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abstract

Distance measures form a backbone of machine learning and information retrieval
in many application fields such as computer vision, natural language processing,
and biology. However, general-purpose distances may fail to capture semantic par-
ticularities of a domain, leading to wrong inferences downstream. Motivated by
such failures, the field of metric learning has emerged. Metric learning is concerned
with learning a distance measure from data which pulls semantically similar data
closer together and pushes semantically dissimilar data further apart. Over the past
decades, metric learning approaches have yielded state-of-the-art results in many
applications. Unfortunately, these successes are mostly limited to vectorial data, while
metric learning for structured data remains a challenge.

In this thesis, I present a metric learning scheme for a broad class of sequence edit
distances which is compatible with any differentiable cost function, and a scalable,
interpretable, and effective tree edit distance learning scheme, thus pushing the
boundaries of metric learning for structured data.

Furthermore, I make learned distances more useful by providing a novel algo-
rithm to perform time series prediction solely based on distances, a novel algorithm
to infer a structured datum from edit distances, and a novel algorithm to transfer a
learned distance to a new domain using only little data and computation time.

Finally, I apply these novel algorithms to two challenging application domains.
First, I support students in intelligent tutoring systems. If a student gets stuck
before completing a learning task, I predict how capable students would proceed in
their situation and guide the student in that direction via edit hints. Second, I use
transfer learning to counteract disturbances for bionic hand prostheses to make these
prostheses more robust in patients’ everyday lives.
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1I N T R O D U C T I O N

The notion of nearness or proximity, which is objectively de-
fined only for pairs of objects in physical space, tends to be
carried over to very different situations where the space in
which entities can be closer together or further apart is not
at all evident.

— roger shepard, 1962

According to foundational works in cognitive science, proximity and distance are key
concepts in our understanding of the world (Gentner and Markman 1997; Hodgetts,
Hahn, and Chater 2009; Medin, Goldstone, and Genter 1993; Nosofsky 1992; Shepard
1962; Tversky 1977). For example, we estimate the properties of an individual based on
our experience with similar individuals in the past (Mussweiler 2003; Eliot Smith and
Zarate 1992); we form mental categories based on similarities to exemplars (Edward
Smith and Medin 1981; Markman 1998); and we try to transfer solutions from known
problems to new but similar problems (Barnett and Ceci 2002).

These cognitive behaviors have inspired various machine learning algorithms. In
particular, one-nearest-neighbor or learning vector quantization classify data by assigning
the label of the closest exemplar in a data base (Cover and Hart 1967; Kohonen 1995),
k-means or relational neural gas cluster data based on their distance to cluster means
(MacQueen 1967; Hammer and Hasenfuss 2007), and multiple transfer learning algo-
rithms optimize the similarity between data from related domain to transfer knowledge
between these domains (Duan, Xu, and I. Tsang 2012; Kulis, Saenko, and Darrell 2011;
Weiss, Khoshgoftaar, and D. Wang 2016). Key to all these approaches is that we have a
sufficient understanding of what it means for objects to be similar or different (Medin,
Goldstone, and Genter 1993). In other words, we require a measure of distance that is
reasonable for our task at hand.

In most machine learning applications, we utilize general-purpose metrics, such as the
Euclidean distance (Bellet, Habrard, and Sebban 2014). However, because these metrics
do not take particularities of a domain into account, they may lead to incorrect inferences.
For example, when classifying the control signal for a prosthesis, some channels of the
signal may be more predictive than others (Paaßen et al. 2018). More generally, default
metrics may fail to regard semantically similarly objects as similar because their data
representation appears different, and may fail to regard semantically different objects as
different, because their data representation appears similar. Therefore, any subsequent
inferences based on apparent similarity or difference may be semantically flawed.

This begs the question, how can we learn a metric better takes domain-specific
semantics into account? This very question is at the heart of metric learning (Bellet,
Habrard, and Sebban 2014; Kulis 2013). Generally speaking, a metric learning approach
takes as input a set N+ of semantically close pairs (x, y) as well as a set N− of semantically
distant pairs (x, y) and attempts to learn parameters Λ of a metric dΛ such that dΛ(x, y)
is small for all (x, y) ∈ N+ and dΛ(x, y) is large for all (x, y) ∈ N− (Bellet, Habrard, and
Sebban 2014).
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introduction

Most metric learning approaches to date learn a generalization of the Euclidean
distance d, namely the generalized quadratic form

dΛ(~x,~y) =
√
(~x−~y)> ·Λ · (~x−~y)

where ~x and ~y are m-dimensional real vectors and Λ is a symmetric, positive semi-
definite m×m-matrix, which constitutes the parameters to be learned (Bellet, Habrard,
and Sebban 2014; Kulis 2013; Schneider, Biehl, and Hammer 2009a). This kind of metric
learning has been widely successful and has achieved state-of-the-art performance in
various information retrieval tasks, especially in computer vision (Bellet, Habrard, and
Sebban 2014; Davis et al. 2007; Köstinger et al. 2012; Liao et al. 2015; Lim, Lanckriet, and
McFee 2013; Davis et al. 2010). A key appeal is that a learned generalized Euclidean
distance retains intuitive properties of the data, such as symmetry, non-negativity, shift-
invariance, and the triangular inequality. Furthermore, Euclidean metric learning is
flexible enough to support a broad range of cost functions, as well as various architectures
and parametrizations, such as deep learning models (De Vries, Memisevic, and Courville
2016; Hu, Lu, and Tan 2014; Oh Song et al. 2016).

However, not all problems involving distances can be tackled with a generalized
Euclidean distance. As Hodgetts, Hahn, and Chater (2009) point out: “Real-world ob-
jects are not merely represented as lists of features or dimensions but represented in a
structured way that considers not only the composite elements but the relations between
these different elements.” Examples of such structured data include chemical processes,
human and animal motion data, electrocardiography readings, financial time series,
natural language sentences and syntax trees, abstract syntax trees of source code, RNA,
DNA, and protein sequences, phylogenetic trees, RNA secondary structures, and glycan
molecules (Akutsu 2010; Bellet, Habrard, and Sebban 2014; S. Henikoff and J. G. Henikoff
1992; Keogh and Ratanamahatana 2005; McKenna et al. 2010; Mikolov et al. 2013; Pawlik
and Augsten 2011; Rivers and Koedinger 2015; T. F. Smith and Waterman 1981; Snover
et al. 2006). For such structured data, we require structure metrics, such as the Levenshtein
distance, dynamic time warping, or the tree edit distance (Levenshtein 1965; Vintsyuk
1968; Zhang and Shasha 1989).

As with the Euclidean distance, these structure metrics may not correspond to domain-
specific semantics. For example, when analyzing protein sequences, the standard string
edit distance assumes that all amino acids have the same pairwise distance which does
not correspond to biological reality (S. Henikoff and J. G. Henikoff 1992; Hourai, Akutsu,
and Akiyama 2004; Kann, Qian, and Goldstein 2000; Saigo, Vert, and Akutsu 2006).
Similarly, when considering abstract syntax trees of source code, the standard tree edit
distance assumes that all syntactic building blocks of computer programs have the same
distance, which does not accurately reflect the function of these building blocks (Paaßen,
Mokbel, and Hammer 2016; Paaßen, Gallicchio, et al. 2018). As such, metric learning
approaches for structured data are sorely needed. Unfortunately, present approaches for
metric learning on structured data are almost exclusively limited to pulling semantically
similar data closer together but can not push semantically dissimilar data away, are
limited to the string edit distance in particular, and do not scale well to bigger datasets
or bigger structures (Bellet, Habrard, and Sebban 2014). This leads us to the first two
research questions I wish to tackle in this work.

RQ1: Can we apply metric learning to a broader class of structure metrics?
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RQ2: Can we perform metric learning on structured data efficiently and at scale?

I investigate these questions in detail in Chapters 3 and 4. In particular, I use the
framework of algebraic dynamic programming (Giegerich, Meyer, and Steffen 2004) to
derive general-purpose algorithms that compute a broad class of sequence metrics as
well as their gradients in quadratic time. Using these gradients, it is possible to perform
metric learning using any differentiable and distance-based cost function.

Further, in Chapter 4, I extend this approach in several ways to make it faster, by
learning a sparse classification model and by optimizing the gradient computation, more
interpretable by learning symbol embeddings instead of cost parameters, and more
general by learning extending it to the tree edit distance. By virtue of these changes I can
scale metric learning to larger datasets, such as natural language data with thousands of
trees and hundreds of thousand of nodes, and can achieve competitive results on datasets
of computer programs and glycan molecules, outperforming one of the best tree edit
distance learning algorithms to date.

Beyond these research questions, I am also interested in downstream applications of a
learned metric. There is a rich history of machine learning approaches using distances and
similarities to address a broad range of machine learning tasks, especially dimensionality
reduction (Gisbrecht, Mokbel, and Hammer 2010; Gisbrecht, Schulz, and Hammer 2015;
Sammon 1969; Van der Maaten and Hinton 2008), clustering (Gordon 1987; Hammer and
Hasenfuss 2007; Hammer and Hasenfuss 2010; S. Johnson 1967), classification (Balcan,
Blum, and Srebro 2008; Cover and Hart 1967; Hammer, D. Hofmann, et al. 2014; Nebel,
Kaden, et al. 2017), and regression (Nadaraya 1964; Rasmussen and Williams 2005).
However, these approaches only consider distance data as input and return vectorial data
as output. This begs the question:

RQ3: Can we perform predictive tasks with a distance representation as output?

In Chapter 5, I explore this question exemplarily for the task of time series prediction,
that is, the task of predicting the state of a structured datum xt+1 given the previous
states x1, . . . , xt. I find that the data point xt+1 can be represented in terms of its distances
to previous points in a data set. In an experimental evaluation I further demonstrate
that my predictive scheme outperforms baselines, both for classical theoretical models of
structured data evolution, and for practical datasets.

An apparent limitation of my predictive scheme is that it does only provide a distance
representation output, not a structured output. In other words, we only know the distances
of the predicted point to our remaining data, but we do not know what the predicted
point actually looks like. Inferring the primal form of a predicted point requires an
inversion of the distance representation, which is challenging even for vectorial data,
and may be impossible in general for structured data (Bakır, Weston, and Schölkopf
2003; Bakır, Zien, and Tsuda 2004; Kwok and I. W.-H. Tsang 2004). Therefore, my fourth
research question is as follows.

RQ4: Can we invert the distance representation of edit distances?

In Chapter 6, I provide a novel algorithm to invert the distance representation of edit
distances and use this inversion mechanism for an application in intelligent tutoring
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systems for computer programming. In particular, I consider the scenario of a student
trying to write a computer program but getting stuck before completion. In such a case, I
can use the time series prediction mechanism from Chapter 5 to predict how capable
students would have continued their program, and then use my inversion mechanism to
infer an edit the stuck student could apply to continue in the same direction as capable
students. I find experimentally that my hint generation scheme is competitive with other
state-of-the-art approaches on real-world data from intelligent tutoring systems.

A final challenge in unlocking the full potential of distance representations is to make
a learned metric usable in scenarios beyond its original scope, i.e.:

RQ5: Can we transfer a learned metric to a different, but related domain?

In general, transferring knowledge from a source domain to a target domain is
the topic of transfer learning or domain adaptation (S. J. Pan and Q. Yang 2010; Weiss,
Khoshgoftaar, and D. Wang 2016). In Chapter 7, I provide a novel framework to formalize
supervised transfer learning by explicitly learning a function that maps from the target
to the source domain. By applying this learned mapping to target domain data, we
can then re-use our source domain model without changes. The key advantage of my
scheme is that it is agnostic regarding the downstream processing pipeline. No matter
how complicated a processing pipeline may be, if the relationship between target and
source domain is sufficiently simple, we can learn it time- and data-efficiently.

In Chapter 8, I demonstrate the viability of my approach for the example domain
of bionic hand prostheses. For decades, researchers have developed machine learning
systems, which can infer the desired motion of a hand prostheses from the muscle signals
in the patient’s stump (Farina et al. 2014). However, while these systems tend to work
well under lab conditions, they break down under everyday disturbances, such as shifts
of the recording electrodes around the stump (Farina et al. 2014; Khushaba et al. 2014).
In such everyday situations, recording large amounts of training data to learn a new
model is not a viable option due to time constraints, making electrode shifts an ideal
scenario for transfer learning. I demonstrate experimentally that my transfer learning
can considerably enhance the accuracy of a disturbed model using less data and less
time compared to multiple existing baselines.

In summary, my work contributes

• a general-purpose framework for gradient-based metric learning on sequence edit
distances in quadratic time,

• a scalable approach for gradient-based metric learning for the tree edit distance,
which yields state-of-the-art results in tree edit distance learning,

• a novel time series prediction algorithm for time series of structured data to date,

• a novel inversion mechanism for edit distance representations to date, and

• an extremely data- and time-efficient transfer learning algorithm for distance-based
classification models.

Beyond developing these algorithms, I utilize them to address difficult challenges in
contemporary research, namely to generate hints in intelligent tutoring systems, and to
counteract electrode shifts in bionic hand prostheses.
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2B A C K G R O U N D A N D R E L AT E D W O R K

Summary: This chapter covers background knowledge upon which we build in the
following chapters. In particular, we revisit basics regarding distances and kernels and
go on to cover specific kernels and distances for structured data, with a focus on edit
distances, which we adapt via metric learning later on. Further, we review existing metric
learning approaches for structured data and position our own work in that context. We
close this chapter by covering some distance-based machine learning methods, namely
learning learning vector quantization models, Gaussian mixture models, and Gaussian
processes.

2.1 kernels and distances

This entire work is centered around notions of distance. Intuitively, distance is a spatial
concept, referring to the length of the shortest path connecting two points in space.
However, distance also serves as a more general tool in human cognition, referring to
any kind of quantitative measure of dissimilarity between objects (Shepard 1962; Tversky
1977; Nosofsky 1992; Medin, Goldstone, and Genter 1993; Gentner and Markman 1997;
Hodgetts, Hahn, and Chater 2009). Accordingly, distances have become a flexible and
powerful tool in machine learning, far beyond a strict spatial interpretation (Pekalska
and Duin 2005). In this thesis, we define a distance in the general, mathematical sense as
follows.

Definition 2.1 (Distance). Let X be an arbitrary set. A function d : X ×X → R is called
a distance or a metric if and only if for all x, y, z ∈ X it holds:

d(x, y) ≥ 0 (non-negativity) (2.1)
d(x, x) = 0 (self-equality) (2.2)

x 6= y⇒ d(x, y) > 0 (discernibility) (2.3)
d(x, y) = d(y, x) (symmetry) (2.4)

d(x, z) + d(z, x) ≥ d(x, y) (triangular inequality) (2.5)

We also call these five conditions the metric axioms.

Following Nebel, Kaden, et al. (2017), we call d a semi- or pseudo-metric if all axioms
except for discernibility are fulfilled.

Note that all the metric axioms conform to our intuitions about physical distance,
namely that there are no negative distances, that any object has no distance to itself, that
no two different objects can occupy the same location, that we travel the same length
from x to y as from y to x, and that the shortest connection between two points is always
the direct path instead of making detours (Shepard 1962).

Spatial distances are a special case of this general notion of distance. In particular, we
call such a distance Euclidean.
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Definition 2.2 (Euclidean Distance). Let X be some arbitrary set and let d : X ×X → R.
We call d an Euclidean distance, if there exists some function φ : X → Rm for some
m ∈N1, such that for all x, y ∈ X it holds:

d(x, y) = ‖φ(x)− φ(y)‖, where ‖~x‖ :=
√
~x> ·~x

We call φ the spatial mapping for d.

In other words, we call a distance Euclidean if it is equivalent to the standard Euclidean
distance in Rm for all points in the image of φ on X . This spatial interpretation is key to
so-called relational machine learning approaches, which perform learning in the image of
φ (Hammer and Hasenfuss 2010; Hammer, D. Hofmann, et al. 2014). In this thesis for
example, we apply relational generalized learning vector quantization (RGLVQ) (refer to
Section 2.5.3) for metric learning purposes (refer to Chapter 3).

Euclidean distances are intuitively related to kernel approaches in machine learning
which also map implicitly to a m-dimensional space, albeit in terms of an inner product
instead of a standard Euclidean distance. More precisely, we define a kernel as follows.

Definition 2.3 (Kernel). Let X be some arbitrary set. A function k : X ×X → R is called
a kernel if there exists some function φ : X → Rm for some m ∈ N such that for all
x, y ∈ X it holds:

k(x, y) = φ(x)> · φ(y)
We call φ the spatial mapping for k.

In other words, a k is a function that corresponds to a standard inner product in
Rm. As with relational methods, kernel-based methods perform machine learning in
the image of φ, even though the data are only represented in terms of their pairwise
kernel values (T. Hofmann, Schölkopf, and Smola 2008). In this thesis, we use kernels
for structured data (refer to Section 2.2) and Gaussian process regression (GPR) as a
kernel-based method (refer to Section 2.6). In Chapters 5 and 6, we utilize GPR to predict
time series of structured data.

Note that Euclidean distances and kernels are strongly related because they both
rely on a spatial mapping φ. More precisely, the following theorem from the literature
accumulates the most important formal relations between both concepts.

Theorem 2.1. Let X be some arbitrary set and let d : X × X → R. Then it holds: d is
Euclidean if and only if there exists a kernel k : X × X → R, such that for all x, y ∈ X :
d(x, y)2 = k(x, x)− 2 · k(x, y) + k(y, y).

Now, let X = {x1, . . . , xM} be a finite set and let s : X × X → R. It holds: s is a kernel
if and only if the matrix S ∈ RM×M with entries Si,j = s(xi, xj) is symmetric and positive
semi-definite.

Further, let d : X × X → R be a self-equal and symmetric function on X , and let sd be
defined as follows.

sd(xi, xj) :=
1
2

(
− d(xi, xj)

2 +
1
M

M

∑
k=1

d(xi, xk)
2 + d(xk, xj)

2 − 1
M

M

∑
l=1

d(xk, xl)
2
)

(2.6)

1 We note that, for infinite X , m can become infinite as well, but we will refrain from a detailed discussion of
this issue for simplicity. In our case, we implicitly assume that m is finite either intrinsically or due to the
fact that datasets are finite.
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Table 2.1: The pairwise string edit distances d(x, y) (top left), the corresponding kernel values
s(x, y) (top right), the eigenvalues of S (bottom right), and the vectorial embeddings φ(x) for the
strings ε, a, and ab.

d(x, y) ε a ab

ε 0 1 2
a 1 0 1
ab 2 1 0

sd(x, y) ε a ab

ε 1 0 −1
a 0 0 0
ab −1 0 1

eigenvalues

2
0
0

φ(ε) φ(a) φ(ab)−1
0
0

 0
0
0

 1
0
0



Then it holds for all i, j ∈ {1, . . . , M}: d(xi, xj)
2 = sd(xi, xi)− 2 · sd(xi, xj) + sd(xj, xj).

Finally, it holds: d is Euclidean if and only if the matrix S ∈ RM×M with entries Si,j =
sd(xi, xj) is positive semi-definite.

Proof. The proofs of these claims have been done by Torgerson (1952) and Pekalska and
Duin (2005, pp. 108, 118-124). For a version adjusted to our notation, refer to Appendix A.1.

As an example, consider the dataset X = {ε, a, ab} with the standard string edit
distance of Levenshtein (1965). The corresponding distance values d(x, y), the values
sd(x, y), and the embedded vectors φ(x), and the eigenvalues of S are shown in Table 2.1.
Because all eigenvalues of S are non-negative, S is a kernel matrix and thus the distance
d is Euclidean on this dataset. In other words, the standard Euclidean distance between
φ(x) and φ(y) corresponds exactly to d(x, y). Indeed, because two eigenvalues are zero,
the embedding has effectively only one dimension with φ(ε) = −1, φ(a) = 0, and
φ(ab) = 1. Note that this embedding is equivalent to metric multi-dimensional scaling as
described by Torgerson (1952).

Also note that all Euclidean distances are metrics in the sense of Definition 2.1, but
that not all metrics are Euclidean. For example, if we extend the dataset in Table 2.1 by
the string b, the corresponding similarity matrix S has a negative eigenvalue of −0.25,
which in turn means that it is not a kernel matrix, which finally implies that the original
distance is not Euclidean.

This limitation has severe practical implications, because it means that we explicitly
need to ensure that the matrix S for our distance d is positive semi-definite. The canonical
way to do so is to compute the eigenvalue decomposition of S and either set negative
eigenvalues to zero (clip eigenvalue correction), set all eigenvalues to their absolute
value (flip eigenvalue correction), or subtract the smallest eigenvalue from all others
(shift eigenvalue correction) (Gisbrecht and Schleif 2015; Nebel, Kaden, et al. 2017).
Note that all these techniques have two drawbacks. First, the Eigenvalue decomposition
requires O(M3) time to compute, which may be infeasible in practice. Fortunately, linear-
time approximations via the Nyström-technique do exist (Gisbrecht and Schleif 2015).
Second, manipulating the eigenvalues distorts the original distance values, which may
result in rank-differences and invalid inferences downstream (Nebel, Kaden, et al. 2017).
Accordingly, we attempt to avoid eigenvalue correction whenever possible, and make
explicit where it can not be avoided.

Fortunately, Pekalska and Duin (2005) have established the notion of pseudo-Euclidean
distances, which still permit spatial reasoning in a weaker form but do not require eigen-
value correction.
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Definition 2.4 (Pseudo-Euclidean Distance). Let X be some arbitrary set and let d : X ×
X → R. We call d an pseudo-Euclidean distance, if there exist two functions φ+ : X → Rm

and φ− : X → Rn for some m, n ∈N, such that for all x, y ∈ X it holds:

d(x, y)2 = ‖φ+(x)− φ+(y)‖2 − ‖φ−(x)− φ−(y)‖2 (2.7)

We call φ+ the positive spatial mapping and φ− the negative spatial mapping for d.

The reason we do not require an eigenvalue correction to construct a pseudo-
Euclidean distance is the following theorem by Pekalska and Duin (2005), which guaran-
tees that any function that is symmetric and self-equal is a pseudo-Euclidean distance.

Theorem 2.2. Let X be some arbitrary set and let d : X × X → R. If d is Euclidean with
spatial map φ : X → Rm, it is also pseudo-Euclidean with positive spatial map φ+(x) := φ(x)
and φ−(x) := 0.

Now, let X = {x1, . . . , xM} be a finite set and let d : X × X → R. It holds: d is pseudo-
Euclidean if and only if d is symmetric and self-equal.

Proof. The first claim follows trivially from the definitions of Euclidean and pseudo-
Euclidean distances.

With respect to the second claim, refer to Pekalska and Duin (2005, p. 122-124). A
version of the proof adapted to our notation here is shown in Appendix A.2.

In Chapters 5 and 6, we utilize the notion of pseudo-Euclidean distances to per-
form time series prediction for structured data. An issue with learning in the (pseudo-
)Euclidean space is that we need to compute an eigenvalue decomposition of the similarity
matrix S in order to construct the space explicitly. Fortunately, an implicit representation
is sufficient if we restrict ourselves to the affine hull of a training data set. Within this
affine hull, we can compute any pairwise distance relying only on the pairwise distances
in the training data and affine coefficients, as Hammer and Hasenfuss (2010) have shown.

Theorem 2.3. Let X be some arbitrary set and let d : X × X → R be a pseudo-Euclidean
distance on X with the spatial mappings φ+ : X → Rm and φ− : X → Rn. Further, let
{x1, . . . , xM} ⊆ X be a finite subset of X , and let~α,~β ∈ RM such that ∑M

i=1 αi = ∑M
i=1 βi = 1.

