Biauml, T. Wimbick, and G. Hirzinger, “Kinematically optimal catch-
ing a flying ball with a hand-arm-system,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2010, pp. 2592-2599.
R. Lampariello, D. Nguyen-Tuong, C. Castellini, G. Hirzinger, and
J. Peters, “Trajectory planning for optimal robot catching in real-time,”
in IEEE International Conference on Robotics and Automation, 2011,
pp. 3719-3726.

S. M. Khansari-Zadeh and A. Billard, “Learning stable nonlinear dy-
namical systems with gaussian mixture models,” IEEE Transactions on
Robotics, vol. 27, no. 5, pp. 943-957, 2011.

T. Senoo, A. Namiki, and M. Ishikawa, “Ball control in high-speed
batting motion using hybrid trajectory generator,” in Proceedings - IEEE
International Conference on Robotics and Automation, 2006, pp. 1762—
1767.

D. L. Ly and H. Lipson, “Learning symbolic representations of hybrid
dynamical systems,” Journal of Machine Learning Research, vol. 13,
pp. 3585-3618, 2012.

C. Hoffmann and H. Werner, “A survey of linear parameter-varying con-
trol applications validated by experiments or high-fidelity simulations,”
IEEE Transactions on Control Systems Technology, vol. 23, no. 2, pp.
416-433, March 2015.

B. Bamieh and L. Giarré, “Identification of linear parameter varying
models,” International Journal of Robust and Nonlinear Control, vol. 12,
no. 9, pp. 841-853, 2002.

Z. Emedi and A. Karimi, “Fixed-structure LPV Discrete-time Controller
Design with Induced 12-Norm and H2 Performance,” International
Journal of Contol, 2015.

M. C. Bishop, Pattern Recognition and Machine Learning.
2007.

M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming:
Theory And Algorithms. Wiley-Interscience, 2006.

J. Nakanishi, R. Cory, M. Mistry, J. Peters, and S. Schaal, “Comparative
experiments on task space control with redundancy resolution,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2005, pp. 3901-3908.

A. Shukla and A. Billard, “Coupled dynamical system based arm-hand
grasping model for learning fast adaptation strategies,” Robotics and
Autonomous Systems, vol. 60, no. 3, pp. 424-440, 2012.

S. Kim and A. Billard, “Estimating the non-linear dynamics of free-
flying objects,” Robotics and Autonomous Systems, vol. 60, no. 9, pp.
1108-1122, 2012.

M. Powell, “A direct search optimization method that models the
objective and constraint functions by linear interpolation,” in Advances
in Optimization and Numerical Analysis. Springer Netherlands, 1994,
vol. 275, pp. 51-67.

S. G. Johnson. The NLopt nonlinear-optimization package. [Online].
Available: http://ab-initio.mit.edu/nlopt

Springer,

