Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Fakultät für Chemie Universität Bielefeld

Funktionalisierte Linker für Metallorganische Gerüstverbindungen, deren postsynthetische Modifikation und polar markierte Schutzgruppen für terminale Alkine

vorgelegt von Pascal Roy

Bielefeld 2011

Die vorliegende Arbeit entstand unter der Leitung von **Frau Prof. Dr. Adelheid Godt** im Zeitraum Dezember 2007 bis August 2011 an der Fakultät für Chemie der Universität Bielefeld.

> Erstgutachterin: Frau Prof. Dr. Adelheid Godt Zweitgutachter: Herr Prof. Dr. Peter Behrens

Eidesstattliche Erklärung

Hiermit versichere ich, dass die vorliegende Arbeit ohne unzulässige Hilfe Dritter eigenständig verfasst wurde. Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder unveröffentlichten Quellen entnommen wurden, sind als solche kenntlich gemacht. Ich habe diese Arbeit weder im Inland noch im Ausland einer anderen Prüfungskommission vorgelegt. Bei den Synthesen der Linkermoleküle habe ich Unterstützung von der technischen Angestellten Miriam Hülsmann sowie von Patrik Berg, Peter Heinrichs, Daniela Niebur und Birte Brosent im Rahmen ihrer chemisch-technischen Ausbildungen erhalten. Einige, der unter meiner Anleitung entstandenen Ergebnisse des Forschungspraktikums von Thomas Preuße und der Bachelorarbeiten von Marc Philipp Moselage und Jan Horstmann flossen in diese Arbeit ein und sind an entsprechender Stelle kenntlich gemacht. Teile dieser Dissertation wurden in folgenden Publikationen veröffentlicht:

Modulated Synthesis of Zr-Based Metal-Organic Frameworks: From Nano to Single Crystals, A. Schaate, P. Roy, J. Lippke, F. Waltz, M. Wiebcke, A. Godt, P. Behrens, Chem. Eur. J. **2011**, *17*, 6641-6643.

Porous interpenetrated zirconium-organic frameworks (PIZOFs), a chemically versatile family of MOF, A. Schaate, P. Roy, T. Preuße, S. J. Lohmeier, A. Godt, P. Behrens, *Chem. Eur. J.* **2011**, *in Druck*, DOI: 10.1002/chem.201101015.

Bielefeld, den 02.08.2011

Pascal Roy

Für meine Familie

Keine Arbeit im Dienste der Forschung ist nutzlos, selbst dann nicht, wenn sie von falschen Voraussetzungen ausgeht.

Fridtjof Nansen (1861-1930), norwegischer Polarforscher und Friedensnobelpreisträger

Danksagungen

Mein besonderer Dank gilt Prof. Dr. Adelheid Godt sowohl für die Aufnahme in ihren Arbeitskreis und die damit verbundene schöne Zeit als auch für die spannende Aufgabenstellung und ihre sehr engagierte und lehrreiche Betreuung.

Herrn Prof. Dr. Peter Behrens danke ich für die freundliche Übernahme des Korreferates und die intensive Zusammenarbeit im Rahmen unserer Kooperation zu metallorganischen Gerüsten.

Mein Dank betrifft auch unsere weiteren Kooperationspartner – Andreas Schaate, Jana Panke und Prof. Dr. Michael Wark – für das außerordentlich freundliche Klima innerhalb des Projektes und die anregenden Vorträge und Diskussionen. Andreas Schaate möchte ich zudem für die erhaltenen MOF-Materialien und die angefertigten PXRDs meinen Dank aussprechen.

Herzlicher Dank gilt meinen lieben aktuellen und ehemaligen Kollegen aus dem Arbeitskreis OC II für die familiäre Atmosphäre und für ihre Hilfsbereitschaft. Dr. Dhananjaya Sahoo danke ich für die Unterstützung bei den aufgenommenen UV/Vis Absorptions- und Emissionsspektren. Dr. Daniela Klein danke ich für die bereichernden wissenschaftlichen und amüsanten unwissenschaftlichen Gespräche. Dr. Muhammad Sajid danke ich für unseren wissenschaftlichen und kulturellen Austausch als auch für seine motivierenden Späße. Dr. Christian Schmidt möchte ich für seine präzisen Antworten auf jegliche wissenschaftliche Frage danken. Serpil Karacor danke ich für ihr Engagement, ihre Fürsorge und für das Korrekturlesen dieser Arbeit. Für die Hilfe bei der Lösung von softwareimmanenten Problemen bedanke ich mich bei Dr. Ulrich Neuert und Marco Tietz. Bei Thomas Preuße, Christian Meyer, Marc Philipp Moselage und Jan Horstmann möchte ich mich für ihre Beiträge zu dieser Arbeit im Rahmen von Forschungspraktika und Bachelorarbeiten bedanken. Miriam Hülsmann, Patrik Berg, Peter Heinrichs, Daniela Niebur und Birte Brosent danke ich für ihre Unterstützung bei der praktischen Arbeit.

Großer Dank gilt meinen Eltern Gundolf und Marianne für ihre bedingunglose Unterstützung und ansteckenden Optimismus. Mein größter Dank gebührt meiner Frau Lena für ihre Liebe, Geduld und Verständnis.

Inhaltsverzeichnis

1	Abstracts	12
	1.1 Deutsch	.12
	1.2 English	.13
2	Metallorganische Gerüstverbindungen	14
	2.1 Koordinationspolymere	.14
	2.2 MOFs in (opto)elektronischen Bauteilen	.16
	2.3 Variation der optoelektronischen Eigenschaften	.20
3	MOF-Baukasten	21
	3.1 Der anorganische Knotenpunkt	.21
	3.2 Der organische Linker	.24
	3.3 Eine heiße Sache	.26
4	Linkersynthesen	27
	4.1 Tolan-Linker	.27
	4.2 Terphenyl-Linker	.29
	4.3 MOFs mit Terphenyl-Linkern	.35
	4.4 Butadiin-Linker	.37
	4.5 Di(phenylethinyl)benzol-Linker	.38
	4.6 MOFs mit Di(phenylethinyl)benzol-Linker	.47
	4.7 Gewinkelte Linker	.49
	4.8 Di(phenylethinyl)biphenyl- bzwbipyridin-Linker	.51
	4.9 Farbstoff-Linker	.54
5	Postsynthetische Modifikationen	63
	5.1 Überblick	.63
	5.2 Acylierung	.64
	5.3 Alkylierung	.70
	5.4 Alkin-Azid-Cycloaddition	.71
	5.5 Dissoziation von Zr-MOFs	.76
	5.6 Diels-Alder-Cycloaddition	.79
6	Alkinylschutzgruppen	83
	6.1 Kreuzkupplungen	.83
	6.2 Schutzgruppen für terminale Alkine	.85
	6.3 Zielsetzung	.88

7 Polar markierte Ethinylbausteine							
7.1 Synthesestrategie	93						
7.2 Nucleophile Substitution am Siliziumzentrum	94						
7.3 Darstellung der Chlorsilane	96						
7.4 Ethinylierung der Chlorsilane							
8 Verhalten der Alkinylschutzgruppen	101						
8.1 Einfluss auf die Säulenchromatographie	101						
8.2 Stabilitäten und Abspaltungsbedingungen	104						
9 Zusammenfassung	107						
10 Experimental part							
10.1 General informations							
10.2 Syntheses of linkers	111						
10.2.1 General procedures							
10.2.2 Alkynyl coupling partners	112						
10.2.3 Aryl halide coupling partners	114						
10.2.4 Tolane linkers	125						
10.2.5 Terphenyl linkers	126						
10.2.6 Butadiine linkers	132						
10.2.7 1,4-Di(phenylethynyl)benzene linkers	133						
10.2.8 1,4-Di(phenylethynyl)-biphenyl- or -bipyridine linkers	150						
10.2.9 Linkers containing chromophores	154						
10.3 Postsynthetic modifications	158						
10.3.1 General procedures	158						
10.3.2 Acylations	160						
10.3.3 Alkylations	166						
10.3.4 Azide-alkyne cycloadditions	167						
10.3.5 Diels-Alder cycloadditions	169						
10.4 Alkyne protecting groups	173						
10.4.1 General procedures	173						
10.4.1 Polar tagged alkynes	175						
10.4.2 Performance of the polar protecting groups	180						
11 Literaturverzeichnis							
12 Anhang							

1 Abstracts

1.1 Deutsch

Metallorganische Gerüste (MOFs) bilden die Klasse poröser Materialien mit den größten Oberflächen. Zusammen mit der Variabilität der beiden Bausteine, dem anorganischen Knotenpunkt und dem organischen Linker, lässt dies viele Wissenschaftler von Materialien mit sehr speziellen chemischen, elektronischen, optischen und/oder magnetischen Eigenschaften träumen. Für individuelle Anwendungen spielen beide Bausteine, aber auch etwaige im Gerüst eingelagerte Gäste, eine essentielle Rolle.

Diese Arbeit beschreibt die Synthese linearer, formtreuer Dicarbonsäuren mit einer Länge von 1.4 bis 3.9 nm bestehend aus konjugierten Phenylen- und/oder Ethinyleneinheiten für den Aufbau von MOFs. Die Dicarbonsäuren tragen einfache Seitenketten unterschiedlicher Länge und Polarität oder chemisch adressierbare, funktionelle Gruppen. Die Seitenketten haben einen direkten Einfluss auf die chemische Ausstattung der Hohlräume der MOFs und lassen sich im Falle zugänglicher funktioneller Gruppen nach der Darstellung des MOFs chemisch transformieren. Zum Ausloten der postsynthetischen Möglichkeiten sind Zr-MOFs wegen ihrer außergewöhnlich hohen chemischen Stabilitäten besonders geeignet. In dieser Arbeit wurden unter anderem an interpenetrierten Zr-MOFs postsynthetische Cycloadditionen von Propargyl- und Furan-2-ylgruppen mit sehr hohen Umsätzen durchgeführt. Zur Umsatzbestimmung mittels ¹H-NMR-Spektroskopie wurde ein leicht durchführbares Verfahren entwickelt, um die chemisch resistenten Zr-MOFs aufzulösen. Dieses beinhaltet CsF und DCI in DMSO-d₆ und D₂O sowie die Zugabe von K₂CO₃ nach dem Auflösen des MOFs.

Desweiteren wurden vier polare, silylbasierte Schutzgruppen für terminale Alkine konzipiert. Diese tragen als polare Markierung eine Methoxyphenylgruppe, welche chromatographische Separationen erleichtert. Die Abschirmungen des Siliziumzentrums ist aufgrund variierender Alkylsubstituenten unterschiedlich, wodurch die vier polaren Schutzgruppen das Spektrum der Stabilitäten der unpolaren, silylbasierten Alkinylschutzgruppen abdecken und sogar darüber hinausgehen.

1.2 English

Metal-organic frameworks (MOFs) form the class of porous materials with the highest surface areas. This characteristic property combined with the variability of both building blocks, the inorganic node and the organic linker, makes many scientists dream of materials with very special chemical, electronic, optic and/or magnetic properties. For individual applications both building blocks, but also possibly in the framework embedded guests, play a crucial role.

This work describes the synthesis of linear, shape-accurate dicarboxylic acids with a length between 1.4 and 3.9 nm consisting of conjugated phenylene and/or ethynylene units for the assembly of MOFs. The dicarboxylic acids bear simple side chains of different length and polarity or chemical addressable, functional groups. The side chains have a direct influence on the chemical interior of the cavities within the MOFs and in the case of accessible functional groups can be chemically transformed. For the exploration of the postsynthetic possibilities Zr-MOFs are especially eligible due to their exceptional high chemical stability. In this work amongst others postsynthetic cycloadditions of propargyl and furan-2-yl groups on interpenetrated Zr-MOFs with very high conversions were performed. For the determination of the conversion via ¹H NMR spectroscopy a facile method was developed to dissolve the chemical resistant Zr-MOFs. It includes CsF and DCl in DMSO-d₆ and D₂O as well as the addition of K₂CO₃ after dissolving the MOF.

Furthermore four polar, silyl-based protecting groups for terminal alkynes were designed. They carry, as a polar tag, a methoxyphenyl group which facilitates chromatographic separations. The steric shielding of the silicon centre differs due to variable alkyl substituents whereby the four polar protecting groups cover the spectrum of the stabilities of the unpolar, silyl-based alkynyl protecting groups and even go beyond it.

2 Metallorganische Gerüstverbindungen

2.1 Koordinationspolymere

Das "crystal engineering" befasst sich mit der gezielten Synthese von supramolekularen Festkörperstrukturen.^[1] In diesem Forschungszweig wird versucht, und andere Feststoffverbindungen basierend auf intermolekularen Kristalle Wechselwirkungen kleinerer Einheiten zu "designen", um bestimmte chemische oder erhalten.^[2,3] physikalische Eigenschaften zu Bei diesen intermolekularen Wechselwirkungen innerhalb des Materials handelt es sich üblicherweise um Wasserstoffbrückenbindungen.^[4] Wechselwirkungen zwischen aromatischen $(\pi$ -stacking)^[5] Metall-Ligand-Bindungen.^[6] Systemen oder koordinative Das "Designen", d.h. Vorausplanung der Synthese und die Struktur von Festkörperverbindungen gelingt allerdings nur selten. Vielmehr liegt der Darstellung neuartiger Strukturen häufiger das Prinzip "trial and error" zu Grunde als eine im Vorfeld geplante Synthese.^[7]

Abb. 1: Elementarzellen ausgewählter Vertreter der IRMOF-Reihe mit dem Zn₄O-Cluster als SBU. Zur besseren Übersicht sind die Wasserstoffatome der aromatischen Linker nicht gezeigt. Die gelben Kugeln repräsentieren den wachsenden Hohlraum innerhalb des Gerüstes beim Übergang der organischen Linker von Benzol-1,4-dicarboxylat (IRMOF-1), Naphthalin-2,6-dicarboxylat (IRMOF-8) zu Biphenyl-4,4'-dicarboxylat (IRMOF-10). Diese Abbildung wurde aus Referenz [12] entnommen.

Große Fortschritte auf dem Weg zu einer zielorientierten Synthese haben in den letzten Jahren die Koordinationspolymere gemacht.^[8,9] Diese Verbindungsklasse der Festkörperchemie wird aus anorganischen Knotenpunkten (engl. secondary building units, SBUs) und organischen Linkermolekülen aufgebaut. Dieser Aufbau ermöglicht, teilweise sogar nach dem Baukastenprinzip, die Synthese von eindimensionalen Ketten, zweidimensionalen Schichten oder dreidimensionalen Gerüsten.^[10,11] Ein sehr bekanntes Beispiel für eine systematische Synthese ist die IRMOF-Reihe (Abb. 1).^[12] In Koordinationspolymeren kommen als anorganische Knotenpunkte Metall-Sauerstoff-Cluster zum Einsatz.^[11,13,14] typischerweise Um ein Koordinationspolymer zu erhalten, müssen als organische Linkermoleküle mindestens divalente Brückenliganden eingesetzt werden. Meistens handelt es sich hierbei um Stickstoff-Donor-Liganden, typischerweise zyklische Amine, oder Sauerstoff-Donor-Liganden, typischerweise lineare Carboxylate.^[15] Einige der möglichen Koordinationsgeometrien der beiden Bausteine sowie der resultierenden Netzwerke sind in Abb. 2 dargestellt.^[8]

Abb. 2: Koordinationsgeometrien und resultierende Netzwerke mit linearen, divalenten Linkern. Diese Abbildung wurde aus Referenz [8] entnommen und leicht verändert.

Ein modularer Aufbau erlaubt es durch Substitution der SBUs und/oder der organischen Linker neue Gerüstverbindungen zu synthetisieren. Ist ein erhaltenes Koordinationspolymer permanent porös, spricht man von porösen Koordinationspolymeren (engl. porous coordination polymer, PCP), wenn es zusätzlich kristallin ist auch von metallorganischen Gerüstverbindungen (engl. metal-organic frameworks, MOFs).^[16] Als permanent porös werden kristalline oder amorphe

Substanzen bezeichnet, die Hohlräume besitzen, in denen reversibel Gastmoleküle eingelagert werden können. Die Ausmaße dieser Hohlräume sind primär abhängig von Größe, Geometrie und Valenz der Bausteine und können von Mikroporen (< 2 nm) bis zu Mesoporen (2 - 50 nm) reichen.^[17] Die innere Oberfläche der Poren kann leicht mehrere 1000 m²/g betragen. Der bisherige Rekord liegt bei MOF-210^[18] mit 6240 m²/g, was ungefähr der Fläche eines Fussballfeldes pro Gramm Material entspricht. Andere poröse Materialen, wie Zeolithe und Aktivkohlen, besitzen deutlich geringere innere Oberflächen und Porendurchmesser.^[19-23]

Die hohe Porosität und die damit verbundene geringe Dichte in Kombination mit dem modularen Aufbau von MOFs eröffnen dieser Verbindungsklasse eine Vielzahl von potentiellen Anwendungsgebieten.^[24,25] MOFs könnten Einsatz zur Speicherung und Trennung von Gasen oder Flüssigkeiten,^[26,27] in Ionenaustauschern,^[28,29] in Sensoren,^[30-33] in heterogenen Katalysatoren,^[34-37] als Wirkstofftransporter,^[38-40] oder in (opto)elektronischen Bauteilen^[41-44] finden.

2.2 MOFs in (opto)elektronischen Bauteilen

Unser Interesse konzentrierte sich auf die Anwendung von MOFs in (opto)elektronischen Bauteilen. Für diese Anwendung müssen alle Bestandteile des MOFs - die anorganische SBU, der organische Linker und etwaige Gastmoleküle im Hohlraum - berücksichtigt werden. Ich fokussierte meine Arbeiten zunächst auf die organischen Linkermoleküle. Der Aufbau und die optische bzw. optoelektronische Charakterisierung der MOFs wurde an der Leibniz Universität Hannover durchgeführt. In organischen, (opto)elektronischen Bauteilen finden vor allem π -konjugierte Oligo- bzw. Polymere Anwendung.^[45] Die Anwendungsgebiete der organischen Elektronik umfassen z. B. organische Leuchtdioden (engl. organic lightemitting diods, OLEDs),^[46-48] Solarzellen,^[49,50] Laser^[51,52] und Transistoren^[53,54]. Eine Auswahl konjugierter Oligo- bzw. Polymergrundkörper^[55,56] ist in Abb. 3 zusammengestellt.

Abb. 3: Organische Halbleiter.

Die optischen und elektronischen Eigenschaften von MOFs aus Linkern mit großen π-Svstemen und halbleitenden Metall-Sauerstoff-Clustern sind von grundlegendem Interesse.^[57] Die definierte geometrische Anordnung der beiden Bausteine eines solchen organisch-anorganischen Hybridmaterials erlauben es Energie- und Ladungstransferprozesse gezielt zu variieren und dadurch besser zu verstehen.^[58] Die einzelnen π -konjugierten Linker werden, anders als in Lösung, innerhalb des starren Gerüstes in einer festgelegten Struktur fixiert. Dies könnte die Fluoreszenzguantenausbeute der π -konjugierten Linker und die Lebenszeit eines angeregten Zustandes erhöhen.^[59] Die permanente Porosität erlaubt es. die verwendeten Bausteine isoliert zu studieren oder deren Zusammenspiel mit unterschiedlichen Gastmolekülen zu untersuchen, wobei sich Absorptions- und sollten.[58] Emissionswellenlängen sowie Intensitäten verschieben Eine Zusammenfassung der Absorptions- und Emissionsmöglichkeiten, sowie mögliche Energie- und Ladungstransferprozesse sind in Abb. 4 zusammengestellt.^[59]

Abb. 4: Energie- und Ladungstransferprozesse.^[59]

Ein interessantes Forschungs- bzw. Anwendungsgebiet, worin solche Energie- und Ladungstransferprozesse eine große Rolle spielen, ist die farbstoffsensibilisierte Solarzelle (engl. dye-sensitized solar cell, DSSC) oder Grätzel-Zelle.^[60-63] Eine schematische Darstellung der Komponenten und Funktionsweise einer konventionellen DSSC ist in Abb. 5 illustriert.^[64]

Abb. 5: Aufbau und Funktionsweise einer DSSC. TCO = transparentes leitfähiges Oxid (engl. transparent conducting oxide); D = Farbstoff (engl. Dye); HTM = Lochleiter (hole-transport material); CB = Leitungsband (engl. conducting band). Diese Abbildung wurde aus Referenz [64] entnommen.

Innerhalb einer DSSC ist eine transparente Photoanode (z. B. Indiumzinnoxid) mit einem mesoporösen Halbleiter, typischerweise TiO₂, beschichtet. An der Oberfläche dieses nanokristallinen Halbleiters ist ein sensibilisierender Farbstoff adsorbiert.^[65] Dieser Farbstoffsensibilisator sollte eine breite Absorption im sichtbaren Bereich des elektromagnetischen Spektrums besitzen, um eine optimale Ausnutzung des terrestrischen Sonnenspektrums zu gewährleisten. Desweiteren befindet sich in einer DSSC ein Elektrolyt-System als Lochleitermaterial, typischerweise I/I_3 , und eine Gegenkathode. Einfallendes Licht passender Wellenlänge wird von dem Farbstoff auf der Oberfläche des mesoporösen Halbleiters absorbiert. Ausgehend vom photoinduzierten angeregten Zustand des Farbstoffsensibilisators erfolgt die Ladungstrennung. Durch Elektronenübertragung in das Leitungsband des Halbleitermaterials geht der Farbstoff in seine oxidierte Form über.^[66] Die Regeneration des Sensibilisators erfolgt durch das Lochleitermaterial, welches den Farbstoff wieder in seinen Ausgangszustand reduziert. Die oxidierte Form des

Lochleiters wird ihrerseits an der Gegenelektrode durch Elektronen aus dem externen Stromkreis reduziert. Der Wirkungsgrad einer Solarzelle wird bestimmt durch die Effektivität der beschriebenen Prozesse.^[67] Die effektivsten DSSCs 10%.[68-72] Zu wichtigsten einen Wirkungsgrad um den besitzen Energieverlustmechanismen zählen Ladungsrekombinationen an der Grenzfläche des porösen Halbleiters mit entweder dem oxidierten Farbstoff oder dem oxidierten Lochleitermaterial.^[67] Ursache hierfür sind vor allem niedrige Elektronenwanderungsgeschwindigkeiten, geringe Lochmobilitäten und ein schlechter Kontakt an der Farbstoff-Lochleiter-Grenzfläche, wobei geringe Elektronenwanderungsgeschwindigkeiten überwiegend auf lange Verweildauern an den Grenzflächen zweier Halbleiterpartikel zurückzuführen sind.^[73-77] Hier könnten MOFs mit halbleitenden SBUs möglicherweise eine Verbesserung erzielen, wenn es gelingt, diese porösen Gerüste gezielt und orientiert auf einem elektrisch leitenden Substrat aufwachsen zu lassen.^[78,79] Der Aufbau einer solchen "MOF-DSSC" sollte sich nur unwesentlich von einer konventionellen DSSC unterscheiden (Abb. 6, links).

Abb. 6: (a) Prinzipieller Aufbau einer MOF-DSSC. Diese Abbildung wurde aus Referenz [64] entnommen und stark verändert. (b) Mögliche Lage des Sensibilisators: blau = in der Pore, rot = im Linkerrückgrat, grün = in der Linkerseitenkette).

Wesentliche Unterschiede sind unter anderem die hohe Porosität des MOF-Halbleiters und dessen hybride Natur aus π -konjugierten, organischen Linkern und halbleitenden, anorganischen Metallclustern. Die hohe Porosität könnte den Zugang des lochleitenden Elektrolyten verbessern. Der hybride Charakter eröffnet die Möglichkeit den Farbstoffsensibilisator nicht nur durch Adsorption an der Oberfläche bzw. in der MOF-Pore zu binden. Vielmehr kann er als Bestandteil des Gerüstes verwendet werden, wobei er sich entweder im Rückgrat des organischen Linkers oder in dessen Seitenkette befinden kann (Abb. 6, rechts).

2.3 Variation der optoelektronischen Eigenschaften

Die Erforschung der (opto)elektronischen Eigenschaften von MOFs ist, im Hinblick auf mögliche Anwendungen in optoelektronischen Bauteilen, von breitem Interesse. Eine Manipulation dieser Eigenschaften kann durch Variation der SBU, der Linker oder der Umgebung erfolgen. Die Variation der Linkermoleküle war eine zentrale Fragestellung dieser Arbeit. Eine sehr elegante Methode der Manipulation der organischen Linker bieten postsynthetische Modifikationen.^[34,35,80-82] Hierbei werden Reaktionen an funktionellen Gruppen der Linker eines existierenden MOFs durchgeführt. In Schema 1 ist dies veranschaulicht. Zunächst wird ein MOF mit modifizierbaren Linkern synthetisiert. Anschließend werden die organischen Linker einer postsynthetischen Modifikation unterzogen, wobei ein neues MOF mit modifizierten Linkern und veränderten Eigenschaften entsteht.

Schema 1: Postsynthetische Modifikation (PSM).

In dieser Arbeit werden die Synthesen mehrerer π -konjugierter Linkermoleküle und postsynthetische Modifikationen an einigen organischen Linkern im MOF-Kristall beschrieben. Der Aufbau der MOFs und deren Charakterisierung sind eigene

Dissertationsprojekte an der Leibniz Universität Hannover. Diese werden von Dipl. Chem. Andreas Schaate im Arbeitskreis von Prof. Dr. Peter Behrens bzw. von Dipl. Chem. Jana Panke im Arbeitskreis von Prof. Dr. Michael Wark (seit Jan. 2011 an der Ruhr-Universität Bochum) bearbeitet. Die Resultate dieser beiden Projekte, sowie weiterer Kooperationen werden an entsprechender Stelle Erwähnung finden.

3 MOF-Baukasten

3.1 Der anorganische Knotenpunkt

Es sind eine Vielzahl von SBUs bekannt, aus denen sich MOFs aufbauen lassen.^[13,14] Die geeignetsten anorganischen Knotenpunkte eines MOFs aus π -konjugierten Linkern und halbleitenden Metallclustern erschienen für unsere Ziele zunächst Metall-Sauerstoff-Cluster des Elements Zink zu sein.

Abb. 7: Sekundäre Baueinheiten (SBUs) von MOF-5^[83], MOF-69C^[84] und UiO-66^[85].

Zink(II)oxid ist ein intrinsischer, n-typischer Halbleiter, allerdings mit großer Bandlücke (E = 3.3 eV).^[86] Außerdem wurden MOF-5 (auch bekannt unter IRMOF-1), dem bekanntesten Vertreter dieser Verbindungsklasse, von einigen theoretischen^[87,88] und experimentellen^[89-95] Arbeiten ZnO-ähnliche halbleitende und photokatalytische Eigenschaften attestiert. Dies steht jedoch im Widerspruch zu neueren experimentellen Resultaten von Jana Panke^[96] und Feng et al.^[97] sowie einer theoretischen Arbeit^[98], die MOF-5 als Isolator mit einer Bandlücke von 5.0 eV beschreibt. Die gemessenen Photolumineszenz-Spektren^[92] sowie die beobachteten halbleitenden und photokatalytischen Eigenschaften^[91] lassen sich wahrscheinlich auf ZnO-Partikel zurückführen. Diese Partikel werden entweder bei der Synthese gebildet oder Entspringen der Hydrolyse von MOF-5. Die Labilität von MOF-5 gegenüber Wasser geht so weit, dass selbst die Feuchtigkeit in der Raumluft genügt, um Material dieses MOFs innerhalb eines Tages vollständig zu zerstören.^[99,100]

bitter dieser instabilität gegenüber wasser und Eutredchtigkeit leiden nicht nur die zinkbasierten MOFs. Die meisten Vertreter dieser Verbindungsklasse besitzen nur eine enttäuschende chemische Stabilität und werden bereits von Wasser oder in leicht saurem bzw. basischem Milieu hydrolysiert. Eine prominente Ausnahme stellt UiO-66 (Abb. 8, links) mit einer zirkoniumbasierten SBU dar (Abb. 7, rechts).^[85,101] Neben außergewöhnlich hohen mechanischen und thermischen Stabilitäten ($T_{decomp} = 540$ °C) ist die chemische Stabilität bemerkenswert.^[102] Selbst nachdem UiO-66-Material 24 Stunden in Wasser gelagert wurde, zeigte eine Analyse durch Röntgenpulverdiffraktometrie (engl. powder x-ray diffraction, PXRD) nahezu keine Veränderung.

Abb. 8: Elementarzellen von Zr-MOFs (UiO = Universitetet i Oslo). Zur besseren Übersicht sind die Wasserstoffatome der aromatischen Linkern nicht gezeigt.

Zirkonium(IV)oxid besitzt eine Bandlücke von 5.0 eV und ist als Isolator zu betrachten.^[102] Dennoch werden ZrO₂^[103] und sogar UiO-66^[104] photokatalytische Eigenschaften unter Bestrahlung mit UV-Licht bescheinigt. In Experimenten von Jana Panke konnten die photokatalytischen Eigenschaften von UiO-66 allerdings nicht bestätigt werden.^[105] Resultate theoretischer Rechnungen^[87] zeigen an, dass die Bandlücke von MOFs gleicher Topologie^[12] nahezu unabhängig von den verwendeten Metallen ist. Stattdessen hängt die Bandlücke hauptsächlich von der Anzahl der delokalisierten π-Elektronen des Linkermoleküls ab. So errechnen die Autoren derselben Arbeit, welche MOF-5 als Isolator mit einer Bandlücke von 5.0 eV ermittelt hatte, die theoretische Bandlücke in IRMOF-8 und -10 auf 4.0 eV (Abb. 1).^[98] Vielleicht kann der Einsatz von Linkern mit größeren konjugierten π-Systemen diese Bandlücke noch weiter reduzieren.

Ein genereller Trend, der bei MOFs beobachtet wird, ist allerdings, dass eine Erhöhung der Länge des verwendeten Linkers normalerweise eine Verringerung der allgemeinen Stabilität des resultierenden MOFs nach sich zieht.^[106] Ein gutes Beispiel hierfür ist UiO-67 (Abb. 8, rechts), welches im Gegensatz zu UiO-66 in wässriger Lösung nicht stabil ist.^[107] Desweiteren resultiert die Verwendung eines längeren Linkers nicht zwangsläufig in einer Vergrößerung der Porosität des MOFs. Stattdessen werden häufig interpenetrierte Netzwerke erhalten (Abb. 9).^[108,109] Bei diesem Phänomen sind innerhalb des MOFs ein oder mehrere weitere Gerüste vorhanden, was typischerweise zu einem deutlich reduzierten freien Porenvolumen führt. Dies ist ein fundamentales Problem, denn wird der Hohlraum größer, so findet darin irgendwann zwangsläufig eine weitere SBU Platz. Jeder Zr₆O₄(OH)₄-Cluster in Zr-MOFs wird von zwölf Linkermolekülen koordiniert. Hieraus ergeben sich zwei unterschiedliche Porentypen, wobei die eine tetraedrisch und die andere oktaedrisch geformt ist.^[26,101] Die Interpenetrationsmöglichkeiten sind in Zr-MOFs durch die auffallend hohe Zahl der koordinierenden Linkermoleküle und deren geometrische Lage im Gerüst eingeschränkt, was einen weiteren Vorteil der UiO-Materialien erkennen lässt.

Abb. 9: Interpenetration am Beispiel des einfach interpenetrierten IRMOF-15. Zur besseren Übersicht sind die Wasserstoffatome der aromatischen Linker nicht gezeigt. Diese Abbildung wurde aus Referenz [110] entnommen.

Eine weitere faszinierende SBU besitzt MOF-69C. Dieses MOF mit einer endlosen, säulenförmigen SBU wird gebildet, wenn MOF-5 nur teilweise hydrolysiert wird (Abb. 7, mitte).^[99,111] Die direkte Darstellung eines MOFs mit diesen endlosen Zn-(µ₃-OH)-Zn-Ketten ist auch möglich.^[84,112] MOFs mit dieser SBU sind für (opto)elektronische Anwendungen besonders interessant, da man sich Ladungs- und Energiemigration entlang der SBU vorstellen könnte. Erwähnung soll finden, dass weitere säulenförmige SBUs auf Zinkbasis existieren, diese treten allerdings nur in Gegenwart von tri- bzw. tetravalenten organischen Linkern auf.^[84]

3.2 Der organische Linker

Nur Carboxylatgruppen an den organischen Linkern kamen als Donorfunktionen für die Metall-Sauerstoffcluster in Frage, denn nur in Gegenwart dieser Gruppen bilden sich die drei, im vorherigen Abschnitt besprochenen SBUs aus (Abb. 7). Lange Linkermoleküle führen häufig nicht nur zu interpenetrierten Netzwerken und bewirken im Vergleich zu kürzeren Analoga normalerweise eine Minderung der Stabilität. Man konnte zudem davon ausgehen, dass sie auch die Synthese und Analyse eines MOFs erschweren würden. Die Synthese regelmäßiger Gerüste wird durch die erhöhte Flexibilität der jeweiligen Bausteine beeinträchtigt, wobei die Analyse des kristallinen Materials aufgrund der vergrößerten Elementarzelle und etwaigen Interpenetrationen diffiziler wird. Nur leistungsfähige Einkristallröntgendiffraktometer sind in der Lage, die Reflexe einer großen Elementarzelle zu analysieren. Hierzu werden außerdem große Einkristalle benötigt. Fallen in einer Synthese nur kleine Kristalle an, so verläuft die Analyse über Röntgenpulverdiffraktometrie. Der Vergleich des gemessenen Pulverdiffraktogramms mit dem berechneten Pulverdiffraktogramm einer bekannten Elementarzelle kann eine Struktur bestätigen oder wiederlegen.

Ich beschränkte mich zunächst auf möglichst starre, lineare, divalente Dicarbonsäuren. Dies hatte mehrere Gründe. Zum einen ist die Synthese von MOFs mit linearen und divalenten Linkern deutlich etablierter als die Synthese von gewinkelten bzw. multivalenten Linkermolekülen.^[113,114] Zum anderen erhöhen starre Linkermoleküle die Stabilität des resultierenden MOFs. MOFs mit flexiblen Linkern sind normalerweise nicht permanent porös und es kommt zum Zusammenbruch der MOF-Struktur beim Entfernen der Gastmoleküle.^[115]

In Abb. 3 ist eine Auswahl an Polymeren mit konjugiertem π -Elektronensystem dargestellt. Polymere kommen als organische Linker nicht in Frage. Es werden monodisperse Linkermoleküle benötigt, um regelmäßig geformte Gerüste aufbauen zu können. Außerdem sind Polymere zu lang, um stabile und permanent poröse MOFs zu bilden. Wie bereits erwähnt, sinkt die allgemeine Stabilität eines MOFs mit der Länge des organischen Linkers, weshalb zunächst die Synthese und optische Charakterisierung von MOFs aus kürzeren Linkern mit möglichst langem, ausgedehntem π -System untersucht wurde.

Die Entscheidung fiel auf Moleküle aus para-Phenylen- und/oder Ethinylen-Bausteinen. Aufgrund dieser Bausteine besitzen solche Moleküle ein ausgedehntes konjugiertes π -Elektronensystem und eine lineare, formtreue Struktur.^[116,117] Linker mit Thiophen-^[118] Pyrrol-^[119] und Fluorenbausteinen^[120] sind nicht linear. Ebenso bewirken trans-substituierte Vinyleinheiten eine "Stufe" im Linkermolekül.^[121] Es ist Oligo(*para*-phenylene) Oligo(para-phenylenethinylen)e bekannt. dass und (elektro)lumineszent sind, wobei die emittierten und die absorbierten Wellenlängen abhängig von der Größe des konjugierten π-Elektronensystems und den Substituenten am Phenylenbaustein sind.^[122-124] Außerdem können diese "molecular wires" sowohl Ladungen als auch Energie transportieren.^[125-129] Ihre Synthese kann über Pd-katalysierte C-C Kreuzkupplungen verlaufen.^[130,131] Dies erlaubt eine einfache Zugänglichkeit von Molekülen in monodispersen und einstellbaren

Längen.^[132-135] Desweiteren ist diese Synthese tolerant gegenüber vielen funktionellen Gruppen inklusive einer Vielzahl von Heterozyklen. In Abb. 10 sind die Grundkörper der im Rahmen dieser Arbeit synthetisierten π -konjugierten Disäuren nach aufsteigender Länge sortiert.

Abb. 10: Grundkörper.

3.3 Eine heiße Sache

MOFs sind aufgrund ihrer interessanten Eigenschaften und potentiellen Anwendungsbereiche ein derzeit sehr intensiv beforschtes Themengebiet.^[136] Seit der Publikation von MOF-5^[83] im Jahre 1999 ist die Anzahl der Veröffentlichungen auf diesem Themengebiet rasant angestiegen. Der Hauptanteil der veröffentlichten Arbeiten behandelt MOFs mit kurzen, kommerziell erhältlichen, organischen Linkern. Der modulare Aufbau eines MOFs erweckt den Eindruck, dass die Synthese unproblematisch ist und Metallcluster und/oder organische Linker beliebig variiert werden können. Dem ist nicht so, denn die Synthese von MOFs ist sehr empfindlich gegenüber Veränderungen.^[137] Betrachtet man den organischen Linker, gehören hierzu zum Beispiel eine Veränderung der Länge oder des sterischen Anspruches sowie die Einführung und Variation von funktionellen Gruppen. Werden Parameter verändert, gelingt häufig die Darstellung des MOFs nach den bewährten Synthesebedingungen nicht mehr. Ob Bedingungen, welche eine MOF-Synthese ermöglichen, gefunden werden können, hängt vom jeweiligen System ab. Die Synthese eines neuen MOFs ist in keinem Fall trivial.

Postsynthetische Modifikationen können die MOF-Synthese vereinfachen. Hierbei werden aus einer bewährten und synthetisierbaren MOF-Struktur durch chemische Reaktionen an den organischen Linkern oder Metallclustern neue MOFs erschaffen. Postsynthetische Modifikationen sind sehr gut geeignet, um mit dem MOF-Aufbau inkompatible, funktionelle Gruppen, wie beispielsweise freie Carbonsäurefunktionen, in das MOF zu integrieren.^[81]

In unserer Kooperation wollten wir die Synthese und Analyse von MOFs aus den drei in Abschnitt 3.1 besprochenen SBUs und langen, π -konjugierten Linkern konzipieren und verstehen. Um dies zu realisieren, wurde zunächst mit der Synthese von relativ kurzen, linearen Dicarbonsäuren begonnen, um anschließend zu immer längeren Dicarbonsäuren überzugehen. Einige der synthetisierten Dicarbonsäuren besitzen adressierbare, funktionelle Gruppen, was die resultierenden MOFs zugänglich für postsynthetische Modifikationen machte.

4 Linkersynthesen

4.1 Tolan-Linker

Der kürzeste Grundkörper, welchen wir für unsere Zwecke einsetzen wollten, ist die 4,4'-Tolandicarbonsäure (I). Mit dieser Verbindung bzw. Derivaten dieses Grundkörpers wurden bereits wenige MOFs aufgebaut.^[138-142] Hervorzuheben sind vor allem die postsynthetisch modifizierbaren, brom- bzw. hydroxyfunktionalisierten Zn-MOFs von Gadzikwa et al.^[139] Auch ich wollte die resultierenden MOFs zugänglich für postsynthetische Modifikationen machen und entschied mich in Position 2 eine Aminogruppe einzuführen. Eine Aminofunktion stört im Allgemeinen den Aufbau eines MOFs nicht und kann auf verschiedene Art und Weisen modifiziert werden.^[81] Innerhalb eines MOFs sind bislang postsynthetische Modifikationen von Iminen,^[145-148] Aminen,^[143,144] Aziden.^[149] primären Aminen zu sekundären

Carbonsäureamiden^[143,150-163] und Harnstoffderivaten^[150,164,165] publiziert. Meine Synthese einer Tolandicarbonsäure **1** mit primärer Aminofunktion lieferte sehr gute Ausbeuten und ist in Schema 2 dargestellt.

Schema 2: Darstellung der Tolandicarbonsäure 5.

Ausgehend von 4-lodbenzoesäureethylester (**6a**) wurde das geschützte Alkin **7a** in einer Sonogashira-Hagihara-Kupplung erhalten. Eine anschließende Entschützung lieferte das terminale Alkin **8a**, welches einen wichtigen Synthesebaustein dieser Arbeit darstellt und in vielen weiteren Synthesen eingesetzt wurde. 2-Amino-4,4'-tolandicarbonsäure (**1**) konnte nach einer zweiten C-C-Kreuzkupplung aus 3-Amino-4-iodbenzoesäuremethylester und dem Alkin **8a** und anschließender basischer Verseifung der beiden Estergruppen isoliert werden. In den beiden letzten Reaktionsschritten wurden keine Anzeichen einer Isomerisierung der Tolane **1** oder **9** zu den Indolderivaten **10** gefunden (Abb. 11). Diese Isomerisierung könnte in der C-C-Kreuzkupplung zum Diester **9** sowohl Cu(I)- als auch Pd(II)- oder in dem Verseifungsschritt zur Disäure **1** basenmediiert ablaufen.^[166-169] Anscheinend tritt sie bei den von mir gewählten Reaktionsbedingungen nicht auf.

10

Abb. 11: Indolderivat 10.

Mit der Tolandisäure **1** gelang es Andreas Schaate Zn- und Zr-MOFs darzustellen.^[107] In seinen Synthesen kam Benzoesäure als Modulator zum Einsatz.^[170,171] Diese monovalente Carbonsäure konkurriert mit der Disäure **1** um die Koordinationsstellen am Metallcluster und verringert wahrscheinlich so die Geschwindigkeit des MOF-Aufbaus, was die Kristallinität des erhaltenen Materials erhöht. Die genaue Analyse der Zn-MOFs schlug bislang fehl, da die erhaltenen Einkristalle sehr instabil sind.^[107] Bei dem hergestellten Zr-MOF handelt es sich um ein UiO-66-Analogon.^[107]

4.2 Terphenyl-Linker

Der nächstlängere, in Abb. 10 dargestellte Grundkörper, welcher für die Synthese von MOFs benutzt werden sollte, ist die 1,1':4',1"-Terphenyl-4,4"-dicarbonsäure (II). Die Überlappung der π -Elektronen bei *para*-Terphenylen ist aufgrund der Verdrillung der drei aromatischen Ringe zueinander herabgesetzt. In Lösung beträgt der Verdrillungswinkel in unsubstituiertem Biphenyl 20-30°.^[172] Trotzdem besitzt *p*-Terphenyl interessante Fluoreszenzeigenschaften und emittiert Licht bis in den kurzwelligen sichtbaren Bereich (λ_{max} (*p*-Terphenyl) = 340 nm^[173], zum Vergleich λ_{max} (Tolan) = 331 nm^[174]).

Der unfunktionalisierte Grundkörper II ist kommerziell erhältlich und sehr schlecht löslich. Dieser wurde für die Synthese des interpenetrierten IRMOF-15 (Abb. 9) und des uninterpenetrierten Pendant - IRMOF-16 - verwendet.^[12,110] Substituierte Analoga des Terphenylgrundgerüstes II wurden bereits für die Synthese von Zn- und Cu-MOFs verwendet.^[175-186] Bemerkenswert ist IRMOF-77 mit einem angebundenen Pd-Komplex, welches Oisaki et al. gelang aus einem vorgefertigtem Komplex **11** zu synthetisieren (Schema 3).^[176]

Schema 3: IRMOF-77 mit einer Zn₄O-SBU. Zur besseren Übersicht sind die Wasserstoffatome des aromatischen Linkers in der Elementarzelle (rechts) nicht gezeigt. Die gelbe Kugel verdeutlicht die zugängliche Pore des MOFs. Diese Abbildung wurde aus Referenz [176] entnommen und verändert.

Analog zur Tolandisäure 1 wurden in dieser Disäure-Serie Terphenyldicarbonsäuren 2 mit funktionellen Gruppen dargestellt, welche postsynthetische Modifikationen ermöglichen. Ein positiver Nebeneffekt der eingebrachten Substituenten ist, dass die Löslichkeit der Terphenyldisäuren 2 im Vergleich zum unsubstituierten *para*-Terphenylgrundkörper II signifikant erhöhen. Neben einer Disäure 2a mit der postsynthetisch modifizierbaren Aminogruppe wurden Disäuren 2b-e mit Hydroxy-, Propargyl- und Furan-2-ylfunktionen am zentralen Benzolring synthetisiert. Diese drei funktionellen Gruppen eröffnen weitere Möglichkeiten der postsynthetischen Modifikation. Eine Hydroxygruppe lässt sich analog zu einer primären Aminofunktion acylieren und alkylieren. Eine Propargylgruppe ermöglicht unter anderem Azid-Alkin-Cycloaddition.

Postsynthetische Alkylierungsreaktionen von Hydroxy- oder Aminogruppen können Vorteile gegenüber postsynthetischen Acylierungen besitzen, da die Produkte einer Alkylierung (Ether bzw. sekundäres Amin) normalerweise eine höhere chemische Stabilität als die Produkte einer Acylierung (Carbonsäureester bzw. -amid) besitzen. Allerdings verlaufen Alkylierungen dieser beiden funktionellen Gruppen typischerweise unter drastischeren Bedingungen als Acylierungen, was im Falle von postsynthetischen Modifikationen einem fragilen MOF-Gerüst schaden könnte. Die Alkylierung eines Phenolderivates^[187,188] kann unter deutlich milderen Bedingungen durchgeführt werden als die eines Anilinderivates,[189] wodurch ein Vorteil der Hydroxygruppe gegenüber der Aminogruppe erkennbar wird. Desweiteren kann es bei der Alkylierung eines primären Amins leicht zu weiteren Alkylierungsreaktionen kommen, wobei tertiäre oder sogar guartäre Amine gebildet werden. Im Falle einer phenolischen OH-Gruppe kann die Alkylierungsreaktion nur einmal ablaufen. Ein potentieller Nachteil von hydroxyfunktionalisierten Disäuren ist die koordinierende Eigenschaft dieser Gruppe, weshalb sie selten in MOFs eingesetzt werden.^[175,181,190-194] Die Alkoholgruppe kann die Darstellung eines MOFs erschweren, vollständig verhindern oder zu unerwarteten Gerüststrukturen führen.^[84,195-197]

Eine Propargylgruppe hingegen sollte die Synthese eines MOFs nur wenig beeinflussen. Die koordinierende Wirkung und der sterischer Anspruch dieser funktionellen Gruppe sind vergleichsweise gering. Eine terminale Alkinfunktionalität innerhalb eines MOFs ermöglicht eine postsynthetische, kupferkatalysierte Huisgen-Azid-Alkin-Cycloaddition.^[177,185,198,199] Diese Click-Reaktion verläuft normalerweise mit quantitativen Ausbeuten, hoher Regioselektivität und unter einfachen Reaktionsbedingungen.^[200,201] Sie ist unempfindlich gegenüber den meisten funktionellen Gruppen und im Normalfall treten keine Nebenprodukte auf. Nebenreaktionen der organischen Linker im Gerüst würden ein Problem darstellen, da im MOF keine klassischen Trennmethoden angewendet werden können.^[202] Das kristalline Material kann allerdings mit Lösungsmitteln "gewaschen" werden.^[151] Hiermit lassen sich lösliche Reagenz- und Katalysatorrückstände, sowie lösliche Nebenprodukte, die nicht mit dem Gerüst verknüpft sind, entfernen. Die verwendeten Kupferkatalysatoren der Huisgen-Azid-Alkin-Cycloaddition sind typischerweise schwer löslich in organischen Lösungsmitteln und deren Abtrennung vom MOF-Material kann Schwierigkeiten bereiten.

Eine weitere Reaktion der Click-Chemie ist die Diels-Alder-Cycloaddition.^[200,203,204] Sie hat den Vorteil, dass sie normalerweise ohne die Verwendung von Katalysatoren und ohne die Entstehung von Nebenprodukten, allein durch thermische Aktivierung abläuft.^[205-208] Ein elektronenreicher Furan-2-ylrest innerhalb eines MOFs kann eine postsynthetische Diels-Alder-Reaktion mit elektronenarmen Dienophilen erlauben.^[209] Die Synthese sowie die synthetisierten Disäuren 2 mit Terphenylrückgrat sind in Schema 4 dargestellt. Ausgehend von Dihalogenbenzolen 12 wurden über Suzuki-Miyaura-Kupplungen und anschließenden Verseifungen der Diester 13 die Terphenyldisäuren 2 erhalten.

2,12,13	х	R^1	R ²	Ausbeute (%) 13	Ausbeute (%) 2
а	Br	NH ₂	н	91	87
b	-	NH =	н	58	79
с	-		н	42	92
d	Br	OH	OMe	49	91
е	I	$O(CH_2)_3 \rightarrow 0$	OMe	20	78

Schema 4: Darstellung der para-Terphenyldicarbonsäuren 2.

Die Synthese des 2'-Amino-4,4"-dimethoxycarbonyl-*p*-terphenyls (**13a**) über eine Suzuki-Miyaura-Kupplung gelang mit Bedingungen von Littke et al. (Pd₂(dba)₃, P^tBu₃, KF, THF, 50 °C)^[210] ausgehend von Dibromanilin **12a** mit einer guten Ausbeute von 91%. Zuvor hatten die klassischen Bedingungen (Pd(PPh₃)₄, Na₂CO₃, Toluol, Wasser, 100 °C) nur einen geringen Umsatz und eine 12%ige Ausbeute an Terphenyl **13a** nach Säulenchromatographie ergeben. Die Einführung der Propargylgruppe erfolgte nach der Aryl-Aryl-Kreuzkupplung am primären Amin **13a** durch eine Substitutionsreaktion. Die Alkylierungsprodukte **13b** und **13c** wurden nach Reaktion mit Propargylbromid und Kaliumcarbonat in DMF und anschließende säulenchromatographische Trennung isoliert.

Interessanterweise lieferten die Suzuki-Miyaura-Kupplungbedingungen von Littke et al. bei Dibromphenol **12d** keinen Umsatz zu Hydroxyterphenyl **13d**.^[211] An diesem Substrat führten jedoch die klassischen Bedingungen (Pd(PPh₃)₄, Na₂CO₃, Toluol, Wasser, 100 °C) in einer Ausbeute von 22% zu Terphenyl **13d**.^[211] Wurde Methanol zugesetzt, stieg die Ausbeute auf 49% nach Säulenchromatographie und Umkristallisation.

Die Darstellung des furan-2-ylfunktionalisierten Terphenyls **13e** verlief nicht wie die Synthesen der Terphenyle **13a-d** über ein Dibrombenzol **12a-d**. Stattdessen wurde ein Diiodbaustein **12e** verwendet, da lodide als reaktivere Halogenkomponenten in Kreuzkupplungsreaktionen gelten und höhere Ausbeuten versprachen.^[212]

Schema 5: Darstellung des Diiodbausteins **12e**; ^aaus ¹H-NMR-spektroskopischen Daten berechnete Ausbeuten.

Die Synthese der Diiodbenzols 12e verlief über lodierung von 1,4-Dimethoxybenzol (**18f**), Entschützung der Hydroxyaruppe mit Bortribromid und säulenchromatographische Trennung der Diiodbenzole 19 und 20 (Schema 5).^[213] 1-Brom-3-furan-2-ylpropan Anschließend wurde (17) in einer Williamson-Ethersynthese mit Phenol 20 zur Reaktion gebracht und der gewünschte Dijodbaustein **12e** erhalten.^[213] Das benötigte Bromid **17** wurde über eine nucleophile Substitutionsreaktion aufgebaut. Die statistische Reaktion von 1,3-Dibrompropan mit 2-Lithiofuran lieferte eine Mischung aus dem Edukt 1,3-Dibrompropan und den **17**.^[213] 16 und Eine beiden Substitutionsprodukten Abtrennung des 1,3-Dibrompropans von den Substitutionsprodukten 16 und 17 war mittels Destillation möglich. Diese Abtrennung des Eduktes war in Versuchen mit 1,5-Dibrompentan und 2-Lithiofuran sowohl destillativ als auch säulenchromatographisch fehlgeschlagen.^[213] Eine Trennung der beiden Substitutionsprodukte 16 und 17 durch fraktionierte Destillation gelang nicht vollständig. Allerdings behinderte das Disubstitutionsprodukt 16 die folgende Williamson-Ethersynthese zum Diiodbaustein 12e nicht und konnte nach dieser Reaktion leicht säulenchromatographisch entfernt werden. Die Kreuzkupplung des Diiodbausteins 12e wurde nur mit den Kupplungbedingungen von Littke et al. durchgeführt und lieferte einen vollständigen Umsatz dieses Eduktes. Die geringe Ausbeute von 20% ist auf Probleme während der des Produktes 13e zurückzuführen. Es Isolierung wurden zwei Säulenchromatographien und eine Umkristallisation benötigt, um das Terphenyl 13e vollständig von kontaminierendem Biphenyl 21, dem Produkt einer Homokupplung der Boronsäure 14, zu befreien (Abb. 12).

Abb. 12: Homokupplungsprodukt 21.

Wie bereits erwähnt, ist die Überlappung der π -Elektronen in den Terphenyldisäuren **2** aufgrund der Verdrillung ihrer Phenylringe nicht ideal. Der Einsatz höher konjugierter "Mittelstücke" bzw. konjugierter Heterozyklen bietet die Möglichkeit, die Konjugation ohne eine Verlängerung des Rückgrates zu erhöhen und damit die optischen Eigenschaften einer Disäure-Serie (Abb. 10) entscheidend zu

beeinflussen. Durch den Einsatz von 9,10-Dibromanthracen (**12g**¹) in der Suzuki-Miyaura-Kreuzkupplung und anschließender Verseifung erhält man eine Disäure **2g** mit größerem konjugiertem System (Schema 6). Das eng verwandte 9,10-Diphenylanthracen findet wegen seiner hohen Fluoreszenzquantenausbeute (Φ = 0.90) und rein blauen Fluoreszenz in blauen Knicklichtern und OLED-basierten Bildschirmen Anwendung.^[214-218]

Schema 6: Darstellung der Diphenylanthracendisäure 2g.

4.3 MOFs mit Terphenyl-Linkern

Die synthetisierten Terphenyldisäuren **2a-c,e** wurden für den Aufbau von Zr-MOFs verwendet. So gelang es Andreas Schaate mit den Terphenyldicarbonsäuren **2a** und **2e** aminofunktionalisierte bzw. dienfunktionalisierte, UiO-68-analoge Zr-MOFs aufzubauen.^[107,171] Durch die Verwendung eines Modulators (Benzoesäure) konnten mit der Terphenyldisäure **2a** große MOF-Kristalle erhalten werden.^[171] Hiermit waren erstmals Einkristallstrukturanalysen an Zr-MOFs möglich (Abb. 13). Dies ist bemerkenswert, da MOFs aus höher geladenen Kationen (z. B. Zr⁴⁺) normalerweise als kristalline Pulvermaterialien, dessen Kristalle zu klein für Einkristallanalysen sind, anfallen.

Abb. 13: Elementarzelle (links) und Foto (rechts) eines UiO-68(NH₂)-Einkristalls. Diese Abbildungen wurden aus Referenz [171] entnommen.

Florian Hinterholzinger setzte die propargylierten Disäuren **2b** und **2c** in Hochdurchsatz-Screenings ein und es konnten UiO-68-analoge Zr-MOFs mit terminaler Alkinfunktionalität ohne die Zugabe eines Modulators erhalten werden.^[219] Außerdem wurde an der Ludwig-Maximilian-Universität München die aminofunktionalisierte Disäure **2a** in Gegenwart von modulierender Benzoesäure für die Synthese dünner MOF-Filme auf Glas- und Goldsubstraten verwendet, wobei auf der Goldoberfläche ein hochorientiertes Wachstum gefunden wurde (Abb. 14).^[219]

Abb. 14: Sekundärelektronenmikroskopische Aufnahmen der MOF-Filme (links: auf Glas, rechts: auf Gold). Die Aufnahmen wurden von Florian Hinterholzinger zur Verfügung gestellt.
4.4 Butadiin-Linker

Der nächstlängere Grundkörper, den wir für unsere Untersuchungen verwendeten, war das Di-(4-carboxyphenyl)butadiin (III) (Abb. 10). Die Synthese dieses Grundkörpers wurde über eine oxidative Alkindimerisierung (Glaserkupplung) des terminalen Alkinbausteins **8a** und anschließende Verseifung des Diesters **22** realisiert (Schema 7).^[220,221] Aufgrund der sehr leichten Zugänglichkeit aus dem terminalen Alkin **8a** wurde zunächst nur der unfunktionalisierte Grundkörper III synthetisiert.

Schema 7: Synthese der Butadiindisäure III.

Die Butadiindisäure III wurde erfolgreich in der Synthese von Zn-MOFs eingesetzt. Mit ihr konnte Andreas Schaate sowohl das vierfach interpenetrierte IRMOF-62^[222] zeitgleich zu Britt et al. als auch ein uninterpenetriertes MOF mit der säulenförmigen Zn-SBU (Abb. b1, mitte) synthetisieren (Abb. 15).^[107] Ebenso war es möglich, mit der Disäure III ein Zr-MOF der UiO-66-Topologie darzustellen.^[107]

Abb. 15: Elementarzelle eines MOFs aus Disäure III und einer säulenförmigen Zn-SBU. Zur besseren Übersicht sind die Wasserstoffatome der aromatischen Linkern nicht gezeigt. Diese Abbildung wurde von Andreas Schaate zur Verfügung gestellt.

4.5 Di(phenylethinyl)benzol-Linker

Es wurden viele Disäuren des zweitlängsten Grundkörpers IV aus Abb. 10 synthetisiert. In Analogie zu den bisher beschriebenen Synthesen wurden die Di(phenylethinyl)benzoldisäuren 4 über C-C-Kreuzkupplungen und anschließende Verseifungen dargestellt (Schema 8). Ausgehend von den Dihalogenbausteinen 12 wurden über eine Sonogashira-Hagihara-Kupplung mit dem terminalen Alkin 8 und darauffolgende Verseifung der Diester 23 die Dicarbonsäuren 4 erhalten. die Auf Svnthese des unfunktionalisierten Grundkörpers 1.4-Di(4carboxyphenylethinyl)benzols (IV) wurde aufgrund der vermuteten geringen Löslichkeit der Disäure verzichtet. Neben Disäuren 4 mit postsynthetisch modifizierbaren Gruppen, wie Amino, Ethinyl, Furan-2-yl und Maleinimido, wurden auch Disäuren mit Alkyl- und Alkoxysubstituenten verschiedener Länge synthetisiert. Alkyl- bzw. Alkoxysubstituenten unterschiedlicher Längen und Polaritäten an den Disäuren 4f,i-m bewirken unterschiedliche chemische Umgebungen in der Pore des resultierenden MOFs, was für Anwendungsbereiche wie Speicherung, Separation oder Sensorik besonders interessant ist. Die verwendeten Alkvlsubstituenten waren *iso*-Propyl,^[220,223] Hexyl^[220] und Dodecyl.^[220] Als Alkoxysubstituenten wurden Pentoxy^[221] Methoxy,^[221,224] und Undecyloxy,^[225] sowie die polare 2-(2-Methoxyethoxy)ethoxygruppe verwendet. Die benötigten alkylbzw. über Diiodierung^[227] alkoxysubstituierten Diiodbausteine 12f,i-m wurden der Aromaten **18** und/oder Williamson-Ethersynthesen^[226] erhalten (Schema 9). Die C-C-Kreuzkupplung der Diiodbausteine 12f,i-m gelang in allen Fällen unter Standardbedingungen (Schema 8). Auch die Verseifung der erhaltenen Diester 23 verlief ohne Probleme.

4,12,23	х	R ¹	R ²	R ³	Ausbeute (%) 23	Ausbeute (%) 4
a¹	Br	NH ₂	Н	Et	37	92
a²	Br	NH ₂	Н	^t Bu	38	-
e	I	O(CH ₂) ₃	OMe	Me	96	96
f	I	OMe	OMe	Et	96	92
h	-	O N O	Н	^t Bu	87	97
i	Т	ⁱ Pr	ⁱ Pr	Et	97	83
j	I	OPent	OPent	Et	78	73
k	I	$O(CH_2CH_2O)_2Me$	$O(CH_2CH_2O)_2Me$	Et	80	86
I	I	OUndec	OUndec	Et	87	71
m	Ι	Dodec	Dodec	Et	83	89
n	Ι	OCH ₂ CCSi(ⁱ Pr) ₃	OMe	Et	87	77
ο	-	OCH ₂ CCH	OMe	Et	75	79

Schema 8: Darstellung der Di(phenylethinyl)benzoldisäuren 4.

Schema 9: Darstellung der Diiodbausteine 9f,i-m.

Wie bereits angesprochen, sollten die Disäuren **4** neben Alkyl- und Alkoxysubstituenten auch mit funktionellen Gruppen ausgestattet werden, welche postsynthetisch über Alkylierungs-, Acylierungs- oder Cycloadditionsreaktionen angesteuert werden können. Aus diesem Grund wurden die Disäuren **4a**,**e**,**h**,**o** mit Amino-, Furan-2-yl-, Maleinimido- bzw. Ethinylsubstituenten synthetisiert.

Zugänglich für sowohl postsynthetische Alkylierungs- als auch Acylierungsreaktionen sind z. B. Amino- oder Hydroxyfunktionen. Die Synthese der aminofunktionalisierten Disäure **4a** verlief über den Diethylester **23a**¹. Dabei fällt die geringe Ausbeute von 37% bei der Sonogashira-Hagihara-Kupplung auf (Schema 8). Auslöser der geringen Ausbeute ist nicht etwa das Auftreten eines zu **10**-analogen Indolderivates, vielmehr

verläuft die Kreuzkupplungsreaktion mit den gewählten Bedingungen (Pd₂dba₃, Cul P^tBu₃, NEt₃, THF, 50 °C) nicht vollständig. Es wurden große Teile der Edukte **12a** und als auch des Glaserkupplungsproduktes 22 (Schema 8a 7) isoliert. Kreuzkupplungsreaktionen von desaktivierten Bromiden, wie Dibromanilin 12a eines ist, sind häufig knifflig, weshalb eine Vielzahl weiterer Kupplungsbedingungen untersucht wurde. Diese Kupplungsreaktionen wurden mit dem Ethylester 8a durchgeführt und lieferten stets noch schlechtere Ergebnisse. So lieferte z. B. der Einsatz anderer Konditionen (Pd(PPh₃)₂Cl₂, Cul, NEt₃ oder Pd(PPh₃)₄, Cul, ⁿBuNH₂, 75 °C) keine Verbesserung. Im ersten Fall mit dem luftstabilen Pd(II)-Katalysator konnte kein Umsatz zu Diester 23a¹ gefunden werden. Im zweiten Fall wurde immerhin eine Ausbeute von 9% an Diester **23a¹** isoliert. Auch die Verwendung eines anderen Amins (Pd₂dba₃, Cul, P^tBu₃, ⁱPrNH₂, THF, 50 °C) brachte keinen Fortschritt und nur eine Ausbeute von 14% an Diester **23a¹**, weshalb sich mit der geringen Ausbeute von 37% zufrieden gegeben wurde (Pd₂dba₃, Cul P^tBu₃ NEt₃, THF, 50 °C). Erfreulicherweise war die basische Hydrolyse der Ethylestergruppen des Amins 23a¹ problemlos, was die postsynthetisch modifizierbare Disäure 4a zugänglich machte. Durch die hohe Ausbeute in der Synthese der aminofunktionalisierten Tolandicarbonsäure 1 ist zu erwarten, dass eine Synthesevariante der Disäure 4a ausgehend von 2,4-Diiodanilin deutlich bessere Ausbeuten liefert.

Wie bereits erwähnt, ist eine Propargylgruppe befähigt eine kupferkatalysierte [3+2]-Cycloaddition einzugehen. Im Unterschied zu den Terphenyldisäuren **2b** und **2c** wurde für die Disäuren **4n** und **4o** die Propargylgruppe über eine Etherbindung angebracht, da so der Diiodbaustein **12n** leicht zugänglich aus Diiodphenol **20** und Bromid **25** wurde (Schema 10).^[221]

Schema 10: Darstellung des Diiodbausteins 12n.

Das Diiodid **12n** wurde in einer C-C-Kreuzkupplung eingesetzt und lieferte Diester **23n** in einer guten Ausbeute von 87%. Aufgrund der Reaktionsreihenfolge war die Einführung der Tri-*iso*-propylsilyl(TIPS)-Schutzgruppe notwendig, da ein freies terminales Alkin am Diiodbaustein in der Sonogashira-Hagihara-Kreuzkupplung ebenfalls reagieren würde. Das freie terminale Alkin kann über die Abspaltung dieser Schutzgruppe erhalten werden. Dies kann vor der MOF-Synthese, wie in Schema 8 gezeigt, oder nach der MOF-Synthese also postsynthetisch geschehen. Um beide Möglichkeiten offen zu halten, wurden sowohl die TIPS-geschützte Disäure **4n** als auch die Disäure **4o** mit freier terminaler Alkingruppe synthetisiert.