Finally, let X+ =
(
φ+(x1), . . . , φ+(xM)

)
∈ RM×m and X− =

(
φ−(x1), . . . , φ−(xM)

)
∈

RM×n be the matrices of positive and negative spatial representations for all xi, and let D2 be the
M×M matrix with the entries D2

i,j = d(xi, xj)
2. Then, it holds:

‖X+ ·~α− X+ ·~β‖2− ‖X− ·~α− X− ·~β‖2 =~α> ·D2 ·~β− 1
2
~α> ·D2 ·~α− 1

2
~β> ·D2 ·~β (2.8)

Further, for any x ∈ X it holds:

‖φ+(x)− X+ ·~α‖2 − ‖φ−(x)− X− ·~α‖2 =
M

∑
i=1

αi · d(x, xi)
2 − 1

2
~α> · D2 ·~α (2.9)

If d is Euclidean with spatial mapping φ : X → Rm, then let X :=
(
φ(x1), . . . , φ(xM)

)
∈

Rm×M. It holds:
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2.2 kernels for structured data

‖X ·~α− X · ~β‖2 =~α> · D2 · ~β− 1
2
~α> · D2 ·~α− 1

2
~β> · D2 · ~β (2.10)

Further, for any x ∈ X it holds:

‖φ(x)− X ·~α‖2 =
M

∑
i=1

αi · d(x, xi)
2 − 1

2
~α> · D2 ·~α (2.11)

Proof. Refer to Theorem 1 by Hammer and Hasenfuss (2010). A version of the proof
adapted to our notation here is shown in Appendix A.3.

Via this trick, one can construct machine learning methods that perform inferences
solely based on a given pseudo-Euclidean or Euclidean distance such as relational
neural gas (Hammer and Hasenfuss 2007; Hammer and Hasenfuss 2010), relational
generative topographic mapping (Gisbrecht, Mokbel, and Hammer 2010), or relational
generalized learning vector quantization (RGLVQ, Hammer, D. Hofmann, et al. 2014,
also refer to Section 2.5.3). In our work, we extend this branch of machine learning by
providing a novel time series prediction mechanism based on pseudo-Euclidean distances
in Chapter 5, and a edit distance inversion scheme in Chapter 6.

Now that we have covered the basic notions of kernels, distances, and their relations,
we go into more detail regarding kernels and distances for structured data. We first cover
structure kernels and then go on to edit distances on structured data.

2.2 kernels for structured data

One can construct kernels for structured data in two ways, either by explicitly constructing
the spatial mapping φ, or by leaving that mapping implicit (Da San Martino and Sperduti
2010; T. Hofmann, Schölkopf, and Smola 2008). The most straightforward form of explicit
kernels are histogram kernels, which build a histogram over features of the structured
datum x and use those as vectorial representation φ(x). Examples include histograms
over the lengths of shortest paths in a graph (Borgwardt and Kriegel 2005), histograms
over subtree types and their position (Aiolli, Martino, and Sperduti 2015), and histograms
over hidden states of a Markov model trained on the structured datum (Bacciu, Errica,
and Micheli 2018).

Another approach to explicit kernels relies on learning the spatial mapping φ, for
example via a neural network (Bacciu, Gallicchio, and Micheli 2016; W.-b. Huang et al.
2015; Mehrkanoon and Suykens 2018; Yanardag and Vishwanathan 2015; Z. Yang et al.
2015). This relates kernels to the field of representation learning for structured data, which
has received heightened attention in recent years (Bengio, Courville, and Vincent 2013;
LeCun, Bengio, and Hinton 2015). For example, we can learn vectorial representations
of sequential data via recurrent neural networks (Cho et al. 2014; Chung et al. 2015;
Hochreiter and Schmidhuber 1997; Jaeger and Haas 2004; Sutskever, Vinyals, and Q. V. Le
2014), we can learn tree representations via recursive neural networks (Gallicchio and
Micheli 2013; Irsoy and Cardie 2014; Pollack 1990; Socher, Perelygin, et al. 2013; Sperduti
and Starita 1997), and we can learn graph representations via recurrent, recursive, or
convolutional networks on graphs (Bacciu, Errica, and Micheli 2018; Gallicchio and
Micheli 2010; Garcia Duran and Niepert 2017; Hamilton, Ying, and Leskovec 2017).
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In terms of implicit kernels, a popular strategy involves representing a structured
datum in terms of constituent parts and constructing an overall kernel as a sum over
kernels between the constituents, such as path and walk kernels (Borgwardt and Kriegel
2005; Da San Martino and Sperduti 2010; Feragen et al. 2013) or Weisfeiler-Lehman
kernels (Shervashidze et al. 2011). Once a structure kernel has been constructed, it is also
possible to combine multiple kernels in linear combinations with non-negative weights,
which has been dubbed multiple kernel learning (Aiolli and Donini 2015; Gönen and
Alpaydın 2011). Alternatively, one can perform an approach similar to metric learning by
adjusting the parameters of a kernel to the data at hand, as has been done for biological
sequence alignment kernels (Saigo, Vert, and Akutsu 2006).

Note that only few kernels permit intuitive interpretation. In particular, the subtree
kernels of Aiolli, Martino, and Sperduti (2015) could be interpreted in terms of the
subtrees that are contained in both input trees, and the alignment kernel of Saigo, Vert,
and Akutsu (2006) permits to pinpoint the elements that are different and equal in both
input sequences. However, the latter is only possible because the kernel is constructed
based on an edit distance. Indeed, edit distances have the distinct advantage that they
are not only interpretable, but actionable, in the sense that an edit distance tells us
precisely what we need to change to reduce the edit distance between two structured
data. Therefore, we focus on edit distances in our work.

2.3 edit distances

An edit distance between two structured data x̄ and ȳ is defined as the effort needed to
transform x̄ into ȳ. More precisely, an edit distance is defined as the cost of the cheapest
edit script which transforms x̄ into ȳ, and different notions of edit scripts yield different
kinds of edit distances. The first works on edit distances are by Levenshtein (1965) as
well as Damerau (1964) who independently devised a simple distance measure to count
the number of spelling mistakes in a written sentence by defining it as the number of
characters that have to be deleted, inserted, or changed to arrive at the correct version.
Later, multiple researchers discovered dynamic programming algorithms to compute
these notions of distance efficiently (Navarro 2001). T. F. Smith and Waterman (1981) and
Gotoh (1982) have later extended this basic work to compute edit distances between RNA,
DNA, and protein sequences in terms of their amino acid notation. Further, Tai (1979)
and Zhang and Shasha (1989) have provided edit distance versions for trees. Indeed,
ordered trees and ordered directed acyclic graphs are the most complex data structure
for which we can compute the edit distance efficiently as the edit distance for unordered
trees and for graphs with cycles are provably NP-hard (Zhang, Statman, and Shasha 1992;
Zeng et al. 2009).

In this section, we describe edit distance approaches for sequences, trees, and graphs,
with a special focus on edit distances on sequences and trees, because these are efficiently
computable.

2.3.1 Sequence Edit Distance

We begin our description of sequence edit distances by formally defining sequences,
edits over sequences, cost functions, and finally edit distances. While these definitions
capture the general intuition behind sequence edit distances, they are insufficient to
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Figure 2.1: Left: A graphical representation of the edit set ∆ = {del1, ins1,a} over the alphabet
A = {a, b, c}. All possible sequences over A are nodes of the graph, and two sequences are
connected if a sequence edit in ∆ exists that transforms the first sequence into the second. Right:
A similar graphical representation for the edit set over the signature SALI = ({del}, {rep}, {ins}).

derive efficient algorithms. Therefore, we introduce algebraic dynamic programming
(Giegerich, Meyer, and Steffen 2004) as an alternative formalism to describe sequence edit
distances that is strong enough to yield results regarding metric properties and efficient
computations. Note that we go into some detail regarding sequence edit distances at
this point because we later build upon our concepts and notations to learn these edit
distances in Chapter 3.

Definition 2.5 (Alphabets, Sequences, Sequence Edits, Edit Sets, Edit Scripts). Let A be
some arbitrary set. We call such a set an alphabet. We define a sequence over A as a finite
list of elements x̄ = x1 . . . xm from A. We call m the length of x̄, denoted as |x̄|. We denote
the empty list as ε. We denote the set of all possible sequences over alphabet A as A∗.

We define a sequence edit as a function δ : A∗ → A∗. We call a set ∆ of sequence edits
an edit set. We define an edit script over ∆ as a sequence over ∆. We define the application
δ̄(x̄) of an edit script δ̄ = δ1 . . . δT ∈ ∆∗ to a sequence x̄ as the function composition
δT ◦ . . . ◦ δ1(x̄), where δ ◦ δ′(x̄) := δ(δ′(x̄)). If δ̄ = ε, we define δ̄(x̄) := x̄.

As an example, consider the alphabet A = {a, b, c}. Then, ε, a, abc, and aaa are all
sequences over A. Now, consider the sequence edit del1 : A∗ → A∗, which we define as
del1(x1 . . . xm) := x2 . . . xm, and del1(ε) = ε. Applying del1 to the sequence abc results in
del1(abc) = bc. Accordingly, the edit script del1del1 results in del1del1(abc) = c. Con-
versely, consider the sequence edit ins1,a : A∗ → A∗, which we define as ins1,a(x̄) = ax̄.
Applying ins1,a the sequence abc results in ins1,a(abc) = aabc. The set ∆ = {del1, ins1,a}
is an edit set.

We can interpret an edit set over some alphabet A in terms of a graph G = (V, E) by
setting the nodes as V = A∗ and constructing an edge (x̄, ȳ) ∈ E if and only if there exists
a sequence edit δ ∈ ∆ such that δ(x̄) = ȳ. This graphical view is particularly insightful in
intelligent tutoring systems, where we can interpret the graph as the space of all possible
states a student could visit on their way to a solution of a learning task. We therefore
cover this interpretation in more detail in Chapter 6 (in particular, refer to Definition 6.2).
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Figure 2.1 (left) shows an excerpt of this graph for our example above. The sequence
edit distance is the shortest path distance in this graph if we set the length of all edges to
the values of a cost function, which we define as follows.

Definition 2.6 (Cost Function, Sequence Edit Distance). Let A be an alphabet and let ∆
be an edit set over A. Then, we define a cost function over ∆ as a function c : ∆×A∗ → R.
We call c(δ, x̄) the cost of applying δ to x̄. Accordingly, we define the cost of applying an
edit script δ̄ = δ1 . . . δT to x̄ recursively as c(δ̄, x̄) := c(δ1, x̄) + c(δ2 . . . δT, δ1(x̄)) with the
base case c(ε, x̄) = 0.

We define the edit distance d∆,c according to ∆ and c as the following function.

d∆,c : A∗ ×A∗ → R

d∆,c(x̄, ȳ) := min
δ̄∈∆∗

{
c(δ̄, x̄)

∣∣∣δ̄(x̄) = ȳ
}

(2.12)

In other words: The edit distance between x̄ and ȳ is the cost of the cheapest edit script
transforming x̄ to ȳ. Consider the edit set ∆ = {del1, ins1,a} above in combination with
the cost function c(δ, x̄) = 1, independent of the input. Then, we obtain d∆,c(ε, a) = 1,
d∆,c(ε, aa) = 2, and d∆,c(bb, ab) = 2.

While conceptually insightful, the definition of edit distances via an edit set and a cost
function has severe practical limitations. First, an edit set needs to be infinitely large if we
wish to address arbitrarily long sequences, which poses a challenge in definition. Second,
the concepts of an edit set and a cost function are too general to permit conclusions
regarding metric properties. For example, our edit distance above is not metric because it
is not symmetric. However, we require certainty about self-equality and symmetry in
order to ensure that a edit distance is pseudo-Euclidean. Third, the space of all possible
edit scripts over an infinite edit set is not efficiently searchable, preventing us from
computing the edit distance in polynomial time.

As such, we sorely need an alternative formalism to express a subclass of edit
distances that are efficiently computable, and this subclass needs to be expressive enough
to include all edit distances that are interesting to us. As it turns out, the framework of
algebraic dynamic programming is exactly what we need.

2.3.2 Algebraic Dynamic Programming

Algebraic dynamic programming (ADP) has been introduced by Giegerich, Meyer, and
Steffen (2004) as a discipline of dynamic programming over sequence data. In particular, the
authors suggest to formalize potential solutions for a problem over sequential data as
trees, generated by a regular tree grammar, and to find an optimal solution by essentially
parsing the problem input via the grammar (Giegerich, Meyer, and Steffen 2004). Note
that this approach is highly general and encompasses diverse sequential problems far
beyond edit distance computation, such as optimal RNA folding, hidden Markov model
inference or scoring of phylogenetic trees (Siederdissen, Prohaska, and Stadler 2015). In
this section, we focus particularly on edit distances and simplify the general ADP theory
for this purpose. Still, all our definitions follow strictly from the general case as described
by Giegerich, Meyer, and Steffen (2004).

Note that we utilize the ADP formulation as basis for sequence edit distance learning
later in Chapter 3. We also show metric properties and efficient computability there.
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In this section, we focus on definitions. In particular, we introduce three ingredients
which suffice to specify any typical sequence edit distance in the literature, namely
signatures, which capture the kinds of edits that can be applied, algebrae, which capture
how expensive these kinds of edits are, and edit tree grammars, which specify how edits
can be combined into edit scripts. First, we begin with signatures.

Definition 2.7 (Signature, Signature Edit Set). We define a signature S as a triple of finite
sets S = (Del, Rep, Ins), which are pairwise disjoint, that is Del ∩ Rep = Del ∩ Ins =
Rep∩ Ins = ∅. We call S non-trivial if neither Del nor Ins are empty.

Let A be an alphabet and S = (Del, Rep, Ins) be a signature. Then, we define for
each element del ∈ Del and each natural number i ∈N the function deli : A∗ → A∗ as
deli(x1 . . . xm) := x1 . . . xi−1xi+1 . . . xm if i ≤ m, and deli(x̄) := x̄ if i > m.

For each element rep ∈ Rep, each element y ∈ A, and each natural number i ∈N, we
define the function repi,y : A∗ → A∗ as repi,y(x1 . . . xm) := x1 . . . xi−1yxi+1 . . . xm if i ≤ m,
and repi,y(x̄) := x̄ if i > m.

Finally, for each element ins ∈ Ins, each element y ∈ A, and each natural number
i ∈ N, we define the function insi,y : A∗ → A∗ as insi,y(x1 . . . xm) := x1 . . . xi−1yxi . . . xm
if i ≤ m + 1, and insi,y(x̄) := x̄ if i > m + 1.

We define the edit set ∆S ,A with respect to the signature S = (Del, Rep, Ins), and the
alphabet A as follows.

∆S ,A ={deli|del ∈ Del, i ∈N}∪ (2.13)
{repi,y|rep ∈ Rep, i ∈N, y ∈ A}∪
{insi,y|ins ∈ Rep, i ∈N, y ∈ A}

As an example, consider one of the simplest non-trivial signatures, ALI = ({del},
{rep}, {ins}), which contains one kind of deletion, replacement, and insertion respectively
and corresponds to the string edit distance of Levenshtein (1965). An excerpt of the
graphical representation of the edit set ∆ALI,{a,b,c} is shown in Figure 2.1 (right). Note
that, as a user of the framework, we only need to specify a small signature S , and the
infinitely large edit set ∆S ,A follows automatically. Also note that we can re-use the same
signature for arbitrary alphabets, which simplifies specification.

Now that we have specified an edit set, we only need a cost function to obtain an
edit distance. Following the ADP framework, we generate a cost function based on the
signature via the vehicle of an algebra.

Definition 2.8 (Algebra, Algebra Cost Function). Let A be an alphabet, let S = (Del, Rep,
Ins) be a signature, let (A → R) denote the set of functions mapping from A to the real
numbers R, and let (A×A → R) denote the set of functions mapping from A×A to
the real numbers R.

Then, we define an algebra F over S and A as a triple of functions FS ,A = (FDel,FRep,
FIns), where FDel : Del → (A → R), FRep : Rep → (A×A → R), and FIns : Ins →
(A → R).

As a shorthand, we denote the function FDel(del) as cdel for all del ∈ Del, we denote
FRep(rep) as crep for all rep ∈ Rep, and we denote FIns(ins) as cins for all ins ∈ Ins.
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We define the cost function cF with respect to an algebra F = (FDel,FRep,FIns) as
the following cost function over ∆S ,A.

cF (δ, x̄) :=


cdel(xi) if δ = deli, i ≤ |x̄|
crep(xi, y) if δ = repi,y, i ≤ |x̄|
cins(y) if δ = insi,y, i ≤ |x̄|+ 1
0 otherwise

(2.14)

As a notational shorthand, we denote the edit distance d∆S ,A,cF as dS ,F .

As an example, consider the standard string edit distance of Levenshtein (1965), which
corresponds to the signature SALI = ({del}, {rep}, {ins}), and the algebra FALI with the
functions

cdel(x) := cins(x) := 1 and crep(x, y) :=

{
1 if x 6= y
0 if x = y

∀x, y ∈ A (2.15)

An advantage in specifying a cost function via an algebra is that we only need to specify
the cost of edit types, which then automatically generalizes over the entire, infinitely
large edit set ∆S ,A.

An issue with the formalism of edit scripts is that it is highly redundant, that is, edit
scripts can make detours before arriving at their final result. For example, the two edit
scripts del1 and ins1,arep1,bdel2del1 have exactly the same output for every possible input
sequence, but the latter makes detours, namely inserting the letter a, replacing it with b,
and deleting it again, in addition to performing the actual action, namely deleting the
first character in the input sequence.

To express only those edit scripts that avoid such detours, we introduce the script
tree concept.

Definition 2.9 (Script Trees, Yield, Tree Cost). Let A be an alphabet with $, match /∈ A,
and let S = (Del, Rep, Ins) be a signature with $, match /∈ Del ∪ Rep ∪ Ins. Then, we
define a script tree δ̃ over S and A as one of the following.

δ̃ = $,

δ̃ = match(x, δ̃′, x) where x ∈ A, and δ̃′ is a script tree,

δ̃ = del(x, δ̃′) where del ∈ Del, x ∈ A, and δ̃′ is a script tree,

δ̃ = rep(x, δ̃′, y) where rep ∈ Rep, x, y ∈ A, and δ̃′ is a script tree, or

δ̃ = ins(δ̃′, y) where ins ∈ Ins, y ∈ A, and δ̃′ is a script tree.

We define the set of all possible script trees over S and A as T (S ,A).

Let δ̃ be a script tree over S and A. Then, we define the yield Y(δ̃) ∈ A∗ ×A∗ of δ̃ as
follows.

Y(δ̃) :=



(ε, ε) if δ̃ = $
(xx̄, xȳ) if δ̃ = match(x, δ̃′, x) and (x̄, ȳ) = Y(δ̃′)
(xx̄, ȳ) if δ̃ = del(x, δ̃′) and (x̄, ȳ) = Y(δ̃′)
(xx̄, yȳ) if δ̃ = rep(x, δ̃′, y) and (x̄, ȳ) = Y(δ̃′)
(x̄, yȳ) if δ̃ = ins(δ̃′, y) and (x̄, ȳ) = Y(δ̃′)
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a ca cc c b

ins1,c rep2,c del1 rep1,b

match

a$a

ins

cmatch

a$a

ins

crep

c$a

rep

c$a

rep

b$a

Figure 2.2: An example for the translation of an edit script to a script tree. The top row displays
the sequence edits in the edit script which successively convert the sequence x̄ = a into the
sequence ȳ = b. The bottom row shows the script tree corresponding to the partial edit script up
to the point of the sequence at the top.

Further, we define the size |δ̃| ∈N0 of δ̃ as follows.

|δ̃| :=

{
0 if δ̃ = $
1 + |δ̃′| if ∃δ̃′ : δ̃ ∈ {match(x, δ̃′, x), del(x, δ̃′), rep(x, δ̃′, y), ins(δ̃′, y)}

Let F be an algebra over S and A. Then, we define the cost cF (δ̃) of δ̃ according to F
as follows.

cF (δ̃) :=



0 if δ̃ = $
cF (δ̃′) if δ̃ = match(x, δ̃′, x)
cdel(x) + cF (δ̃′) if δ̃ = del(x, δ̃′)

crep(x, y) + cF (δ̃′) if δ̃ = rep(x, δ̃′, y)
cins(y) + cF (δ̃′) if δ̃ = ins(δ̃′, y)

As an example, consider the script tree δ̃ = del(a, ins($, b)) over the signature SALI =
({del}, {rep}, {ins}) and the alphabet A = {a, b}. The yield of this tree is

Y(δ̃) =
(
aY1

(
ins($, b)

)
,Y2
(
ins($, b)

))
=
(
aY1($), bY2($)

)
= (a, b).

The size of the tree is |δ̃| = 1 + |ins($, b)| = 2 + |$| = 2. Finally, the cost of the tree
according to algebra FALI from above is given as

cF (δ̃) = cdel(a) + cF
(
ins($, b)

)
= cdel(a) + cins(b) + cF ($) = cdel(a) + cins(b).

Intuitively, the script tree has the purpose to jointly represent some sequence x̄, some
edit script δ̄, and the resulting sequence δ̄(x̄). As mentioned above, however, the relation
between edit scripts and script trees is not one-to-one, because script trees represent
only edit scripts which avoid detours - at least extreme detours where we insert symbols
that are not present in the target sequence. Indeed, omitting such detours ensures that
for any two sequences x̄ and ȳ the search space of possible script trees δ̃ with the
yield Y(δ̃) = (x̄, ȳ) is guaranteed to be finite, even though the set of edit scripts which
transform x̄ to ȳ may well be infinite. This drastic limitation in the search space also
enables us to compute the resulting edit distances efficiently (refer to Chapter 3).
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A final limitation of our framework until now is that we can not express additional
contraints on the edit distance. Such constraints occur in extensions of the standard edit
distance, such as the local alignment distance of T. F. Smith and Waterman (1981), which
permits cheaper deletions or insertions at the end of the input sequences, but not before,
or the affine alignment distance of Gotoh (1982), which permits cheaper deletions or
insertions if they occur in bulk. We can incorporate such constraints in form of an edit
tree grammar.

Definition 2.10 (Edit Tree Grammar, Tree Language, Grammar Edit Distance). Let S =
(Del, Rep, Ins) be a signature with $, match /∈ Del ∪ Rep ∪ Ins. Then, we define an edit
tree grammar G as a quartuple G = (Φ,S ,R, S), where Φ is a finite set, which we call
nonterminal symbols, such that Φ ∩ (Del∪ Rep∪ Ins∪ {match, $}) = ∅, S ∈ Φ, and R is
a finite set of so-called production rules of the form A ::= δB or the form A ::= $, where
A, B ∈ Φ and δ ∈ Del∪ Rep∪ Ins∪ {match}.

Per convention, we denote multiple production rules A ::= δ1B1, . . ., A ::= δTBT,
A ::= $ with the same left-hand side A as A ::= δ1B1| . . . |δTBT|$.

Let A be an alphabet, let A, B ∈ Φ, x, y ∈ A, del ∈ Del, rep ∈ Rep, and ins ∈ Ins. We
say that $ can be derived in one step from A via G, denoted as A→1

G $, if the production
rule A ::= $ is in R. Similarly, we say that A →1

G match(x, B, x) if A ::= matchB ∈ R,
we say that A →1

G del(x, B) if A ::= delB ∈ R, we say that A →1
G rep(x, B, y) if

A ::= rep(x, B, y) ∈ R, and we say that A→1
G ins(B, y) if A ::= insB ∈ R.