Die Vorteile der Diels-Alder Reaktion wurden bereits in Abschnitt 4.2 erwähnt. Die Disäuren 4e und 4h sind in der Lage diese Reaktion einzugehen, wobei das Furanderivat 4e als Dien und das Maleinimidderivat 4h als Dienophil agiert. Die Diester 23e und 23h wurden nicht wie die anderen Diester 23 als Ethylester synthetisiert, sondern als Methyl- bzw. tert-Butylester. Im Falle des Dimethylesters 23e hat dies keine besondere Relevanz. Die Bedingungen der Entschützung der Disäure 4e, typischerweise basische Bedingungen, sind vergleichbar mit denen für einen Ethylester. Einen möglichen Vorteil bietet jedoch das terminale Alkin 8b, welches im Vergleich zu Ethylester 8a aufgrund seines höher gelegenen Schmelzpunktes leichter zu handhaben ist. Im Falle des Maleinimidderivates 4h war die Anwendung der tert-Butylester als Carboxylschutzgruppen jedoch notwendig, denn eine Imidogruppe ist anfällig gegenüber basischen Bedingungen, mit denen typischerweise gespalten werden.^[228,229] Unter sauren Methyl- und Ethylester Bedingungen, mit denen sich tert-Butylester spalten lassen, ist die Imidogruppe hingegen normalerweise stabil.^[230,231] Die Synthese der beiden für die Alkinyl-Arylkupplung 23e bzw. 23h benötigten, geschützten, terminalen zu Alkinkupplungspartner 8b und 8c ist in Schema 11 dargestellt. Der Methylester 8b wurde durch Umesterung des Ethylesters 7a mit Methanol während der Freisetzung des terminalen Alkins synthetisiert.^[213,224] Der *tert*-Butylester **8c** wurde ausgehend von 4-lodbenzoesäure (26) dargestellt. Steglich-Veresterung^[232] mit *tert*-Butanol, 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimid (EDC) und 4-(Dimethylamino)pyridin (DMAP) lieferte den tert-Butylester 6c. Sonogashira-Hagihara-Kupplung mit Ethinyltrimethylsilan und anschließende Desilylierung lieferte das terminale Alkin 8c. Die Abspaltung der Alkinschutzgruppe erfolgte mit Fluorid in THF, um eine Umesterungen mit Kaliumcarbonat in Methanol oder Ethanol zu vermeiden.

Schema 11: Darstellung der terminalen Alkine 8b und 8c.

Der furan-2-ylfunktionalisierte Diesters **23e** wurde ausgehend von dem Diiodbaustein **12e** und dem Methylester **8b** in einer Sonogashira-Hagihara-Kupplung mit sehr guter Ausbeute von 96% erhalten.^[213] Auch die anschließende basische Verseifung des Methylesters **23e** gelang ohne Probleme und ergab die furanylfunktionalisierte Disäure **4e** in ebenfalls 96%iger Ausbeute.^[213]

Die Synthese der maleinimidofunktionalisierten Disäure 4h verlief über den aminofunktionalisierten Diester 23a². Dieser wurde in einer Sonogashira-Hagihara-Kreuzkupplung ausgehend von Dibromanilin 12a und dem tert-Butylester 8c dargestellt (Schema 8). Wie die Darstellung des Ethylesters 23a¹ lieferte diese C-C-Kreuzkupplung des Dibromanilins 12a ebenfalls nur eine enttäuschende Ausbeute von 38%. Durch eine anschließende Imidierung des 23a² mit Diesters aminofunktionalisierten Maleinsäureanhydrid wurde der maleinimidofunktionalisierte Diester 23h erhalten. Die saure Hydrolyse der tert-Butylgruppen wurde mit Trifluoressigsäure durchgeführt und ergab die Disäure 4h in einer sehr guten Ausbeute von 97%. Die Zugabe eines Kationenabfängers (z. B. Triethylsilan)^[231] war in diesem Syntheseschritt nicht notwendig.

Furan ist aufgrund seiner Aromatizität ein vergleichsweise unreaktives Dien.^[233] Ein Exemplar eines sehr reaktiven Diens ist beispielsweise Cyclopentadien. Dieses ist nicht aromatisch und aufgrund seiner ebenfalls s-cisoiden Form sehr reaktiv in Diels-Alder-Cycloadditionen. Es ist so reaktiv, dass es bei Raumtemperatur nur kurze Zeit haltbar ist. Es dimerisiert in einer [4+2]-Cycloaddition, in der es sowohl als Dien als auch als Dienophil agiert, zu Dicyclopentadien.^[234] Ich wollte diese hohe Reaktivität

für postsynthetische Modifikationen nutzen und erstrebte die Darstellung einer cyclopentadienylfunktionalisierten Disäure, welche für den Aufbau eines MOFs genutzt werden sollte. An einem MOF mit zugänglichen Cyclopentadiengruppen innerhalb der Pore kann man sich, neben einer postsynthetischen Diels-Alder-Cycloaddition, auch die postsynthetische Bildung eines Metallocen-Komplexes^[235,236] vorstellen, was die Attraktivität dieser funktionellen Gruppe weiter erhöhte.

Schema 12: Versuch der Synthese einer cyclopentadienfunktionalisierten Disäure.

Versuche eine cyclopentadienfunktionalisierte Disäure ähnlich der Synthese der furanfunktionalisierten Disäure 4e darzustellen, schlugen jedoch fehl (Schema 12). Zunächst wurde 1,3-Dibrompropan (27) mit Natriumcyclopentadienid in *n*-Pentan zur Reaktion gebracht. Dies lieferte eine Mischung der Substitutionsprodukte 28 und 29 sowie des Bromid-Eduktes 27 im Verhältnis 2:2:1 (27/28/29). Eine destillative Trennung der drei Substanzen gelang und das Monosubstitutionsprodukt 28 wurde in einer Ausbeute von 19% isoliert. Substitutionsreaktionen an Natriumcyclopentadienid ergeben zunächst eine Funktionalisierung des Cyclopentadienringes in Position 5.^[237] °C rasche [1,5]-sigmatrope Bei Temperaturen über 0 treten Wasserstoffverschiebungen auf,^[238,239] welche aus dem Initialisomer **28⁵** die Isomere 28¹ und 28² bilden. In meinem Fall ließ sich das Initialisomer 28⁵ nicht nachweisen und nach der fraktionierten Destillation lagen die beiden Isomere 28¹/28² im Verhältnis 2:3 vor. Die Cyclopentadienderivate 28 lagen bei Raumtemperatur als farblose Flüssigkeit vor und es wurde eine langsam ablaufende Dimerisierung die Substanz bei -18°C gelagert wurde. wo registriert. weshalb diese [4+2]-Cycloaddition nicht gefunden wurde.^[240] Mit Hilfe des Bromids 28 konnte der Diiodbaustein 12p in einer Williamson-Ethersynthese mit dem Diiodphenol 20 dargestellt werden. Auf dieser Stufe betrug das Verhältnis der beiden Isomere 12p¹/12p² nach Säulenchromatographie 4:5. Interessanterweise konnten selbst nach 24 h bei Raumtemperatur keine Anzeichen einer ablaufenden Dimerisierung des Cyclopentadienderivates 12p feststellt werden, weder im Reinstoff noch in Lösung (Chloroform). Die anschließende Alkinyl-Arylkupplung des lodids 12p zum Diester 23p gelang ohne Schwierigkeiten unter Standardbedingungen. Der Cyclopentadienylsubstituent scheint keinen Einfluss auf den Verlauf dieser Kreuzkupplung zu nehmen und neigt auch im Diester 23p nicht zu einer Dimerisierung. Eine Lösung des Diesters 23p in Chloroform zeigte selbst nach 3 d bei Raumtemperatur kein Indiz einer abgelaufenen [4+2]-Cycloaddition. Nach Säulenchromatographie betrug das Verhältnis der beiden Isomere **23p¹/23p²** 3:4. Große Probleme bereitete die Hydrolyse der Ethylestergruppen in 23p und es war nicht möglich eine cyclopentadienfunktionalisierte Disäure zu erhalten. Mehrere, voneinander unabhängigen Versuche zur basischen Verseifungen des Diesters 23p mit sich anschließenden sauren Aufarbeitungen lieferten polymere Produkte.^[241] Aufgrund der Instabilität des Diesters 23p wurde befürchtet, dass der Aufbau von Zr-MOFs, welcher typischerweise unter sauren Bedingungen und erhöhten Temperaturen stattfindet, inkompatibel mit einem Cyclopentadienylsubstituenten ist. Zur Aufklärung dieser Frage wurde der Diester **23p** mit Trifluoressigsäure (10 vol%) in THF behandelt. In diesem Experiment wurden ebenfalls polymere Produkte gefunden, weshalb auf weitere Versuche zur Synthese einer cyclopentadienfunktionalisierten Disäure verzichtet wurde. Ich erwartete, dass die funktionelle Gruppe den Bedingungen des MOF-Aufbaus nicht standhält, und hatte mittlerweile bereits gute Ergebnisse bzgl. der postsynthetischen Modifikation der Furanfunktionalität erhalten.

Wie bereits erwähnt, können die optischen Eigenschaften der Disäuren durch die Verwendung stärker konjugierter "Mittelstücke" getrimmt werden. In dieser Disäure-Serie wurden hierzu 1,4-Dibromnaphthalin (**12q**), 9,10-Diiodanthracen (**12g**²) und 9,10-Dibrom-2,6-di-*tert*-butylanthracen (**12r**) in der Alkinyl-Aryl-Kreuzkupplung eingesetzt (Schema 13). Die Sonogashira-Hagihara-Kupplung des Diiodbaustein **12g**² wurde unter Standardbedingungen durchgeführt. Die C-C-Kreuzkupplung der unreaktiveren Dibrombausteine wurde mit Pd(PPh₃)₄ in *n*-Butylamin durchgeführt.^[242] Aus den erhaltenen Diestern **23g**,**q**,**r** konnten die Dicarbonsäuren **4g**,**q**,**r** durch basische Verseifung und saure Aufarbeitung gebildet werden. Den beiden Disäuren **4g** und **4r** liegt 9,10-Di(phenylethinyl)anthracen zugrunde. Dieses ist wie 9,10-Diphenylanthracen ein sehr effektiver Fluorophor (Φ = 0.87)^[243] und wird aufgrund seiner grünlichen Emission ebenfalls in Knicklichtern und OLEDs eingesetzt.^[244-246]

Schema 13: Darstellung der Dicarbonsäuren 12g,q,r.

4.6 MOFs mit Di(phenylethinyl)benzol-Linker

Linkermoleküle basierend auf Di-(4-carboxyphenylethinyl)benzol (**IV**) wurden zeitgleich zu dieser Arbeit für den Aufbau von MOFs verwendet.^[18,106,224,247-253] Beschrieben ist beispielsweise das vierfach interpenetrierte MOF-1000 aus der Disäure **4f** und dem Zn₄O-Cluster (Abb. b1, links). Interessant sind auch die nicht interpenetrierten MOF-1001 und MOF-1002 mit kronenetherfunktionalisierten Linkermolekülen (Abb. 16).^[224,249]

Abb. 16: Zn-MOFs mit substituierten 1,4-Di-(4-carboxyphenylethinyl)benzolen. Zur besseren Übersicht sind die Wasserstoffatome der aromatischen Linker in den Darstellungen der Elementarzellen nicht gezeigt. Diese Abbildung wurde aus Referenz [249] entnommen und leicht verändert.

Bemerkung sollen auch die Kupferverbindungen MOF-1011 und MOF-1030 mit catenierten Linkermolekülen (Abb. 17) finden.^[247,248] MOF-1011 mit einem 1,4-Di-(4-carboxyphenylethinyl)benzol-Linker kristallisierte nur in einer zweidimensionalen Schichtstruktur, wobei MOF-1030 mit seinem außergewöhlich langen Linkermolekül als dreidimensionales MOF erhalten wurde.^[248]

Abb. 17: [2]-Catenane als Linkerbausteine in MOFs (links: MOF-1011, rechts: MOF-1030).

Andreas Schaate konnten mit Hilfe der Disäure **4f** ein Zn-MOF mit der säulenförmigen SBU (Abb. 7, mitte) darstellen (Abb. 18, links).^[107] Die anderen Disäuren **4** wurden nicht zum Aufbau solcher Zn-MOFs verwendet. Hauptaugenmerk lag in der Darstellung von Zr-MOFs, was mit den Disäuren **4a**,**e**,**f**,**i**-**o** gelang (Abb. 18, rechts).^[254] Die erhaltenen Zr-MOFs sind interpenetriert und die Linkermoleküle sind gebogen. Hieraus resultieren zunächst zwei unterschiedliche, tetraedrische Poren. Innerhalb der konkaven Pore befindet sich die SBU des interpenetrierenden Netzwerkes. Die konvexe Pore ist frei von SBUs und besitzt einen Durchmesser von ca. 19 Å.^[254]

Abb. 18: Elementarzellen synthetisierter MOFs. Links: Zn-MOF aus Disäure **4f**. Die Methoxysubstituenten sind statistisch am mittleren Benzolring verteilt. Rechts: Poröse, interpenetrierte Zirkonium-organische Gerüste (engl. porous, interpenetrated zirconium organic frameworks, PIZOFs). Das interpenetrierende Netzwerk ist in rot dargestellt. Die Substituenten am zentralen Benzolring des Linkers sind nicht abgebildet. Diese Abbildungen wurden von Andreas Schaate zur Verfügung gestellt. Zur besseren Übersicht sind die Wasserstoffatome der aromatischen Linker nicht gezeigt.

Versuche, ein PIZOF mit der Naphthalin- bzw. Anthracendisäure **4q** bzw. **4g** herzustellen, gelangen nicht. Gründe hierfür können in der schlechten Löslichkeit der Dicarbonsäuren **4g**,**q** oder in der interpenetrierten Struktur der PIZOFs liegen. Innerhalb der PIZOF-Struktur passieren die Linker eines Gerüstes die Dreiecksfenster des interpenetrierenden Netzwerkes nah an dessen SBU. (Abb. 19). Hierdurch ist sehr wenig Platz in der direkten Umgebung der Linkermoleküle. Innerhalb der Pore in einiger Entfernung zu den Linkerrückgraten ist die räumliche Situation weniger eingeschränkt.

Abb. 19: Anordnung der Dicarboxylatlinker in PIZOFs. Links: Vereinfachte Darstellung. Die Linker sind als Stäbchen, die SBUs sind als Kugeln und das interpenetrierende Netzwerk ist in blau dargestellt. Rechts: Detailliertere Darstellung. Die Substituenten am zentralen Benzolring des Linkers wurden nicht abgebildet. Zur besseren Übersicht sind auch die Wasserstoffatome der aromatischen Linker nicht gezeigt. Diese Ausschnitte der Elementarzellen wurden von Andreas Schaate zur Verfügung gestellt.

Man erkennt, dass eine Vergrößerung des sterischen Anspruches des Disäurerückgrates zu Problemen bei der PIZOF-Bildung führen kann. Dies war der Grund für die Darstellung der Anthracendisäure **4r**. Die *tert*-Butylgruppe erhöht neben der Löslichkeit den sterischen Anspruch des Linkers. Dieser erhöhte Raumanspruch könnte die Struktur eines nicht interpenetrierten Zr-MOFs mit UiO-66 Topologie stabilisieren, was mit den Dicarbonsäuren **4g** und **4q** nicht gelang. Ergebnisse zum MOF-Aufbau mit dieser Disäure **4r** liegen bisher noch nicht vor.

4.7 Gewinkelte Linker

In der PIZOF-Struktur werden die Linker in eine gebogene Struktur gezwungen. Somit ist es denkbar, dass auch gewinkelte Linkermoleküle zur Erzeugung dieser MOF-Struktur in der Lage sind. In Abschnitt 3.2 wurden einige organische Halbleiter aufgrund ihres gewinkelten Charakters als Vorbilder für Linkermoleküle verworfen. Insbesondere betrifft dies Moleküle mit Thiopheneinheiten, welche häufig Anwendung in der organischen Elektronik finden.^[255,256] Um den Einsatz von gewinkelten Linkern in PIZOFs untersuchen zu können, wurde die gewinkelte Dicarbonsäure **30** synthetisiert (Schema 14). Die Furaneinheit ist als "Dummy" für eine Thiopheneinheit zu betrachten. Sie schließt einen Einfluss des Schwefelatoms auf die MOF-Synthese aus. Desweiteren besitzen Oligo- bzw. Polyfurane wie die analogen Thiophen-Moleküle sehr interessante optoelektronische Eigenschaften, allerdings kommen sie aufgrund der geringeren Stabilität und schwierigeren Zugänglichkeit seltener zum Einsatz.^[257] Ferner kann das Furanderivat **30** nach erfolgreichem Einbau in ein MOF-Gerüst postsynthetisch mit einer Diels-Alder-Cycloaddition angesteuert werden, was im Falle eines Thiophenderivates nur schwer möglich wäre. Ob diese [4+2]-Cycloaddition in der MOF-Struktur gelingt, ist jedoch fraglich, denn diese postsynthetische Modifikation erzwingt eine Geometrieänderung des organischen Linkers. Eventuell wird die Winkelveränderung dazu führen, dass die postsynthetische Reaktion nicht abläuft oder das Gerüst zerstört wird. Von den "atmenden" MILs (Matériaux de l'Institut Lavoisier) ist allerdings bekannt, dass die Struktur von MOFs eine sehr große Flexibilität aufweist.^[258-260]

Schema 14: Darstellung der Furandisäure 30.

Die Synthese der Disäure **30** begann mit einer elektrophilen aromatischen Substitution an Furan. Das erhaltene Dibromfuran **31** wurde anschließend in einer C-C-Kreuzkupplung mit Alkin **8a** zum Diester **32** umgesetzt. Die Verseifung des Diesters **32** zur Disäure **30** war nach 22.5 h bei Raumtemperatur mit 200 Äquivalenten Kaliumhydroxid in THF und Ethanol nicht vollständig. Nach der sauren Aufarbeitung ließen sich noch 3 mol% unumgesetzte Esterfunktionen im ¹H-NMR-Spektrum nachweisen. Durch eine erneute Verseifung des Materials konnte der Anteil auf deutlich unter 1 mol% gesenkt werden. Dieser geringe Anteil sollte bei dem Aufbau eines PIZOFs nicht weiter stören, da in der modulierten Synthese ohnehin große Mengen einer monovalenten Carbonsäure zugesetzt werden. ^[254]

4.8 Di(phenylethinyl)biphenyl-bzw.-bipyridin-Linker

Der längste Grundkörper, den wir für unsere Untersuchungen einsetzen wollten, ist das 4,4'-Di-(1,4-carboxyphenylethinyl)biphenyl V mit ca. 2.7 nm Länge (Abb. 10). In Vorversuchen zeigte sich, dass der unfunktionalisierte Grundkörper V nahezu unlöslich in DMSO ist.^[220] Um die Löslichkeit zu erhöhen, wurde der Grundkörper mit Alkylgruppen versehen (Schema 15).^[261] Wie in Schema 15 ersichtlich, kam neben Biphenyl auch das N-analoge Bipyridin als "Mittelstück" der Dicarbonsäuren 5 zum Wir erhofften uns durch die Einführung der Einsatz. elektronenarmen Pyridinfunktionalitäten die optoelektronischen Eigenschaften der Disäuren 5 zu und, sollte ein MOF-Aufbau glücken, beeinflussen eine postsynthetische Komplexbildung im MOF realisieren zu können.^[262]

5,33,34	х	Y	R^1	R^2	Ausbeute (%) 34	Ausbeute (%) 5
а	I	СН	Me	Et	91	87
b	T	СН	ⁿ Pr	Et	37	85
c1	Br	Ν	н	Et	79	89
c ²	Br	Ν	Н	^t Bu	59	-
d	Br	Ν	ⁿ Pr	Et	47	93

Schema 15: Synthese der Disäuren 5.

Die Synthese der Disäuren **5** erfolgte analog zu den bisherigen Synthesestrategien über C-C-Kreuzkupplungen und Verseifungen. Sonogashira-Hagihara-Kupplung der Dihalogenbausteine, Diiodbiphenyl **33a,b** bzw. Dibrombipyridin **33c,d**, mit dem terminalen Alkin **8** lieferte die Diester **34**. Die Dicarbonsäuren **5** wurden durch basische Verseifung der Diethylester **34a,b,c¹,d** und anschließende saure Aufarbeitung erhalten.

Schema 16: Darstellung des Diiodbiphenyls **33b** und der Dibrombipyridine **33c,d**; ^aaus ¹H-NMR-spektroskopischen Daten berechnete Ausbeuten.

4.4'-Diiod-2.2'-dimethylbiphenyl (33a) wurde direkt in einer C-C-Kreuzkupplung zum Diester 34a und als Ausgangsmaterial für die Darstellung des Di-n-propylbiphenyls **33b** eingesetzt (Schema 16).^[261] Die Verlängerung der Alkylreste von Methyl in Biphenyl 33a zu Propyl in Biphenyl 33b sollte die Löslichkeit der resultierenden Disäure 5b im Vergleich zur Disäure 5a signifikat verbessern. Diese Verlängerung eine Alkylierungsreaktion realisiert.^[261] Allerdings verlief diese wurde über Alkylierungsreaktion zu Biphenyl 33b nicht vollständig. Durch den Einsatz von jeweils zwei Äquivalenten Lithiumdi-iso-propylamid (LDA) und Ethylbromid wurden nur 59% der Methylgruppen alkyliert. Vermutlich ist die Bildung eines Dianions mit Hilfe von LDA thermodynamisch ungünstig. Durch sukzessive Zugabe je eines weiteren Äquivalentes der beiden Reagenzien wurde der Umsatz auf 79% gesteigert. Wiederholung dieser Prozedur konnte den Umsatz der Methylgruppen auf 88% steigern, womit wir uns zufrieden gaben. Eine Abtrennung des monoalkylierten Produktes 35 von dem gewünschten, dialkylierten Produkt 33b war auf dieser Stufe nicht möglich. Nach der anschließenden C-C-Kreuzkupplung Diiodbiphenyls 33b zum Diester **34b** wurde das Produkt des Biphenyls **35**, Diester **38** allerdings durch Umkristallisation entfernt (Schema 16). Die geringe, isolierte Ausbeute von 37% auf dieser Stufe lässt sich hiermit erklären. So waren nach einfacher Umkristallisation weitere 55% des dipropylierten Diesters **34b** mit 27 mol% des Diesters **38** verunreinigt. Die Darstellung der beiden Biphenyldiester **34a** und **34b** sowie deren Verseifung zu den Biphenyldisäuren **5a** und **5b** gelang ansonsten ohne weitere Schwierigkeiten.

Zur Darstellung der Bipyridindisäuren 5c,d wurden die Bipyridindibromide 33c,d benötigt. Diese konnten durch Pd-katalysierte Reaktion der Dibrompyridine 37c,d mit Hexabutyldistannan gewonnen werden (Schema 16).^[261,263] Bei dieser Eintopf-Reaktion wurde zunächst das meta-ständige Brom-Atom durch eine Tributylzinngruppe substituiert. Das gebildete Zinnorganyl reagierte in-situ mit verbliebenem Dibrompyridin 37c,d in einer Stille-Kupplung zu dem gewünschten Produkt 33c,d. Die für diese Reaktion benötigten Dibrompyridine 37c,d waren kommerziell erhältlich oder wurden durch Alkylierung von 2,4-Dibrom-5-methylpyridin (36) erhalten.^[261,264] Bei der Alkylierungsreaktion des Methylpyridins 36 zum Propylpyridin 37d mit LDA und Bromethan wurde 1-Ethylpropylpyridin 38, das Produkt einer zweiten Alkylierung, nachgewiesen.^[261] Ebenso wurden im ¹H-NMR-Spektrum des Produktes noch geringe Mengen des Eduktes gefunden. Eine Trennung der drei Substanzen 36, 37d und 38 gelang weder auf destillativem noch säulenchromatographischem Wege. Die drei Pyridine 36/37d/38 lagen im Verhältnis von 1:20:2 vor. Dieses Gemisch wurde zur Darstellung des Dibrombipyridins 33d verwendet, wobei es gelang die Folgeprodukte der beiden Pyridine 36 und 38 durch Umkristallisation von dem Bipyridin **33d** abzutrennen.^[261] Die geringen Ausbeuten von ca. 50% bei der Darstellung der beiden Bipyridine 33c und 33d werden auf Schwierigkeiten während des Brom-Zinn-Austausches und nicht auf die Stille-Kupplung zurückgeführt, da große Teile der Dibrompyridine 37c bzw. 37d reisoliert wurden. Die Alkinyl-Arylkreuzkupplung der Dibrombipyridine **33c,d** mit den terminalen Alkinen 8 gelang mit moderaten Ausbeuten von 47-79%. Die anschließende basische Verseifung der erhaltenen Diethylester **34c¹,d** zeigte keine Auffälligkeiten.

Die erhaltenen Biphenyldisäuren **5a**,**b** wurden für den Aufbau von Zr-MOFs verwendet. Die erhaltenen Gerüste sind kristallin und mehrfach interpenetriert.^[107] Die Ergebnisse bezüglich der MOF-Synthese aus den Bipyridindisäuren **5c**,**d** stehen noch aus.

4.9 Farbstoff-Linker

Wie bereits in Abschnitt 3.2 erwähnt, sind die optischen und elektronischen Eigenschaften von Molekülen aus para-verknüpften Phenylenund/oder Ethinvlenbausteinen (Abb. 10) aufgrund ihres ausgedehnten, koniuaierten π -Systems interessant und stark beforscht, weshalb wir ihren Einbau in MOFs realisieren wollten. Die Absorptions- und Emissionsspektren von repräsentativen Diestern 23 sind in Abb. 20 dargestellt. Die optische Charakterisierung wurde zunächst an den Diestern 23, den Vorstufen der Disäuren 4 durchgeführt. Zum einen besitzen die Diester 23 eine deutlich bessere Löslichkeit im Vergleich zu den Dicarbonsäuren 4 und ich wollte erste Messungen in Lösung vornehmen. Zum anderen dürfte sich in den optischen Spektren von Diester 23 und Disäure 4 in gelöster Form nur ein unerheblicher Unterschied feststellen lassen.

Abb. 20: Optische Charakterisierung der Diester **23** in CHCl₃. Anregungswellenlängen der Emissionsspektren: $\lambda_{ex} = 285$ nm (links), $\lambda_{ex} = 300$ nm (mitte und rechts).

Absorption von Licht wird bei alkyl- und alkoxysubstituierten Diestern **23** bis in den kurzwelligen sichtbaren Bereich gefunden. Elektronenreiche Alkoxysubstituenten bewirken eine Verschiebung zu höheren Wellenlängen im Vergleich zu einfachen Alkylsubstituenten. Diese Verschiebung spiegelt sich auch in der Emission wieder, welche zwischen 360 und 500 nm für das dihexylsubstituierte Diphenylethinylbenzol

und im Bereich zwischen 400 und 550 nm für das pentoxysubstituierte Diphenylethinylbenzol **23j** beobachtet wird. Eine ausgeprägte Verschiebung der optischen Eigenschaften wird bei dem stärker π -konjugierten Diester **23g** beobachtet. Das vergrößerte π -System des Anthracenderivates **23g** sorgt dafür, dass auch Photonen höherer Wellenlänge absorbiert bzw. emittiert werden. So wird sichtbares Licht des Wellenbereiches zwischen 400 und 500 nm von dem Fluorophor **23g** absorbiert (Abb. 20). Die Emission im Bereich um 500 nm lässt die Chromophorlösung grünlich fluoreszieren.

Fluoreszierende MOFs werden aufgrund ihrer potentiellen Anwendung als chemische Sensoren stark beforscht.^[32,265-271] Bei Sensorapplikationen ist üblicherweise eine Emission im sichtbaren Bereich aufgrund der leichten Detektierbarkeit erwünscht. Genauer gesagt muss bei Anwesenheit eines Analyten eine sichtbare Emission auftreten oder eine vorhandene Emission verschoben werden bzw. verschwinden. Innerhalb eines MOFs kann die Sensortätigkeit von den SBUs,^[273,273] den Linkermolekülen oder etwaigen Gastchromophoren^[274] ausgehen. Es verwundert also nicht, dass bereits viele lumineszierende Disäuren zum Aufbau von MOFs genutzt wurden, darunter 9,10-Diphenylanthracen-,^[179] Fluoren-,^[275] Porphyrin-,^[276,277] Pyren-^[184] und Perylenderivate.^[178]

Die optischen Eigenschaften eines MOFs mit Perylendiimid-Linkern sind auch für uns von großem Interesse. Perylendiimide sind Rylenfarbstoffe mit Absorption und Emission im sichtbaren Bereich und extrem hohen Fluoreszenzquantenausbeuten.^[278] Aufgrund ihrer ebenfalls hohen thermischen und chemischen Stabilität werden sie häufig in optoelektronischen Bauteilen, wie OLEDs,^[279,280] Solarzellen, ^[281-283] Laser^[284] oder Transistoren^[285] eingesetzt. In Vorversuchen war die Darstellung eines Perylendiiodids **39** nicht gelungen, weshalb die bisherige Synthesestrategie modifiziert werden musste (Abb. 21).^[220] In Schema 17 ist die Synthese einer Perylendisäure **40** präsentiert.

Abb. 21: Diiodbaustein **39**, dessen Synthese in Vorversuchen misslang.^[220]

Die Synthesestrategie für eine Perylendisäure **40** verläuft über einen Dialkinbaustein **41** und nicht wie die bisherigen Disäuresynthesen über einen Dihalogenbaustein (z. B. **12**, Schema 4). Dieser Dialkinbaustein **41** wurde durch doppelte Insertion des Amins **42** in das Dianhydrid **43** und anschließende Abspaltung der Alkinschutzgruppe erhalten und durch C-C-Kreuzkupplung und saure Hydrolyse in die Perylendisäure **40** umgesetzt.

Schema 17: Synthese der Perylendisäure 40.

Die doppelte Insertion^[220] des Amins **42** in das Perylenanhydrid **43** gelang, allerdings nur in einer schlechten Ausbeute von 11%. 35% des Amins **42** wurden nach Säulenchromatographie reisoliert. Ein Ansatz ohne lewissaures Zink-Salz zur Aktivierung der Carbonylfunktionen erbrachte eine Ausbeute von 9%. Klassische Kondensationsreaktionen^[286] bei hoher Temperatur und Druck, welche üblicherweise

zur Darstellung von N,N'-Diarylperylendiimiden genutzt werden, lieferten mit den beiden Edukten 42 und 43 keine Verbesserung. Die Ursache für die schlechten Umsätze liegt meines Erachtens hauptsächlich in der extrem geringen Löslichkeit des Pervlendianhydrids 43. Glücklicherweise ist die Löslichkeit des erhaltenen Perylendiimids 44 aufgrund der sterisch anspruchsvollen iso-Propylgruppen in ortho-Position zum Stickstoff. welche eine orthogonale Ausrichtung der iso-propylsubstituierten, aromatischen Ringe zur Ebene des Perylensystem bewirken, drastisch erhöht. Eine Umsatzsteigerung ließe sich wahrscheinlich durch die Abwesenheit dieser iso-Propylreste forcieren, allerdings würde dies die Löslichkeit der erhaltenen Perylendiimide verringern. Substituenten in bay-Positionen am Perylendianhydrid erhöhen ebenfalls die Löslichkeit^[287] und könnten auf diesem Wege zu einer Ausbeutesteigerung beitragen. Das erhaltene Perylendiimid 44 wurde mit Tetrabutylammoniumfluorid entschützt und der gewonnene Dialkinbaustein 41 in einer Sonogashira-Hagihara-Kupplung eingesetzt. In dieser Kreuzkupplungsreaktion wurde ein tertiäres Amin verwendet, um die beiden Imidfunktionalitäten vor möglicher Aminolyse durch nucleophile, sekundäre Amine, wie beispielsweise Piperidin, zu schützen.^[288,289] Als Kupplungspartner wurde der tert-Butylester 8c eingesetzt, um eine basische Verseifung, welche inkompatibel mit den Imidogruppen eines umgehen Perylendiimids ist, können. Die Hydrolyse zu saure der Carboxylschutzgruppen des Perylendiimid 45 wurde mit Trifluoressigsäure durchgeführt und ergab die gewünschte Perylendisäure 40 in 92%iger Ausbeute.

Abb. 22: Optische Spektren des Diesters **45** in CHCl₃. Anregungswellenlänge des Emissionsspektrums: λ_{ex} = 300 nm.

Absorptions- und Emissionsspektrum des Diesters **45** sind in Abb. 22 dargestellt. Das Perylendiimid **45** absorbiert und emittiert Photonen des sichtbaren Lichtes. Die Emission tritt im Bereich zwischen 500 und 650 nm auf. Dies lässt den Diester **45** orange erscheinen und legt Anwendungen in orangefarbenen OLEDs nahe. Die Absorption tritt ebenfalls im sichtbaren Bereich auf. Sie deckt einen breiten Bereich zwischen 420 und 550 nm ab und ermöglicht Anwendungen in der Photovoltaik, z. B. in farbstoffsensibilisierten Solarzellen.

In Farbstoffsolarzellen finden vor allem Ruthenium(II)farbstoffe wegen ihrer breiten Absorption im sichtbaren Wellenlängenbereich, ihren langlebigen angeregten Zuständen und ihrer hohen Langzeitstabilität Anwendung.^[290] Die wichtigsten, kommerziell erhältlichen Rutheniumfarbstoffe sind in Abb. 23 gezeigt.

Abb. 23: Auswahl kommerziell erhältlicher Rutheniumfarbstoffe, Quelle: www.solaronix.com, Mai 2011.

Die Bipyridindisäuren **5c** und **5d** können über ihre beiden Stickstoffatome, analog zu den Bipyridinliganden der kommerziell erhältlichen Rutheniumfarbstoffe, Metalle koordinieren. Natürlich interessierten wir uns sehr für einen Rutheniumkomplex innerhalb eines porösen MOFs. Dieser ist allerdings nicht allein wegen seiner optoelektronischen Eigenschaften interessant. Rutheniumkomplexe demonstrieren

außerdem katalytische Aktivität in einer Vielzahl organischer Reaktionen.^[291] Die Implementierung eines Metallkomplexes in ein MOF kann postsynthetisch erfolgen^[148,154,157,162,262,292-294] oder, falls der Metallkomplex hinreichend stabil ist, durch die Synthese eines MOFs aus einer Metallkomplexdisäure gelingen.^[176] Der Aufbau eines MOFs aus einer Metallkomplexdisäure wurde bereits in Abschnitt 4.2 am Beispiel des IRMOF-77 deutlich. Ein interessantes Beispiel für die postsynthetische Komplexierung möchte ich hier präsentieren. Bloch et al. gelang es mit 4,4'-Dicarboxy-2,2'-bipyridin ein Aluminium-MOF aufzubauen und durch Behandlung mit PdCl₂ oder Cu(BF₄)₂ Bipyridylkomplexe postsynthetisch zu erzeugen (Schema 18).^[262]

Schema 18: Postsynthetische Metallkomplexbildung. Zur besseren Übersicht sind die Wasserstoffatome der aromatischen Linkern nicht gezeigt. Diese Abbildung wurde aus Referenz [262] entnommen und stark verändert.

Zur Synthese einer auf Bipyridin 5c basierenden Rutheniumkomplexdisäure, welche zum Aufbau eines MOFs genutzt werden kann, wurde zunächst eine sukzessive Ligandensubstitution^[295-297] ausgehend vom Ruthenium(II)dimer 46 versucht (Schema 19). Darstellung dem kommerziell erhältlichen Die einer zu Rutheniumkomplex analogen Rutheniumkomplexdisäure N3 47 in einer Eintopfreaktion gelang nicht. Stattdessen wurde eine Vielzahl unbekannter Verbindungen isoliert. Auch eine Änderung der Zugabereihenfolge der Liganden brachte keine Verbesserung.

Schema 19: Darstellung des Rutheniumkomplexdisäure 50.

In Folge dessen wurde die Synthese eines leichter zugänglichen und chemisch resistenteren Rutheniumkomplexes durchgeführt. Die Wahl fiel auf die heteroleptische Rutheniumkomplexdisäure 50, deren Darstellung ausgehend von Bis(bipyridin)ruthenium(II)chlorid (48) gelang. Zunächst wurden die Chloridliganden des Rutheniumkomplexes 48 gegen Triflat ausgetauscht. Anschließend wurde der **34c²** Diesterligand eingebracht und der Rutheniumkomplexdiester 49 als Hexafluorophospat ausgefällt. Nach Säulenchromatographie ergab sich eine Ausbeute von 46%. Die Rutheniumkomplexdisäure 50 konnte aus dem Diester 49 nach saurer Esterhydrolyse mit Trifluoressigsäure und darauffolgender Behandlung mit wässriger KPF₆-Lösung erhalten werden. Erfreulicherweise zeigte sich der Rutheniumkomplex stabil in stark sauren Bedingungen, welche zur Hydrolyse der tert-Butylschutzgruppen benötigt wurden, und die Rutheniumkomplexdisäure 50 konnte in einer Ausbeute von 74% isoliert werden. Die Synthesestrategie verlief über den Di-tert-butylester 49 sowie dessen saure Hydrolyse und nicht über ein Diethylesteranalogon, da die Stabilitäten der Rutheniumkomplexe unter basischen Bedingungen vermutlich deutlich geringer sind als sie es in saurem Milieu waren.

Abb. 24: Absorptions- und Emissionsspektrum (Anregungswellenlänge: λ_{ex} = 275 nm) des Rutheniumkomplexes **49** in MeCN.

Im Absorptionsspektrum des Rutheniumkomplexes **49** wird eine breite Absorption im sichtbaren Bereich zwischen 400 und 550 nm detektiert, welche einem Ladungstransfer vom Metall auf die Liganden zugeschrieben wird (Abb. 24).^[298-300] An einen Einsatz dieses Komplexes als Sensibilisator für Halbleiter mit großer Bandlücke ist somit zu denken. Die beiden Absorptionsmaxima bei 290 und 360 nm werden π - π *-Übergängen der beiden unterschiedlichen Bipyridinliganden zugeschrieben.

¹H-NMR-Spektren Neben den optischen Spektren sind auch die der Rutheniumkomplexe **49** und **50** interessant.^[301] Die beiden Pyridinringe der unsubstituierten Bipyridinliganden der Komplexe liegen in magnetisch nicht äguivalenten Positionen und ihre Protonen erscheinen somit bei unterschiedlichen chemischen Verschiebungen. Deutlich wird dies in Abb. 25 an den Protonen H_A und $H_{A'}$. Der Pyridinring mit dem Proton H_A befindet sich im Rutheniumkomplex in trans-Stellung zu dem Liganden **34c²**. Im Gegensatz dazu steht in trans-Stellung zu dem Pyridinring mit dem Proton $H_{A'}$ der andere unsubstituierte Bipyridinligand. Die beiden Pyridinringe erfahren aufgrund dieser leicht unterschiedlichen Umgebungen verschiedene Abschirmungseffekte, was ihre Protonen bei unterschiedlichen Resonanzenergien erscheinen lässt.

Abb. 25: ¹H-NMR-Spektrum (500 MHz, CD₃CN) des Rutheniumkomplexes **49**.

Es gelang bislang nicht, aus den optisch sehr interessanten Disäuren **23g**, **40** oder **49** ein MOF zu synthetisieren. Aus diesem Grund konzentrierte ich meine Arbeiten darauf, postsynthetische Modifikationen zur nachträglichen, kovalenten Implementierung von optoelektronisch interessanten Bausteinen in ein bestehendes MOF zu konzipieren.

5 Postsynthetische Modifikationen

5.1 Überblick

Die Darstellung eines neuen MOFs aus einem neuen organischen Linkermolekül gelingt normalerweise nicht auf Anhieb. Es müssen zunächst geeignete Synthesebedingungen gefunden werden. Postsynthetische Modifikationen verbreitern dieses Nadelöhr, indem sie es ermöglichen aus einem MOF, dessen Synthese bekannt ist und gut funktioniert, ein neues MOF mit verändertem Charakter darzustellen.^[34,35,80-82] Desweiteren wird der kovalente Einbau von funktionellen Gruppen, welche inkompatibel mit der MOF-Synthese sind, ermöglicht.

Es wurden bereits viele chemische Reaktionen für postsynthetische Modifikationen Acylierung,^[143,150-165,181,302,303] Alkylierung.^[143,144] genutzt. darunter Bromaddition,^[153,304] Diazotierung,^[149] von Reaktionen Aminogruppen zu Imino-,^[145-148] Azid-,^[149] Diazeniumdiolat-^[305,306] und Iso(thio)cyanatgruppen,^[164] Reduktionen von Formylgruppen,^[146] Oxidationen von Thioethern,^[307] Substitutionen von Brom zu Cyanogruppen,^[308] Photoisomerisierungen von Azobenzolen^[309] und Deprotonierungen.^[192] Besonders interessant sind postsynthetische Abspaltungen von Schutzgruppen zur Demaskierung funktioneller Gruppen.^[196,197,310] Der sterische Anspruch der eingesetzten Schutzgruppen kann während der MOF-Synthese der Interpenetration von Gerüsten vorbeugen und die Entfernung der Schutzgruppe führt neben der Freisetzung einer funktionellen Gruppe zusätzlich zu einer Verarößeruna des Porenvolumens.^[310] Die Erzeugung von Metallkomplexen innerhalb der MOF-Pore wird häufig ausgenutzt um MOFs mit katalytischen Eigenschaften zu generieren.^[148,154,157,162,262,292-294] In der katalysierten Reaktion können Substratselektionen durch die Beschaffenheit und Größe der Pore sowie der Fensteröffnungen erreicht werden.^[311,312] Cycloadditionen, darunter die prominente Alkin-Azid-Clickreaktion, finden hohen Ausbeuten, wegen ihrer milden Reaktionsbedingungen und geringen Tendenz zur Bildung von Nebenprodukten ebenfalls Verwendung als postsynthetische Modifikation und sind besonders im Falle sensibler Substrate zu bevorzugen.^[149,177,185,198,199,313,314]

Der Umsatz einer postsynthetischen Modifikation wird typischerweise mittels ¹H-NMR-Spektroskopie bestimmt, indem eine MOF-Probe in einem deuterierten Lösungsmittel aufgelöst und vermessen wird. Der Erhalt bzw. Verlust der Kristallstruktur und Kristallinität während einer postsynthetischen Modifikation kann mittels PXRD festgestellt werden.

Die üblichen Separationstechniken der organischen Chemie zur Abtrennung von Edukten oder Nebenprodukten können keine Anwendung nach postsynthetischen Modifikationen finden, da sie eine Zerstörung der Gerüststruktur bedeuten würden. Reaktanden bzw. Nebenprodukte können allerdings, soweit diese nicht in der MOF-Pore kovalent oder durch starke chemische Wechelwirkungen gebunden sind, durch Extraktion des MOFs mit geeigneten Lösungsmitteln aus der Pore entfernt werden. Diese häufig wiederholte Extraktion wird als Waschen der MOFs bezeichnet. Als Lösungsmittel wurden in dieser Arbeit hierzu in der Regel Ethanol, DMF und/oder THF verwendet.

5.2 Acylierung

Es wurden zunächst postsynthetische Modifikationen mit möglichst einfachen Reagenzien an leicht zugänglichen MOFs studiert. Die Aminogruppe ist die am häufigsten postsynthetisch modifizierte Gruppe und IRMOF-3 das am häufigsten verwendete MOF für postsynthetische Modifikationen.^[81] Auch ich begann meine Zn-MOF Untersuchung mit diesem und wollte die Aminogruppe des 2-Aminoterephthalatlinkers in eine Maleinimidfunktion überführen. Diese im MOF erzeugte funktionelle Gruppe sollte anschließend in einer Diels-Alder-Cycloaddition oder Michael-Addition^[315] umgesetzt werden. Es soll betont werden, dass alle in dieser Arbeit beschriebenen postsynthetischen Modifikationen zunächst durch Modellreaktionen an den Diestern oder den Disäuren der jeweiligen Linkermoleküle konzipiert wurden.

Bereits aus der Synthese des Diesters **23h** waren Bedingungen bekannt, welche zur Umsetzung einer Aminogruppe in eine Maleinimidgruppe genutzt werden können. Diese Reaktionsbedingungen ließen sich auf den Diester **51** übertragen und die Modellverbindung **52** konnte in 46%iger Ausbeute isoliert werden (Schema 20). Interessanterweise ergaben ähnliche Bedingungen mit 2-Aminoterephthalsäure (**53**),

der Linkerdisäure aus IRMOF-3, zunächst das Malein-*iso*-imid **54**, welches sich allerdings in das Maleinimid **55** isomerisieren ließ.^[316]

Schema 20: Modellreaktionen zur Imidisierung.

Die Acylierung von IRMOF-3 mit Maleinsäureanhydrid wurde mit einem Umsatz von 49% publiziert (Schema 21).^[156] In meinen Händen ließ sich für die Monoacylierung von IRMOF-3 ein Umsatz von 94% erreichen, indem ich die Temperatur auf 70 °C steigerte. Zur Umsatzbestimmung mittels ¹H-NMR-Spektroskopie wurden die fragilen Zn-MOFs in DMSO-d₆, welchem eine sehr geringe Menge DCI in D₂O zugesetzt wurde, durch eine kurzzeitige Ultraschallbehandlung aufgelöst. Die NMR-Spektren wurden mit denen der Modellreaktionen verglichen. Während dieses ersten postsynthetischen Syntheseschrittes blieben die IRMOF-Einkristalle erhalten und konnten mittels Einkristalldiffraktometrie studiert werden.^[107] Die gefundenen Gitterkonstanten und die Struktur passen zu IRMOF-3, allerdings konnte die Amidfunktion kristallographisch durch ihre statistische Verteilung am aromatischen Ring nicht ausfindig gemacht werden.

Schema 21: Postsynthetische Modifikationen an IRMOF-3.

Der zweite postsynthetische Syntheseschritt, ein Ringschluß des Maleinsäureamids zu einem Maleinimid, wurde stets von der Zerstörung der Gerüststruktur begleitet, was anhand von PXRDs festgemacht wurde. Neben Natriumacetat wurden weitere Basen wie NEt₃ und K₂CO₃ in dieser Cyclisierungsreaktion verwendet. Eventuell sorgt die Anwesenheit dieser Basen für die Zerstörung der empfindlichen MOF-Struktur. Sie ist jedoch notwendig, da in einem Versuch ohne die Anwesenheit einer Base kein Umsatz zu einem Imid feststellt wurde. Auch die räumliche Nähe der aktivierten Carbonsäure in der gemischten Anhydridzwischenstufe oder der koordinierenden Sauerstoffatome der Imidfunktion zum Zn₄O-Cluster könnte für den Abbau der Gerüststruktur verantwortlich sein. In keiner der durchgeführten Reaktion ließ sich ein Hinweis auf ein Malein-*iso*-imid finden. Erwähnenswert ist außerdem die Tatsche, dass auch der MOF-Aufbau eines Zn-MOFs aus der Maleinimiddisäure **55** nicht gelang.

Aufgrund der gravierenden Instabilität der Zn-MOFs verlagerte ich meine chemisch Untersuchungen auf die deutlich robusteren Zr-MOFs. An aminofunktionalisiertem UiO-66 wurden Acylierungen mit Maleinsäure-, Essigsäure-, Butansäure- und iso-Butansäureanhydrid unternommen. Zeitgleich zu meinen Experimenten wurden vergleichbare Acylierungen Garibav von et al. durchgeführt.^[161] Für die Monoacylierung des UiO-66(NH₂) mit Maleinsäureanhydrid wurde beispielsweise ein geringer Umsatz von 25% publiziert.^[161] In unserem Laboratorium wurde ein noch geringerer Umsatz von 12% ermittelt (Schema 22). Diesen enttäuschend geringeren Umsätzen im Vergleich zu dem hohen Umsatz von 94% **IRMOF-3** die bei liegen wahrscheinlich kleineren Porenund Fensterdurchmesser des UiO-66(NH₂) zugrunde.

Schema 22: Postsynthetische Acylierungen von UiO-66(NH₂).

Diese Annahme spiegelt sich in deutlich höheren Umsätzen mit sterisch weniger anspruchvollen Acylierungsreagenzien wie Essigsäure- und Butansäureanhydrid von 75% bzw. 74% wieder. Für die Acylierung mit Essigsäureanhydrid wurde ein Umsatz publiziert.[161] al In von 88% von Garibay et. Modellreaktionen mit 2-Aminoterephthalsäure (53) lag der Umsatz der Acylierungen stets über 90% und es ließen sich keine signifikanten Reaktivitätsunterschiede zwischen den Acylierungsreagenzien feststellen (Schema 23).

Schema 23: Modellreaktionen zur Acylierung von 2-Aminoterephthalsäure (53).

Mit dem sterisch anspruchsvollen Acylierungsreagenz *iso*-Butansäureanhydrid wurde ein Umsatz von 32% bei der postsynthetischen Modifikation der Aminogruppen ermittelt. Dieses Ergebnis und dessen Vergleich mit den anderen postsynthetischen Acylierungen an UiO-66(NH₂) sind mit Vorsicht zu betrachten (Schema 22). Das für diese Acylierungsreaktion verwendete Material wurde durch eine modulierte Synthese, d.h. in Anwesenheit von Benzoesäure, welche sich nicht durch Extraktion aus dem MOF entfernen lässt, hergestellt.^[171] Alle anderen postsynthetischen Acylierungsreaktionen verwendeten UiO-66(NH₂)-Material,^[158] welches ohne Modulator hergestellt worden war. Der niedrigere Umsatz von 32% kann somit aus dem sterischen Anspruch des Anhydrids resultieren aber auch durch verbliebene, die Pore blockierende Benzoesäure erklärt werden.

Die Annahme, dass der kleine Porendurchmesser und die kleinen Fensteröffnungen des UiO-66(NH₂) verantwortlich für den geringen Umsatz von 12% mit Maleinsäureanhydrid sind, erhält weiteren Rückhalt durch Acylierungsergebnisse an UiO-68(NH₂) (Schema 24). Mit Maleinsäureanhydrid wurde ein deutlich höherer Umsatz von 50% für dieses MOF mit vergrößerten Poren- und Fensterdurchmessern festgestellt.

Schema 24: Postsynthetische Acylierung von UiO-68(NH₂) mit Maleinsäureanhydrid.

Interessanterweise findet unter den gleichen Bedingungen am interpenetrierten Zr-MOF PIZOF-1^[254] keine Reaktion statt. Ein Experiment, worin Maleinsäureanhydrid durch das sterisch weniger anspruchsvolle Essigsäureanhydrid ersetzt wurde, kam zu dem gleichen Ergebnis. Dieses Ergebnis wie auch der Misserfolg der MOF-Synthese aus den Anthracen- und Naphthalinlinkern **4g** bzw. **4q** wird als Hinweis darauf interpretiert, dass durch die Interpenetration bei PIZOFs in direkter Linkerumgebung Platzmangel herrscht.

Zum Zeitpunkt meiner Experimente war nichts über das Auflösen von Zr-MOFs bekannt. Zur Umsatzbestimmung mittels ¹H-NMR-Spektroskopie ist das Auflösen der MOFs jedoch unabdinglich. Jüngst wurde die Verwendung von HF in DMSO-d₆ publiziert.^[158,161] Mit Hilfe von UiO-66 erarbeitete ich zunächst zwei Methoden, um die sehr stabilen Zr-MOFs aufzulösen und ¹H-NMR-spektrokopisch vermessen zu können. Die erste Methode verwendete D_2SO_4 in DMSO-d₆ (15 vol%),^[171] die zweite NaOD in D₂O und DMSO-d₆ (6 wt%). In Modellreaktionen mit Acetamid **57b** führte die erste Methode zu einer beträchtlichen Hydrolyse der Amidfunktion und ist somit zur Umsatzbestimmung einer postsynthetischen Acylierung ungeeignet. Auch unter den Bedingungen der zweiten Methode wurde die Amidfunktion der Disäure 57b angegriffen, allerdings war der Anteil der abgelaufenden Hydrolyse deutlich geringer und wurde bei der Berechnung der in Schema 22 und 24 angegebenen Umsätze ignoriert. Erwähnung soll finden, dass die Auflösungsbedingungen mit NaOD in D₂O und DMSO-d₆ im Gegensatz zu denen mit D₂SO₄ in DMSO-d₆ keine klaren Lösungen ergaben und somit die vollständige Zerstörung der MOF-Struktur bezweifelt werden könnte. Allerdings besaß der auftretende Feststoff nicht die pulverige Konsistenz eines MOFs, sondern war vielmehr gelartig, was auf Zirkoniumhydroxide schließen lässt. Beide Auflösungsbedingungen verursachen eine drastische Veränderung des pH-Wertes im Vergleich zu reinem DMSO-d₆ und dadurch einen Eingriff in die chemischen Verschiebungen im NMR-Spektrum. Die Signale wurden den Disäuren 53 und 57 durch deren sukzessive Zugabe in die NMR-Proben und neuerlichen Aufnahme von ¹H-NMR-Spektren zugeordnet. Die Kristallinität des Materials blieb während aller postsynthetischen Acylierungen bestehen, was sich in identischen PXRDs wiederspiegelte (Schema 22).

5.3 Alkylierung

Aminoalkylierungen bilden chemisch wesentlich resistentere Produkte als Acylierungen, laufen allerdings unter drastischeren Bedingungen ab und wurden vermutlich deshalb bislang nur sehr spärlich an MOFs untersucht.^[143,144] Dies war Anlass postsynthetische Alkylierungen an UiO-66(NH₂) unter die Lupe zu nehmen.

Schema 25: Postsynthetische Alklierungen von UiO-66(NH₂).

Die Reaktionen des Zr-MOFs UiO-66(NH₂) mit den reaktiven Alkylierungsmitteln Methyliodid, Allylbromid, Propargylbromid oder Benzylbromid in Gegenwart von Kaliumcarbonat lieferten Umsätze zwischen 40 und 63% (Schema 25). Das Kaliumcarbonat wurde in zusätzlichen Waschschritten mit destilliertem Wasser nach der postsynthestischen Modifikation aus dem MOF-Material gelöst. Eine Unterscheidung zwischen Mono- und Dialkylierung der primären Aminogruppe des Linkers war ¹H-NMR-spektroskopisch nicht möglich. Zudem ist ein Vergleich der Umsätze der verschiedenen Alkylierungen sowie mit Ergebnissen der Acylierung des UiO-66(NH₂)-Materials nicht durchführbar, da das in dieser Studie verwendete Zr-MOF-Material, wie im Falle der Acylierung mit iso-Buttersäureanhydrid, in einer modulierten Synthese hergestellt wurde.^[171] Somit enthielt es signifikante Mengen des Modulators Benzoesäure. Desweiteren stammte das verwendete Material aus unterschiedlichen Ansätzen und hatte somit einen variierenden Modulatorgehalt. Die Ergebnisse zeigen jedoch, dass Zr-MOFs der UiO-66-Struktur mit meiner Arbeitsweise alkylierbar sind und auf diese Weise verschiedene funktionelle Gruppen darunter Allyl und Proparygl eingeführt werden können. Desweiteren verlieren die Zr-MOFs weder während der Reaktion noch in darauffolgenden Waschschritten mit destilliertem Wasser ihre Kristallinität.

5.4 Alkin-Azid-Cycloaddition

Das Konzept - Click-Chemie - wurde 2001 von Kolb, Finn und Sharpless definiert und beschreibt den Aufbau eines Moleküls aus kleineren Untereinheiten.^[200] Die Click-Chemie umfasst nur Reaktionen die folgende Kriterien erfüllen:

- 1. Die Reaktion hat eine modulare und breite Anwendbarkeit und ist stereospezifisch.
- 2. Die Ausbeuten sind sehr hoch und entstehende Nebenprodukte lassen sich leicht abtrennen.
- 3. Die Reaktionen sind leicht durchführbar und beinhalten nur unbedenkliche Lösungsmittel sowie gut zugängliche Reagenzien.

Alle Reaktionen, die diese drei Kriterien erfüllen, sind auch ideal für postsynthetische Modifikationen geeignet, denn auch diese sollten modular und breit anwendbar sein, hohe Ausbeuten herbeiführen und möglichst ohne Nebenprodukte verlaufen. Nebenprodukte bei postsynthetischen Modifikationen, die aus den organischen Linkern hervorgehen, stellen ein Problem dar, denn sie sind ebenfalls Teil des metallorganischen Netzwerkes und nicht aus diesem ohne Zerstörung der Struktur zu entfernen. Die gebräuchlichste Click-Reaktion ist die kupferkatalysierte Alkin-Azid-Cycloaddition.^[201] Diese Reaktion wurde bereits als postsynthetische Modifikation genutzt.^[149,177,185,198,199] Ein besonders schönes Beispiel möchte ich an dieser Stelle präsentieren. Gadzikwa et al. gelang es die innere und äußere Oberfläche eines MOFs unterschiedlich zu modifizieren (Schema 26).^[185]

Abb. Schema 26: Postsynthetische Modifikation der äußeren und inneren Oberfläche.^[185]
Das MOF verwendete bestand aus zwei verschiedenen Linkern. der Tetracarbonsäure 58 und dem geschützten Alkin 59. In der nicht interpenetrierten Schichten-Säulen-Struktur des MOFs bildet die Carbonsäure 58 mit Zn-Clustern Ebenen aus, welche über die Pyridinlinker 59 miteinander verbunden sind. Durch Behandlung mit wässriger Kaliumfluorid-Lösung wurden nur die terminalen Alkine an äußeren MOF-Oberfläche von der TMS-Schutzgruppe befreit, der da die solvatisierten Fluoridionen nicht ins Innere des MOFs gelangen. Diese Alkine waren nun in der Lage mit Ethidiumbromid-Monoazid eine Click-Reaktion einzugehen, was die äußere MOF-Oberfläche mit dem Farbstoff funktionalisierte. Die innenliegenden, geschützten Alkine ließen sich mit Tetraethylammoniumfluorid freisetzen. Zur Modifikation der inneren Oberfläche verwendeten die Autoren anschließend Benzylazid.

Ich wollte ebenfalls die kupferkatalysierte Alkin-Azid-Cycloaddition zur Modifikation postsynthetischen von MOFs explorieren. Eine derartige postsynthetische Modifikation sollte ausgehend von dem Zr-MOF PIZOF-4 aus dem TIPS-geschützten Alkin 4n nach Entschützung der terminalen Alkinfunktionalität durchgeführt werden (Schema 27).^[254] Zwar führte die Behandlung des MOFs mit Tetrabutylammoniumfluorid in THF für 21 h bei Raumtemperatur zur Entschützung der terminalen Alkine, aber mit dieser ging auch die vollständige Dissoziation des Materials einher. Ich erkannte hieran die Möglichkeit die überaus stabilen Zr-MOFs mit Fluoridionen aufzulösen zu können.

Schema 27: Zerstörung von PIZOF-4 bei Behandlung mit Fluoridionen.

Wir entschieden PIZOF-3 zu synthetisieren und die postsynthetischen Experimente hierauf zu verlagern, da in diesem Zr-MOF bereits freie terminale Alkingruppen vorliegen und somit eine Behandlung mit Fluoridionen nicht notwendig ist.

Als Modellsubstrat für die kupferkatalysierte Alkin-Azid-Cycloaddition wurde 4-Methylbenzylazid (**60**) dargestellt und zunächst mit der Disäure **40** in einer Testreaktion umgesetzt (Schema 28). Bereits nach 17 h bei Raumtemperatur wurde mit katalytischen Mengen an Kupfer(I)bromid ein quantitativer Umsatz festgestellt (Schema 29). Die in dieser Reaktion eingesetzte Disäure **40** war mit einer unbekannten Substanz verunreinigt, welche allerdings nicht an der Reaktion teilnahm und deren ¹H-NMR-Signale in Schema 29 mit dem # - Symbol markiert sind. Diese Verunreinigung trat bei längerer Lagerung der Disäure **40** auf und ist vermutlich auf eine Instabilität der freien Alkinfunktionalität zurückzuführen.

Schema 28: Click-Testreaktion mit Disäure 40.

Die Reaktionsbedingungen der Modellreaktion wurden auf PIZOF-3 übertragen und es wurde nach dem Auflösen des gewaschenen Materials ein Umsatz von 98% feststellt (Schema 29). Im Verlauf der postsynthetischen Modifikation blieb das verwendete Material kristallin, obgleich die Breite der Signale im PXRD-Spektrum leicht zunahm (Abb. 26). Der verwendete Kupferkatalysator ließ sich aufgrund seiner sehr geringen Löslichkeit durch die Waschvorgänge nicht entfernen, was man an einer leicht grünlichen Färbung des postsynthetisch modifizierten Materials erkennen konnte. Als Lösungsmittel für die Waschvorgänge wurde DMF, THF und MeCN verwendet. Sollten die Kupferbromidreste ein Problem bei der Anwendung eines MOFs, welches durch kupferkatalysierte postsynthetische Modifikationen verändert wurde, darstellen, könnten diese eventuell durch Waschvorgänge mit Aminen oder durch Verwendung eines besser löslichen Kupferkatalysators bewältigt werden.

Schema 29: (a) Postsynthetische Alkin-Azid-Cycloaddition an PIZOF-3. (b-d) ¹H-NMR-Spektren (500 MHz, DMSO-d₆): (d) Disäure **40**. (c) Disäure **61** aus Modellreaktion. (b) Modifizierter Linker des PIZOFs nach dem Auflösen des modifizierten Materials mit CsF und DCl in D₂O und DMSO-d₆ und anschließender K₂CO₃-Zugabe. ¹Signal von nicht umgesetztem Linker **40**. [#]Signale einer unbekannten Verunreinigung. ⁺Signal von CH₂Cl₂. ¹Signale von THF. ⁶Signal von H₂O. *Signal von DMSO.

Abb. 26: PXRD-Profile. Unten: PIZOF-3. Oben: PIZOF nach der postsynthetischen Modifikation.

5.5 Dissoziation von Zr-MOFs

Wie bereits erwähnt, war zu Beginn meiner Arbeit mit Zr-MOFs nur sehr wenig über ihre chemische Stabilität bekannt.^[102] Ich bewerkstelligte das Auflösen der Zr-MOFs für analytische Zwecke zunächst nur unter sehr sauren oder basischen Bedingungen (Abschnitt 5.2).^[171] Aus den Experimenten zur Desilylierung von PIZOF-4 wurde erkannt, dass auch Tetrabutylammoniumfluorid verwendet werden kann. Allerdings birgt dies den Nachteil, dass das ¹H-NMR-Spektrum des gelösten MOFs intensive Signale der Butylreste des Reagenzes beinhaltet. Caesiumfluorid in DMSO-d₆ funktionierte ebenso gut und die erhaltenen NMR-Spektren waren von höherer Qualität. Allerdings ist die Dissoziation des MOF-Materials bei Raumtemperatur sehr langsam. Das Erwärmen der Probe erhöhte die Dissoziationsgeschwindigkeit signifikant und machte diese Methode praktikabel. Wahrscheinlich erlaubt die erhöhte Temperatur eine bessere Löslichkeit des CsF in DMSO-d₆. Auch die Addition eines Tropfens wässriger Deuteriumchlorid-Lösung (35 wt% in D₂O) erhöht die Dissoziationsgeschwindigkeit enorm.

Abb. 27: Einfluß der Auflösungsbedingungen auf die ¹H-NMR-Spektren (500 MHz, DMSO-d₆). (a) Disäure **61** aus Modellreaktion. (b) Modifiziertes PIZOF aufgelöst durch Erwärmen mit CsF. (c) Modifiziertes PIZOF aufgelöst mit CsF und DCI sowie der Zugabe von K₂CO₃ nach der Dissoziation. (d) Modifiziertes PIZOF aufgelöst mit KHF₂. (e) Modifiziertes PIZOF aufgelöst mit KHF₂ und der Zugabe von K₂CO₃ nach der Dissoziation. ¹Signal von nicht umgesetztem Linker **40**. [#]Signale einer unbekannten Verunreinigung. ⁺Signal von CH₂Cl₂. [↓]Signale von THF. [◊]Signal von H₂O. *Signal von DMSO.

5 Postsynthetische Modifikationen

In beiden Fällen sind die chemischen Verschiebungen in den erhaltenen NMR-Spektren nicht vollständig identisch mit denen der korrespondierenden Disäuren in reinem DMSO-d₆ (Abb. 27). Der Grund hierfür liegt vermutlich im pH-Wert der Lösungen. Bei Behandlung mit CsF in DMSO-d₆ werden die Dicarboxylat-Anionen aus der MOF-Struktur während des Auflösens offenbar nicht protoniert. Durch Zugabe von DCI werden die Dicarboxylat-Anionen protoniert, allerdings liegt der pH-Wert der Lösung nun im sauren Bereich, was ebenfalls die chemische Verschiebung beeinflusst. Interessanterweise konnten jetzt durch Zugabe von festem Kaliumcarbonat NMR-Spektren erhalten werden, welche den Disäuren in reinem DMSO-d₆ entsprechen. Die Ursache ist hierfür vermutlich der Aufbau eines Puffersystems durch die zusätzliche Zugabe von K₂CO₃.

Eine weitere Möglichkeit Zr-MOFs aufzulösen bietet Kaliumhydrogendifluorid in DMSO-d₆. Hiermit können Zr-MOFs bei Raumtemperatur aufgelöst werden. Allerdings entsprechen die chemischen Verschiebungen nicht den Disäuren in reinem DMSO-d₆, was auch durch die Addition von festem K_2CO_3 nicht erwirkt wurde (Abb. 27).

Die besprochenen Auflösebedingungen wurden an den interpenetrierten PIZOFs entwickelt und funktionieren für diese sehr gut. Das Auflösen des stabileren UiO-66-MOFs mit kürzerem Linker gelang nur mit KHF₂ in DMSO-d₆ oder mit CsF in DMSO-d₆ durch Zugabe eines Tropfens DCI-Lösung. Reines CsF in DMSO-d₆ löste selbst bei Erhitzen der NMR-Probe das UiO-66-Material nicht auf. Unlängst wurde zum Auflösen von UiO-66-Analoga sehr gefährliches Hydrogenfluorid in DMSO-d₆ verwendet.^[158,161] Meine Auflösungsbedingungen sind leichter durchführbar und deutlich mindergiftig.

5.6 Diels-Alder-Cycloaddition

Einige Vertreter der Diels-Alder-Cycloadditionen sind ebenfalls als Click-Reaktionen zu bezeichnen.^[200,317,318] Ihre Aktivierung verläuft thermisch und die Reaktion wird normalerweise ohne Kupferkatalysatoren durchgeführt.^[206] Typischerweise wird bevorzugt das kinetisch günstigere endo-Isomer gebildet (endo-Regel). Jedoch wird auch das thermodynamisch begünstigte exo-Isomer häufig beobachtet. Die Rückreaktion wird Retro-Diels-Alder-Cycloaddition genannt und findet ebenfalls Anwendung.^[319] Besonders gerne wird die Diels-Alder-Reaktion von Furanen mit Maleinimiden verwendet, da sie bereits bei relativ milden Temperaturen quantitativ abläuft und die benötigten Edukte leicht zugänglich sind (Schema 30).^[208,320,321]

Ich wollte die Diels-Alder Reaktion als kupferfreie Alternative der Alkin-Azid-Cycloaddition zur postsynthetischen Modifizierung von MOFs untersuchen und hatte mit PIZOF-8 ein interpenetriertes Zr-MOF mit Furanfunktionalität in Händen. Zunächst wurden Modellreaktionen mit dem Diester 23e durchgeführt (Schema 31). Für die Modellreaktionen wurde der Diester 23e wegen der besseren Vergleichbarkeit der Disäure 4e vorgezogen, da ich die postsynthetischen Modifikationen in Toluol durchführen wollte und die Disäure 4e unlöslich in Toluol ist. Ich verwendete mehrere Dienophile als Modellsubstrate für diese Reaktion. Die Grundkörper Maleinsäureanhydrid (62a) und Maleinimid (62b) besitzen eine hohe Reaktivität. N-Methylmaleinimid (62c) und N-Phenylmaleinimid (62d) wurden als Modelldienophile für N-alkylierte bzw. N-arylierte Maleinimide verwendet. Diester 23e wurde mit einem großen Überschuß dieser Dienophile 62 bei 70 °C in Toluol zur Reaktion gebracht und das Lösungsmittel anschließend bei 40 °C im Vakuum entfernt. Es ergaben sich in allen Fällen nahezu vollständige Umsätze (Schema 31).

Schema 31: Diels-Alder-Modellreaktionen an dem Diester 23e.

Während in den Reaktionen mit Maleinsäureanhydrid und Maleinimid ausschließlich das thermodynamisch begünstigte exo-Isomer des Cycloadduktes vorgefunden wurde, trat in den Reaktionen mit substituierten Maleinimiden auch das endo-Isomer auf. Die beiden Produktisomere lassen sich sehr einfach im ¹H-NMR-Spektrum anhand der Brückenkopfprotonen des neugebildeten Ringes unterscheiden. Diese Protonen koppeln miteinander und erscheinen im exo-Isomer als Dubletts. Im endo-Isomer wird eine zusätzliche Kopplung zu dem benachbarten allylischen Proton gefunden.

Die erabeiteten Cycloadditionsbedingungen wurden auf PIZOF-8 übertragen. In ersten Reaktionen mit Material, welches nach seiner modulierten Synthese in Anwesenheit von 30 eq. Benzoesäure nur dreimal mit Ethanol gewaschen worden war, wurde weder für Maleinimid (**62b**) noch für Maleinsäureanhydrid (**62a**) ein Umsatz festgestellt. Zur Umsatzbestimmung wurden die modifizierten MOFs mit CsF in DMSO-d₆ durch Zugabe von DCI-Lösung (35 wt% in D₂O) aufgelöst. Anschließend wurde K₂CO₃ zugegeben und der Umsatz mittels ¹H-NMR-Spektroskopie bestimmt. Auch eine Erhöhung der Temperatur auf 100 °C brachte keine Verbesserung. Erste Erfolge ergaben sich, nachdem das PIZOF-Material vor der postsynthetischen Modifikation zusätzlich achtmal mit THF gewaschen worden war. Nun wurde für die postsynthetische Diels-Alder-Cycloaddition mit Maleinimid (**62b**) bei 100 °C ein Umsatz von 56% festgestellt, wobei ausschließlich die Bildung des exo-Isomers gefunden wurde. Offenbar wirkt sich die Anwesenheit des Modulators Benzoesäure negativ auf die postsynthetische Diels-Alder Cycloaddition aus. Dies wurde bestätigt durch ein Experiment mit PIZOF-Material, welches vor der postsynthetischen Modifikation viermal mit DMF und 16-mal mit THF gewaschen wurde. Mit diesem intensiv gewaschenen Material konnte der Umsatz auf 91% verbessert werden (Schema 32). Kurioserweise konnte für das reaktivere und sterisch vergleichbare Maleinsäureanhydrid (62a) immer noch kein Umsatz festgestellt werden. Dennoch wurden auch die unreaktiveren Maleinimide 62c und 62d mit diesem intensiv gewaschenen Material bei 100 °C zur Reaktion gebracht (Schema 32). Nach dem Auflösen wurden ein Umsatz von 58% bzw. 20% und die Anwesenheit des endo-Isomers festgestellt.

Die Kristallinität bleibt in allen vier postsynthetischen Diels-Alder-Modifikationen erhalten, was sich anhand der PXRD-Spektren zeigen lässt (Abb. 28). Die Umsätze der postsynthetischen Diels-Alder-Cyloadditionen mit den Maleinimiden 62 lassen eine Größenselektion des MOFs erahnen. Die Erhöhung der Reaktionstemperatur auf 100 °C im Vergleich zu den in den Modellreaktionen verwendeten 70 °C hat allerdings gravierende Auswirkungen auf die Gleichgewichtslage. In neuerlichen Testreaktionen mit den Diestern 23e wurden für diese höhere Reaktiontemperatur gefunden. Somit könnten keine vollständigen Umsätze die festgestellten Unterschiede in den Umsätzen der postsynthetischen Diels-Alder-Reaktionen mit den den temperaturabhänigen Maleinimiden 62 auch mit Gleichgewichtslagen zusammenhängen. Leider war zum Zeitpunkt dieser Studie kein PIZOF-8-Material postsynthetischen mehr vorhanden. um die Modifikationen mit intensiv gewaschenem Material bei 70 °C durchzuführen. Diese Experimente werden baldmöglich nachgeholt. Nichtsdestotrotz konnte gezeigt werden, dass sich die Diels-Alder-Cycloaddition zur postsynthetischen Modifikation von MOFs eignet.

Schema 32: (a) Postsynthetische Diels-Alder-Cycloaddition an PIZOF-8. (b-d) ¹H-NMR-Spektren (500 MHz, DMSO-d₆): (d) Disäure **4e**. (c) Diester **63b** aus Modellreaktion. (b) Modifizierter Linker des PIZOFs nach Reaktion mit Maleinimid (**62b**), Auflösung mit CsF und DCI in D₂O und DMSO-d₆ und anschließender K₂CO₃-Zugabe. ^ΔSignale der Furan-2-ylgruppe des Linkers **4e**. ^{\$}Signal von Maleinimid (**62b**). [§]Signal von H₂O. *Signal von DMSO.

Abb. 28: PXRD-Profile. Unten: PIZOF-8. Darüber: PIZOFs nach postsynthetischen Modifikationen mit verschiedenen Dienophilen **62**.

6 Alkinylschutzgruppen

6.1 Kreuzkupplungen

Alle in dieser Arbeit beschriebenen organischen Linker für MOFs wurden über C-C-Kreuzkupplungen dargestellt. Diese übergangsmetallkatalysierten Reaktionen bestechen durch hohe Selektivitäten und Ausbeuten, milde Reaktionsbedingungen und eine breite Toleranz gegenüber funktionellen Gruppen.^[322] Ihre Entwicklung begann vor ca. 50 Jahren mit der Entdeckung der Stephens-Castro-Kupplung Aryliodiden.^[323] und Die zwischen Kupferacetyliden Wegbereiter der palladiumkatalysierten Kreuzkupplungen Heck, Negishi und Suzuki wurden aufgrund der enormen Bereicherung für die organischen Synthese mit dem letztjährigen Nobelpreis geehrt. In dieser Arbeit wurden neben Suzuki-Miyaura-, Stille- und Glaser-Kupplungen in erster Linie Sonogashira-Hagihara-Kupplungen zum Aufbau der organischen Linkermoleküle verwendet. Diese Kreuzkupplung wurde 1975 publiziert und stellt eine Weiterentwicklung der Stephens-Castro-Kupplung dar.^[324] Die Sonogashira-Hagihara-Kupplung von Aryl- oder Vinylhalogeniden, meist Bromiden oder lodiden, und einem terminalen Alkin wird mit Hilfe geringer Mengen eines Pd(0)-Katalysators und eines Cu(I)-Cokatalysators typischerweise in Anwesenheit einer Aminbase durchgeführt und eignet sich hervorragend zur Darstellung interner Alkine. Die Synthese von terminalen Alkinen über diese C-C-Kreuzkupplung wird in zwei Schritten durchgeführt, wie man an der Darstellung von **8a** (Schema 2) erkennt und was noch einmal in Schema 33 allgemein dargestellt ist. Hierbei wird ein monogeschützer Ethinbaustein benötigt, wofür es mehrere Gründe gibt. Acetylen kann an zwei Positionen Kupplungsreaktionen eingehen und somit Produktgemische bilden. Außerdem ist es gasförmig und dadurch schwer zu handhaben. Desweiteren bildet Acetylen in alkalischer Lösung in Gegenwart von Kupfer(I)-Salzen schwerlösliches und explosives Kupfer(I)acetylid.^[325]

 $\begin{array}{cccc} R\cdot X \ + & & & = & -PG & \stackrel{"Pd(0)"}{\xrightarrow{}} & R & \stackrel{=}{\longrightarrow} & -PG & \stackrel{Entschützung}{\xrightarrow{}} & R & \stackrel{=}{\longrightarrow} & \\ \hline R = & Ary I, \ Viny I \\ X = I, \ Br \\ PG = & SiMe_3, \ Si^i Pr_3 \end{array}$

Schema 33: Zweistufige Synthese terminaler Alkine über Sonogashira-Hagihara-Kupplungen.

Ich baute nur relativ kurze Linkermoleküle mit maximal zwei Ethinylen-Einheiten mit Hilfe dieser Reaktion auf. Die Darstellung längerer Linker mit mehreren solcher Einheiten ist komplexer und benötigt zur Herstellung monodisperser Proben eine iterative Herangehensweise.^[326] Strategien zur Synthese solcher Oligo(*para*phenylenethinylen)e verlaufen über schrittweise Verlängerung des konjugierten Rückgrates^[326,327] oder wesentlich eleganter und effektiver über eine divergentkonvergente Strategie.^[134,328] Fundament solcher Strategien sind orthogonale oder zumindestens abgestuft labile Alkinylschutzgruppen.^[329] In Schema 34 ist eine divergent-konvergente Synthesestrategie exemplarisch dargestellt. In dem dargestellten Beispiel erleichtert die Verwendung von Alkinylschutzgruppen unterschiedlicher Polarität die Isolierung der Produkte.^[134]

6.2 Schutzgruppen für terminale Alkine

In Abb. 29 sind einige, für diese Arbeit relevante Alkinylschutzgruppen zusammengefasst. Trialkylsilylgruppen werden am häufigsten als Schutzgruppen für terminale Alkine eingesetzt.^[330] Ihre Labilität gegenüber basischer Hydrolyse und Fluoridionen lässt sich durch den sterischen Anspruch der Substituenten am Silizium einstellen.^[331,332] Die hohe Affinität des Siliziums zum Fluor macht Silylschutzgruppen so interessant für die organische Synthese, denn die üblicherweise für die Entschützung eingesetzten Reagenzien, z. B. ⁿBu₄NF in THF, sind kompatibel mit vielen anderen Schutzgruppen sowie den meisten funktionellen Gruppen.^[228,229] Die

beiden bedeutendsten Silvlschutzgruppen sind Trimethylsilyl (TMS) und Tri-isopropylsilyl (TIPS).^[333] Die TMS-Gruppe ist sehr anfällig gegenüber basischer Hydrolyse und kann bereits mit katalytischen Mengen Kaliumcarbonat in Methanol abgespalten werden.^[334] Die TIPS-Gruppe zeigt dieses Verhalten zeigt nicht und wird typischerweise mit Fluoridionen entfernt.^[335] Ein möglicher Nachteil der üblicherweise Trialkvlsilvlgruppen verwendeten Einfluss ist ihr aerinaer auf das säulenchromatographische Laufverhalten der Produkte. So kann es sehr anspruchsvoll sein das gewünschte Produkt in Reinform zu isolieren.^[336]

Abb. 29: Schutzgruppen für terminale Alkine.

Diese Problematik kann durch den Einsatz einer polaren Alkinylschutzgruppe, welche eine säulenchromatographische Trennung der Produkte an Kieselgel erleichtern, umgangen werden. Nur wenige polare Schutzgruppen für terminale Alkine sind bekannt. Zu den gebräuchlichsten Vertretern gehören die Hydroxymethyl (HOM)^[344], Hydroxyethyl (HOE)^[345] und 2-Hydroxyprop-2-yl (HOP auch 2-HP)^[346]. Diese besitzen eine Hydroxygruppe und werden aufgrund der kostengünstigen einfach geschützten Ethinbausteine sehr gerne eingesetzt. Die Alkoholgruppe verleiht den Schutzgruppen eine beachtliche Polarität, ist allerdings in vielen chemischen Umwandlungen nicht inert. Desweiteren sind die Abspaltungsbedingungen dieser Schutzgruppen, z. B. γ -MnO₂ und KOH in Diethylether für HOM- und HOE-Gruppen bzw. KOH in siedendem Toluol für HOP-Gruppen inkompatibel mit einer Vielzahl funktioneller Gruppen. Beeindruckenderweise wurden Abspaltungen der HOP-Schutzgruppe in Gegenwart einer TMS-Schutzgruppe in wasserfreiem Toluol durchgeführt.^[347-350] Diese Möglichkeit offenbart die Orthogonalität dieser beiden Schutzgruppen.

Die milden Abspaltungsbedingungen der Silvlschutzgruppen wurden mit der Polarität Cvanofunktion in siliziumbasierten einer den Schutzgruppen (CPDMS)^[336,339] 3-Cyanopropyldimethylsilyl und 3-Cyanopropyldi-iso-propylsilyl (CPDIPS)^[340,341] vereinigt. Ein Makel dieser beiden Schutzgruppen ist in der Reaktivität der Cyanogruppe zu sehen, welche bei vielen chemischen Transformationen nicht inert ist.

Die von Cai und Vasella veröffentlichten [1,1-Dimethyl-3-Schutzgruppen (oxy)propyl]dimethylsilyl(DOPS)-basierten beinhalten maskierte Alkoholfunktionen, welche beispielsweise mit Tetrahydropyranyl (THP) geschützt sind.^[342,343] Nach der Freisetzung der Alkoholgruppe kann das terminale Alkin durch Behandlung mit einer katalytischen Menge einer starken Base in einem aprotischen Lösungsmittel erhalten werden (Schema 35). Bei sorgfältiger Reaktionsdurchführung sind die DOPS- und die TMS-Schutzgruppe zueinander orthogonal. Die Beständigkeit der DOPS-Schutzgruppen gegenüber einem nucleophilem Angriff von Hydroxid- oder Fluoridionen am Siliziumzentrum ist mit der Stabilität der *tert*-Butyldimethylsilyl-Schutzgruppe (TBDMS) vergleichbar. Der Nachteil der DOPS-Schutzgruppen ist ihre schlechte Zugänglichkeit. Kommerziell ist kein DOPS-geschützter Ethinbaustein erhältlich. Die publizierten Synthesen verlaufen in sieben Stufen ausgehend von 3-Methylbut-2-enal.^[342]

Schema 35: Abspaltung der DOPS-Schutzgruppen.^[342]

6.3 Zielsetzung

Die Nachteile der bekannten Alkinschutzgruppen polaren wurden im vorangegangenen Abschnitt besprochen. Ich wollte das Feld der Alkinschutzgruppen mit solchen bereichern, welche die besprochenen Nachteile vermissen lassen. Die Schutzgruppen sollten die sehr selektiven und milden Abspaltungsbedingungen der Silvlschutzgruppen besitzen und sich trotz ihrer polaren Markierung, welche säulenchromatographische Separationen erleichtert, in anderen chemischen Reaktionen möglichst inert verhalten.

Die erhaltenen Fraktionen einer Säulenchromatographie werden typischerweise zunächst mittels Dünnschichtchromatographie analysiert. Ebenso gehen Säulenchromatographien üblicherweise dünnschichtchromatographische Analysen voraus. Zur Analyse von Dünnschichtchromatogrammen ist es sehr bequem, wenn die zu untersuchenden Substanzen einfach zu detektieren sind. In diesem Zusammenhang bietet sich die Anwesenheit einer Arylfunktion in der Alkinschutzgruppe an, da diese durch ihre π - π *-Übergänge auf DC-Folien mit Fluoreszenzindikatoren leicht identifizierbar ist.

Als sehr inerte, polare Funktionalität bieten sich Etherfunktionen an. Diese lassen sich normalerweise nur unter stark sauren Bedingungen in Gegenwart eines guten Nucleophils spalten und sind in den meisten anderen chemischen Umgebungen inert. Zur säulenchromatographischen Differenzierung genügt die Polarität einer Etherbindung, auch wenn sie deutlich geringer als die einer Cyanofunktion ist, was in Vorversuchen mit Hilfe einer Phenoxygruppe gezeigt wurde.^[220] In diesen Vorversuchen von Miriam Hülsmann wurde Dimethyl-3-phenoxypropylsilylethin (POP-DMS-Ethin) in einer einstufigen Synthese ausgehend von käuflich erwerblichem Chlorsilan **64** synthetisiert und anschließend in einer Alkinyl-Aryl-Kreuzkupplung mit einem Äquivalent Diiodbenzol **65** eingesetzt (Schema 36).

Schema 36: POP-DMS-Schutzgruppe.

Die zwei polar markierten Kupplungsprodukte **66** und **67** dieser statistischen Sonogashira-Hagihara-Kupplung ließen sich voneinander und von unumgesetztem Diiodbenzol **65** säulenchromatographisch leicht separieren (Abb. 30). Diese Trennung der beiden Kupplungsprodukte und des Eduktes **65** wäre bei Anwendung einer unpolaren Schutzgruppe wie TMS deutlich problematischer.

Abb. 30: Kieselgel-Dünnschichtchromatogramm (*n*-Pentan/CH₂Cl₂ = 5:1) des Diiodbenzols **65** und der beiden Kupplungsprodukte **66** und **67**.

Die Abspaltungsbedingungen der POP-DMS-Schutzgruppe sind durch den geringen sterischen Anspruch am Silizium mit denen einer TMS-Gruppe vergleichbar. So wurde eine vollständige Entschützung der Alkingruppen von dem Monokupplungsprodukt **66** bei Behandlung mit 0.04 N NaOH in einem Wasser/Methanol-Gemisch nach 2 Stunden festgestellt. Ein großer Vorteil der

POP-DMS-Schutzgruppe ist die gute Zugänglichkeit des einfach geschützten Ethins, POP-DMS-Ethin, aus dem kommerziell erhältlichen Dimethylchlorsilan **64**. Ein Nachteil des Phenoxyringes können die breiten Signale der aromatischen Protonen im ¹H-NMR-Spektrum sein (Abb. 31).

Abb. 31: ¹H-NMR-Spektrum (250 MHz, CDCl₃) von POP-DMS-Ethin.

Die ¹H-NMR-spektroskopische Analyse und Charakterisierung eines geschützten Moleküls kann durch eine Schutzgruppe mit komplizierten ¹H-NMR-Signalen erschwert werden. Es ist somit sinnvoll, wenn eine Schutzgruppe möglichst wenige ¹H-NMR-Spektrum und scharfe Signale im Ein erzeugt. para-Methoxyphenylsubstituent erschien wegen seiner drei, definierten und charakteristischen Signalgruppen im ¹H-NMR-Spektrum eine geeignetere polare Gruppe zu sein. Im Rahmen meiner Diplomarbeit wurde die Synthese der sterisch anspruchsvollen para-Methoxyphenyldi-iso-propylsilyl(PMP-DIPS)-Schutzgruppe untersucht.^[351] Das ¹H-NMR-Spektrum des PMP-DIPS-Ethins (68a) belegt die definierten und charakteristischen Signale dieser Schutzgruppe und ist zusammen mit der damals erarbeiteten Synthese und den gefundenen Nebenprodukten in Schema 37 präsentiert.

Schema 37: Synthese und ¹H-NMR-Spektrum (250 MHz, CDCl₃) des PMP-DIPS-Ethins (**68a**). ^aaus ¹H-NMR-spektroskopischen Daten berechnete Ausbeuten.

Halogen-Metall-Austausch an Bromanisol **69** und anschließende Reaktion mit Di-*iso*propylchlorsilan lieferte Hydrosilan PMP-DIPS-H (**70a**).^[351] Als Nebenprodukt dieser Reaktion wurde *n*-Butylanisol (**71**) nachgewiesen, welches auf Reaktion der Produkte des Brom-Lithium-Austauches, 4-Lithioanisol und 1-Brombutan, zurückzuführen ist.^[351] Eine destillative Abtrennung dieses Nebenproduktes war möglich, aber nicht verlustfrei durchzuführen. Nach einmaliger fraktionierter Destillation konnten nur 22% an reinem PMP-DIPS-H (**70a**) erhalten werden, weitere 74% waren noch mit 6 mol% 4-Butylanisol verunreinigt. Bromierung des Hydrosilans und darauffolgende nucleophile Subsitution am Siliziumatom mit Ethinylmagnesiumbromid lieferte PMP-DIPS-Ethin (**68a**).^[351] Im Bromierungsschritt mit N-Bromsuccinimid wurde die Bildung von Bromanisols **69** gefunden.^[351] Si-C-Bindungen und andere SiliziumElement-Bindungen können durch Elektrophile gespalten werden.^[352] Während diese Spaltung bei Silizium-Alkyl-Bindungen nur mit sehr starken Elektrophilen gelingt, gilt dies nicht für Silizium-Aryl-Bindungen. Hier folgt die Spaltung dem Mechanismus einer ipso-Substitution und wird durch Substituenten mit +M- oder +I-Effekt aktiviert (Schema 38).^[353]

Schema 38: Mechanismus der Silizium-Aryl-Bindungsspaltung.

Eine Methoxygruppe ist ein solcher Substituent, was die PMP-DIPS-Schutzgruppe anfällig gegenüber Elektrophilen macht. Diese potentielle Schwachstelle in der PMP-DIPS-Schutzgruppe lässt sich durch die Insertion einer Alkylkette zwischen die Silizium-Aryl-Bindung beheben. Dieser Ansatz wurde in den Schutzgruppen 2-(4-Methoxyphenyl)ethyldimethylsilyl (PMPE-DMS), Di-tert-butyl-2-(4-methoxyphenyl)ethylsilyl (PMPE-DTBS) und 2-(4-Methoxyphenyl)-1-methylethyldiiso-propylsilyl (PMPME-DIPS) realisiert (Abb. 32). Im Rahmen dieser Arbeit wurde die Synthese der monogeschützten Ethine entwickelt und die Stabilität dieser drei polar markierten, silvlbasierten Alkinschutzgruppen evaluiert.

Abb. 32: Polar markierte Ethinylbausteine.

7 Polar markierte Ethinylbausteine

7.1 Synthesestrategie

Die Synthese der einfach geschützten Ethine, PMPE-DMS-Ethin (**68b**), PMPE-DTBS-Ethin (**68c**) und PMPME-DIPS-Ethin (**68d**), wurde anhand des PMPE-DTBS-Ethins (**68c**) entwickelt und ist zusammen mit einer verbesserten Synthese des PMP-DIPS-Ethins (**68a**) in Schema 39 dargestellt.

Schema 39: Darstellung der einfach geschützen Ethine 68 und Ausbeuten der isolierten Produkte.

Ausgehend von den Dialkylchlorsilanen 72 wurden die Hydrosilane 70 durch eine nucleophile Substitution am Siliziumzentrum synthetisiert.^[354-356] Die Ethinylsilane 68a-d wurden daraufhin mittels Chlorierung der Hydrosilane 70 mit (TCCA)^[357] und Trichlorisocyanursäure anschließender Reaktion mit frisch hergestelltem Lithiumacetylid^[358] erhalten.

7.2 Nucleophile Substitution am Siliziumzentrum

Wie bereits erwähnt, wurden die Reaktionsbedingungen der Synthese der Ethinylsilane 68 anhand des PMPE-DTBS-Ethins (68c) entwickelt (Schema 39). Der erste Schritt, die nucleophile Substitution am Siliziumatom, wurde mit einem Grignard-Reagenz, hergestellt aus 1-Brom-2-(4-methoxyphenyl)ethan (73) und Magnesiumspänen, durchgeführt. Ein Zusatz von 15 mol% Kupfer(I)cvanid war notwendig, um den Umsatz von 21% auf 83% zu steigern. Das Siliziumzentrum im Di-tert-butylchlorsilan (72c) ist sterisch stark beladen, was den geringen Umsatz in der unkatalysierten Reaktion erklärt. In Gegenwart des Cyanidanions laufen nucleophile Substitutionsreaktionen am Siliziumzentrum leichter ab.^[354-356] Die katalytische Wirkung des Cyanidions wird durch die Bildung eines pentakoordinierten Siliziumkomplexes, welcher im Gleichgewicht mit dem Chlorsilan 72c steht, erklärt.^[355] Die veränderte Molekülgeometrie am Siliziumatom erleichtert den nucleophilen Angriff des Metallorganyls auf das Siliziumatom. Der Einsatz eines Lithiumorganyls, tert-Butyllithium 1-Brom-2-(4generiert und aus methoxyphenyl)ethan, anstelle eines Grignard-Reagenzes lieferte nur für den unkatalysierten Fall eine Verbesserung (Schema 40). Hierdurch konnte der Umsatz von 21% auf 52% gesteigert werden. In Gegenwart von Kupfer(I)cyanid wurde für das Lithiumorganyl lediglich eine geringe Umsatzsteigerung auf 56% beobachtet, ich mich mit einem Umsatz 83% weshalb von bei Einsatz von 2-(4-Methoxyphenyl)ethylmagnesiumbromid zufriedengeben Nach musste. fraktionierter Destillation wurde das Hydrosilan 70c in einer Ausbeute von 59% erhalten.

Schema 40: Umsätze des Bromids 73 zu Hydrosilan 70c über ein Lithiumorganyl.

Die erarbeiteten Bedingungen zur Darstellung des Hydrosilans **70c** über ein Grignard-Reagenz in Anwesenheit von CuCN wurden zur Herstellung des Hydrosilans **70b** angewendet und funktionierten im Falle dieses sterisch wenig beladenen Hydrosilans optimal. Ob hier die Verwendung eines Silylierungskatalysators wirklich notwenig ist, kann bezweifelt werden.

Darstellung des Hydrosilans 70d wurde ausgehend von 2-Brom-1-(4-Die methoxyphenyl)propan (75) realisiert. Das eingesetzte Bromid 75, dessen Darstellung weiter unten diskutiert wird, enthielt eine unbekannte Verbindung. Bei Verwendung dieses kontaminierten Bromids 75 für die Darstellung des Hydrosilans **70d** trat ein Nebenprodukt auf, welches sich im ¹H-NMR-Spektrum durch ein Teilsignal eines AA'XX'-Spinsystem bei 7.13 zu erkennen gab und sich weder durch fraktionierte Destillation noch durch Säulenchromatographie vollständig entfernen ließ. Der Gehalt dieses unbekannten Nebenproduktes nach Destillation und Säulenchromatographie entsprach 3 mol% (berechnet aus dem ¹H-NMR-Spektrum unter der Annahme, daß dieses Signal zwei Protonen entspricht). Das für die Darstellung des Hydrosilans 70d benötigte Bromid 75 war nicht kommerziell erhältlich und wurde aus 4-Allylanisol (76) durch HBr-Addition erzeugt (Schema 41). Wie bereits erwähnt, entsteht in dieser Additionsreaktion ein unbekanntes Nebenprodukt, welches sich im ¹H-NMR-Spektrum durch zwei Doppeldupletts bei 3.54 und 3.43 ppm sowie ein Duplett bei 1.39 ppm offenbart und sich auch durch mehrfache fraktionierte Destillation und Säulenchromatographie nicht vollständig entfernen ließ. Das Bromid 75 war anschließend noch mit 6 mol% der unbekannten Verbindung kontaminiert (berechnet aus dem ¹H-NMR-Spektrum unter der Annahme, daß das Signal bei 1.39 ppm einer Methylgruppe entspricht). Ob das unbekannte Nebenprodukt im Hydrosilan 70d aus dieser Kontamination des Bromids 75 hervorgeht, ist nicht bekannt.

Schema 41: Darstellung von 2-Brom-1-(4-methoxyphenyl)propan (**75**) und dessen ¹H-NMR-Spektrum (250 MHz, CDCl₃). $^{\circ}$ Signal von H₂O. $^{\circ}$ Signale der unbekannten Verunreinigung, [©]Signale der ¹³C-Satelliten des OCH₃-Signals von **75**.

Die Darstellung des Hydrosilans **70a** wurde entwicklungsbedingt und im Gegensatz zu den drei anderen Hydrosilanen **70b-d** nicht über ein Grignard-Reagenz versucht, sondern mit Hilfe eines Lithiumorganyls erreicht (Schema 39). Bei dieser nucleophilen Substitution am Chlorsilan **68d** wurde auf die Anwesenheit eines Silylierungskatalysators verzichtet. Das benötigte Lithiumorganyl wurde aus 4-Bromanisol durch Halogen-Metall-Austausch mit *tert*-Butyllithium und nicht mit *n*-Butyllithium generiert, um die Entstehung von 4-Butylanisol zu unterdrücken und lieferte Hydrosilan **70a** in 86%iger Ausbeute.

7.3 Darstellung der Chlorsilane

Die erhaltenen Hydrosilane **70** wurden anschließend mit Trichlorisocyanursäure (TCCA) in die korrespondierenden Chlorsilane^[357] **77** überführt. Analog können reaktivere Bromsilane^[359] durch die Behandlung mit N-Bromsuccinimid (NBS) erlangt werden. In vorangegangenen Experimenten zeigte sich, dass es bei diesen Halogenierungsreaktionen zu Nebenreaktionen kommen kann.^[351] Hierbei handelt es sich in erster Linie um elektrophile aromatische Substitutionen, wodurch das halogenierte Produkt **78** und/oder das desilylierte Produkt **79** entstehen

(Schema 42). Das Nebenprodukt einer elektrophilen Desilylierung, 4-Haloanisol 79, trat nur im Falle des Arylsilans 70a wegen der Existenz einer Aryl-Silizium-Bindung auf und war Ursache der Kontamination des Chlorsilans 77a mit ca. 1 mol% an 4-Chloranisol. Die Chlorierung in ortho-Position zum Methoxysubstituenten ist bei Hydrosilanen 70 möglich. Sie ließ sich vermeiden. allen indem die Chlorierungsreaktion unter Eisbadkühlung in THF anstelle von CH2Cl2 und nur mit Menge TCCA durchgeführt wurde. Die äquifunktioneller an befürchtete Etherspaltung^[375] von THF oder der Methoxygruppe wurde unter diesen Reaktionsbedingungen nicht beobachtet.

X = CI, Br

Schema 42: Halogenierung von PMP-DIPS-H (70a).

Alle auf diese Weise durchgeführten Chlorierungsreaktionen der Hydrosilane **70** verlaufen nahezu eindeutig und vollständig. Aufgrund dieses Umstandes und wegen etwaiger Hydrolyseinstabiliät der erhaltenen Chlorsilane **77** wurde auf eine destillative Auftrennung der Rohprodukte verzichtet. Entstehende Cyanursäure wurde durch Extraktion der Rohprodukte mit trockenem Cyclohexan abgetrennt.

Das erwähnte, unbekannte Nebenprodukt, welches bei der Darstellung des Hydrosilans **70d** auftrat, wird während dieser Reaktion ebenfalls chloriert. Diese Tatsache wurde anhand einer Verschiebung des Teilsignals des AA'XX'-Spinsystems im ¹H-NMR-Spektrum zu 7.14 ppm ausgemacht. Der Anteil der chlorierten, unbekannten Verbindung im Produkt entspricht dem Anteil im Eduktgemisch und liegt bei 3 mol%.

7.4 Ethinylierung der Chlorsilane

Der nächste Syntheseschritt war eine erneute nucleophile Substitution am Siliziumatom, worin der zuletzt eingeführte Chlorsubstituent durch eine Ethinylgruppe ausgetauscht wurde. Die zuvor erarbeiteten Bedingungen^[351] zur Darstellung von PMP-DIPS-Ethin (68a) versagten bei der sterisch anspruchsvollen PMPE-DTBS-Schutzgruppe (Schema 37 und Schema 43, Zeile 1). Interessanterweise wurde das eingesetzte Chlorid 77c nicht während der wässrigen Aufarbeitung der Reaktionslösungen hydrolysiert, woran man die große sterische Abschirmung des Siliziumatoms in der PMPE-DTBS-Gruppe erkennen kann. Es wurde eine Vielzahl an Experimenten auf der Suche nach geeigneten Bedingungen zur Darstellung des PMPE-DTBS-Ethins (68c) durchgeführt. Einige ausgewählte Experimente sind in Schema 43 dargestellt und tabellarisch aufgelistet. Wir untersuchten verschiedene Acetylide in An- und Abwesenheit der Silylierungskatalysatoren Kupfer(I)- und Trimethylsilylcyanid. Außerdem wurde mittels der Zugabe von Dimethylsulfoxid (DMSO) und Dimethylpropylenharnstoff (DMPU) der Einfluss von dipolar aprotischen Lösungsmittelzusätzen studiert.

Die besten Ergebnisse wurden mit frisch hergestelltem Monolithiumacetylid^[358] und dem Silylierungskatalysator Trimethylsilylcyanid (TMS-CN) erhalten (Schema 43, Zeile 10). Mit diesen Bedingungen wurden sehr hohe Umsätze des Chlorsilans PMPE-DTBSS-CI (77c) in THF erreicht und es konnte ausgehend von PMPE-DTBS-H (70c) eine Ausbeute von 87% an Ethinylsilan 68c über 2 Stufen und Säulenchromatographie realisiert werden. Monolithiumacetylid wurde aus gasförmigem Acetylen und n-Buthyllithium selbst hergestellt und sofort verwendet. Das käuflich erhältliche Pendant ist zur Stabilisierung mit Ethylendiamin komplexiert, da unstabilisiertes Monolithiumacetylid über -25 °C in Dilithiumacetylid und Acetylen disproportioniert.^[360] Der Stabilisator Ethylendiamin unterbindet diese Disproportionierungsreaktion bis 45 °C.^[361] Die stabilisierende Wirkung des Komplexierungsreagenzes erniedrigt allerdings auch die Reaktivität des Ethinids gegenüber Elektrophilen drastisch.^[358] Selbst in Reaktionen mit dem sterisch weniger beladenen Chlorsilans 77a bewirkte dieses stabilisierte Reagenz praktisch keine Umsätze zu Ethinylsilan 68a.^[351] In den durchgeführten Reaktionen ohne Silylierungskatalysator liess sich das gewünschte Produkt **68a** jeweils nur in Spuren nachweisen.

	М	Kataly sator	zusätzliches Lösungsmittel	Umsatz (%) zu 68c	Umsatz (%) zu 80	Umsatz (%) zu 81
1	MgCI	-	DMPU	-	-	-
2	MgCI	CuCN	-	-	7	3
3	MgCI	CuCN	DMPU	7	23	70
4	Na	-	-	-	-	-
5	Na	-	DMPU	29-39	53-66	-
6	Na	-	DMSO	35	60	-
7	Na	CuCN	DMPU	54	56	-
8	Li	-	-	18	-	-
9	Li	-	DMPU	91	9	-
10	Li	TMS-CN	-	86-95	-	-
11	Li	TMS-CN	DMPU	87	13	-

Schema 43: Ethinylierung von PMPE-DTBS-CI (77c). DMPU = Dimethylpropylenharnstoff.

Eine ebenfalls sehr gute aber mindergiftige Alternative zur Ethinylierung des Chlorsilans **77c** bietet frisch hergestelltes Lithiumacetylid ohne giftigen Cyanidkatalysator in THF und DMPU (Schema 43, Spalte 9). Hier wurde ein vollständiger Umsatz des Chlorsilans **77c** gefunden, jedoch trat bei diesen Bedingungen das Disubstitutionsprodukt **80** auf, obwohl alle Ethinylierungsreaktionen immer mit einem großen Überschuss an Metallorganyl durchgeführt wurden. Die Entstehung des Nebenproduktes **80** bei diesen Reaktionsbedingungen stellte kein größeres Problem dar, da dieses sich leicht säulenchromatographisch von dem

gewünschten Ethinylsilan **68c** abtrennen ließ. Die erwähnte Disproportionierungsreaktion und damit die Anwesenheit des Ethindiid-Dianions oder, wahrscheinlicher, eine Deprotonierung des entstehenden terminalen Alkins **68c** durch basisches Metallorganyl sind meines Erachtens für die Entstehung des Nebenproduktes **80** verantwortlich.

Dieses Dimer 80 gewann bei Reaktionen des Chlorsilans mit kommerziell erhältlichem Natriumacetylid die Überhand, was dieses Metallorganyl als Ethinidquelle disqualifizierte (Schema 43, Zeile 5-7). Insgesamt zeigten alle Metallorganyle in Reaktionen ohne Zusätze an Silylierungskatalysatoren oder dipolar aprotischen Lösungsmitteln keine bzw. nur geringe Umsätze (Schema 43, Zeile 1, 4, 8). Ethinylmagnesiumchlorid besitzt eine geringere Reaktivität im Vergleich zu frisch hergestelltem Monolithiumacetylid. Umsatzerzeugende Reaktionen mit diesen Grignard-Reagenzien wurden stets von dem Nebenprodukt 80 begleitet, (Schema 43, Zeile 2-3). Die Bildung des Glaser-Kupplungsproduktes 81 in Reaktionen mit dem Silvlierungskatalysator Kupfer(I)cyanid ist auf eine oxidative Dimerisierung des terminalen Alkins 68c während der wässrigen Aufarbeitung zurückzuführen. Wird dies berücksichtigt, so ergibt sich für die Reaktion mit Ethinylmagnesiumchlorid und CuCN in THF und Dimethylpropylenharnstoff (DMPU) ein theoretischer Umsatz zu 68c vor der wässrigen Aufarbeitung von 77% (Schema 43, Zeile 3). Wegen der oxidativen Dimerisierung in Anwesenheit eines Übergangsmetalls ist Trimethylsilylcyanid (TMS-CN) für diesen Syntheseschritt die bessere Silylierungskatalysatorwahl.

Die Bedingungen mit frisch hergestelltem Monolithiumacetylid und TMS-CN (Schema 43, Zeile 10) wurden auf die sterisch geringer beladenen Chlorsilane 77a,b,d übertragen. Die drei Synthesen verliefen insgesamt mit zufriedenstellenden Ausbeuten von 61% für PMPE-DMS-Ethin (68b), 71% für PMPME-DIPS-Ethin (68d) und 69% für PMP-DIPS-Ethin (68a) über zwei Stufen ausgehend von den Hydrosilanen 70. Im Falle der PMPE-DMS- und der PMP-DIPS-Gruppe muss davon ausgegangen werden, dass eine Zugabe des Silylierungskatalysators nicht notwendig war. Die beschriebene Kontamination des PMPME-DIPS-CI (77d) wurde höchstwahrscheinlich ebenfalls einer Ethinylierungsreaktion unterworfen. Im ¹H-NMR-Spektrum wurde das Teilsignal des AA'XX'-Spinsystems der kontaminierenden Spezies von 7.14 ppm tieffeldig zu 7.15 ppm verschoben.

Bedauerlicherweise ließ sich die unbekannte Verbindung auch nicht auf dieser Stufe säulenchromatographisch aus dem Produkt entfernen und war weiterhin zu 3 mol% enthalten. Dass diese unbekannte Verbindung Probleme bei der Anwendung des **PMPME-DIPS-Ethins** (68d) als geschützten Ethinylbaustein darstellt. ist unwahrscheinlich, da es sich bei dieser vermutlich ebenfalls um ein sterisch anspruchsvolles Ethinylsilan handelt. Auch 4-Chloranisol, welches bereits im Produkt Chlorieruna PMP-DIPS-H (**70**a) der des enthalten war. konnte säulenchromatographisch nicht von dem Ethinylsilan PMP-DIPS-Ethin (68a) abgetrennt werden und ist noch zu 0.4 mol% im geschützten Ethinylbaustein enthalten. Dieses sollte allerdings ebenfalls keine Schwierigkeiten bei der Applikation des Bausteins in einer Sonogashira-Hagihara-Kreuzkupplung aufwerfen, da elektronenreiche Arylchloride normalerweise diese Art der C-C-Verknüpfung nur schwer eingehen.

8 Verhalten der Alkinylschutzgruppen

8.1 Einfluss auf die Säulenchromatographie

Die polar markierten Ethinylbausteine **68a-d** mit ihren vier unterschiedlichen Silylschutzgruppen wurden analog zum POP-DMS-Ethin (Schema 36) mit Diiodbenzol **65** in einer Alkinyl-Aryl-Kupplung eingesetzt, um den Einfluss der polaren Markierung auf die Kieselgel-Säulenchromatographie und um die Stabilität der Ethinylschutzgruppen untersuchen zu können (Schema 44).

Zu Vergleichszwecken wurde zusätzlich unpolares TIPS-Ethin (68e) eingesetzt. Im Hinblick auf die Isolierbarkeit wurde ein Unterschuß an 1,4-Dihexyl-2,5-diiodbenzol (65) eingesetzt, da eine Isolierung des Dikupplungsproduktes 82e nach vollständigem Umsatz des Eduktes 65 und des Monokupplungsproduktes 83e möglich erschien und eine Trennung der drei Substanzen bei Verwendung von äquimolaren Mengen der Kupplungspartner 65 und 68e sehr problematisch erschien. Dennoch war bei Verwendung von nur 0.45 Äquivalenten Diiodbenzol 65 das gewünschte Dikupplungsprodukt 82e nach einmaliger Säulenchromatographie mit 4% des Monokupplungsproduktes 83e kontaminiert. Desweiteren misslang die Abtrennung des Glaser-Kupplungsproduktes 84e. Auch dieses Butadiin, welches auf eine oxidative Dimerisierung des geschützten Ethins 68e zurückzuführen ist, war 10 mol% chromatographierten Produkt noch zu im enthalten. Die Polaritätsunterschiede der Pro- und Edukte reichten im Falle der unpolaren TIPS-Schutzgruppe offensichtlich nicht aus, um eine leichte säulenchromatographische Trennung zu erlauben (Abb. 33).

Schema 44: Sonogashira-Hagihara-Kupplungen der polar markierten Ethinylbausteine **68**; ^aaus ¹H-NMR-spektroskopischen Daten berechnete Ausbeuten.

In den C-C-Kreuzkupplungen der vier polar markierten Ethinylbausteine 68a-d wurde äquifunktionale Menge 1,4-Dihexyl-2,5-diiodbenzol (65) verwendet, eine um möglichst viel der Dikupplungsprodukte 82a-d zu erhalten, womit ein Vergleich der Stabilitäten der polaren Schutzgruppen untereinander und mit der unpolaren TIPS-Schutzgruppe durchgeführt werden sollte. Erwartungsgemäß ermöglichte die polare Markierung der vier polaren Schutzgruppen PMPE-DMS, PMPE-DTBS, PMPME-DIPS und PMP-DIPS eine sehr leichte Separation der Reaktionsprodukte 82 und 83 voneinander und verbliebendem Diiodbenzol 65 mittels Flashvon Säulenchromatographie (Abb. 33). Die unpolaren Alkylsubsituenten am Silizium,

Methyl, tert-Butyl und iso-Propyl, der PMPE-DMS-, der PMPE-DTBS- und der PMPME-DIPS-Schutzgruppe nehmen im Veraleich dem polaren zu 4-Methoxyphenylalkylsubstituenten nur einen unwesentlichen Einfluß auf das chromatographische Laufverhalten an Kieselgel. Diese Erkenntnis wurde anhand der vergleichbaren RrWerte der Dikupplungsprodukte 82b-d zwischen 0.12 und 0.15 im Kieselgel-Dünnschichtchromatogramm mit *n*-Pentan und CH₂Cl₂ (5:1) gewonnen. Interessanterweise zeigt der 4-Methoxyphenylsubstituenten der PMP-DIPS-Gruppe des Dikupplungsproduktes 82a einen geringeren Einfluss auf das chromatographische Laufverhalten, was man an dem größeren R_r Wert von 0.26 erkennen kann. Vermutlich ist die polare Markierung der PMPE-DMS-, der PMPE-DTBS- und der PMPME-DIPS-Schutzgruppe aufgrund des größeren Abstandes zum sterisch beladenen Siliziumatom besser zugänglich als in der PMP-DIPS-Gruppe und kann somit besser mit Kieselgel wechselwirken.

Abb. 33: Kieselgel-Dünnschichtchromatogramme (links: *n*-Pentan / $CH_2Cl_2 = 5$: 1, rechts: *n*-Pentan) des Diiodbenzols **65** und der Kupplungsprodukte **82-84**.

Ein Nebenprodukt von Sonogashira-Hagihara-Kupplungen ist normalerweise das Glaserkupplungsprodukt des terminalen Alkins. Bei den vier polaren Ethinylschutzgruppen ließ sich dieses nur im Falle der TMS-analogen PMPE-DMS-Gruppe nach der Kreuzkupplungsreaktion nachweisen und abtrennen. In den Kreuzkupplungsreaktionen der anderen drei polar markierten Ethine **68a**,**c**,**d** fand sich kein Hinweis auf ein Glaserkupplungsprodukt **84a**,**c**,**d** und dessen Abtrennung

kann somit bezweifelt werden. Vermutlich wurden die Dimerisierungsprodukte **84a,c,d** nicht detektiert, weil ihr Gehalt in den Rohprodukten der Alkinyl-Aryl-Kupplungen als auch den Fraktionen der Säulenchromatographie sehr gering war. Die erwähnte, unbekannte Kontamination des PMPME-DIPS-Ethins (**68d**) geht ebenfalls eine Kreuzkupplungsreaktion mit Diiodbenzol **65** ein. In den ¹H-NMR-Spektren des Monokupplungsproduktes **83d** als auch des Dikupplungsproduktes **82d** ließen sich nach Säulenchromatographie erneut Signale eines zusätzlichen AA'XX'-Spinsystems entdecken. Somit ließ sich auch auf dieser Stufe die unbekannte Verbindung nicht entfernen und ist zu 2 mol% im Monokupplungsprodukt **83d** und zu 2 mol% im Dikupplungsprodukt **82d** enthalten.

8.2 Stabilitäten und Abspaltungsbedingungen

Zur Untersuchung der Abspaltungsbedingungen und Stabilitäten der polaren Ethinylschutzgruppen wurden die Dikupplungsprodukte 82 verwendet. Eine gängige Methode zur Abspaltung von Silvlschutzgruppen ist die Verwendung von Fluoridionen. Diese milden Bedingungen werden besonders häufig verwendet, da sie sehr selektiv und somit kompatibel mit den meisten funktionellen Gruppen sind. Auch meine vier polar markierten Schutzgruppen ließen sich durch Behandlung mit ⁿBu₄NF in THF entfernen (Abb. 34). Bei allen untersuchten Substraten 82 wurde eine vollständige Freisetzung der terminalen Alkine nach Stunden zwei bei Raumtemperatur gefunden.

Für Silylschutzgruppen mit geringem sterischem Anspruch, wie z. B. TMS, existieren weitere sehr milde Abspaltungsbedingungen. Häufig wird hier eine katalytische Menge K₂CO₃ in Methanol zur Entschützung der Ethinylfunktion verwendet. Diese Bedingungen bewältigen auch die Abspaltung der PMPE-DMS-Schutzgruppe. Diese Schutzgruppe mit geringem sterischem Anspruch war bereits nach zwei Stunden bei Raumtemperatur vollständig abgespalten. Bei den sterisch anspruchsvollen Schutzgruppen, TIPS, PMP-DIPS, PMPME-DIPS und PMPE-DTBS, wurde für dieses Zeitintervall keine Entschützung der Ethinylfunktionen festgestellt. Wird die Reaktionszeit auf 24 Stunden verlängert, so lässt sich nur für die PMP-DIPS-Schutzgruppe eine beginnende Abspaltung feststellen. Allerdings ist der Anteil von

entschütztem terminalem Alkin noch deutlich unter 1%. Für die anderen drei sterisch anspruchsvollen Silylschutzgruppen ließ sich selbst nach 24 Stunden keine Freisetzung der terminalen Alkine detektieren.

Abb. 34: Verhalten der Ethinylschutzgruppen unter verschiedenen Reaktionsbedingungen.

Um einen besseren Überblick über die Stabilitätsunterschiede der Alkinylschutzgruppen zu erhalten, wurde ihr Verhalten in 0.5 N NaOH-Lösung untersucht. Die Ergebnisse dieser Hydrolysereaktion sind in Abb. 35 graphisch dargestellt. Bereits nach einer Stunde bei Raumtemperatur war die sterisch wenig beladene Schutzgruppe PMPE-DMS vollständig abgespalten. Für die sterisch stärker beladenen Schutzgruppen wurde jetzt noch keinerlei Freisetzung der terminalen Alkinfunktionalität festgestellt. Für die PMP-DIPS-Schutzgruppe wurde nach

16 Stunden eine 11%ige Abspaltung dieser Schutzgruppe ermittelt. Nach 10 Tagen betrug dieser Wert 77%, was bedeutet, dass die PMP-DIPS-Schutzgruppe bereits unter sehr gering basischen Bedingungen abgespalten werden kann, wenn auch sehr langsam. Die TIPS- und die PMPME-DIPS-Schutzgruppe sind in der sterischen Abschirmung des Siliziumatoms einander sehr ähnlich, deshalb verwundert es nicht, dass auch ihre Stabilitäten in schwach basischem Milieu vergleichbar sind. Nach 16 Stunden wurden in beiden Fällen erste Anzeichen einer ablaufenden Abspaltung der Schutzgruppen detektiert. Nach 69 Stunden lag der Prozentanteil an freigesetzten Alkingruppen für beide Schutzgruppen bei 7%. Nach 10 Tagen erhöhte sich dieser Betrag auf 11% für die TIPS-Schutzgruppe bzw. 20% für die PMPME-DIPS-Schutzgruppe. Hieran ist erkennbar, dass selbst die häufig verwendete TIPS-Schutzgruppe, aber auch ihr polares Pendant, die PMPME-DIPS-Schutzgruppe, nicht vollständig inert in mild basischem Milieu sind. Im Kontrast dazu steht die PMPE-DTBS-Schutzgruppe. Für diese polare Alkinylschutzgruppe ließen sich selbst nach 10 Tagen in 0.5 N NaOH bei Raumtemperatur keinerlei Anzeichen, welche auf eine Entschützung der Ethinylgruppen hinweisen würden, detektieren. Somit ist die PMPE-DTBS-Schutzgruppe sogar stabiler als die typischerweise eingesetzte TIPS-Schutzgruppe.

Abb. 35: Stabilitäten der Alkinschutzgruppen gegenüber 0.5 N NaOH in Wasser, THF und Methanol bei Raumtemperatur.

Die Ergebnisse bezüglich der Stabilität der polar markierten Schutzgruppen zeigen, dass es möglich sein sollte die PMP-DIPS-Schutzgruppe selektiv in Gegenwart der PMPE-DTBS-Gruppe zu entfernen. Zusammen mit der PMPE-DMS-Gruppe ergibt sich so eine Serie von drei polar markierten, silylbasierten Schutzgruppen mit abgestufter Labiliäten für terminale Alkine. An einem Molekül, welches alle drei polaren Alkinschutzgruppen trägt, kann zunächst selektiv die PMPE-DMS-Gruppe mit Hilfe von K₂CO₃ in Methanol entfernt werden. Anschließend kann unter stärker basischen Bedingungen die PMP-DIPS-Schutzgruppe abgespalten werden. Die PMP-DTBS-Gruppe lässt sich daraufhin mit Fluoridionen entfernen.

9 Zusammenfassung

Die vorliegende Arbeit widmet sich vor allem der Synthese von linearen, formtreuen Dicarbonsäuren mit verschiedenen Längen und Seitenkettenfunktionalitäten zum Einsatz als organische Linker in metallorganischen Gerüstverbindungen. Sämtliche Synthesen verliefen über C-C-Kreuzkupplungen und anschließende Hydrolyse der korrespondierenden Dialkylester. Diese Synthesestrategie gewährleistete gute Zugänglichkeit, hohe Ausbeuten und einfache Isolierung der Produkte. Die Längen reichen von ca. 1.4 nm für eine 4,4'-Tolandicarbonsäure bis ca. 3.9 nm für eine Dicarbonsäure mit Perylendiimidsegment. Die Seitenketten an den Dicarbonsäuren weisen unterschiedliche Längen und Polaritäten auf und beinhalten teilweise chemisch adressierbare, funktionelle Gruppen. Als Plattform zum Explorieren der postsynthetischen Möglichkeiten wurden Zr-MOFs aufgrund ihrer ungewöhnlich hohen chemischen Stabilitäten ausgewählt. An den interpenetrierten Zr-MOFs PIZOF-3 und PIZOF-8 mit Propargyl- bzw. Furan-2-ylgruppen in der Seitenkette gelangen [3+2]- bzw. [4+2]-Cycloadditionen mit sehr guten Umsätzen. Hierdurch wurde gezeigt, dass neben der beliebten kupferkatalysierten Alkin-Azid-Cycloaddition auch die Diels-Alder-Cycloaddition für postsynthetische Modifikationen sehr gut geeignet ist. Interessanterweise gelang eine postsynthetische Acylierung der Aminogruppe von PIZOF-1 nicht, was auf die räumlichen Gegebenheiten innerhalb dieses interpenetrierten Zr-MOFs zurückgeführt wird, da zuvor Acylierungsreaktionen an den isoretikulären, aber uninterpenetrierten Zr-MOFs UiO-66(NH₂) und UiO-68(NH₂) gelangen.

Ferner wurde eine Methode entwickelt, um die sehr stabilen Zr-MOFs für analytische Zwecke aufzulösen. Hierzu wurde CsF und DCI in DMSO-d₆ und D₂O verwendet. Die anschließende Zugabe von festem K₂CO₃ bewirkt, dass die chemischen Verschiebungen der Signale der ¹H-NMR-Spektren denen in reinem DMSO-d₆ entsprechen. Diese Methode ist mindergiftig und leichter durchführbar als die publizierte Alternative, welche gefährliches HF verwendet.

Desweiteren wurden vier polare Schutzgruppen für terminale Alkine entwickelt und die Synthese ihrer monogeschützten Ethinylbausteinen konzipiert. Die erarbeiteten Schutzgruppen auf Silylbasis tragen eine Methoxyphenylgruppe, welche zum einen als polare Markierung chromatographische Separationen vereinfacht und zum anderen leichte Detektierbarkeit auf DC-Folie mit UV-Licht ermöglicht. Außerdem wurde die Abschirmung des Siliziumatoms durch den sterischen Anspruch seiner Alkylsubstituenten variiert. Hierdurch weist die PMPE-DMS-Schutzgruppe eine analoge Stabilität wie die TMS-Schutzgruppe auf und kann bereits mit K₂CO₃ in Methanol entfernt werden. Die PMPE-DTBS-Schutzgruppe hingegen ließ sich nur mit Fluoridionen entfernen und ist gegenüber basischer Hydrolyse sogar stabiler als die sehr stabile und häufig verwendete TIPS-Schutzgruppe.
10 Experimental part

10.1 General informations

If not mentioned otherwise reactions were performed under argon using the Schlenk technique. The inert gas (argon) was passed through coarse-grained CaCl₂ prior to use. Solvents that were used to set up reactions were of p.a. grade or HPLC grade. THF was distilled from sodium and benzophenone. Piperidine was distilled from CaH₂. Cyclohexane was dried and stored over molecular sieve (0.4 nm). Solvents used for the work-up of reactions and for column chromatography were of technical grade and were distilled at 40 °C and slightly reduced pressure prior to use. Acetylene gas was passed through two dry ice/acetone traps to condense any containing acetone. All other chemicals were used purchased. as 3-Bromo-1-tri-iso-propylsilylprop-1-yne,[362] 1,4-dihexyl-2,5-diiodobenzene.^[134] 9,10-diiodoanthracene,^[363] 2,6-di-tert-butylanthracene,^[364] 2,5-di-iso-propyl-4-tri-isopropylsilylethynylaniline (**42**),^[365] sodium cyclopentadienide,^[366] IRMOF-3.^[144] UiO-68(NH₂),^[171] and the PIZOFs^[254] were synthesized following reported procedures. UiO-66(NH₂) was synthezised either in a solvothermal synthesis^[158] or in a modulated synthesis^[107,171] in the presence of benzoic acid. 1,4-Di-ndodecylbenzene (2.94 g, 89%, starting from 1.18 g of 1,4-dichlorobenzene) was prepared according to the reported procedure^[367] with the difference that the product was isolated through crystallization from ethanol instead of distillation. 1,4-Diiodo-2,5di-n-dodecylbenzene (12m) (1.54 g, 57%, starting from 1.69 g of 1,4-di-ndodecylbenzene) was prepared following a reported procedure,^[368] however using H₅IO₆ instead of KIO₄.^[345]

If not mentioned otherwise chromatography was carried out on silica gel (Merck, 40-63 μ m, or Acros, 35-70 μ m) applying slight pressure. Thin layer chromatography was performed on silica gel coated aluminum foil (Merck, 60 F₂₅₄). The spots were detected with UV light of λ = 254 and 366 nm. The compositions of solvent mixtures are given in volume ratios.

NMR spectra were recorded at room temperature, if not mentioned otherwise. Chemical shifts are given in ppm. In ¹H and ¹³C NMR spectra the partially undeuterated solvent signals were used as an internal standard [CDCl₃: $\delta(^{1}H) = 7.25$, $\delta(^{13}C) = 77.0$; CD₂Cl₂: $\delta(^{1}H) = 5.32$, $\delta(^{13}C) = 53.8$; DMSO-d₆: $\delta(^{1}H) = 2.50$, $\delta(^{13}C) = 39.5$; CD₃CN: $\delta(^{1}H) = 1.94$, $\delta(^{13}C) = 1.3$]. CCl₃F ($\delta = 0.00$) was used as an internal standard for ¹⁹F NMR spectra. Me₃PO₄ ($\delta = 3.25$) was used as an internal standard for ³¹P NMR spectra. Signal assignment is supported by DEPT-135 experiments. The MOFs were dissolved prior to NMR spectroscopical analysis. See below for general procedures. PIZOFs were dissolved in DMSO-d₆ with the method employing CsF, DCl, and K₂CO₃. The modified UiO-66(NH₂)s and UiO-68(NH₂) were dissolved in DMSO-d₆ with the method employing NaOD.

The melting points were determined in open capillaries and are uncorrected. HRMS (ESI, MALDI) experiments were performed using the Fourier Transform Ion Cyclotron Resonance mass spectrometer APEX III. Nitrogen served both as a nebulizer gas and the dry gas for ESI. 2,5-Dihydroxybenzoic acid was used as the matrix for MALDI. Accurate mass spectra (EI) were recorded using an Autospec X magnetic sector mass spectrometer with EBE geometry equipped with a standard EI source. lons were accelerated by 8 kV. For mass spectrometrical analysis, PIZOFs were dissolved in DMSO-d₆ with the method employing CsF, DCl, and K₂CO₃ prior to mass spectroscopy. Afterwards the solution was separated from undissolved salts through decanting and the solvent was removed at 60 °C at 10⁻³ mbar. The UV/Vis absorbtion spectra were recorded on a Perkin Elmer Lamba 25 UV-Vis Spectrometer. The fluorescence emission spectra were recorded using a Varian Cary Eclipse Fluorescence Spectrophotometer. Powder X-ray diffraction (PXRD) was carried out in transmission mode using a Stoe Stadi P diffractometer operated with Ge(111)monochromatized CuK α 1 radiation (λ = 1.54060 Å) and a linear position sensitive detector with scintillation counter.

10.2 Syntheses of linkers

10.2.1 General procedures

General procedure for the iodination of substituted benzenes. All iodination reactions were carried out under ambient atmosphere. A mixture of substituted benzene, iodine, H_5IO_6 , acetic acid, sulphuric acid, water, and CH_2CI_2 was heated to 75 °C. A precipitate formed. The suspension was cooled with an ice-bath and filtered. The isolated solid was washed with saturated aqueous Na_2SO_3 solution and finally with water and dried in vacuo. Column chromatography and/or recrystallisation gave the 1,4-diiodobenzenes **12**.

General procedure for alkynyl-aryl coupling. A solution of aryl iodide and terminal alkyne in THF and piperidine was degassed through three freeze-pump-thaw cycles. $Pd(PPh_3)_2Cl_2$ and Cul were added and the reaction mixture was stirred at room temperature. Shortly after the addition of the catalysts a precipitate formed. Water was added and a new precipitate formed. In case of a large scale reaction, the precipitate was isolated through filtration, washed with water, and dried in vacuo. In case of a small scale reaction, the precipitate was dissolved in CH_2Cl_2 , the organic phase was washed with water and aqueous HCl solution (12 wt%), and dried with MgSO₄. Then the solvent was removed. Column chromatography gave the coupling product.

General procedure for saponification of the diesters. All saponification reactions were carried out under ambient atmosphere. To a solution of diester in THF (HPLC grade) was added a solution of KOH in methanol or ethanol. During the reaction a precipitate formed. This solid was isolated by filtration and then suspended in THF (HPLC grade). Trifluoroacetic acid (TFA) was added and, after 1 h of stirring at room temperature, water was added. The precipitate was isolated, washed with water, and dried in vacuo. This procedure gave the diacids often containing THF. The THF content was determined using ¹H NMR spectroscopy and was taken into account when calculating the yields.