We say that an expression δ̃ can be derived in T + 1 steps from A ∈ Φ for T ∈ N,
denoted as A→T+1

G δ̃ if one of the following cases holds.

δ̃ = match(x, δ̃′, x) for some expression δ̃′, and there exists a B ∈ Φ such that A →1
G

match(x, B, x), as well as B→T
G δ̃′.

δ̃ = del(x, δ̃′) for some expression δ̃′, and there exists a B ∈ Φ such that A→1
G del(x, B),

as well as B→T
G δ̃′.

δ̃ = rep(x, δ̃′, y) for some expression δ̃′, and there exists a B ∈ Φ such that A →1
G

rep(x, B, y), as well as B→T
G δ̃′.

δ̃ = ins(δ̃′, y) for some expression δ̃′, and there exists a B ∈ Φ such that A→1
G ins(B, y),

as well as B→T
G δ̃′.

We say that δ̃ can be derived in arbitrarily many steps from A, denoted as A →∗G δ̃, if
there exists any T ∈N such that A→T

G δ̃. We define the tree language of G with respect
to A as follows.

L(G,A) := {δ̃ ∈ T (S ,A)|S→∗G δ̃}

Let F be an algebra over S and A, and let x̄, ȳ ∈ A∗. Then, we define the edit distance
between x̄ and ȳ with respect to G and F as follows.

dG,F (x̄, ȳ) := min
δ̃∈L(G,A)

{cF (δ̃)|Y(δ̃) = (x̄, ȳ)}
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Note that including edit tree grammars into the formalism does not restrict expressiv-
ity. For every signature S = (Del, Rep, Ins) and every alphabet A we can recover the set
T (A,S) as the tree language of the trivial edit tree grammar

GS = ({S},S , {S ::= $} ∪ {S ::= δS|δ ∈ Del∪ Rep∪ Ins∪ {match}}, S).

As an example, consider the signature SALI = ({del}, {rep}, {ins}) and the following
edit tree grammar GALI.

GALI = ({A},SALI,R, A) where R = {A ::= matchA|delA|repA|insA|$} (2.16)

For this edit tree grammar and any alphabet A it holds: L(GALI,A) = T (A,SALI).

Now, consider the two sequences x̄ = a and ȳ = b over the alphabet A = {a, b} and
consider the algebra FALI from Equation 2.16. To compute the edit distance between x̄
and ȳ with respect to GALI and FALI, we need to consider all script trees δ̃ that can be
generated via GALI and have the yield Y(δ̃) = (x̄, ȳ) = (a, b). These are only the script
trees del(a, ins($, b)), rep(a, $, b), and ins(del(a, $), b), which can be derived from A as
follows.

A→1
G del(a, A)→1

G del(a, ins(A, b))→1
G del(a, ins($, b)),

A→1
G rep(a, A, b)→1

G rep(a, $, b), and

A→1
G ins(A, b)→1

G ins(del(a, A), b)→1
G ins(del(a, $), b)

The cheapest of these script trees is rep(a, $, b) with a cost of 1, whereas both other script
trees have a cost of 2. Therefore, we obtain dG,F (a, b) = 1. Note that this is equal to the
edit distance dS ,F (a, b). This is no coincidence. Indeed, we show in Chapter 3 that any
edit distance dS ,F is equivalent to the edit distance over its trivial edit tree grammar dGS ,F
if the algebra F ensures that edit scripts which make detours can never be cheaper than
edit scripts which do not. We also show that any such edit distance adheres to metric
axioms if the algebra does as well.

Now, let us return to our original motivation for edit tree grammars, namely to
incorporate additional constraints. As an example, consider the local alignment distance
of T. F. Smith and Waterman (1981), where the suffices of both sequences are considered
irrelevant if the edit distance between them exceeds a constant. We can model this
behavior by introducing new symbols in our signature called skipl , skipl,o, skipr, and
skipr,o as follows.

SLOCAL := ({del, skipl , skipl,o}, {rep}, {ins, skipr, skipr,o}) (2.17)

We extend the edit tree grammar GALI as follows.

GLOCAL :=({A, S},SLOCAL,R, A), where
R ={A ::= matchA|repA|delA|insA|$}∪
{A ::= skipl,oS|skipr,oS}∪
{S ::= skiplS|skiprS|$}

To ensure a constant cost for ignoring the suffices of both input sequences, the algebra
has to assign some constant cost to skipl,o and skipr,o and zero costs to skipl and skipr.
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Figure 2.3: The cheapest script trees δ̃ with yield Y(δ̃) = (aaaacac, ccbbb) according to the edit
tree grammars GALI (left), GLOCAL (middle), and GAFFINE (right), respectively. In all cases, we use
the algebra FAFFINE in Equation 2.19.

If it is possible to use skipl and skipr not only in the end but at any point during the
edit process, we obtain a scheme, which follows the affine gap cost logic of Gotoh (1982).

GAFFINE :=({A, S},SLOCAL,R, A), where (2.18)
R ={A ::= matchA|repA|delA|insA|$}∪
{A ::= skipl,oS|skipr,oS}∪
{S ::= skiplS|skiprS|matchA|repA|$}

A comparison of GALI, GLOCAl, and GAFFINE is shown in Figure 2.3 for the example
sequences x̄ = aaacac and ȳ = ccbbb, using the following algebra FAFFINE.

cdel(x) := cl,o
skip(x) := cins(x) := cr,o

skip(x) := 1 ∀x ∈ A (2.19)

cl
skip(x) := cr

skip(x) = 0.5 ∀x ∈ A

crep(x, y) := crep(y, x) :=

{
1 if x 6= y
0 if x = y

∀x, y ∈ A

This concludes our characterization of sequence edit distance via ADP. In Chapter 3
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we build upon this ADP representation and show that the edit distances defined via
ADP are indeed pseudo-metrics, and that they are efficiently computable.

Now, that we have covered edit distances over sequences, we can turn towards more
complicated data structures, namely trees.

2.3.3 Tree Edit Distance

The first edit distance on trees has been suggested by Tai (1979) as a straightforward
extension of the standard string edit distance of Levenshtein (1965). In particular, Tai
(1979) used the same edit set as the standard string edit distance, namely deletions,
insertions, and replacements, and defined the overall edit distance between two trees
x̃ and ỹ as the cost of the cheapest edit script δ̄, which transforms x̃ to ỹ. To compute
the tree edit distance between two trees of size m, Tai (1979) proposed a O(m6) dynamic
programming algorithm, which was later improved by Zhang and Shasha (1989) toO(m4),
and by Demaine et al. (2009), Pawlik and Augsten (2011), and Pawlik and Augsten (2016)
to O(m3), which is provably optimal for this edit set (Demaine et al. 2009).

By constraining the edit set, we can further improve the worst-case bound (Bille 2005).
For example, the tree edit distance of Selkow (1977) permits only deletions or insertions
of entire subtrees, which reduces the computational complexity to O(m2).

In this section, we focus on the classic tree edit distance of Zhang and Shasha (1989)
for multiple reasons. First, it provides a proper generalization over the standard string
edit distance, and indeed the algorithm of Zhang and Shasha (1989) gracefully degrades
to the algorithm of Levenshtein (1965) for the special case of sequential input. Second, it
can be seen as the upper limit of structural complexity that can be handled by polynomial-
time algorithms, given that both the extensions to graphs, as well as the extension to
unordered trees are provably NP-hard (Zhang, Statman, and Shasha 1992; Zeng et al.
2009). Finally, the edits, namely single-node replacements, deletions, and insertions, are
simple enough to be intuitive and actionable to humans, e.g. students in intelligent
tutoring systems (Rivers and Koedinger 2015; Paaßen, Hammer, et al. 2018). We describe
the tree edit distance in detail here because we build upon the notation and concepts
introduced in this chapter to learn tree edit distance parameters in Chapter 4.

We first introduce trees and forests as central objects of study for this section, then
go on to introduce tree edits and cost functions for such tree edits, and finally define
auxiliary concepts on trees, which will enable us to derive the tree edit distance algorithm
of Zhang and Shasha (1989).

Definition 2.11 (Tree, Forest, Pre-Order). Let A be an alphabet. We define a tree x̃ over
A recursively as x̃ = x(x̃1, . . . , x̃R), where x ∈ A and x̃1, . . . , x̃R is a (possibly empty) list
of trees over A. We denote the set of all trees over A as T (A).

We call x the label of x̃, also denoted as ν(x̃), and we call x̃1, . . . , x̃R the children of x̃,
also denoted as $̄(x̃). If a tree has no children (i.e. R = 0), we call it a leaf. In terms of
notation, we will generally omit the brackets for leaves, i.e. x is a notational shorthand
for x().

We call a list of trees X = x̃1, . . . , x̃R from T (A) a forest over A, and we denote the
set of all possible forests over A as T (A)∗. We denote the empty forest as ε.

We define the size |X| of a forest X = x̃1, . . . , x̃R recursively as |X| = 1 + |$̄(x̃1)|+
|x̃2, . . . , x̃R| if X 6= ε and as |X| = 0 if X = ε.
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We define the pre-order π(X) of a forest X = x̃1, . . . , x̃R recursively as the list π(x̃) :=
x̃1, π($̄(x̃1)), π(x̃2, . . . , x̃R) if X 6= ε and as π(X) = ε if X = ε. We denote the ith tree in
the pre-order of X as x̃i, and the label ν(x̃i) of x̃i as xi.

Regarding this definition, note that any tree is a special case of a forest, that the
children of a tree also form a forest, and that any single element from A is a trivial case
of a tree.

As an example, consider the alphabet A = {a, b}. Some trees over A are a, b, a(a),
a(b), b(a, b), and a(b(a, b), b). An example forest over this alphabet is (a, b, b(a, b)). Now,
consider the example tree x̃ = a(b(c, d), e) The label of x̃ is ν(x̃) = a, and the children
are $̄(x̃) = b(c, d) and e. The size of x̃ is

|x̃| = 1 + |b(c, d), e|+ |ε|
= 1 + (1 + |c, d|+ |e|) + 0
= 2 + (1 + |ε|+ |d|) + (1 + |ε|+ |ε|)
= 3 + (1 + |ε|+ |ε|) + 1
= 3 + 1 + 1 = 5.

Intuitively, the pre-order of x̃ is the list of all subtrees of x̃ according to depth-first search.
Strictly using the definition, we obtain:

π(x̃) = x̃, π(b(c, d), e), π(ε)

= x̃, b(c, d), π(c, d), π(e), π(ε)

= x̃, b(c, d), c, π(ε), π(d), e, π(ε), π(ε),
= x̃, b(c, d), c, d, π(ε), π(ε), e,
= x̃, b(c, d), c, d, e.

Next, we define how to manipulate trees via tree edits. Note that tree edits are
analogous to sequence edits in Definition 2.5.

Definition 2.12 (Tree Edits). We define a tree edit δ as a function δ : T (A)∗ → T (A)∗. We
call a set ∆ of tree edits an edit set. We define an edit script over ∆ as a sequence over ∆.
We denote the set of all possible edit scripts over edit set as ∆∗. We define the application
δ̄(X) of an edit script δ̄ = δ1 . . . δT to a forest X as the function composition δT ◦ . . . δ1(X),
where δ ◦ δ′(X) := δ(δ′(X)). If δ̄ = ε, we define δ̄(X) = X.

Further, we define three special tree edits, which will become important for the tree
edit distance. In particular, we define a deletion as the following function del.

del(ε) := ε

del(x̃1, . . . , x̃R) := $̄(x̃1), x̃2, . . . , x̃R

We define a replacement with node y ∈ A as the following function repy.

repy(ε) := ε

repy(x̃1, . . . , x̃R) := y($̄(x̃1)), x̃2, . . . , x̃R
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And we define an insertion of node y ∈ A as parent of the trees l to r− 1 as the following
function insy,l,r.

insy,l,r(x̃1, . . . , x̃R) :=


x̃1, . . . , x̃R if r > R + 1, l > r, or l < 1
x̃1, . . . , x̃l−1, y, x̃l , . . . , x̃R if 1 ≤ l = r ≤ R + 1
x̃1, . . . , x̃l−1, y(x̃l , . . . , x̃r−1), x̃r, . . . , x̃R if 1 ≤ l < r ≤ R + 1

We further define variants of these tree edits to be applied to any specific location in
the input forest. In particular, let δ be either a deletion or replacement. Then, we define a
deletion/replacement of the ith node as the following function δi.

δi(ε) := ε

δi(x̃1, . . . , x̃R) :=


x̃1, . . . , x̃R if i < 1
δ(x̃1, . . . , x̃R) if i = 1
ν(x̃1)

(
δi−1($̄(x̃1))

)
, x̃2, . . . , x̃R if 1 < i ≤ |x̃1|

x̃1, δi−|x̃1|(x̃2, . . . , x̃R) if i > |x̃1|

Now, consider the insertion insy,l,r. We define an insertion at the ith node as the following
function insi,y,l,r.

insi,y,l,r(x̃1, . . . , x̃R) :=


x̃1, . . . , x̃R if i < 0
insy,l,r(x̃1, . . . , x̃R) if i = 0
ν(x̃1)

(
insi−1,y,l,r($̄(x̃1))

)
, x̃2, . . . , x̃R if 1 ≤ i ≤ |x̃1|

x̃1, insi−|x̃1|,y,l,r(x̃2, . . . , x̃R) if i > |x̃1|

We define the tree edit distance edit set ∆A for the alphabet A as the following set:
∆A := {deli|i ∈N} ∪ {repi,y|i ∈N, y ∈ A} ∪ {insi,y,l,r|i ∈N0, l, r ∈N, y ∈ A}.

As an example, consider the tree x̃ = a(b(c, d), e) from Figure 2.4 (left). By means
of the edit script δ̄ = rep1,fdel2del2rep2,gdel3, we can transform x̃ successively into
the trees rep1,f(x̃) = f(b(c, d), e), rep1,fdel2(x̃) = f(c, d, e), rep1,fdel2del2(x̃) = f(d, e),
rep1,fdel2del2rep2,g(x̃) = f(g, e), and finally rep1,fdel2del2rep2,gdel3(x̃) = f(g) (see Fig-
ure 2.4). Conversely, we can also edit in the inverse direction (see Figure 2.4, bottom).

Finally, we define cost functions for tree edits and the tree edit distance.

Definition 2.13 (Cost Function, Tree Edit Distance). Let A be an alphabet with − /∈ A.
We call − the gap symbol. We define a cost function over A as a function c : (A∪ {−})×
(A∪ {−})→ R.

We define the cost of applying deletion deli to some input forest X as 0 if deli(X) = X
and as c(deli, X) := c(xi,−) otherwise.

We define the cost of applying replacement repi,y to some input forest X as 0 if
repi,y(X) = X, and as c(repi,y, X) := c(xi, y) otherwise.

We define the cost of applying insertion insi,y,l,r to some input forest X as 0 if
insi,y,l,r(X) = X, and as c(−, y) otherwise.

We define the cost of applying an edit script δ̄ = δ1 . . . δT ∈ ∆∗A to some input forest
X recursively as c(ε, X) = 0 and c(δ1 . . . δT, X) := c(δ1, X) + c(δ2 . . . δT, δ1(X)).
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rep2,dins1,c,1,1

ins1,b,1,3
rep1,a

Figure 2.4: An illustration of an edit script transforming the tree x̃ on the left to the tree ỹ on
the right, and an edit script transforming the tree ỹ on the right to the tree x̃ on the left. The
intermediate trees resulting from the application of single tree edits are shown in the middle.

Finally, we define the tree edit distance according to c as the following function.

dc :T (A)× T (A)→ R

dc(x̃, ỹ) := min
δ̄∈∆∗A
{c(δ̄, x̃)|δ̄(x̃) = ỹ} (2.20)

The cost function is our central interface for metric learning in Chapter 4. Indeed, we
phrase edit distance learning for trees as learning the parameters of a cost function.

Consider again the example in Figure 2.4, displaying an edit script that transforms
the tree x̃ = a(b(c, d), e) into the tree ỹ = f(g). If we define c(x, y) = 1 if x 6= y and as 0
otherwise, the cost of this edit script would be 5. Because there is no cheaper edit script,
this is equivalent to the tree edit distance between x̃ and ỹ. Note that the edit script at
the bottom of Figure 2.4 also has a cost of 5 according to c, and is also the cheapest edit
script transforming ỹ to x̃. Indeed, Zhang and Shasha (1989) have already remarked that
a metric cost function c implies a metric tree edit distance dc. While they did not provide
a proof for this claim, the proof is fairly simple and can be found in Appendix A.4.

Theorem 2.4. Let A be an alphabet with − /∈ A and let c be a cost function over A. Then it
holds: For any trees x̃, ỹ ∈ T (A), there exists at least one edit script δ̄ ∈ ∆A such that δ̄(x̃) = ỹ.

Further it holds: If c is a (pseudo-)metric over A∪ {−}, then dc is a (pseudo-)metric over
T (A). More specifically, the following claims hold if c is non-negative (i.e. ∀x, y ∈ A ∪ {−} :
c(x, y) ≥ 0).

Non-Negativity: ∀x̃, ỹ ∈ T (A) : dc(x̃, ỹ) ≥ 0.

Self-Equality: ∀x ∈ A ∪ {−} : c(x, x) = 0 implies ∀x̃ ∈ T (A) : dc(x̃, x̃) = 0.

Discernibility: ∀x, y ∈ A ∪ {−} : x 6= y ⇒ c(x, y) > 0 implies ∀x̃, ỹ ∈ T (A) : x̃ 6= ỹ ⇒
dc(x̃, ỹ) > 0.

Symmetry: ∀x, y ∈ A ∪ {−} : c(x, y) = c(y, x) implies ∀x̃, ỹ ∈ T (A) : dc(x̃, ỹ) = dc(ỹ, x̃).

Triangular Inequality: ∀x̃, ỹ, z̃ ∈ T (A) : dc(x̃, ỹ) + dc(ỹ, z̃) ≥ dc(x̃, z̃)

Proof. Refer to Appendix A.4.
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Note that this result implies that any tree edit distance dc for a non-negative, symmet-
ric, and self-equal cost function c is pseudo-Euclidean.

Unfortunately, our framework up to this point is not yet sufficient to derive an efficient
algorithm to compute the tree edit distance. In particular, the search space of possible edit
scripts which transform a tree x̃ into another tree ỹ is infinite, making search infeasible.
As for the sequence edit distance, we can drastically reduce the search space by only
considering edit scripts, which avoid detours in the sense that, once we have changed
a node in a tree, we do not change it again. To avoid such detours, we introduce an
alternative representation, namely tree mappings. Tree mappings also form a backbone
of our tree edit distance learning algorithm in Chapter 4.

Definition 2.14 (Parents, Ancestors, Tree Mappings). Let A be an alphabet and let x̃ be
a tree over A. Further, let i ∈ {1, . . . , |x̃|}, let x̃i = xi(x̃i

1, . . . , x̃i
Ri
), let r ∈ {1, . . . , Ri}, and

let ir := i + 1 + ∑r−1
l=1 |x̃i

l |. Then, we define the parent index parx̃(ir) of ir in x̃ as i, that is,
parx̃(ir) := i. Further, we define parx̃(1) = 0.

For any i ∈ {2, . . . , |x̃|} we define the ancestors ancx̃(i) of i in x̃ recursively as
ancx̃(i) := {parx̃(i)} ∪ ancx̃(parx̃(i)), with ancx̃(1) := ∅.

Let ỹ be another tree over A. Then, we define a tree mapping M between x̃ and ỹ as
a subset M ⊆ {1, . . . , |x̃|} × {1, . . . , |ỹ|} such that the following conditions hold for all
entries (i, j), (i′, j′) ∈ M.

i ≥ i′ ⇐⇒ j ≥ j′ (pre-order preservation) (2.21)
i ∈ ancx̃(i′) ⇐⇒ j ∈ ancỹ(j′) (ancestral preservation) (2.22)

We define the left-complement of M as I(M, x̃, ỹ) :=
{

i ∈ {1, . . . , |x̃|}
∣∣@j ∈ {1, . . . , |ỹ|} :

(i, j) ∈ M
}

and we define the right-complement of M as J(M, x̃, ỹ) :=
{

j ∈ {1, . . . , |ỹ|}
∣∣@i ∈

{1, . . . , |x̃|} : (i, j) ∈ M
}

.

Now, let c be a cost function over A. Then, we define the cost of M according to c as
follows.

c(M, x̃, ỹ) := ∑
(i,j)∈M

c(xi, yj) + ∑
i∈I(M,x̃,ỹ)

c(xi,−) + ∑
j∈J(M,x̃,ỹ)

c(−, yj) (2.23)

And we define the tree mapping edit distance between x̃ and ỹ according to c as:

Dc(x̃, ỹ) := min
M⊂{1,...,|x̃|}×{1,...,|ỹ|}

{c(M, x̃, ỹ)|M is a tree mapping between x̃ and ỹ} (2.24)

Finally, we define a tree mapping M between x̃ and ỹ as cooptimal if it holds:
c(M, x̃, ỹ) = Dc(x̃, ỹ).

Consider the example trees x̃ = a(b(c, d), e) and ỹ = f(g) from Figure 2.4. An
example tree mapping between x̃ and ỹ is M = {(1, 1), (4, 2)} (see Figure 2.5, top left).
By contrast, {(1, 1), (1, 2)} would not be a valid mapping because 1 ≥ 1 but 1 � 2,
{(1, 1), (2, 1)} would not be a valid mapping because 1 � 2 but 1 ≥ 1, {(1, 2), (2, 1)}
would not be a valid mapping because 1 ≤ 2 but 2 � 1, and {(3, 1), (5, 2)} would not be
a valid mapping because 3 /∈ ancx̃(5) but 1 ∈ ancỹ(2) (refer to Figure 2.5).
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Figure 2.5: One example tree mapping (top left) between the trees x̃ = a(b(c, d), e) and ỹ = f(g)
from Figure 2.4 and four sets, which are not valid tree mappings due to violations of one of the
tree mapping constraints.

The left-complement of the tree mapping M = {(1, 1), (4, 2)} would be I(M, x̃, ỹ) =
{2, 3, 5} and the right-complement would be J(M, x̃, ỹ) = ∅. Accordingly, the cost of M
would be c(M, x̃, ỹ) = c(a, f) + c(d, g) + c(b,−) + c(c,−) + c(e,−).

Because tree mappings are defined as subsets of {1, . . . , |x̃|} × {1, . . . , |ỹ|}, the search
space becomes finite. However, the number of all such tree mappings between x̃ and ỹ is
still exponential in |x̃| · |ỹ| and thus infeasible to enumerate. As an additional trick, Zhang
and Shasha (1989) devised an efficient dynamic programming scheme to compute the
tree mapping edit distance between x̃ and ỹ from the tree mapping edit distance between
subtrees and -forests of x̃ and ỹ, yielding an O(|x̃|2 · |ỹ|2) runtime algorithm. Note that
this is not optimal in the worst case, and more worst-case efficient algorithms have since
been introduced by Demaine et al. (2009), Pawlik and Augsten (2011), and Pawlik and
Augsten (2016). Still, the algorithm of Zhang and Shasha (1989) is considerably simpler, is
still optimal in terms of space complexity, and performs still well in realistic comparisons
(Pawlik and Augsten 2016) such that we focus on this algorithm during the course of this
thesis.

We require only one additional concept for the algorithm of Zhang and Shasha (1989),
namely the notion of keyroots, which we define as follows.