10.2.2 Alkynyl coupling partners

Ethyl 4-(trimethylsilylethynyl)benzoate (7a).^[254] A solution of ethyl 4-iodobenzoate (6a) (12.0 mL, 70.9 mmol) and trimethylsilylethyne (10.8 mL, 77.9 mmol) in diethylamine (240 mL) was degassed through three freeze-pump-thaw cycles. Pd(PPh₃)₂Cl₂ (260 mg, 0.37 mmol) and CuI (140 mg, 0.74 mmol) were added and the reaction mixture was stirred at room temperature for 12.5 h. During the reaction a second liquid phase formed. The solvent was removed in vacuo. Diethylether and then water were added and the aqueous phase was extracted with diethylether. The combined organic phases were washed with aqueous HCl solution (12 wt%) and water. After drying over MgSO₄ the solvent was removed. Column chromatography (CH₂Cl₂/n-pentane 1:1; $R_f = 0.36$) gave a brown oil. Short path distillation at 110-130 °C (bath temperature) and 10⁻³ mbar yielded ethyl ester **7a** (16.6 g, 95%) as a colorless solid. Mp: 30 °C. ¹H NMR (250 MHz, CDCl₃): δ = 7.96 and 7.50 (AA'XX' spin system, 2 H each, ArH ortho and meta to CO₂Et, respectively), 4.36 (q, ${}^{3}J = 7.1$ Hz, 2 H, OCH₂), 1.38 (t, ${}^{3}J = 7.1$ Hz, 3 H, CH₂CH₃), 0.25 (s, 9 H, SiCH₃). ¹³C NMR (63 MHz, CDCl₃): δ = 166.0 (CO₂Et), 131.8 (C_{Ar} meta to CO₂Et), 130.1 (**C**_{Ar}CO₂Et), 129.3 (C_{Ar} ortho to CO₂Et), 127.6 (**C**_{Ar}C≡C), 104.1 and 97.5 (C≡C), 61.1 (CH₂), 14.3 (CH₂CH₃), -0.2 (SiCH₃). Elemental analysis calcd (%) for C₁₄H₁₈O₂Si (246.381): C 68.25, H 7.36. Found C 68.36, H 7.47.

Ethyl 4-ethynylbenzoate (8a).^[254] This reaction was carried out under ambient atmosphere. To a solution of ethyl 4-(trimethylsilylethynyl)benzoate (**7a**) (16.5 g, 66.9 mmol) in ethanol (200 mL) was added K₂CO₃ (9.36 g, 67.7 mmol). After 2 h at room temperature water was added and the aqueous phase was extracted with diethylether. The combined organic phases were washed with saturated aqueous NaCl solution and dried over MgSO₄. The solvent was removed. Short path distillation at 90 °C (bath temperature) and 10⁻³ mbar yielded terminal alkyne **8a** (11.1 g, 95%) as a colorless solid. The compound was stored under inert gas in a refrigerator. Mp: 28 °C. ¹H NMR (250 MHz, CDCl₃): δ = 7.99 and 7.53 (AA'XX' spin system, 2 H each, ArH ortho and meta to CO₂Et, respectively), 4.37 (q, ³J = 7.1 Hz, 2 H, OCH₂), 3.21 (s, 1 H, C≡CH) 1.38 (t, ³J = 7.1 Hz, 3 H, CH₃). ¹³C NMR (63 MHz, CDCl₃): δ = 165.9 (CO₂Et), 132.0 (C_{Ar} meta to CO₂Et), 130.5 (**C**_{Ar}CO₂Et), 129.4 (C_{Ar} ortho to CO₂Et), 126.6 (**C**_{Ar}C≡C), 82.8 and 79.9 (C≡C), 61.2 (CH₂), 14.3 (CH₃).

Elemental analysis calcd (%) for $C_{11}H_{10}O_2$ (174.199): C 75.84, H 5.79. Found C 75.72, H 5.92.

Methyl 4-ethynylbenzoate (**8b**).^[254] This reaction was carried out under ambient atmosphere. To a solution of ethyl 4-(trimethylsilylethynyl)benzoate (**7a**) (8.62 g, 35.0 mmol) in methanol (100 mL) was added K₂CO₃ (4.83 g, 34.9 mmol). After 2 h at room temperature water was added and the aqueous phase was extracted with diethylether. The combined organic phases were washed with saturated aqueous NaCl solution. The solvent was removed. Short path distillation at 90 °C (bath temperature) and 10⁻³ mbar yielded methyl ester **8b** (5.02 g, 90%) as a colorless solid. The compound was stored under inert gas in a refrigerator. Mp: 92-93 °C. ¹H NMR (250 MHz, CDCl₃): δ = 7.97 and 7.53 (AA'XX' spin system, 2 H each, ArH ortho and meta to CO₂Me, respectively), 3.90 (s, 3 H, CH₃), 3.21 (s, 1 H, C≡CH). ¹³C NMR (63 MHz, CDCl₃): δ = 166.4 (CO₂Me), 132.0 (C_{Ar} meta to CO₂Me), 130.1 (**C**_{Ar}CO₂Me), 129.4 (C_{Ar} ortho to CO₂Me), 126.7 (**C**_{Ar}C≡C), 82.8 and 80.0 (C≡C), 52.2 (CH₃). Elemental analysis calcd (%) for C₁₀H₈O₂ (160.17): C 74.99, H 5.03. Found C 74.64, H 5.18.

Tert-butyl 4-iodobenzoate (6c). A suspension of 4-iodobenzoic acid (1.02 g, 4.11 mmol) and 4-dimethylaminopyridine (251 mg, 2.05 mmol) in *tert*-butanol (0.57 mL, 6.0 mmol) and CH₂Cl₂ (distilled from CaH₂, 10 mL) was cooled in an ice bath. N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (931 mg, 4.86 mmol) was added and the reaction mixture was allowed to reach room temperature. The reaction mixture was stirred for 64 h at room temperature. A clear solution formed. The organic phase was washed with water and saturated aqueous NaHCO₃ solution and dried over Na₂SO₄. The solvent was removed in vacuo. Column chromatography (*n*-pentane/CH₂Cl₂ 5:2) gave *tert*-butyl ester **6c** (*R_t* = 0.26; 761 mg, 59%) as a colorless liquid. ¹H NMR (250 MHz, CDCl₃): *δ* = 7.76 and 7.67 (AA'XX' spin system, 2 H each, ArH ortho and meta to CO₂^tBu, respectively), 1.57 (s, 9 H, CH₃).

Tert-butyl 4-(2-trimethylsilylethynyl)benzoate (7c). A solution of *tert*-butyl 4-iodobenzoate (6c) (9.92 g, 30.9 mmol) and trimethylsilylethyne (7.5 mL, 54.1 mmol) in diethylamine (120 mL) was degassed through three freeze-pump-thaw cycles. Pd(PPh₃)₂Cl₂ (274 mg, 0.39 mmol) and Cul (139 mg, 0.73 mmol) were added and the reaction mixture was stirred at room temperature for 19 h. The solvent was removed in vacuo. Water was added and the aqueous phase was extracted with diethylether. After drying over MgSO₄ the solvent was removed. Column chromatography (*n*-pentane/CH₂Cl₂ 2:1) gave *tert*-butyl ester **7c** (8.15 g, 96%) as a brownish oil. ¹H NMR (250 MHz, CDCl₃): δ = 7.90 and 7.47 (AA'XX' spin system, 2 H each, ArH ortho and meta to CO₂^tBu, respectively), 1.58 (s, 9 H, C(CH₃)₃), 0.25 (s, 9 H, SiCH₃).

Tert-butyl 4-ethynylbenzoate (**8c**). То solution of *tert*-butyl а 4-(trimethylsilylethynyl)benzoate (7c) (627 mg, 2.28 mmol) in THF (20 mL) was added a solution of tetrabutvlammonium fluoride in THF (1.0 mol/L: 5.0 mL. 5.0 mmol). After 1 h of stirring at room temperature, water was added and the aqueous phase was extracted with diethylether. The combined organic phases were washed with saturated aqueous NaCl solution, dried over MgSO₄, and concentrated in vacuo. Column chromatography (*n*-pentane/CH₂Cl₂ 1:1) gave *tert*-butvl 4-ethynylbenzoate (8c) (410 mg, 89%) as a slightly orange solid. ¹H NMR (250 MHz, CDCl₃): δ = 7.93 and 7.51 (AA'XX' spin system, 2 H each, ArH ortho and meta to $CO_2^{t}Bu$, respectively), 3.19 (s, 1 H, C=CH), 1.58 (s, 9 H, C(CH₃)₃).

10.2.3 Aryl halide coupling partners

1,4-Dibromo-2,5-dimethoxybenzene.^[211] This reaction was carried out under ambient atmosphere. A solution of bromine (1.8 mL, 72 mmol) in CH₂Cl₂ (20 mL) was added dropwise to a cooled (ice bath) solution of 1,4-dimethoxybenzene (4.59 g, 33.5 mmol) in CH₂Cl₂ (150 mL) which was protected against incidence of light. The reaction mixture was allowed to reach room temperature. After 3 h of stirring, the organic phase was washed with saturated aqueous solutions of Na₂SO₃, NaHCO₃, and NaCl. The organic phase was dried over MgSO₄ and the solvent was removed. Recrystallisation from ethanol gave 1,4-dibromo-2,5-dimethoxybenzene (7.43 g, 76%) as colorless crystals. ¹H NMR (500 MHz, CDCl₃): δ = 7.10 (s, 2 H, ArH), 3.84 (s, 6 H, CH₃). **2.5-Dibromo-4-methoxyphenol** (12d).^[211] A solution of BBr₃ (0.7 mL, 7.4 mmol) in CH₂Cl₂ (distilled from CaH₂, 4 mL) was added dropwise to a cooled (dry ice/acetone bath) solution of 1,4-dibromo-2,5-dimethoxybenzene (3.06 g, 7.85 mmol) in CH₂Cl₂ (distilled from CaH₂, 120 mL). The reaction mixture was allowed to reach room temperature and after 18 h of stirring the solution was poured into water. The aqueous phase was extracted with diethylether. The combined organic phases were washed with saturated aqueous NaCl solution and dried over MgSO₄. The solvent was removed. Column chromatography (n-pentane/Et₂O 3:1) gave 2,5-dibromo-4methoxyphenol ($R_f = 0.56$; 1.20 g, 28%) and 1,4-dibromo-2,5-dihydroxybenzene $(R_f = 0.35; 880 \text{ mg}, 22\%)$ as colorless solids. Analytical data of 2,5-dibromo-4methoxyphenol (**12d**): ¹H NMR (500 MHz, CDCl₃): δ = 7.24 and 6.97 (s, 1 H each, ArH), 5.16 (s, 1 H, OH), 3.82 (s, 3 H, CH₃). ¹³C NMR (126 MHz, CDCl₃): δ = 150.4 (C_{Ar}OMe), 146.8 (C_{Ar}OH), 120.4 (C_{Ar}H ortho to OMe), 115.1 (C_{Ar}H meta to OMe), 111.7 (C_{Ar}Br ortho to OMe), 108.4 (C_{Ar}Br meta to OMe), 57.0 (OCH₃). Analytical data of 1.4-dibromo-2.5-dihydroxybenzene: ¹H NMR (500 MHz, CDCl₃, 50 °C); δ = 7.34 (s. 2 H, ArH), 5.20 (s, 2 H, OH). ¹³C NMR (126 MHz, CDCl₃, 50 °C): δ = 146.8 (C_{Ar}OH), 118.6 (C_{Ar}H), 109.9 (C_{Ar}Br).

1,4-Diiodo-2,5-dimethoxybenzene (**12f**).^[254] See the general procedure for the iodination of substituted benzenes. 1,4-Dimethoxybenzene (7.50 g, 54.3 mmol), iodine (11.4 g, 44.9 mmol), H₅IO₆ (5.10 g, 22.4 mmol), acetic acid (100 mL), sulphuric acid (4.5 mL), water (22 mL), CH₂Cl₂ (20 mL) reaction time: 15 h. Recrystallization from propan-2-ol (ca. 900 mL) gave diiododimethoxybenzene **12f** (17.7 g, 84%) as slightly beige crystals. Mp: 170 °C. ¹H NMR (250 MHz, CDCl₃): δ = 7.18 (s, 2 H, ArH), 3.81 (s, 6 H, CH₃). ¹³C NMR (63 MHz, CDCl₃): δ = 153.4 (C_{Ar}O), 121.7 (C_{Ar}H), 85.5 (C_{Ar}I), 57.2 (OCH₃). Elemental analysis calcd (%) for C₈H₈I₂O₂ (389.861): C 24.64, H 2.07. Found C 24.60, H 1.77.

2,5-Diiodo-4-methoxyphenol (**20**) and **1,4-dihydroxy-2,5-diiodobenzene** (**19**).^[254] A solution of BBr₃ (2.2 mL, 22.8 mmol) in CH₂Cl₂ (distilled from CaH₂, 20 mL) was added dropwise to a cooled (dry ice/acetone bath) solution of 1,4-diiodo-2,5-dimethoxybenzene (**12f**) (8.08 g, 20.7 mmol) in CH₂Cl₂ (distilled from CaH₂, 200 mL). The reaction mixture was allowed to reach room temperature and after 16.5 h the

solution was poured into water. The aqueous phase was extracted with diethylether. The combined organic phases were washed with saturated aqueous NaCl solution and dried over MgSO₄. The solvent was removed. Column chromatography (*n*-pentane/Et₂O 3:1) gave phenol **20** ($R_f = 0.32$; 4.29 g, 55%) and hydroquinone **19** ($R_f = 0.20$; 2.42 g, 32%) as colorless solids. Analytical data of 2,5-diiodo-4-methoxyphenol (**20**): ¹H NMR (250 MHz, CDCl₃): $\delta = 7.40$ and 7.02 (s, 1 H each, ArH), 4.89 (s, 1 H, OH), 3.80 (s, 3 H, CH₃). ¹³C NMR (63 MHz, CDCl₃): $\delta = 153.1$ (C_{Ar}OMe), 150.0 (C_{Ar}OH), 125.0 (C_{Ar}H ortho to OMe), 119.7 (C_{Ar}H meta to OMe), 86.8 (C_{Ar}I ortho to OMe), 84.4 (C_{Ar}I meta to OMe), 57.2 (OCH₃). Analytical data of 1,4-dihydroxy-2,5-diiodobenzene (**19**) : ¹H NMR (250 MHz, CDCl₃): $\delta = 7.28$ (s, 2 H, ArH), 4.88 (s, 2 H, OH). ¹³C NMR (126 MHz, CDCl₃, 45 °C): $\delta = 149.7$ (C_{Ar}OH), 123.2 (C_{Ar}H), 85.9 (C_{Ar}I).

2-(3-Bromopropyl)furan (17) and 1,3-di(furan-2-yl)propane (16).^[213] A solution of n-butyllithium in hexane (1.6 M. 47.5 mL. 76.0 mmol) was added dropwise to a cooled (dry ice/acetone bath) solution of furan (5.35 mL, 73.9 mmol) in THF. After 1 h of stirring under cooling (dry ice/acetone bath), the yellow solution was added dropwise to a cooled (dry ice/acetone bath) solution of 1,3-dibromopropane (6.70 mL, 65.7 mmol) in THF (30 mL). The yellow suspension was stirred for 20 h at room temperature. Saturated aqueous NH₄Cl solution was added and the aqueous phase was extracted with diethylether. The combined organic phases were dried over Na₂SO₄. The solvent was removed. Fractional distillation of the residue at 20 mbar using a vigreux column (15 cm length) yielded four fractions of colorless liquids: Fraction 1 (bp: 50-55 °C): 3:2 mixture of 2-(3-bromopropyl)furan (17) and 1,3-dibromopropane (1.18 g); fraction 2 (bp: 74 °C): 40:1 mixture of 17 and 1,3-di(furan-2-yl)propane (16) (4.28 g); fraction 3 (bp: 80 °C): 5:1 mixture of 17 and **16** (1.37 g); fraction 4: 1:7 mixture of **17** and **16** (1.16 g). From the fractions a total yield of (3-bromopropyl)furan 17 (6.18 g, 50%) and difuran-2-ylpropane 16 (1.33 g, 11%) was calculated. Analytical data of 2-(3-bromopropyl)furan (17): ¹H NMR (250 MHz, CDCl₃): δ = 7.30 (dd, ³J = 1.9 Hz, ⁴J = 0.8 Hz, 1 H, H-5), 6.28 (dd, ${}^{3}J = 3.2$ Hz, ${}^{3}J = 1.9$ Hz, 1 H, H-4), 6.03 (m, 1 H, H-3), 3.41 (t, ${}^{3}J = 6.6$ Hz, 2 H, CH₂Br), 2.80 (t, ${}^{3}J$ = 7.1 Hz, 2 H, furan-CH₂), 2.18 (m, 2 H, CH₂CH₂Br). ${}^{13}C$ NMR (63 MHz, CDCl₃): δ = 154.2 (C-2), 141.2 (C-5), 110.1 (C-4), 105.7 (C-3), 32.8, 31.0, and 26.4 (CH₂). Analytical data of 1,3-di(furan-2-yl)propane (**16**): ¹H NMR (250 MHz, CDCl₃): δ = 7.30 (dd, ³*J* = 1.9 Hz, ⁴*J* = 0.8 Hz, 1 H, H-5), 6.27 (dd, ³*J* = 3.1 Hz, ³*J* = 1.9 Hz, 1 H, H-4), 5.99 (m, 1 H, H-3), 2.67 (t, ³*J* = 7.4 Hz, 4 H, furan-CH₂), 1.98 (m, 2 H, furan-CH₂CH₂). ¹³C NMR (126 MHz, CDCl₃): δ = 155.6 (C-2), 140.8 (C-5), 110.0 (C-4), 105.0 (C-3), 27.2 and 26.4 (CH₂).

1-(3-Furan-2-ylpropyloxy)-2,5-diiodo-4-methoxybenzene (12e).^[254] A suspension of a mixture (1.82 g) of furans 17 and 16 in a 40:1 ratio [correlates to 1.78 g, 9.41 mmol of 2-(3-bromopropyl)furan (17)], 2,5-diiodo-4-methoxyphenol (20) (3.01 g, 8.00 mmol), and K₂CO₃ (5.53 g, 40.0 mmol) in DMF (60 mL) was stirred at 60 °C for 22 h. After cooling to room temperature, water was added and the aqueous phase was extracted with diethylether. The combined organic phases were washed with water and saturated aqueous NaCl solution and dried over Na₂SO₄. The solvent was removed. Column chromatography (*n*-pentane/Et₂O 4:1; $R_f = 0.53$) gave furan **12e** (3.13 g, 81%) as a yellow solid containing traces of 2-(3-bromopropyl)furan (17) and 1.3-di(furan-2-yl)propane (**16**). Mp: 43 °C. ¹H NMR (250 MHz, CDCl₃): δ = 7.31 (dd, ${}^{3}J$ = 1.8 Hz, ${}^{4}J$ = 0.7 Hz, 1 H, H-5 of furan), 7.18 and 7.16 (s, 1 H each, ArH ortho to O), 6.28 (dd, ${}^{3}J = 3.1$ Hz, ${}^{3}J = 1.9$ Hz, 1 H, H-4 of furan), 6.03 (m, 1 H, H-3 of furan), 3.95 (t, ${}^{3}J = 6.1$ Hz, 2 H, CH₂O), 3.81 (s, 3 H, CH₃), 2.89 (t, ${}^{3}J = 7.4$ Hz, 2 H, furan-CH₂), 2.14 (m, 2 H, CH₂CH₂O). The NMR spectrum shows additionally signals of 2-(3-bromopropyl)furan (17) and 1,3-di(furan-2-yl)propane (16). ¹³C NMR (63 MHz, CDCl₃): δ = 155.0, 153.4, and 152.8 (C_{Ar}O and C-2 of furan), 141.1 (C-5 of furan), 123.0 and 121.5 (C_{Ar}H ortho to O), 110.1 (C-4 of furan), 105.4 (C-3 of furan), 86.3 and 85.5 (C_{Ar}I), 69.1 (OCH₂), 57.2 (OCH₃), 27.7 and 24.5 (OCH₂CH₂CH₂). Elemental analysis calcd (%) for C₁₄H₁₄I₂O₃ (484.03): C 34.74, H 2.92. Found C 34.92, H 2.61.

1,4-Diiodo-2,5-di-*iso*-**propylbenzene** (**12i**). The reaction was carried out under ambient atmosphere. A mixture of 1,4-di-*iso*-propylbenzene (10.0 g, 61.6 mmol), iodide (13.0 g, 51.2 mmol), H_5IO_6 (5.90 g, 25.9 mmol), acetic acid (125 mL), sulphuric acid (4.5 mL), water (23 mL), and CH_2CI_2 (19 mL) was heated to 75 °C for 1 d. After cooling to room temperature saturated aqueous Na_2SO_3 solution was added and the aqueous phase was extracted with diethylether. The combined organic phases were washed with saturated aqueous NaCI solution and dried over MgSO₄. The solvent was removed in vacuo. Recrystallisation twice from ethanol (ca. 60 mL) gave diiodobenzene **12i** (18.8 g, 74%) as colorless crystals. Mp: 90-91 °C. ¹H NMR (250 MHz, CDCl₃): δ = 7.60 (s, 2 H, ArH), 3.05 (sept, ³J = 6.8 Hz, 2 H, CHCH₃), 1.20 (d, ³J = 6.8 Hz, 12 H, CH₃). ¹³C NMR (63 MHz, CDCl₃): δ = 149.9 (C_{Ar}iPr), 136.6 (C_{Ar}H), 101.4 (C_{Ar}I), 37.5 (CHCH₃), 23.0 (CH₃). Elemental analysis calcd (%) for C₁₂H₁₆I₂ (413.934): C 34.81, H 3.89, found C 34.74, H 3.60.

1,4-Dipentoxybenzene (**18j**). A suspension of benzohydroquinone (2.00 g, 18.2 mmol), *n*-pentylbromide (5.6 mL, 45.2 mmol), and K₂CO₃ (25.1 g, 182 mmol) in DMF (30 mL) was heated to 60 °C for 17.5 h. Water was added and the resulting light brown precipitate was isolated by filtration. Recrystallization from ethanol (ca. 80 mL) gave dipentoxybenzene **18j** (3.22 g, 71%) as colorless crystals. Mp: 44 °C. ¹H NMR (250 MHz, CDCl₃): δ = 6.81 (s, 4 H, ArH), 3.89 (t, ³*J* = 6.6 Hz, 4 H, OCH₂), 1.75 (quin, ³*J* = 7.2 Hz, 4 H, OCH₂CH₂), 1.48-1.29 (m, 8 H, CH₂), 0.92 (t, ³*J* = 6.6 Hz, 6 Hz, 6 H, CH₃). ¹³C NMR (63 MHz, CDCl₃): δ = 153.2 (C_{Ar}O), 115.4 (C_{Ar}H), 68.7 (OCH₂), 29.1, 28.2, and 22.5 (CH₂), 14.0 (CH₃). Elemental analysis calcd (%) for C₁₆H₂₆O₂ (250.381): C 76.75, H 10.47. Found C 76.72, H 10.31.

1,4-Diiodo-2,5-dipentoxybenzene (**12j**).^[254] See the general procedure for the iodination of substituted benzenes. 1,4-Dipentoxybenzene (**18j**) (1.96 g, 7.83 mmol), iodine (1.65 g, 6.51 mmol), H₅IO₆ (733 mg, 3.22 mmol), acetic acid (25 mL), sulphuric acid (0.9 mL), water (4.7 mL), CH₂Cl₂ (3.9 mL), reaction time: 16.5 h. Chromatography (CH₂Cl₂ \rightarrow *n*-pentane/CH₂Cl₂ 1:1) on a short column (3 cm diameter, 10 cm length) and subsequent recrystallization from ethanol (10 mL) gave diiodobenzene **12j** (3.05 g, 78%) as slightly brown crystals. Mp: 74 °C. ¹H NMR (250 MHz, CDCl₃): δ = 7.17 (s, 2 H, ArH), 3.92 (t, ³J = 6.4 Hz, 4 H, OCH₂), 1.80 (quin, 4 H, OCH₂CH₂), 1.54-1.31 (m, 8 H, CH₂), 0.93 (t, ³J = 6.4 Hz, 6 H, CH₃). ¹³C NMR (63 MHz, CDCl₃): δ = 152.9 (C_{Ar}O), 122.9 (C_{Ar}H), 86.3 (C_{Ar}I), 70.4 (OCH₂), 28.9, 28.2, and 22.4 (CH₂), 14.0 (CH₃). Elemental analysis calcd (%) for C₁₆H₂₄I₂O₂ (502.165): C 38.27, H 4.82. Found C 38.23, H 4.63.

1,4-Diiodo-2,5-di-[2-(2-methoxyethoxy)ethoxy]benzene (**12k**).^[254] A suspension of 1,4-dihydroxy-2,5-diiodobenzene (**19**) (1.16 g, 3.21 mmol), 1-bromo-2-(2-methoxyethoxy)ethane (1.1 mL, 8.01 mmol) and K₂CO₃ (4.42 g, 32.0 mmol) in DMF (40 mL) was heated to 60 °C for 16 h. Water (700 mL) was added and the colorless precipitate was isolated, washed with water and dried in vacuo. Column chromatography (*n*-pentane/Et₂O 1:3) gave diiodobenzene **12k** (R_f = 0.29; 1.27 g, 70%) as a colorless solid. ¹H NMR (500 MHz, CDCl₃): δ = 7.22 (s, 2 H, ArH), 4.10 (t-like, ³*J* = 4.8 Hz, 4 H, CH₂), 3.87 (t-like, ³*J* = 5.0 Hz, 4 H, CH₂), 3.76 and 3.57 (m, 4 H each, CH₂), 3.39 (s, 6 H, CH₃). ¹³C NMR (126 MHz, CDCl₃): δ = 153.1 (C_{Ar}O), 123.4 (C_{Ar}H), 86.4 (C_{Ar}I), 72.0, 71.0, 70.3, and 69.6 (CH₂), 59.1 (CH₃). Accurate mass (EI) *m/z*: 565.96510, calcd for C₁₆H₂₄O₆I₂: 565.96623.

1,4-Di-*n*-undecyloxybenzene (18I). A suspension of benzohydroquinone (2.00 g, 18.2 mmol), *n*-undecylbromide (10.2 mL, 33.8 mmol) and K₂CO₃ (25.1 g, 182 mmol) in DMF (30 mL) was heated to 60 °C for 17 h. Water was added and the resulting light brown precipitate was isolated by filtration. Recrystallization from ethanol (ca. 30 mL) gave di-*n*-undecyloxybenzene **18I** (6.35 g, 82%) as slightly beige crystals. Mp: 51-53 °C. ¹H NMR (300 MHz, CDCl₃): δ = 6.81 (s, 4 H, ArH), 3.88 (t, ³J = 6.6 Hz, 4 H, OCH₂), 1.74 (quin-like, 4 H, OCH₂CH₂) 1.53-1.20 (m, 32 H, CH₂), 0.87 (t-like, 6 H, CH₃).

1,4-Diiodo-2,5-di-*n*-undecyloxybenzene (12I). See the general procedure for the iodination of substituted benzenes. 1,4-Di-*n*-undecyloxybenzene (18I) (6.32 g, 14.8 mmol), iodine (3.22 g, 12.7 mmol), H₅IO₆ (1.45 g, 6.36 mmol), acetic acid (81 mL), sulphuric acid (12.5 mL), water (15.2 mL), CH₂Cl₂ (12.5 mL) reaction time: 18 h. Chromatography (CH₂Cl₂ → *n*-pentane/CH₂Cl₂ 1:1) on a short column (5 cm diameter, 10 cm length) and subsequent recrystallization from ethanol (120 mL) gave diiodobenzene **12I** (9.08 g, 90%) as colorless crystals. Mp: 44-48 °C. ¹H NMR (300 MHz, CDCl₃): δ = 7.16 (s, 2 H, ArH), 3.91 (t, ³J = 6.4 Hz, 4 H, OCH₂), 1.78 (quin-like, 4 H, OCH₂CH₂) 1.59-1.20 (m, 32 H, CH₂), 0.87 (t-like, 6H, CH₃). ¹³C NMR (126 MHz, CDCl₃): δ = 152.8 (C_{Ar}O), 122.7 (C_{Ar}H), 86.3 (C_{Ar}I), 70.3 (OCH₂), 31.9, 29.61, 29.58, 29.55, 29.35, 29.27, 29.1, 26.0 and 22.7 (CH₂), 14.1 (CH₃). Elemental analysis calcd (%) for C₂₈H₄₈I₂O₂ (670.174): C 50.16, H 7.22. Found C 50.28, H 7.24.

1,4-Diiodo-2-methoxy-5-(3-tri*iso*-propylsilylprop-2-ynyloxy)benzene (**12n**).^[254] A suspension of 2,5-diiodo-4-methoxyphenol (**20**) (868 mg, 2.31 mmol), K₂CO₃ (1.54 g, 11.1 mmol), and 3-bromo-1-tri-*iso*-propylsilylprop-1-yne (730 mg, 2.65 mmol) in DMF (25 mL) was stirred at 60 °C for 16.5 h. After cooling to room temperature water was added and the aqueous phase was extracted with diethylether. The combined organic phases were washed with saturated aqueous NH₄Cl solution and saturated aqueous NaCl solution and dried over Na₂SO₄. The solvent was removed. Chromatography (Et₂O) on a short column gave diiodobenzene **12n** (1.24 g, 94%) as an off-white solid. Mp: 66 °C. ¹H NMR (250 MHz, CDCl₃): δ = 7.48 and 7.17 (s, 1 H each, ArH), 4.72 (s, 2 H, OCH₂), 3.82 (s, 3 H, OCH₃), 1.03 (s, 21 H, CH(CH₃)₂). ¹³C NMR (63 MHz, CDCl₃): δ = 154.0 and 151.6 (C_{Ar}O), 125.0 and 121.3 (C_{Ar}H), 101.1 and 90.7 (C≡C), 86.8 and 85.1 (C_{Ar}I), 59.0 (OCH₂), 57.1 (OCH₃), 18.6 (CH**C**H₃), 11.1 (SiCH). Elemental analysis calcd (%) for C₁₉H₂₈I₂O₂Si (570.316): C 40.01 H 4.95. Found C 40.30 H 4.97.

(3-Bromopropyl)cyclopentadiene (28). A suspension of sodium cyclopentadienide (6.57 g, 74.7 mmol) and 1,3-dibromopropane (12.08 g, 59.8 mmol) in n-pentane (distilled from CaH₂, 60 mL) was heated to 40 °C for 44 h. After cooling to room temperature, the mixture was poured into water (100 mL) and aqueous HCl solution (12 wt%; 10 mL) was added. The aqueous phase was extracted with diethylether. The combined organic phases were dried over MgSO₄. The solvent was removed. Fractional distillation of the residue at 0.13 mbar using a vigreux column (15 cm length) gave (3-bromopropyl)cyclopentadiene (28) (2.14 g, 19%) as colorless liquid which was stored at -18 °C. From the ¹H NMR spectrum a ratio of 28¹ to 28² of 2:3 calculated. ^{1}H NMR (300 MHz, CDCl₃): Signals was assigned to 1-(3-bromopropyl)cyclopenta-1,3-diene (**28**¹): δ = 6.42 (m, 1 H, H-3), 6.27 (m, 1 H, H-4), 6.20 (m, 1 H, H-2), 3.42 (t, ${}^{3}J$ = 6.7 Hz, 2 H, CH₂Br), 2.88 (d, ${}^{3}J$ = 1.2 Hz, 2 H, 2 H-5), 2.53 and 2.09 (m, Н each. CH₂); signals assigned to 2-(3-bromopropyl)cyclopenta-1,4-diene (**28**²): ¹H NMR (300 MHz, CDCl₃): $\delta = 6.42$ (m, 2 H, H-5, H-4), 6.05 (m, 1 H, H-2), 3.42 (t, ${}^{3}J = 6.7$ Hz, 2 H, CH₂Br), 2.96 (d, ${}^{3}J$ = 1.5 Hz, 2 H, H-3), 2.53 and 2.09 (m, 2 H each, CH₂).

1-[3-(Cyclopentadienyl)propyloxy]-2,5-diiodo-4-methoxybenzene (**12**p). А suspension of 2,5-diiodo-4-methoxyphenol (20) (1.24 g, 3.30 mmol), K₂CO₃ (2.78 g, 20.1 mmol), and (3-bromopropyl)cyclopentadiene (28) (693 mg, 3.70 mmol) in DMF (20 mL) was stirred at 60 °C for 15.5 h. After cooling to room temperature, the mixture was poured into water and the aqueous phase was extracted with CH₂Cl₂. The combined organic phases were washed with water. The solvent was removed. chromatography (*n*-pentane/CH₂Cl₂ 5:2) Column gave 1-[3-(cyclopentadienyl)propyloxy]-2,5-diiodo-4-methoxybenzene (**12p**) ($R_f = 0.32$; 822 mg, 52%) as a colorless oil which was stored at -18 °C. From the ¹H NMR spectrum a ratio of **12p¹** to **12p²** of 4:5 was calculated. ¹H NMR (500 MHz, CDCl₃): 1-[3-(cyclopenta-1,3-dienyl)propyloxy]-2,5-diiodo-4-Signals assigned to methoxybenzene (**12**p¹): δ = 7.18 and 7.16 (s, 1 H each, ArH ortho to O), 6.43 (m, 1 H, H-3 of cyclopentadiene), 6.27 (m, 1 H, H-4 of cyclopentadiene), 6.21 (m, 1 H, H-2 of cyclopentadiene), 3.95 (t, ${}^{3}J$ = 6.2 Hz, 2 H, OCH₂), 3.81 (s, 3 H, OCH₃), 2.92 (m. 2 H. H-5 of cyclopentadiene). 2.65 (td. ${}^{3}J = 7.6$ Hz. ${}^{4}J = 1.2$ Hz. OCH₂CH₂CH₂). 2.05 (m, 2 H, OCH₂CH₂); signals assigned to 1-[3-(cyclopenta-1,4-dienyl)propyloxy]-2,5-diiodo-4-methoxybenzene (**12p**²): δ = 7.18 and 7.15 (s, 1 H each, ArH ortho to O), 6.46 (m, 1 H, H-5 of cyclopentadiene), 6.43 (m, 1 H, H-4 of cyclopentadiene), 6.06 (m, 1 H, H-2 of cyclopentadiene), 3.95 (t, ${}^{3}J$ = 6.2 Hz, 2 H, OCH₂), 3.81 (s, 3 H, OCH₃), 2.96 (m, 2 H, H-3 of cyclopentadiene), 2.60 (td, ${}^{3}J = 7.7$ Hz, ${}^{4}J = 1.5$ Hz, $OCH_2CH_2CH_2$), 2.05 (m, 2 H, OCH_2CH_2). ¹³C NMR (126 MHz, $CDCI_3$): $\delta = 153.3$, 153.2, 152.79, and 152.76 (C_{Ar}O), 148.4 and 145.9 (CH₂CH₂C of cyclopentadiene), 134.5, 134.0, 132.4, 130.8, 127.0, 126.6, 122.9, 122.8, and 121.4 (C_{Ar}H ortho to O and CH of cyclopentadiene), 86.3, 85.39, and 85.38 (C_{Ar}I), 69.6 and 69.5 (OCH₂), 57.1 (OCH₃), 43.4 and 41.3 (CH₂ of cyclopentadiene), 29.1, 28.3, 27.0 and 26.1 $(OCH_2CH_2CH_2)$. Accurate mass (EI) m/z: 481.92550, calcd for $C_{15}H_{16}O_2I_2$: 481.92397.

9,10-Dibromo-2,6-di-*tert***-butylanthracene** (**12r**). A solution of bromine (2.2 mL, 86 mmol) in CH_2Cl_2 (20 mL) was added dropwise to a cooled (ice bath) mixture of 2,6-di-*tert*-butylanthracene (5.93 g, 20.4 mmol) in CH_2Cl_2 (200 mL) which was protected against incidence of light. The reaction mixture was allowed to reach room temperature. After 3 h of stirring, the organic phase was washed with aqueous

Na₂SO₃ solution (10 wt%). The organic phase was dried over MgSO₄ and the solvent was removed. Recrystallisation from *n*-hexane (ca. 200 mL) gave 9,10-dibromo-2,6-di-*tert*-butylanthracene (**12r**) (5.55 g, 61%) as yellow crystals. ¹H NMR (500 MHz, CDCl₃): δ = 8.50 (d, ³*J* = 9.2 Hz, 2 H, H-4), 8.45 (d, ⁴*J* = 1.7 Hz, 2 H, H-1), 7.70 (dd, ³*J* = 9.2 Hz, ⁴*J* = 1.9 Hz, 2 H, H-3), 1.49 (s, 18 H, CH₃). ¹³C NMR (126 MHz, CDCl₃): δ = 149.7 (C-2), 130.6 and 129.8 (C-4a and C-9a), 128.0 and 126.9 (CH), 122.9 (C-9), 122.5 (CH), 35.3 (Ar**C**(CH₃)₃), 30.8 (CH₃).

2,5-Dibromofuran (**31**). To a solution of furan (1.0 mL, 13.8 mmol) in DMF was added dropwise bromine (1.4 mL, 27.3 mmol). The reaction mixture was stirred at 50 °C for 3 h. After cooling to room temperature, the reaction mixture was poured into water (50 mL) and the aqueous phase was extracted with diethylether. The combined organic phases were washed with saturated aqueous Na₂SO₃ solution and saturated aqueous NaCl solution and dried over Na₂SO₄. The solvent was removed in vacuo. Short path distillation at 10⁻³ mbar using a heat gun yielded dibromofuran **31** (1.75 g, 56%) as a slightly brownish liquid which was stored at -18 °C. ¹H NMR (500 MHz, CDCl₃): δ = 6.29 (s, 2 H, H-3).

4,4'-Diiodo-3,3'-di-*n***-propylbiphenyl (33b).^[261]** A solution of *n*-butyllithium in hexane (1.6 mol/L; 6.4 mL, 10.2 mmol) was added dropwise to a cooled (dry ice/acetone bath) solution of di-*iso*-propylamine (1.65 mL, 11.7 mmol) in THF (45 mL). The reaction mixture was stirred for 20 min at -78 °C. A solution of 4,4'-diiodo-3,3'-dimethylbiphenyl (**33a**) (2.01 g, 4.62 mmol) in THF (5 mL) was added dropwise and the brownish reaction mixture was allowed to reach -10 °C. Ethyl bromide (0.70 mL, 9.38 mmol) was added dropwise. The orange reaction mixture was allowed to reach room temperature and stirred for 17 h. The reaction mixture was poured into water and the aqueous phase was extracted with CHCl₃. The combined organic phases were concentrated in vacuo. The resulting yellow oil was dissolved in THF (5 mL) and added dropwise under argon atmosphere to a cooled (dry ice/acetone bath) solution of lithium di-*iso*-propylamide (LDA), which had been prepared by adding a solution of n-butyllithium in hexane (1.6 mol/L; 3.2 mL, 5.1 mmol) dropwise to a cooled (dry ice/acetone bath) solution of di-*iso*-propylamine (0.8 mL, 5.7 mmol) in THF (25 mL) followed by 20 min of stirring at -78 °C. The resulting dark brown reaction mixture

was allowed to reach -10 °C. Ethyl bromide (0.35 mL, 4.69 mmol) was added dropwise. The orange reaction mixture was allowed to reach room temperature and stirred for 19 h. The reaction mixture was poured into water and the aqueous phase was extracted with CHCl₃. The combined organic phases were concentrated in vacuo. The resulting vellow oil was dissolved in THF (5 mL) and added dropwise under argon atmosphere to a cooled (-40 °C) solution of LDA, which had been prepared by adding a solution of *n*-butyllithium in hexane (1.6 mol/L; 3.2 mL, 5.1 mmol) dropwise to a cooled (dry ice/acetone bath) solution of di-iso-propylamine (0.8 mL, 5.7 mmol) in THF (20 mL) followed by 30 min of stirring at -40 °C. The resulting dark brown reaction mixture was allowed to reach -10 °C and added via cannula to a solution of ethyl bromide (0.5 mL, 6.6 mmol) in THF (5 mL). The resulting orange reaction mixture was stirred for 19 h at room temperature. The reaction mixture was poured into water (50 mL), aqueous HCl solution (12 wt%; 30 mL) was added and the aqueous phase was extracted with CH₂Cl₂. The combined organic phases were concentrated in vacuo vielding a vellow oil (1.86 g) consisting of 4,4'-diiodo-3,3'-dipropylbiphenyl (33b) (1.43 g, 63%) and 4,4'-diiodo-3-methyl-3'propylbiphenyl (**35**) (0.43 g, 20%). ¹H NMR (300 MHz, CDCl₃): Signals assigned to 4,4'-diiodo-3,3'-dipropylbiphenyl (**33b**): δ = 7.84 (d, ${}^{3}J$ = 8.2 Hz, 2 H, H-5), 7.35 (d, ${}^{4}J$ = 2.2 Hz, 2 H, H-2), 7.05 (dd, ${}^{3}J$ = 8.2 Hz, ${}^{4}J$ = 2.3 Hz, 2 H, H-6), 2.73 (t-like, 4 H, Ar-CH₂), 1.66 (sext-like, 4 H, CH₂CH₃), 1.02 (t, ${}^{3}J = 7.3$ Hz, 6 H, CH₃); signals assigned to 4,4'-diiodo-3-methyl-3'-propylbiphenyl (35): δ = 7.84 (d, ³J = 8.2 Hz, 2 H, H-5, H-5'), 7.40 (d, ${}^{4}J$ = 2.2 Hz, 1 H, H-2), 7.35 (d, ${}^{4}J$ = 2.2 Hz, 1 H, H-2'), 7.05 (dd, ${}^{3}J$ = 8.2 Hz, ${}^{4}J$ = 2.3 Hz, 2 H, H-6, H-6'), 2.64 (t-like, 2 H, Ar-CH₂), 2.41 (s, 3 H, ArCH₃), 1.66 (sext-like, 2 H, CH₂CH₃), 1.02 (m, 3 H, CH₂CH₃).

2,5-Dibromo-4-*n***-propylpyridine** (**37d**).^[261] A solution of *n*-butyllithium in hexane (1.6 mol/L; 6.4 mL, 10.2 mmol) was added dropwise to a cooled (dry ice/acetone bath) solution of di-*iso*-propylamine (1.60 mL, 11.4 mmol) in THF (24 mL). A solution of 2,5-dibromo-4-methylpyridine (1.79 g, 7.20 mmol) in THF (4 mL) was added dropwise. The reaction mixture was stirred for 20 min at -70 °C and afterwards added via cannula to a solution of ethyl bromide (0.6 mL, 8.0 mmol) in THF (2 mL). The resulting dark brown solution was stirred for 17.5 h at room temperature. The reaction mixture was poured into water and the aqueous phase was extracted with CH_2Cl_2 .

The combined organic phases were concentrated in vacuo yielding a brownish oil (1.88 g) consisting of 2,5-dibromo-4-propylpyridine (**37d**) (1.63 g, 81%), 2,5-dibromo-4-(1-ethylpropyl)pyridine (**38**) (0.17 g, 8%) and 2,5-dibromo-4-methylpyridine (0.08 g, 4%). Analytical data of 2,5-dibromo-4-propylpyridine (**37d**): ¹H NMR (300 MHz, CDCl₃): δ = 8.39 (s, 1 H, H-6), 7.32 (s, 1 H, H-3), 2.65 (t-like, 2 H, ArCH₂), 1.65 (sext-like, 2 H, ArCH₂CH₂), 1.00 (t, ³J = 7.3 Hz, 3 H, CH₃). ¹³C NMR (126 MHz, CDCl₃): δ = 153.5 (C-2), 151.5 (C-6), 140.6 (C-4), 129.0 (C-3), 122.4 (C-5), 37.1 (ArCH₂), 21.9 (CH₂CH₃), 13.7 (CH₃). Analytical data of 2,5-dibromo-4-(1-ethylpropyl)pyridine (**38**): ¹H NMR (300 MHz, CDCl₃): δ = 8.43 (s, 1 H, H-6), 7.32 (s, 1 H, H-3), 2.97 (m, 1 H, ArCH), 1.65 (m, 4 H, CH(CH₂)₂), 0.81 (t, ³J = 7.4 Hz, 6 H, CH₃).

5,5'-Dibromo-2,2'-bipyridine (**33c**). A solution of 2,5-dibromopyridine (2.83 g, 11.9 mmol) and hexa-*n*-butylditin (3.0 mL, 5.94 mmol) in toluene (distilled from CaH₂, 60 mL) was degassed through three freeze-pump-thaw cycles. Pd(PPh₃)₄ (89.1 mg, 0.077 mmol) was added and the reaction mixture stirred at 120 °C for 4 d. After cooling to room temperature, water was added and the aqueous phase was extracted with CH₂Cl₂. The combined organic phases were concentrated in vacuo. Column chromatography (*n*-pentane/CH₂Cl₂ 1:2) gave bipyridine **33c** (R_f = 0.40; 964 mg, 52%) and 2,5-dibromopyridine (R_f = 0.53; 964 mg, 41%) as colorless solids. ¹H NMR (500 MHz, CDCl₃): δ = 8.69 (d, ⁴J = 2.1 Hz, 2 H, H-6), 8.27 (d, ³J = 8.5 Hz, 2 H, H-3), 7.92 (dd, ³J = 8.5 Hz, ⁴J = 2.3 Hz, 2 H, H-4). ¹³C NMR (126 MHz, CDCl₃): δ = 153.8 (C-2), 150.3 (C-6), 139.6 (C-4), 122.2 (C-3), 121.4 (C-5).

5,5'-Dibromo-4,4'-di-*n*-propyl-2,2'-bipyridine (33d).^[261] A solution of a mixture (1.50 g) of pyridines 37d, 36, and 38 in a 10:1:1 ratio [correlates to 1.26 g, 4.51 mmol of 2,5-dibromo-4-*n*-propylpyridine (37d)] and hexa-*n*-butylditin (1.76 mL, 3.51 mmol) in toluene (distilled from CaH₂, 53 mL) was degassed through three freeze-pump-thaw cycles. Pd(PPh₃)₄ (180 mg, 0.155 mmol) was added and the reaction mixture stirred at 120 °C for 5 d. After cooling to room temperature, aqueous NaOH solution (1.0 mol/L) was added and the aqueous phase was extracted with CHCl₃. The combined organic phases were dried over Na₂SO₄ and concentrated in vacuo. Column chromatography (CH₂Cl₂; $R_f = 0.18$) followed by recrystallisation from a

mixture of toluene and methanol gave bipyridine **38** (440 mg, 49%) as a colorless solid. ¹H NMR (500 MHz, CDCl₃): δ = 8.66 (s, 2 H, H-6), 8.23 (s, 2 H, H-3), 2.77 (t-like, 4 H, ArCH₂), 1.72 (sext-like, 4 H, ArCH₂CH₂), 1.01 (t, ³*J* = 7.3 Hz, 6 H, CH₃). ¹³C NMR (126 MHz, CDCl₃): δ = 154.0 and 151.6 (C-2 and C-4), 151.1 (C-6), 123.5 (C-5), 122.4 (C-3), 37.5 (ArCH₂), 22.3 (CH₂CH₃), 13.9 (CH₃).

10.2.4 Tolane linkers

2-Amino-4'-ethoxycarbonyl-4-methoxycarbonyltolane (9). A solution of methyl 3-amino-4-iodobenzoate (995 mg, 3.59 mmol) and ethyl 4-ethynylbenzoate (8a) (694 mg, 3.98 mmol) in THF (12 mL) and triethylamine (3 mL) was degassed through three freeze-pump-thaw cycles. Pd(PPh₃)₂Cl₂ (96.1 mg, 0.083 mmol) and Cul (28.6 mg, 0.150 mmol) were added and the reaction mixture was stirred for 23 h at room temperature. Shortly after the addition of the catalysts a voluminous precipitate formed. Water was added and the aqueous phase was extracted with CH₂Cl₂. The solvent of the combined organic phases was removed. Column chromatography $(CH_2CI_2/Et_2O 50:1)$ gave tolane **9** ($R_f = 0.37$; 1.06 g, 92%) as a yellow solid. ¹H NMR (500 MHz, CDCl₃): δ = 8.02 and 7.58 (AA'XX' spin system, 2 H each, H-3' and H-2', respectively), 7.42 (d, ${}^{3}J$ = 8.1 Hz, 1 H, H-3), 7.41 (d, ${}^{3}J$ = 1.3 Hz, 1 H, H-6), 7.38 (dd, ${}^{3}J = 8.1$ Hz, ${}^{3}J = 1.2$ Hz, 1 H, H-5), 4.55 (br. s, 2 H, NH₂), 4.38 (q, ${}^{3}J = 7.1$ Hz, 2 H, OCH₂), 3.89 (s, 3 H, OCH₃), 1.40 (t, ${}^{3}J = 7.1$ Hz, 3 H, CH₂CH₃). ${}^{13}C$ NMR (126 MHz, CDCl₃): δ = 166.7 and 165.9 (CO₂Me and CO₂Et), 147.7 (C-2), 132.2 (C-6), 131.4 (C-2'), 131.3 and 130.1 (C-4, C-1', or C-4'), 129.5 (C-3'), 127.2 (C-4, C-1', or C-4'), 118.8 (C-3), 115.2 (C-5), 111.5 (C-1), 96.2 and 88.0 (C=C), 61.2 (OCH₂), 52.2 (OCH₃), 14.3 (CH₂CH₃).

2-Amino-4,4'-dicarboxytolane (1). See the general procedure for saponification of the diesters. Diester **9** (699 mg, 2.16 mmol), THF (110 mL), KOH (24.3 g, 433 mmol), methanol (70 mL), reaction time: 25 h, room temperature; Protonation: THF (60 mL), TFA (6 mL, 78 mmol). A yellow powder (564 mg) was obtained consisting of diacid **1** (555 mg, 91%) and 6 mol% of THF. ¹H NMR (250 MHz, DMSO-d₆): δ = 12.95 (br. s, 2 H, OH), 7.96 and 7.76 (AA'XX' spin system, 2 H each, H-3' and H-2', respectively), 7.37 (unresolved d, 1 H, H-3), 7.35 (d, ³J = 7.9 Hz, 1 H, H-6), 7.09 (dd, ³J = 8.0 Hz, ⁴J = 1.6 Hz, 1 H, H-5), 5.84 (br. s, 2 H, NH₂). ¹³C NMR (126 MHz, DMSO-d₆):

 δ = 167.3 and 166.8 (CO₂H), 149.9 (C-2), 132.1 (C-6), 132.0 (C-4, C-1', or C-4'), 131.5 (C-2'), 130.3 (C-4, C-1', or C-4'), 129.4 (C-3'), 127.0 (C-4, C-1', or C-4'), 116.3 (C-3), 114.8 (C-5), 108.7 (C-1), 95.2 and 89.2 (C=C).

10.2.5 Terphenyl linkers

2'-Amino-4,4"-di(methoxycarbonyl)-1,1':4',1"-terphenyl (13a).^[171] A suspension of 2,5-dibromoaniline (12a) (1.03 g, 4.11 mmol), 4-methoxycarbonylphenylboronic acid (2.22 g, 12.2 mmol), potassium fluoride (2.36 g, 40.6 mmol) in THF (20 mL) was degassed through three freeze-pump-thaw cycles. Pd₂dba₃ (270 mg, 0.294 mmol) and tri-tert-butylphosphane in toluene (1.0 mol/L; 820 µL, 0.820 mmol) were added and the reaction mixture was stirred at 50 °C for 17 h. A voluminous precipitate formed. After cooling to room temperature, the reaction mixture was poured into water and the aqueous phase was extracted with CH₂Cl₂. The combined organic phases were concentrated in vacuo. The solid residue was dissolved in CH₂Cl₂, silica gel (4.5 g) was added, and the solvent was removed under reduced pressure to obtain a freely flowing powder which was transferred onto the top of a silica gel column. Elution with CH₂Cl₂/Et₂O (50:1) gave p-terphenyl **13a** ($R_f = 0.35$; 1.35 g, 91%) as a slightly yellow solid containing a trace of a structurally unknown byproduct. ¹H NMR (250 MHz, CDCl₃): δ = 8.13 and 8.10 (2 halves of 2 AA'XX' spin systems, 2 H each, H-3 and H-3"), 7.66 and 7.58 (2 halves of 2 AA'XX' spin systems, 2 H each, H-2 and H-2"), 7.22 (d, 1 H, ${}^{3}J = 7.9$ Hz, H-6'), 7.09 (dd, ${}^{3}J = 7.9$ Hz, ${}^{4}J$ = 1.7 Hz, 1 H, H-5'), 7.02 (d, ${}^{4}J$ = 1.7 Hz, 1 H, H-3'), 3.95 and 3.94 (s, 3 H each, CH₃), 3.88 (br. s, 2 H, NH₂). ¹³C NMR (63 MHz, CDCl₃): δ = 167.0 and 166.8 (CO2Me), 145.3, 143.9, and 141.0 (C-1, C-2', C-4' and C-1"), 130.9, 130.2, and 130.1 (CH), 129.10 and 129.06 (C-4 and C-4"), 129.00 and 127.0 (CH), 126.3 (C-1'), 117.8, 114.5 (C-3' and C-5'), 52.2 and 52.1 (CH₃). HRMS (EI) m/z: 361.13120 [M]⁺, calcd for [M]⁺: 361.13141.

2'-Amino-4,4"-dicarboxy-1,1':4',1"-terphenyl (**2a**).^[171] See the general procedure for saponification of the diesters. Diester **13a** (2.51 g, 6.95 mmol), THF (500 mL), KOH (77.4 g, 1.38 mol), methanol (250 mL), reaction time: 21 h, room temperature; Protonation: THF (200 mL), TFA (25 mL, 340 mmol). A yellow powder (2.07 g) was obtained consisting of diacid **2a** (2.02 g, 87%) and 10 mol% of THF. Decomposition

at 349 °C, without melting. ¹H NMR (250 MHz, DMSO-d₆): δ = 12.82 (br. s, 2 H, OH), 8.03 (2 halves of 2 AA'XX' spin systems, 4 H, H-3 and H-3''), 7.74, 7.61 (2 halves of 2 AA'XX' spin systems, 2 H each, H-2 and H-2''), 7.17 (d, ⁴*J* = 1.9 Hz, 1 H, H-3'), 7.16 (d, ³*J* = 7.7 Hz, 1 H, H-6'), 7.02 (dd, ³*J* = 7.9 Hz, ⁴J = 1.6 Hz, 1 H, H-5'), 4.9 (very br. s, 2 H, NH₂). ¹³C NMR (63 MHz, DMSO-d₆): δ = 167.12 and 167.10 (CO₂H), 145.5, 144.5, 143.7, and 139.5 (C-1, C-2', C-4' and C-1''), 130.8, 129.9, and 129.8 (CH), 129.5 and 129.1 (C-4 and C-4''), 128.7 and 126.5 (CH), 124.7 (C-1'), 115.6 and 113.9 (C-3' and C-5'). Elemental analysis calcd (%) for C₁₆H₂₄I₂O₂ (333.342): C 72.06, H 4.54, N 4.20, found C 72.01, H 4.60, N 4.12.

4,4"-Di(methoxycarbonyl)-2'-(N-propargylamino)-1,1':4',1"-terphenyl (13b) and 4.4"-di(methoxycarbonyl)-2'-(N,N-dipropargylamino)-1,1':4',1"-terphenyl (13c). A suspension of 2'-amino-4,4"-di(methoxycarbonyl)-p-terphenyl (13a) (746 mg, 2.06 mmol), propargyl bromide in toluene (80 wt%; 0.5 mL, 2.45 mmol), and K₂CO₃ (324 mg, 2.34 mmol) in DMF (15 mL) was heated to 100 °C for 16 h. After cooling to room temperature, the reaction mixture was poured into water and the aqueous phase was extracted with CH₂Cl₂. The combined organic phases were concentrated in vacuo. Column chromatography (n-pentane/CH2Cl2 1:4) gave dipropargylamino-pterphenyl **13c** ($R_f = 0.37$; 431 mg, 42%) and monopropargylamino-*p*-terphenyl **13b** $(R_f =$ 0.33; 543 mg, 58%) as colorless solids. Analytical data of 4,4"-di(methoxycarbonyl)-2'-(N-propargylamino)-*p*-terphenyl (13b): ^{1}H NMR (250 MHz, CDCl₃): δ = 8.14 and 8.11 (2 halves of 2 AA'XX' spin systems, 2 H each, H-3 and H-3"), 7.70 and 7.55 (2 halves of 2 AA'XX' spin systems, 2 H each, H-2 and H-2"), 7.22 (d, ${}^{3}J$ = 7.8 Hz, 1 H, H-6'), 7.11 (dd, ${}^{3}J$ = 7.8 Hz, ${}^{4}J$ = 1.7 Hz, 1 H, H-5'), 7.05 (d, ${}^{4}J$ = 1.5 Hz, 1 H, H-3'), 3.99 (d, ${}^{4}J$ = 2.4 Hz, 2 H, CH₂), 3.95 and 3.94 (s, 3 H each, CH₃), 2.22 (t, ${}^{4}J$ = 2.4 Hz, 1 H, C=CH). ¹³C NMR (126 MHz, CDCl₃, 50 °C): δ = 167.0 and 166.8 (CO₂Me), 145.8, 144.1, 143.6, and 141.2 (C-1, C-2', C-4', and C-1"), 130.7, 130.3, and 130.1 (CH), 129.5 (C-4 or C-4"), 129.4 (CH), 129.2 (C-4 or C-4"), 127.4 (C-1'), 127.1 (CH), 117.5 and 110.5 (C-3' and C-5'), 80.6 (C=CH), 71.6 (C**≡C**H), 52.1 and 52.0 (CH₃), 33.8 (CH₂). Analytical data of 4,4"-di(methoxycarbonyl)-2'-(N,N-dipropargylamino)-p-terphenyl (**13c**): ¹H NMR (250 MHz, CDCl₃): δ = 8.13 and 8.09 (2 halves of 2 AA'XX' spin systems, 2 H each, H-3 and H-3"), 7.72 and 7.69 (2 halves of 2 AA'XX' spin systems, 2 H each, H-2, H-2"),

7.49 (d, ${}^{4}J$ = 1.4 Hz, 1 H, H-3'), 7.42 (dd, ${}^{3}J$ = 7.9 Hz, ${}^{4}J$ = 1.7 Hz, 1 H, H-5'), 7.36 (d, ${}^{3}J$ = 7.9 Hz, 1 H, H-6'), 3.95 and 3.94 (s, 3 H each, CH₃), 3.77 (d, ${}^{4}J$ = 2.4 Hz, 4 H, CH₂), 2.21 (t, ${}^{4}J$ = 2.3 Hz, 2 H, C≡CH). ¹³C NMR (126 MHz, CDCl₃): δ = 167.0 and 166.9 (CO₂Me), 147.2, 145.0, 144.5, 140.3, and 134.6 (C-1, C-1', C-2', C-4', and C-1''), 131.9, 130.2, and 129.8 (CH), 129.1 (C-4 or C-4''), 128.85 (CH), 128.83 (C-4 or C-4''), 127.0 (CH), 123.0 and 120.3 (C-3' and C-5'), 78.7 (**C**≡CH), 73.4 (C≡**C**H), 52.2 and 52.1 (CH₃), 41.5 (CH₂).

4,4"-Dicarboxy-2'-(N-propargylamino)-1,1':4',1"-terphenyl (**2b**). See the general procedure for saponification of the diesters. Diester **13b** (502 mg, 1.26 mmol), THF (80 mL), KOH (14.4 g, 257 mmol), methanol (50 mL), reaction time: 46 h, room temperature; Protonation: THF (40 mL), TFA (4 mL, 55 mmol). A slightly yellow powder (379 mg) was obtained consisting of diacid **2b** (370 g, 79%) and 12 mol% of THF. ¹H NMR (250 MHz, DMSO-d₆): δ = 12.93 (br. s, 2 H, OH), 8.04 (half of 2 AA'XX' spin systems, 4 H, H-3 and H-3"), 7.82 and 7.56 (2 halves of 2 AA'XX' spin systems, 2 H each, H-2 and H-2"), 7.18 (d, ³J = 7.8 Hz, 1 H, H-6'), 7.13 (unresolved d, 1 H, H-3'), 7.11 (unresolved dd, ⁴J = 1.5 Hz, 1 H, H-5'), 5.37 (t, ³J = 5.9 Hz, 1 H, NH), 4.00 (dd, ³J = 5.4 Hz, ⁴J = 1.4 Hz, 2 H, CH₂), 3.04 (t, ⁴J = 2.2 Hz, 1 H, C≡CH). ¹³C NMR (126 MHz, DMSO-d₆): δ = 167.0 (CO₂H), 144.8, 144.5, 143.2, and 139.6 (C-1, C-2', C-4', and C-1"), 130.8, 129.93, and 129.89 (CH), 129.6 and 129.4 (C-4 or C-4"), 129.2 and 126.8 (CH), 126.4 (C-1'), 115.9 and 110.1 (C-3' and C-5'), 82.2 (C≡CH), 73.2 (C≡CH), 32.8 (CH₂).

4,4"-Dicarboxy-2'-(N,N-dipropargylamino)-1,1':4',1"-terphenyl (**2c**). See the general procedure for saponification of the diesters. Diester **13c** (350 mg, 0.80 mmol), THF (55 mL), KOH (8.99 g, 160 mmol), methanol (32 mL), reaction time: 24 h, room temperature; Protonation: THF (30 mL), TFA (3 mL, 41 mmol). Diacid **2c** (302 mg, 92%) was obtained as a colorless powder free of THF. ¹H NMR (250 MHz, DMSO-d₆): δ = 12.96 (br. s, 2 H, OH), 8.05 and 8.01 (2 halves of 2 AA'XX' spin systems, 2 H each, H-3 and H-3"), 7.85 and 7.72 (2 halves of 2 AA'XX' spin systems, 2 H each, H-2 and H-2"), 7.57 (unresolved d, 1 H, H-3'), 7.55 (unresolved dd, ⁴J = 1.6 Hz, 1 H, H-5'), 7.40 (d, ³J = 7.8 Hz, 1 H, H-6'), 3.75 (d, ⁴J = 2.1 Hz, 4 H, CH₂), 3.17 (t, ⁴J = 2.2 Hz, 2 H, C=CH). ¹³C NMR (126 MHz, DMSO-d₆): δ = 167.2 and

167.1 (CO₂H), 146.9, 144.0, 143.8, 134.3, and 139.2 (C-1, C-1', C-2' C-4', and C-1"), 131.8 and 130.0 (CH), 129.9 (C-4 or C-4"), 129.54 (CH), 129.46 (C-4 or C-4"), 128.7 and 126.9 (CH), 122.6 and 120.3 (C-3' and C-5'), 79.1 (**C**=CH), 76.1 (C=**C**H), 41.2 (CH₂).

2'-Hvdroxv-5'-methoxv-4.4"-di(methoxvcarbonvl)-1.1':4'.1"-terphenvl (13d).^[211] A 2,5-dibromo-4-methoxyphenol (12d) (1.00)3.54 mixture of g, mmol), 4-methoxycarbonylphenylboronic acid (3.82 g, 21.2 mmol), Na₂CO₃ (2.13 g, 20.1 mmol), toluene (30 mL), methanol (20 mL) and water (10 mL) was degassed through four freeze-pump-thaw cycles. Pd(PPh₃)₄ (322 mg, 0.279 mmol) was added and the reaction mixture was again degassed by two freeze-pump-thaw cycles. The reaction mixture was stirred at 100 °C for 63 h. After cooling to room temperature, the reaction mixture was poured into water and the aqueous phase was extracted with CH₂Cl₂. The combined organic phases were concentrated in vacuo. Column chromatography (Et₂O/CH₂Cl₂ 1:10; $R_f = 0.39$) followed by recrystallization from CH_2CI_2 (200 mL) gave p-terphenyl **13d** (686 mg, 49%) as a grey solid. ¹H NMR (500 MHz, DMSO-d₆): δ = 9.52 (br. s, 1 H, OH), 8.01 (2 halves of 2 AA'XX' spin systems, 4 H, H-3 and H-3"), 7.81 and 7.65 (2 halves of 2 AA'XX' spin system, 2 H each, H-2 and H-2"), 7.08 and 6.97 (s, 1 H each, H-3' and H-6'), 3.88 (s, 6 H, CO_2CH_3), 3.76 (s, 3 H, ArOCH₃). ¹³C NMR (126 MHz, DMSO-d₆, 80 °C): δ = 165.82 and 165.75 (CO₂Me), 149.3, 148.2, 142.6, and 142.2 (C-1, C-1", C-2', and C-5'), 129.3 (C-4, C-1', C-4' or C-4"), 128.91, 128.85, 128.5, and 128.4 (C-2, C-3, C-2", and C-3"), 127.9, 127.7, and 126.6 (C-4, C-1', C-4' or C-4"), 117.9 and 114.3 (C-3' and C-6'), 56.2 (ArOCH₃), 51.51 and 51.53 (CO₂CH₃).

4,4"-Dicarboxy-2'-hydroxy-5'-methoxy-1,1':4',1"-terphenyl (**2d**). See the general procedure for saponification of the diesters. Diester **13d** (193 mg, 0.49 mmol), THF (50 mL), KOH (5.09 g, 90.7 mmol), methanol (20 mL), reaction time: 109 h, 40 °C; Protonation: THF (25 mL), TFA (3.0 mL, 41 mmol). A slightly greenish powder (165 mg) was obtained consisting of diacid **2d** (163 mg, 91%) and 6 mol% of THF. ¹H NMR (500 MHz, DMSO-d₆): δ = 12.93 (br. s, CO₂H), 9.47 (br. s, 1 H, ArOH), 7.99 (2 halves of 2 AA'XX' spin systems, 4 H, ArH ortho to CO₂H), 7.79 and 7.62 (2 halves of 2 AA'XX' spin system, 2 H each, ArH meta to H, 7.07 and 6.96 (s, 1 H each, ArH

ortho to O), 3.76 (s, 3 H, CH₃). ¹³C NMR (126 MHz, DMSO-d₆): δ = 167.3 and 167.2 (CO₂H), 149.4, 148.4, 142.6, and 142.2 (C-1, C-1", C-2', and C-5'), 129.4 (C-4, C-1', C-4' or C-4"), 129.25, 129.23, 129.1, and 129.0 (C-2, C-3, C-2", and C-3"), 128.9 and 126.7 (C-4, C-1', C-4' or C-4"), 118.0 and 114.1 (C-3' and C-6'), 56.2 (CH₃).

2'-(3-Furan-2-ylpropyloxy)-5'-methoxy-4,4"-di(methoxycarbonyl)-1,1':4',1"-

terphenyl (13e). A suspension of diiodobenzene 12e (1.51 g, 3.20 mmol), 4-methoxycarbonylphenylboronic acid (3.68 g, 20.4 mmol), and potassium fluoride (3.77 g, 64.9 mmol) in THF (50 mL) was degassed through three freeze-pump-thaw cycles. Pd₂dba₃ (530 mg, 0.579 mmol) and tri-tert-butylphosphane in toluene (1.0 mol/L; 1.0 mL, 1.0 mmol) were added and the reaction mixture was stirred at 75 °C for 62 h. After cooling to room temperature, water was added and the aqueous phase was extracted with CH₂Cl₂. The combined organic phases were concentrated in vacuo. Column chromatography (Et₂O/CH₂Cl₂ 1:25), recrystallization from toluene and methanol (1:1) followed by a second column chromatography (n-pentane/CH₂Cl₂ $1:5 \rightarrow CH_2Cl_2$) gave *p*-terphenyl **13e** (324 mg, 20%) as a colorless solid. ¹H NMR (250 MHz, CD_2Cl_2): δ = 8.10 and 8.06 (2 halves of 2 AA'XX' spin systems, 2 H each, ArH ortho to CO₂Me), 7.71 and 7.66 (2 halves of 2 AA'XX' spin system, 2 H each, ArH meta to CO₂Me), 7.28 (dd, ${}^{3}J$ = 1.9 Hz, ${}^{4}J$ = 0.8 Hz, 1 H, H-5 of furan), 7.03 and 7.01 (s, 1 H each, ArH ortho to O), 6.28 (dd, ${}^{3}J$ = 3.1 Hz, ${}^{3}J$ = 1.9 Hz, 1 H, H-4 of furan), 5.94 (dd, ${}^{3}J$ = 3.2 Hz, ${}^{4}J$ = 0.9 Hz, 1 H, H-3 of furan), 3.98 (t, ${}^{3}J$ = 6.2 Hz, 2 H, CH₂O), 3.93 and 3.92 (s, 3 H each, CO₂CH₃), 3.81 (s, 3 H, ArOCH₃), 2.70 (t, ${}^{3}J = 7.4$ Hz, 2 H, furan-CH₂), 2.02 (m, 2 H, OCH₂CH₂). ${}^{13}C$ NMR (126 MHz, CD₂Cl₂): δ = 167.12 and 167.09 (CO₂Me), 155.6 (C-2 of furan), 151.2, 150.4, 143.3, and 143.2 (C-1, C-1", C-2', and C-5' of terphenyl), 141.3 (C-5 of furan), 130.6 and 130.2 (C-4, C-1', C-4' or C-4" of terphenyl), 129.9, 129.8, 129.49, and 129.48 (C-2, C-3, C-2", and C-3" of terphenyl), 127.2 (C-4, C-1', C-4' or C-4" of terphenyl), 116.3 and 114.6 (C-3' and C-6' of terphenyl), 110.4 (C-4 of furan), 105.5 (C-3 of furan), 68.8 (OCH₂), 56.6 (ArOCH₃), 52.3 (CO₂CH₃), 28.2 and 24.8 (OCH₂CH₂CH₂).

4.4"-Dicarboxy-5'-(3-furan-2-ylpropyloxy)-2'-methoxy-1.1':4',1"-terphenyl (**2e**). See the general procedure for saponification of the diesters. Diester 13e (252 mg, 0.50 mmol), THF (50 mL), KOH (5.58 g, 99.4 mmol), methanol (28 mL), reaction time: 67 h. room temperature: Protonation: THF (25 mL), TFA (2.5 mL, 34 mmol), Diacid **2e** (184 mg, 78%) was obtained as a colorless powder free of THF. ¹H NMR (250 MHz, DMSO-d₆); δ = 12.91 (br. s. 2 H. OH). 8.01 and 7.99 (2 halves of 2 AA'XX' spin systems, 2 H each, ArH ortho to CO₂H), 7.74 and 7.68 (2 halves of 2 AA'XX' spin system, 2 H each, ArH meta to CO₂H), 7.47 (dd, ${}^{3}J$ = 1.9 Hz, ${}^{4}J$ = 0.8 Hz, 1 H, H-5 of furan), 7.13 and 7.10 (s, 1 H each, ArH ortho to O), 6.31 (dd, ${}^{3}J = 3.1$ Hz, ${}^{3}J$ = 1.9 Hz, 1 H, H-4 of furan), 6.02 (dd, ${}^{3}J$ = 3.1 Hz, ${}^{4}J$ = 0.8 Hz, 1 H, H-3 of furan), 4.02 (t, ${}^{3}J$ = 6.2 Hz, 2 H, CH₂O), 3.80 (s, 3 H, ArOCH₃), 2.65 (t, ${}^{3}J$ = 7.5 Hz, 2 H, furan-CH₂), 1.93 (m, 2 H, CH₂CH₂O). ¹³C NMR (126 MHz, DMSO-d₆): δ = 167.21 and 167.20 (CO₂H), 154.8 (C-2 of furan), 150.4, 149.5, 142.2, and 142.1 (C-1, C-1", C-2', and C-5' of terphenyl), 141.3 (C-5 of furan), 129.6 (C-4, C-1', C-4' or C-4" of terphenyl), 129.53 and 129.48 (C-2, C-3, C-2" or C-3" of terphenyl), 129.3 and 129.2 (C-4, C-1', C-4' or C-4" of terphenyl), 129.05, and 128.99 (C-2, C-3, C-2" or C-3" of terphenyl), 115.9 and 114.4 (C-3' and C-6' of terphenyl), 110.3 (C-4 of furan), 105.2 (C-3 of furan), 68.0 (OCH₂), 56.2 (ArOCH₃), 27.4 and 23.9 (OCH₂CH₂CH₂).

9,10-Di-(4-methoxycarbonylphenyl)anthracene А of (**13g**). suspension 9,10-dibromoanthracene (1.50 g, 4.46 mmol), 4-methoxycarbonylphenylboronic acid (2.41 g, 13.4 mmol), and potassium fluoride (2.57 g, 44.2 mmol) in THF (25 mL) was degassed through three freeze-pump-thaw cycles. Pd₂dba₃ (293 mg, 0.320 mmol) and tri-tert-butylphosphane in toluene (1.0 mol/L; 0.79 mL, 0.79 mmol) were added and the reaction mixture was stirred at 50 °C for 17 h. After cooling to room temperature, water (65 mL) was added and the aqueous phase was extracted with CH₂Cl₂. The combined organic phases were concentrated in vacuo. Column chromatography (CH₂Cl₂) gave anthracene **13g** ($R_f = 0.43$; 1.32 g, 66%) as a slightly yellow solid. ¹H NMR (250 MHz, CDCl₃): δ = 8.29 (half of an AA'XX' spin system, 4 H, ArH ortho to CO₂Me), 7.62 (half of an AA'XX' spin system, 4 H, H-1 of anthracene), 7.57 (half of an AA'XX' spin system, 4 H, ArH meta to CO₂Me), 7.34 (half of an AA'XX' spin system, 4 H, H-2 of anthracene), 4.02 (s, 6 H, CH₃). ¹³C NMR (126 MHz, CHCl₃): δ = 167.0 (CO₂Me), 144.1 (C_{Ar} para to CO₂Me), 136.4 (C-9 of anthracene), 131.5 (C_{Ar} ortho to CO_2Me), 129.8 (C_{Ar} meta to CO_2Me), 129.7 ($C_{Ar}CO_2Me$), 129.5 (C-4a of anthracene), 126.6 (C-1 of anthracene), 125.5 (C-2 of anthracene), 52.3 (CH₃).

9,10-Di-(4-carboxyphenyl)anthracene (**2g**). See the general procedure for saponification of the diesters. Diester **13g** (978 mg, 2.19 mmol), THF (180 mL), KOH (25.7 g, 458 mmol), methanol (90 mL), reaction time: 66 h, room temperature; Protonation: THF (90 mL), TFA (9.0 mL, 122 mmol). A yellow powder (792 mg) was obtained consisting of diacid **2g** (774 mg, 84%) and 12 mol% of THF. ¹H NMR (250 MHz, DMSO-d₆): δ = 13.11 (br. s, 2 H, OH), 8.22 and 7.61 (AA'XX' spin system, 4 H each, ArH ortho and meta to CO₂H, respectively), 7.56 and 7.45 (AA'XX' spin system, 4 H each, 4 H, H-1 and H-2 of anthracene, respectively). ¹³C NMR (126 MHz, DMSO-d₆): δ = 166.7 (CO₂H), 142.5 (C_{Ar} para to CO₂H), 135.6 (C-9 of anthracene), 130.9 (C_{Ar} ortho to CO₂H), 130.2 (**C**_{Ar}CO₂Me), 129.2 (C_{Ar} meta to CO₂H), 128.6 (C-4a of anthracene), 125.8 (C-1 of anthracene), 125.4 (C-2 of anthracene).

10.2.6 Butadiine linkers

1,4-Bis-(4-ethoxycarbonylphenyl)butadiine (**22**). The reaction was carried out under ambient atmosphere. A solution of ethyl 4-ethynylbenzoate (**8a**) (1.56 g, 8.96 mmol), Pd(PPh₃)₂Cl₂ (63.9 mg, 0.091 mmol) and Cul (35.2 mg, 0.185 mmol) in THF (24 mL) and piperidine (8 mL) was stirred at room temperature for 4 h. Water was added and the brown precipitate was isolated by filtration, washed with water and aqueous HCl solution (10 wt%), and dried over P₄O₁₀ at 10⁻³ mbar. Column chromatography (CH₂Cl₂) gave butadiine **22** (R_f = 0.52; 1.29 g, 83%) as a colorless solid. ¹H NMR (250 MHz, CDCl₃): δ = 8.01 and 7.58 (AA'XX' spin system, 4 H each, ArH ortho and meta to CO₂Et, respectively), 4.38 (q, ³J = 7.1 Hz, 4 H, OCH₂), 1.39 (t, ³J = 7.1 Hz, 6 H, CH₃). ¹³C NMR (126 MHz, CHCl₃): δ = 165.7 (CO₂Et), 132.4 (C_{Ar} meta to CO₂Et), 130.9 (**C**_{Ar}CO₂Et), 129.5 (C_{Ar} ortho to CO₂Et), 126.0 (C_{Ar} para to CO₂Et), 81.8 and 76.2 (C=C), 61.3 (CH₂), 14.3 (CH₃).

1,4-Bis-(4-carboxyphenyl)butadiine (III). See the general procedure for saponification of the diesters. Diester **22** (2.03 g, 5.86 mmol), THF (150 mL), KOH (32.4 g, 578 mmol), ethanol (115 mL), reaction time: 16 h, room temperature; Protonation: THF (100 mL), TFA (15 mL, 195 mmol). A rose-colored powder (1.41 g) was obtained consisting of diacid III (1.36 g, 80%) and 15 mol% of THF. ¹H NMR (250 MHz, DMSO-d₆): δ = 13.29 (br. s, 2 H, OH), 7.98 and 7.75 (AA'XX' spin system, 4 H each, ArH ortho and meta to CO₂H, respectively). ¹³C NMR (126 MHz, CHCl₃): δ = 166.5 (CO₂H), 132.7 (C_{Ar} meta to CO₂H), 131.8 (**C**_{Ar}CO₂H), 129.6 (C_{Ar} ortho to CO₂H), 124.4 (C_{Ar} para to CO₂H), 82.1 and 75.4 (C≡C).

10.2.7 1,4-Di(phenylethynyl)benzene linkers

1-Amino-2,5-di-(4-ethoxycarbonylphenylethynyl)benzene (23a¹).^[254] A solution of 1,4-dibromoaniline (12a) (1.51 g, 6.01 mmol) and ethyl 4-ethynylbenzoate (8a) (2.34 g, 13.4 mmol) in THF (15 mL) and triethylamine (7 mL) was degassed through three freeze-pump-thaw cycles. Pd₂dba₃ (279 mg, 0.30 mmol), Cul (64 mg, 0.34 mmol) and tri-tert-butylphosphane in toluene (1.0 mol/L; 0.6 mL, 0.6 mmol) were added and the reaction mixture was stirred at 50 °C for 21 h. After cooling to room temperature the reaction mixture was poured into water (50 mL) and the aqueous phase was extracted with CH₂Cl₂. The combined organic phases were washed with saturated aqueous NaCl solution and dried over MaSO₄. The solvent was removed. Column chromatography (CH₂Cl₂) gave diester **23a¹** ($R_f = 0.31$; 966 g, 37%) as a yellow solid. Mp: 184 °C. ¹H NMR (500 MHz, CDCl₃, 50 °C): δ = 8.02 (m, 4 H, ArH ortho to CO₂Et), 7.56 (m, 4 H, ArH meta to CO₂Et), 7.35 (d-like, ${}^{3}J$ = 8.3 Hz, 1 H, ArH meta to NH₂), 6.91 and 6.90 (m, 1 H each, ArH ortho and para to NH₂), 4.39 and 4.38 $(q, {}^{3}J = 7.1 \text{ Hz}, 2 \text{ H each}, \text{ OCH}_{2}), 4.32 (br. s, 2 \text{ H}, \text{ NH}_{2}), 1.399 \text{ and } 1.396 (t, 1.396)$ ${}^{3}J$ = 7.1 Hz, 3 H each, CH₃). ${}^{13}C$ NMR (126 MHz, CDCl₃, 50 °C): δ = 166.01 and 165.96 (CO₂Et), 147.8 (C_{Ar}NH₂), 132.3 (C_{Ar}H meta to NH₂), 131.5 and 131.3 (C_{Ar} meta to CO₂Et), 130.17 and 130.15 (CArCO₂Et), 129.6 and 129.5 (CAr ortho to CO₂Et), 127.7 and 127.6 ($C_{Ar}C\equiv C$ para to CO₂Et), 124.3 ($C_{Ar}C\equiv C$ meta to NH₂), 121.6 ($C_{Ar}H$ para to NH_2), 117.2 ($C_{Ar}H$ ortho to NH_2), 108.1 ($C_{Ar}C \equiv C$ ortho to NH_2), 95.7, 92.2, 89.9 and 88.6 (C≡C), 61.13 and 61.10 (CH₂), 14.3 (CH₃). Elemental analysis calcd (%) for C₂₈H₂₃NO₄ (437.163): C 76.87, H 5.30, N 3.20. Found C 76.86, H 5.21, N 3.04.

1-Amino-2,5-di-(4-*tert***-butyloxycarbonylphenylethynyl)benzene** (**23a**²). A solution of 1,4-dibromoaniline (**12a**) (222 mg, 0.885 mmol) and *tert*-butyl 4-ethynylbenzoate (**8c**) (398 mg, 1.96 mmol) in THF (5 mL) and triethylamine (2 mL) was degassed through three freeze-pump-thaw cycles. Pd₂dba₃ (51.0 mg, 0.056 mmol), Cul (12.0 mg, 0.063 mmol) and tri-*tert*-butylphosphane in toluene (1.0 mol/L; 0.09 mL, 0.09 mmol) were added and the reaction mixture was stirred at 50 °C for 14 h. The reaction mixture was poured into water (50 mL) and the aqueous phase was extracted with CH₂Cl₂. The combined organic phases were washed with water and aqueous HCl solution (12%wt) and dried over MgSO₄. The solvent was removed. Column chromatography (CH₂Cl₂) gave diester **23a**² (*R*_f = 0.40; 167 g, 38%) as a yellow solid. ¹H NMR (300 MHz, CDCl₃): *δ* = 7.96 (2 halves of 2 AA'XX' spin systems, 4 H, ArH ortho to CO₂^tBu), 7.35 (d, ³J = 8.3 Hz, 1 H, ArH meta to NH₂), 6.92 and 6.90 (m, 1 H each, ArH ortho and para to NH₂), 4.32 (br. s, 2 H, NH₂), 1.60 (s, 18 H, CH₃).

1-Amino-2,5-di-(4-carboxylphenylethynyl)benzene (4a).^[254] See the general procedure for saponification of the diesters. Diester 23a¹ (865 mg, 1.98 mmol). THF (100 mL), KOH (20.8 g, 370 mmol), ethanol (65 mL), reaction time: 92.5 h, 40 °C; Protonation: THF (50 mL), TFA (5 mL, 65 mmol). After drying in vacuo a yellow solid (719 mg) was isolated consisting of diacid 4a (691 mg, 92%) and 8 mol% of THF. ¹H NMR (500 MHz, DMSO-d₆): δ = 13.14 (br. s, 2 H, OH), 7.97 (m, 4 H, ArH ortho to CO₂H), 7.75 and 7.66 (2 halves of 2 AA'XX' spin systems, 2 H each, ArH meta to $CO_{2}H$), 7.32 (d, ${}^{3}J$ = 7.8 Hz, 1 H, ArH meta to NH₂), 6.94 (s, 1 H, ArH ortho to NH₂), 6.75 (d, ${}^{3}J$ = 7.8 Hz, 1 H, ArH para to NH₂), 5.84 (br. s, 2 H, NH₂). ${}^{13}C$ NMR (151 MHz, DMSO-d₆): δ = 166.8 and 166.7 (CO₂H), 149.9 (C_{Ar}NH₂), 132.4 (C_{Ar}H meta to NH₂), 131.6 and 131.4 (C_{Ar} meta to CO₂H), 130.6 and 130.1 ($C_{Ar}CO_2H$), 129.6 and 129.4 (C_{Ar} ortho to CO₂H), 127.1 and 126.5 (**C**_{Ar}C≡C para to CO₂H), 123.0 ($C_{Ar}C\equiv C$ meta to NH₂), 118.9 ($C_{Ar}H$ para to NH₂), 116.4 ($C_{Ar}H$ ortho to NH₂), 105.9 $(C_{Ar}C \equiv C \text{ ortho to } NH_2)$, 95.0, 92.3, 89.3, and 89.2 (C=C). HRMS (ESI) m/z: 380.09180 ([M-H⁺]), calcd for C₂₄H₁₄NO₄⁻: 380.09283.

1-(3-Furan-2-ylpropyloxy)-4-methoxy-2,5-di-(4-methoxycarbonylphenylethynyl) (23e).^[254] See the general procedure for alkynyl-aryl coupling. benzene Diiodobenzene 12e (1.00 g, 2.07 mmol), methyl 4-ethynylbenzoate (8b) (718 mg, 4.48 mmol), THF (50 mL), piperidine (15 mL), Pd(PPh₃)₂Cl₂ (15.0 mg, 0.021 mmol), Cul (8.8 mg, 0.046 mmol), reaction time: 21 h. Column chromatography (CH₂Cl₂) gave diester **23e** ($R_f = 0.33$; 1.09 g, 96%) as a yellow solid. ¹H NMR (500 MHz, CDCl₃): δ = 8.01 (2 halves of 2 AA'XX' spin systems, 4 H, ArH ortho to CO₂Me), 7.61 and 7.58 (2 halves of 2 AA'XX' spin system, 2 H each, ArH meta to CO₂Me), 7.31 (apparent d, ${}^{3}J$ = 1.5 Hz, 1 H, H-5 of furan), 7.03 (s, 2 H, ArH ortho to O), 6.28 (dd, ${}^{3}J$ = 3.0 Hz, ${}^{3}J$ = 2.0 Hz, 1 H, H-4 of furan), 6.03 (d, ${}^{3}J$ = 2.0 Hz, 1 H, H-3 of furan), 4.07 (t, ³*J* = 6.1 Hz, 2 H, CH₂O), 3.92 (s, 6 H, CO₂CH₃), 3.91 (s, 3 H, ArOCH₃), 2.93 $(t, {}^{3}J = 7.4 \text{ Hz}, 2 \text{ H}, \text{ furan-CH}_{2}), 2.19 (m, 2 \text{ H}, \text{CH}_{2}\text{CH}_{2}\text{O}). {}^{13}\text{C} \text{ NMR} (63 \text{ MHz}, \text{CD}_{2}\text{Cl}_{2}):$ δ = 166.7 (CO₂Me), 155.7, 154.7, and 154.1 (C_{Ar}O and C-2 of furan), 141.4 (C-5 of furan), 131.9 and 131.8 (C_{Ar} meta to CO₂Me), 130.3 and 130.2 (**C**_{Ar}CO₂Me), 129.9 (C_{Ar} ortho to CO₂Me), 128.3 and 128.2 (C_{Ar} para to CO₂Me), 117.8 and 115.8 (C_{Ar}H ortho to O), 114.5 and 113.8 (**C**_{Ar}C≡C ortho to O), 110.6 (C-4 of furan), 105.6 (C-3 of furan), 94.7, 94.5, 89.1, and 88.9 (C≡C), 69.0 (OCH₂), 56.8 and 52.5 (OCH₃), 28.3 and 24.8 (OCH₂CH₂CH₂). Accurate mass (EI) m/z: 548.18610, calcd for C₃₄H₂₈O₇: 548.18350.

1,4-Di-(4-carboxyphenylethynyl)-2-[3-(furan-2-yl)propyloxy-5-methoxybenzene

(4e).^[254] See the general procedure for saponification of the diesters. Diester 23e (902 mg, 1.64 mmol), THF (100 mL), KOH (18.5 g, 330 mmol), ethanol (70 mL), reaction time: 22 h, room temperature; Protonation: THF (50 mL), TFA (5 mL, 65 mmol). Diacid 4e (823 mg, 96%) was obtained as a yellow powder free of THF. ¹H NMR (250 MHz, DMSO-d₆): δ = 13.12 (br. s, 2 H, OH), 7.98 (2 halves of 2 AA'XX' spin systems, 4 H, ArH ortho to CO₂H), 7.65 and 7.63 (2 halves of 2 AA'XX' spin systems, 2 H each, ArH meta to CO₂H), 7.51 (m, 1 H, H-5 of furan), 7.24 (s, 2 H, ArH ortho to O), 6.34 (m, 1 H, H-4 of furan), 6.12 (m, 1 H, H-3 of furan), 4.10 (t, ³J = 6.0 Hz, 2 H, CH₂O), 3.87 (s, 3 H, ArOCH₃), 2.87 (t, ³J = 7.5 Hz, 2 H, furan-CH₂), 2.19 (quin, ³J = 6.7 Hz, 2 H, CH₂CH₂O). ¹³C NMR (63 MHz, DMSO-d₆): δ = 166.61 and 166.60 (CO₂H), 154.8, 153.8, and 153.1 (C_{Ar}O and C-2 of furan), 141.3 (C-5 of furan), 131.4 and 131.3 (C_{Ar} meta to CO₂H), 130.6 (C_{Ar}CO₂H), 129.6 and 129.5 (C_{Ar}

ortho to CO₂H), 126.7 and 126.6 (C_{Ar} para to CO₂H), 117.3 and 115.3 (C_{Ar}H ortho to O), 113.2 and 112.6 (**C**_{Ar}C≡C ortho to O), 110.3 (C-4 of furan), 105.2 (C-3 of furan), 94.2, 94.1, 88.63, and 88.57 (C≡C), 68.1 (OCH₂), 56.3 (OCH₃), 27.4 and 23.8 (OCH₂**C**H₂**C**H₂). Accurate mass (EI) m/z: 520.15530, calcd for C₃₂H₂₄O₇: 520.15220.

1,4-Di-(4-ethoxycarbonylphenylethynyl)-2,5-dimethoxybenzene (**23f**).^[254] See the general procedure for alkynyl-aryl coupling. 1,4-Diiodo-2,5-dimethoxybenzene (**12f**) (5.02 g, 12.8 mmol), ethyl 4-ethynylbenzoate (**8a**) (4.69 g, 26.9 mmol), THF (120 mL), piperidine (40 mL), Pd(PPh₃)₂Cl₂ (92.5 mg, 0.132 mmol), Cul (49.5 mg, 0.260 mmol), reaction time: 19 h. Column chromatography (CH₂Cl₂/Et₂O 25:1) gave diester **23f** (R_f = 0.44; 5.9 g, 96%) as a slightly yellow solid. Mp: 204 °C. ¹H NMR (250 MHz, CDCl₃): δ = 8.02 and 7.61 (AA'XX' spin system, 4 H each, ArH ortho and meta to CO₂Et, respectively), 7.04 (s, 2 H, ArH ortho to OMe), 4.39 (q, ³*J* = 7.1 Hz, 4 H, OCH₂), 3.91 (s, 6 H, OCH₃) 1.39 (t, ³*J* = 7.1 Hz, 6 H, CH₂CH₃). ¹³C NMR (63 MHz, CDCl₃): δ = 166.0 (CO₂Et), 154.1 (C_{Ar}OMe), 131.5 (C_{Ar} meta to CO₂Et), 129.4 (C_{Ar} ortho to CO₂Et), 127.7 (C_{Ar} para to CO₂Et), 115.7 (C_{Ar}H ortho to O), 113.4 (**C**_{Ar}C≡C ortho to O), 94.5 and 88.5 (C≡C), 61.1 (CH₂), 56.5 (OCH₃), 14.3 (CH₂**CH**₃). Elemental analysis calcd (%) for C₂₀H₂₆O₆ (362.423): C 74.67, H 5.43. Found C 74.63, H 5.61.

1,4-Di-(4-carboxyphenylethynyl)-2,5-dimethoxybenzene (**4f**).^[254] See the general procedure for saponification of the diesters. Diester **23f** (1.21 g, 2.51 mmol), THF (250 mL), KOH (28.8 g, 513 mmol), ethanol (100 mL), reaction time: 21.5 h, room temperature; Protonation: THF (100 mL), TFA (30 mL, 389 mmol). A yellow powder (1.01 g) was obtained consisting of diacid **4f** (986 mg, 92%) and 7 mol% of THF. ¹H NMR (250 MHz, DMSO-d₆): δ = 13.12 (br. s, 2 H, OH), 7.99 and 7.65 (AA'XX' spin system, 4 H each, ArH ortho and meta to CO₂H, respectively), 7.25 (s, 2 H, ArH ortho to OMe), 3.87 (s, 6 H, OCH₃). ¹³C NMR (63 MHz, DMSO-d₆): δ = 166.6 (CO₂H), 153.6 (C_{Ar}O), 131.4 (C_{Ar} meta to CO₂H), 130.6 (**C**_{Ar}CO₂H), 129.6 (C_{Ar} ortho to CO₂H), 126.6 (C_{Ar} para to CO₂H), 115.7 (C_{Ar}H ortho to O), 112.5 (**C**_{Ar}C≡C ortho to O), 94.1 and 88.6 (C≡C), 56.4 (OCH₃). Accurate mass (EI) *m/z*: 426.11170, calcd for C₂₆H₁₈O₆: 426.11034.

9,10-Di-(4-ethoxycarbonylphenylethynyl)anthracene (**23g**). See the general procedure for alkynyl-aryl coupling. 9,10-diiodoanthracene (840 mg, 1.95 mmol), ethyl 4-ethynylbenzoate (**8a**) (747 mg, 4.29 mmol), THF (20 mL), piperidine (10 mL), Pd(PPh₃)₂Cl₂ (36.3 mg, 0.052 mmol), Cul (20.4 mg, 0.107 mmol) reaction time: 19 h. Column chromatography (*n*-pentane/CH₂Cl₂ 1:1) gave diester **23g** (R_f = 0.22; 982 mg, 96%) as a yellow solid. ¹H NMR (250 MHz, CDCl₃): δ = 8.67 (half of an AA'XX' spin system, 4 H, H-1 of anthracene), 8.13 and 7.82 (AA'XX' spin system, 4 H each, ArH ortho and meta to CO₂Et, respectively), 7.67 (half of an AA'XX' spin system, 4 H, H-2 of anthracene), 4.43 (q, ³J = 7.1 Hz, 4 H, OCH₂), 1.44 (t, ³J = 7.1 Hz, 6 H, CH₃). ¹³C NMR (126 MHz, CDCl₃): δ = 166.0 (CO₂Et), 132.4 (C-4a of anthracene), 131.5 (C_{Ar} meta to CO₂Et), 130.4 (C_{Ar}CO₂Et), 129.7 (C_{Ar} ortho to CO₂Et), 127.8 (C_{Ar} para to CO₂Et), 127.2 and 127.1 (C-1 and C-2 of anthracene), 118.5 (C-9 of anthracene), 101.9 (anthracene-C=C), 89.3 (anthracene-C=C), 61.2 (CH₂), 14.3 (CH₃).

9,10-Di-(4-carboxyphenylethynyl)anthracene (**4g**). See the general procedure for saponification of the diesters. Diester **23g** (590 mg, 1.13 mmol), THF (130 mL), KOH (12.5 g, 223 mmol), ethanol (50 mL), reaction time: 19 h, room temperature; Protonation: THF (60 mL), TFA (6 mL, 78 mmol). An orange colored solid (483 mg) was obtained consisting of diacid **4g** (469 mg, 89%) and 16 mol% of THF. ¹H NMR (250 MHz, DMSO-d₆): δ = 13.21 (br. s, 2 H, OH), 8.67 (half of an AA'XX' spin system, 4 H, H-1 of anthracene), 8.08 and 7.99 (AA'XX' spin system, 4 H each, ArH ortho and meta to CO₂H, respectively), 7.81 (half of an AA'XX' spin system, 4 H, H-2 of anthracene). ¹³C NMR (63 MHz, DMSO-d₆): δ = 166.6 (CO₂H), 131.8 (C_{Ar} meta to CO₂H), 131.4 (C-4a of anthracene), 131.0 (**C**_{Ar}CO₂H), 129.6 (C_{Ar} ortho to CO₂H), 128.0 (C-1 of anthracene), 126.7 (C-2 of anthracene), 126.3 (C_{Ar} para to CO₂H), 117.5 (C-9 of anthracene), 102.1 (anthracene-**C**=C), 88.2 (anthracene-C=C).

1,4-Di-(4-*tert*-butyloxycarbonylphenylethynyl)-2-maleimidobenzene (23h). A solution of diester 23a² (102 mg, 0.206 mmol) and maleic anhydride (60.0 mg, 0.613 mmol) in THF (3 mL) was stirred at 75 °C for 40 h. After cooling to room temperature the reaction mixture was poured into water (20 mL) and the aqueous phase was extracted with diethylether. The combined organic phases were washed with

saturated aqueous NaCl solution and dried over Na₂SO₄. The solvent was removed. Sodium acetate (30.0 mg, 0.366 mmol), acetic anhydride (0.2 mL, 2.13 mmol), and THF (1.8 mL) was added and the mixture was stirred at 75 °C for 5 h. After cooling to room temperature the reaction mixture was poured into water (10 mL) and the aqueous phase was extracted with CH₂Cl₂. The combined organic phases were washed with saturated aqueous NaHCO₃ solution and dried over Na₂SO₄. The solvent was removed. Column chromatography (CH₂Cl₂/Et₂O 25:1) gave diester 23h $(R_f = 0.44; 103 \text{ mg}, 87\%)$ as a yellow solid. ¹H NMR (600 MHz, CDCl₃): $\delta = 7.97$ and 7.92 (apparent d, ${}^{3}J$ = 8.0 Hz, 2 H each, ArH ortho to CO₂^tBu), 7.65 and 7.59 (d, ${}^{3}J$ = 8.1 Hz, 1 H each, Ar H meta and para to N), 7.55 (apparent d, ${}^{3}J$ = 8.0 Hz, 2 H, ArH meta to $CO_2^{t}Bu$), 7.47 (s, 1 H, ArH ortho to N), 7.40 (apparent d, ${}^{3}J = 8.0$ Hz, 4 H, ArH meta to CO₂^tBu), 6.92 (s, 2 H, CHC(O)N), 1.59 and 1.58 (s, 9 H each, CH₃). ¹³C NMR (151 MHz, CDCl₃): $\delta = 168.7$ (C(O)N), 165.0 and 164.9 (CO₂^tBu), 134.1 (CHC(O)N), 133.0 (C_{Ar}H meta to N), 132.9 (C_{Ar}N), 132.25 and 132.15 (C_{Ar}H ortho and para to N), 132.07 and 131.91 ($C_{Ar}CO_2Et$), 131.4 and 131.3 (C_{Ar} meta to $CO_2^{t}Bu$), 129.41 and 129.38 (C_{Ar} ortho to $CO_2^{t}Bu$), 126.6 and 126.3 ($C_{Ar}C\equiv C$ para to $CO_2^{t}Bu$), 124.4 and 122.7 (**C**_{Ar}C=C ortho and meta to N), 95.6, 91.9, 90.2 and 87.4 (C≡C), 81.45 and 81.39 (C(CH₃)₃), 28.16 and 28.15 (CH₃). Accurate mass (EI) *m/z*: 573.21970, calcd for C₃₆H₃₁NO₆: 573.21514.

1,4-Di-(4-carboxyphenylethynyl)-2-maleimidobenzene (**4h**). The reaction was carried out under ambient atmosphere. To a solution of diester **23h** (97 mg, 0.17 mmol) in CH₂Cl₂ (15 mL) was added trifluoroacetic acid (5.5 mL, 72 mmol). The reaction mixture was stirred at room temperature for 19 h. The solvent was removed in vacuo and the yellow residue was dried in vacuo at 10⁻³ mbar. Diacid **4h** (77 mg, 97%) was obtained as a yellow solid. ¹H NMR (600 MHz, CDCl₃): δ = 13.18 (br. s, 2 H, OH), 8.00 and 7.96 (apparent d, ³*J* = 7.9 Hz, 2 H each, ArH ortho to CO₂H), 7.82 (d, ³*J* = 7.9 Hz, 1 H, ArH meta to N), 7.77 (m, 2 H, ArH ortho and para to N), 7.72 and 7.51 (apparent d, ³*J* = 7.9 Hz, 2 H each, ArH meta to CO₂H), 7.35 (s, 2 H, CHC(O)N). ¹³C NMR (151 MHz, CDCl₃): δ = 169.2 (C(O)N), 166.6 and 166.5 (CO₂H), 135.2 (CHC(O)N), 133.7 (C_{Ar}N), 132.9, 132.6, and 132.2 (C_{Ar}H ortho, meta, and para to N), 131.7 and 131.5 (C_{Ar} meta to CO₂H), 131.2 and 131.0 (**C**_{Ar}CO₂H), 123.2 and 122.4

(**C**_{Ar}C=C ortho and meta to N), 94.9, 91.6, 90.2 and 87.4 (C=C). HRMS (ESI) m/z: 460.08343 ([M-H⁺]), calcd for C₂₈H₁₄NO₆⁻: 460.08266.

1,4-Di-(4-ethoxycarbonylphenylethynyl)-2,5-di-*iso*-**propylbenzene** (**23i**). See the general procedure for alkynyl-aryl coupling. Diiodobenzene **12i** (5.01 g, 12.1 mmol), 1-ethoxycarbonyl-4-ethynylbenzene (**8a**) (4.31 g, 24.7 mmol), THF (120 mL), piperidine (40 mL), Pd(PPh₃)₂Cl₂ (90.3 mg, 0.129 mmol), Cul (49.7 mg, 0.261 mmol), reaction time: 19.5 h, room temperature. Column chromatography (CH₂Cl₂) gave diester **23i** (R_f = 0.48; 5.93 g, 97%) as a yellow solid. ¹H NMR (250 MHz, CDCl₃): δ = 8.04 and 7.59 (AA'XX' spin system, 4 H each, ArH ortho and meta to CO₂Et, respectively), 7.44 (s, 2 H, ArH ortho to ⁱPr), 4.39 (q, ³*J* = 7.1 Hz, 4 H, OCH₂), 3.48 (sept, ³*J* = 6.9 Hz, 2 H, CHCH₃), 1.40 (t, ³*J* = 7.1 Hz, 6 H, CH₂CH₃), 1.33 (d, ³*J* = 6.9 Hz, 12 H, CHCH₃). ¹³C NMR (63 MHz, CDCl₃): δ = 166.0 (CO₂Et), 147.9 (C_{Ar}⁻Pr), 131.3 (C_{Ar} meta to CO₂Et), 129.9 (**C**_{Ar}CO₂Et), 129.6 (C_{Ar} ortho to CO₂Et), 129.2 (C_{Ar}H ortho to ⁱPr), 128.0 (C_{Ar} para to CO₂Et), 122.2 (**C**_{Ar}C≡C ortho to CH), 93.6 and 91.3 (C≡C), 61.1 (CH₂), 31.4 (CHCH₃), 23.0 (CHCH₃), 14.3 (CH₂CH₃). HRMS (EI) m/z: 506.24450 [M]⁺, calcd for [M]⁺: 506.24571.

1,4-Di-(4-carboxyphenylethynyl)-2,5-di-*iso*-**propylbenzene** (**4i**). See the general procedure for saponification of the diesters. Diester **23i** (3.37 g, 6.64 mmol), THF (300 mL), KOH (74.9 g, 1.33 mol), ethanol (200 mL), reaction time: 21 h, room temperature; Protonation: THF (150 mL), TFA (30 mL, 389 mmol). After drying in vacuo a slightly rose-colored powder (2.57 g) was isolated as consisting of diacid **4i** (2.48 g, 83%) and 19 mol% of THF. ¹H NMR (250 MHz, DMSO-d₆): δ = 13.14 (br. s, 2 H, OH), 7.99 and 7.69 (AA'XX' spin system, 4 H each, ArH ortho and meta to CO₂H, respectively), 7.53 (s, 2 H, ArH ortho to ⁱPr), 3.43 (sept, ³*J* = 6.9 Hz, 2 H, CHCH₃), 1.29 (d, ³*J* = 6.9 Hz, 12 H, CH₃). ¹³C NMR (63 MHz, DMSO-d₆): δ = 166.6 (CO₂H), 147.7 (C_{Ar}ⁱPr), 131.4 (C_{Ar} meta to CO₂H), 130.6 (**C**_{Ar}CO₂H), 129.6 (C_{Ar} ortho to CO₂H), 129.1 (C_{Ar}H ortho to ⁱPr), 126.5 (C_{Ar} para to CO₂H), 121.6 (**C**_{Ar}C≡C ortho to ⁱPr), 93.8 and 90.4 (C≡C), 30.9 (**C**HCH₃), 22.7 (CH₃). HRMS (EI) m/z: 450.18640 [M]⁺, calcd for [M]⁺: 450.18311.

1.4-Di-(4-ethoxycarbonylphenylethynyl)-2.5-dipentoxybenzene (**23i**).^[254] See the general procedure for alkynyl-aryl coupling. Diiodobenzene **12i** (2.75 g, 5.47 mmol), ethyl 4-ethynylbenzoate (8a) (2.01 g, 11.5 mmol), THF (80 mL), piperidine (25 mL), Pd(PPh₃)₂Cl₂ (41.0 mg, 0.058 mmol), Cul (31.0 mg, 0.163 mmol) reaction time: 18 h. Column chromatography (*n*-pentane/CH₂Cl₂ 1:1) gave diester **23** ($R_f = 0.80$; 2.5 g, 78%) as a vellow solid. Mp: 124-125 °C. ¹H NMR (500 MHz, CDCI₃); δ = 8.02 and 7.56 (AA'XX' spin system, 4 H each, ArH ortho and meta to CO₂Et, respectively), 7.02 (s, 2 H, ArH ortho to OPent), 4.38 (g, ${}^{3}J = 7.1$ Hz, 4 H, OCH₂CH₃), 4.03 (t, ${}^{3}J = 6.4$ Hz, 4 H, OCH₂CH₂), 1.85 (m, 4 H, OCH₂CH₂), 1.53 (m, 4 H, CH₂CH₂CH₃), 1.42 (m, 4 H, CH₂CH₂CH₃), 1.39 (t, ${}^{3}J$ = 7.1 Hz, 6 H, OCH₂CH₃), 0.93 (t, ${}^{3}J$ = 7.3 Hz, 6 H, CH₂CH₂CH₃). ¹³C NMR (126 MHz, CDCI₃): δ = 166.1 (CO₂Et), 153.7 (**C**_{Ar}OPent), 131.4 (C_{Ar} meta to CO₂Et), 129.8 (C_{Ar}CO₂Et), 129.5 (C_{Ar} ortho to CO₂Et), 127.9 (C_{Ar} para to CO₂Et), 116.8 (C_{Ar}H ortho to O), 113.8 ($C_{Ar}C\equiv C$ ortho to O), 94.3 and 88.8 (C≡C), 69.6 (OCH₂CH₂), 61.1 (OCH₂CH₃), 29.0, 28.2, and 22.5 (CH₂), 14.3 and 14.1 (CH₃). Elemental analysis calcd (%) for C₃₈H₄₂O₆ (594.748): C 76.74, H 7.12. Found C 76.61, H 7.09.

1,4-Di-(4-carboxyphenylethynyl)-2,5-dipentoxybenzene (**4j**).^[254] See the general procedure for saponification of the diesters. Diester **23j** (921 g, 1.55 mmol), THF (100 mL), KOH (20.5 g, 352 mmol), ethanol (70 mL), reaction time: 13 h, room temperature; Protonation: THF (50 mL), TFA (20 mL, 260 mmol). Drying in vacuo over P₄O₁₀ gave diacid **4j** (610 mg, 73%) as a yellow powder free of THF. Mp: 302 °C. ¹H NMR (250 MHz, DMSO-d₆): δ = 13.14 (br. s, 2 H, OH), 7.98 and 7.62 (AA'XX' spin system, 4 H each, ArH ortho and meta to CO₂H, respectively), 7.22 (s, 2 H, ArH ortho to OPent), 4.06 (t, ³*J* = 6.3 Hz, 4 H, OCH₂), 1.81-1.70 (m, 4 H, OCH₂CH₂), 1.54-1.30 (m, 8 H, CH₂), 0.88 (t, ³*J* = 7.1 Hz, 6 H, CH₃). ¹³C NMR (63 MHz, DMSO-d₆): δ = 166.6 (CO₂H), 153.2 (C_{Ar}O), 131.2 (C_{Ar} meta to CO₂H), 130.5 (**C**_{Ar}CO₂H), 129.6 (C_{Ar} ortho to CO₂H), 126.8 (C_{Ar} para to CO₂H), 116.7 (C_{Ar}H ortho to O), 113.1 (**C**_{Ar}C≡C ortho to O), 94.0 and 88.7 (C≡C), 68.9 (OCH₂), 28.3, 27.7, and 21.8 (CH₂), 13.9 (CH₃). Elemental analysis calcd (%) for C₃₄H₃₄O₆ (538.640): C 75.82, H 6.36. Found C 75.61, H 6.42.

1,4-Di-(4-ethoxycarbonylphenylethynyl)-2,5-di-[2-(2-methoxyethoxy)ethoxy]

benzene (23k).^[254] See the general procedure for alkynyl-aryl coupling. Diiodobenzene 12k (504 mg, 0.89 mmol), ethyl 4-ethynylbenzoate (8a) (340 mg, 1.95 mmol), THF (10 mL), piperidine (3.5 mL), Pd(PPh₃)₂Cl₂ (13.7 mg, 0.020 mmol), Cul (9.5 mg, 0.050 mmol), reaction time: 13 h. Column chromatography (CH₂Cl₂/Et₂O 6:1) followed by recrystallization from ethanol (ca. 15 mL) gave diester 23k (R_f = 0.50; 472 g, 80%) as yellow needles. Mp: 102 °C. ¹H NMR (500 MHz, CDCl₃): δ = 8.02 (apparent d, ³J = 8.4 Hz, 4 H, ArH ortho to CO₂Et), 7.57 (apparent d, ³J = 8.4 Hz, 4 H, ArH meta to CO₂Et), 7.05 (s, 2 H, ArH ortho to O), 4.38 (q, ³J = 7.1 Hz, 4 H, OCH₂CH₃), 4.21, 3.92, 3.79, and 3.53 (t-like, 4 H each, CH₂), 3.35 (s, 6 H, OCH₃), 1.39 (t, ³J = 7.1 Hz, 6 H, CH₂CH₃). ¹³C NMR (126 MHz, CDCl₃): δ = 166.0 (CO₂Et), 153.7 (C_{Ar}O), 131.4 (C_{Ar} meta to CO₂Et), 129.9 (C_{Ar}CO₂Et), 129.5 (C_{Ar} ortho to CO₂Et), 127.8 (C_{Ar} para to CO₂Et), 117.3 (C_{Ar}H ortho to O), 114.1 (C_{Ar}C≡C ortho to O), 94.5 and 88.6 (C≡C), 72.0, 71.1, 69.7, and 69.5 (OCH₂CH₂O), 61.1 (OCH₂CH₃), 59.1 (OCH₃), 14.3 (CH₂CH₃). Elemental analysis calcd (%) for C₃₈H₄₂O₁₀ (658.278): C 69.29, H 6.43. Found C 69.46, H 6.27.

1,4-Di-(4-carboxyphenylethynyl)-2,5-di-[2-(2-methoxyethoxy)ethoxy]benzene

(**4k**).^[254] See the general procedure for saponification of the diesters. Diester **23k** (392 mg, 0.595 mmol), THF (30 mL), KOH (3.60 g, 64.2 mmol), ethanol (15 mL), reaction time: 65.5 h, room temperature; Protonation: THF (15 mL), TFA (1.5 mL, 19 mmol). Diacid **4k** (337 mg, 86%) was isolated as a yellow solid free of THF. Mp: 232 °C. ¹H NMR (500 MHz, DMSO-d₆): δ = 13.17 (br. s, 2 H, OH), 7.98 and 7.64 (AA'XX' spin system, 4 H each, ArH ortho and meta to CO₂H, respectively), 7.27 (s, 2 H, ArH ortho to O), 4.20, 3.80, 3.68, and 3.44 (t-like, 4 H each, CH₂), 3.21 (s, 6 H, CH₃). ¹³C NMR (126 MHz, DMSO-d₆): δ = 166.7 (CO₂H), 153.2 (C_{Ar}O), 131.4 (C_{Ar} meta to CO₂H), 130.6 (**C**_{Ar}CO₂H), 129.6 (C_{Ar} ortho to CO₂H), 126.8 (C_{Ar} para to CO₂H), 116.8 (C_{Ar}H ortho to O), 113.1 (**C**_{Ar}C≡C ortho to O), 94.3 and 88.8 (C≡C), 71.4, 70.1, and 69.0 (CH₂), 58.1 (OCH₃). Elemental analysis calcd (%) for C₃₄H₃₄O₁₀ (602.215): C 67.76, H 5.69. Found C 67.40, H 6.05.

1,4-Di-(4-ethoxycarbonylphenylethynyl)-2,5-di-*n*-undecyloxybenzene (23I). See the general procedure for alkynyl-aryl coupling. Diiodobenzene (121) (3.00 g, 4.48 mmol), ethyl 4-ethynylbenzoate (8a) (1.66 g, 9.50 mmol), THF (80 mL), piperidine (25 mL). Pd(PPh₃)₂Cl₂ (32.0 ma, 0.048 mmol). Cul (17 ma, 0.089 mmol). reaction time: 18 h. Column chromatography (n-pentane/CH₂Cl₂ 2:1) gave the diester **23I** ($R_f = 0.24$; 3.47 g, 87%) as vellow solid. Mp; 107-111 °C. ¹H NMR (300 MHz, CDCl₃): δ = 8.02 and 7.57 (AA'XX' spin system, 4 H each, ArH ortho and meta to CO₂Et, respectively), 7.02 (s, 2 H, ArH ortho to O), 4.38 (g, ${}^{3}J = 7.1$ Hz, 4 H, OCH_2CH_3 , 4.03 (t, ³J = 6.4 Hz, 4 H, OCH_2CH_2), 1.85 (quin-like, 4 H, OCH_2CH_2), 1.58-1.48 (m, 4 H, OCH₂CH₂CH₂), 1.40 (t, ${}^{3}J = 7.1$ Hz, 6 H, OCH₂CH₃), 1.23 (m, 28 H, CH₂ of undec), 0.86 (t-like, 6 H, CH₃ of undec). ¹³C NMR (126 MHz, CDCl₃): δ = 166.1 (CO₂Et), 153.8 (C_{Ar}O), 131.4 (C_{Ar} meta to CO₂Et), 129.8 (**C**_{Ar}CO₂Et), 129.5 (C_{Ar} ortho to CO₂Et), 128.0 (C_{Ar} para to CO₂Et), 116.8 (C_{Ar}H ortho to O), 113.9 (**C**_{A1}C≡C ortho to O), 93.3 and 88.8 (C≡C), 69.6 and 61.2 (OCH₂), 31.9, 29.65, 29.64, 29.61, 29.40, 29.33, 29.30, 26.1, and 22.7 (CH₂ of undec), 14.3 and 14.1 (CH₃). Elemental analysis calcd (%) for C₅₀H₆₆O₆ (762.486): C 78.70, H 8.72. Found C 78.54, H 8.75.

1,4-Di-(4-carboxyphenylethynyl)-2,5-di-*n*-undecyloxybenzene (**4I**). See the general procedure for saponification of the diesters. Diester 23I (2.00 g, 2.23 mmol), THF (230 mL), KOH (24.6 g, 447 mmol), ethanol (90 mL), reaction time: 137 h, room temperature; Protonation: THF (150 mL), TFA (11.5 mL, 150 mmol). Recrystallisation from a mixture of toluene (75 mL) and THF (10 mL) gave diacid 4I (1.21 g, 71%) as a slightly yellow powder. ¹H NMR (500 MHz, DMSO-d₆): δ = 12.83 (br. s, 2 H, OH), 7.98 and 7.61 (AA'XX' spin system, 4 H each, ArH ortho and meta to CO₂H, respectively), 7.18 (s, 2 H, ArH ortho to O), 4.08 (t, ${}^{3}J = 6.2$ Hz, 4 H, OCH₂), 1.77 (quin-like, 4 H, OCH₂CH₂), 1.50 (quin-like, 4 H, OCH₂CH₂CH₂), 1.35 (quin-like, 4 H, OCH₂CH₂CH₂CH₂), 1.30-1.15 (m, 24 H, CH₂), 0.84 (t-like, 6 H, CH₃). ¹³C NMR (126 MHz, DMSO-d₆): δ = 166.1 (CO₂H), 153.2 (C_{Ar}O), 130.8 (C_{Ar} meta to CO₂H), 130.4 (**C**_{Ar}CO₂H), 129.1 (C_{Ar} ortho to CO₂H), 126.5 (C_{Ar} para to CO₂H), 117.0 (C_{Ar}H ortho to O), 113.3 (**C**_{Ar}C=C ortho to O), 93.7 and 88.4 (C=C), 69.1 (OCH₂), 30.8, 28.6, 28.52, 28.47, 28.41, 28.3, 28.2, 25.1, and 21.5 (CH₂), 13.3 (CH₃).

1,4-Di-*n*-dodecyl-2,5-di-(4-ethoxycarbonylphenylethynyl)benzene (23m).^[254] See the general procedure for alkynyl-aryl coupling. Diiodobenzene 12m (501 mg, 0.752 mmol), ethyl 4-ethynylbenzoate (8a) (290 mg, 1.66 mmol), THF (10 mL), piperidine (3.5 mL). Pd(PPh₃)₂Cl₂ (13.6 ma, 0.019 mmol). Cul (9.6 ma, 0.050 mmol). reaction time: 17.5 h. Column chromatography (n-pentane/CH₂Cl₂ 2:1) gave diester **23m** ($R_f = 0.19$; 471 g, 83%) as a colorless solid. ¹H NMR (250 MHz, CDCl₃): δ = 8.03 and 7.56 (AA'XX' spin system, 4 H each, ArH ortho and meta to CO₂Et, respectively), 7.38 (s, 2 H, ArH ortho to dodec), 4.39 (g, ${}^{3}J = 7.1$ Hz, 4 H, OCH₂), 2.80 (t-like, ${}^{3}J = 7.5$ Hz, 4 H, ArCH₂), 1.70 (m, 4 H, ArCH₂CH₂), 1.40 (t, ${}^{3}J = 7.1$ Hz, 6 H, OCH₂CH₃), 1.39-1.20 (m, 36 H, CH₂ of dodec), 0.86 (t-like, ${}^{3}J$ = 6.5 Hz, 6 H, CH₃ of dodec). ¹³C NMR (63 MHz, CDCl₃): δ = 166.0 (CO₂Et), 142.6 (**C**_{Ar}dodec), 132.5 (C_{Ar}H ortho to dodec), 131.3 (C_{Ar} meta to CO₂Et), 129.9 (C_{Ar}CO₂Et), 129.5 (C_{Ar} ortho to CO₂Et), 128.0 (C_{Ar} para to CO₂Et), 122.5 ($C_{Ar}C\equiv C$ ortho to dodec), 93.4 and 91.3 (C≡C), 61.1 (OCH₂CH₃), 34.1, 31.9, 30.7, 29.7, 29.64, 29.60, 29.5, 29.3, and 22.7 (CH₂ of dodec), 14.3 and 14.1 (CH₃). Accurate mass (EI) *m/z*: 758.52540, calcd for C₅₂H₇₀O₄: 758.52741.

(**4m**).^[254] 1,4-Di-(4-carboxyphenylethynyl)-2,5-di-*n*-dodecylbenzene See the general procedure for saponification of the diesters. Diester 23m (265 mg, 0.349 mmol), THF (45 mL), KOH (4.94 g, 88.0 mmol), ethanol (22 mL), reaction time: 66.5 h, room temperature; Protonation: THF (40 mL), TFA (4 mL, 52 mmol). A slightly pink solid (212 mg) was obtained consisting of diacid 4m (209 mg, 89%) and 6 mol% of THF. ¹H NMR (500 MHz, DMSO-d₆ 60 °C): δ = 7.97 (apparent d, ³J = 8.1 Hz, 4 H, ArH ortho to CO₂H), 7.61 (apparent d, ${}^{3}J$ = 8.1 Hz, 4 H, ArH meta to CO₂H), 7.43 (s, 2 H, ArH ortho to dodec), 2.78 (t-like, ${}^{3}J = 7.5$ Hz, 4 H, ArCH₂), 1.64 (m, 4 H, ArCH₂CH₂), 1.38-1.15 (m, 36 H, CH₂), 0.82 (t-like, ${}^{3}J$ = 6.9 Hz, 6 H, CH₃). ${}^{13}C$ NMR (126 MHz, DMSO-d₆, 60°C): δ = 166.3 (CO₂H), 142.0 (**C**_{Ar}dodec), 132.1 (C_{Ar}H ortho to dodec), 130.9 (C_{Ar} meta to CO_2H), 130.6 ($C_{Ar}CO_2H$), 129.2 (C_{Ar} ortho to CO_2H), 126.3 (C_{Ar} para to CO₂H), 121.8 (**C**_{Ar}C=C ortho to dodec), 93.2 and 90.3 (C=C), 33.0, 30.9, 29.7, 28.7, 28.6, 28.5, 28.4, 28.3, and 21.7 (CH₂), 13.5 (CH₃). Accurate mass (EI) *m/z*: 702.46550, calcd for C₄₈H₆₂O₄: 702.46481.

1,4-Di-(4-ethoxycarbonylphenylethynyl)-2-methoxy-5-[3-(tri-*iso*-propylsilyl)

prop-2-ynloxy]benzene (23n).^[254] See the general procedure for alkynyl-aryl coupling. Diiodobenzene **12n** (1.43 g, 2.51 mmol), ethyl 4-ethynylbenzoate (**8a**) (983 mg, 5.64 mmol), THF (100 mL), piperidine (50 mL), Pd(PPh₃)₂Cl₂ (52.6 mg, 0.075 mmol), Cul (25.2 mg, 0.132 mmol), reaction time: 18 h. Column chromatography (*n*-pentane/Et₂O 2:1) gave diester **23n** ($R_f = 0.34$: 1.45 g. 87%) as a yellow solid. Mp: 137-138 °C. ¹H NMR (250 MHz, CDCl₃): δ = 8.02 (2 halves of 2 AA'XX' spin systems, 4 H, ArH ortho to CO₂Et), 7.61 and 7.57 (2 halves of 2 AA'XX' spin system, 2 H each, ArH meta to CO₂Et), 7.32 and 7.03 (s, 1 H each, ArH ortho to O), 4.82 (s, 2 H, OCH₂C=C), 4.38 (g, ${}^{3}J$ = 7.1 Hz, 4 H, OCH₂CH₃), 3.91 (s, 3 H, OCH₃), 1.40 (t, ${}^{3}J$ = 7.1 Hz, 6 H, CH₂CH₃), 1.04 (s, 21 H, SiCH(CH₃)₂). ${}^{13}C$ NMR (63 MHz, CDCl₃): δ = 166.05 and 166.04 (CO₂Et), 154.6 and 152.1 (C_{Ar}O), 131.53 and 131.48 (C_{Ar} meta to CO₂Et), 130.0 and 129.9 (C_{Ar}CO₂Et), 129.4 (C_{Ar} ortho to CO₂Et), 127.8 and 127.7 (C_{Ar} para to CO₂Et), 119.5 and 115.3 (C_{Ar}H ortho to O), 114.6 and 113.2 (**C**_{Ar}C≡C ortho to O), 101.5, 94.6, 94.4, 90.4, and 88.4 (C≡C), 61.1 (OCH₂CH₃), 58.4 (OCH₂C≡C), 56.4 (OCH₃), 18.5 (CHCH₃), 14.3 (CH₂CH₃), 11.1 (SiCH). Elemental analysis calcd (%) for C₄₁H₄₇O₆Si (663.906): C 74.17 H 7.14. Found C 74.02 H 7.29.

1,4-Di-(4-carboxyphenylethynyl)-2-methoxy-5-[3-(tri-iso-propylsilyl)prop-2-

ynloxy]benzene (**4n**).^[254] See the general procedure for saponification of the diesters. Diester **23n** (889 mg, 1.34 mmol), THF (100 mL), KOH (17.1 g, 304 mmol), ethanol (60 mL), reaction time: 13.5 h, room temperature; Protonation: THF (50 mL), TFA (20 mL, 260 mmol). Drying in vacuo over P₄O₁₀ yielded diacid **4n** (623 mg, 77%) as a yellow powder free of THF. Mp: 270 °C. ¹H NMR (250 MHz, DMSO-d₆): δ = 13.14 (br. s, 2 H, OH), 7.98 (2 halves of 2 AA'XX' spin systems, 4 H, Ar H ortho to CO₂H), 7.65 and 7.61 (2 halves of 2 AA'XX' spin systems, 2 H each, ArH meta to CO₂H), 7.39 and 7.25 (s, 1 H each, ArH ortho to O), 4.99 (s, 2 H, OCH₂C≡C), 3.87 (s, 3 H, OCH₃), 1.00 (s, 21 H, SiCH(CH₃)₂). ¹³C NMR (63 MHz, DMSO-d₆): δ = 166.6 (CO₂H), 154.1 and 151.3 (C_{Ar}O), 131.4 and 131.3 (C_{Ar} meta to CO₂H), 130.62 and 130.58 (**C**_{Ar}CO₂H), 129.6 and 129.5 (C_{Ar} ortho to CO₂H), 126.6 (C_{Ar} para to CO₂H), 118.7 and 115.5 (C_{Ar}H ortho to O), 113.6 and 112.3 (**C**_{Ar}C≡C ortho to O), 102.8, 94.2, 93.9, 88.9, 88.42, and 88.38 (C≡C), 57.6 (O**C**H₂C≡C), 56.3 (OCH₃), 18.2 (CH(**C**H₃)₂),
10.5 (SiCH). Elemental analysis calcd (%) for C₃₇H₃₈O₆Si (606.791): C 73.24, H 6.31. Found C 73.19, H 6.47.

1,4-Di-(4-ethoxycarbonylphenylethynyl)-2-methoxy-5-(prop-2-ynloxy)-benzene

(230).^[254] This reaction was carried out under ambient atmosphere. To a solution of diester 23n (1.19 g. 1.80 mmol) in THF (23 mL) was added tetrabutylammonium fluoride in THF (1.0 mol/L; 2.0 mL, 2.0 mmol). After 2 h of stirring at room temperature water was added and the aqueous phase was extracted with diethylether. The combined organic phases were washed with saturated aqueous NaCl solution and dried over MgSO₄. The solvent was removed. Column chromatography (*n*-pentane/Et₂O 1:1) followed by recrystallization from ethanol gave diester **230** ($R_f = 0.40$; 683 mg, 75%) as yellow needles. Mp: 132 °C. ¹H NMR (250 MHz, CDCl₃): δ = 8.02 and 7.61 (AA'XX' spin system, 4 H each, ArH ortho and meta to CO₂Et, respectively), 7.20 and 7.03 (s, 1 H each, ArH ortho to O), 4.79 (d, ${}^{4}J$ = 2.4 Hz, 2 H, OCH₂C=C), 4.38 (g. ${}^{3}J$ = 7.1 Hz, 4 H, OCH₂CH₃), 3.91 (s. 3 H, OCH₃), 2.57 (t, ${}^{4}J$ = 2.4 Hz, 1 H, C=CH), 1.40 (t, ${}^{3}J$ = 7.1 Hz, 6 H, CH₂CH₃). ${}^{13}C$ NMR (63 MHz, CDCl₃): δ = 166.02 and 166.01 (CO₂Et), 154.9 and 152.0 (C_{Ar}O), 131.6 and 131.5 (C_{Ar} meta to CO₂Et), 130.1 and 130.0 (**C**_{Ar}CO₂Et), 129.4 (C_{Ar} ortho to CO₂Et), 127.7 and 127.6 (C_{Ar} para to CO₂Et), 119.0 and 115.4 (C_{Ar}H ortho to O), 114.8 and 113.4 (**C**_{Ar}C≡C ortho to O), 94.8, 94.6, 88.23, 88.15, 78.3, and 76.2 (C≡C), 61.1 (OCH₂CH₃), 57.7 (OCH₂C≡C), 56.4 (OCH₃), 14.3 (CH₂CH₃). Elemental analysis calcd (%) for C₃₂H₂₆O₆ (506.173): C 75.88, H 5.17. Found C 75.55, H 5.14.

1,4-Di-(4-carboxyphenylethynyl)-2-methoxy-5-(prop-2-ynloxy)benzene (40).^[254] See the general procedure for saponification of the diesters. Diester **230** (592 mg, 1.17 mmol), THF (80 mL), KOH (15.0 g, 0.268 mmol), ethanol (50 mL), reaction time: 15.5 h, room temperature; Protonation: THF (70 mL), TFA (10 mL, 130 mmol). A yellow powder (442 mg) was obtained consisting of diacid **40** (415 mg, 79%) and 17 mol% of THF. ¹H NMR (250 MHz, DMSO-d₆): δ = 13.13 (br. s, 2 H, OH), 7.99 and 7.66 (AA'XX' spin system, 4 H each, ArH ortho and meta to CO₂H, respectively), 7.33 and 7.27 (s, 1 H each, ArH ortho to O), 4.94 (d, ⁴J = 2.2 Hz, 2 H, OCH₂C≡C), 3.88 (s, 3 H, OCH₃), 3.62 (t, ⁴J = 2.3 Hz, 1 H, C≡CH). ¹³C NMR (63 MHz, DMSO-d₆): δ = 166.6 (CO₂H), 154.2 and 151.4 (C_{Ar}O), 131.4 (C_{Ar} meta to CO₂H), 130.7 and 130.6 ($C_{Ar}CO_{2}H$), 129.6 (C_{Ar} ortho to $CO_{2}H$), 126.5 (C_{Ar} para to $CO_{2}H$), 117.9 and 115.6 ($C_{Ar}H$ ortho to O), 113.5 and 112.3 ($C_{Ar}C\equiv C$ ortho to O), 94.3, 94.1, 88.4, and 88.3, 79.0, and 78.7 ($C\equiv C$), 56.8 ($OCH_{2}C\equiv C$), 56.4 (OCH_{3}). Accurate mass (EI) *m/z*: 450.10780, calcd for $C_{28}H_{18}O_{6}$: 450.11034.