Definition 2.15 (Outermost right leaves, Keyroots). Let A be an alphabet and let x̃ be a
tree overA. Then, for any i ∈ {1, . . . , |x̃|}we define the outermost right leaf rlx̃(i) of i in x̃ as
rlx̃(i) := i + |x̃i| − 1; we define the keyroot kx̃(i) of i in x̃ as kx̃(i) := min{j|rlx̃(i) = rlx̃(j)};
and we define the keyroots K(x̃) of x̃ as the set K(x̃) := {j|∃i ∈ {1, . . . , |x̃|} : j = kx̃(i)}.

For example, consider the tree x̃ = a(b(c, d), e) from Figure 2.4 (left). The subtrees,
labels, parent indices, outermost right leaves and keyroots for this tree are illustrated in
Figure 2.6. The set of keyroots is K(x̃) = {1, 2, 3}.
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i x̃i xi parx̃(i) rlx̃(i) kx̃(i)

1 a(b(c, d), e) a 0 5 1
2 b(c, d) b 1 4 2
3 c c 2 3 3
4 d d 2 4 2
5 e e 1 5 1

Figure 2.6: Left: The tree x̃ = a(b(c, d), e) with pre-order indices drawn next to each node. Nodes
with the same outermost right leaf and keyroot are encircled with a colored region. The outermost
right leaf for that region is highlighted by a rectangle, the keyroot with a circle. Right: A table
listing the subtree, label, parent index, outermost right leaf, and keyroot for all indices i for the
tree x̃ = a(b(c, d), e).

Note that for trees that are sequences, such as x̃ = a(b(c)), there exists only a single
keyroot, namely the root of the tree.

These auxiliary concepts are sufficient to specify the tree edit distance algorithm of
Zhang and Shasha (1989), which is provably correct for metric cost functions.

Theorem 2.5. Let A be an alphabet, let c be a cost function over A, and let x̃ and ỹ be trees
over A. Then, Algorithm 2.1 computes the tree mapping edit distance Dc(x̃, ỹ) between x̃ and ỹ.
Further, Algorithm 2.1 runs in O(|x̃| · |ỹ|) space complexity and O(|x̃|2 · |ỹ|2) time complexity.

Finally, it holds: If c is self-equal, non-negative, and fulfills the triangular inequality, then
Dc(x̃, ỹ) = dc(x̃, ỹ).

Proof. The original proof is due to Zhang and Shasha (1989). For a version adapted to
our notation here, refer to Appendix A.5.

This concludes our introduction of the tree edit distance. Next, we turn to even more
complicated data structures, namely graphs.

2.3.4 Graph Edit Distance

Following the prior work of Levenshtein (1965) and Tai (1979), it appears straightforward
to extend the concept of an edit distance to general graphs. In particular, we can define
the graph edit distance between G and G ′ as the cheapest edit script, which transforms G
into G ′, where the edit set is given as the set of all possible node deletions, node insertions,
node replacements, edge deletions, edge insertions, and edge replacements (Sanfeliu
and Fu 1983). Unfortunately, computing the graph edit distance is provably NP-hard
(Zeng et al. 2009). Still, many approximation schemes exist, e.g. relying on self-organizing
maps, Gaussian mixture models, graph kernels, or binary linear programming (Gao et al.
2010). A particularly simple approximation scheme is to order the nodes of a graph in
a sequence and then apply a standard string edit distance measure to these sequences
(Robles-Kelly and Hancock 2003; Robles-Kelly and Hancock 2005). We utilize this method
in Chapter 5 to obtain an approximate graph edit distance on enriched syntax trees.
Other than that, we mostly focus on sequence and tree edit distances in this work. Next,
we turn towards the topic of learning such edit distances.
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Algorithm 2.1 The dynamic programming algorithm of Zhang and Shasha (1989) for
computing the tree edit distance between two input trees x̃ and ỹ according to the cost
function c. The algorithm iterates over all subtrees of x̃ and ỹ rooted at keyroots and
computes the tree edit distance between them based on the forest edit distances between
all subforests of the respective subtrees.

1: function tree -edit -distance(trees x̃ and ỹ, a cost function c.)
2: d← |x̃| × |ỹ| matrix of zeros.
3: D ← (|x̃|+ 1)× (|ỹ|+ 1) matrix of zeros.
4: for k ∈ K(x̃) in descending order do
5: for l ∈ K(ỹ) in descending order do
6: Drlx̃(k)+1,rlỹ(l)+1 ← 0.
7: for i← rlx̃(k), . . . , k do
8: Di,rlỹ(l)+1 ← Di+1,rlỹ(l)+1 + c(xi,−).
9: end for

10: for j← rlỹ(l), . . . , l do
11: Drlx̃(k)+1,j ← Drlx̃(k)+1,j+1 + c(−, yj).
12: end for
13: for i← rlx̃(k), . . . , k do
14: for j← rlỹ(l), . . . , l do
15: if rlx̃(i) = rlx̃(k) ∧ rlỹ(j) = rlỹ(l) then
16: Di,j ← min{Di+1,j + c(xi,−),
17: Di,j+1 + c(−, yj),
18: Di+1,j+1 + c(xi, yj)}.
19: di,j ← Di,j.
20: else
21: Di,j ← min{Di+1,j + c(xi,−),
22: Di,j+1 + c(−, yj),
23: Drlx̃(i)+1,rlỹ(j)+1 + di,j}.
24: end if
25: end for
26: end for
27: end for
28: end for
29: return d1,1.
30: end function
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2.4 metric learning for edit distances

Even if an efficient edit distance for our data at hand does exist, default cost functions
may not be optimal for our task at hand. For example, when analyzing protein sequences,
the default cost function of the string edit distance assumes that all amino acids have
the same pairwise distance, which does not correspond to biological reality (S. Henikoff
and J. G. Henikoff 1992; Saigo, Vert, and Akutsu 2006; Kann, Qian, and Goldstein 2000;
Hourai, Akutsu, and Akiyama 2004). As such, we would like to learn a cost function
such that the resulting edit distance is better suited for the task at hand. In other words,
we would like to obtain a cost function which pulls semantically close data (positive
pairs) closer together and pushes semantically distant data (negative pairs) further apart
(Bellet, Habrard, and Sebban 2014).

Past literature has almost exclusively focused on positive pairs, i.e. pulling semanti-
cally close data closer together. In that setting, we can re-phrase the edit distance as a
negative log-likelihood of one structured datum being generated from another via edits,
and the cost function as the atomic joint probability or conditional probability of single
edits. Accordingly, metric learning means maximizing the joint or conditional probability
of positive pairs by adjusting the atomic edit probabilities (Boyer, Habrard, and Sebban
2007; Emms 2012; Oncina and Sebban 2006; Ristad and Yianilos 1998). Unfortunately,
such a setup can not prevent that negative pairs get close as well. In the extreme case, the
entire metric can degenerate such that all data ends up in a single point (Bellet, Habrard,
and Sebban 2012).

According to Bellet, Habrard, and Sebban (2014), the only edit distance learning
scheme that also considers negative pairs is good edit similarity learning (GESL, Bellet,
Habrard, and Sebban 2012). The authors have experimentally shown that this approach
outperforms existing edit distance learning approaches and can thus be regarded as the
state of the art. Therefore, we focus in our comparisons on good edit similarity learning
(GESL) and introduce this method in more detail.

2.4.1 Good Edit Similarity Learning

GESL is intended to maximize the “goodness” of the similarity measure s(x, y) =
2 · exp(−dc(x, y))− 1, where dc(x, y) is an edit distance. Goodness, as suggested by Balcan,
Blum, and Srebro (2008), quantifies how well a given similarity measure s lends itself
for binary classification. In particular, assume data x1, . . . , xM with labels y1, . . . , yM ∈
{−1, 1}. Then, Balcan, Blum, and Srebro (2008) suggest a binary classifier with the
predictive function

f (x) = sign
( M

∑
i=1

αi · s(x, xi)
)

where αi are real-valued coefficients that constitute the parameters of the classifier. One
can learn the parameters~α ∈ RM by solving the following linear problem.

min
~α

M

∑
i=1

[
1− yi ·

M

∑
j=1

αj · s(xi, xj)
]
+
+ ν · ‖~α‖1

where [·]+ = max{·, 0} denotes the hinge loss, and where ν is a hyper-parameter for the
L1 regularization and hence the sparsity of~α.
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To maximize the goodness of the similarity measure s, Bellet, Habrard, and Sebban
(2012) propose that each data point xi should pull its K closest neighbors from the same
class N+

i closer and push the K furthest neighbors from a different class N−i away. In
particular, Bellet, Habrard, and Sebban (2012) suggest to solve the following minimization
problem2.

min
c

λ · ‖c‖2 +
M

∑
i=1

∑
j∈N+

i

[dc(xi, xj)− η]+ ∑
j∈N−i

[log(2) + η − dc(xi, xj)]+ (2.25)

s.t. c(x, y) ≥ 0 ∀x, y ∈ A, 0 ≤ η ≤ log(2)

where η ∈ [0, log(2)] is a slack variable permitting higher distances between positive
pairs if negative pairs are further apart, λ is a scalar regularization constant, and ‖c‖2

denotes ∑x∈A∪{−} ∑y∈A∪{−} c(x, y)2.

Because the edit distance involves discrete minimum operations, which are discontin-
uous and non-differentiable, the minimization problem 2.25 is not immediately feasible.
In order to make optimization tractable, Bellet, Habrard, and Sebban (2012) observe that
most edit distances can be regarded as equivalent to a tree mapping edit distance (also
refer to Definition 2.14). If that is the case, we can decompose the edit distance into a
matrix expressing the tree mapping itself, and the cost function. In particular, we define
tree mapping matrix for the tree edit distance as follows.

Definition 2.16 (Tree mapping matrix). Let x̃ and ỹ be trees over some alphabet A and let
M be a tree mapping between x̃ and ỹ. Then, we define the tree mapping matrix P(M, x̃, ỹ)
as a |x̃| × |ỹ| matrix with P(M, x̃, ỹ)i,j = 1 if (i, j) ∈ M and 0 otherwise.

Based on the concept of a tree mapping matrix, Bellet, Habrard, and Sebban (2012)
have established the following decomposition.

Theorem 2.6. Let x̃ and ỹ be trees over some alphabet A, let M be a tree mapping between x̃ and
ỹ, and let c be a cost function over A. Then, for any tree mapping M between x̃ and ỹ it holds:

c(M, x̃, ỹ) =
|x̃|

∑
i=1

|ỹ|

∑
j=1

P(M, x̃, ỹ)i,j · c(xi, yj) (2.26)

+
|x̃|

∑
i=1

(
1−

|ỹ|

∑
j=1

P(M, x̃, ỹ)i,j

)
· c(xi,−) +

|ỹ|

∑
j=1

(
1−

|x̃|

∑
i=1

P(M, x̃, ỹ)i,j

)
· c(−, yj)

Proof. Due to its simplicity, Bellet, Habrard, and Sebban (2012) did not provide an explicit
proof. Here, we provide the proof for completeness sake. In particular, we inspect the three
terms on the right-hand-side of Equation 2.26 separately. First note that P(M, x̃, ỹ)i,j = 1
if and only if (i, j) ∈ M and 0 otherwise. Therefore,

|x̃|

∑
i=1

|ỹ|

∑
j=1

P(M, x̃, ỹ)i,j · c(xi, yj) = ∑
(i,j)∈M

c(xi, yj)

2 Note that our notation differs from the original Notation of Bellet, Habrard, and Sebban (2012). Equation 2.25
corresponds to the optimization problem GESLHL in their paper where we set the margin parameter ηγ

to its maximum value log(2), where we denote B2 as η, where we obtain B1 = log(2) − η, and where
eG(xi, xj) = dc(xi, xj). Also note that the positive neighbors N+

i in our notation are precisely the indices j
such that fland(zi, zj) = 1 and `i = `j, and that the negative neighbors N−i in our notation are precisely the
indices j such that fland(zi, zj) = 1 and `i 6= `j.
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Accordingly, for all i we have
(

1− ∑
|ỹ|
j=1 Pc(x̃, ỹ)i,j

)
= 1 if there exists no j such that

(i, j) ∈ M and 0 otherwise. Therefore,

|x̃|

∑
i=1

(
1−

|ỹ|

∑
j=1

Pc(x̃, ỹ)i,j

)
· c(xi,−) = ∑

i∈I(M,x̃,ỹ)
c(xi,−)

By a symmetric argument it holds

|ỹ|

∑
j=1

(
1−

|x̃|

∑
i=1

Pc(x̃, ỹ)i,j

)
· c(−, yj) = ∑

j∈J(M,x̃,ỹ)
c(−, yj)

such that the right-hand-side of Equation 2.26 is equivalent to the definition of c(M, x̃, ỹ)
according to Equation 2.23.

Recall that it also holds: If M is a cheapest tree mapping between the trees x̃ and ỹ
according to c, and if c is non-negative, self-equal, and fulfills the triangular inequality,
then it holds: dc(x̃, ỹ) = c(M, x̃, ỹ).

If we additionally assume that M remains constant, the optimization problem 2.25
is a simple quadratic problem, which is easy to solve. Moreover, Bellet, Habrard, and
Sebban (2012) have shown that the resulting similarity measure s is guaranteed to be
good according to the goodness framework of Balcan, Blum, and Srebro (2008).

Note that GESL has several key limitations that we attempt to address in this work.
First, GESL does not guarantee that c is self-equal, symmetric, or conforms to the tri-
angular inequality. This is problematic because the learned tree mapping edit distance
may not correspond to the actual edit distance and may not be metric. Second, and
more importantly, the assumption of a constant cheapest tree mapping does usually not
hold. Especially if the triangular inequality is not enforced, alternative tree mappings
may quickly become cheaper such that GESL vastly underestimates the actual error
(Paaßen, Gallicchio, et al. 2018). Third, GESL chooses the positive and negative neighbors
N+

i and N−i according to a rather ad-hoc rule that is not directly related to predictive
performance.

In Chapter 4 we use the basic idea of the decomposition in Equation 2.26 to learn
parameters for the tree edit distance, but we ensure metric axioms by means of a different
cost function, we consider all cooptimal tree mappings instead of a single cooptimal tree
mapping, suhc that the constant mapping assumption is easier to fulfill, and we use
prototypes as reference neighbors. Such prototypes are directly related to the predictive
performance of learning vector quantization (LVQ) classifiers, which we discuss in the
next section.

2.5 learning vector quantization

Learning vector quantization (LVQ) is a family of approaches to classify data via pro-
totypes. In particular, a learning vector quantization (LVQ) approach represents classes
in terms of few prototypes w1, . . . , wK with associated prototype labels z1, . . . , zK ∈
{1, . . . , L}, such that data can be classified correctly by assigning the label of the closest
prototype (Kohonen 1995). In other words, LVQ is concerned with finding the best
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possible 1-nearest neighbor classifier using only K data points. More precisely, for M
training data points LVQ attempts to solve the optimization problem:

min
w1,...,wK

M

∑
i=1

Φ(d+i − d−i ) (2.27)

where d+i is the distance of the ith datum to the closest prototype with the same label,
d−i is the distance of the ith datum to the closest prototype with a different label, and
Φ is the Heaviside function with Φ(µ) = 1 if µ ≥ 0 and Φ(µ) = 0 otherwise. Note that
d+i − d−i ≥ 0 if and only if the ith data point is misclassified such that this loss exactly
counts the number of misclassifications in the training data.

Because this problem is NP-hard, we need to apply heuristics (Hoffgen, Simon, and
Van Horn 1995). Sato and Yamada (1995) proposed the following differentiable relaxation
of the original loss 2.27, which they called generalized learning vector quantization
(GLVQ).

EGLVQ

(
(w1, z1), . . . , (wK, zK), (x1, y1), . . . , (xM, yM)

)
:=

M

∑
i=1

Φ
(d+i − d−i

d+i + d−i

)
, (2.28)

where Φ is some differentiable, monotonic function such as the logistic function Φ(µ) =
1/(1 + exp(−µ)). Given that EGLVQ is differentiable, we can apply standard gradient-
based optimization procedures, such as stochastic gradient descent or efficient second-
order optimization methods such as L-BFGS (Liu and Nocedal 1989).

GLVQ has multiple theoretical and practical advantages, making it a viable model for
a wide range of application scenarios. First, to classify a new data point, we only need
to compute the distances to all prototypes, which runs in O(K) time complexity and is
thus very fast. Second, the model complexity of GLVQ can be scaled easily by increasing
the number of prototypes, gracefully scaling from a linear classifier to a more and more
nonlinear one. Third, learning vector quantization models have been shown to yield
maximum-margin generalization bounds (Schneider, Biehl, and Hammer 2009a). Fourth,
LVQ supports interpretation as the prototypes provide insight into the classification
boundaries used by the classifier. We also note a nice interpretation of the GLVQ cost
function EGLVQ, which approximates the number of misclassification if Φ is close to the
Heaviside function. We use the GLVQ loss throughout this work. In particular, we learn
sequence edit distances according to the GLVQ loss in Chapter 3, we learn tree edit
distances according to the GLVQ loss in Chapter 4, and we use GLVQ-based classifiers
in Chapters 7 and 8. In the latter two cases, we use an extension of GLVQ with metric
learning, namely generalized matrix learning vector quantization (GMLVQ).

2.5.1 Generalized Matrix Learning Vector Quantization

In standard GLVQ, d is the (squared) standard Euclidean distance. However, d can also
be replaced by a generalized quadratic form

dΩ(~w,~x)2 := (~w−~x)> ·Ω> ·Ω · (~w−~x), (2.29)

where Ω is some n×m-dimensional projection matrix for some natural number n ≤ m
(Bunte et al. 2012; Schneider, Biehl, and Hammer 2009a). Note that Ω can be interpreted
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as a linear projection of the data and the prototypes to an auxiliary space where standard
GLVQ is applied.

Equivalently, Ω> ·Ω can be regarded as manipulating the unit distance ellipse of
the Euclidean distance in order to support classification. If Ω is treated as a learnable
parameter, we obtain a metric learning variant of GLVQ, which we call generalized matrix
learning vector quantization (GMLVQ, Schneider, Biehl, and Hammer 2009a). If we learn
an individual matrix Ωk for each prototype, we call this scheme local generalized matrix
learning vector quantization (LGMLVQ).

A drawback of GLVQ models is that the GLVQ cost function 2.28 is highly non-convex
and includes bad local optima. This becomes particularly apparent in case of transfer
learning in Chapter 7. For those cases, we suggest the related, generative approach of
Gaussian Mixture Models (GMMs).

2.5.2 Labeled Gaussian Mixture Models

A Gaussian Mixture Model (GMM) is a generative model of some marginal density p(~x)
via a weighted sum of Gaussian distributions as follows.

p(~x) =
K

∑
k=1

p(~x|k) · P(k), (2.30)

where K is the number of Gaussians, P(k) is the prior for the kth Gaussian, and the
density p(~x|k) is given as the density of the m-dimensional Gaussian distribution, that is,

p(~x|k) = N (~x|~µk, Λk) =

√
det(Λk)

(2 · π)m · exp
(
− 1

2
· (~µk −~x)> ·Λk · (~µk −~x)

)
, (2.31)

where ~µk ∈ Rm is the mean of the kth Gaussian and Λk is a positive definite m×m matrix
called the precision matrix of the kth Gaussian, that is, the inverse of the covariance
matrix.

Similar to kernel density estimation, it can be shown that any density, which conforms
to some very general conditions can be arbitrarily well approximated by a GMM (Barber
2012; Bishop 2006). However, in our case it is not necessary to approximate the marginal
distribution of the data well. We care mostly about the posterior distribution P(y|~x). We
can integrate label information into GMMs by assuming conditional independence of
the label y and the data point ~x given the index of the generating Gaussian k. Then, we
obtain the following model for the joint density p(y,~x).

p(y,~x) =
K

∑
k=1

p(y,~x|k) · P(k) =
K

∑
k=1

P(y|k) · p(~x|k) · P(k), (2.32)

that is, the only additional ingredient we need to model is a probability distribution
P(y|k) for each Gaussian. We can use such a model for classification by selecting the
label with the largest posterior P(y|~x) according to Bayes’ rule.

P(y|~x) = p(y,~x)
p(~x)

=
p(y,~x)

∑y′ p(y′,~x)
(2.33)
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We call this kind of model a labeled Gaussian Mixture Model (lGMM). In Chapters 7
and 8, we use lGMMs for classification and transfer learning. To our knowledge, lGMMs
have not been subject to extensive prior research. However, they can be seen as a trivial
extension of standard GMMs. Indeed, the optimization strategies for standard GMMs
carry over almost unchanged to this case. For previous descriptions of these learning
strategies, we refer, for example, to Dempster, Laird, and Rubin (1977), Bishop (2006),
and Barber (2012). In the following, we describe learning for the specific extension of
lGMMs.

As with standard GMMs, we can learn lGMMs from data by minimizing the negative
log-density for all data points, that is:

ElGMM = − log
[ M

∏
i=1

p(yi,~xi)
]
=

M

∑
i=1
− log

[ K

∑
k=1

P(y|k) · p(~x|k) · P(k)
]

(2.34)

Note that this loss function is generally non-convex with respect to our parameters of in-
terest. However, we can find a local optimum efficiently via an expectation maximization
scheme (Dempster, Laird, and Rubin 1977). In general terms, expectation maximization is
an approach to infer optimal parameters in optimization problems with latent variables.
The approach has two steps: first, an expectation step in which we compute the posterior
of the latent variables given the data and the current parameter values; and second, a
maximization step in which we compute the parameter values, which maximize the
expected log-likelihood Q of our data given the posterior for the latent variables. As Q
always underestimates the actual log-likelihood, iterating these two steps is guaranteed
to lead us to a local optimum of the actual log-likelihood (Dempster, Laird, and Rubin
1977).

In our case, we treat the assignment-variables of data points to prototypes k as latent
variables, and our expectation and maximization steps take the following form (Bishop
2006; Barber 2012).

Expectation step: For each data point ~xi, we compute the posterior for the Gaussian
that has generated the data point according to Bayes’ rule.

γk|i := P(k|~xi, yi) =
P(yi|k) · p(~xi|k) · P(k)

∑K
k′=1 P(yi|k′) · p(~xi|k′) · P(k′)

(2.35)

Maximization step: Assuming fixed posterior γk|i we minimize the negative expected
log-likelihood Q of the data with respect to the parameters of interest. The negative
expected log-likelihood has the following form.

Q =−
M

∑
i=1

K

∑
k=1

γk|i · log
[
p(yi,~xi, k)

]
=

M

∑
i=1

K

∑
k=1

γk|i ·
(
− log

[
P(yi|k)

]
− log

[
p(~xi|k)

]
− log

[
P(k)

])
=

M

∑
i=1

K

∑
k=1

γk|i ·
(
− log

[
P(yi|k)

]
− log

[
P(k)

]
(2.36)

− 1
2

log
[

det(Λk)
]
+

m
2
· log

[
2 · π

]
+

1
2
· (~µk −~xi)

> ·Λk · (~µk −~xi)
)
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2.5 learning vector quantization

In contrast to the original negative log-likelihood, Q is convex with respect to all our
parameters of interest and even permits a closed-form solution.

Theorem 2.7. Under the assumption of fixed γk|i, Q (Equation 2.36) is convex with respect to
P(k), P(y|k), ~µk, and Λk.

Further, the optima of Q with respect to these parameters are given as follows.