1-[3-(Cyclopentadienyl)propyloxy]-2,5-di-(4-ethoxycarbonylphenylethynyl)-4-

methoxybenzene (23p). See the general procedure for alkynyl-aryl coupling. Diiodobenzene 12p (699 mg, 1.45 mmol), ethyl 4-ethynylbenzoate (8a) (545 mg, 3.13 mmol), THF (20 mL), piperidine (7 mL), Pd(PPh₃)₂Cl₂ (23.2 mg, 0.033 mmol), Cul (20.1 mg, 0.0.106 mmol), reaction time: 16 h. Column chromatography (CH₂Cl₂) gave diester **23p** ($R_f = 0.42$; 810 mg, 97%) as a yellow solid. From the ¹H NMR spectrum a ratio of **23p¹** to **23p²** of 3:4 was calculated. ¹H NMR (500 MHz, CDCl₃): 1-[3-(cyclopenta-1,3-dienyl)propyloxy]-2,5-di-(4-Signals assigned to ethoxycarbonylphenyl) ethinyl-4-methoxybenzene (**23** p^1): $\delta = 8.02$ (2 halves of 2 AA'XX' spin systems, 4 H, ArH ortho to CO₂Et), 7.61 and 7.58 (2 halves of 2 AA'XX' spin system, 2 H each, ArH meta to CO₂Et), 7.03 (s, 2 H, ArH ortho to O), 6.43 (m, 1 H, H-3 of cyclopentadiene), 6.26 (m, 1 H, H-4 of cyclopentadiene), 6.21 (m, 1 H, H-2 of cyclopentadiene), 4.38 (q, ${}^{3}J$ = 7.1 Hz, 4 H, OCH₂CH₃), 4.06 (t, ${}^{3}J$ = 6.2 Hz, 2 H, OCH₂CH₂), 3.91 (s, 3 H, OCH₃), 2.91 (m, 2 H, H-5 of cyclopentadiene), 2.69 (t-like, 2 H, OCH₂CH₂CH₂), 2.11 (m, 2 H, OCH₂CH₂), 1.39 (t, ${}^{3}J = 7.1$ Hz, 6 H, OCH₂CH₃); Signals assigned to 1-[3-(cyclopenta-1,4-dienyl)propyloxy]-2,5-di-(4ethoxycarbonylphenyl)ethinyl-4-methoxybenzene (**23p**²): $\delta = 8.02$ (2 halves of 2 AA'XX' spin systems, 4 H, ArH ortho to CO₂Et), 7.61 and 7.58 (2 halves of 2 AA'XX' spin system, 2 H each, ArH meta to CO₂Et), 7.03 (s, 2 H, ArH ortho to O), 6.46 (m, 1 H, H-4 of cyclopentadiene), 6.43 (m, 1 H, H-3 of cyclopentadiene), 6.06 (m, 1 H, H-1 of cyclopentadiene), 4.38 (q, ${}^{3}J = 7.1$ Hz, 4 H, OCH₂CH₃), 4.06 (t, ${}^{3}J = 6.2$ Hz, 2 H, OCH₂CH₂), 3.91 (s, 3 H, OCH₃), 2.96 (m, 2 H, H-5 of cyclopentadiene), 2.65 (t-like, 2 H, OCH₂CH₂CH₂), 2.11 (m, 2 H, OCH₂CH₂), 1.39 (t, ${}^{3}J = 7.1$ Hz, 6 H, OCH₂CH₃). ¹³C NMR (126 MHz, CDCl₃): δ = 166.0 (CO₂Et), 154.01, 153.98, 153.67, and 153.64 (C_{Ar}O), 148.5 and 146.0 (C-1 of cyclopentadiene), 134.4, 134.1, and 132.4 (CH of cyclopentadiene), 131.5, 131.39, and 131.37 (C_{Ar} meta to CO₂Et), 130.8 (CH of cyclopentadiene), 129.90 and 129.85 (CArCO2Et), 129.5 and 129.4 (CAr ortho to CO₂Et), 127.8 and 127.7 (CAr para to CO₂Et), 127.0 and 126.6 (CH of cyclopentadiene), 117.3, 117.3, and 115.8 ($C_{Ar}H$ ortho to O), 113.9, 113.3 and 113.2 ($C_{Ar}C\equiv C$ ortho to O), 94.5, 94.4, 88.7, and 88.5 ($C\equiv C$), 68.9 and 68.8 (OCH_2CH_2), 61.1 (OCH_2CH_3), 56.4 (OCH_3), 43.3 and 41.3 (CH_2 of cyclopentadiene), 29.2, 28.5, 26.9 and 26.1 ($OCH_2CH_2CH_2$), 14.3 (OCH_2CH_3). Accurate mass (EI) *m/z*: 574.23580, calcd for $C_{37}H_{34}O_6$: 574.23554.

1,4-Di-(4-ethoxycarbonylphenylethynyl)naphthalene (**23q**). А solution of 1,4-dibromonaphthalene (1.51 g, 5.28 mmol) and ethyl 4-ethynylbenzoate (8a) (1.73 g, 9.93 mmol) in *n*-butylamine (35 mL) was degassed through three freezepump-thaw cycles. Pd(PPh₃)₄ (770 mg, 0.66 mmol) and Cul (110 mg, 0.58 mmol) were added and the reaction mixture was stirred at 75 °C for 19 h. After cooling to room temperature, the solvent was removed in vacuo. Water was added and the aqueous phase was extracted with CH₂Cl₂. The combined organic phases were washed with and aqueous HCl solution (12 wt%). The solvent was removed in vacuo. Column chromatography (CH₂Cl₂) gave diester **23g** ($R_f = 0.49$; 1.19 g, 51%) as a yellow solid. ¹H NMR (250 MHz, CDCl₃): δ = 8.46 (half of an AA'XX' spin system, 2 H, H-5 of naphthalene), 8.08 (half of an AA'XX' spin system, 4 H, ArH ortho to CO₂Et), 7.76 (s, 2 H, H-2 of naphthalene), 7.70 (half of an AA'XX' spin system, 4 H, ArH meta to CO₂Et), 7.67 (half of an AA'XX' spin system, 2 H, H-6 of naphthalene), 4.41 (q, ${}^{3}J = 7.1$ Hz, 4 H, OCH₂), 1.42 (t, ${}^{3}J = 7.1$ Hz, 6 H, CH₃). ${}^{13}C$ NMR (126 MHz, CDCl₃): δ = 166.0 (CO₂Et), 133.0 (C-4a of naphthalene), 131.6 (C_{Ar} meta to CO₂Et), 130.2 ($C_{Ar}CO_2Et$), 130.0 (C-2 of naphthalene), 129.6 (C_{Ar} ortho to CO_2Et), 127.6 (C_{Ar} para to CO2Et), 127.5 and 126.6 (C-5 and C-6 of naphthalene), 121.5 (C-1 of naphthalene), 95.4 and 90.2 (C=C), 61.2 (CH₂), 14.3 (CH₃).

1,4-Di-(4-carboxyphenylethynyl)naphthalene (**4q**). See the general procedure for saponification of the diesters. Diester **23q** (1.00 mg, 2.12 mmol), THF (200 mL), KOH (23.2 g, 413 mmol), ethanol (100 mL), reaction time: 48 h, room temperature; Protonation: THF (80 mL), TFA (10 mL, 130 mmol). Diacid **4q** (791 mg, 84%) was obtained as a greenish powder free of THF. ¹H NMR (250 MHz, DMSO-d₆): δ = 13.18 (br. s, 2 H, OH), 8.49 (half of an AA'XX' spin system, 2 H, H-5 of naphthalene), 8.04 (half of an AA'XX' spin system, 4 H, ArH ortho to CO₂H), 7.92 (s, 2 H, H-2 of naphthalene), 7.86 (half of an AA'XX' spin system, 4 H, ArH meta to CO₂H), 7.84

(half of an AA'XX' spin system, 2 H, H-6 of naphthalene). ¹³C NMR (126 MHz, DMSO-d₆): δ = 166.2 (CO₂H), 132.0 (C-4a of naphthalene), 131.3 (C_{Ar} meta to CO₂H), 130.8 (**C**_{Ar}CO₂H), 129.9 (C-2 of naphthalene), 129.2 (C_{Ar} ortho to CO₂H), 127.8 (C-5 or C-6 of naphthalene), 126.0 (C_{Ar} para to CO₂H), 125.8 (C-5 or C-6 of naphthalene), 120.4 (C-1 of naphthalene), 95.2 and 89.2 (C=C).

9,10-Di-(4-ethoxycarbonylphenylethynyl)-2,6-di-*tert*-butylanthracene (**23r**). А solution of dibromoanthracene 12r (1.03 g, 2.30 mmol) and ethyl 4-ethynylbenzoate (8a) (879 g. 5.04 mmol) in *n*-butylamine (20 mL) was degassed through three freezepump-thaw cycles. Pd(PPh₃)₄ (467 mg, 0.40 mmol) and CuI (80 mg, 0.42 mmol) were added and the reaction mixture was stirred at 75 °C for 15.5 h. After cooling to room temperature, the solvent was removed in vacuo. Water was added and the aqueous phase was extracted with CH₂Cl₂. The combined organic phases were washed with aqueous HCI solution (12 wt%). The solvent was removed in vacuo. Column chromatography (*n*-pentane/CH₂Cl₂ 1:1; $R_f = 0.42$) followed by recrystallisation from a toluene/ethanol (5:1) mixture gave diester 23r (1.11 g, 76%) as orange colored needles. ¹H NMR (500 MHz, CDCl₃): δ = 8.60 (d, ³J = 9.1 Hz, 2 H, H-4 of anthracene), 8.59 (unresolved d, 2 H, H-1 of anthracene), 8.13 and 7.80 (AA'XX' spin system, 4 H each, ArH ortho and meta to CO₂Et, respectively), 7.77 (dd, ${}^{3}J = 9.0$ Hz, ${}^{4}J$ = 2.0 Hz, 2 H, H-3 of anthracene), 4.42 (q, ${}^{3}J$ = 7.1 Hz, 4 H, CH₂), 1.52, (s, 18 H, $C(CH_3)_3$, 1.43 (t, ³J = 7.1 Hz, 6 H, CH_2CH_3). ¹³C NMR (126 MHz, $CDCI_3$, 50 °C): δ = 166.0 (CO₂^tBu), 149.5 (C-2 of anthracene), 132.1 (C-9a of anthracene), 131.4 (C_{Ar} meta to CO₂Et), 131.0 (**C**_{Ar}CO₂Et), 130.3 (C_{Ar} para to CO₂Et), 129.8 (C_{Ar} ortho to CO₂Et), 128.2 (C-4a of anthracene), 126.8, 126.5, and 121.5 (C-1, C-3, and C-4 of 117.6 (C-9 of anthracene), 101.7 (anthracene- $C \equiv C$), anthracene). 89.8 (anthracene-C≡C), 61.2 (CH₂), 35.3 (C(CH₃)₃), 31.0 (C(CH₃)₃), 14.3 (CH₂CH₃).

9,10-Di-(4-carboxyphenylethynyl)-2,6-di-*tert*-**butylanthracene** (**4r**). See the general procedure for saponification of the diesters. Diester **23r** (586 mg, 0.923 mmol), THF (80 mL), KOH (10.0 g, 178 mmol), ethanol (40 mL), reaction time: 40 h, room temperature; Protonation: THF (50 mL), TFA (5 mL, 65 mmol). Diacid **4r** (462 mg, 82%) was obtained as a orange colored powder free of THF. ¹H NMR (500 MHz, DMSO-d₆, 80°C): δ = 12.87 (br. s, 2 H, OH), 8.63 (d, ³J = 9.1 Hz, 2 H, H-4

of anthracene), 8.58 (d, ${}^{3}J$ = 1.5 Hz, 2 H, H-1 anthracene), 8.10 (half of an AA'XX' spin system, 4 H, ArH ortho to CO₂H), 7.93 (dd, ${}^{3}J$ = 9.1 Hz, ${}^{4}J$ = 1.5 Hz, 2 H, H-3 of anthracene), 7.91 (half of an AA'XX' spin system, 4 H, ArH meta to CO₂H), 1.52 (s, 18 H, CH₃).

2,5-Di-(4-ethoxycarbonylphenylethynyl)furan (**32**). A solution of 2,5-dibromofuran (**31**) (1.40 g, 6.19 mmol) and ethyl 4-ethynylbenzoate (**8a**) (2.50 g, 14.3 mmol) in triethylamine (20 mL) was degassed through three freeze-pump-thaw cycles. Pd(PPh₃)₄ (312 mg, 0.27 mmol) and Cul (94 mg, 0.49 mmol) were added and the reaction mixture was stirred at 80 °C for 21 h. After cooling to room temperature, the solvent was removed in vacuo. Water was added and the aqueous phase was extracted with CH₂Cl₂. The combined organic phases were washed with aqueous HCl solution (12 wt%) and dried over Na₂SO₄. The solvent was removed in vacuo. Column chromatography (*n*-pentane/CH₂Cl₂ 1:2) gave diester **32** (*R_f* = 0.43; 1.65 g, 65%) as yellow solid. ¹H NMR (500 MHz, CDCl₃): δ = 8.03 and 7.57 (AA'XX' spin system, 4 H each, ArH ortho and meta to CO₂Et, respectively), 6.73 (s, 2 H, H-3 of furan), 4.38 (q, ³*J* = 7.1 Hz, 4 H, OCH₂), 1.39 (t, ³*J* = 7.1 Hz, 6 H, CH₃). ¹³C NMR (126 MHz, DMSO-d₆): δ = 165.9 (CO₂Et), 137.7 (C-2 of furan), 131.2 (C_{Ar} meta to CO₂Et), 130.4 (**C**_{Ar}CO₂Et), 129.5 (C_{Ar} ortho to CO₂Et), 126.3 (C_{Ar} para to CO₂Et), 117.2 (C-3 of furan), 93.7 and 81.7 (C=C), 61.2 (CH₂), 14.3 (CH₃).

2,5-Di-(4-carboxyphenylethynyl)furan (30). To a solution of diester **32** (499 mg, 1.21 mmol) in THF (75 mL) was added al solution of KOH (13.6 g, 241 mmol) in ethanol (46 mL). A precipitate formed which was isolated after 19.5 h of stirring at room temperature by filtration. THF (40 mL) and TFA (4 mL, 52 mmol) was added and after 90 min of stirring, water (160 mL) was added. The precipitated was isolated by filtration and dried in vacuo at 10⁻³ mbar. THF (80 mL) and a solution of KOH (13.5 g, 241 mmol) in ethanol (45 mL) was added. After 22 h of stirring at room temperature the mixture was filtrated. The isolated solid was suspended in THF (40 mL) and TFA (4 mL, 52 mmol) was added the mixture was filtered. The isolated solid was suspended in THF (40 mL) and TFA (4 mL, 52 mmol) was added the mixture was filtered. The isolated solid was filtered in vacuo at 10⁻³ mbar yielding a slightly rose colored powder (358 mg) consisting of diacid **30** (351 mg, 82%) and 9 mol% of THF. ¹H NMR (500 MHz,

CDCl₃): δ = 13.24 (br. s, 2 H, OH), 7.99 and 7.70 (AA'XX' spin system, 4 H each, ArH ortho and meta to CO₂H, respectively), 7.14 (s, 2 H, H-3 of furan). ¹³C NMR (126 MHz, DMSO-d₆, 80 °C): δ = 166.0 (CO₂H), 136.6 (C-2 of furan), 131.1 (**C**_{Ar}CO₂H), 131.0 (C_{Ar} meta to CO₂H), 129.2 (C_{Ar} ortho to CO₂H), 124.6 (C_{Ar} para to CO₂H), 117.8 (C-3 of furan), 93.4 and 80.8 (C=C).

10.2.8 1,4-Di(phenylethynyl)-biphenyl- or -bipyridine linkers

4,4'-Di-(4-ethoxycarbonylphenylethynyl)-3,3'-dimethylbiphenyl (**34a**).^[261] See the general procedure for alkynyl-aryl coupling. 4.4'-Diiodo-3,3'-dimethylbiphenyl (998 mg, 2.30 mmol), ethyl 4-ethynylbenzoate (**8a**) (890 mg, 5.11 mmol), THF (30 mL), piperidine (10 mL), Pd(PPh₃)₂Cl₂ (33 mg, 0.047 mmol), Cul (19 mg, 0.10 mmol) reaction time: 17 h. Column chromatography (*n*-pentane/CH₂Cl₂ 1:1) gave diester **34a** (R_f = 0.45; 1.10 g, 91%) as a colorless solid. ¹H NMR (600 MHz, CDCl₃): δ = 8.03 and 7.59 (AA'XX' spin system, 4 H each, ArH ortho and meta to CO₂Et, respectively), 7.57 (d, ³*J* = 8.2 Hz, 2 H, H-5 of biphenyl), 7.49 (unresolved d, 2 H, H-2 of biphenyl), 7.43 (dd, ³*J* = 8.0 Hz, ⁴*J* = 1.2 Hz, 2 H, H-6 of biphenyl), 4.39 (q, ³*J* = 7.1 Hz, 4 H, CH₂), 2.59 (s, 6 H, ArCH₃), 1.40 (t, ³*J* = 7.1 Hz, 6 H, CH₂CH₃). ¹³C NMR (151 MHz, CDCl₃): δ = 166.1 (CO₂Et), 140.9 and 140.6 (C-1 and C-3 of biphenyl), 132.5 (C-5 of biphenyl), 131.3 (C_{Ar} meta to CO₂Et), 129.8 (**C**_{Ar}CO₂Et), 129.5 (C_{Ar} ortho to CO₂Et), 128.10 (C-2 of biphenyl), 128.06 (C_{Ar} para to CO₂Et), 124.3 (C-6 of biphenyl), 121.8 (C-4 of biphenyl), 93.5 and 91.2 (C=C), 61.1 (OCH₂), 20.9 (ArCH₃), 14.3 (CH₂**CH**₃).

4,4'-Di-(4-carboxyphenylethynyl)-3,3'-dimethylbiphenyl (**5a**).^[261] See the general procedure for saponification of the diesters. Diester **34a** (501 mg, 0.957 mmol), THF (70 mL), KOH (10.7 g, 191 mmol), ethanol (40 mL), reaction time: 22 h, 40 °C; Protonation: THF (35 mL), TFA (3.5 mL, 46 mmol). A yellow solid (391 mg) was obtained consisting of diacid **5a** (390 mg, 87%) and 2 mol% of THF. ¹H NMR (500 MHz, DMSO-d₆): δ = 12.80 (br. s, 2 H, OH), 7.99 (half of an AA'XX' spin system, 4 H, ArH ortho to CO₂H), 7.71 (unresolved d, 2 H, H-2 of biphenyl), 7.68 (half of an AA'XX' spin system, 4 H, ArH meta to CO₂H), 7.63 (d, ³J = 8.0 Hz, 2 H, H-5 of biphenyl), 7.60 (unresolved dd, ³J = 8.0 Hz, 2 H, H-6 of biphenyl), 2.58 (s, 6 H, CH₃). ¹³C NMR (151 MHz, CDCl₃): δ = 166.1 (CO₂H), 140.1 and 139.4 (C-1 and C-3 of

biphenyl), 131.9 (C-5 of biphenyl), 130.9 (C_{Ar} meta to CO_2H), 130.4 ($C_{Ar}CO_2H$), 129.1 (C_{Ar} ortho to CO_2H), 127.4 (C-2 of biphenyl), 126.4 (C_{Ar} para to CO_2H), 123.8 (C-6 of biphenyl), 120.9 (C-4 of biphenyl), 93.1 and 90.4 ($C\equiv C$), 19.9 (CH_3).

4,4'-Di-(4-ethoxycarbonylphenylethynyl)-3,3'-di-*n*-propylbiphenyl (34b).^[261] See the general procedure for alkynyl-aryl coupling. Mixture (1.80 g) of dijodobiphenyls 33b and 35 in a 3:1 ratio [correlates to 1.37 g, 2.80 mmol of 3,3'-Di-n-propyl-4,4'diiodobiphenyl (33b)], ethyl 4-ethynylbenzoate (8a) (1.29 mg, 7.42 mmol), THF (40 mL), piperidine (12 mL), Pd(PPh₃)₂Cl₂ (53 mg, 0.075 mmol), Cul (30 mg, 0.16 mmol) reaction time: 18 h. Column chromatography (n-pentane/CH₂Cl₂ 1:1; $R_{\rm f}$ = 0.45) followed by recrystallisation from a mixture of toluene and methanol gave diester **34b** (610 mg, 37%) and a mixture (1.25 g) of diester **34b** (924 mg, 55%) and 4,4'-di-(4-ethoxycarbonylphenylethynyl)-3-methyl-3'-di-*n*-propylbiphenyl (**35**) (326 mg, 63%) as colorless solids. ¹H NMR (500 MHz, CDCl₃): δ = 8.04 (half of an AA'XX' spin system, 4 H, ArH ortho to CO₂Et), 7.58 (m, 6 H, H-5 of biphenyl and ArH meta to CO₂Et), 7.48 (d, ${}^{4}J$ = 1.3 Hz, 2 H, H-2 of biphenyl), 7.44 (dd, ${}^{3}J$ = 8.0 Hz, ${}^{4}J$ = 1.6 Hz, 2 H, H-6 of biphenyl), 4.39 (q, ${}^{3}J$ = 7.1 Hz, 4 H, OCH₂), 2.90 (t-like, 4 H, ArCH₂), 1.79 (sext-like, 4 H, ArCH₂CH₂), 1.40 (t, ${}^{3}J$ = 7.1 Hz, 6 H, OCH₂CH₃), 1.04 (t, ${}^{3}J$ = 7.3 Hz, 6 H, $CH_2CH_2CH_3$). ¹³C NMR (126 MHz, $CDCI_3$): $\delta = 166.1$ (CO_2Et), 145.5 (C-3 of biphenyl), 140.7 (C-1 of biphenyl), 132.8 (C-5 of biphenyl), 131.3 (C_{Ar} meta to CO_2Et), 129.7 ($C_{Ar}CO_2Et$), 129.5 (C_{Ar} ortho to CO_2Et), 128.1 (C_{Ar} para to CO_2Et), 127.5 (C-2 of biphenyl), 124.4 (C-6 of biphenyl), 121.4 (C-4 of biphenyl), 92.9 and 91.2 (C≡C), 61.1 (OCH₂), 37.0 (Ar**C**H₂), 24.0 (ArCH₂**C**H₂), 14.3 and 14.1 (CH₃).

4,4'-Di-(4-carboxyphenylethynyl)-3,3'-di-*n***-propylbiphenyl** (**5b**).^[261] See the general procedure for saponification of the diesters. Diester **34b** (501 mg, 0.863 mmol), THF (60 mL), KOH (9.3 g, 166 mmol), ethanol (35 mL), reaction time: 47 h, 40 °C; Protonation: THF (30 mL), TFA (3.5 mL, 39 mmol). A yellow solid (387 mg) was obtained consisting of diacid **5b** (386 mg, 85%) and 2 mol% of THF. ¹H NMR (500 MHz, DMSO-d₆): δ = 8.00 (half of an AA'XX' spin system, 4 H, ArH ortho to CO₂H), 7.68 (unresolved d, 2 H, H-2 of biphenyl), 7.65 (half of an AA'XX' spin system, 4 H, ArH meta to CO₂H), 7.63 (d, ³J = 8.1 Hz, 2 H, H-5 of biphenyl), 7.60 (dd, ³J = 8.1 Hz, ⁴J = 1.6 Hz, 2 H, H-6 of biphenyl), 2.91 (t-like, 4 H, ArCH₂),

1.78 (sext-like, 4 H, ArCH₂CH₂), 1.01 (t, ${}^{3}J$ = 7.3 Hz, 6 H, CH₃). 13 C NMR (126 MHz, DMSO-d₆): δ = 166.2 (CO₂H), 144.7 (C-3 of biphenyl), 139.5 (C-1 of biphenyl), 132.2 (C-5 of biphenyl), 130.8 (C_{Ar} meta to CO₂H), 130.5 (**C**_{Ar}CO₂H), 129.1 (C_{Ar} ortho to CO₂H), 126.9 (C-2 of biphenyl), 126.4 (C_{Ar} para to CO₂H), 124.0 (C-6 of biphenyl), 120.5 (C-4 of biphenyl), 92.5 and 90.4 (C≡C), 35.8 (Ar**C**H₂), 23.0 (ArCH₂**C**H₂), 13.2 (CH₃).

5,5'-Di-(4-ethoxycarbonylphenylethynyl)-2,2'-bipyridine (34c¹). A solution of 5.5'-dibromo-2.2'-bipyridine (33c) (602 mg, 1.92 mmol) and ethyl 4-ethynylbenzoate (8a) (654 mg, 3.75 mmol) in THF (12 mL) and triethylamine (6 mL) was degassed through three freeze-pump-thaw cycles. Pd₂dba₃ (83 mg, 0.091 mmol), Cul (20 mg, 0.11 mmol) and tri-tert-butylphosphane in toluene (1.0 mol/L; 0.28 mL, 0.28 mmol) were added and the reaction mixture was stirred at 50 °C for 14.5 h. After cooling to room temperature the reaction mixture was poured into water (50 mL) and the aqueous phase was extracted with CH₂Cl₂. The combined organic phases were concentrated in vacuo. Column chromatography (CH₂Cl₂/Et₂O 25:1) gave diester **34c¹** ($R_f = 0.17$: 740 mg, 79%) as a yellow solid. ¹H NMR (250 MHz, CDCl₃): $\delta = 8.83$ (d, ${}^{4}J$ = 1.3 Hz, 2 H, H-6 of bipyridine), 8.47 (d, ${}^{3}J$ = 8.3 Hz, 2 H, H-3 of bipyridine), 8.05 (half of an AA'XX' spin system, 4 H, ArH ortho to CO_2Et), 7.96 (dd, ${}^{3}J = 8.3$ Hz, $^{4}J = 2.1$ Hz, 2 H, H-4 of bipyridine), 7.62 (half of an AA'XX' spin system, 4 H, ArH ortho to CO₂Et), 4.40 (g, ${}^{3}J$ = 7.1 Hz, 4 H, CH₂), 1.41 (t, ${}^{3}J$ = 7.1 Hz, 6 H, CH₃). ¹³C NMR (126 MHz, CDCl₃): δ = 165.9 (CO₂Et), 154.6 (C-2 of bipyridine), 151.9 (C-6 of bipyridine), 139.4 (C-4 of bipyridine), 131.6 (C_{Ar} meta to CO₂Et), 130.6 (**C**_{Ar}CO₂Et), 129.6 (C_{Ar} ortho to CO₂Et), 127.1 (C_{Ar} para to CO₂Et), 120.7 (C-3 of bipyridine), 120.2 (C-5 of bipyridine), 93.0 and 89.1 (C≡C), 61.2 (CH₂), 14.3 (CH₃).

5,5'-Di-(4-*tert***-butyloxycarbonylphenylethynyl)-2,2'-bipyridine** (**34c**²). A solution of 5,5'-dibromo-2,2'-bipyridine (**33c**) (481 mg, 1.53 mmol) and *tert*-butyl 4-ethynylbenzoate (**8c**) (657 mg, 3.25 mmol) in THF (12 mL) and triethylamine (6 mL) was degassed through three freeze-pump-thaw cycles. Pd_2dba_3 (22.5 mg, 0.025 mmol), Cul (11.5 mg, 0.06 mmol) and tri-*tert*-butylphosphane in toluene (1.0 mol/L; 0.05 mL, 0.05 mmol) were added and the reaction mixture was stirred at 50 °C for 22 h. After cooling to room temperature the reaction mixture was poured

into water and the aqueous phase was extracted with CH₂Cl₂. The combined organic phases were concentrated in vacuo. Column chromatography (CH₂Cl₂/Et₂O 25:1) gave diester **34c²** ($R_f = 0.39$; 502 mg, 59%) as a golden solid. ¹H NMR (250 MHz, CDCl₃): $\delta = 8.83$ (dd, ⁴J = 2.1 Hz, ⁵J = 0.8 Hz, 2 H, H-6 of bipyridine), 8.46 (d, ³J = 8.3 Hz, ⁵J = 0.8 Hz, 2 H, H-3 of bipyridine), 7.99 (half of an AA'XX' spin system, 4 H, ArH ortho to CO₂^tBu), 7.95 (dd, ³J = 8.3 Hz, ⁴J = 2.1 Hz, 2 H, H-4 of bipyridine), 7.60 (half of an AA'XX' spin system, 4 H, ArH ortho to CO₂^tBu), 7.95 (dd, ³J = 8.3 Hz, ⁴J = 2.1 Hz, 2 H, H-4 of bipyridine), 7.60 (half of an AA'XX' spin system, 4 H, ArH ortho to CO₂^tBu), 1.60 (s, 18 H, CH₃). ¹³C NMR (126 MHz, CDCl₃): $\delta = 165.0$ (CO₂^tBu), 154.3 (C-2 of bipyridine), 151.8 (C-6 of bipyridine), 139.5 (C-4 of bipyridine), 131.9 (**C**_{Ar}CO₂^tBu), 131.5 (C_{Ar} meta to CO₂ ^tBu), 129.4 (C_{Ar} ortho to CO₂ ^tBu), 126.6 (C_{Ar} para to CO₂ ^tBu), 120.7 (C-3 of bipyridine), 120.1 (C-5 of bipyridine), 93.1 and 88.8 (C=C), 81.4 (**C**(CH₃)₃), 28.2 (CH₃).

5,5'-Di-(4-carboxyphenylethynyl)-2,2'-bipyridine (**5c**). See the general procedure for saponification of the diesters. Diester **34c**¹ (746 mg, 1.49 mmol), THF (120 mL), KOH (17.0 g, 302 mmol), ethanol (60 mL), reaction time: 7 d, 40 °C; Protonation: THF (60 mL), TFA (6 mL, 78 mmol). Diacid **5c** (603 mg, 89%) was obtained as a grey powder free of THF. ¹H NMR (500 MHz, DMSO-d₆): δ = 8.92 (unresolved d, 2 H, H-6 of bipyridine), 8.48 (d, ³J = 8.4 Hz, 2 H, H-3 of bipyridine), 8.17 (dd, ³J = 8.3 Hz, ⁴J = 2.1 Hz, 2 H, H-4 of bipyridine), 8.01 and 7.73 (AA'XX' spin system, 2 H each, ArH ortho and meta to CO₂H, respectively).

5,5'-Di-(4-ethoxycarbonylphenylethynyl)-4,4'-di-n-propyl-2,2'-bipyridine

(**34d**).^[261] A solution of 5,5'-dibromo-4,4'-di-*n*-propyl-2,2'-bipyridine (**33d**) (120 mg, 0.302 mmol) and ethyl 4-ethynylbenzoate (**8a**) (221 mg, 1.27 mmol) in THF (3 mL) and di-*iso*-propylamine (1.9 mL) was degassed through three freeze-pump-thaw cycles. Pd(PPh₃)₂Cl₂ (23 mg, 0.033 mmol) and Cul (12 mg, 0.062 mmol) were added and the reaction mixture was stirred at 60 °C for 3 d. After cooling to room temperature the reaction mixture was poured into water (50 mL) and the aqueous phase was extracted with CH₂Cl₂. The combined organic phases were concentrated in vacuo. Column chromatography (CH₂Cl₂/Et₂O 20:1) followed by recrystallisation from a mixture of toluene and methanol gave diester **34d** (82 mg, 47%) as a slightly yellow solid. ¹H NMR (300 MHz, CDCl₃): δ = 8.75 (s, 2 H, H-6 of bipyridine), 8.33 (s,

2 H, H-3 of bipyridine), 8.06 and 7.61 (AA'XX' spin system, 4 H each, ArH ortho and meta to CO₂Et, respectively), 4.40 (q, ${}^{3}J = 7.1$ Hz, 4 H, OCH₂), 2.91 (t-like, 4 H, ArCH₂), 1.83 (sext-like, 4 H, ArCH₂CH₂), 1.41 (t, ${}^{3}J = 7.1$ Hz, 6 H, OCH₂CH₃), 1.01 (t, ${}^{3}J = 7.3$ Hz, 6 H, CH₂CH₂CH₃). 13 C NMR (126 MHz, CDCl₃): $\delta = 166.0$ (CO₂Et), 154.5 and 154.2 (C-2 and C-4 of bipyridine), 152.2 (C-6 of bipyridine), 131.4 (C_{Ar} meta to CO₂Et), 130.3 (**C**_{Ar}CO₂Et), 129.6 (C_{Ar} ortho to CO₂Et), 127.4 (C_{Ar} para to CO₂Et), 121.0 (C-3 of bipyridine), 119.8 (C-5 of bipyridine), 95.9 and 88.2 (C=C), 61.2 (OCH₂), 36.4 (ArCH₂), 23.1 (ArCH₂**C**H₂), 14.3 and 14.1 (CH₃).

5,5'-Di-(4-carboxyphenylethynyl)-4,4'-di-*n***-propyl-2,2'-bipyridine (5d).^[261] See the general procedure for saponification of the diesters. Diester 34d** (63.0 mg, 0.108 mmol), THF (10 mL), KOH (1.58 g, 28.2 mmol), ethanol (5 mL), reaction time: 7 d, 40 °C; Protonation: THF (6 mL), TFA (1 mL, 13 mmol). A slightly yellow solid (53.4 mg) was obtained consisting of diacid **5d** (53.3 mg, 93%) and 2 mol% of THF. ¹H NMR (500 MHz, DMSO-d₆, 75 °C): δ = 12.87 (br. s, 2 H, OH), 8.81 (s, 2 H, H-6 of bipyridine), 8.37 (s, 2 H, H-3 of bipyridine), 8.02 and 7.71 (AA'XX' spin system, 4 H each, ArH ortho and meta to CO₂H, respectively), 2.93 (t-like, 4 H, ArCH₂), 1.79 (sext-like, 4 H, CH₂CH₃), 1.01 (t, ³*J* = 7.3 Hz, 6 H, CH₃). ¹³C NMR (126 MHz, DMSO-d₆, 75 °C): δ = 166.1 (CO₂H), 153.7 and 153.4 (C-2 and C-4 of bipyridine), 151.6 (C-6 of bipyridine), 131.9 (C_{Ar} meta to CO₂H), 130.8 (**C**_{Ar}CO₂H), 129.2 (C_{Ar} ortho to CO₂H), 125.8 (C_{Ar} para to CO₂H), 120.2 (C-3 of bipyridine), 119.0 (C-5 of bipyridine), 95.6 and 87.4 (C=C), 35.1 (ArCH₂), 22.0 (**C**H₂CH₃), 13.2 (CH₃).

10.2.9 Linkers containing chromophores

N,N'-Bis-[2,5-di-*iso*-propyl-4-(tri-*iso*-propylsilylethynyl)phenyl]perylene-3,4,9,10tetracarboxylic diimide (44). To a cooled (dry ice/acetone bath) solution of 2,5-di*iso*-propyl-4-(tri-*iso*-propylsilylethynyl)aniline (42) (1.49 g, 4.16 mmol) in THF (100 mL) was added dropwise *n*-butyllithium in hexane (1.6 mol/L; 2.9 mL, 4.6 mL). The solution turned blue and perylene-3,4,9,10-tetracarboxylic anhydride (730 mg, 1.87 mmol) and ZnBr₂ (183 mg, 0.81 mmol) were added. The resulting greenish suspension was allowed to reach room temperature and stirred for 15 h. Aqueous HCl solution (12 wt%; 20 mL) was added and the reaction mixture was heated to 60 °C for 2.5 h. After cooling to room temperature, water was added and the aqueous phase extracted with CH₂Cl₂. The combined organic phases were washed with saturated aqueous NaCl solution and dried over MgSO₄. The solvent was removed in vacuo. Column chromatography (CHCl₃; $R_f = 0.31$) followed by recrystallisation from ethyl acetate (ca. 50 mL) gave perylene diimide **44** (488 mg, 11%) as orange colored crystals. ¹H NMR (250 MHz, CDCl₃): $\delta = 8.79$ and 8.73 (d, ³J = 8.0 Hz and ³J = 8.2 Hz, respectively, 4 H each, H-1 and H-2 of perylene), 7.42 (s, 4 H, ArH ortho to ⁱPr), 2.72 (sept, ³J = 6.9 Hz, 4 H, ArCH), 1.19-1.14 (m, 66 H, SiCH(CH₃)₂ and ArCH(CH₃)₂). ¹³C NMR (126 MHz, CDCl₃): $\delta = 163.3$ (C=O), 145.8 (C_{Ar}N), 135.1 (C_{Ar} para to C-3 of perylene), 132.1 (CH meta to N), 130.9 (C_{Ar}ⁱPr), 130.2 (C_{Ar} para to C-1 of perylene), 128.1 (C-2 of perylene), 126.8 (C_{Ar} para to C-2 of perylene), 124.9 (C_{Ar} para to N), 123.4 (C-1 of perylene), 123.3 (C-3 of perylene), 107.3 (SiC=C), 90.5 (SiC=C), 29.2 (ArCH), 23.8 (ArCH(CH₃)₂), 18.7 and 11.4 (SiCH(CH₃)₂).

N,N'-Bis-[4-ethynyl-2,5-di-iso-propylphenyl]perylene-3,4,9,10-tetracarboxylic

diimide (41). To a cooled (ice bath) solution of perylene diimide 44 (989 mg, 0.923 mmol) in THF (60 mL) was added a solution of tetrabutylammonium fluoride in THF (1.0 mol/L; 2.05 mL, 2.05 mmol). After 60 min of stirring at 0 °C, water was added and a precipitate formed, which was isolated by filtration and washed with water. Drying at 10⁻³ mbar gave terminal alkyne 41 (593 mg, 84%) as a dark red solid. ¹H NMR (250 MHz, CDCl₃): δ = 8.79 and 8.74 (d, ³*J* = 8.0 Hz and ³*J* = 8.2 Hz, respectively, 4 H each, H-1 and H-2 of perylene), 7.48 (s, 4 H, ArH ortho to ⁱPr), 3.12 (s, 2 H, C≡CH), 2.73 (sept, ³*J* = 6.8 Hz, 4 H, ArCH), 1.17 (d, ³*J* = 6.8 Hz, 24 H, CH₃).

N,N'-Bis-[4-(4-tert-butyloxycarbonylphenylethynyl)-2,5-di-iso-propylphenyl]-

perylene-3,4,9,10-tetracarboxylic diimide (**45**). A solution of perylene diimide **41** (459 mg, 0.605 mmol) and *tert*-butyl 4-iodobenzoate (**6c**) (538 mg, 1.77 mmol) in THF (18 mL) and triethylamine (9 mL) was degassed through three freeze-pump-thaw cycles. $Pd(PPh_3)_2Cl_2$ (11.3 mg, 0.016 mmol) and Cul (6.6 mg, 0.035 mmol) were added and the reaction mixture was stirred at 50 °C for 3 d. After cooling to room temperature, the reaction mixture was poured into water (25 mL) and the aqueous phase was extracted with CH_2Cl_2 . The combined organic phases were washed with aqueous HCl solution (12 wt%) and saturated aqueous NaCl solution, dried with Na_2SO_4 , and concentrated in vacuo. Column chromatography

 $(CH_2CI_2/Et_2O \ 100:1)$ gave *tert*-butyl 4-iodobenzoate (**6c**) ($R_f = 0.67$; 233 mg, 43%) as a slightly brownish liquid and diester **45** ($R_f = 0.30$; 494 mg, 74%) as a orange colored solid. ¹H NMR (250 MHz, CDCI₃): $\delta = 8.80$ and 8.75 (d, ³J = 8.0 Hz and ³J = 8.2 Hz, respectively, 4 H each, H-1 and H-2 of perylene), 7.99 and 7.61 (AA'XX' spin system, 4 H each, ArH ortho and meta to $CO_2^{t}Bu$, respectively), 7.53 (s, 4 H, ArH ortho to ⁱPr), 2.76 (sept, ³J = 6.8 Hz, 4 H, ArCH), 1.61 (s, 18 H, C(CH₃)₃), 1.21 (d, ³J = 6.8 Hz, 24 H, CH(CH₃)₂). ¹³C NMR (126 MHz, CDCI₃): $\delta = 165.2$ (CO₂^tBu), 163.4 (CON), 146.2 (C_{Ar}N), 135.1 (C_{Ar} para to C-3 of perylene), 132.2 (CH meta to N), 131.43 (C_{Ar} meta to CO₂^tBu), 131.40 (C_{Ar}ⁱPr), 131.2 (**C**_{Ar}CO₂^tBu), 130.2 (C_{Ar} ortho to CO₂^tBu), 129.3 (C_{Ar} para to CO₂^tBu), 127.7 (C-2 of perylene), 127.4 and 126.8 (C_{Ar} para to C-1 of perylene and C_{Ar} para to C-2 of perylene), 124.1 (C_{Ar} para to N), 123.4 (C-1 of perylene), 123.3 (C-3 of perylene), 92.2 and 88.8 (C=C), 81.3 (**C**(CH₃)₃), 29.2 (C(**C**H₃)₃), 28.2 (ArCH), 23.9 (CH(**C**H₃)₂).

N,N'-Bis-[4-(4-carboxyphenylethynyl)-2,5-di-iso-propylphenyl]perylene-3,4,9,10tetracarboxylic diimide (40). The reaction was carried out under ambient atmosphere. To a cooled (ice bath) solution of diester 45 (412 mg, 0.371 mmol) in CH₂Cl₂ (120 mL) was added trifluoroacetic acid (40 mL, 544 mmol). After 3 h of stirring at 0 °C, the solvent was removed in vacuo and the resulting red solid was washed with water. Drying at 10⁻³ mbar gave diacid 40 (342 mg, 92%) as a orange solid. ¹H NMR (500 MHz, DMSO-d₆): δ = 13.20 (br. s, 2 H, OH), 9.08 and 8.72 (d, ³J = 8.4 Hz and ³J = 7.6 Hz, respectively, 4 H each, H-1 and H-2 of perylene) 8.01 and 7.73 (apparent d, ³J = 8.0 Hz, 4 H each, ArH ortho and meta to CO₂H, respectively), 7.60 (s, 4 H, ArH ortho to ⁱPr), 2.78 (sept, ³J = 6.8 Hz, 4 H, ArCH), 1.12 (d, ³J = 6.7 Hz, 24 H, CH₃).

Ru(bipy)₂(34c²)(**PF**₆)₂ (49). A mixture of silver trifluoromethanesulfonate (401 mg, 1.56 mmol) and cis-bis-(2,2'-bipyridine)ruthenium(II) chloride dihydrate (171 mg, 0.329 mmol) in acetone (40 mL) was stirred at 65 °C for 2 h. After cooling to room temperature, the mixture was filtered and the filtrate was concentrated in vacuo till a volume of ca. 2 mL. Diester 34c² (239 mg, 0.428 mmol), ethyl acetate (49 mL) and water (3 mL) were added and the mixture was stirred at 90 °C for 20 h. The solvents were removed in vacuo till a volume of ca. 5 mL. Ethanol (50 mL) and water (5 mL)

were added and the mixture was stirred at 90 °C for 21 h. After cooling to room temperature, the mixture was filtered. To the filtrate a solution of KPF_6 (1.44 g, 7.82 mmol) in water (60 mL) was added and a precipitate formed, which was isolated by filtration and washed with water. Column chromatography on alox (CH₂Cl₂/MeCN 5:1; $R_f = 0.41$) followed by a second column chromatography on alox (CH₂Cl₂ \rightarrow CH₂Cl₂/MeCN 5:1) gave ruthenium complex 49 (193 mg, 46%) as a red solid. ¹H NMR (500 MHz, CD₃CN): δ = 8.52 (t-like, 6 H, H-3 and H-3' of bipyridine from bipy and **34c²** ligand), 8.19 (dd, ${}^{3}J = 8.5$ Hz, ${}^{4}J = 1.7$ Hz, 2 H, H-4 of bipyridine from **34c²** ligand), 8.08 (m, 4 H, H-4 and H-4' of bipy ligand), 7.97 (half of an AA'XX' spin system, 4 H, ArH ortho to $CO_2^{t}Bu$), 7.88 (d, ${}^{4}J$ = 1.2 Hz, 2 H, H-6 of bipyridine from **34c²** ligand), 7.81 and 7.70 (d, ${}^{3}J$ = 5.5 Hz, 2 H each, H-6 and H-6' of bipy ligand), 7.56 (half of an AA'XX' spin system, 4 H, ArH ortho to CO₂^tBu), 7.43 (m, 4 H, H-5 and H-5' of bipy ligand), 1.57 (s, 18 H, CH₃). ¹³C NMR (126 MHz, CD₃CN): δ = 165.6 $(CO_2^{t}Bu)$, 157.9 and 156.6 (C-2 and C-2' of bipyridine from bipy and **34c²** ligand), 154.6, 153.1, and 152.7 (C-6 and C-6' of bipyridine from bipy and **34c²** ligand), 140.8 and 139.0 (C-4 and C-4' of bipyridine from bipy and $34c^2$ ligand), 133.8 ($C_{Ar}CO_2^{t}Bu$), 132.7 (C_{Ar} meta to $CO_2^{t}Bu$), 130.4 (C_{Ar} ortho to $CO_2^{t}Bu$), 128.7 and 128.6 (C-3 and C-3' of bipyridine from bipy and $34c^2$ ligand), 126.3 (C_{Ar} para to CO₂H), 125.4 (C-5 and C-5' of bipy ligand), 124.5 (C-5 of bipyridine from 34c² ligand), 96.5 and 87.2 (C=C), 82.5 (OC(CH₃)₃), 28.2 (CH₃). ¹⁹F NMR (282 MHz, CD₃CN): δ = -72.0 (d, ${}^{1}J(F,P) = 707$ Hz, PF₆).³¹P NMR (121 MHz, CD₃CN): $\delta = -143.9$ (sept, ${}^{1}J(P,F) = 707$ Hz, PF₆). Elemental analysis calcd (%) for C₅₆H₅₄N₆O₄RuP₂F₁₂ (1266.081): C 53.13, H 4.30, N 6.64. Found C 52.83, H 3.75, N 6.56. The ¹H NMR spectrum is shown in figure 25.

Ru(bipy)₂(5c)(PF₆)₂ (50). To a solution of Ru(bipy)₂(**34c**²)(PF₆)₂ (**49**) (148 mg, 0.117 mmol) in acetonitrile (50 mL) was added trifluoroacetic acid (17 mL, 231 mmol) and the reaction mixture stirred for 22 h. The solvent was removed in vacuo. Acetonitrile (30 mL) and trifluoroacetic acid (20 mL, 272 mmol) was added and the mixture stirred for 16.5 h. The solvent was removed in vacuo and the resulting red solid was dissolved in acetonitrile (10 mL) and DMF (2 mL). A solution of KPF₆ (1.11 g, 6.04 mmol) in water (40 mL) was added and a precipitate formed, which was isolated by filtration and washed with water. Drying at 10⁻³ mbar gave diacid **50**

(100 mg, 74%) as a dark red solid. ¹H NMR (500 MHz, DMSO-d₆): δ = 8.95 (d, ${}^{3}J$ = 8.5 Hz, 2H, H-3 of bipyridine from **5c** ligand), 8.84 (t-like, 4 H, H-3 and H-3' of bipv ligand). 8.40 (dd. ${}^{3}J = 8.4$ Hz. ${}^{4}J = 1.1$ Hz. 2 H. H-4 of bipvridine from **5c** ligand). 8.19 (m, 4 H, H-4 and H-4' of bipy ligand), 7.94 (apparent d, ${}^{3}J = 8.2$ Hz, ArH ortho to $CO_{2}H$), 7.88 (d. ${}^{3}J$ = 5.4 Hz, 2 H, H-6 or H-6' of bipy ligand), 7.82 (unresolved d, 2 H, H-6 of bipvridine from **5c** ligand), 7.71 (d. ${}^{3}J$ = 5.4 Hz, 2 H, H-6 or H-6' of bipv ligand). 7.56 (m, 8 H, H-5 and H-5' of bipy ligand and ArH ortho to CO_2H). ¹³C NMR (126 MHz, DMSO-d₆, 50 °C): δ = 166.4 (CO₂H), 156.4, 156.3, and 155.4 (C-2 and C-2' of bipyridine from bipy and 5c ligand), 152.6, 151.7, and 151.1 (C-6 and C-6' of bipyridine from bipy and 5c ligand), 139.9, 138.0, and 137.9 (C-4 and C-4' of bipyridine from bipy and **5c** ligand), 133.4 ($C_{Ar}CO_2H$), 131.4 (C_{Ar} meta to CO_2H), 129.4 (C_{Ar} ortho to CO₂H), 127.7, 124.6, 124.4, and 124.3 (C-3, C-3', C-5 and C-5' of bipy ligand and C-3 of bipyridine from 5c ligand), 123.9 and 122.5 (C_{Ar} para to CO₂H and C-5 of bipyridine from **5c** ligand), 95.4 and 86.4 (C=C). ¹⁹F NMR (282 MHz, DMSO-d₆): $\delta = -69.5$ (d, ¹J(F,P) = 711 Hz, PF₆). ³¹P NMR (121 MHz, DMSO-d₆): δ = -143.7 (sept, ¹*J*(*P*,*F*) = 707 Hz, PF₆).

10.3 Postsynthetic modifications

10.3.1 General procedures

General procedure for the washing of MOFs. The MOF material was suspended in a solvent e.g. CHCl₃, THF, or DMF (1-2 mL). After standing for 1-14 h at room temperature the suspension was centrifuged and the solvent removed by decanting. This treatment was pursued several times with different solvents. The powder was dried in high vacuum afterwards.

General procedure for the dissolution of PIZOFs. The PIZOF material (1-6 mg) and CsF (6-11 mg) were suspended in DMSO-d₆ (0.65 mL). Then a drop of aqueous DCI solution (35 wt% in D₂O; 20-25 mg) was added. As soon as the PIZOF had dissolved, K_2CO_3 (10-15 mg) was added and a ¹H NMR spectrum was recorded.

General procedure for the acylation of Zr-MOFs. A suspension of Zr-MOF and carbonic acid anhydride in THF was kept without stirring at room temperature for 10 h and at 70 °C for 23 h. Afterwards the reaction mixture was centrifuged for 5 min at 6000 RPM. The solvent was removed by decanting. The residue was washed (see the general procedure for the washing of MOFs) and finally dried in vacuo. For analytical purposes a small amount of the obtained solid was dissolved in aqueous NaOD solution (20 wt% in D₂O; 0.2 mL) and DMSO-d₆ (0.6 mL) through sonication.

General procedure for the alkylation of Zr-MOFs. As-synthesised $UiO-66(NH_2)^{[107,171]}$ from a modulated synthesis with 30 eq. of benzoic acid was washed twice with ethanol (see the general procedure for the washing of MOFs) prior to use and stored in DMF (2 mL). Organic halide and K₂CO₃ was added and the reaction mixture was kept without stirring at room temperature for 16 h and at 100 °C for 3 d. Afterwards the reaction mixture was centrifuged for 5 min at 6000 RPM. The solvent was removed by decanting. The residue was washed with DMF (3x), water (1x), and THF (6x) (see the general procedure for the washing of MOFs) and finally dried in vacuo. For analytical purposes a small amount of the obtained solid was dissolved in aqueous NaOD solution (20 wt% in D₂O; 0.2 mL) and DMSO-d₆ (0.6 mL) through sonication.

General procedure for the Diels-Alder cycloaddition of diester 23e. A solution of diester **23e** and the dienophile in toluene was heated to 100 °C or 70 °C for 5 d. Then the solvent was removed in vacuo at 40 °C and the residue was analyzed with ¹H NMR spectroscopy and mass spectrometry.

General procedure for the Diels-Alder cycloadditions of PIZOF-8. As-synthesized PIZOF-8 was washed with DMF (5 x) and THF (16 x) (see the general procedure for the washing of MOFs). A suspension of PIZOF-8 and dienophile in toluene (0.5 mL) was kept under argon atmosphere at room temperature for 16-17 h and at 100 °C for 5 d without stirring. Afterwards the suspension was centrifuged for 5 min at 6000 RPM. The solvent was removed by decanting. The residue was washed with DMF (4x) and THF (14x) (see the general procedure for the washing of MOFs) and finally dried in vacuo. For analytical purposes a small amount of the obtained solid

was dissolved in DMSO-d₆ with the method employing CsF, DCl, and K_2CO_3 (see the general procedure for the dissolution of PIZOFs). Conversion and endo/exo ratios were calculated from the ¹H NMR signal intensities of the olefinic and allylic protons.

10.3.2 Acylations

Dimethyl 2-maleimidoterephthalate (52) and Dimethyl cis-2-(3carboxyacrylamido)terephthalate (56). A solution of maleic anhydride (5.09 g, 51.9 mmol) and dimethyl 2-aminoterephthalate (9.85 g. 47.1 mmol) in THF (180 mL) was stirred at 80 °C for 15 h. After cooling to room temperature, the solvent was removed in vacuo giving amide 56. K₂CO₃ (6.30 g, 45.7 mmol) and acetic anhydride (200 mL, 1.81 mol) was added and the reaction mixture stirred at 90 °C for 2 h. After cooling to room temperature, the reaction mixture was poured into water and the aqueous phase was extracted with CH₂Cl₂. The combined organic phases were concentrated in vacuo. Column chromatography (Et₂O/CH₂Cl₂ 1:20) gave diester 52 $(R_f = 0.39; 6.32 \text{ g}, 46\%)$ as a colorless solid. Analytical data of N-2,5dimethoxycarbonylphenyl maleic acid monoamide (56): ¹H NMR (250 MHz, CDCl₃): δ = 11.98 (br. s, 1 H, NH), 9.27 (d, ⁴J = 1.5 Hz, 1 H, ArH ortho to N), 8.18 (d, ${}^{3}J$ = 8.3 Hz, 1 H, ArH meta to N), 7.91 (dd, ${}^{3}J$ = 8.3 Hz, ${}^{4}J$ = 1.6 Hz, 1 H, ArH para to N), 6.51 and 6.44 (m, 1 H each, CH=CHCO₂H), 4.00 and 3.98 (s, 3 H each, CH₃). Analytical data of dimethyl 2-maleimidoterephthalate (52): ¹H NMR (250 MHz, CDCl₃): *δ* = 8.16 (m, 2 H, ArH), 7.97 (m, 1 H, ArH), 6.90 (s, 2 H, CH=CHC(O)N), 3.94 and 3.83 (s, 3 H each, CH_3).

Cis-2-(3-carboxyacrylamido)terephthalic acid (57a). A suspension of maleic anhydride (3.78 g, 38.5 mmol) and 2-aminoterephthalic acid (9.85 g, 28.0 mmol) in THF (60 mL) was stirred at 75 °C for 17 h. After cooling to room temperature, the slightly yellow solid was isolated by filtration and washed with THF. Drying in vacuo yielded diacid 57a (5.68 g, 73%) as a slightly yellow solid. ¹H NMR (250 MHz, DMSO-d₆): δ = 13.26 (br. s, 3 H, CO₂H), 11.98 (br. s, 1 H, NH), 9.02 (d, ⁴*J* = 1.5 Hz, 1 H, ArH ortho to N), 8.07 (d, ³*J* = 8.2 Hz, 1 H, ArH meta to N), 7.72 (dd, ³*J* = 8.2 Hz, ⁴*J* = 1.7 Hz, 1 H, ArH para to N), 6.61 and 6.32 (d, ³*J* = 12.0 Hz, 1 H each, CH=CHCO₂H). ¹³C NMR (63 MHz, DMSO-d₆): δ = 168.6 (C(O)NH), 166.42 and

166.38 (ArCO₂H), 163.7 (CH=CH CO_2 H), 139.9 ($C_{Ar}N$), 135.3 ($C_{Ar}CO_2$ H meta to N), 133.1, 131.3, 129.5, 123.6, and 121.2 (ArH and CH=CH), 120.7 ($C_{Ar}CO_2$ H ortho to N).

2-Acetamidoterephthalic acid (**57b**). A suspension of 2-aminoterephthalic acid (1.03 g, 5.67 mmol) and acetic anhydride (0.58 mL, 6.1 mmol) in THF (15 mL) was stirred at 75 °C for 18 h. During the course of the reaction the formation of a colorless solution was followed by the formation of a precipitate. After cooling to room temperature, the colorless solid was isolated by filtration and washed with THF. Drying in vacuo yielded diacid **57b** (552 g, 48%) as a colorless solid. ¹H NMR (250 MHz, DMSO-d₆): δ = 13.30 (br. s, 2 H, OH), 11.00 (br. s, 1 H, NH), 8.99 (d, ⁴J = 1.5 Hz, 1 H, ArH ortho to N), 8.04 (d, ³J = 8.2 Hz, 1 H, ArH meta to N), 7.66 (d, ³J = 8.2 Hz, ⁴J = 1.7 Hz, 1 H, ArH para to N), 2.15 (s, 3 H, CH₃).

2-Butyramidoterephthalic acid (**57c**). A suspension of 2-aminoterephthalic acid (1.01 g, 5.56 mmol) and butyric anhydride (0.98 mL, 6.2 mmol) in THF (15 mL) was stirred at 75 °C for 38 h. During the course of the reaction a colorless solution formed. After cooling to room temperature, water (30 mL) was added and the aqueous phase extracted with Et₂O. The combined organic phases were washed with water and saturated aqueous NaCl solution and dried over Na₂SO₄. The solvent was removed giving a yellow solid (1.26 g) consisting of diacid **57c** (1.19 g, 90%) and 8 mol% of 2-aminoterephthalic acid. ¹H NMR (250 MHz, DMSO-d₆): δ = 13.31 (br. s, 2 H, OH), 11.04 (br. s, 1 H, NH), 9.04 (d, ⁴J = 1.5 Hz, 1 H, ArH ortho to N), 8.05 (d, ³J = 8.2 Hz, 1 H, ArH meta to N), 7.66 (dd, ³J = 8.2 Hz, ⁴J = 1.7 Hz, 1 H, ArH para to N), 2.38 (t, ³J = 7.3 Hz, 2 H, C(O)CH₂), 1.65 (sext, ³J = 7.3 Hz, 2 H, CH₂CH₃), 0.94 (t, ³J = 7.4 Hz, 3 H, CH₃). The NMR spectrum shows additionally signals of 2-aminoterephthalic acid.

2-Iso-butyramidoterephthalic acid (**57d**). A suspension of 2-aminoterephthalic acid (1.00 g, 5.51 mmol) and *iso*-butyric anhydride (0.98 mL, 5.9 mmol) in THF (15 mL) was stirred at 75 °C for 38 h. During the course of the reaction a colorless solution formed. After cooling to room temperature, water (30 mL) was added and the aqueous phase extracted with Et_2O . The combined organic phases were washed

with water and saturated aqueous NaCl solution and dried over Na₂SO₄. The solvent was removed giving a yellow solid (1.29 g) consisting of diacid **57d** (1.21 g, 91%) and 8 mol% of 2-aminoterephthalic acid. ¹H NMR (250 MHz, DMSO-d₆): δ = 13.33 (br. s, 2 H, OH), 11.21 (br. s, 1 H, NH), 9.10 (d, ⁴J = 1.5 Hz, 1 H, ArH ortho to N), 8.11 (d, ³J = 8.2 Hz, 1 H, ArH meta to N), 7.71 (dd, ³J = 8.2 Hz, ⁴J = 1.7 Hz, 1 H, ArH para to N), 2.64 (m, 1 H, CH(CH₃)₂), 1.23 (d, ³J = 6.9 Hz, 6 H, CH₃). The NMR spectrum shows additionally signals of 2-aminoterephthalic acid.

2-Male*iso*-imidoterephthalic acid (54). The reaction was carried out under argon atmosphere using the Schlenk technique. A suspension of amide **57a** (5.68 g, 23.4 mmol) and sodium acetate (1.04 g, 12.7 mmol) in THF (40 mL) and acetic anhydride (16.0 mL, 145 mmol) was stirred at 75 °C for 5 h. A slightly turbid, brown solution formed. After cooling to room temperature, water (200 mL) and aqueous HCl solution (12 wt%; 5 mL) was added and a precipitate formed which was isolated by filtration and washed with water. Drying in vacuo yielded diacid **54** (2.71 g, 44%) as a rose-colored solid. ¹H NMR (250 MHz, DMSO-d₆): δ = 8.43 (d, ⁴*J* = 1.1 Hz, 1 H, ArH ortho to N), 8.23 (d, ³*J* = 8.2 Hz, 1 H, ArH meta to N), 7.99 (d, ³*J* = 8.2 Hz, ⁴*J* = 1.6 Hz, 1 H, ArH para to N), 7.93 and 6.92 (d, ³*J* = 6.2 Hz, 1 H each, CH=CHC(=N)O). ¹³C NMR (63 MHz, DMSO-d₆): δ = 167.5, 165.2, and 158.7 (CO₂H), 142.9 (ArH or CH=CH), 137.6 and 135.0 (**C**_{Ar}CO₂H, C(=N)O or **C**_{Ar}N), 130.6, 130.1, 125.6, and 119.8 (ArH and CH=CH), 116.3 and 107.9 (**C**_{Ar}CO₂H, C(=N)O or **C**_{Ar}N).

2-Maleimidoterephthalic acid (**55**). A suspension of *iso*-imide **54** (452 mg, 1.73 mmol) in toluene (10 mL) and acetic anhydride (0.1 mL, 1.74 mmol) was stirred at 110 °C for 25 h. After cooling to room temperature, the solvent was removed in vacuo. Column chromatography (CH₂Cl₂/acetic acid 10:1) gave a yellow solid (R_f = 0.46; 454 mg) consisting of diacid **55** (426 mg, 94%) and 21 mol% of acetic acid. The mixture was dissolved in toluene (75 mL) and the solvent was removed in vacuo. This solution-and-evaporation procedure was repeated four times with toluene and the acetic acid content could be reduced to 13%. The mixture was dissolved in DMF and the solvent was removed in vacuo yielding a slightly pink solid (421 mg) consisting of 2-maleimidoterephthalic acid (**55**) (418 mg, 93%) and 3 mol% of DMF. ¹H NMR (250 MHz, DMSO-d₆): δ = 13.46 (br. s, 2 H, OH), 8.08 (m, 2 H, ArH), 7.73

(m, 1 H, ArH), 7.23 (s, 2 H, CH=CHC(O)N). ¹³C NMR (63 MHz, DMSO-d₆): δ = 169.8 (C(O)N), 165.8 and 165.7 (CO₂H), 135.1 (CH=CHC(O)N), 134.7 (C_{Ar}N), 133.0 (C_{Ar}CO₂H meta to N), 131.2 (ArH meta to N), 131.1 (C_{Ar}CO₂H ortho to N), 130.1 (ArH para to N), 129.4 (ArH ortho to N).

Acvlation of IRMOF-3 with maleic anhydride. Crystals of as-synthesized IRMOF-3 (148 mg, 0.54 mmol of NH₂) were washed three times with CHCl₃ (see the general procedure for the washing of MOFs) and placed in THF (3 mL). Maleic anhydride (116 mg, 1.18 mmol) was added and the reaction mixture heated to 70 °C without stirring for 17 h. After cooling to room temperature, the solvent was removed via decantation. The crystals were washed with DMF (2x) and CHCl₃ (2x) (see the general procedure for the washing of MOFs) and dried at 10⁻³ mbar. The modified IRMOF material (160 mg) was isolated as brown crystals containing 7 mol% of DMF, 26 mol% of maleic anhydride and 3 mol% of maleic acid. For analytical purpose some crystals (5.0 mg) were dissolved using DCl solution (35 wt% in D₂O; 2.3 µL) in DMSO-d₆ (0.7 mL) and sonication. From the ¹H NMR spectrum a conversion of 94% was calculated. ¹H NMR (250 MHz, DMSO-d₆, DCl, D₂O): δ = 11.2 (br. s, 1 H, OH), 9.01 (d, ${}^{4}J$ = 1.6 Hz, 1 H, ArH ortho to N), 8.07 (d, ${}^{3}J$ = 8.2 Hz, 1 H, ArH meta to N), 7.72 (dd, ${}^{3}J = 8.2$ Hz, ${}^{4}J = 1.7$ Hz, 1 H, ArH para to N), 6.62 and 6.33 (d, ${}^{3}J$ = 12.0 Hz, 1 H each, CH=CHCO₂H). The NMR spectrum shows additionally signals of 2-aminoterephthalic acid, maleic anhydride, maleic acid, and DMF.

Acylation of UiO-66(NH₂) with maleic anhydride. See the general procedure for the acylation of Zr-MOFs. As-synthesised UiO-66(NH₂)^[158] (121 mg, 0.41 mmol of NH₂) was washed twice with ethanol prior to use (see the general procedure for the washing of MOFs). Maleic anhydride (81.4 mg, 0.83 mmol), THF (2 mL). Washing of the crude material: DMF (2x) and CHCl₃ (6x). The modified MOF (102 mg) was obtained as a colorless powder. From the ¹H NMR spectrum a conversion of 12% was calculated. ¹H NMR (250 MHz, DMSO-d₆, NaOD, D₂O): δ = 8.73 (unresolved d, 1 H, ArH ortho to N), 7.77 (d, ${}^{3}J$ = 8.1 Hz, 1 H, ArH meta to N), 7.42 (dd, ${}^{3}J$ = 7.7 Hz, ${}^{4}J$ = 1.8 Hz, 1 H, ArH para to N), 6.22 and 5.72 (d, ${}^{3}J$ = 11.9 Hz, 1 H each, $CH=CHCO_{2}H$). The spectrum additionally NMR shows signals of 2-aminoterephthalate, CHCl₃, and DMF, as well as signals of low intensity with δ = 5.29 (m), 1.14 (m). The PXRD pattern is shown in scheme 22.

Acylation of UiO-66(NH₂) with acetic anhydride. See the general procedure for the acylation of Zr-MOFs. As-synthesised UiO-66(NH₂)^[158] (75.0 mg, 0.26 mmol of NH₂) was washed twice with ethanol prior to use (see the general procedure for the washing of MOFs). Acetic anhydride (120.4 µL, 1.28 mmol), THF (2 mL). Washing of the crude material: DMF (2x) and THF (5x). The modified MOF (58.2 mg) was obtained as a colorless powder. From the ¹H NMR spectrum a conversion of 75% was calculated. ¹H NMR (500 MHz, DMSO-d₆, NaOD, D₂O): δ = 8.73 (unresolved dd, 1 H, ArH ortho to N), 7.81 (d, ³J = 8.1 Hz, 1 H, ArH meta to N), 7.40 (unresolved dd, ³J = 7.8 Hz, 1 H, ArH para to N), 2.16 (s, 3 H, CH₃). The NMR spectrum shows additionally signals of 2-aminoterephthalate and signals of low intensity with δ = 8.36 (s), 3.57 (m), 3.34 (m), 2.87 (m), 2.71 (m), 2.01 (m), 1.73 (m). The PXRD pattern is shown in scheme 22.

Acylation of UiO-66(NH₂) with butyric anhydride. See the general procedure for the acylation of Zr-MOFs. As-synthesised UiO-66(NH₂)^[158] (77.5 mg, 0.27 mmol of NH₂) was washed twice with ethanol prior to use (see the general procedure for the washing of MOFs). Butyric anhydride (202 µL, 1.28 mmol), THF (2 mL). Washing of the crude material: DMF (2x) and THF (5x). The modified MOF (61.1 mg) was obtained as a colorless powder. From the ¹H NMR spectrum a conversion of 74% was calculated. ¹H NMR (500 MHz, DMSO-d₆, NaOD, D₂O): δ = 8.77 (unresolved d, 1 H, ArH ortho to N), 7.82 (d, ³J = 7.9 Hz, 1 H, ArH meta to N), 7.40 (unresolved dd, ³J = 7.5 Hz, 1 H, ArH para to N), 2.25 (t-like, ³J = 7.1 Hz, 2 H, C(O)CH₂), 1.62 (m, 2 H, CH₂CH₃), 0.89 (t, ³J = 7.1 Hz, 3 H, CH₃). The NMR spectrum shows additionally signals of 2-aminoterephthalate, buterate, and DMF, as well as signals of low intensity with δ = 8.37 (s), 3.57 (m), 1.73 (m), 1.19 (m). The PXRD pattern is shown in scheme 22.

Acylation of UiO-66(NH₂) with *iso*-butyric anhydride. See the general procedure for the acylation of Zr-MOFs. As-synthesised UiO-66(NH₂)^[107,171] (76.7 mg, 0.26 mmol of NH₂) from a modulated synthesis with 30 eq. of benzoic acid was washed twice with ethanol prior to use (see the general procedure for the washing of MOFs). *Iso*-butyric anhydride (212 µL, 1.28 mmol), THF (2 mL). Washing of the crude material: DMF (2x) and THF (5x). The modified MOF (62.3 mg) was obtained as a colorless powder. From the ¹H NMR spectrum a conversion of 32% was calculated. ¹H NMR (500 MHz, DMSO-d₆, NaOD, D₂O): δ = 8.77 (d, ⁴*J* = 1.5 Hz, 1 H, ArH ortho to N), 7.82 (d, ³*J* = 7.7 Hz, 1 H, ArH meta to N), 7.40 (unresolved dd, ³*J* = 7.7 Hz, 1 H, ArH para to N), 2.45 (m, 1 H, CH(CH₃)₂), 1.12 (d, ³*J* = 6.8 Hz, 6 H, CH₃). The NMR spectrum shows additionally signals of 2-aminoterephthalate, *iso*-buterate, and DMF, as well as signals of low intensity with δ = 8.73 (s), 8.37 (s), 7.51 (m), 7.29 (m), 6.51(s), 6.35 (d, *J* = 7.7 Hz), 1.73 (m), 1.63 (m). The PXRD pattern is shown in scheme 22.

Acylation of UiO-68(NH₂) with maleic anhydride. See the general procedure for the acylation of Zr-MOFs. As-synthesised UiO-68(NH₂) (10.1 mg, 0.02 mmol of NH₂) was washed twice with ethanol prior to use (see the general procedure for the washing of MOFs). Maleic anhydride (4.9 mg, 0.05 mmol), THF (1 mL). Washing of the crude material: DMF (2x) and CHCl₃ (6x). The modified MOF (7.0 mg) was obtained as a colorless powder. From the ¹H NMR spectrum a conversion of 50% was calculated. ¹H NMR (500 MHz, DMSO-d₆, NaOD, D₂O): δ = 7.90 (m, 4 H, H-3 and H-3"), 7.78 (d, ³J = 7.7 Hz, 1 H, H-3'), 7.60 and 7.42 (2 halves of 2 AA'XX' spin systems, 2 H each, H-2 and H-2"), 7.27 (m, 2 H, H-5' and H-6'), 5.81 and 5.67 (d, ³J = 7.7 Hz, 1 H each, CH=CH). The NMR spectrum shows additionally signals of 2'-amino-4,4"-terphenyldicarboxylate and CHCl₃, as well as signals of low intensity with δ = 7.07 (s), 3.57 (m), 3.15 (s), 2.15 (s), 1.73 (m).

10.3.3 Alkylations

Alkylation of UiO-66(NH₂) with methyl iodide. See the general procedure for the alkylation of Zr-MOFs. UiO-66(NH₂) (74.0 mg, 0.25 mmol of NH₂), methyl iodide (80 µL, 1.28 mmol), K₂CO₃ (170 mg, 1.23 mmol). The modified MOF (53.2 mg) was obtained as a slightly yellow powder. From the ¹H NMR spectrum a conversion of 45% was calculated. ¹H NMR (500 MHz, DMSO-d₆, NaOD, D₂O): δ = 7.64 (m, 1 H, ArH meta to N), 7.04 (m, 1 H, ArH ortho to N), 6.90 (m, 1 H, ArH para to N), 2.73 (s, 3 H, CH₃). The NMR spectrum shows additionally signals of 2-aminoterephthalate, THF, and MeI as well as signals of low intensity with δ = 8.37 (s), 5.89 (m), 3.35 (m), 1.95 (m), 1.73 (m), 1.64 (m), 1.57 (m), 1.20 (m). The PXRD pattern is shown in scheme 25.

Alkylation of UiO-66(NH₂) with allyl bromide. See the general procedure for the alkylation of Zr-MOFs. UiO-66(NH₂) (75.1 mg, 0.26 mmol of NH₂), allyl bromide (108 µL, 1.28 mmol), K₂CO₃ (180 mg, 1.30 mmol). The modified MOF (56.9 mg) was obtained as a slightly yellow powder. From the ¹H NMR spectrum a conversion of 63% was calculated. ¹H NMR (500 MHz, DMSO-d₆, NaOD, D₂O): δ = 7.65 (d, ³J = 7.6 Hz, 1 H, ArH meta to N), 7.04 (unresolved d, 1 H, ArH ortho to N), 6.98 (unresolved dd, ³J = 8.0 Hz, 1 H, ArH para to N), 5.53 (m, 1 H, CH=CH₂), 5.22 (apparent d, ³J = 17.1 Hz, 1 H, CH₂CH=CH_{trans}), 5.07 (apparent d, ³J = 9.3 Hz, 1 H, CH₂CH=CH_{cis}), 3.72 (m, 2 H, NHCH₂). The NMR spectrum shows additionally signals of 2-aminoterephthalate, THF, as well as signals of low intensity with δ = 8.37 (s), 6.44 (m), 5.62 (m), 3.34 (m), 2.90 (s), 2.16 (s), 1.56 (m), 1.19 (s), 0.81 (m). The PXRD pattern is shown in scheme 25.

Alkylation of UiO-66(NH₂) with propargyl bromide. See the general procedure for the alkylation of Zr-MOFs. UiO-66(NH₂) (75.9 mg, 0.26 mmol of NH₂), propargyl bromide in toluene (80 wt%; 142 µL, 1.28 mmol), K₂CO₃ (176 mg, 1.28 mmol). The modified MOF (29.8 mg) was obtained as a slightly brownish powder. From the ¹H NMR spectrum a conversion of 54% was calculated. ¹H NMR (500 MHz, DMSO-d₆, NaOD, D₂O): δ = 7.67 (d, ³J = 7.6 Hz, 1 H, ArH meta to N), 7.12 (unresolved d, 1 H, ArH ortho to N), 6.98 (unresolved dd, ³J = 7.5 Hz, 1 H, ArH para to N), 3.90 (s, 2 H, CH₂), 3.07 (s, 1 H, C≡CH). The NMR spectrum shows additionally

signals of 2-aminoterephthalate, THF, as well as signals of low intensity with δ = 8.26 (s), 7.46 (m), 6.56 (m), 5.86 (m), 5,89 (m), 3.34 (m), 2.15 (s), 1.95 (m), 1.73 (m), 1.56 (m), 1.16 (m). The PXRD pattern is shown in scheme 25.

Alkylation of UiO-66(NH₂) with benzyl bromide. See the general procedure for the alkylation of Zr-MOFs. UiO-66(NH₂) (74.6 mg, 0.26 mmol of NH₂), benzyl bromide (152 µL, 1.28 mmol), K₂CO₃ (180 mg, 1.30 mmol). The modified MOF (56.8 mg) was obtained as a slightly yellow powder. From the ¹H NMR spectrum a conversion of 40% was calculated. ¹H NMR (500 MHz, DMSO-d₆, NaOD, D₂O): δ = 7.66 (d, ³J = 7.5 Hz, 1 H, ArH meta to N), 7.30 and 7.19 (m, 5 H, ArH ortho, meta and para to CH₂), 7.06 (unresolved d, 1 H, ArH ortho to N), 6.90 (unresolved dd, 1 H, ArH para to N), 4.32 (br. s, 2 H, CH₂). The NMR spectrum shows additionally signals of 2-aminoterephthalate, THF, as well as signals of low intensity with δ = 8.35 (s), 7.88, 5.82 (m), 5.58 (m), 3.35 (m), 2.15 (s), 1.95 (m), 1.54 (m), 1.19 (m), 0.80 (m). The PXRD pattern is shown in scheme 25.

10.3.4 Azide-alkyne cycloadditions

4-Methylbenzyl azide (**60**). A suspension of sodium azide (930 mg, 14.3 mmol) and 4-methylbenzyl chloride (1.0 mL, 7.55 mmol) in DMF (15 mL) was stirred at room temperature for 18 h. The reaction mixture was poured into water and the aqueous phase was extracted with Et₂O. The combined organic phases were washed extensively with water. The solvent was removed in vacuo giving azide **60** as a colorless liquid (1.05 g, 94%) which was stored in a refrigerator. ¹H NMR (500 MHz, DMSO-d₆): δ = 7.26 and 7.21 (AA'XX' spin system, 2 H each, ArH), 4.38 (s, 2 H, CH₂), 2.31 (s, 3 H, CH₃).

Azide-alkyne cycloaddition of diacid 4o. To a solution of diacid **4o** (6.1 mg, 0.014 mmol) and 4-methylbenzyl azide (**60**) (9.7 mg, 0.066 mmol) in DMF (1 mL) was added CuBr (1.6 mg, 0.011 mmol). After 17 h of stirring at room temperature, water was added and the yellow precipitate was isolated by centrifugation and washed consecutively with aqueous ammonia solution (5%), aqueous HCl solution (12 wt%), and water. Drying in vacuo at 10⁻³ mbar gave the cycloaddition product **61** (6.4 mg, 79%) as a yellow solid. ¹H NMR (500 MHz, DMSO-d₆): δ = 8.25 (s, 1 H, NCH), 7.99

and 7.94 (2 halves of 2 AA'XX' spin systems, 2 H each, ArH ortho to CO₂H), 7.66 and 7.53 (2 halves of 2 AA'XX' spin systems, 2 H each, ArH meta to CO₂H), 7.46 and 7.24 (s, 1 H each, ArH ortho to O), 7.17 and 7.10 (AA'XX' spin system, 2 H each, ArH ortho and meta to Me), 5.57 and 5.25 (s, 2 H each, NCH₂ and OCH₂), 3.86 (s, 3 H, OCH₃), 2.22 (s, 3 H, CH₃). The NMR spectrum shows additionally signals of CH₂Cl₂ and THF, as well as signals of low intensity with δ = 5.11 (m), 5.00 (m), 4.26 (m) and is illustrated in scheme 29 and figure 27. HRMS (MALDI) m/z: 620.17910 ([M+Na⁺)], 598.19674 ([M+H⁺)], calcd for C₃₆H₂₇N₃O₆Na⁺: 620.17921, calcd for C₃₆H₂₈N₃O₆⁺: 598.19726.

Azide-alkyne cycloaddition of PIZOF-3. Crystals of as-synthesized PIZOF-3 (11.7 mg, 0.021 mmol of C≡CH) were washed six times with THF (see the general procedure for the washing of MOFs) and placed in DMF (0.8 mL). 4-Methylbenzylazide (60) (10.1 mg, 0.069 mmol) and CuBr (10.0 mg, 0.070 mmol) were added. After 19 h at room temperature without stirring, the suspension was centrifuged for 5 min at 6000 RPM. The solvent was removed by decanting. The residue was washed with DMF (3x), THF (3x), and MeCN (4x) (see the general procedure for the washing of MOFs). The greenish powder (12.1 mg) was dried in vacuo. For analytical purposes a small amount of the obtained solid was dissolved in DMSO-d₆ (see the general procedure for the dissolution of PIZOFs). From the ¹H NMR spectrum a conversion of 98% was calculated. ¹H NMR (500 MHz, DMSO-d₆, CsF, DCl, D₂O, K₂CO₃): δ = 8.26 (s, 1 H, NCH), 7.98 and 7.93 (apparent d, 2 H each, ArH ortho to CO₂H), 7.65 and 7.53 (apparent d, 2 H each, ArH meta to CO₂H), 7.45 and 7.23 (s, 1 H each, ArH ortho to O), 7.18 and 7.11 (AA'XX' spin system, 2 H each, ArH ortho and meta to Me), 5.57 and 5.26 (s, 2 H each, NCH₂ and OCH₂), 3.87 (s, 3 H, OCH₃), 2.23 (s, 3 H, CH₃). The NMR spectrum shows additionally signals of diacid 4o and is illustrated in scheme 29 and figure 27. HRMS (MALDI) m/z: 620.17895 ([M+Na⁺)], 598.19674 ([M+H⁺)], calcd for C₃₆H₂₇N₃O₆Na⁺: 620.17921, calcd for $C_{36}H_{28}N_3O_6^+$: 598.19726. The PXRD pattern is shown in figure 26.

10.3.5 Diels-Alder cycloadditions

Diels-Alder cycloaddition of maleic anhydride with diester 23e. See the general procedure for the Diels-Alder cycloaddition of diester **23e**. Diester **23e** (33.8 mg, 0.062 mmol), maleic anhydride (45.6 mg, 0.465 mmol), toluene (1.0 mL), 70 °C. Conversion of diester **23e**: 92%. Exo-**63a** formed exclusively. ¹H NMR (500 MHz, DMSO-d₆): δ = 8.01 and 7.99 (2 halves of 2 AA'XX' spin systems, 4 H, ArH ortho to CO₂Me), 7.69 and 7.65 (2 halves of 2 AA'XX' spin systems, 2 H each, ArH meta to CO₂Me), 7.27 and 7.25 (s, 1 H each, ArH ortho to O), 6.61 (dd, ³*J* = 5.6 Hz and 1.4 Hz, 1 H, OCHCH=CH), 6.58 (d, ³*J* = 5.7 Hz, 1 H, OCHCH=CH), 5.29 (d, ³*J* = 1.6 Hz, 1 H, OCHCH=CH), 4.14 (apparent t, ³*J* = 6.1 Hz, 2 H, OCH₂), 3.88 (s, 6 H, CO₂CH₃), 3.87 (s, 3 H, ArOCH₃), 3.47 and 3.27 (d, ³*J* = 6.6 Hz, 1 H each, OCH₂CH₂CH). The NMR spectrum shows additionally signals of maleic anhydride and of starting compound diester **23e**.

Diels-Alder cycloaddition of maleimide with diester 23e. See the general procedure for the Diels-Alder cycloaddition of diester **23e**. Diester **23e** (18.9 mg, 0.034 mmol), maleimide (18.2 mg, 0.187 mmol), toluene (0.5 mL), 70 °C. Conversion of diester **23e**: 96%. Exo-**63b** was formed exclusively. ¹H NMR (500 MHz, DMSO-d₆): $\delta = 11.18$ (s, 1 H, NH), 8.004 and 8.000 (2 halves of 2 AA'XX' spin systems, 4 H, ArH ortho to CO₂Me), 7.68 and 7.67 (2 halves of 2 AA'XX' spin systems, 2 H each, ArH meta to CO₂Me), 7.28 and 7.25 (s, 1 H each, ArH ortho to O), 6.55 (dd, ³*J* = 5.7 Hz and 1.3 Hz, 1 H, OCHCH=CH), 6.52 (d, ³*J* = 5.7 Hz, 1 H, OCHCH=CH), 5.07 (d, ³*J* = 1.5 Hz, 1 H, OCHCH=CH), 4.13 (m, 2 H, OCH₂CH₂CH₂), 3.88 (s, 6 H, CO₂CH₃), 3.87 (s, 3 H, ArOCH₃), 3.00 and 2.80 (d, ³*J* = 6.4 Hz, 1 H each, CHC(=O)), 2.23 and 2.09 (m, 1 H each, OCH₂CH₂CH₂), 2.04 and 1.91 (m, 1 H each, OCH₂CH₂CH₂). The spectrum shows additionally signals of maleimide and diester **23e** and is illustrated in scheme 32. HRMS (ESI) *m/z*: 668.18935 ([M+Na⁺]), calcd for C₃₈H₃₁NO₉Na⁺: 668.18910.

Diels-Alder cycloaddition of N-methylmaleimide with diester 23e. See the general procedure for the Diels-Alder cycloaddition of diester 23e. Diester 23e (31.6 mg, 0.058 mmol), N-methylmaleimide (33.0 mg, 0.297 mmol), toluene (1.0 mL). Reaction at 100 °C: 52% conversion of diester 23e; ratio of exo-63c to endo-63c = 4:1. Reaction at 70 °C: 99% conversion of diester 23e; ratio of exo-63c to endo-63c = 5:1. ¹H NMR (500 MHz, DMSO-d₆): Signals assigned to exo-63c: δ = 8.00 and 7.98 (2 halves of 2 AA'XX' spin systems, 4 H, ArH ortho to CO₂Me), 7.69 and 7.67 (2 halves of 2 AA'XX' spin systems, 2 H each, ArH meta to CO₂Me), 7.27 and 7.25 (s, 1 H each, ArH ortho to O), 6.56 (dd, ${}^{3}J = 5.7$ Hz and 1.7 Hz, 1 H, OCHCH=CH), 6.54 (d, ${}^{3}J$ = 5.7 Hz, 1 H, OCHCH=CH), 5.09 (d, ${}^{3}J$ = 1.3 Hz, 1 H, OCHCH=CH), 4.13 (m, 2 H, OCH₂), 3.88 (s, 6 H, CO₂CH₃), 3.87 (s, 3 H, ArOCH₃), 3.05 and 2.87 (d, ${}^{3}J$ = 6.4 Hz, 1 H each, CHC(=O)), 2.72 (s, 3 H, NCH₃), 2.23 and 2.07 (m, 1 H each, OCH₂CH₂CH₂), 2.05 and 1.91 (m, 1 H each, OCH₂CH₂CH₂). Signals assigned to endo-63c: δ = 8.00 (2 halves of 2 AA'XX' spin systems, 4 H, ArH ortho to CO₂Me), 7.69 (2 halves of 2 AA'XX' spin systems, 2 H each, ArH meta to CO₂Me), 7.27 and 7.25 (s, 1 H each, ArH ortho to O), 6.42 (unresolved dd, ${}^{3}J = 5.7$ Hz, 1 H, OCHCH=CH), 6.38 (d, ${}^{3}J = 5.8$ Hz, 1 H, OCHCH=CH), 5.25 (dd, ³J = 5.5 Hz and 1.1 Hz, 1 H, OCHCH=CH), 4.13 (m, 2 H, OCH₂), 3.88 (s, 6 H, CO_2CH_3), 3.87 (s, 3 H, ArOCH₃), 3.66 (dd, ³J = 7.2 Hz and 5.8 Hz, 1 H, CHC(=O) next to OCHCH=CH), 3.27 (d, ${}^{3}J$ = 7.5 Hz, 1 H, CHC(=O) next to OCAlkCH=CH), 2.67 (s, 3 H, NCH₃), 2.23 and 2.07 (m, 1 H each, OCH₂CH₂CH₂), 2.05 and 1.91 (m, 1 H each, OCH₂CH₂CH₂). The NMR spectrum shows additionally signals of N-methylmaleimide, toluene, and diester 23e and is illustrated in figure s1. HRMS (ESI) m/z: 682.20507 ([M+Na⁺]), calcd for C₃₉H₃₃NO₉Na⁺: 682.20475.

Diels-Alder cycloaddition of N-phenylmaleimide with diester 23e. See the general procedure for the Diels-Alder cycloaddition of diester **23e**. Diester **23e** (32.5 mg, 0.059 mmol), N-phenylmaleimide (46.1 mg, 0.266 mmol), toluene (1.0 mL). Reaction at 100 °C: 64% conversion of diester **23e**; ratio of exo-**63d** to endo-**63d** = 1:1. Reaction at 70 °C: 98% conversion of diester **23e**; ratio of exo-**63d** to endo-**63d** = 2:1. ¹H NMR (500 MHz, DMSO-*d*₆): Signals assigned to exo-**3d**: δ = 7.99 and 7.92 (2 halves of 2 AA'XX' spin systems, 2 H each, ArH ortho to CO₂Me), 7.69 and 7.66 (2 halves of 2 AA'XX' spin systems, 4 H, ArH meta to

CO₂Me), 7.28 and 7.25 (s, 1 H each, ArH ortho to O), 6.62 (m, 2 H, OCHCH=CH), 5.21 (d, ${}^{3}J$ = 1.4 Hz, 1 H, OCHCH=CH), 4.15 (m, 2 H, OCH₂), 3.88-3.87 (several s some of which belong to endo-63d, 9 H, CH₃), 3.23 and 3.02 (d, ${}^{3}J = 6.5$ Hz, 1 H each, CHC(=O)), 2.28 and 2.14 (m, 1 H each, OCH₂CH₂CH₂), 2.08 and 1.97 (m, 1 H each, OCH₂CH₂CH). The signals of the phenyl substituent are hidden beneath the signals of residual N-phenylmaleimide. Signals assigned to endo-63d: $\delta = 8.01$ and 7.95 (2 halves of 2 AA'XX' spin systems, 2 H each, ArH ortho to CO₂Me), 7.68 (2 halves of 2 AA'XX' spin systems, 4 H, ArH meta to CO₂Me), 7.28 and 7.26 (s, 1 H each, ArH ortho to O), 6.60 (m, 2 H, OCHCH=CH), 5.36 (dd, ${}^{3}J$ = 5.6 Hz and 1.5 Hz, 1 H, OCHCH=CH), 4.15 (m, 2 H, OCH₂), 3.88-3.87 (several s some of which belong to exo-63d, 9 H, CH₃), 3.83 (dd, ${}^{3}J$ = 7.5 Hz and 5.6 Hz, 1 H, CHC(=O) next to OCHCH=CH), 3.43 (d, ${}^{3}J$ = 7.6 Hz, 1 H, CHC(=O) next to OCAlkCH=CH), 2.28 and 2.14 (m, 1 H each, OCH₂CH₂CH₂), 2.08 and 1.97 (m, 1 H each, OCH₂CH₂CH). The signals of the phenyl substituent are hidden beneath the signals of residual N-phenylmaleimide. The NMR spectrum shows additionally signals of N-phenylmaleimide, which cover the signals of the phenyl substituent of the Diels-Alder product, and signals of diester **23e** and is illustrated in figure s2. HRMS (ESI) m/z: 744.22048 ([M+Na⁺]), calcd for C₄₄H₃₅NO₉Na⁺: 744.22040.

Diels-Alder cycloaddition of maleimide with PIZOF-8. See the general procedure for the Diels-Alder cycloaddition of PIZOF-8. PIZOF-8 (6.5 mg, 9.8 µmol of furan moieties), maleimide (55.1 mg, 0.57 mmol). The exclusive formation of the exo-isomer was found. From the ¹H NMR spectrum a conversion of 91% was calculated. ¹H NMR (500 MHz, DMSO-d₆, CsF, DCl, D₂O, K₂CO₃): δ = 11.20 (s, 1 H, NH), 7.975 and 7.969 (2 halves of 2 AA'XX' spin systems, 4 H, ArH ortho to CO₂H), 7.65 and 7.64 (2 halves of 2 AA'XX' spin systems, 2 H each, ArH meta to CO₂H), 7.26 and 7.23 (s, 1 H each, ArH ortho to O), 6.55 (unresolved dd, ³*J* = 5.4 Hz, 1 H, OCHCH=CH), 6.51 (d, ³*J* = 5.7 Hz, 1 H, OCHCH=CH), 5.06 (unresolved d, 1 H, OCHCH=CH), 4.12 (m, 2 H, OCH₂CH₂CH₂), 3.86 (s, 3 H, ArOCH₃), 3.00 and 2.80 (d, ³*J* = 6.4 Hz, 1 H each, CHC(=O)), 2.22 and 2.09 (m, 1 H each, OCH₂CH₂CH₂), 2.06 and 1.91 (m, 1 H each, OCH₂CH₂CH₂). The spectrum shows additionally signals of diacid **4e**, THF, and signals of low intensity with δ = 8.05 (s), 7.12 (d), 5.36 (m), 5.29 (m), 5.19 (m), 4.25 (m), 3.82 (s), 2.88 (m), 2.72 (s), 1.61 (m), 1.34 (s), 1.22 (s).

HRMS (ESI): m/z: 616.16011 ([M-H⁺]), calcd for C₃₆H₂₆NO₉⁻: 616.16131. The NMR spectrum is shown in scheme 32 and the PXRD pattern is shown in figure 28.

Diels-Alder cycloaddition of N-methylmaleimide with PIZOF-8. See the general procedure for the Diels-Alder cycloaddition of PIZOF-8. PIZOF-8 (5.6 mg, 8.5 µmol of furan mojeties). N-methylmaleimide (12.0 mg. 0.11 mmol). From the ¹H NMR spectrum a conversion of 58% and a ratio of exo- to endo-isomer of 20:1 were calculated. ¹H NMR (500 MHz, DMSO-d₆, CsF, DCl, D₂O, K₂CO₃): Signals assigned to the exo-isomer: δ = 7.98 (2 halves of 2 AA'XX' spin systems, 4 H, ArH ortho to CO₂H), 7.65 (2 halves of 2 AA'XX' spin systems, 4 H, ArH meta to CO₂H), 7.26 and 7.24 (s, 1 H each, ArH ortho to O), 6.57 (dd, ${}^{3}J = 5.8$ Hz and 1.1 Hz, 1 H, OCHCH=CH), 6.53 (d, ${}^{3}J$ = 5.6 Hz, 1 H, OCHCH=CH), 5.08 (d, ${}^{3}J$ = 1.3 Hz, 1 H, OCHCH=CH), 4.11 (m, 2 H, OCH₂), 3.86 (s, 3 H, ArOCH₃), 3.05 and 2.87 (d, ${}^{3}J$ = 6.4 Hz, 1 H each, CHC(=O)), 2.71 (s, 3 H, NCH₃), 2.23 and 2.13 (m, 1 H each, OCH₂CH₂CH₂), 2.06 and 1.91 (m, 1 H each, OCH₂CH₂CH₂). Signals assigned to endo-isomer: δ = 7.98 (2 halves of 2 AA'XX' spin systems, 4 H, ArH ortho to CO₂H), 7.65 (2 halves of 2 AA'XX' spin systems, 2 H each, ArH meta to CO₂H), 7.26 and 7.24 (s, 1 H each, ArH ortho to O), 6.40 (unresolved dd, ${}^{3}J = 5.4$ Hz, 1 H, OCHCH=CH), 6.36 (d, ${}^{3}J$ = 6.0 Hz, 1 H, OCHCH=CH), 5.24 (dd, ${}^{3}J$ = 5.8 Hz and 0.8 Hz, 1 H, OCHCH=CH), 4.11 (m, 2 H, OCH₂), 3.86 (s, 3 H, ArOCH₃), 2.71 (s, 3 H, NCH₃), 2.23 and 2.13 (m, 1 H each, OCH₂CH₂CH₂), 2.06 and 1.91 (m, 1 H each, OCH₂CH₂CH₂). The signals of the two protons [CHC(=O) next to OCHCH=CH and next to OCAlkCH=CH] are covered by the water signal. The NMR spectrum shows additionally signals of diacid **4e** and signals of low intensity with δ = 8.15 (s), 7.12 (d), 6.78 (d), 6.62 (m), 6.25 (d), 5.36 (m), 5.29 (m), 4.26 (t), 3.82 (s), 2.68 (m), 2.66 (s), 1.40 (m), 1.22 (s), 0.82 (s) and is illustrated in figure s1. The PXRD pattern is shown in figure 28

Diels-Alder cycloaddition of N-phenylmaleimide with PIZOF-8. See the general procedure for the Diels-Alder cycloaddition of PIZOF-8. PIZOF-8 (10.6 mg, 16.0 µmol of furan moieties), N-phenylmaleimide (25.6 mg, 0.15 mmol). From the ¹H NMR spectrum a conversion of 20% was calculated. No statement on the exo to endo ratio can be given because the signal to noise ratio of the ¹H NMR spectrum is too low for

the extraction of the data. Due to the high amount of THF the NMR spectrum is not representative for DMSO-d₆. HRMS (ESI): m/z: 716.19087 ([M+Na⁺]), calcd for C₄₂H₃₁NO₉Na⁺: 716.18910. The NMR spectrum is illustrated in figure s2 and the PXRD pattern is shown in figure 28.

10.4 Alkyne protecting groups

10.4.1 General procedures

General procedure for the preparation of the hydrosilanes 70: To a stirred suspension of magnesium turnings in THF was added one drop of 1,2-dibromoethane. The mixture was warmed gently until evolution of ethylene was evident. After the ethylene evolution ceased alkylbromide 73 or 75 and THF were added and the mixture was stirred at 75 °C for 1.5 h. The mixture was cooled in an ice-bath and copper(I) cyanide and chlorosilane 72 were added. The mixture was allowed to reach room temperature and stirred for 14 h. Afterwards the reaction mixture was poured into ice-water and extracted three times with Et₂O. The combined organic layers were washed with water and saturated aqueous NaCl solution and dried over MgSO₄. The solvent was removed in vacuo. Fractional distillation gave the hydrosilanes **70** as colorless liquids.

General procedure for the preparation of the terminal alkynes 68: To a cooled (ice bath) solution of hydrosilane **70** in THF was added trichloro-*iso*-cyanuric acid (TCCA). The reaction mixture was allowed to reach room temperature and stirred for 24 h. A colorless precipitate formed. The solvent was removed in vacuo and cyclohexane (5 mL) was added. The suspension was filtered under argon and the solvent was removed in vacuo. The isolated chlorosilanes **77** were stored under argon.

Acetylene gas was bubbled through cooled (dry ice/acetone bath) THF for a period of 10 min. *n*-Butyllithium in hexane (1.6 M) was cautiously added. Acetylene gas was bubbled through the reaction mixture for a period of 10 min. Trimethylsilyl cyanide (15 mol%) and the crude chlorosilanes **77** were added and the mixture was allowed to reach to room temperature. After stirring for 18 h the mixture was poured into ice

water and extracted Et₂O. The combined organic phases were washed with saturated aqueous NaCl solution and dried over MgSO₄. The solvent was removed in vacuo. Column chromatography gave the terminal alkynes **68** as colorless liquids.

General procedure for the alkyne deprotection with ⁿ**Bu**₄**NF**. The reactions were performed under ambient atmosphere. To a stirred solution of 1,4-dialkynylbenzene **82** (ca. 5 mg) in THF (0.7 mL) was added tetrabutylammonium fluoride in THF (1.0 mol/L; 4.4 eq.). After 2 h at room temperature, water was added and the mixture was extracted with CH₂Cl₂. The combined organic phases were washed with saturated aqueous NaCl solution and the solvent was removed in vacuo. The ¹H NMR spectra of the crude products evidenced the complete cleavage of all five different protecting groups in the 1,4-dialkynylbenzene: ¹H NMR (250 MHz, CDCl₃): δ = 7.28 (s, 2 H, ArH), 3.27 (s, 2 H, C≡CH), 2.70 (t-like, 4 H, ArCH₂), 1.57 (m, 4 H, ArCH₂CH₂), 1.31 (m, 12 H, CH₂), 0.88 (t-like, 6 H, CH₂CH₃).

General procedure for the treatment of the alkynes 82 with K₂CO₃ in methanol. The reactions were performed under ambient atmosphere. To 1,4-dialkynylbenzene **82** (ca. 5 mg) was added a saturated solution of K₂CO₃ in methanol (2 mL) and the solution was stirred for 2 h or 24 h at room temperature. Afterwards water was added and the mixture was extracted with CH₂Cl₂. The combined organic phases were washed with saturated aqueous NaCl solution and dried over MgSO₄. The solvent was removed in vacuo. In the case of PMPE-DMS protected 1,4-dialkynylbenzene **82b** the ¹H NMR spectrum showed complete deprotection of the terminal alkyne moieties after 2 h. In the other four cases with 1,4-alkynylbenzenes **82a,c-e** after 2 h no cleavage of the different protecting groups was found. In the case of PMP-DIPS protected 1,4-dialkynylbenzenes **82a** after 24 h beginning deprotecion was determined (<1%). For the 1,4-dialkynylbenzenes **82c-e** even after 24 h no cleavage of the protecting groups was found. General procedure for the treatment of 82 with NaOH in methanol/THF/water. These reactions were performed under ambient atmosphere. To a solution of 1,4-dialkynylbenzene 82 (ca. 5 mg) in THF (0.4 mL) and methanol (0.5 ml) was added aqueous NaOH solution (5.0 mol/L; 0.1 mL). The reaction mixture was stirred for 1 h, 16 h, 69 h, or 10 d at room temperature. Water was added and the mixture was extracted with CH_2Cl_2 . The combined organic phases were washed with saturated aqueous NaCl solution and dried over MgSO₄. The solvent was removed in vacuo. The results of the recorded ¹H NMR spectra are shown in Abb. 35.

10.4.1 Polar tagged alkynes

4-Methoxyphenyldi*-iso*-propylsilane (PMP-DIPS-H) (**70a**). To a cooled solution (dry ice/acetone bath) of 4-bromoanisole (2.2 mL, 18 mmol) in THF (50 mL) was added dropwise *tert*-butyllithium in pentane (1.7 mol/L; 20.3 mL, 34.5 mmol) over a period of 10 min. Chlorodi-*iso*-propylsilane (3.0 mL, 17.4 mmol) was added and the mixture was allowed to reach room temperature. The reaction mixture was stirred 15 h, poured into ice water and extracted with Et₂O. The combined organic phases were washed with saturated aqueous NaCl solution and dried over MgSO₄. The solvent was removed in vacuo. Fractional distillation (75 °C, 0.010 mbar) gave hydrosilane **70a** (3.7 g, 86%) as a colorless liquid. ¹H NMR (250 MHz, CDCl₃): δ = 7.43 and 6.89 (AA'XX' spin system, 2 H each, ArH meta and ortho to O, respectively), 3.91 (t, ³J = 3.0 Hz, 1 H, SiH), 3.81 (s, 3 H, OCH₃), 1.20 (m, 2 H, CH(CH₃)₂), 1.05 and 0.98 (d, ³J = 7.0 Hz, 6 H each, CH(CH₃)₂). ¹³C NMR (63 MHz, CDCl₃): δ = 160.5 (C_{Ar}O), 136.9 (C_{Ar}Si), 124.8 (C_{Ar} ortho to Si), 113.5 (C_{Ar} ortho to O), 54.9 (OCH₃), 18.7 and 18.5 (CH(CH₃)₂), 10.8 (CH(CH₃)₂).

2-(4-Methoxyphenyl)ethyldimethylsilane (PMPE-DMS-H) (**70b**). See the general procedure for the preparation of the hydrosilanes **70**. Mg (232 mg, 9.54 mmol), THF (3 mL), 2-(4-methoxyphenyl)ethylbromide (**73**) (1.0 mL, 6.4 mmol), THF (7 mL), CuCN (83.6 mg, 0.93 mmol) and chlorodimethylsilane (**72b**) (1.1 mL, 9.9 mmol). Fractional distillation (54 °C, 0.025 mbar) gave hydrosilane **70b** (1.1 g, 86%) as a colorless liquid. ¹H NMR (250 MHz, CDCl₃): δ = 7.11 and 6.81 (AA'XX' spin system, 2 H each, ArH meta and ortho to O, respectively), 3.88 (m, 1 H, SiH), 3.78 (s, 3 H,

OCH₃), 2.62 and 0.92 (m, 2 H each, SiCH₂CH₂), 0.07 (d, ${}^{3}J$ = 3.7 Hz, 6 H, SiCH₃). ¹³C NMR (63 MHz, CDCI₃): δ = 157.6 (C_{Ar}O), 136.9 (**C**_{Ar}CH₂), 128.7 (C_{Ar}H meta to O), 113.7 (C_{Ar}H ortho to O), 55.3 (OCH₃), 29.6 (ArCH₂), 16.4 (SiCH₂), -4.5 (SiCH₃).

Di*tert*-butyl-2-(4-methoxyphenyl)ethylsilane (PMPE-DTBS-H) (70c). See the general procedure for the preparation of the hydrosilanes **70**. Mg (230 mg, 9.46 mmol), THF (3 mL), 2-(4-methoxyphenyl)ethylbromide (**73**) (1.0 mL, 6.4 mmol), THF (7 mL), CuCN (78 mg, 0.87 mmol) and di-*tert*-butylchlorosilane (**72c**) (2.0 mL, 9.8 mmol). Fractional distillation (104 °C, 0.033 mbar) gave hydrosilane **70c** (1.1 g, 59%) as a colorless liquid. ¹H NMR (250 MHz, CDCl₃): δ = 7.12 and 6.83 (AA'XX' spin system, 2 H each, ArH meta and ortho to O, respectively), 3.78 (s, 3 H, OCH₃), 3.38 (X part of AA'MM'X spin system, 1 H, SiH), 2.70 (AA' part of AA'MM'X spin system, 2 H, ArCH₂), 1.03 (s, 18 H, C(CH₃)₃), 0.94 (MM' part of AA'MM'X, 2 H, SiCH₂). ¹³C NMR (63 MHz, CDCl₃): δ = 157.6 (C_{Ar}O), 137.6 (C_{Ar}CH₂), 128.6 (C_{Ar}H meta to O), 113.8 (C_{Ar}H ortho to O), 55.3 (OCH₃), 32.2 (ArCH₂), 28.8 (C(CH₃)₃), 18.9 (C(CH₃)₃), 11.7 (SiCH₂).

1-Bromo-2-(4-methoxyphenyl)propane (75). Zinc powder (100 mg, 1.53 mmol) was added to a cooled (ice bath) solution of HBr in acetic acid (33 wt%; 58 mL, 0.24 mol) which was protected against incidence of light. Afterwards 4-allylanisol (12.6 mL, 82.0 mmol) was added dropwise and the reaction mixture was allowed to reach room temperature. After 21 h of stirring at room temperature the reaction mixture was poured into ice water and extracted with Et₂O. The combined organic phases were washed with saturated aqueous NaHCO₃ solution and saturated aqueous NaCl solution and dried over MgSO₄. The solvent was removed in vacuo. Fractional distillation (99 °C, 0.08 mbar) gave bromide 75 (14.6 g, 78%) as a colorless liquid. ¹H NMR (500 MHz, CDCl₃): δ = 7.11 and 6.84 (AA'XX' spin system, 2 H each, ArH meta and ortho to O, respectively), 4.25 (m, 1 H, CHBr), 3.79 (s, 3 H, OCH₃), 3.16 $(dd, {}^{2}J = 14.1 Hz, {}^{3}J = 6.9 Hz, 1 H, ArCH_{2}), 2.99 (dd, {}^{2}J = 14.1 Hz, {}^{3}J = 7.3 Hz, 1 H,$ ArCH₂), 1.67 (d, ${}^{3}J$ = 6.6 Hz, 3 H, CHCH₃). The ¹H NMR spectrum shows additionally signals of low intensity with δ = 3.54 (dd), 3.43 (dd), 1.39 (d) and is illustrated in scheme 41. ¹³C NMR (126 MHz, CDCl₃): δ = 158.4 (C_{Ar}O), 130.6 (**C**_{Ar}CH₂), 130.2 (C_{Ar}H meta to O), 113.8 (C_{Ar}H ortho to O), 55.2 (OCH₃), 51.1 (CHBr), 46.6 (ArCH₂), 25.5 (CH₃).

2-(4-Methoxyphenyl)-1-methylethyldi-*iso*-propylsilane (PMPME-DIPS-H) (**70d**). See the general procedure for the preparation of the hydrosilanes **70**. Mg (169 mg, 6.95 mmol), THF (2 mL), 1-bromo-2-(4-methoxyphenyl)propane (**75**) (1.01 g, 4.39 mmol), THF (5 mL), CuCN (60.3 mg, 0.67 mmol) and chlorodi-*iso*-propylsilane (**72d**) (1.2 mL, 7.0 mmol). Fractional distillation (0.05 mbar) followed by column chromatography (*n*-pentane/Et₂O 25:1) gave hydrosilane **70d** (876 mg, 75%) as a colorless liquid. ¹H NMR (500 MHz, CDCl₃): δ = 7.06 and 6.82 (AA'XX' spin system, 2 H each, ArH meta and ortho to O, respectively), 3.78 (s, 3 H, OCH₃), 3.38 (apparent s, 1 H, SiH), 2.89 (dd, ²J = 13.8 Hz, ³J = 3.8 Hz, 1 H, ArCH₂), 2.33 (dd, ²J = 13.8 Hz, ³J = 11.6 Hz, 1 H, ArCH₂), 1.22 (m, 1 H, ArCH₂CH), 1.09 (m, 14 H, CH(CH₃)₂), 0.93 (d, ³J = 7.4 Hz, 3 H, ArCH₂CHCH₃). The NMR spectrum shows additionally signals of low intensity with δ = 7.13 (half of an AA'XX' spin system).

(4-Methoxyphenyl)di-iso-propylsilylethyne (PMP-DIPS-ethyne) (68a). See the general procedure for the preparation of the terminal alkynes 68. 70a (999 mg, 4.49 mmol), THF (13 mL), TCCA (357 mg, 1.50 mmol); (4-methoxyphenyl)di-isopropylsilyl chloride (77a) (1.13 g) was isolated as a colorless liquid and only 993 mg were used in the following ethynylation reaction. THF (24 mL), ⁿBuLi in hexane (7.5 mL, 12.0 mmol), trimethylsilyl cyanide (60 µL, 0.48 mmol). Column chromatography (*n*-pentane/Et₂O 25:1) gave alkyne **68a** ($R_f = 0.39$; 645 mg, 69%) as a colorless liquid. Analytical data of (4-methoxyphenyl)di-iso-propylsilyl chloride (**77a**): ¹H NMR (250 MHz, CDCl₃): δ = 7.53 and 6.93 (AA'XX' spin system, 2 H each, ArH meta and ortho to O, respectively), 3.82 (s, 3 H, OCH₃), 1.37 (sept-like, 2 H, $CH(CH_3)_2$, 1.07 and 1.00 (d, ${}^{3}J = 7.2$ Hz and ${}^{3}J = 7.3$ Hz, respectively, 6 H each, $CH(CH_3)_2$). The ¹H NMR spectrum shows additionally signals of 4-chloroanisole and cyclohexane. Analytical data of (4-methoxyphenyl)di-iso-propylsilylethin (68a): ¹H NMR (250 MHz, CDCl₃): δ = 7.55 and 6.92 (AA'XX' spin system, 2 H each, ArH meta and ortho to O, respectively), 3.81 (s, 3 H, OCH₃), 2.50 (s, 1 H, C≡CH), 1.20 (m, 2 H, SiCH(CH₃)₂), 1.07 and 0.98 (d, ${}^{3}J$ = 6.9 Hz and ${}^{3}J$ = 7.0 Hz, respectively, 6 H each, CH(CH₃)₂). ¹³C NMR (63 MHz, CDCl₃): δ = 160.8 (C_{Ar}O), 136.5 (C_{Ar}Si), 123.3, (C_{Ar} ortho to Si), 113.5 (C_{Ar} ortho to O), 95.8 (SiC≡CH), 85.2 (SiC≡CH), 55.0 (OCH₃), 17.7 and 17.6 $(CH(CH_3)_2)$ 11.5 $(CH(CH_3)_2)$. The ¹H NMR spectrum shows additionally signals of 4-chloroanisole. Accurate mass (EI) m/z: 246.14290, calcd for C₁₅H₂₂OSi: 246.14399. The ¹H NMR spectrum is shown in scheme 37.

2-(4-Methoxyphenyl)ethyldimethylsilylethyne (PMPE-DMS-ethyne) (68b). See the general procedure for the preparation of the terminal alkynes 68. 70b (974 mg, THF (15 mL). TCCA 5.01 mmol). (398 1.67 mg, mmol): 2-(4-methoxyphenyl)ethyldimethylsilyl chloride (77b) (1.07 g) was isolated as a slightly brownish liquid and only 850 mg were used in the following ethynylation reaction. THF (24 mL), ⁿBuLi in hexane (7.4 mL, 11.8 mmol), trimethylsilyl cyanide (70 µL, 0.56 mmol). Column chromatography (*n*-pentane/Et₂O 25:1) gave alkyne **68b** 61%) as a colorless liquid. Analytical data of $(R_f = 0.28; 525 \text{ mg})$ 2-(4-methoxyphenyl)ethyldimethylsilyl chloride (**77b**): ¹H NMR (250 MHz, CDCl₃): δ = 7.11 and 6.82 (AA'XX' spin system, 2 H each, ArH meta and ortho to O, respectively), 3.78 (s. 3 H. OCH₃), 2.69 (half of an AA'XX' spin system, 2 H. ArCH₂), 1.16 (half of an AA'XX' spin system, 2 H, SiCH₂), 0.38 (s, 6 H, SiCH₃). The NMR spectrum shows additionally signals with $\delta = 2.59$ (half of an AA'XX' spin system), 0.95 (half of an AA'XX' spin system), 0.87 (half of an AA'XX' spin system) which belong to the hydrolysis products of chlorosilane 77b. Analytical data of 2-(4-methoxyphenyl)ethyldimethylsilylethin (68b): ¹H NMR (250 MHz, CDCl₃): δ = 7.12 and 6.81 (AA'XX' spin system, 2 H each, ArH meta and ortho to O, respectively), 3.78 (s, 3 H, OCH₃), 2.67 (half of an AA'XX' spin system, 2 H, ArCH₂), 2.41 (s. 1 H. C≡CH). 0.97 (half of an AA'XX' spin system. 2 H. SiCH₂). 0.17 (s. 6 H. SiCH₃). ¹³C NMR (63 MHz, CDCl₃): δ = 157.7 (C_{Ar}O), 136.6 (**C**_{Ar}CH₂), 128.7 (C_{Ar}H meta to O), 113.8 ($C_{Ar}H$ ortho to O), 93.8 (SiC=CH), 89.0 (SiC=CH), 55.3 (OCH₃), 28.8 (ArCH₂), 18.1 (SiCH₂), -2.0 (SiCH₃). Elemental analysis calcd (%) for C₁₃H₁₈OSi (218.113): C 71.50, H 8.31. Found C 71.10, H 8.23.

Di-*tert*-butyl-2-(4-methoxyphenyl)ethylsilylethyne (PMPE-DTBS-ethyne) (68c). See the general procedure for the preparation of the terminal alkynes **68**. **70c** (1.07 g, 3.83 mmol), THF (12 mL), TCCA (302 mg, 1.27 mmol); di-*tert*-butyl-2-(4-methoxyphenyl)ethylsilyl chloride (**77c**) (1.18 g) was isolated as a slightly yellow liquid. THF (23 mL), ⁿBuLi in hexane (7.4 mL, 11.8 mmol), trimethylsilyl cyanide (70 µL, 0.56 mmol). Column chromatography (*n*-pentane/Et₂O 20:1) gave alkyne **68c**

(*R_f* = 0.45; 1.01 g, 87%) as a colorless liquid. Analytical data of di-*tert*-butyl-2-(4methoxyphenyl)ethylsilyl chloride (**77c**): ¹H NMR (500 MHz, CDCl₃): δ = 7.12 and 6.83 (AA'XX' spin system, 2 H each, ArH meta and ortho to O, respectively), 3.78 (s, 3 H, OCH₃), 2.73 (half of an AA'XX' spin system, 2 H, ArCH₂), 1.15 (half of an AA'XX' spin system, 2 H, SiCH₂), 1.09 (s, 18 H, C(CH₃)₃). Analytical data of di-*tert*-butyl-2-(4methoxyphenyl)ethylsilylethin (**68c**): ¹H NMR (250 MHz, CDCl₃): δ = 7.14 and 6.83 (AA'XX' spin system, 2 H each, ArH meta and ortho to O, respectively), 3.79 (s, 3 H, OCH₃), 2.76 (half of an AA'XX' spin system, 2 H, ArCH₂), 2.42 (s, 1 H, C≡CH), 1.09 (s, 18 H, C(CH₃)₃), 0.96 (half of an AA'XX' spin system, 2 H, SiCH₂). ¹³C NMR (63 MHz, CDCl₃): δ = 157.6 (C_{Ar}O), 137.8 (**C**_{Ar}CH₂), 128.5 (C_{Ar}H meta to O), 113.8 (C_{Ar}H ortho to O), 95.4 (SiC≡CH), 85.2 (SiC≡CH), 55.3 (OCH₃), 31.1 (ArCH₂), 28.3 (C(**C**H₃)₃), 19.4 (**C**(CH₃)₃), 12.3 (SiCH₂). Elemental analysis calcd (%) for C₁₉H₃₀OSi (302.207): C 75.43, H 10.00. Found C 75.42, H 9.74.

2-(4-Methoxyphenyl)-1-methylethyldi-iso-propylsilylethyne

(PMPME-DIPS-ethyne) (68d). See the general procedure for the preparation of the terminal alkynes 68. 70d (882 mg, 3.33 mmol), THF (12 mL), TCCA (263 mg, 1.11 mmol); 2-(4-methoxyphenyl)-1-methylethyldi-iso-propylsilyl chloride (77d) (1.04 g) was isolated as a slightly yellow liquid. THF (24 mL), ⁿBuLi in hexane (6.3 mL, 10.1 mmol), trimethylsilyl cyanide (60 µL, 0.48 mmol). Column chromatography (*n*-pentane/Et₂O 20:1) gave alkyne **68d** ($R_f = 0.49$; 681 mg, 71%) as a colorless liquid. Analytical data of 2-(4-methoxyphenyl)-1-methylethyldi-iso-propylsilyl chloride (**77d**): ¹H NMR (500 MHz, CDCl₃): δ = 7.07 and 6.82 (AA'XX' spin system, 2 H each, ArH meta and ortho to O, respectively), 3.78 (s, 3 H, OCH₃), 3.02 (dd, $^2J = 13.8$ Hz, ${}^{3}J = 2.7$ Hz, 1 H, ArCH₂), 2.29 (dd, ${}^{2}J = 13.7$ Hz, ${}^{3}J = 12.3$ Hz, 1 H, ArCH₂), 1.35 (m, 1 H, ArCH₂CH), 1.29 (sept-like, ${}^{3}J = 7.3$ Hz, 2 H, CH(CH₃)₂), 1.14 (m, 12 H, CH(CH₃)₂), 0.94 (d, ${}^{3}J$ = 7.4 Hz, 3 H, ArCH₂CHCH₃). The ¹H NMR spectrum shows additionally signals of cyclohexane and signals of low intensity with δ = 7.14 (half of an AA'XX' spin system), 1.01 (m). Analytical data of 2-(4-methoxyphenyl)-1methylethyldi-*iso*-propylsilylethin (**68d**): ¹H NMR (500 MHz, CDCl₃): δ = 7.07 and 6.82 (AA'XX' spin system, 2 H each, ArH meta and ortho to O, respectively), 3.78 (s, 3 H, OCH₃), 3.01 (dd, ${}^{2}J$ = 13.8 Hz, ${}^{3}J$ = 2.8 Hz, 1 H, ArCH₂), 2.40 (s, 1 H, C=CH), 2.28 (dd, ${}^{2}J$ = 13.7 Hz, ${}^{3}J$ = 12.4 Hz, 1 H, ArCH₂), 1.20 (m, 1 H, ArCH₂CH), 1.13 (m, 14 H, CH(CH₃)₂), 0.93 (d, ³*J* = 7.4 Hz, 3 H, ArCH₂CHCH₃). ¹³C NMR (126 MHz, CDCl₃): δ = 157.7 (C_{Ar}O), 134.4 (C_{Ar}CH₂), 129.6 (C_{Ar}H meta to O), 113.5 (C_{Ar}H ortho to O), 95.2 (SiC=CH), 86.0 (SiC=CH), 55.2 (OCH₃), 37.4 (ArCH₂), 19.2, 18.56, 18.51, 18.49, 14.0, and 11.0 (SiCHCH₃). The ¹H NMR spectrum shows additionally signals of low intensity with δ = 7.15 (half of an AA'XX' spin system), 2.37 (s), 1.31 (d).

10.4.2 Performance of the polar protecting groups

Alkynyl-aryl coupling of ethyne 68a with 1,4-dihexyl-2,5-diiodobenzene. See the general procedure for the alkynyl-aryl coupling. 68a (289 mg, 1.17 mmol), diiodobenzene 65 (308 mg, 0.618 mmol), THF (3 mL), piperidine (1 mL), Pd(PPh₃)₂Cl₂ (9.6 mg, 0.014 mmol), Cul (10.0 mg, 0.052 mmol), reaction time: 15 h. Column chromatography (*n*-pentane/CH₂Cl₂ 5:1) gave **65** ($R_f = 0.68$; 4 mg, 1%) as colorless solid, 83a ($R_f = 0.42$; 12 mg, 4%) and 82a ($R_f = 0.26$; 347 mg, 94%) as colorless oils. Analytical data of the monocoupling product 83a: ¹H NMR (250 MHz, CDCl₃): δ = 7.65 (s, 1 H, ArH ortho to I), 7.58 (half of an AA'XX' spin system, 2 H, ArH meta to O), 7.29 (s, 1 H, ArH meta to I), 6.92 (half of an AA'XX' spin system, 2 H, ArH ortho to O), 3.81 (s, 3 H, OCH₃), 2.71 (half of an AA'XX' spin system, 2 H, SiCH₂CH₂), 2.73 and 2.63 (t-like, 2 H each, ArCH₂ of hexyl), 1.59 (m, 4 H, ArCH₂CH₂) of hexyl), 1.32 (m, 14 H, CH₂ of hexyl and SiCH), 1.12 and 1.02 (d, ${}^{3}J = 7.0$ Hz, 6 H each, SiCH(CH₃)₂), 0.87 (m, 6 H, CH₂CH₃). Analytical data of the dicoupling product **82a**: ¹H NMR (250 MHz, CD₂Cl₂): δ = 7.62 (half of an AA'XX' spin system, 4 H, ArH meta to O), 7.39 (s, 2 H, ArH ortho to hexyl), 6.95 (half of an AA'XX' spin system, 4 H, ArH ortho to O), 3.82 (s, 6 H, OCH₃), 2.81 (t-like, 4 H, ArCH₂ of hexyl), 1.68 (m, 4 H, ArCH₂CH₂ of hexyl), 1.33 (m, 16 H, CH₂ of hexyl and SiCH), 1.15 and 1.05 (d, ${}^{3}J = 7.0$ Hz, 12 H each, SiCH(CH₃)₂), 0.88 (t-like, 6 H, CH₂CH₃). ${}^{13}C$ NMR (63 MHz, CD_2CI_2): $\delta = 161.3$ ($C_{Ar}O$), 143.2 ($C_{Ar}Hex$), 137.0 ($C_{Ar}H$ ortho to Si), 133.4 ($C_{Ar}H$ ortho to hexyl), 124.3 (C_{Ar}Si), 123.2 (**C**_{Ar}C=C ortho to hexyl), 113.9 (C_{Ar}H ortho to O), 107.0 (SiC=C), 94.5 (SiC=C), 55.4 (OCH₃), 34.8, 32.2, 31.4, 29.8, and 23.1 (CH₂ of hexyl), 18.13 and 18.06 (CH(CH₃)₂), 14.3 (CH₂CH₃), 12.3 (SiCH(CH₃)₂).
Alkynyl-aryl coupling of ethyne 68b with 1,4-dihexyl-2,5-diiodobenzene. See the general procedure for the alkynyl-aryl coupling. 68b (301 mg, 1.38 mmol), diiodobenzene 65 (343 mg, 0.689 mmol), THF (3 mL), piperidine (1 mL), Pd(PPh₃)₂Cl₂ (13.8 mg, 0.020 mmol), Cul (13.1 mg, 0.069 mmol), reaction time: 14.5 h. Column chromatography (*n*-pentane/CH₂Cl₂ 5:1) gave **65** ($R_f = 0.67$; 2 mg, 1%), 83b ($R_f = 0.36$; 14 mg, 5%), 84b ($R_f = 0.26$; 1 mg, <1%) as colorless solids, and 82b ($R_f = 0.13$; 345 mg, 93%) as slightly yellow oil. Analytical data of the monocoupling product **83b**: ¹H NMR (250 MHz, CDCl₃): δ = 7.62 (s, 1 H, ArH ortho to I), 7.23 (s, 1 H, ArH meta to I), 7.13 and 6.81 (AA'XX' spin system, 2 H each, ArH meta and ortho to O, respectively), 3.77 (s, 3 H, OCH₃), 2.71 (half of an AA'XX' spin system, 2 H, SiCH₂CH₂), 2.66 and 2.61 (t-like, 2 H each, ArCH₂ of hexyl), 1.60 (m, 4 H, ArCH₂CH₂ of hexyl), 1.33 (m, 12 H, CH₂ of hexyl), 1.02 (half of an AA'XX' spin system, 2 H, SiCH₂), 0.88 (m, 6 H, CH₂CH₃), 0.22 (s, 6 H, SiCH₃). Analytical data of the Glaser-coupling product **84b**: ¹H NMR (250 MHz, CDCl₃): δ = 7.12 and 6.81 (AA'XX' spin system, 4 H each, ArH meta and ortho to O, respectively), 3.78 (s, 6 H, OCH₃), 2.65 (half of an AA'XX' spin system, 4 H, SiCH₂CH₂), 0.94 (half of an AA'XX' spin system, 4 H, SiCH₂), 0.13 (s, 12 H, SiCH₃). The NMR spectrum shows additionally signals of THF, CH₂Cl₂, and signals of low intensity with δ = 7.70 (s), 1.36 (s), 1.25 (m), 0.17 (s). Analytical data of the dicoupling product 82b: ¹H NMR (250 MHz, CD_2Cl_2): δ = 7.26 (s, 2 H, ArH ortho to hexyl), 7.15 and 6.81 (AA'XX' spin system, 4 H each, ArH meta and ortho to O, respectively), 3.76 (s, 6 H, OCH₃), 2.72 (m, 8 H, ArCH₂), 1.62 (m, 4 H, ArCH₂CH₂ of hexyl), 1.33 (m, 12 H, CH₂ of hexyl), 1.03 (half of an AA'XX' spin system, 4 H, SiCH₂), 0.87 (t-like, 6 H, CH₂CH₃), 0.23 (s, 6 H, SiCH₃). ¹³C NMR (63 MHz, CD₂Cl₂): δ = 158.2 (C_{Ar}O), 143.2 (C_{Ar}Hex), 137.3 ($C_{Ar}C \equiv C$ ortho to hexyl), 132.9 ($C_{Ar}H$ ortho to hexyl), 129.1 ($C_{Ar}H$ meta to O), 123.1 (C_{Ar} para to O), 114.0 (C_{Ar}H ortho to O), 104.9 (SiC≡C), 98.4 (SiC≡C), 55.6 (OCH₃), 34.5, 32.2, 31.1, 29.7, 29.4, and 23.1(CH₂), 18.8 (SiCH₂), 14.3 (CH₂CH₃), -1.6 $(SiCH_3)$.

Alkynyl-aryl coupling of ethyne 68c with 1,4-dihexyl-2,5-diiodobenzene. See the general procedure for the alkynyl-aryl coupling. 68c (302 mg, 0.992 mmol), diiodobenzene 65 (248 mg, 0.498 mmol), THF (3 mL), piperidine (1 mL), Pd(PPh₃)₂Cl₂ (8.6 mg, 0.012 mmol), Cul (4.1 mg, 0.022 mmol), reaction time: 16 h. Column chromatography (*n*-pentane/CH₂Cl₂ 5:1) gave **65** ($R_f = 0.77$; 1 mg, <1%), **83c** ($R_f = 0.36$; 3 mg, 1%) as colorless solids, and **82c** ($R_f = 0.15$; 270 mg, 77%) as colorless oil. Analytical data of the monocoupling product 83c: ¹H NMR (250 MHz, CDCl₃): δ = 7.63 (s, 1 H, ArH ortho to I), 7.23 (s, 1 H, ArH meta to I), 7.14 and 6.82 (AA'XX' spin system, 2 H each, ArH meta and ortho to O, respectively), 3.78 (s, 3 H, OCH₃), 2.81 (half of an AA'XX' spin system, 2 H, SiCH₂CH₂), 2.71 and 2.62 (t-like, 2 H each, ArCH₂ of hexyl), 1.60 (m, 4 H, ArCH₂CH₂ of hexyl), 1.33 (m, 12 H, CH₂ of hexyl), 1.12 (s, 18 H, C(CH₃)₃), 1.01 (half of an AA'XX' spin system, 2 H, SiCH₂), 0.97 (m, 6 H, CH₂CH₃). Analytical data of the dicoupling product **82c**: ¹H NMR (250 MHz, CD₂Cl₂): δ = 7.30 (s, 2 H, ArH ortho to hexyl), 7.15 and 6.81 (AA'XX' spin system, 4 H each, ArH meta and ortho to O, respectively), 3.76 (s, 6 H, OCH₃), 2.83 (half of an AA'XX' spin system, 4 H, SiCH₂CH₂), 2.77 (t-like, 4 H, ArCH₂ of hexyl), 1.67 (m, 4 H, ArCH₂CH₂ of hexyl), 1.31 (m, 12 H, CH₂ of hexyl), 1.14 (s, 36 H, C(CH₃)₃), 1.03 (half of an AA'XX' spin system, 4 H, SiCH₂), 0.86 (m, 6 H, CH₂CH₃). ¹³C NMR (63 MHz, CD_2Cl_2): $\delta = 158.1$ ($C_{Ar}O$), 143.0 ($C_{Ar}Hex$), 138.3 ($C_{Ar}C \equiv C$ ortho to hexyl), 133.3 (C_{Ar}H ortho to hexyl), 128.9 (C_{Ar}H meta to O), 123.3 (C_{Ar} para to O), 114.1 (C_{Ar}H ortho to O), 106.6 (SiC=C), 95.7 (SiC=C), 55.6 (OCH₃), 34.8, 32.3, 31.8, 31.6, and 29.8 (CH₂), 28.7 (C(CH₃)₃), 23.1(CH₂), 20.1 (C(CH₃)₃), 14.2 (CH₂CH₃), 13.1 $(SiCH_2)$.