P(k) =
1
M
·

M

∑
i=1

γk|i (2.37)

P(y|k) =
∑i:yi=y γk|i

∑M
i=1 γk|i

(2.38)

~µk =
∑M

i=1 γk|i ·~xi

∑M
i=1 γk|i

(2.39)

Λk =
(∑M

i=1 γk|i · (~µk −~xi) · (~µk −~xi)
>

∑M
i=1 γk|i

)−1
(2.40)

Finally, if we restrict the precision matrix to be shared across all Gaussians, that is, Λ1 =
. . . = ΛK = Λ, we obtain the following optimum of Q with respect to Λ.

Λ =
( 1

M
·

M

∑
i=1

K

∑
k=1

γk|i · (~µk −~xi) · (~µk −~xi)
>
)−1

(2.41)

Proof. The argument mostly follows the description of the expectation maximization
algorithm for standard GMMs as described, for example, by Bishop (2006) and Barber
(2012). For a version adapted to our notation, please refer to Appendix A.6.

For the full optimization algorithm we need to initialize P(k), P(y|k), ~µk, and Λk with
some reasonable initial values and then iterate the expectation and the maximization
step until convergence.

Note that an initialization of P(y|k) as 1 for some y ensures that P(y|k) stays 1 over
the entire course of learning because the posterior γk′|i for some other k′ 6= k is zero and
thus does not contribute to any of the equations in Theorem 2.7.

Further note that Λ−1
k is guaranteed to be positive semi-definite because it is a convex

combination of outer products. In case the determinant of Λ−1
k degenerates to zero, we

have to add a small positive number to the diagonal of Λ−1
k to ensure that the density

generated by the lGMM still exists (Barber 2012). In the following, we will generally
assume that such a treatment of Λ−1

k has been performed and that Λk is thus strictly
positive definite.

If we restrict all precision matrices Λk to be shared across the Gaussians, we call such
a model a labeled Gaussian Mixture Model with shared precision matrix (slGMM). Using
slGMMs can be advantageous because there are less parameters to optimize, which
may speed up optimization and make it more robust. Indeed, we observe such effects
empirically in Chapter 8.

Note that maximizing the data likelihood only captures how well our model generates
the data, not how well the data is classified by the model. To obtain a discriminative
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lGMM, we can first train a LVQ model and then construct an lGMM from it as follows
(Seo and Obermayer 2003; Schneider, Biehl, and Hammer 2009b). For every prototype
~wk with label zk and matrix Ωk we construct one Gaussian with prior P(k) = 1/K, with
label distribution P(y|k) = 1 if y = zk and P(y|k) = 0 otherwise, with mean ~µk = ~wk,
and with precision matrix Λk = 1

σ2 ·Ω>k ·Ωk, where σ > 0 is a hyper-parameter that
regulates the crispness of the lGMM classification. For small σ, the decision of the lGMM
becomes equivalent to LVQ classification (Seo and Obermayer 2003; Schneider, Biehl,
and Hammer 2009b). In case we construct an lGMM from a generalized matrix learning
vector quantization (GMLVQ) model, we obtain a slGMM.

Up to this point, all models we discussed were limited to vectorial data. Our focus,
however, is structured data. To classify structured data, we need to turn to purely distance-
based classification schemes, such as relational generalized learning vector quantization
(RGLVQ).

2.5.3 Relational Generalized Learning Vector Quantization

Relational generalized learning vector quantization (RGLVQ) is essentially a GLVQ model
which assumes that the distance measure used is Euclidean and that the prototypes are
convex combinations of training data points (Hammer, D. Hofmann, et al. 2014). More
precisely, if the distance d is Euclidean with spatial mapping φ : X → Rm, and we are
given the training dataset x1, . . . , xM, we assume that for all k ∈ {1, . . . , K} it holds:

φ(wk) = X ·~αk

for X =
(
φ(x1), . . . , φ(xM)

)
∈ Rm×M and some coefficient vector ~αk ∈ RM such that

∑M
i=1 αk,i = 1 and αk,i ≥ 0 for all i. This assumption is equivalent to stating that all

prototypes should lie in the convex hull of the columns of X, which is a reasonable
constraint to ensure that the prototypes do not degenerate to arbitrary positions.

Accordingly, we can use Equation 2.11 to compute the distance ‖φ(x) − φ(wk)‖
between any data point x and any prototype wk. RGLVQ learns the coefficient vectors~αk
by minimizing the GLVQ cost function 2.28 with respect to it (Hammer, D. Hofmann,
et al. 2014). In Chapter 3, we use RGLVQ for sequence edit distance learning.

RGLVQ has two key limitations. First, if the distance d is not Euclidean, then prototype-
to-data distances may become negative, which can lead to degenerate cases. Second,
the runtime is considerably worse compared to standard GLVQ, because each distance
computation according to Equation 2.11 requires linear time in the number of nonzero
entries of~αk, with an additional quadratic runtime complexity to compute the second term
in Equation 2.11. Median generalized learning vector quantization (MGLVQ) addresses
both of these issues.

2.5.4 Median Generalized Learning Vector Quantization

In contrast to other LVQ approaches, median generalized learning vector quantization
(MGLVQ) asserts that prototypes should be a strict subset of the training dataset, that is,
for each prototype wk there exists an index ik such that wk = xik (Nebel, Hammer, et al.
2015).
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This restriction has several advantages. First, we can interpret every prototype, because
its explicit form is given in terms of the data point xik . Second, we can compute the
distance d(x, wk) between a data point x and the kth prototype wk as d(x, xik), which is
possible in constant time. Third, we can therefore perform classification in O(K) because
we only need to compute K distances to determine the classification. Finally, we do
not need to make any assumptions regarding the properties of the distance d, except
non-negativity (Nebel, Hammer, et al. 2015).

The key disadvantage of restricting prototypes to be data points is that it complicates
optimization. The prototype position is now a discrete, non-differentiable choice, which
can not be improved by gradient-based methods. To address this issue, Nebel, Hammer, et
al. (2015) have devised a generalized expectation maximization scheme for the surrogate
problem

max
w1,...,wK

M

∑
i=1

log
(

α +
d−i − d+i
d−i + d+i

)
(2.42)

where α ∈ R with α ≥ 4 is a hyper-parameter and d+i and d−i are defined as before.

In particular, the optimization scheme consists of the two following steps.

Expectation: Compute the pseudo-probabilities

γ+
i =

g+i
(g+i + g−i )

and γ−i =
g−i

(g+i + g−i )
where

g+i =
α

2
−

d+i
(d+i + d−i )

and g−i =
α

2
+

d−i
(d+i + d−i )

Maximization: Assuming fixed γ+
i and γ−i , but variable g+i and g−i , switch the location

of a single prototype to increase the pseudo-likelihood

L =
M

∑
i=1

γ+
i · log(g+i /γ+

i ) + γ−i · log(g−i /γ−i ) (2.43)

If no such prototype exists, the optimization scheme stops.

This optimization scheme provably converges to a local maximum of the loss 2.42,
which in turn is (close to) a local minimum of the GLVQ loss 2.28 for sufficiently large α.

Theorem 2.8. Let x1, . . . , xM be elements from some set X with labels y1, . . . , yM ∈ {1, . . . , L}
and let w1, . . . , wK ⊆ {x1, . . . , xM}.

Then, the expectation maximization scheme above converges to a local optimum of the loss 2.42.

Further, the sum of the GLVQ loss 2.28 with nonlinearity Φ(µ) = log(α + µ) and the
loss 2.42 lies in O

(
2 ·M · log(α)− 1

α2 ·∑M
i=1 µ2

i
)

with µi = (d+i − d−i )/(d
+
i + d−i ).

Proof. The first claim has been proven by Nebel, Hammer, et al. (2015). For a proof
adapted to our notation, and for a proof of the second claim, refer to Appendix A.7.

Since the sum of the losses 2.28 and 2.42 becomes a constant for large enough α, we
can replace the minimization of loss 2.28 with the maximization of loss 2.42.
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Note that, in principle, any maximization step requires O(K ·M2) operations because
for every prototype we have to check O(M) possible data points we could switch to
and for each of those we have to compute the new likelihood L, which has O(M) terms.
In practice, the optimization is considerably faster because we only switch a prototype
to data points with the same label within its own Voronoi cell, and to compute the
likelihood we only have to consider points for which d+i or d−i changes. In Chapter 4, we
use MGLVQ for tree edit distance learning.

This concludes our discussion of distance-based classification. We now turn to the
topic of distance-based time series prediction.

2.6 distance-based time series prediction

While distance-based dimensionality reduction, clustering, and classification are already
well covered in the literature (refer e.g. to Gisbrecht and Schleif 2015; Hammer and
Hasenfuss 2007; Hammer, D. Hofmann, et al. 2014), distance-based time series prediction
is to date limited to vectorial data. For example, support vector regression takes kernels
as input and has been applied to predict time series in finance, business, environmental
research, and engineering (Sapankevych and Sankar 2009). Another example is Gaussian
process regression, which has been applied to predict chemical processes (Girard et al.
2003), motion data (J. Wang, Hertzmann, and Blei 2006), and physics data (Roberts et al.
2012). In Chapter 5, we generalize time series prediction to cases where the vectorial
representation is implicit and not Euclidean.

We investigate three existing non-parametric regression techniques for prediction,
namely one-nearest neighbor regression (1-NN), kernel regression (KR), and GPR. For
the purpose of this background chapter we assume that the data does have vectorial
form, and we cover the nonvectorial case in Chapter 5.

Now, assume that we are given a dataset of the form (~x1,~y1), . . . , (~xM,~yM) ∈ Rm×Rm,
where ~yi is the successor of ~xi in a time series. Then, our aim is to find a predictive
function f : Rm → Rm such that f (~xi) ≈ ~yi for all i and such that the general underlying
dynamics of our training dataset are captured. Note that our setup here already makes a
Markov assumption, meaning that the state at time step t+ 1 is conditionally independent
from the state at time steps 0, . . . , t− 1 if conditioned on the state at time step t. We cover
the more general case without Markov assumption in Chapter 5 as well.

To illustrate the difference between the three predictive schemes, we consider the
two-dimensional dynamical system ∂

∂t f (~x) = 1
2 (1− ‖~x‖) ·~x + 0.6 · (−x2, x1)

> illustrated
in Figure 2.7 (top left). The dynamical system has a cyclic attractor at the unit circle and
an instable fix point at the origin. From every other position in the two-dimensional
space, points are pulled towards the cyclic attractor and move along the unit circle in
counter-clockwise direction. The training data for our predictions consists of twenty
points ~xi selected uniformly at random from the interval [−1.5, 1.5]2 and shown in orange
in the figure. We define the desired next state via an Euler step ~yi = ~xi +

∂
∂t f (~xi). As

distance measure d we use the standard Euclidean distance, and as kernel k we use the
radial basis function:

kd,ξ(~x,~x′) = exp
(
− 1

2
· d(~x,~x′)2

ξ2

)
(2.44)

where ξ ∈ R with ξ > 0 is a hyper-parameter, which we call bandwidth, set to 0.6 in
this example. Note that the radial basis function is guaranteed to be a kernel for any
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Figure 2.7: An illustration of 1-NN, KR, and GPR in predicting a dynamical system. Top left:
The true underlying dynamical system. The circle marks the circle attractor of the system. Other
panels: The predictions made by 1-NN, KR, and GPR respectively, based on the training data
points shown in orange.

Euclidean distance, but not for general metrics (Jäkel, Schölkopf, and Wichmann 2008).
For example, edit distances are metrics, but do generally not yield kernels via the radial
basis function. Another property of the radial basis function is that it can be readily
interpreted as a measure of similarity, in the sense that it decreases monotonously with
the distance, and that it reaches its maximum of 1 if and only if ~x = ~x′ (Jäkel, Schölkopf,
and Wichmann 2008; Nebel, Kaden, et al. 2017).

Equipped with the radial basis function and our example, we can now inspect 1-NN,
KR, and GPR in more detail.

One-nearest neighbor regression (1-NN): We define the predictive function for 1-NN
as follows.

f (~x) := ~yi+ where i+ = argmin
i∈{1,...,M}

d(~x,~xi) (2.45)

Figure 2.7 (top right) displays the prediction of 1-NN for the dynamical system example.
As is clearly visible, the prediction is relatively inaccurate and suffers from discontinuous
changes. These are caused by the discontinuity of the argmin function. In particular, the
argmin function is ill-defined for points ~x where two different training data points ~xi
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and ~xj exist such that d(~x,~xi) = d(~x,~xj) but ~yi 6= ~yj. A straightforward way to smoothen
the prediction is to utilize averages of training data with continuous weights, which is
the technique employed by KR.

Kernel regression (KR): KR was first proposed by Nadaraya (1964) and can be seen as
a generalization of 1-NN to a smooth predictive function f by weighting training data
points according to their distance. In particular, let sd be any non-negative function that
decreases monotonously with the distance d. Then, the predictive function of KR is given
as:

f (~x) := ∑M
i=1 sd(~x,~xi) ·~yi

∑M
i=1 sd(~x,~xi)

(2.46)

Note that KR requires for each possible input ~x at least one training data point with
s(~x,~xi) > 0, that is, if the test data point is not similar to any training data point, the
prediction degenerates. Another limitation of KR is that it generally does not reproduce
the training data, i.e. f (~xi) 6= ~yi. This also results in a somewhat inaccurate prediction for
the dynamical system example, as shown in Figure 2.7 (bottom left). While KR predicts
the global behaviour roughly correctly, the predictions especially for the bottom right of
the state space are considerably off. To achieve a more accurate prediction, we turn to
Gaussian process regression.

Gaussian process regression (GPR): In GPR we assume that the output points (training
as well as test) are a realization of a multivariate random variable with a Gaussian
distribution (Rasmussen and Williams 2005). The model extends KR in several ways.
First, we can encode prior knowledge regarding the output points via the mean of our
prior distribution, denoted as ~θi and ~θ for ~yi and ~y respectively. Second, we can cover
Gaussian noise on our training output points within our model. For this noise, we assume
mean 0 and standard deviation σ̃.

Let now k be a kernel on X , let

~k :=
(
k(~x,~x1), . . . , k(~x,~xM)

)> and let (2.47)

K :=
(
k(~xi,~xj)

)
i,j=1...M (2.48)

Then, under the GPR model, the conditional probability density of the output points
~y1, . . . ,~yM,~y given the input points ~x1, . . . ,~xM,~x is given as follows.

p(~y1, . . . ,~yM,~y|~x1, . . . ,~xM,~x) =

N
(
~y1, . . . ,~yM,~y

∣∣∣~θ1, . . . ,~θM,~θ,

(
K + σ̃2 · IM ~k

~k> k(~x,~x)

)−1 )
where IM is the M-dimensional identity matrix and N (·|~µ, Λ) is the multivariate Gaus-
sian probability density function for mean ~µ and precision matrix Λ. Note that our
assumed distribution takes all outputs ~y1, . . . ,~yM,~y as argument, not just a single point.
The posterior distribution for just ~y can be obtained by marginalization as follows.

Theorem 2.9 (Gaussian Process Posterior Distribution). Let Y be the matrix (~y1, . . . ,~yM)

and Θ := (~θ1, . . . ,~θM). Then the posterior density function for Gaussian process regression is
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given as:

p(~y|~x,~x1, . . . ,~xM,~y1, . . . ,~yM) = N (~y|~µ, σ−2 · Im) where (2.49)

~µ = ~θ + (Y −Θ) · (K + σ̃2 · IM)−1 ·~k (2.50)

σ2 = k(~x,~x)−~k> · (K + σ̃2 · IM)−1 ·~k (2.51)

We call ~µ the predictive mean and σ2 the predictive variance.

Proof. Refer e.g. to Rasmussen and Williams (2005, p. 27).

Note that the posterior distribution is, again, Gaussian. For a Gaussian distribution,
the mean corresponds to the point of maximum density, such that we can define our pre-
dictive function as f (~x) := ~µ where ~µ is the predictive mean of the posterior distribution
for point ~x. Further note that the predictive mean becomes the prior mean if~k is the zero
vector, i.e. if the test data point is dissimilar to all training data points.

Figure 2.7 (bottom right) shows the predictions of GPR for the dynamical system
example with the prior being the identity, i.e. ~θi = ~xi for all i. Apparently, GPR captures
the actual underlying dynamical system quite well. The main drawback of GPR is the
high computational complexity: For training, the inversion of the matrix (K + σ̃2 · IM)−1

requires cubic time. This issue can be addressed by several approximation schemes such
as using only a subset of the data for training, or using a low-rank approximation of
the kernel matrix such as the Nyström method (Rasmussen and Williams 2005). In this
work, we focus on the state-of-the-art approximation scheme entitled robust Bayesian
committee machine (rBCM) (Deisenroth and Ng 2015).

The rBCM relies on a partition of the training samples into C disjoint sets, ideally a
clustering in the input data. For each of these sets, we perform a separate GPR, yielding
the predictive distributions N (~x|~µc, σ−2

c · Im) for c ∈ {1, . . . , C}. These distributions are
combined to the final predictive distribution N (~x|~µrBCM, σ−2

rBCM · Im) with the following
variance and mean.

σ−2
rBCM =

C

∑
c=1

βc

σ2
c
+

(
1−

C

∑
c=1

βc

)
· 1

σ2
prior

(2.52)

~µrBCM = σ2
rBCM ·

(
C

∑
c=1

βc

σ2
c
·~µc +

(
1−

C

∑
c=1

βc

)
· 1

σ2
prior
·~θ
)

(2.53)

where σ2
prior > 0 is a hyper-parameter for the assumed variance of the prior distribution,

and βc > 0 are weights for the importance of the cth GPR for the current prediction.

We follow the suggestion of Deisenroth and Ng (2015) and set βc = 1
2 ·
(

log(σ2
prior)−

log(σ2
c )
)

, also called the differential entropy. This setting assigns a higher weight for the
cth GPR if its prediction has lower variance.

The rBCM runs in linear time if the size of any single cluster is considered to be
constant (i.e. the number of clusters is proportional to M) such that we only need to
invert kernel matrices of constant size.

In Chapter 5, we evaluate all of these methods for the purpose of time series prediction
for data, which are represented in terms of pairwise distances.
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background and related work

This concludes our description of background knowledge for this thesis. In the
following chapters, we build upon this background knowledge to push the boundaries
of learning distances and distance-based learning. We begin by learning parameters of
the sequence edit distance.
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3S E Q U E N C E E D I T D I S TA N C E L E A R N I N G

Summary: Sequence edit distances are efficient, popular, and interpretable distance
measures in many application domains, especially for RNA, DNA, and protein sequence
processing in biology. A challenge in applying such edit distances is that their default
parameters may not be optimal for the task at hand. In this chapter, we develop a
novel, flexible metric learning approach for sequence edit distances, and we evaluate our
approach on datasets from biology and intelligent tutoring systems.

Publications: This chapter is based on the following publications.

• Mokbel, Bassam, Benjamin Paaßen, et al. (2015). “Metric learning for sequences
in relational LVQ”. English. In: Neurocomputing 169, pp. 306–322. doi: 10.1016/j.
neucom.2014.11.082.

• Paaßen, Benjamin, Bassam Mokbel, and Barbara Hammer (2015a). “A Toolbox
for Adaptive Sequence Dissimilarity Measures for Intelligent Tutoring Systems”.
In: Proceedings of the 8th International Conference on Educational Data Mining (EDM
2015). (Madrid, Spain). Ed. by Olga Christina Santos et al. International Educational
Datamining Society, pp. 632–632. url: http://www.educationaldatamining.org/
EDM2015/uploads/papers/paper_257.pdf.

• — (2015b). “Adaptive structure metrics for automated feedback provision in Java
programming”. English. In: Proceedins of the 23rd European Symposium on Artificial
Neural Networks, Computational Intelligence and Machine Learning (ESANN 2015).
(Bruges, Belgium). Ed. by Michel Verleysen. Best student paper award. i6doc.com,
pp. 307–312. url: http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/
es2015-43.pdf.

• — (2016). “Adaptive structure metrics for automated feedback provision in
intelligent tutoring systems”. In: Neurocomputing 192, pp. 3–13. doi: 10.1016/j.
neucom.2015.12.108.

Source Code: The MATLAB(R) source code for relational generalized learning vector
quantization is available at http://www.techfak.uni-bielefeld.de/~xzhu/published_
code/relational_glvq.zip.

The Java(R) source code for sequence edit distances and gradients thereof is available
at https://openresearch.cit-ec.de/projects/tcs.

Sequence edit distances provide an intuitive measure of distance between two se-
quences x̄ and ȳ by counting the number of characters that have to be deleted, inserted, or
replaced to transform x̄ into ȳ. While originally devised to count the number of spelling
errors in written text (Levenshtein 1965; Damerau 1964), sequence edit distances have
become popular far beyond this initial application domain. Most importantly, sequence
edit distances serve as models of distance between RNA, DNA, or protein sequences in
biology (S. Henikoff and J. G. Henikoff 1992; Hourai, Akutsu, and Akiyama 2004; Kann,
Qian, and Goldstein 2000; McKenna et al. 2010; Saigo, Vert, and Akutsu 2006; T. F. Smith
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sequence edit distance learning

and Waterman 1981). Recently, sequence edit distances have also been suggested as
actionable measures of distance for intelligent tutoring systems (Gross, Mokbel, et al.
2014; Mokbel, Gross, et al. 2013; Rivers and Koedinger 2015; Price, Dong, and Lipovac
2017). In particular, edit distances could help students to solve a learning task by telling
them what precisely they have to change in their current solution attempt to arrive at a
correct solution.

A challenge in applying sequence edit distances in practice is that the default
parametrization may not be suitable for the domain at hand, that is, not every char-
acter may be equidistant from all other characters. For example, in counting spelling
errors, not every kind of misspelling is equally likely because some characters are closer
to each other on a keyboard (F. Ahmad and Kondrak 2005). In biology, some bases are
more likely to change into a specific other base compared to others (Hourai, Akutsu, and
Akiyama 2004; Kann, Qian, and Goldstein 2000; Saigo, Vert, and Akutsu 2006). Finally, in
intelligent tutoring systems, different syntactic parts of a student solution may be easier
to replace, for example due to functional equivalence (Mokbel, Gross, et al. 2013; Paaßen,
Jensen, and Hammer 2016). This begs the question how edit distances can be adapted to
be better suited for the domain and task at hand, that is, how to perform metric learning
on edit distances (Bellet, Habrard, and Sebban 2012; Bellet, Habrard, and Sebban 2014).

In this chapter, we provide a general-purpose scheme to learn metric parameters of
a broad class of sequence edit distances for classification, based on algebraic dynamic
programming (ADP, Giegerich, Meyer, and Steffen 2004, refer to Section 2.3.2). We extend
the state of the art in the field in several respects:

• Our metric learning scheme is applicable to a broad class of edit distances, whereas
existing approaches focus on a specific type of sequence edit distance (Bellet,
Habrard, and Sebban 2014).

• We select reference pairs for metric learning in a principled fashion based on
learning vector quantization prototypes for each class instead of ad-hoc selection
schemes in prior approaches (Bellet, Habrard, and Sebban 2012; Bellet, Habrard,
and Sebban 2014).

• Our approach is compatible with any differentiable parametrization of the edit
distance, whereas prior work is limited to learning pairwise symbol replacement
costs (Bellet, Habrard, and Sebban 2014).

In the following section, we describe our method in more detail, before we go on to
evaluate it experimentally. We conclude this chapter with a short summary and a list of
limitations that we intend to address in the next chapter.

3.1 method

We begin our method description by establishing a general-purpose algorithm to compute
sequence edit distances based on algebraic dynamic programming (ADP, Giegerich,
Meyer, and Steffen 2004, also refer to Section 2.3.2). We then show how to learn parameters
of these sequence edit distances via gradient-based optimization.
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3.1 method

Algebraic Dynamic Programming

First, recall that a sequence edit distance between two input sequences x̄ and ȳ is defined
as the cost c(δ̄, x̄) of the cheapest edit script δ̄ over some edit set ∆, such that δ̄(x̄) = ȳ
(also refer to Definitions 2.5 and 2.6).

Also recall our alternative formalism to express sequence edit distances via ADP.
According to ADP, a sequence edit distance between two input sequences x̄ and ȳ is
defined as the cost cF (δ̃) of the cheapest script tree δ̃ according to some algebra F , such
that δ̃ can be generated by some edit tree grammar G, and such that the yield of δ̃ is
exactly Y(δ̃) = (x̄, ȳ) (also refer to Definition 2.10). However, to our knowledge, the
existing literature on ADP does not show that the cheapest edit script and the cheapest
script tree are indeed equivalent, and that both notions of edit distance are thus equivalent.
Therefore, we prove this result here.

Theorem 3.1. Let A be an alphabet with $, match /∈ A, let S = (Del, Rep, Ins) be a signature
with $, match /∈ Del ∪ Rep ∪ Ins, and let F be an algebra over S and A. Finally, let δ̃ ∈
T (S ,A) be a script tree and let (x̄, ȳ) := Y(δ̃) be the yield of δ̃. Then, there exists an edit script
δ̄δ̃ ∈ ∆S ,A such that ȳ = δ̄δ̃(x̄) and cF (δ̃) = cF (δ̄δ̃, x̄).

Now, let F conform to the following conditions.

∀rep ∈ Rep : ∀x, y ∈ A : crep(x, y) ≥ 0
∀del ∈ Del : ∀x ∈ A : cdel(x) ≥ 0
∀ins ∈ Ins : ∀y ∈ A : cins(y) ≥ 0

∀rep, rep′ ∈ Rep : ∀x, y, z ∈ A : crep′(x, y) + crep(y, z) ≥ crep(x, y)

∀rep ∈ Rep : ∀ins ∈ Ins : ∀x, y ∈ A : cins(x) + crep(x, y) ≥ cins(y)
∀del ∈ Del : ∀rep ∈ Rep : ∀x, y ∈ A : crep(x, y) + cdel(y) ≥ cdel(x)

Then, for all edit scripts δ̄ ∈ ∆S ,A and all x̄ ∈ A∗, there exists a script tree δ̃δ̄,x̄, such that
Y(δ̃δ̄,x̄) = (x̄, δ̄(x̄)) and cF (δ̃δ̄,x̄) ≤ cF (δ̄, x̄).

Further, it holds for all sequences x̄, ȳ ∈ A∗:

dS ,F (x̄, ȳ) = min
δ̃∈T (S ,A)

{cF (δ̃)|Y(δ̃) = (x̄, ȳ)} (3.1)

Proof. Refer to Appendix A.8.

As an example for the first construction in Theorem 3.1, consider the example se-
quences x̄ = ab and ȳ = cd over the alphabet A = {a, b, c, d}, and the script tree

δ̃ = del
(
a, ins

(
rep(b, $, d), c

))
over the signature SALI = ({del}, {rep}, {ins}). This

script tree would be translated into a edit script as follows. We first initialize our edit
script as δ̄$ = ε. Next, consider the subtree rep(b, $, d), which corresponds to the edit
script δ̄rep(b,$,d) = rep1,d. Further, consider the subtree ins

(
rep(b, $, d), c

)
, which then

corresponds to the edit script δ̄
ins
(

rep(b,$,d),c
) = ins1,crep2,d. Note that we have increased

the index of the replacement operation by one. Finally, consider the entire script tree δ̃,
which then corresponds to the edit script δ̄δ̃ = del1ins1,crep2,d. Note that this edit script
does indeed map x̄ to ȳ and has the costs cF (δ̄, x̄) = cdel(a) + cins(c) + crep(b, d) = cF (δ̃)
for any algebra F .
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As an example for the second construction in Theorem 3.1, consider the example
sequences x̄ = a and ȳ = b over the alphabet A = {a, b, c, d}, and the edit script δ̄ =
ins1,crep1,bdel2 over the edit set ∆SALI,A. This edit script would be translated into a script
tree as follows. We first initialize our script tree as δ̃ε,a = match(a, $, a). Next, consider the
first edit δ1 = ins1,c, which changes our script tree to δ̃ins1,c,a = ins

(
match(a, $, a), c

)
. Fur-

ther, consider the second edit δ2 = rep1,b, which changes our script tree to δ̃ins1,crep1,b,a =

ins
(
match(a, $, a), b

)
. Note that the insertion operation now inserts b instead of c. Finally,

consider the last edit δ3 = del2, which changes our script tree to δ̃δ̄,a = ins
(
del(a, $), b

)
.

Note that the yield of this script tree is indeed Y(δ̃δ̄,a) = (a, b) = (x̄, ȳ) and that the costs
are cF (δ̃δ̄,a) = cdel(a) + cins(b) ≤ cins(c) + crep(c, b) + cdel(a) = cF (δ̄, a) for any algebra
F that conforms to the conditions in Theorem 3.1.

Another result that is missing from the previous literature on ADP is the proof of
metric conditions of the resulting sequence edit distance. To us, such a result is important
because we need to ensure that at least a pseudo-Euclidean embedding of the edit
distance exists in order to apply some distance-based classifiers, such as RGLVQ. We
prove metric properties of ADP sequence edit distances in the following theorem.

Theorem 3.2. Let A be an alphabet, let S = (Del, Rep, Ins) be a non-trivial signature, and let
F be an algebra over S and A. Further, let ∆S ,A be the edit set with respect to S and A, and let
cF be the cost function with respect to F , such that the following conditions hold.

∀del ∈ Del : ∀x ∈ A : cdel(x) ≥ 0
∀ins ∈ Ins : ∀y ∈ A : cins(y) ≥ 0

∀del ∈ Del : ∃ins ∈ Ins : ∀x ∈ A : cdel(x) = cins(x)
∀ins ∈ Ins : ∃del ∈ Del : ∀y ∈ A : cins(y) = cdel(y)

∀rep ∈ Rep : ∀x, y ∈ A : crep(x, y) = crep(y, x) ≥ 0

Then, the edit distance dS ,F is a pseudo-metric over A∗.

Proof. Refer to Appendix A.9.

As a final result, we show that any sequence edit distances that can be represented
via ADP can be efficiently computed, which is a simplified version of the general ADP
results by Giegerich, Meyer, and Steffen (2004).

Theorem 3.3. Let S be a signature, let G be an edit tree grammar over S , let A be an alphabet,
and let F be an algebra over S and A. Then, for any two sequences x̄, ȳ ∈ A∗, Algorithm 3.1
computes the edit distance dG,F (x̄, ȳ) in O(|x̄| · |ȳ|) time and space complexity.

Proof. This result is a consequence of the much more general work of Giegerich, Meyer,
and Steffen (2004) on ADP. However, we provide a specific version here that is tailored
to our application. For the details of the proof, refer to Appendix A.10.

Consider the example sequences x̄ = aaacac and ȳ = ccbbb from Figure 2.3. The
dynamic programming tables resulting from Algorithm 3.1 with the edit tree grammar
GAFFINE from Equation 2.18, the algebra FAFFINE from Equation 2.19, and the input
sequences x̄ = aaacac and ȳ = ccbbb are shown in Table 3.1. The resulting edit distance
is thus dG,F (x̄, ȳ) = 5.
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3.1 method

Algorithm 3.1 A general-purpose dynamic programming algorithm computing the edit
distance dG,F (x̄, ȳ) between two sequences x̄ and ȳ according to the edit tree grammar G,
and the algebra F .

1: function edit_distance(edit tree grammar G, algebra F , sequences x̄, ȳ)
2: Let G = (Φ,S ,R, S), and let S = (Del, Rep, Ins).
3: Let x̄ = x1 . . . xm and ȳ = y1 . . . yn.
4: for A ∈ Φ do
5: Initialize DA as (m + 1)× (n + 1) array of ∞ entries.
6: if A ::= $ ∈ R then
7: DA

m+1,n+1 ← 0.
8: end if
9: end for

10: for i← m + 1 . . . 1 do
11: for j← n + 1 . . . 1 do
12: for A ∈ Φ do
13: L← 0.
14: if i ≤ m then
15: for A ::= delB ∈ R with del ∈ Del, B ∈ Φ do
16: L← L + 1.
17: θL ← DB

i+1,j + cdel(xi).
18: end for
19: end if
20: if i ≤ m and j ≤ n then
21: if xi = yj then
22: for B ∈ Φ such that A ::= matchB ∈ R do
23: L← L + 1.
24: θL ← DB

i+1,j+1.
25: end for
26: end if
27: for A ::= repB ∈ R with rep ∈ Rep, B ∈ Φ do
28: L← L + 1.
29: θL ← DB

i+1,j+1 + crep(xi, yj).
30: end for
31: end if
32: if j ≤ n then
33: for A ::= insB ∈ R with ins ∈ Ins, B ∈ Φ do
34: L← L + 1.
35: θL ← DB

i,j+1 + cins(yj).
36: end for
37: end if
38: if L > 0 then
39: DA

i,j ← min{θ1, . . . , θL}.
40: end if
41: end for
42: end for
43: end for
44: return DS

1,1.
45: end function
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Table 3.1: The dynamic programming tables A (left) and S (right) resulting from applying
Algorithm 3.1 with the edit tree grammar GAFFINE from Equation 2.18, the algebra FAFFINE from
Equation 2.19, and the input sequences x̄ = aaacac and ȳ = ccbbb, as in Figure 2.3.

Ai,j 1 2 3 4 5 6
c c b b b -

1 a 5.0 5.0 5.0 4.5 4.0 3.5
2 a 4.5 4.5 4.5 4.0 3.5 3.0
3 a 4.0 4.0 4.0 3.5 3.0 2.5
4 c 3.0 3.0 3.0 3.0 2.5 2.0
5 a 3.0 3.0 3.0 2.0 2.0 1.5
6 c 2.5 2.0 2.5 2.0 1.0 1.0
7 - 3.0 2.5 2.0 1.5 1.0 0.0

Si,j 1 2 3 4 5 6
c c b b b -

1 a 4.5 4.5 4.5 4.0 3.5 3.0
2 a 4.0 4.0 4.0 3.5 3.0 2.5
3 a 3.5 3.5 3.5 3.0 2.5 2.0
4 c 3.0 3.0 3.0 2.5 2.0 1.5
5 a 3.0 2.5 2.5 2.0 1.5 1.0
6 c 2.5 2.0 2.0 1.5 1.0 0.5
7 - 2.5 2.0 1.5 1.0 0.5 0.0

Now that we have established how to compute sequence edit distances, our next task
is to learn them.

Metric Learning via RGLVQ

Our aim is to learn the parameters ~λ of some algebra F~λ, such that the sequence edit
distance dG,F~λ for some fixed edit tree grammar G is optimized for classification. In
our case, we assume that a relational generalized learning vector quantization (RGLVQ)
model has already been learned for a dataset with M points, and we now wish to adapt
the parameters ~λ such that the GLVQ cost function EGLVQ from Equation 2.28 for this
model is minimized. For the purpose of this minimization, we employ gradient-based
optimization. The gradient of EGLVQ with respect to the parameters ~λ is given as follows.

∇~λEGLVQ =
M

∑
i=1

Φ′(µi) ·
2

(d+i + d−i )
2
·
(

d−i · ∇~λd+i − d+i · ∇~λd−i
)

(3.2)

where d+i is the distance between the ith training data point and its closest prototype
with the same label, d−i is the distance between the ith training data point and its closest
prototype with a different label, µi = (d+i − d−i )/(d

+
i + d−i ), and Φ is some differentiable,

monotonously increasing function.

Recall that the prototypes in RGLVQ are given as convex combinations of data points
and that we compute the distances d+i and d−i in RGLVQ via Equation 2.11. In particular,
we obtain the following gradient for the distance between data point xi and prototype
wk with φ(wk) = ∑M

j=1 αk,j · φ(xj).

∇~λ‖φ(xi)− φ(wk)‖2 =
M

∑
j=1

αk,j · ∇~λdG,F~λ(xi, xj)
2 − 1

2

M

∑
j=1

M

∑
j′=1

αk,j · αk,j′ · ∇~λdG,F~λ(xj, xj′)
2

(3.3)
which in turn depends on the gradient of the (squared) edit distances dG,F~λ(xi, xj)

2 and
dG,F~λ(xj, xj′)

2 with respect to ~λ. This poses two challenges. First, the above gradient
equation only holds if dG,F~λ is Euclidean, which is generally not the case. Therefore, we
would have to apply eigenvalue correction first, which may distort the distances. For
now, we heuristically assume that an optimization of the uncorrected edit distances will
also yield favorable results for the eigenvalue-corrected version.
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3.1 method

Second, the edit distance is non-differentiable because Algorithm 3.1 involves a
non-differentiable minimum operation in line 36. To address this issue, we replace the
minimum operation with a differentiable approximation, namely the softmin operation,
which is defined as follows.

softminβ(θ1, . . . , θL) := ∑L
l=1 exp(−β · θl) · θl

∑L
l=1 exp(−β · θl)

, (3.4)

where β ≥ 0 is a hyper-parameter that we call crispness. We can show that softmin is
indeed differentiable, and that it approximates the strict minimum with increasing β.

Theorem 3.4. Let θ1, . . . , θL ∈ R. Then, for any β > 0, softminβ is differentiable with the
following gradient.

∇~λsoftminβ(θ1, . . . , θL) =
L

∑
l=1

softmin′β,l(θ1, . . . , θL) · ∇~λθl where (3.5)

softmin′β,l(θ1, . . . , θL) =
exp(−β · θl)

∑L
l′=1 exp(−β · θl′)

·
(

1− β ·
[
θl − softminβ(θ1, . . . , θL)

])
Further, there exists a constant CL ∈ R, such that for all β > 0 it holds:

0 ≤ softminβ(θ1, . . . , θL)−min{θ1, . . . , θL} ≤
CL

β

Proof. Refer to Appendix A.11.

Using the gradient formula 3.5, we can adjust Algorithm 3.1 to compute the gradient
of the edit distance with respect to ~λ instead of the edit distance itself. This yields
Algorithm 3.2.

Theorem 3.5. Let S be a signature, let G be an edit tree grammar over S , let A be an alphabet,
and let F be an algebra over S and A. Finally, let~λ be arbitrary parameters of F , and let β ∈ R

with β > 0.

Then, for any two sequences x̄, ȳ ∈ A, we define the β-softmin-approximated edit distance
dβ,G,F (x̄, ȳ) as the result of Algorithm 3.1 with a softmin operation in line 39 instead of a strict
minimum operation.

Further, it holds: Algorithm 3.2 computes the gradient of the β-softmin-approximated edit
distance dβ,G,F (x̄, ȳ) with respect to~λ in O(|x̄| · |ȳ|) time and space complexity.

Proof. Refer to Appendix A.12.

In summary, we can perform sequence edit distance learning using RGLVQ as follows.
First, we learn a RGLVQ model on our data set. Then, we perform a gradient-based
optimization of the GLVQ cost function from Equation 2.28 with the gradient 3.2. For
each gradient step, we need to compute all pairwise edit distances via Algorithm 3.1 and
all pairwise gradients via Algorithm 3.2 and plug these into Equations 3.3 and 3.2 to
obtain the overall gradient. Complexity-wise, we require O(M2 ·m2) steps to compute
all pairwise edit distances and gradients, where M is the number of sequences in our
data set and m is the maximum length of a sequence in our data set. Further, we obtain a
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Algorithm 3.2 A general-purpose dynamic programming algorithm computing the
gradient ∇~λdβ,G,F (x̄, ȳ) for two sequences x̄ and ȳ according to the edit tree grammar G,
and the algebra F .

1: function edit_distance_gradient(edit tree grammar G, algebra F , sequences x̄, ȳ,
crispness β)

2: Let G = (Φ,S ,R, S), and let S = (Del, Rep, Ins).
3: Let x̄ = x1 . . . xm and ȳ = y1 . . . yn.
4: for A ∈ Φ do
5: Initialize DA as (m + 1)× (n + 1) array of ∞ entries.
6: Initialize GA as (m + 1)× (n + 1) array of~0 vectors.
7: if A ::= $ ∈ R then
8: DA

m+1,n+1 ← 0.
9: end if

10: end for
11: for i← m + 1 . . . 1 do
12: for j← n + 1 . . . 1 do
13: for A ∈ Φ do
14: L← 0.
15: if i ≤ m then
16: for A ::= delB ∈ R with del ∈ Del, B ∈ Φ do
17: L← L + 1.
18: θL ← DB

i+1,j + cdel(xi).

19: ∇~λθL ← GB
i+1,j +∇~λcdel(xi).

20: end for
21: end if
22: if i ≤ m and j ≤ n then
23: if xi = yj then
24: for B ∈ Φ with A ::= matchB ∈ R do
25: L← L + 1.
26: θL ← DB

i+1,j+1.

27: ∇~λθL ← GB
i+1,j+1.

28: end for
29: end if
30: for A ::= repB ∈ R with rep ∈ Rep, B ∈ Φ do
31: L← L + 1.
32: θL ← DB

i+1,j+1 + crep(xi, yj).

33: ∇~λθL ← GB
i+1,j+1 +∇~λcrep(xi, yj).

34: end for
35: end if
36: if j ≤ n then
37: for A ::= insB ∈ R with ins ∈ Ins, B ∈ Φ do
38: L← L + 1.
39: θL ← DB

i,j+1 + cins(yj).

40: ∇~λθL ← GB
i,j+1 +∇~λcins(yj).

41: end for
42: end if
43: if L > 0 then
44: DA

i,j ← softmin(θ1, . . . , θL).

45: GA
i,j ← ∑L

l=1 softmin′β,l(θ1, . . . , θL) · ∇~λθl .
46: end if
47: end for
48: end for
49: end for
50: return GS

1,1.
51: end function
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space complexity of O(M2 + m2) to store the pairwise distance matrix and the dynamic
programming matrices. Note that these computations can be made in parallel, relieving
some of the computational burden.

This concludes our description of the proposed metric learning scheme. In the next
section, we evaluate our scheme experimentally.

3.2 experiments

Artificial Datasets

We evaluate our metric learning scheme on two artificial datasets, namely:

Strings: An artificial, balanced two-class dataset of 200 strings of length 12. Strings in
class 1 consist of 6 a or b symbols, followed by a c or d, followed by another 5 a
or b symbols. Which of the two respective symbols is selected is chosen uniformly
at random. Strings in class 2 are constructed in much the same way, except that
they consist of 5 a or b symbols, followed by a c or d, followed by another 6 a or
b symbols. Note that the classes can be neither discriminated via length nor via
symbol frequency features. The decisive discriminative feature is where cs and ds
are located in the string.

Gap: An artificial, balanced two-class dataset of 200 uniform random strings over the
alphabet A = {a, b, c, d}, where the strings in class 1 have length 10 and the strings
in class 2 have length 12. In this data set, the discriminative feature is the length,
with replacement costs being irrelevant.

For these data, our aim is to optimize the standard string edit distance with signature
SALI = ({del}, {rep}, {ins}) and edit tree grammar GALI as defined in Equation 2.16. For
each alphabet A = {x1, . . . , xm} we employ the following algebra F~λ.

crep(xi, xj) = λ(m+1)·(i−1)+j

cdel(xi) = λ(m+1)·i

cins(xj) = λ(m+1)·m+j

In other words, we consider the replacement, deletion, and insertion costs as parameters,
which results in (|A|+ 1)2 − 1 parameters overall. As initialization, we use the algebra
FALI specified in Equation 2.15.

For metric learning, we train a RGLVQ model with one prototype per class and then
perform ten gradient descent steps to learn the parameters. As learning rate for gradient
descent we employ η = 1/M for both datasets, where M is the number of data points.
After each gradient step, we normalize the parameters by clipping negative values to
zero, by setting self-replacement costs to zero, by symmetrizing the parameters, and by
using the Floyd-Warshal algorithm for pairwise shortest paths to enforce the triangular
inequality (Floyd 1962). We set the crispness parameter to β = 1.

We evaluate the average classification error on our learned metric in a crossvalidation
with 20 folds using four different classifiers, namely a 1-nearest neighbor classifier (1-NN),
a RGLVQ classifier with one prototype per class, a support vector machine (SVM) with
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Table 3.2: The mean classification error ± standard deviation of multiple classifiers across 20
crossvalidation trials on both artificial datasets. The first column lists the results for the standard
string edit distance, the second column for GESL, and the final column for our proposed metric
learning scheme. Datasets and the different classifiers are listed as rows. The best results for each
dataset are highlighted in bold print.

classifier Initial GESL proposed

String

1-NN 20.0± 9.2% 10.5± 9.4% 0.0 ± 0.0%
RGLVQ 39.5± 14.3% 18.0± 12.8% 0.0 ± 0.0%
SVM 7.0± 8.6% 11.0± 8.5% 0.0 ± 0.0%
good 4.5± 5.1% 4.5± 5.1% 0.0 ± 0.0%

Gap

1-NN 51.5± 15.7% 10.0± 11.2% 5.0± 15.4%
RGLVQ 54.5± 10.5% 34.5± 11.9% 7.0± 17.2%
SVM 20.0± 10.3% 45.0± 6.9% 5.0± 15.4%
good 6.5± 6.7% 1.0 ± 3.1% 5.0± 15.4%

radial basis function kernel (refer to Equation 2.44) and clip eigenvalue correction, and
the goodness classifier of Balcan, Blum, and Srebro (2008) with the similarity metric
sd(x̄, ȳ) = 2 · exp(−dc(x̄, ȳ))− 1 as suggested in Section 2.4.1. We optimized the radial
basis function bandwidth ξ for SVM and the sparsity hyperparameter ν for the goodness
classifier in a nested crossvalidation with 5 folds. We compare these classification errors
with the errors obtained via the initial string edit distance and the pseudo-edit distance
obtained via good edit similarity learning (GESL, Bellet, Habrard, and Sebban 2012, also
refer to Section 2.4.1) with K = 1 reference point from the same and from the other class
for each point.

The results are displayed in Table 3.2. For the strings dataset, our proposed metric
learning scheme could improve the string edit distance such that all classifiers could
classify the data perfectly in all folds, whereas GESL only yielded improvements for
the 1-NN and RGLVQ classifier. Overall, our proposed sequence edit distance learning
scheme significantly outperformed both the initial string edit distance and GESL for
all classifiers (p < 0.01 according to a Wilcoxon signed-rank test). Deeper inspection
revealed that our proposed scheme did indeed reduce the pairwise replacement costs
c(a, b) = c(b, a) to zero in all folds as expected.

For the gaps dataset, our proposed scheme could improve the metric such that
perfect classification was possible in 17 out of 20 folds. In these cases, our approach
did correctly set the pairwise replacement costs c(a, b) = c(b, a) to zero while gap costs
remained nonzero. This result was surpassed by GESL for the goodness classifier, where
GESL achieved 1% error. However, GESL achieved much worse results for the other
classifiers, indicating that the learned metric is rather specific to the goodness classifier,
whereas our proposed approach achieves a metric that is viable across the board. For all
classifiers except the goodness classifier, our proposed approach achieved significantly
better results than the initial string edit distance (p < 0.01); and for both RGLVQ and
SVM we significantly outperformed GESL (p < 0.001).