Alkynyl-aryl coupling of ethyne 68d with 1,4-dihexyl-2,5-diiodobenzene. See the general procedure for the alkynyl-aryl coupling. 68d (286 mg, 0.991 mmol), diiodobenzene 65 (258 mg, 0.518 mmol), THF (3 mL), piperidine (1 mL), Pd(PPh₃)₂Cl₂ (9.6 mg, 0.014 mmol), Cul (11.2 mg, 0.059 mmol), reaction time: 15 h. Column chromatography (*n*-pentane/CH₂Cl₂ 5:1) gave 65 (R_f = 0.70; 1 mg, <1%), 83d (R_f = 0.36; 7 mg, 2%) as colorless solids, and 82d (R_f = 0.12; 259 mg, 77%) as colorless oil. Analytical data of the monocoupling product 83d: ¹H NMR (250 MHz, CDCl₃): δ = 7.63 (s, 1 H, ArH ortho to I), 7.24 (s, 1 H, ArH meta to I), 7.08 and 6.82 (AA'XX' spin system, 2 H each, ArH meta and ortho to O, respectively), 3.78 (s, 3 H,

OCH₃), 3.07 (dd, ${}^{2}J$ = 13.8 Hz, ${}^{3}J$ = 2.8 Hz, 1 H, ArCH₂CHSi), 2.70 and 2.62 (t-like, 2 H each, ArCH₂ of hexyl), 2.33 (dd, ${}^{2}J$ = 13.7 Hz, ${}^{3}J$ = 12.2 Hz, 1 H, ArCH₂CHSi), 1.56 (m, 4 H, ArCH₂CH₂ of hexyl), 1.31 (m, 13 H, CH₂ of hexyl and ArCH₂CH), 1.18 (m, 14 H, SiCH(CH₂)₂), 0.97 (d, ${}^{3}J = 7.3$ Hz, 3 H, ArCH₂CHCH₃), 0.87 (m, 6 H, CH₂CH₃). The NMR spectrum shows additionally signals of low intensity with δ = 7.19 (s), 7.16 (half of an AA'XX' spin system), 3.75 (s). Analytical data of the dicoupling product **82d**: ¹H NMR (250 MHz, CD₂Cl₂): δ = 7.29 (s, 2 H, ArH ortho to hexyl), 7.10 and 6.81 (AA'XX' spin system, 4 H each, ArH meta and ortho to O, respectively), 3.77 (s, 6 H, OCH₃), 3.09 (dd, ${}^{2}J$ = 13.8 Hz, ${}^{3}J$ = 2.8 Hz, 2 H, ArCH₂CHSi), 2.75 (t-like, 4 H, ArCH₂ of hexyl), 2.36 (dd, ${}^{2}J = 13.7$ Hz, ${}^{3}J = 12.2$ Hz, 2 H, ArCH₂CHSi), 1.63 (m, 4 H, ArCH₂CH₂ of hexyl), 1.30 (m, 14 H, CH₂ of hexyl and ArCH₂CH), 1.20 (m, 28 H, SiCH(CH₂)₂), 0.98 (d, ${}^{3}J = 7.3$ Hz, 6 H, ArCH₂CHCH₃), 0.86 (m, 6 H, CH_2CH_3). ¹³C NMR (126 MHz, CD_2Cl_2): $\delta = 158.1$ ($C_{Ar}O$), 143.0 ($C_{Ar}Hex$), 134.9 (C_{Ar}C≡C ortho to hexyl), 133.2 (C_{Ar}H ortho to hexyl), 130.0 (C_{Ar}H meta to O), 123.1 (C_{Ar} para to O), 113.8 (C_{Ar}H ortho to O), 106.4 (SiC≡C), 95.4 (SiC≡C), 55.5 (OCH₃), 37.9 (ArCH₂CHSi), 34.7, 32.2, 31.4, 29.8, and 23.0 (CH₂ of hexyl), 19.9, 18.96, 18.90, 18.89, 14.3, 14.2, 11.8, and 11.7 (SiCHCH₃ and CH₂CH₃). The NMR spectrum shows additionally signals of low intensity with δ = 7.19 (s), 7.16 (half of an AA'XX' spin system), 3.75 (s).

Alkynyl-aryl coupling of ethyne 68e with 1,4-dihexyl-2,5-diiodobenzene. See the general procedure for the alkynyl-aryl coupling. **68e** (0.38 mL, 1.69 mmol), diiodobenzene **65** (400 mg, 0.803 mmol), THF (3 mL), piperidine (1 mL), Pd(PPh₃)₂Cl₂ (8 mg, 0.011 mmol), Cul (19 mg, 0.10 mmol), reaction time: 16 h. Column chromatography (*n*-pentane) gave a mixture (R_f = 0.68; 350 mg) of **82e** (291 mg, 78%) and **84e** (59 mg, 10%) and a mixture (R_f = 0.42; 35 mg) of **83e** (12 mg, 4%) and **82e** (23 mg, 6%) as colorless oils. Analytical data of the monocoupling product **83e**: ¹H NMR (250 MHz, CDCl₃): δ = 7.28 and 7.24 (s, 1 H each, ArH), 2.74 (m, 4 H, ArCH₂), 1.60 (m, 4 H, ArCH₂CH₂), 1.28 (m, 12 H, CH₂), 1.13 (m, 21 H, SiCH(CH₃)₂), 0.87 (m, 6 H, CH₂CH₃). The NMR spectrum shows additionally signals of the dicoupling product **82e**: ¹H NMR (250 MHz, CD₂Cl₂): δ = 7.26 (s, 2 H, ArH), 2.73 (t-like, 4 H, ArCH₂), 1.61 (m, 4 H, ArCH₂CH₂), 1.32 (m, 12 H, CH₂), 1.15 (s, 42 H, SiCH(CH₃)₂),

0.88 (t-like, 6 H, CH₃ CH₂CH₃). ¹³C NMR (63 MHz, CD₂Cl₂): δ = 143.3 (C_{Ar}Hex), 133.2 (C_{Ar}H), 123.2 (**C**_{Ar}C≡C), 106.0 (SiC≡**C**), 95.7 (Si**C**≡C), 34.7, 32.2, 31.4, 29.7, 29.8, and 23.1(CH₂), 18.9 (CH(**C**H₃)₂), 14.2 (CH₂**C**H₃), 11.8 (**C**H(CH₃)₂). The ¹H NMR spectrum shows an additionally signal with δ = 1.10 (s) which belongs to the Glaser-coupling product **84e**.

11 Literaturverzeichnis

- G. R. Desiraju, Angew. Chem. 1995, 107, 2541-2558; Angew. Chem. Int. Ed.
 1995, 34, 2311-2327.
- [2] A. W. Hosseini, Acc. Chem. Res. **2005**, 38, 313-323.
- [3] P. J. Langer, J. Hulliger, Chem. Soc. Rev. 1999, 28, 279-291.
- [4] A. Nangia, Curr. Opin. Solid St. M. 2001, 5, 115-122.
- [5] S.-L. Lee, N.-T. Lin, W.-C. Liao, C.-H. Chen, H.-C. Yang, T.-Y. Luh, *Chem. Eur. J.* 2009, *15*, 11594-11600.
- [6] D. Maspoch, D. Ruiz-Molina, J. Veciana, *Chem. Soc. Rev.* 2007, *36*, 770-818.
- [7] M. Jansen, J. C. Schön, Angew. Chem. 2006, 118, 3484-3490; Angew. Chem.
 Int. Ed. 2006, 45, 3406-3412.
- [8] S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. 2004, 116, 2388-2430, Angew. Chem. Int. Ed. 2004, 43, 2334-2378.
- [9] W. Lin, W. J. Rieter, K. M. L. Taylor, Angew. Chem. 2009, 121, 660-668;
 Angew. Chem. Int. Ed. 2009, 48, 650-658.
- [10] J. J. Perry IV, J. A. Perman. M. J. Zaworotko, Chem. Soc. Rev. 2009, 38, 1400-1417.
- [11] A. K. Cheetham, C. N. R. Rao, R. K. Feller, Chem. Commun. 2006, 4780-4795.
- [12] M. Eddaoudi, J. Kim, N. L. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, O. M. Yaghi, *Science* **2002**, *295*, 469-472.

- [13] D. J. Tranchemontage, J. L. Mendoza-Cortés, M. O'Keeffe, O. M. Yaghi, *Chem. Soc. Rev.* 2009, 38, 1257-1283.
- [14] M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O'Keeffe, O. M. Yaghi, Acc. Chem. Res. 2001, 34, 319-330.
- [15] D. Zhao, D. J. Timmons, D. Yuan, H.-C. Zhou, Acc. Chem. Res. 2011, 44, 123-133.
- [16] K. Biradha, A. Ramanan, J. J. Vittal, Cryst. Growth Des. 2009, 9, 2969-2970.
- [17] N. Klein, I. Senkovska, K. Gedrich, U. Stoeck, A. Henschel, U. Mueller, S. Kaskel, *Angew. Chem.* 2009, 121, 10139-10142; *Angew. Chem. Int. Ed.* 2009, 48, 9954-9957.
- [18] H. Furukawa, N. Ko, Y. B. Go, N. Aranti, S. B. Choi, E. Choi, A. Ö. Yazaydin,
 R. Q. Snurr, M. O'Keeffe, J. Kim, O. M. Yaghi, *Science* **2010**, *329*, 424-428.
- [19] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, *Nature* 1992, 359, 710-712.
- [20] M. E. Davis, Acc. Chem. Res. 1993, 26, 111-115.
- [21] J. Jiang, J. Yu, A. Corma, Angew. Chem. 2010, 122, 3186-3212;
 Angew. Chem. Int. Ed. 2010, 49, 3120-3145.
- [22] J. Laine, S. Yunes, *Carbon* **1992**, *30*, 601-604.
- [23] C. Pelekani, V. L. Snoeyink, *Water Res.* **1999**, 33, 1209-1219.
- [24] C. Janiak, J. K. Vieth, New J. Chem. 2010, 34, 2366–2388.
- [25] R. J. Kuppler, D. J. Timmons, Q.-R. Fang, J.-R. Li, T. A. Makal, M. D. Young,
 D. Yuan, D. Zhao, W. Zhuang, H.-C. Zhou, *Coord. Chem. Rev.* 2009, 253, 3042-3066.
- [26] P. S. Bárcia, D. Guimarães, P. A. P. Mendes, J. A. C. Silva, V. Guillerm, H. Chevreau, C. Serre, A. E. Rodrigues, *Microporous Mesoporous Mater.* 2011, 139, 67-73.
- [27] J.-R. Li, R. J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 2009, 38, 1477-1504.
- S. Uchida, R. Eguchi, N. Mizuno, Angew. Chem. 2010, 122, 10126-10130;
 Angew. Chem. Int. Ed. 2010, 49, 9930-9934.
- [29] T.-F. Liu, J. Lü, C. Tian, M. Cao, Z. Lin, R. Cao, Inorg. Chem. 2011, 50, 2264-2271.
- [30] A. Lan, K. Li, H. Wu, D. H. Olson, T. J. Emge, W. Ki, M. Ho, Angew. Chem.
 2009, 121, 2370-2374. Angew. Chem. Int. Ed. 2009, 48, 2334-2338.

- [31] L.-G. Qiu, Z.-Q. Li, Y. Wu, W. Wang, T. Xu, X. Jiang, Chem. Comm. 2008, 31, 3642-3644.
- [32] B. Chen, L. Wang, F. Zapata, G. Qian, E. B. Lobkovsky, *J. Am. Chem. Soc.* 2008, *130*, 6718-6719.
- [33] M. D. Allendorf, R. J. T. Houk, L. Andruszkiewicz, A. A. Talin, J. Pikarsky, A. Choudhury, K. A. Gall, P. J. Hesketh, *J. Am. Chem. Soc.* 2008, 130, 14404-14405.
- [34] D. Farrusseng, S. Aguado, C. Pinel, Angew. Chem. 2009, 121, 7638-7649;
 Angew. Chem. Int. Ed. 2009, 48, 7502-7513.
- [35] A. Corma, H. García, F. X. Llabrés i Xamena, Chem. Rev. 2010, 110, 4606-4655.
- [36] J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T. Hupp, *Chem. Soc. Rev.* 2009, 38, 1450-1459.
- [37] L. Ma, J. M. Falkowski, C. Abney, W. Lin, *Nature Chem.* 2010, 2, 838-846.
- [38] P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle, G. Férey, Angew. Chem. 2006, 118, 6120-6124; Angew. Chem. Int. Ed. 2006, 45, 5974-5978.
- [39] P. Horcajada, C. Serre, G. Maurin, N. A. Ramsahye, F. Balas, M. Vallet-Regí,
 M. Sebban, F. Taulelle, G. Férey, *J. Am. Chem. Soc.* 2008, 130, 6774-6780.
- [40] A. C. McKinlay, R. E. Morris, P. Horcajada, G. Férey, R. Gref, P. Couvreur, C. Serre, *Angew. Chem.* 2010, 122, 6400-6406; *Angew. Chem. Int. Ed.* 2010, 49, 6260-6266.
- [41] S. Huh, S. Jung, Y. Kim, S.-J. Kim, S. Park, *Dalton Trans.* 2010, 39, 1261-1265.
- [42] Y. Fuma, M. Ebihara, S. Kutsumizu, T. Kawamura, J. Am. Chem. Soc. 2004, 126, 12238-12239.
- [43] J. N. Behera, D. M. D'Alessandro, N. Soheilnia, J. R. Long, *Chem. Mater.* **2009**, *21*, 1922-1926.
- [44] Y. Kobayashi, B. Jacobs, M. D. Allendorf, J. R. Long, *Chem. Mater.* 2010, 22, 4120-4122.
- [45] N. S. Hush, Ann. N.Y. Acad. Sci. 2003, 1006, 1-20.
- [46] A. Kraft, A. C. Grimsdale, A. B. Holmes, *Angew. Chem.* 1998, 110, 416-443;
 Angew. Chem. Int. Ed. 1998, 37, 402-428.

- [47] L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong, J. Kido, *Adv. Mat.* 2011, 23, 926-952.
- [48] S. Chen, L. Deng, J. Xie, L. Peng, L. Xie, Q. Fan, W. Huang, *Adv. Mat.* 2010, 22, 5227-5239.
- [49] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, *Science* 1995, 270, 1789-1791.
- [50] H. Hoppe, N. S. Sariciftci, J. Mat. Res. 2004, 19, 1924-1945.
- [51] F. Hide, M. A. Díaz-García, B. J. Schwartz A. J. Heeger, *Acc. Chem. Res.* 1997, 30, 430-436.
- [52] I. D. W. Samuel, G. A. Turnbull, Chem. Rev. 2007, 107, 1272-1295.
- [53] W. H. Lee, J. H. Cho, K. Cho, J. Mater. Chem. 2010, 20, 2549-2561.
- [54] K. H. Kim, D. S. Chung, C. E. Park, D. H. Choi, J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 55-64.
- [55] W. J. Feast, R. H. Friend, J. Mat. Sci. 1990, 25, 3796-3805.
- [56] A. L. Kanibolotskya, I. F. Perepichka, P. J. Skabara, *Chem. Soc. Rev.* 2010, 39, 2695-2728.
- [57] C. Gomes Silva, A. Corma, H. García, J. Mater. Chem. 2010, 20, 3141–3156.
- [58] A. J. Blake, N. R. Champness, T. L. Easun, D. R. Allan, H. Nowell, M. W. George, J. Jia, X.-Z. Sun, *Nature Chem.* **2010**, *2*, 688-694.
- [59] M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk, *Chem. Soc. Rev.* 2009, 38, 1330-1352.
- [60] B. O'Regan, M. Grätzel, *Nature* **1991**, *353*, 737-740.
- [61] M. Grätzel, *Nature* **2001**, *414*, 338-344.
- [62] T. W. Hamann, R. A. Jensen, A. B. F. Martinson, H. Van Ryswyk, J. T. Hupp, Energy Environ. Sci. 2008, 1, 66–78.
- [63] J. Preat, D. Jacquemin, E. A. Perpète, *Energy Environ. Sci.* 2010, *3*, 891-904.
- [64] A. Mishra, M.K.R. Fischer, P. Bäuerle, Angew. Chem. 2009, 121, 2510-2536;
 Angew. Chem. Int. Ed. 2009, 48, 2474-2499.
- [65] Y. Ooyama, Y. Harima, *Eur. J. Org. Chem.* **2009**, *18*, 2903-2934.
- [66] K. Schwarzburg, R. Ernstorfer, S. Felber, F. Willig, Coord. Chem. Rev. 2004, 248, 1259-1270.
- [67] N. Robertson, Angew. Chem. 2006, 118, 2398-2405; Angew. Chem. Int. Ed. 2006, 45, 2338-2345.

- [68] P. V. Kamat, M. Haria, S. Hotchandani, J. Phys. Chem. B 2004, 108, 5166-5170.
- [69] T. A. Heimer E. J. Heilweil, C. A. Bignozzi, G. J. Meyer, J. Phys. Chem. A 2000, 104, 4256-4262.
- [70] J. Bisquert, D. Cahen, G. Hodes, S. Rühle, A. Zaban, J. Phys. Chem. B 2004, 108, 8106-8118.
- [71] A. Furube, R. Katoh, T. Yoshihara, K. Hara, S. Murata, H. Arakawa, M. Tachiya, J. Phys. Chem. B 2004, 108, 12583-12592.
- [72] R. Katoh, M. Kasuya, A. Furube, N. Fuke, N. Koide, L. Han, Sol. Energy Mat. Sol. Cells 2009, 93, 698–703.
- [73] B. A. Gregg, Coord. Chem. Rev. 2004, 248, 1215-1224.
- [74] A. J. Frank, N. Kopidakis, J. van de Lagemaat, *Coord. Chem. Rev.* 2004, 248, 1165-1179.
- [75] J. Nelson, R. E. Chandler, *Coord. Chem. Rev.* 2004, 248, 1181-1194.
- [76] J. R. Durrant, S. A. Haque, E. Palomares, Coord. Chem. Rev. 2004, 248, 1247-1257.
- [77] R. Katoh, A. Furube, A. V. Barzykin, H. Arakawa, M. Tachiya, Coord. Chem. Rev. 2004, 248, 1195-1213.
- [78] C. Scherb, A Schödel, T. Bein, Angew. Chem. 2008, 120, 5861-5863;
 Angew. Chem. Int. Ed. 2008, 47, 5777-5779.
- [79] F. Hinterholzinger, C. Scherb, T. Ahnfeldt, N. Stock, T. Bein, Phys. Chem. Chem. Phys. 2010, 12, 4515-4520.
- [80] Y. F. Song, L. Cronin, Angew. Chem. 2008, 120, 4713-4715; Angew. Chem. Int. Ed. 2008, 47, 4635-4637.
- [81] Z. Wang, S. M. Cohen, *Chem. Soc. Rev.* **2009**, *38*, 1315-1329.
- [82] S. M. Cohen, Chem. Sci. 2010, 1, 32-36.
- [83] H. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi, *Nature* **1999**, *402*, 276-279.
- [84] N. L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O'Keeffe, O. M. Yaghi, J. Am. Chem. Soc. 2004, 127, 1504-1518.
- [85] J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K. P. Lillerud, J. Am. Chem. Soc. 2008, 130, 13850-13851.
- [86] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin,
 S.-J. Cho, H. Morkoc, *J. Appl. Phys.* **2005**, *98*, 041301.

- [87] M. Fuentes-Cabrera, D. M. Nicholson, B. G. Sumpter, M. Widom, J. Chem. Phys. 2005, 123, 124713.
- [88] A. Kuc, A. Enyashin, G. Seifert, J. Phys. Chem. B 2007, 111, 8179-8186.
- [89] C. G. Silva, A. Corma, H. Garciá, J. Mat. Chem. 2010, 20, 3141-3156.
- [90] F. X. Llabrés i Xamena, A. Corma, H. Garciá, J. Phys. Chem. C 2007, 111, 80-85.
- [91] M. Alvaro, E. Carbonell, B. Ferrer, F. X. Llabrés i Xamena, H. Garciá, *Chem. Eur. J.* 2007, *13*, 5106-5112.
- [92] S. Bordiga, C. Lamberti, G. Ricchiardi, L. Regli, F. Bonino, A. Damin, K.-P. Lillerud, M. Bjorgen, A. Zecchina, *Chem. Commun.* 2004, 2300-2301.
- [93] J. Gascon, M. D. Hernández-Alonso, A. R. Almeida, G. P. M. van Klink, F. Kapteijn, G. Mul, *ChemSusChem* 2008, 1, 981-983.
- [94] T. Tachikawa, J. R. Choi, M. Fujitsuka, T. Majima, J. Phys. Chem. C 2008, 112, 14090-14101.
- [95] P. Mahata, G. Madras, S. Natarajan, J. Phys. Chem. B 2006, 110, 13759-13768.
- [96] J. Panke, M. Wark, *Microporous Mesoporous Mater.* **2011**, *zur Veröffentlichung eingereicht*.
- [97] P. L. Feng, J. J. Perry IV, S. Nikodemski, B. W. Jacobs, S. T. Meek, M. D. Allendorf, *J. Am. Chem. Soc.* 2010, *132*, 15487-15489.
- [98] B. Civalleri, F. Napoli, Y. Noël, C. Roetti, R. Dovesi, *CrystEngComm* **2006**, *8*, 364-371.
- [99] S. S. Kaye, A. Dailly, O. M. Yaghi, J. R. Long, J. Am. Chem. Soc. 2007, 129, 14176-14177.
- [100] K. Schöck, F. Schröder, M. Heyden, R. A. Fischer, M. Havenith, *Phys. Chem. Chem. Phys.* 2008, 10, 4732-4739.
- [101] L. Valenzano ,B. Civalleri, S. Chavan, S. Bordiga, M. H. Nilsen, S. Jakobsen,K. P. Lillerud, C. Lamberti, *Chem. Mater.* 2011, 23, 1700–1718.
- [102] Y. Xu, M. A. A. Schoonen, Am. Mineral. 2000, 85, 543-556.
- [103] C. Karunakaran, S. Senthilvelan, J. Mol. Catal. A Chem. 2005, 233, 1-8.
- [104] C. Gomes Silva, I. Luz, F. X. Llabrés i Xamena, A. Corma, H. Garciá, Chem. Eur. J. 2010, 16, 11133-11138.
- [105] J. Panke, M. Wark, unveröffentlichte Ergebnisse.

- [106] D. Zhao, D. Yuan, D. Sun, H.-C. Zhou, J. Am. Chem. Soc. 2009, 131, 9186-9188.
- [107] A. Schaate, P. Behrens, unveröffentlichte Ergebnisse.
- [108] S.-R. Batten, R. Robson, Angew. Chem. 1998, 110, 1558-1595; Angew. Chem. Int. Ed. 1998, 37, 1460-1494.
- [109] O. M. Yaghi, Nature Mater. 2007, 6, 92-93.
- [110] J. L. C. Rowsell, O. M. Yaghi, *Microporous Mesoporous Mater.* 2004, 73, 3-14.
- [111] S. Hausdorf, J. Wagler, R. Mossig, F. O. R. L. Mertens, *J. Phys. Chem. A.* 2008, *112*, 7567-7576.
- [112] T. Loiseau, H. Muguerra, G. Férey, M. Haouas, F. Taulelle, J. Solid State Chem. 2005, 178, 621-628.
- [113] R. Grünker, I. Senkovska, R. Biedermann, N. Klein, A. Klausch, I. A. Baburin, U. Mueller, S. Kaskel, *Eur. J. Inorg. Chem.* 2010, 24, 3835-3841.
- [114] O. K. Farha, J. T. Hupp, Acc. Chem. Res. 2010, 43, 1166-1175.
- [115] J. Rabone, Y.-F. Yue, S. Y. Chong, K. C. Stylianou, J. Basca, D. Bradshaw, G.
 R. Darling, N. G. Berry, Y. Z. Khimyak, A. Y. Ganin, P. Wiper, J. B. Claridge,
 M. J. Rosseinsky, *Science* 2010, *329*, 1053-1057.
- [116] G. Jeschke, M. Sajid, M. Schulte, N. Ramezanian, A. Volkov, H. Zimmermann,A. Godt, *J. Am. Chem. Soc.* **2010**, *132*, 10107-10117.
- [117] A. Godt, M. Schulte, H. Zimmermann, G. Jeschke, *Angew. Chem.* 2006, 118, 7722-7726; *Angew. Chem. Int. Ed.* 2006, 45, 7560-7564.
- [118] P. Bäuerle, T. Fischer, B. Bidlingmeier, A. Stabel, J. P. Rabe, *Angew. Chem.* **1995**, *107*, 335-339; *Angew. Chem. Int. Ed.* **1995**, 34, 303-307.
- [119] J. A. E. H. van Haare, L. Groenendaal, E. E. Havinga, R. A. J. Jansen, E. W. Meijer, *Angew. Chem.* 1996, 108, 696-699; *Angew. Chem. Int. Ed.* 1996, 35, 638-640.
- [120] J. Jo, C. Chi, S. Höger, G. Wegner, D. Y. Yoon, Chem. Eur. J. 2004, 10, 2681-2688.
- [121] F. Babudri, G. M. Farinola, L. C. Lopez, M. G. Martinelli, F. Naso, J. Org. Chem. 2001, 66, 3878-3885.
- [122] J. M. Tour, Adv. Mater. 1994, 6, 190-198.
- [123] T. M. Swager, C. J. Gil, M. S. Wrighton, J. Phys. Chem. 1995, 99, 4886-4893.
- [124] C. Weder, M. S. Wrighton, *Macromolecules* **1996**, *29*, 5157-5165.

- [125] J.-L. Brédas, D. Beljonne, V. Coropceanu, J Cornil, Chem. Rev. 2004, 104, 4971-5003.
- [126] D. K. James, J. M. Tour, Top. Curr. Chem. 2005, 257, 33-62.
- [127] E. A. Weiss, M. R. Wasielewski, M. A. Ratner, *Top. Curr. Chem.* 2005, 257, 103-133.
- [128] E. A. Weiss, M. J. Ahrens, L. E. Sinks, A. V. Gusev, M. A. Ratner, M. R. Wasielewski, J. Am. Chem. Soc. 2004, 126, 5577-5584.
- [129] R. L. McCreery, Chem. Mater. 2004, 16, 4477-4496.
- [130] C. Torborg, M. Beller, Adv. Synth. & Catal. 2009, 351, 3027–3043.
- [131] G. P. McGlacken, I. J. S. Fairlamb, Eur. J. Org. Chem. 2009, 24, 4011-4029.
- [132] J. M. Tour, Chem. Rev. 1996, 96, 537-553.
- [133] U. Ziener, Adelheid Godt, J. Org. Chem. 1997, 62, 6137-6143.
- [134] H. Kukula, S. Veit, A. Godt, Eur. J. Org. Chem. 1999, 277-286.
- [135] J. M. Tour, A. M. Rawlett, M. Kozaki, Y. Yao, R. C. Jagessar, S. M. Dirk, D. W.
 Price, M. A. Reed, C.-W. Zhou, J. Chen, W. Wang, I. Campbell, *Chem. Eur. J.* **2001**, 7, 5118-5134.
- [136] J. R. Long, O. M. Yaghi, Chem. Soc. Rev. 2009, 38, 1213-1214.
- [137] E. Biemmi, S. Christian, N. Stock, T. Bein, *Microporous Mesoporous Mater.* 2009, *117*, 111-117.
- [138] B. Tram Nguyen Pham, L. M. Lund, D. Song, *Inorg. Chem.* 2009, 47, 6329-6335.
- [139] T. Gadzikwa, B.-S. Zeng, J. T. Hupp, S. T. Nguyen, Chem. Commun. 2008, 3672-3674.
- [140] S. Hausdorf, W. Seichter, E. Weber, F. O. R. L. Mertens, *Dalton Trans.* 2009, 1107-1113.
- [141] Y. Hu, S. Xiang, W. Zhang, Z. Zhang, L. Wang, J. Bai, B. Chen, Chem. Commun. 2009, 7551-7553.
- [142] D. Sun, S. Ma, J. M. Simmons, J.-R. Li, D. Yuan, H.-C. Zhou, *Chem. Commun.* 2010, *46*, 1329-1331.
- [143] K. M. L. Taylor-Pashow, J. Della Rocca, Z. Xie, S. Tran, W. Lin, J. Am. Chem. Soc. 2009, 131, 14261-14263.
- [144] D. Britt, C. Lee, F. J. Uribe-Romo, H. Furukawa, O. M. Yaghi, *Inorg. Chem.* 2010, 49, 6387-6389.

- [145] A. D. Burrows, C. G. Frost, M. F. Mahon, C. Richardson, Angew. Chem. 2008, 120, 8610-8614; Angew. Chem. Int. Ed. 2008, 47, 8482-8486.
- [146] W. Morris, C. J. Doonan, H. Furukawa, R. Banerjee, O. M. Yaghi, J. Am. Chem. Soc. 2008, 130, 12626-12627.
- [147] T. Kawamichi, T. Haneda, M. Kawano, M. Fujita, *Nature* **2009**, *461*, 633-635.
- [148] C. J. Doonan, W. Morris, H. Furukawa, O. M. Yaghi, J. Am. Chem. Soc. 2009, 131, 9492-9493.
- [149] M. Savonnet, D. Bazer-Bachi, N. Bats, J. Perez-Pellitero, E. Jeanneau, V. Lecocq, C. Pinel, D. Farrusseng, J. Am. Chem. Soc. 2010, 132, 4518-4519.
- [150] J. S. Costa, P. Gamez, C. A. Black, O. Roubeau, S. J. Teat, J. Reedijk, *Eur. J. Inorg. Chem.* 2008, 1551-1554.
- [151] Z. Wang, S. M. Cohen, J. Am. Chem. Soc. 2008, 129, 12368-12369.
- [152] K. K. Tanabe, Z. Wang, S. M. Cohen, J. Am. Chem. Soc. 2008, 130, 8508-8517.
- [153] Z. Wang, S. M. Cohen, Angew. Chem. 2008, 120, 4777-4780; Angew. Chem. Int. Ed. 2008, 47, 4699-4702.
- [154] M. J. Ingleson, J. P. Barrio, J.-B. Guilbaud, Y. Z. Khimyak, M. J. Rosseinsky, *Chem. Commun.* 2008, 2680-2682.
- [155] Z. Wang, K. K. Tanabe, S. M. Cohen, Inorg. Chem. 2009, 48, 296-306.
- [156] S. J. Garibay, Z. Wang, K. K. Tanabe, S. M. Cohen, *Inorg. Chem.* 2009, 48, 7341-7349.
- [157] K. K. Tanabe, S. M. Cohen, Angew. Chem. 2009, 121, 7560-7563; Angew. Chem. Int. Ed. 2009, 48, 7424-7427.
- [158] M. Kandiah, S. Usseglio, S. Svelle, U. Olsbye, K. P. Lillerud, M. Tilset, *J. Mater. Chem.* 2010, 20, 9848-9851.
- [159] J. G. Nguyen, S. M. Cohen, J. Am. Chem. Soc. 2010, 132, 4560-4561.
- [160] S. J. Garibay, Z. Wang, S. M. Cohen, Inorg. Chem. 2010, 49, 8086-8091.
- [161] S. J. Garibay, S. M. Cohen, Chem. Commun. 2010, 46, 7700-7702.
- [162] K. K. Tanabe, S. M. Cohen, Inorg. Chem. 2010, 49, 6766-6774.
- [163] Z. Wang, K. K. Tanabe, S. M. Cohen, Chem. Eur. J. 2010, 16, 212-217.
- [164] C. Volkringer, S. M. Cohen, Angew. Chem. 2010, 122, 4748-4752; Angew. Chem. Int. Ed. 2010, 49, 4644-4648.

- [165] E. Dugan, Z. Wang, M. Okamura, A. Medina, S. M. Cohen, *Chem. Commun.* 2008, 3366-3368.
- [166] C. E. Castro, E. J. Gaughan, D. C. Owsley, *J. Org. Chem.* **1966**, *31*, 4071-4078.
- [167] A. Arcadi, S. Cacchi, F. Marinelli, *Tetrahedron Lett.* 1989, 30, 2581-2584.
- [168] L. Xu, I. R. Lewis, S. K. Davidsen, J. B. Summers, *Tetrahedron Lett.* **1998**, 39, 5159-5162.
- [169] A. L. Rodriguez, C. Koradin, W. Dohle, P. Knochel, *Angew. Chem.* 2000, 112, 2607-2609; *Angew. Chem. Int. Ed.* 2000, 39, 2488-2490.
- [170] S. Diring, S. Furukawa, Y. Takashima, T. Tsuruoka, S. Kitagawa, Chem. Mater. 2010, 22, 4531–4538.
- [171] A. Schaate, P. Roy, J. Lippke, F. Waltz, M. Wiebcke, A. Godt, P. Behrens, *Chem. Eur. J.* 2011, 17, 6641-6643.
- [172] K. Gustav, J. Sühnel, Helv. Chim. Acta 1978, 197, 2100-2107.
- [173] T. G. Pavlopoulos, P. R. Hammond, J. Am. Chem. Soc. 1974, 96, 6568-6579.
- [174] S. Samori, M. Hara, S. Tojo, M. Fujitsuka, S.-W. Yang, A. Elangovan, T.-I. Ho, T. Majima, *J. Phys. Chem. B* 2005, *109*, 11735-11742.
- [175] D. O. Kim, J. Park, G. R. Ahn, H. J. Jeon, J. S. Kim, D. W. Kim, M. S. Jung, S. W. Lee, S. H. Shin, *Inorg. Chim. Acta* 2011, *370*, 76-81.
- [176] K. Oisaki, Q. Li, H. Furukawa, A. U. Czaja, O. M. Yaghi, *J. Am. Chem. Soc.* **2010**, *132*, 9262–9264.
- [177] Y. Goto, H. Sato, S. Shinkai, K. Sada, J. Am. Chem. Soc. 2008, 130, 14354-14355.
- [178] A. P. Nelson, O. K. Farha, K. L. Mulfort, J. T. Hupp, J. Am. Chem. Soc. 2009, 131, 458-460.
- [179] S. Ma, D. Sun, P. M. Forster, D. Yuan, W. Zhuang, Y-S. Chen, J. B. Parise,
 H.-C. Zhou, *Inorg. Chem.* 2009, 48, 4616-4618.
- [180] K. L. Mulfort, O. K. Farha, C. D. Malliakas, M. G. Kanatzidis, J. T. Hupp, *Chem. Eur. J.* **2010**, *16*, 276-281.
- [181] T. Gadzikwa, O. K. Farha, K. L. Mulfort, J. T. Hupp, S. T. Nguyen, Chem. Commun. 2009, 3720-3722.
- [182] A. M. Shultz, O. K. Farha, D. Adhikari, A. A. Sarjeant, J. T. Hupp, S. T. Nguyen, *Inorg. Chem.* 2011, *50*, 3174–3176.

- [183] O. K. Farha, K. L. Mulfort, J. T. Hupp, Inorg. Chem. 2008, 47, 10223-10225.
- [184] A. M. Shultz, O. K. Farha, J. T. Hupp, S. T. Nguyen, J. Am. Chem. Soc. 2009, 131, 4204-4205.
- [185] T. Gadzikwa, O. K. Farha, C. D. Malliakas, M. G. Kanatzidis, J. T. Hupp, S. T. Nguyen, J. Am. Chem. Soc. 2009, 131, 13613-13615.
- [186] O. K. Farha, C. D. Malliakas, M. G. Kanatzidis, J. T. Hupp, *J. Am. Chem. Soc.* **2010**, *132*, 950-952.
- [187] J. Sarju, T. N. Danks, G. Wagner, Tetrahedron Lett. 2004, 45, 7675-7677.
- [188] J. P. Parrish, B. Sudaresan, K. Woon Jung, *Synth. Commun.* **1999**, *29*, 4423-4431.
- [189] S. K. Srivastava, P. Man Singh Chauhan, A. P. Bhaduri, *Synth. Commun.* 1999, 29, 2085-2091.
- [190] D. Himsl, D. Wallacher, M. Hartmann, Angew. Chem. 2009, 121, 4710-4714.
 Angew. Chem. Int. Ed. 2009, 48, 4639-4642.
- [191] T. Devic, P. Horcajada, C. Serre, F. Salles, G. Maurin, B. Moulin, D. Heurtaux, G. Clet, A. Vimont, J.-M. Grenèche, B. Le Ouay, F. Moreau, E. Magnier, Y. Filinchuk, J. Marrot, J.-C. Lavalley, M. Daturi, G. Férey, *J. Am. Chem. Soc.* 2010, *132*, 1127-1136.
- [192] K. L. Mulfort, O. K. Farha, C. L. Stern, A. A. Sarjeant, J. T. Hupp, J. Am. Chem. Soc. 2009, 131, 3866-3868.
- [193] M. Wang, M.-H. Xie, C.-D. Wu, Y.-G. Wang, Chem. Commun. 2009, 2396-2398.
- [194] D. O. Kim, J. Park, G. R. Ahn, H. J. Jeon, J. S. Kim, D. W. Kim, M. S. Jung, S. W. Lee, S. H. Shin, *Inorg. Chim. Acta* 2011, 370, 76-81.
- [195] T. Yamada, H. Kitagawa, Supramol. Chem. 2011, 23, 315-318.
- [196] T. Yamada, H. Kitagawa, J. Am. Chem. Soc. 2009, 131, 6312-6313.
- [197] K. K. Tanabe, C. A. Allen, S. M. Cohen, *Angew. Chem.* 2010, 122, 9924-9927;
 Angew. Chem. Int. Ed. 2010, 49, 9730-9733.
- [198] T. Gadzikwa, G. Lu, C. L. Stern, S. R. Wilson, J. T. Hupp, S. T. Nguyen, *Chem. Commun.* 2008, 5493-5495.
- [199] T. Kawamichi, Y. Inokuma, M. Kawano, M. Fujita, Angew. Chem. 2010, 122, 2425-2427; Angew. Chem. Int. Ed. 2010, 49, 2375-2377.

- [200] H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. 2001, 113, 2056-2075; Angew. Chem. Int. Ed. 2001, 40, 2004-2021.
- [201] M. Meldal, C. W. Tornøe, Chem. Rev. 2008, 108, 2952-3015.
- [202] O. K. Farha, K. L. Mulfort, A. M. Thorsness, J. T. Hupp, J. Am. Chem. Soc. 2008, 130, 8598-8599.
- [203] J. Sauer, Angew. Chem. 1966, 78, 233-252; Angew. Chem. Int. Ed. 1966, 5, 211-230.
- [204] A. Vieyres, T. Lam, R. Gillet, G. Franc, A. Castonguay, A.Kakkar, *Chem. Commun.* **2010**, *46*, 1875–1877.
- [205] V. D. Kiselev, A. I. Konovalov, J. Phys. Org. Chem. 2009, 22, 466-483.
- [206] S. Reymond, J. Cossy, Chem. Rev. 2008, 108, 5359-5406.
- [207] U. Pindur, G. Lutz, C. Otto, Chem. Rev. 1993, 93, 741-701.
- [208] L. Rulíšek, P. Šebek, Z. Havlas, R. Hrabal, P. Čapek, A. Svatoš, J. Org. Chem. 2005, 70, 6295-6302.
- [209] C. O. Kappe, S. S. Murphree, A. Padwa, *Tetrahedron* **1997**, *53*, 14179-14233.
- [210] A. F. Littke, C. Dai, G. C. Fu, J. Am. Chem. Soc. 2000, 122, 4020-4028.
- [211] M. P. Moselage, *Alkylierbare Linkerverbindungen für Metall-organische Gerüste*, Bachelorarbeit, Fakultät für Chemie, Universität Bielefeld, **2010**.
- [212] N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457-2483.
- [213] T. Preuße, Synthese modifizierter OligoPPEs für den Aufbau metallorganischer Netzwerke, Forschungspraktikum, Fakultät für Chemie, Universität Bielefeld, 2010.
- [214] B. Balaganesan, W.-J. Shen, C. H. Chen, *Tetrahedron Lett.* **2003**, *44*, 5747-5750.
- [215] W. J. Jo, K.-H. Kim, H. C. No, D.-Y. Shin, S.-J. Oh, J.-H. Son, Y.-H. Kim, Y.-K.
 Cho, Q.-H. Zhao, K.-H. Lee, H.-Y. Oh, S.-K. Kwon, *Synth. Met.* 2009, 159, 1359-1364.
- [216] H.-Y. Chen, C.-T. Chen, C.-T. Chen, *Macromolecules* **2010**, *43*, 3613-3623.
- [217] C. L. R. Catherall, T. F. Palmer, R. B. Cundall, J. Chem. Soc., Faraday Trans. 2, 1984, 80, 823-834.
- [218] L. F. M. L. Ciscato, F. H. Bartoloni, E. L. Bastos, W. J. Baader, J. Org. Chem. 2009, 74, 8974-8979.
- [219] F. Hinterholzinger, S. Wuttke, T. Bein, unveröffentlichte Ergebnisse.

- [220] M. Hülsmann, A. Godt, unveröffentlichte Ergebnisse.
- [221] A. Senger, *Organische Linker für MOFs*, Diplomarbeit, Fakultät für Chemie, Universität Bielefeld, **2008**.
- [222] D. Britt, D. Trachemontagne, O. M. Yaghi, Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 11623-11627.
- [223] P. Heinrichs, A. Godt, unveröffentlichte Ergebnisse.
- [224] Y.-L. Zhao, L. Liu, W. Zhang, C.-H. Sue, Q. Li, O. Š. Miljanic, O. M. Yaghi, J.
 F. Stoddart, *Chem. Eur. J.* 2009, *15*, 13356-13380.
- [225] B. Brosent, A. Godt, unveröffentlichte Ergebnisse.
- [226] A. Williamson, *Philos. Mag.* **1850**, *37*, 350-356.
- [227] S. Stavbe, M. Jereb, M. Zupan, Synthesis 2008, 10, 1487-1513.
- [228] P. J. Kocieński, *Protecting Groups*, Leeds, **2005**, 3rd Edition.
- [229] T. W. Greene, *Protective groups in organic synthesis*, New York, **1999**,3. Auflage.
- [230] D. B. Bryan, R. F. Hall, K. G. Holden, W. F. Huffman, J. G. Gleason, J. Am. Chem. Soc. 1977, 99, 2353-2355.
- [231] A. Mehta, R. Jaouhari, T. J. Benson, K. T. Douglas, *Tetrahedron Lett.* 1992, 33, 5441-5444.
- [232] B. Neises, W. Steglich, Angew. Chem. 1978, 90, 556-557; Angew. Chem. Int.
 Ed. 1978, 17, 522-524.
- [233] W. G. Dauben, H. O. Krabbenhoft, J. Am. Chem. Soc. 1976, 98, 1992-1993.
- [234] P. Caramella, P. Quadrelli, L. Toma, J. Am. Chem. Soc. 2002, 124, 1130-1131.
- [235] P. Jutzi, J. Organomet. Chem. 1990, 400, 1-17.
- [236] G. Erker, J. Organomet. Chem. 1990, 400, 185-203.
- [237] V. A. Mironov, E. V. Sobolev, A. N. Elizarova, Tetrahedron 1963, 19, 1939-1958.
- [238] S. McLean, P. Haynes, *Tetrahedron* **1965**, *21*, 2329-2342.
- [239] J. Hudon, T. A. Cernak, J. A. Ashenhurst, J. L. Gleason, *Angew. Chem.* 2008, 120, 9017-9020; *Angew. Chem. Int. Ed.* 2008, 47, 8885-8888.
- [240] M. Neuenschwander, H. Schaltegger, F. Stuber, *Helv. Chim. Acta* **1967**, *50*, 880-889.
- [241] M. Ouchi, M. Kamigaito, M. Sawamoto, *Macromolecules* **2001**, *34*, 3176-3181.

- [242] V. Ratovelomanana, G. Linstrumelle, Tetrahedron Lett. 1981, 22, 315-318.
- [243] M. Levitus, M. A. Garcia-Garibay, J. Phys. Chem. A 2000, 104, 8632-8637.
- [244] J. Lukacs, R. A. Lamp, J. Metcalfe, D. Phillips, J. Photochem. Photobiol. A: Chem., 1992, 63, 59-65.
- [245] D. J. Fatemi, H. Murata, C. D. Merritt, Z. H. Kafafi, Synth. Met. 1997, 85, 1225-1228.
- [246] B. Li, W. Miao, L. Cheng, Dyes Pigments 2000, 46, 81-84.
- [247] Q. Li, W. Zhang, O. Š. Miljanic, C. B. Knobler, J. F. Stoddart, O. M. Yaghi, *Chem. Commun.* **2010**, *46*, 380-382.
- [248] Q. Li, C.-H. Sue, S. Basu, A. K. Shveyd, W. Zhang, G. Barin, L. Fang, A. A. Sarjeant, J. F. Stoddart, O. M. Yaghi, *Angew. Chem.* 2010, 122, 6903-6907;
 Angew. Chem. Int. Ed. 2010, 49, 6751-6755.
- [249] Q. Li, W. Zhang, O. Š. Miljanic, C.-H. Sue, Y.-L. Zhao, L. Liu, C. B. Knobler, J.
 F. Stoddart, O. M. Yaghi, *Science* 2009, *325*, 855-859.
- [250] X. Liu, M. Park, S. Hong, M. Oh, J. W. Yoon, J.-S. Chang, M. Soo Lah, *Inorg. Chem.* 2009, 48, 11507-11509.
- [251] N. Kobayashi, M. Kijima, J. Mater. Chem. 2008, 18, 1037-1045.
- [252] S. Hong, M. Oh, M. Park, J. W. Yoon, J. S. Chang, M. S. Lah, Chem. Commun. 2009, 5397-5399.
- [253] D. Yuan, D. Zhao, D. Sun, H.-C. Zhou, Angew. Chem. 2010, 122, 5485-5489.Angew. Chem. Int. Ed. 2010, 49, 5357-5361.
- [254] A. Schaate, P. Roy, T. Preuße, S. J. Lohmeier, A. Godt, P. Behrens, *Chem. Eur. J.* 2011, *im Druck*, DOI: 10.1002/chem.201101015.
- [255] J. Roncali, Chem. Rev. 1992, 92, 711-738.
- [256] M. Jeffries-El, G. Sauve, R. D. McCullough, *Macromolecules* 2005, 38, 10346-10352.
- [257] U. H. F. Bunz, Angew. Chem. 2010, 122, 5159-5162; Angew. Chem. Int. Ed.
 2010, 49, 5037-5040.
- [258] G. Férey, C. Serre, Chem. Soc. Rev. 2009, 38, 1380-1399.
- [259] C. Serre, F. Millange, C. Thouvenot, M. Noguès, G. Marsolier, D. Louër, G. Férey, J. Am. Chem. Soc. 2002, 124, 13519-13526.
- [260] Z. Wang, S. M. Cohen, J. Am. Chem. Soc. 2009, 131, 16675-16677.

- [261] J. Horstmann, Synthese langer, gut löslicher Linkerverbindungen für Metallorganische Gerüste, Bachelorarbeit, Fakultät für Chemie, Universität Bielefeld, 2010.
- [262] E. D. Bloch, D. Britt, C. Lee, C. J. Doonan, F. J. Uribe-Romo, H. Furukawa, J.
 R. Long, O. M. Yaghi, *J. Am. Chem. Soc.* 2010, 132, 14382-14384.
- [263] P. F. H. Schwab, F. Fleischer, J. Michl, J. Org. Chem. 2002, 67, 443-449.
- [264] G. Zotti, S. Zecchin, G. Schiavon, A. Berlin, M. Penso, *Chem. Mater.* **1999**, *11*, 3342-3351.
- [265] C. A. Bauer, T. V. Timofeeva, T. B. Settersten, B. D. Patterson, V. H. Liu, B. A. Simmons, M. D. Allendorf, *J. Am. Chem. Soc.* 2007, 129, 7136-7144.
- [266] A. Lan, K. Li, H. Wu, D. H. Olson, T. J. Emge, W. Ki, M. Hong, J. Li, Angew. Chem. 2009, 121, 2370-2374; Angew. Chem. Int. Ed. 2009, 48, 2334-2338.
- [267] Y. Bai, G.-J. He, Y.-G. Zhao, C.-Y. Duan, D.-B. Dang, Q.-J. Meng, Chem. Commun. 2006, 14, 1530-1532.
- [268] W. Liu, T. Jiao, Y. Li, Q. Liu, M. Tan, H. Wang, L. Wang, J. Am. Chem. Soc.2004, 126, 2280–2281.
- [269] Y. Qiu, Z. Liu, Y. Li, H. Deng, R. Zeng, M. Zeller, Inorg. Chem. 2008, 47, 5122–5128.
- [270] K.-L. Wong, G.-L. Law, Y.-Y. Yang, W.-T. Wong, Adv. Mater. 2006, 18, 1051-1054.
- [271] B. Zhao, X.-Y. Chen, P. Cheng, D.-Z. Liao, S.-P. Yan, Z.-H. Jiang, J. Am. Chem. Soc. 2004, 126, 15394-15395.
- [272] B. L. Chen, Y. Yang, F. Zapata, G. N. Lin, G. D. Qian, E. B. Lobkovsky, *Adv. Mater.* 2007, 19, 1693-1696.
- [273] B. V. Harbuzaru, A. Corma, F. Rey, P. Atienzar, J. L. Jorda, H. Garcia, D. Ananias, L. D. Carlos, J. Rocha, Angew. Chem. Int. Ed. 2008, 47, 1080-1083.
- [274] M. Müller, A. Devaux, C.-H. Yang, L. De Cola, R. A. Fischer, Photochem. Photobiol. Sci. 2010, 9, 846-853.
- [275] B. Moulton, M. J. Zaworotko, Curr. Opin. Solid State Mater. Sci. 2002, 6, 117-123.
- [276] E.-Y. Choi, C. A. Wray, C. Hu, W. Choe, CrystEngComm 2009, 11, 553-555.
- [277] A. M. Schultz, O. K. Farha, J. T. Hupp, S. T. Nguyen, J. Am. Chem. Soc. 2009, 131, 4204-4205.

- [278] S. Demmig, H. Langhals, Chem. Ber. 1988, 121, 225-230.
- [279] X. Z. Jiang, Y. Q. Liu, S. G. Liu, W. F. Qiu, X. Q. Song, D. B. Zhu, Synth. Met.
 1997, 91, 253-256.
- [280] F. J. Céspedes-Guirao, S. García-Santamaría, F. Fernández-Lázaro, A. Sastre-Santos, H. J. Bolink, J. Phys. D: Appl. Phys. 2009, 42, 105106-105112.
- [281] C. Zafer, C. Karapire, N. S. Sariciftci, S. Icli, Sol. Energy Mater. Sol. Cells 2005, 88, 11-21.
- [282] W. S. Shin, H.-H. Jeong, M.-K. Kim, S.-H. Jin, M.-R. Kim, J.-K. Lee, J. W. Lee,
 Y.-S. Gal, *J. Mater. Chem.* 2006, *16*, 384–390.
- [283] E. Zhou, K. Tajima, C. Yanga, K. Hashimoto, J. Mater. Chem. 2010, 20, 2362-2368.
- [284] H.-G. Löhmannsröben, H. Langhals, Appl. Phys. 1989, B48, 449-452.
- [285] M. Gsänger, J. H. Oh, M. Könemann, H. W. Höffken, A.-M. Krause, Z. Bao, F. Würthner, Angew. Chem. 2010, 122, 752-755; Angew. Chem. Int Ed. 2010, 49, 740-743.
- [286] H. Langhals, *Heterocycles* **1995**, *40*, 477-500.
- [287] C. Huang, S. Barlow, S. R. Marder, J. Org. Chem. 2011, 76, 2386-2407.
- [288] R. Dölling, M. Beyermann, J. Haenel, F. Kernchen, E. Krause, P. Franke, M. Brudelb, M. Biener, J. Chem. Soc., Chem. Commun. 1994, 853-854.
- [289] M. Niyaz Khan, J. E. Ohayagha, J. Phys. Org. Chem. 1991, 4, 547-561.
- [290] K. Kalyanasundaram, M. Grätzel, Coord. Chem. Rev. 1998, 177, 347-414.
- [291] B. M. Trost, M. U. Frederiksen, M. T. Rudd, Angew. Chem. 2005, 117, 6788-6825; Angew. Chem. Int. Ed. 2005, 44, 6630-6666.
- [292] S. S. Kaye, J. R. Long, J. Am. Chem. Soc. 2008, 130, 806-807.
- [293] M. Meilikhov, K. Yusenko, R. A. Fischer, J. Am. Chem. Soc. 2009, 131, 9644-9645.
- [294] S. Chavan, J. G. Vitillo, M. J. Uddin, F. Bonino, C. Lamberti, E. Groppo, K.-P. Lillerud, S. Bordiga, *Chem. Mat.* **2010**, *22*, 4602-4611.
- [295] P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, M. Grätzel, *Nature Mater.* 2003, 2, 402-407.
- [296] N. Hirata, J.-J. Lagref, E. J. Palomares, J. R. Durrant, M. K. Nazeeruddin, M. Grätzel, D. Di Censo, *Chem. Eur. J.* 2004, *10*, 595-602.

- [297] K. Willinger, K. Fischer, R. Kisselev, M. Thelakkat, J. Mater. Chem. 2009, 19, 5364-5376.
- [298] A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser, A. van Zelewsky, Coord. Chem. Rev. 1988, 84, 85-277.
- [299] A. Yoshimura, M. Z. Hoffman, H. Sun, J. Photochem. Photobiol. A: Chem. 1993, 70, 29-33.
- [300] M.-B. S. Kirketerp, S. Brøndsted Nielsen, Int. J. Mass Spectrom. 2010, 297, 63-66.
- [301] X.-J. Yang, C. Janiak, J. Heinze, F. Drepper, P. Mayer, H. Piotrowski, P. Klüfers, *Inorg. Chim. Acta* 2001, *138*, 103-116.
- [302] Y. Yoo, V. Varela-Guerro, H.-K.Jeong, Langmuir 2011, 27, 2652-2657.
- [303] B. Liu, M. Ma, D. Zacher, A. Bétard, K. Yusenko, N. Metzler-Nolte, C. Wöll, R.
 A. Fischer, *J. Am. Chem. Soc.* 2011, 133, 1734-1737.
- [304] S. C. Jones, C. A. Bauer, J. Am. Chem. Soc. 2009, 131, 12516-12517.
- [305] M. J. Ingleson, R. Heck, J. A. Gould, M. J. Rosseinsky, *Inorg. Chem.* 2009, 48, 9986-9988.
- [306] J. G. Nguyen, K. K. Tanabe, S. M. Cohen, *CrystEngComm* **2010**, *12*, 2335-2338.
- [307] A. D. Burrows, C. G. Frost, M. F. Mahon, C. Richardson, *Chem. Commun.* 2009, 4218-4220.
- [308] M. Kim, S. J. Garibay, S. M. Cohen, Inorg. Chem. 2011, 50, 729-731.
- [309] A. Modrow, D. Zaragarani, R. Herges, N. Stock, *Dalton Trans.* **2011**, *40*, 4217-4222.
- [310] R. K. Deshpande, J. L. Minnaar, S. G. Telfer, Angew. Chem. 2010, 122, 4702-4706; Angew. Chem. Int. Ed. 2010, 49, 4598-4602.
- [311] K. Kim, M. Banerjee, M. Yoon, S. Das, *Top. Curr. Chem.* **2010**, *293*, 115-153.
- [312] M. Sabo, A. Henschel, H. Fröde, E. Klemm, S. Kaskel, J. Mater. Chem. 2007, 17, 3827-3832.
- [313] N. L. Toh, M. Nagarathinam, J. J. Vittal, Angew. Chem. 2005, 117, 2277-2281;
 Angew. Chem. Int. Ed. 2005, 44, 2237-2241.
- [314] M. H. Mir, L. L. Koh, G. K. Tan, J. J. Vittal, *Angew. Chem.* 2010, 122, 400-403,
 Angew. Chem. Int Ed. 2010, 49, 390-393.
- [315] V. Kumar, R. Mitra, S. Bhattarai, V. A. Nair, Synth. Comm. 2011, 41, 392-404.

- [316] M. Skrivars, H.-W. Schmidt, Synth. Comm. 1995, 25, 1809-1815.
- [317] G. Franc, A. K. Kakkar, Chem. Eur. J. 2009, 15, 5630-5639.
- [318] B. Gacal, H. Durmaz, M. A. Tasdelen, G. Hizal, U. Tunca, Y. Yagci, A. L. Demirel, *Macromolecules* 2006, 39, 5330-5336.
- [319] H. Kwart, K. King, Chem. Rev. 1968, 68, 414–447.
- [320] N. W. Polaske, D. V. McGrath, J. R. McElhanon, *Macromolecules* 2011, 44, 3203-3210.
- [321] A. Vieyres, T. Lam, R. Gillet, G. Franc, A. Castonguay, A. Kakkar, *Chem. Commun.*, **2010**, *46*, 1875-1877.
- [322] K. C. Nicolaou, P. G. Bulger, D. Sarlah, *Angew. Chem.* 2005, 117, 4516-4563.
 Angew. Chem. Int. Ed. 2005, 44, 4442-4489.
- [323] R. D. Stephens, C. E. Castro, J. Org. Chem. 1963, 28, 3313-3315.
- [324] K. Sonogashira, Y. Tohda, N. Hagihara, *Tetrahedron Lett.* **1975**, *50*, 4467-4470.
- [325] R. Nast, W. Pfab, Z. Anorg. Allg. Chem. 1957, 292, 287-292.
- [326] O. Lavastre, L. Ollivier, P. H. Dixneuf, S. Sibandhit, *Tetrahedron* **1996**, *52,* 5495-5504.
- [327] J. M. Tour, S. Huang, J. Org. Chem. 1999, 64, 8898-8906.
- [328] L. Jones II, J. S. Schumm, J. M. Tour, J. Org. Chem. 1997, 62, 1388-1410.
- [329] M. Schelhaas, H. Waldmann, Angew. Chem. 1996, 108, 2192-2219; Angew. Chem. Int. Ed. 1996, 35, 2056-2083..
- [330] J. Anthony, F. Diederich, Tetrahedron Lett. 1991, 32, 3787-3790.
- [331] T. D. Nelson, R. D. Crouch, Synthesis **1996**, *9*,1031-1069.
- [332] A. M. Boldi, F. Diederich, Angew. Chem. 1994, 106, 482-485; Angew. Chem.
 Int. Ed. 1994, 33, 468-471.
- [333] C. J. Palmer, J. E. Casida, Tetrahedron Lett. 1990, 31, 2857-2860.
- [334] L. Birkhofer, O. Stuhl, Top. Curr. Chem. 1980, 88, 33-88.
- [335] C. Rücker, Chem. Rev. 1995, 95, 1009-1064.
- [336] S. Höger, K. Bonrad, J. Org. Chem. 2000, 65, 2243-2245.
- [337] C. Eaborn, D. R. M. Walton, J. Organomet. Chem. 1965, 4, 217-228.
- [338] A. G. Myers, N. J. Tom, M. E. Fraley, S. B. Cohen, D. J. Madar, J. Am. Chem. Soc. 1997, 119, 6072-6094.

- [339] S. López, F. Fernández-Trillo, P. Midón, L. Castedo, C. Saá, *J. Org. Chem.* 2006, 71, 2802-2810.
- [340] G. Gaefke, S. Höger, Synthesis 2008, 15, 2155-2157.
- [341] K. Becker, P. G. Lagoudakis, G. Gaefke, S. Höger, J. M. Lupton, *Angew. Chem.* **2007**, *119*, 3520-3525; *Angew. Chem. Int. Ed.* **2007**, *46*, 3450-3455.
- [342] C. Cai, A. Vasella, Helv. Chim. Acta 1995, 78, 732-741.
- [343] C. Cai, A. Vasella, Helv. Chim. Acta 1995, 79, 255-268.
- [344] N. A. Bumagin, A. B. Ponomaryov, I. P. Beletskaya, Synthesis 1984, 728-729.
- [345] D. Sahoo, S. Thiele, M. Schulte, N. Ramezanian, A. Godt, *Beilstein J. Org. Chem.* **2010**, *6*, 57.
- [346] S. J. Havens, P. M. Hergenrother, J. Org. Chem. 1985, 50, 1763-1765.
- [347] J. G. Rodríguez, J. L. Tejedor, T. La Parra, C. Díaz, *Tetrahedron* **2006**, *6*2, 3355-3361.
- [348] S. Goeb, R. Ziessel, Org. Lett. 2007, 9, 737-740.
- [349] J. G. Rodríguez, J. Esquivias, A. Lafuente, C. Díaz, J. Org. Chem. 2003, 68, 8120-8128.
- [350] X. Zeng, C. Wang, M. R. Bryce, A. S. Batsanov, S. Sirichantaropass, V. M. García-Suárez, C. J. Lambert, I. Sage, *Eur. J. Org. Chem.* 2007, 5244-5249.
- [351] P. Roy, *Polare, sterisch anspruchsvolle Schutzgruppen für terminale Alkine*, Diplomarbeit, Fakultät für Chemie, Universität Bielefeld, **2007**.
- [352] C. Eaborn, J. Organomet. Chem. 1975, 100, 45-57.
- [353] Z. Zhao, V. Snieckus, Org. Lett. 2005, 7, 2523-2526.
- [354] P. J. Lennon, D. P. Mack, Q. E. Thompson, *Organometallics* **1989**, *8*, 1121-1122.
- [355] A. Shirahata, Tetrahedron Lett. 1989, 30, 6393-6394.
- [356] K. Mai, G. Patil, J. Org. Chem. 1986, 51, 3545-3548.
- [357] S. Varaprath, D. Stutts, J. Organomet. Chem. 2007, 692, 1892-1897.
- [358] M. M. Midland, J. Org. Chem. 1975, 40, 2250-2252.
- [359] M. Petit, G. Chouraqui, C. Aubert, M. Malacria, Org. Lett. 2003, 5, 2037-2040.
- [360] J. Mortier, M. Vaultier, F. Carreaux, J. Douin, J. Org. Chem. 1998, 63, 3515-3516.
- [361] O. F. Beumel, R. F. Harris, J. Org. Chem. 1963, 28, 2775-2779.
- [362] J. Hoogboom, T. M. Swager, J. Am. Chem. Soc. 2006, 128, 15058-15059.

- [363] M. S. Khan, Muna R. A. Al-Mandhary, M. K. Al-Suti, F. R. Al-Battashi, S. Al-Saadi, B. Ahrens, J. K. Bjernemose, M. F. Mahon, P. R. Raithby, M. Younus, N. Chawdhury, A. Köhler, E. A. Marseglia, E. Tedesco, N. Feeder, S. J. Teat, *Dalton Trans.* 2004, 2377-2385.
- [364] D. Maag, T. Kottke, M. Schulte, A. Godt, J. Org. Chem. 2009, 74, 7733-7742.
- [365] K. Tomizaki, P. Thamyongkit, R. S. Loewe, J. S. Lindsey, *Tetrahedron* 2003, 59, 1191-1207.
- [366] S. Bradley, M. M. Corradi, K. D. Camm, S. J. Furtado, P. C. McGowan, R. Mumtaz, M. Thornton-Pett, J. Organomet. Chem. 2002, 656, 49-56.
- [367] M. Rehahn, A.-D. Schlüter, W. J. Feast, Synthesis 1988, 5, 386-388.
- [368] L. Kloppenburg, D. Jones, U. H. F. Bunz, *Macromolecules* **1999**, *32*, 4194-4203.

12 Anhang

Figure s1: ¹H NMR spectra (500 MHz, DMSO-d₆): Diacid **4e** (bottom); cycloaddition product **63c** obtained in a Diels-Alder reaction at 70 °C (99% conversion; exo-**63c** : endo-**63c** = 4 : 1). (middle); product from the reaction of PIZOF-8 with N-methylmaleimide (top). ^{Δ}Signals assigned to the furan-2-yl-group of linker **4e**. ^{\circ}Signal of H₂O. *Signal of DMSO. [@]Signals of toluene. [&]Signals of N-methylmaleimide.

Figure s2: ¹H NMR spectra (500 MHz, DMSO-d₆): Diacid **4e** (bottom); cycloaddition product **63d** obtained in a Diels-Alder reaction at 70 °C (98% conversion; exo-**63d** : endo-**63d** = 2 : 1). (middle); product from the reaction of PIZOF-8 with N-phenylmaleimide (top). ^{Δ}Signals assigned to the furan-2-yl-group of linker **4e**. ^{\circ}Signal of H₂O. *Signal of DMSO. ⁺Signal of DMSO. ^{\downarrow}Signals of THF. [@]Signals of toluene. ^{\Box}Signals of N-phenylmaleimide.