52



3.2 experiments

public class Adder {
public int add(int a, int b) {

return a+b;
}

}

class

method

returnvariablevariable

Figure 3.1: Left: A snippet of example Java source code. Right: The corresponding abstract syntax
tree (AST). Note that the AST also includes backreferences from the “return” node to both variable
nodes, because both variables are referenced in the return statement.

Real-World Data

We consider the following real-world datasets.

Copenhagen Chromosomes: A balanced two-class dataset of 400 strings, consisting of
the classes 4 and 5 of the Copenhagen Chromosomes database (Lundsieen, Philip,
and Granum 1980). Each string describes the density of a human chromosome
in differential coding with a 13-letter alphabet A = {f, . . . , a, =, A, . . . , F}, where
lower case letters mark negative changes in density, upper case letters mark positive
changes in density, and = codes equal density.

Sorting: An unbalanced, two-class dataset consisting of 64 Java programs collected from
37 different web sites (Paaßen 2016a). All programs are implementations of sorting
algorithms for an input array of integers. In particular, 35 programs implement
BubbleSort, and 29 programs implement InsertionSort. We preprocess all programs by
extracting their abstract syntax trees (ASTs) using the Oracle Java™ Compiler API.
To each node of these ASTs, we attach a feature vector incorporating characteristic
properties, namely a discrete type label (e.g. class declaration, method, variable
declaration, for loop, etc.), an encoding of the visibility scope the node is located
in, the index of the parent node, the row and column index of the node within the
original source code, the name of a declared class, method, or variable if applicable,
the name of the class of the declared variable if applicable, the name of the class of
a returned variable if applicable, the number of references to other nodes within
the AST, and a list of strings of references to external classes, methods, or variables.
Finally, we flatten all ASTs to sequences by considering the sequence of nodes in
depth-first search oder. As an example, consider the source code listed in Figure 3.1.
The corresponding depth-first-search sequence is shown in Table 3.3.

For the CopenhagenChromosomes dataset, we again evaluate the standard string
edit distance and learn the pairwise replacement and gap costs directly. For the Sorting
dataset, we learn both the standard string edit distance as well as the affine edit distance
of Gotoh (1982) with the signature SLOCAL as defined in Equation 2.17, the edit tree
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Table 3.3: The depth-first search sequence generated for the “Adder” source code listed in
Figure 3.1. Each column corresponds to one AST node, each row to one feature.

type class method variable variable return

scope [] [0] [0,0] [0,0] [0,0]
parent -1 0 1 1 1
codePosition (1,1)-(5,2) (2,3)-(4,4) (2,18)-(2,23) (2,25)-(2,30) (3,5)-(3,16)
name Adder add a b −
className − − int int −
returnType − int − − −
numberOfEdges 1 3 0 0 2
externalDeps − int − − −

grammar GAFFINE as defined in Equation 2.18, and the following algebra F~λ.

cdel(x) = crep(x) = cl,o
skip(x) = cr,o

skip(x) = 1 ∀x ∈ A

cl
skip(x) = cr

skip(x) = 0.5 ∀x ∈ A

crep(x, y) =
9

∑
r=1

λr · cr(xr, yr) ∀x, y ∈ A

where xr denotes the rth feature of x, λr is a real number in the range [0, 1] such that
∑9

r=1 λr = 1, and cr is a specific metric for the rth feature. In particular, for the type
feature, we assign a distance of 1 if the type is not equal and a distance of 0 otherwise.
For the scope feature, we use one minus the length of the longest common prefix divided
by the longer scope. For the parent feature, the code position, and the number of edges,
we use the Manhattan distance. For the name, the className, the returnType, and the
externalDeps feature we compute character frequencies and use the Manhattan distance
on the character frequency vectors. Our adaptable metric parameters are the weights λr.
We initialize these weights as λr = 1/9.

As with the artificial data, we first train a RGLVQ model with one prototype per
class and then perform ten gradient descent steps to learn the respective parameters. As
learning rate for gradient descent, we employ η = 0.45/M for the CopenhagenChromo-
somes dataset and η = 2/(M · |x̄|) for the Sorting dataset, where M is the number of
data points and |x̄| is the average sequence size in the dataset. After each gradient step,
we normalize the parameters, using the same normalization as for the artificial data in
case of the CopenhagenChromosomes dataset, and by clipping negative values to 0 and
normalizing the sum to 1 for the Sorting dataset. We set the crispness parameter β to 7
for the CopenhagenChromosomes dataset, and to 200 for the Sorting dataset.

We evaluate the average classification error across 5 crossvalidation folds of three
different classifiers, namely 5-nearest neighbor, RGLVQ, and a SVM with a kernel obtained
via double-centering (refer to Equation 2.6). Note that we do not compare to GESL at this
point because our parametrization for the Sorting dataset is not compatible with GESL.
We repeat the crossvalidation 10 times for CopenhagenChromosomes and 5 times for
Sorting.

The results are displayed in Table 3.4. For both datasets, metric learning improves the
classification accuracy across classifiers. In particular, we improve the RGLVQ accuracy by
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Table 3.4: The mean classification error of multiple classifiers across crossvalidation trials and
repeats on the CopenhagenChromosomes and Sorting datasets. Columns correspond to classifiers,
while rows correspond to different metrics on different datasets. The best results for each dataset
are highlighted in bold print.

classifier RGLVQ SVM 5-NN

CopenhagenChromosomes

initial 11% 4% 3%
learned 5% 3% 3%

Sorting

global initial 26% 35% 23%
global learned 20% 37% 8%
affine initial 26% 26% 38%
affine learned 15% 22% 0%

BubbleSort InsertionSort

Figure 3.2: Two-dimensional t-SNE embeddings of the Sorting dataset without metric learn-
ing (left) and with metric learning (right) for the affine edit distance. BubbleSort programs are
visualized as blue circles, InsertionSort programs as orange triangles.

about 6% for the standard string edit distance and by about 11% for the affine edit distance.
For SVM and 5-NN we also observe improvements, except for SVM for the standard
sequence edit distance on the Sorting dataset. For 5-NN, we observe particularly striking
improvements on the Sorting dataset with 15% for the standard sequence edit distance
and 38% for the affine edit distance. We can also inspect the change in representation
visually. Figure 3.2 displays two-dimensional t-SNE embeddings (Van der Maaten and
Hinton 2008) of the Sorting dataset for the default affine edit distance and the learned
affine edit distance. As visible in the figure, classes get more compact and more distinct.

The resulting weights ~λ after metric learning on the Sorting dataset (normalized by
their frequency in the data) are shown in Figure 3.3. As we can see, the weights for
the numberofEdges feature, the codePosition feature, and the parent feature has been
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type
scope

parent
codePosition

name
className
returnType

externalDependencies
numberOfEdges

normalized weight

Figure 3.3: The weights ~λ after metric learning on the affine edit distance. The weights were
normalized by their frequency in the dataset.

reduced to zero, whereas the scope and the type feature are strongly emphasized. This
makes intuitive sense as the type feature is invariant against many stylistic choices and
captures the local function of the current syntactic element, whereas the scope feature
indicates the rough position in the tree of the current syntactic element. Less frequent
elements such as name, className, and returnType, can fulfill auxiliary function and
disambiguate special types of nodes, namely class declarations, method declarations, and
variable declarations.

3.3 conclusion and limitations

In this section, we have introduced a generic metric learning scheme for arbitrary param-
eters of a broad class of edit distances, namely those which can be characterized by a
signature, an algebra, and an edit tree grammar. We have shown that these edit distances
as well as their approximated gradient can be efficiently computed via algebraic dynamic
programming (Giegerich, Meyer, and Steffen 2004). We have then utilized the resulting
gradient to optimize the GLVQ cost function with respect to a RGLVQ model, that is, we
have adjusted the parameters of the algebra, such that the resulting edit distance pulls
data points closer to the closest prototype with the same label and pushes them away
from the closest prototype with a different label. We have shown experimentally that
our scheme yields edit distances that do not only improve the classification accuracy of
the RGLVQ model it was trained on, but also enhances the accuracy of nearest neighbor
classifiers and SVMs. On artificial data, we have also shown that our scheme outperforms
sequence edit distance learning via GESL for the same number of reference data. On
both artificial and real-world data, we found that the learned parameters corresponded
well to the underlying domain semantics. Finally, we observed that improvements on a
computer programming dataset are even more pronounced for the affine edit distance of
Gotoh (1982) versus the standard edit distance of Levenshtein (1965).

While these results are promising, there are numerous limitations to our current ap-
proach. First, we have employed a classifier that relies on a eigenvalue-corrected distance
matrix, which complicates the practical application. Second, the eigenvalue correction
means that our optimization of the uncorrected edit distances does not necessarily im-
ply an improvement on the corrected distance matrix, as the behavior of uncorrected
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and corrected distances may differ significantly (refer e.g. to Nebel, Kaden, et al. 2017).
Third, our proposed method is relatively slow because each gradient step requires us
to compute the gradients of all pairwise distances in the data set, which is only feasible
for small datasets and a small number of gradient steps. Fourth, there is no guarantee
regarding the approximation quality of the softmin-approximated edit distance. While
we have shown that a single softmin application approximates the actual minimum,
approximation errors may accumulate over the computation, leading to higher errors for
longer input sequences. Fifth, we are currently limited to sequence edit distances, which
can not directly process tree or graph data. In the next section, we will address all of
these limitations with an extended metric learning scheme that works on trees.
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Summary: Trees are versatile data structures, which can be used to model syntax of
natural and formal languages as well as biological data such as RNA secondary structures
or glycan molecules. In all these cases, the tree edit distance offers an interpretable and
actionable metric, which is useful for various downstream applications. However, the
tree edit distance may be misleading if its parameters do not fit the task at hand. In
this chapter, we present embedding edit distance learning (BEDL), an effective and
scalable tree edit distance learning approach. In our evaluation on datasets from natural
language processing, biology, and intelligent tutoring systems we demonstrate that our
method can not only improve the default tree edit distance, but can also outperform the
state-of-the-art.

Publications: This chapter is based on the following publications.

• Paaßen, Benjamin (2018). Revisiting the tree edit distance and its backtracing: A tutorial.
arXiv: 1805.06869 [cs.DS].

• Paaßen, Benjamin, Claudio Gallicchio, et al. (2018). “Tree Edit Distance Learning via
Adaptive Symbol Embeddings”. In: Proceedings of the 35th International Conference
on Machine Learning (ICML 2018). (Stockholm, Sweden). Ed. by Jennifer Dy and
Andreas Krause. Vol. 80. Proceedings of Machine Learning Research, pp. 3973–3982.
url: http://proceedings.mlr.press/v80/paassen18a.html.

Source Code: The Java(R) source code for the tree edit distance and cooptimal frequency
matrix computation is available at https://openresearch.cit-ec.de/projects/tcs.

The Java(R) source code for median generalized vector quantization is available at
https://gitlab.ub.uni-bielefeld.de/bpaassen/median_relational_glvq

The MATLAB(R) source code for tree edit distance learning is available at http:
//doi.org/10.4119/unibi/2919994.

Trees occur in many shapes across various application domains, such as syntax trees of
natural language (Socher, Perelygin, et al. 2013), syntax trees of programming languages
(Rivers and Koedinger 2015), or descriptors of RNA secondary structures and glycan
molecules in biology (Akutsu 2010). In all these areas, the tree edit distance (Zhang and
Shasha 1989) is a useful measure of distance, as it can support information retrieval
and other downstream tasks (Akutsu 2010). For example, the tree edit distance has
achieved increasing popularity in recent years in the field of intelligent tutoring systems
for computer programming (Mokbel, Gross, et al. 2013; Gross, Mokbel, et al. 2014; Price,
Dong, and Lipovac 2017; Rivers and Koedinger 2015). In such systems, the tree edit
distance can pinpoint exactly which nodes in an abstract syntax tree of a student’s
current program have to be changed in order to arrive at a correct solution, and we can
use these edits to guide a student through a programming task (Mokbel, Gross, et al.
2013; Gross, Mokbel, et al. 2014; Price, Dong, and Lipovac 2017; Rivers and Koedinger
2015).
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As with sequence edit distances, the tree edit distance is only useful if its cost function
fits the task at hand. Per default, the tree edit distance regards all possible tree nodes as
equidistant, which may be misleading for all the domains above. In particular, natural
language words may have overlapping semantics (Pennington, Socher, and Manning 2014;
Socher, Perelygin, et al. 2013), glycan molecule descriptors may be referring to biologically
similar elements (Gallicchio and Micheli 2013), and syntactic nodes in computer programs
may fulfill the same or similar functions (Paaßen, Jensen, and Hammer 2016), in which
case the pairwise replacement costs should be lowered. This begs the question how the
tree edit distance can be adapted to be better suited for the domain and task at hand.

In this chapter, we propose a novel method to learn the tree edit distance that goes
beyond the state of the art of good edit similarity learning (GESL, Bellet, Habrard, and
Sebban 2012, also refer to Section 2.4.1) in several respects.

• We consider all cooptimal pairwise tree mappings instead of just one tree mapping
by means of a novel forward-backward algorithm.

• We select reference pairs for metric learning in a principled fashion based on
learning vector quantization prototypes for each class instead of ad-hoc selection
schemes.

• Most importantly, we learn an embedding of the syntactic elements of trees instead
of direct cost parameters, thus guaranteeing metric properties and higher efficiency
for large alphabets.

We call our resulting metric learning approach embedding edit distance learning (BEDL).

In our evaluation, we show that BEDL outperforms GESL in terms of classification
accuracy across several classifiers and several real-world datasets from natural language
processing, biology, and intelligent tutoring systems. We also demonstrate that BEDL
can be scaled up to a large natural language processing dataset. In the next section, we
describe BEDL in detail, before we continue to our experimental evaluation.

4.1 method

Our aim is to adapt the cost function of the tree edit distance of Zhang and Shasha (1989)
to improve the accuracy of a classifier based on this edit distance. More specifically, we
intend to improve the accuracy of a median generalized learning vector quantization
(MGLVQ) model. For our purposes, MGLVQ has two key advantages compared to
RGLVQ, which we used in the previous chapter. First, MGLVQ does not require an
Euclidean distance as input such that we can avoid eigenvalue correction. Second,
MGLVQ represents prototypes sparsely by setting each prototype to a single datapoint.
As such, we only need to consider linearly many distance values to optimize the GLVQ
cost function in Equation 2.28, namely the data-to-prototype distances.

More precisely, assume that we wish to optimize the parameters~λ of the cost function
c~λ via gradient-based techniques on the GLVQ cost function EGLVQ with the gradient 3.2.
To compute this gradient, we require the tree edit distance gradients ∇~λd+i and ∇~λd−i .
Computing these gradients is our next step. To do so, we decompose the tree edit distance
into a scalar product of tree mapping matrices and pairwise costs.
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Co-Optimal Frequency Matrices

Our decomposition is similar to the GESL approach of Bellet, Habrard, and Sebban (2012,
also refer to Section 2.4.1). However, in contrast to their approach, we consider not only
a single tree mapping matrix, but an average of all cooptimal tree mapping matrices.
Recall that we denote the tree edit distance with respect to a cost function c as dc (refer
to Definition 2.12), the tree mapping edit distance as Dc (refer to Definition 2.14), and
the tree mapping matrix with respect to a tree mapping M between two trees x̃ and ỹ as
P(M, x̃, ỹ) (refer to Definition 2.16). We define the cooptimal frequency matrix as follows.

Definition 4.1 (Co-optimal Frequency Matrix). Let x̃ and ỹ be trees over some alphabet
A, let M be a tree mapping between x̃ and ỹ, and let c be a cost function over A.

Further, letM(c, x̃, ỹ) be the set of all cooptimal tree mappings between x̃ and ỹ, i.e.
all tree mappings M such that c(M, x̃, ỹ) = Dc(x̃, ỹ).

We define the cooptimal frequency matrix Pc(x̃, ỹ) as the |x̃| × |ỹ| matrix

Pc(x̃, ỹ) :=
∑M∈M(c,x̃,ỹ) P(M, x̃, ỹ)

|M(c, x̃, ỹ)| (4.1)

In other words, the cooptimal frequency matrix Pc(x̃, ỹ) is defined as the average tree
mapping matrix P(M, x̃, ỹ) for all cooptimal tree mappings M. As an example, consider
the trees x̃ = a(b(c, d), e) and ỹ = f(g). All cooptimal tree mappings between x̃ and
ỹ according to default costs, along with the respective tree mapping matrix and the
resulting cooptimal frequency matrix are listed in Figure 4.1.

Using the concepts of tree mapping matrices and cooptimal frequency matrices, we
obtain the following decomposition for the tree edit distance.

Theorem 4.1. Let x̃ and ỹ be trees over some alphabet A and let c be a cost function over A.

Then, if c is non-negative, self-equal, and conforms to the triangular inequality, it holds:

dc(x̃, ỹ) =
|x̃|

∑
i=1

|ỹ|

∑
j=1

Pc(x̃, ỹ)i,j · c(xi, yj) (4.2)

+
|x̃|

∑
i=1

(
1−

|ỹ|

∑
j=1

Pc(x̃, ỹ)i,j

)
· c(xi,−) +

|ỹ|

∑
j=1

(
1−

|x̃|

∑
i=1

Pc(x̃, ỹ)i,j

)
· c(−, yj)

Proof. First, Theorem 2.5 implies that dc(x̃, ỹ) = Dc(x̃, ỹ).

Further, note that for any M ∈ M(c, x̃, ỹ) it holds: c(M, x̃, ỹ) = Dc(x̃, ỹ). Accordingly,
we obtain:

dc(x̃, ỹ) =
∑M∈M(c,x̃,ỹ) c(M, x̃, ỹ)

|M(c, x̃, ỹ)|
By virtue of Equation 2.26 we obtain:

dc(x̃, ỹ) =
1

|M(c, x̃, ỹ)| · ∑
M∈M(c,x̃,ỹ)

|x̃|

∑
i=1

|ỹ|

∑
j=1

P(M, x̃, ỹ)i,j · c(xi, yj)

+
|x̃|

∑
i=1

(
1−

|ỹ|

∑
j=1

P(M, x̃, ỹ)i,j

)
· c(xi,−) +

|ỹ|

∑
j=1

(
1−

|x̃|

∑
i=1

P(M, x̃, ỹ)i,j

)
· c(−, yj)
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a

eb

dc

f

g

M = {(2, 1), (4, 2)}

i \j 1 2

1 0 0
2 1 0
3 0 0
4 0 1
5 0 0

P(M, x̃, ỹ)
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Figure 4.1: All cooptimal tree mappings between the trees x̃ = a(b(c, d), e) and ỹ = f(g) accord-
ing to default costs (top and middle), the corresponding tree mapping matrices P(M, x̃, ỹ) (below
the tree mapping diagrams), and the resulting cooptimal frequency matrix Pc(x̃, ỹ) (bottom).
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which can be re-written into Equation 4.2, which completes the proof.

Note that it is not trivial to compute the cooptimal frequency matrix because the
set M(c, x̃, ỹ) may have exponential size. To address this issue, we introduce a novel
forward-backward algorithm.

Theorem 4.2. Let x̃ and ỹ be trees over some alphabet A and let c be a cost function over A
that conforms to the triangular inequality. Then, Algorithm 4.1 computes Pc(x̃, ỹ) · |M(c, x̃, ỹ)|
as first output and |M(c, x̃, ỹ)| as second output. Further, Algorithm 4.1 runs in O(|x̃|6 · |ỹ|6)
time complexity and O(|x̃|2 · |ỹ|2) space complexity in the worst case.

Proof. Refer to Appendix A.13.

Algorithm 4.1 An algorithm that computes the matrix Pc(x̃, ỹ) for two given trees x̃ and ỹ
and a cost function c. More specifically, the first output argument is Pc(x̃, ỹ) · |M(c, x̃, ỹ)|,
and the second output argument is |M(c, x̃, ỹ)|. For the forward and backward algorithm,
refer to Appendix A.13.

1: function cooptimals(Two trees x̃ and ỹ, the matrices d and D after executing
algorithm 2.1, and a cost function c)

2: (C, A)← forward(x̃, ỹ, d, D, c). . Refer to Algorithm A.1.
3: B← backward(x̃, ỹ, d, D, c, C). . Refer to Algorithm A.2.
4: Initialize Γ as a |x̃| × |ỹ| matrix of zeros.
5: for (i, j) ∈ C do
6: if i = |x̃|+ 1∨ j = |ỹ|+ 1 then
7: continue
8: end if
9: if

(
rlx̃(i) = |x̃| ∧ rlỹ(j) = |ỹ|

)
∨ c(xi, yj) = c(xi,−) + c(−, yj) then

10: if Di,j = Di+1,j+1 + c(xi, yj) then
11: Γi,j ← Γi,j + Ai,j · Bi+1,j+1.
12: end if
13: else
14: if Di,j = Drlx̃(i)+1,rlỹ(j)+1 + di,j then
15: γ← Ai,j · Brlx̃(i)+1,rlỹ(j)+1.
16: Compute D′ and d′ via Algorithm 2.1 for the subtrees x̃i and ỹj.
17: D′1,2 ← ∞. D′2,1 ← ∞.
18: (Γ′, |M(c, x̃i, ỹj)|)← cooptimals(x̃i, ỹj, D′, d′, c).
19: for i′ ← 1, . . . , |x̃i| do
20: for j′ ← 1, . . . , |ỹj| do
21: Γi+i′−1,j+j′−1 ← Γi+i′−1,j+j′−1 + Γ′i′,j′ · γ.
22: end for
23: end for
24: end if
25: end if
26: end for
27: return (Γ, A|x̃|+1,|ỹ|+1).
28: end function

In rough terms, Algorithm 4.1 works as follows. We first compute the matrix A, where
Ai,j essentially contains the number of cooptimal tree mappings between x̃ and ỹ up
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to nodes xi and yj respectively. Then, we compute the matrix B, where Bi,j essentially
contains the number of cooptimal tree mappings between x̃ and ỹ, starting from nodes xi
and yj respectively. Accordingly, the number of cooptimal tree mappings which contain
the pairing (i, j) can be computed as Γi,j = Ai,j · Bi+1,j+1, as is visible in line 11 of
Algorithm 4.1. What complicates this process, however, is that we also need to compute
cooptimal tree mappings between subtrees, which are recursively computed in lines 15-23
of Algorithm 4.1. After executing the algorithm, the desired frequency matrix Pc(x̃, ỹ)
can easily be computed as Γ/A|x̃|+1,|ỹ|+1, where / denotes the element-wise division.

Note that the version of the algorithm presented here is dedicated to minimize
space complexity. By additionally tabulating Γ for all subtrees, space complexity rises
to O(|x̃|4 · |ỹ|4) in the worst case, but runtime complexity is reduced to O(|x̃|3 · |ỹ|3).
Another point to note is that the worst case for this algorithm is quite unlikely. First, both
input trees would have to be left-heavy, such as in the worst case for the original tree edit
distance (Zhang and Shasha 1989). Second, in every step of the computation, multiple
options have to be cooptimal, which only occurs in degenerate cases where, for example,
the deletion or insertion cost for all symbols is zero.

After obtaining the cooptimal frequency matrix Pc(x̃, ỹ), we can utilize the decom-
position above to compute the gradient of the tree edit distance dc~λ with respect to
the parameters ~λ. Similar to Bellet, Habrard, and Sebban (2012), we assume that the
cooptimal frequency matrices Pc~λ(x̃, ỹ) stay constant under changes of~λ. Thus, we obtain
the gradient:

∇~λdc~λ(x̃, ỹ)
const. Pc~λ=

|x̃|

∑
i=1

|ỹ|

∑
j=1

Pc~λ(x̃, ỹ)i,j · ∇~λc~λ(xi, yj) (4.3)

+
|x̃|

∑
i=1

(
1−

|ỹ|

∑
j=1

Pc~λ(x̃, ỹ)i,j

)
· ∇~λc~λ(xi,−) +

|ỹ|

∑
j=1

(
1−

|x̃|

∑
i=1

Pc~λ(x̃, ỹ)i,j

)
· ∇~λc~λ(−, yj)

This gradient expression is efficiently computable and permits optimization via gradient-
based techniques, such as stochastic gradient descent or L-BFGS (Liu and Nocedal 1989).

Note that optimizing the parameters ~λ with respect to the GLVQ cost function 2.28
may yield a tree edit distance under which a better MGLVQ model is possible. Therefore,
we recommend an alternating optimization scheme with two steps, namely MGLVQ and
metric learning, which are iterated until convergence. This yields Algorithm 4.2.

Algorithm 4.2 The tree edit distance learning algorithm for arbitrary parameters ~λ.
1: function ted_learn(A dataset of trees x̃1, . . . , x̃M over some alphabet A, class

labels y1, . . . , yM, no. of prototypes K, a cost function c~λ, and initial parameters ~λ)
2: while E has changed do
3: Compute pairwise tree edit distances Di,j = dc~λ(x̃i, ỹj) via Algorithm 2.1.
4: (w1, . . . , wK, E)← MGLVQ for D.
5: Compute Pc~λ(x̃i, wk) for all i, k via Algorithm 4.1.
6: Optimize ~λ with respect to the GLVQ cost function E using Equation 4.3.
7: end while
8: return (~λ, E).
9: end function
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Regarding runtime complexity, computing all pairwise tree edit distance requires
O(M2 · |x̃|2 · |ỹ|2) steps, training MGLVQ requires O(M2) steps, computing the cooptimal
frequency matrices for all datapoint-prototype pairs requires O(M · |x̃|6 · |ỹ|6) in the
worst case, after which each gradient computation according to Equations 3.2 and 4.3
requires only O(M · |x̃| · |ỹ|) steps. In terms of space, we require O(M2) to represent
the pairwise distance matrix and O(|x̃|2 · |ỹ|2) for computing the cooptimal frequency
matrices. Therefore, assuming a constant number of iterations τ, we obtain an overall
runtime complexity in the order of O(τ ·M · |x̃|2 · |ỹ|2 · (M + |x̃|4 · |ỹ|4)) and an overall
space complexity of O(M2 + |x̃|2 · |ỹ|2).

Note that the decomposition in Equation 4.2 only holds under the assumption that c~λ
is non-negative, self-equal, and fulfills the triangular inequality. Unfortunately, ensuring
metric axioms on c~λ imposes additional constraints on the optimization in line 6 of
Algorithm 4.2, which prevent us from directly applying gradient-based solvers. To avoid
such explicit constraints, we introduce an additional innovation, namely a representation
of the alphabet A via symbol embeddings.

Adaptive Symbol Embeddings

In this section, we introduce symbol embeddings, that is, we represent the elements of an
alphabet A by vectors in an Euclidean space. The main motivation for this alternative
representation is that the Euclidean distance guarantees pseudo-metric properties, which
in turn ensure that the assumptions of the tree edit distance algorithm as well as the
decomposition in Equation 4.2 are fulfilled without having to constrain the optimization
process. Another advantage is that we can potentially interpret the positions of the
vectorial representations and thus gain additional insight regarding the role different
symbols play.

We define a symbol embedding as follows.

Definition 4.2 (Symbol Embedding). Let A be an alphabet with − /∈ A. Then, a symbol
embedding of A is defined as a mapping φ : A → Rm for some m ∈ {1, . . . , |A|}. For any
symbol embedding, we define φ(−) :=~0, where~0 is the m-dimensional zero-vector.

Further, we define the cost function cφ with respect to the symbol embedding φ as
follows.

cφ(x, y) := ‖φ(x)− φ(y)‖

In other words, cφ is an Euclidean distance on A∪ {−} with the spatial mapping φ.

Note that the gradient of cφ(x, y) with respect to φ(x) is given as:

∇φ(x)cφ(x, y) = ∇φ(x)

√(
φ(x)− φ(y)

)> · (φ(x)− φ(y)
)

=
∇φ(x)

(
φ(x)− φ(y)

)> · (φ(x)− φ(y)
)

2 ·
√(

φ(x)− φ(y)
)> · (φ(x)− φ(y)

)
=

φ(x)− φ(y)
‖φ(x)− φ(y)‖ (4.4)

Plugging this result into Equation 4.3, we obtain a gradient of the tree edit distance
with respect to the embedding vectors for every symbol, under the assumption that the
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cooptimal frequency matrices stay constant.

∇φ(x)d̃cφ(x̃, ỹ)
const. Pcφ

= (4.5)
|x̃|

∑
i=1

δ(x, xi) ·
[ |ỹ|

∑
j=1

Pcφ(x̃, ỹ)i,j ·
φ(x)− φ(yj)

‖φ(x)− φ(yj)‖
+
(

1−
|ỹ|

∑
j=1

Pcφ(x̃, ỹ)i,j

)
· φ(x)
‖φ(x)‖

]

+
|ỹ|

∑
j=1

δ(x, yj) ·
[ |x̃|

∑
i=1

Pcφ(x̃, ỹ)i,j ·
φ(x)− φ(xi)

‖φ(x)− φ(xi)‖
+
(

1−
|x̃|

∑
i=1

Pcφ(x̃, ỹ)i,j

)
· φ(x)
‖φ(x)‖

]

where δ is the Kronecker-Delta, i.e.: δ(x, y) = 1 if x = y and 0 otherwise.

Finally, we can plug this gradient into Equation 3.2 and thus obtain a gradient of the
GLVQ cost function with respect to the rows of our symbol embedding matrix. Using
this gradient, we can learn a symbol embedding via any gradient-based technique.

Two challenges remain in this setup. First, we have to obtain a viable initialization
for the embedding φ. In this regard, we suggest to use an initialization, which yields the
default edit costs of the tree and sequence edit distance, that is, c(x, y) should be 1 in all
cases, except if x = y, where it is zero. Indeed, such an initialization exists.

Theorem 4.3. Let A = {x1, . . . , xn} be an alphabet. Then, the following function φ : A → Rn

with

φ(xi)j :=


0 if j > i
ρj if j < i
ρi · (i + 1) if j = i

where (4.6)

ρi = 1/
√

2 · i · (i + 1) (4.7)

is a symbol embedding of A such that:

cφ(x, y) =

{
0 if x = y
1 otherwise

Proof. Refer to Appendix A.14.

As an example, consider the two-dimensional embedding generated for the alphabet
A = {a, b} in Figure 4.2.

The second challenge concerns the handling of the following degenerate cases for the
embedding φ. First, cφ is non-differentiable with respect to φ(x) at the point φ(x) =~0.
However, this may not pose a problem as such. In particular, φ(x) =~0 implies that x is
unimportant to distinguish between trees, which is an interesting observation to make.
Therefore, we simply extend the definition of the gradient of cφ to be zero at φ(x) =~0.

Second, φ may “flatten” the data too much, in the sense that the matrix Φ =(
φ(x1), . . . , φ(xn)

)
for the alphabet A = {x1, . . . , xn} becomes low rank. Such oversim-

plification effects have previously been observed in generalized matrix learning vector
quantization (GMLVQ) as well (Schneider, Bunte, et al. 2010). Indeed, we can make the
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(
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Figure 4.2: The initial 2-dimensional embedding of the alphabet A = {a, b}. This embedding
ensures that the pairwise costs of all symbols, including the −-symbol, is 1.

similarity between GMLVQ and our metric learning scheme more obvious by re-writing
cφ(xi, xj) as follows.

cφ(xi, xj) =

√(
φ(xi)− φ(xj)

)> · (φ(xi)− φ(xj)
)

=

√(
Φ · ei −Φ · ej

)> · (Φ · ei −Φ · ej
)

=

√(
ei − ej

)> ·Φ> ·Φ · (ei − ej
)

where ei is the ith unit vector and ej is the jth unit vector.

In this representation it is obvious that Φ plays the role of the projection matrix Ω in
GMLVQ (compare to Equation 2.29). As Biehl et al. (2015) have shown, Ω tends to very
low-rank solutions, which may be overly simplistic in practical cases. To prevent such a
low-rank solution, we follow the recommendation of Schneider, Bunte, et al. (2010) and
add the regularization term −λ · log(det(Φ ·Φ>)) for some constant λ > 0 to the GLVQ
cost function 2.28, which becomes large if any eigenvalue of Φ ·Φ> gets close to zero.
The gradient of the regularization with respect to Φ is the Moore-Penrose Pseudo-Inverse
−λ ·Φ† (Schneider, Bunte, et al. 2010; Petersen and Pedersen 2012).

Finally, the GLVQ cost function 2.28 is inherently scale-invariant in terms of the
distances, that is, if we multiply all pairwise distances with some constant, the loss will
stay the same. Given this degree of freedom, we may converge to an an embedding with
needlessly large scaling. To prevent such a case, we additionally add the regularization
term λ · ‖Φ‖F, where ‖Φ‖F is the Frobenius norm of Φ.

This concludes our basic setup for tree edit distance learning via adaptive symbol
embeddings. We call our approach embedding edit distance learning (BEDL).

Before we evaluate BEDL experimentally, we wish to highlight one additional desir-
able property of BEDL, namely that we can utilize alternative initializations and metrics
if suitable for the domain at hand. For example, in the domain of natural language
processing, we do not need to learn an embedding of words from scratch but can rely
on existing word embeddings, such as GloVe (Pennington, Socher, and Manning 2014).
We can then learn to adapt the word embedding instead of learning it from scratch by
only learning a linear transformation Ω that maps the pre-existing word embedding into
another space in which classification is simpler. Furthermore, for word embeddings, the
cosine similarity is typically favored over the Euclidean distance (Pennington, Socher,
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and Manning 2014). We can include the cosine distance in BEDL easily by re-defining
the cost function cφ,Ω as follows.

cφ,Ω(x, y) :=
1
2
·
(

1− sΩ(φ(x), φ(y))
)

where (4.8)

sΩ(φ(x), φ(y)) =
(Ω · φ(x))> ·Ω · φ(y)
‖Ω · φ(x)‖ · ‖Ω · φ(y)‖

For the gradient, we obtain:

∇Ωcφ,Ω(x, y) = −1
2
∇ΩsΩ(φ(x), φ(y))

=− 1
2
·Ω · φ(x) · φ(y)> + φ(y) · φ(x)>

‖Ω · φ(x)‖ · ‖Ω · φ(y)‖

+
1
2
·Ω · sΩ(φ(x), φ(y)) ·

[φ(x) · φ(x)>

‖Ω · φ(x)‖2 +
φ(y) · φ(y)>
‖Ω · φ(y)‖2

]
We will utilize both the basic Euclidean version of BEDL and the cosine distance

variation in our next section, in which we evaluate BEDL experimentally.

4.2 experiments

In our experiments we compare the performance of embedding edit distance learning
(BEDL) to both the default tree edit distance and the state-of-the-art in terms of tree
edit distance learning, namely good edit similarity learning (GESL, Bellet, Habrard, and
Sebban 2012).

On each dataset, we perform a crossvalidation1 and compare the average test error
across folds. In particular, we compare the error when using the initial tree edit distance
with the error when using the pseudo-edit distance learned via GESL, and the tree edit
distance learned via our proposed approach (BEDL).

In general, we would expect that a discriminative metric learned for one classifier also
facilitates classification using other classifiers. Therefore, we report the classification error
for four classifiers, namely the median generalized learning vector quantization (MGLVQ)
classifier, for which our method is optimized, the goodness classifier, for which GESL is
optimized (Bellet, Habrard, and Sebban 2012, also refer to Equation 2.4.1), the k-nearest
neighbor (KNN) classifier, and the SVM based on the radial basis function kernel. In order
to ensure a kernel matrix for SVM, we set negative eigenvalues to zero (clip eigenvalue
correction; Gisbrecht and Schleif (2015)). Note that this eigenvalue correction requires
cubic runtime in terms of the number of data points and is thus prohibitively slow for
large dataset sizes. Therefore, for the Sentiment dataset, we trained the classifiers on a
randomly selected sample of 300 points from the training data.

We optimized all hyper-parameters in a nested 5-fold crossvalidation, namely the
number of prototypes K for MGLVQ and BEDL in the range [1, 15], the number of

1 We used 20 folds for Strings, Gap, CopenhagenChromosomes, and Sentiment, 10 for Cystic and Leukemia,
8 for Sorting, and 6 for MiniPalindrome. For the programming datasets, the number of folds had to be
reduced to ensure that each fold still contained a meaningful number of data points. For the Cystic and
Leukemia dataset, our ten folds were consistent with the paper of Gallicchio and Micheli (2013). In all cases,
folds were generated such that the label distribution of the overall dataset was maintained.
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neighbors for KNN in the range [1, 15], the kernel bandwidth for SVM in the range
[0.1, 10], the sparsity parameter ν for the goodness classifier in the range [10−5, 10], and
the regularization strength λ for GESL and BEDL in the range 2 · K ·M · [10−6, 10−2]. We
chose the number of prototypes for BEDL, as well as the number of neighbors for GESL
as the optimal number of prototypes K for MGLVQ.

As implementations, we used custom implementations of KNN, MGLVQ, the good-
ness classifier, GESL, and BEDL, which are availabe at https://doi.org/10.4119/unibi/
2919994. For SVM, we utilized the LIBSVM standard implementation (Chang and Lin
2011). All experiments were performed on a consumer-grade laptop with an Intel Core
i7-7700 HQ CPU.

Artificial Datasets

We evaluate the default tree edit distance, GESL, and BEDL on the Strings and on the
Gap data set from Section 3.2. The results are shown in Table 4.1. In both datasets, BEDL
could reduce the error consistently to 0%. Closer inspection revealed that BEDL did
indeed consistently identify the desired representation, namely embedding the symbols
a and b as well as c and d at the same point respectively (also refer to Figure 4.3, left).

By contrast, GESL only achieved low errors for the goodness classifier, while remaining
at high errors for all other classifiers. Using a one sided Wilcoxon signed-rank test we
found that BEDL significantly outperformed GESL and the initial edit distance for the
KNN and MGLVQ classifiers on both datasets (p < 0.001 after Bonferroni correction).

Note that the GESL results differ from the results reported in Section 3.2. This is
likely due to different crossvalidation folds, the fact that we used an MGLVQ instead of
a RGLVQ classifier, and the fact that we optimized classifier hyper-parameters, which
may have lead to different choices compared to the previous experiments.

Regarding runtime, we note that GESL is clearly faster due to its convex programming
structure with a runtime advantage of about factor 20-30.

Real-World Data

Beyond the artificial data, we evaluated our methods on six real-world datasets.

CopenhagenChromosomes: A balanced two-class dataset of 400 chromosome density
strings, as described in Section 3.2.

MiniPalindrome: A balanced eight-class dataset of 48 Java programs, where each class
represents one strategy to detect whether an input string contains only palindromes
(Paaßen 2016b). The programs are represented by their abstract syntax tree, where
the label corresponds to one of 24 programming concepts (e.g. class declaration,
function declaration, method call, etc.).

Sorting: A two-class dataset of 64 Java sorting programs as described in Section 3.2.

Cystic: A dataset of 160 glycan molecules where the class label 1 is assigned to every
molecule associated with cystic fibrosis and 0 is assigned to other molecules. The
molecules were extracted from the KEGG/Glycan data base (Hashimoto et al. 2006)
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Table 4.1: The mean test classification error and runtimes for metric learning on the artificial
datasets, averaged over the cross validation trials, as well as the standard deviation. The x-axis
shows the metric learning schemes, the y-axis the different classifiers used for evaluation. The
table is sub-divided for each dataset. The lowest classification error for each dataset is highlighted
via bold print.

classifier initial GESL BEDL

Strings

KNN 21.0± 10.2% 23.0± 10.8% 0.0 ± 0.0%
MGLVQ 36.0± 15.7% 34.0± 11.0% 0.0 ± 0.0%
SVM 9.0± 11.2% 10.0± 8.6% 0.0 ± 0.0%
goodness 11.5± 9.3% 0.5± 2.2% 0.0 ± 0.0%
runtime [s] 0± 0 0.030± 0.002 1.077± 0.098

Gap

KNN 30.0± 10.8% 22.5± 16.8% 0.0 ± 0.0%
MGLVQ 49.5± 17.0% 48.5± 16.6% 0.0 ± 0.0%
SVM 0.0 ± 0.0% 5.0± 13.6% 0.0 ± 0.0%
goodness 0.5± 2.2% 0.5± 2.2% 0.0 ± 0.0%
runtime [s] 0± 0 0.037± 0.004 0.865± 0.139

according to the scheme described by Gallicchio and Micheli (2013). Each molecule
is represented as a tree, where the label corresponds to mono-saccharide identifiers
(one out of 29) and the roots are chosen according to biological meaning (Hashimoto
et al. 2006).

Leukemia: A dataset of 442 glycan molecules from the same source as the Cystic dataset.
For this dataset, a class label 1 represents that the molecule is associated with
Leukemia.

Sentiment: A large-scale two-class dataset of 9613 sentences from movie reviews, where
one class (4650 trees) corresponds to negative and the other class (4963 trees) to
positive reviews. The sentences are represented by their syntax trees, where inner
nodes are unlabeled and leaves are labeled with one of over 30, 000 words (Socher,
Pennington, et al. 2011). Note that GESL is not practically applicable for this dataset,
as the number of parameters to learn scales quadratically with the number of
words, i.e. > 30, 0002. To make BEDL applicable in this case, we do not learn
a full embedding, but instead we initialize the embedding matrix with the 300-
dimensional Common Crawl GloVe embedding (Pennington, Socher, and Manning
2014), which we reduce via PCA, retaining 95% of the data variance (m = 16.4± 2.3
dimensions on average ± standard deviation). We adapt this initial embedding via
a linear transformation, using the cosine distance (refer to Equation 4.8) instead of
the Euclidean distance, as introduced in the previous section.

The results of our experiments are displayed in Table 4.2. In all datasets and for all
classifiers, BEDL yields lower classification error compared to GESL. Furthermore, in four
of six datasets, BEDL yields the best overall classification results (the exceptions being
CopenhagenChromosomes and Cystic). In five out of six cases, BEDL could improve the
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Table 4.2: The mean test classification error and runtimes for metric learning on the real-world
datasets, averaged over the cross validation trials, as well as the standard deviation. The x-axis
shows the metric learning schemes, the y-axis the different classifiers used for evaluation. The
table is sub-divided for each dataset. The lowest classification error for each dataset is highlighted
via bold print.

classifier initial GESL BEDL

CopenhagenChromosomes

KNN 4.5± 4.6% 14.8± 7.7% 6.2± 7.6%
MGLVQ 13.2± 7.8% 26.8± 9.4% 11.2± 8.4%
SVM 2.7 ± 3.4% 21.2± 10.6% 5.3± 7.2%
goodness 3.0± 4.1% 7.0± 6.2% 6.0± 7.7%
runtime [s] 0± 0 4.833± 1.200 10.267± 1.954

MiniPalindrome

KNN 12.5± 11.2% 12.5± 7.9% 10.4± 9.4%
MGLVQ 2.1± 5.1% 4.2± 6.5% 0.0 ± 0.0%
SVM 4.2± 6.5% 20.8± 15.1% 0.0 ± 0.0%
goodness 6.2± 6.8% 14.6± 5.1% 8.3± 10.2%
runtime [s] 0± 0 0.103± 0.014 2.785± 0.631

Sorting

KNN 15.6± 8.8% 18.8± 16.4% 10.9± 8.0%
MGLVQ 14.1± 10.4% 14.1± 8.0% 14.1± 8.0%
SVM 10.9± 8.0% 9.4 ± 8.8% 9.4 ± 8.8%
goodness 15.6± 11.1% 17.2± 14.8% 17.2± 9.3%
runtime [s] 0± 0 0.352± 0.102 3.358± 0.748

Cystic

KNN 31.2± 6.6% 32.5± 10.1% 28.1± 8.5%
MGLVQ 34.4± 6.8% 33.1± 9.8% 30.0± 10.1%
SVM 28.1± 9.0% 33.1± 8.9% 29.4± 12.5%
goodness 28.1± 8.5% 26.2± 14.4% 24.4 ± 13.3%
runtime [s] 0± 0 0.353± 0.292 0.864± 0.767

Leukemia

KNN 7.5± 2.6% 8.2± 4.6% 7.3± 4.3%
MGLVQ 9.5± 4.0% 10.9± 4.7% 9.5± 3.0%
SVM 7.0± 4.1% 8.8± 2.9% 6.8± 4.7%
goodness 6.1 ± 4.3% 10.0± 4.4% 6.3± 3.8%
runtime [s] 0± 0 2.208± 0.919 6.550± 2.706

Sentiment

KNN 40.2± 2.8% − 38.2± 3.3%
MGLVQ 44.0± 2.6% − 41.3± 5.7%
SVM 34.3± 3.0% − 33.3 ± 3.6%
goodness 43.7± 1.9% − 42.5± 3.1%
runtime [s] 0± 0 − 69.385± 58.064
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Figure 4.3: A PCA of the learned embeddings for the Strings (left) and the MiniPalindrome
dataset (right), covering 100% and 83.54% of the variance respectively.

accuracy for KNN (except for CopenhagenChromosomes), in four out of six cases for
SVM (the exception being CopenhagenChromosomes and Cystic), in four out of six cases
for MGLVQ (in Sorting and Leukemia it stayed equal), and in two out of six cases for the
goodness classifier. For the Sentiment datasets we can also verify this result statistically
with p < 0.05 for all classifiers.

Note that the focus of our work is to improve classification accuracy via metric
learning, not to develop state-of-the-art classifiers as such. However, we note that our
results for the Sorting dataset outperform the best reported results by Paaßen, Mokbel,
and Hammer (2016) of 15%. For the Cystic dataset we improve the AUC from 76.93±
0.97% mean and standard deviation across crossvalidation trials to 79.2± 13.6%, and for
the Leukemia dataset from 93.8± 3.3% to 94.6± 4.5%. Both values are competitive with
the results obtained via recursive neural networks and a multitude of graph kernels by
Gallicchio and Micheli (2013). For the Sentiment dataset, we obtain a SVM classification
error of 27.51% on the validation set, which is noticeably worse than the reported literature
results of around 12.5% (Socher, Pennington, et al. 2011). However, we note that we used
considerably less data to train our classifier due to the cost of eigenvalue correction (only
500 points for the validation).

While most embeddings of BEDL where too intrinsically high-dimensional to inspect
visually, the embedding for the MiniPalindrome dataset revealed that most symbols
could be embedded close to zero while a few discriminative syntactic concepts remained
distinct from zero, thus giving an indication of the relevant syntactic concepts for the
given task (refer to Figure 4.3).

Interestingly, GESL tended to decrease classification accuracy compared to the initial
tree edit distance. Likely, GESL requires more neighbors K for better results (Bellet,
Habrard, and Sebban 2012). However, scaling up to a high number of neighbors lead
to prohibitively high runtimes for our experiments such that we do not report these
results here. These high runtimes can be explained by the fact that the number of slack
variables in GESL increases with O(M · K) where M is the number of data points and
K is the number of neighbors. The scaling behavior is also visible in our experimental
results. For datasets with few data points and neighbors, such as Strings, MiniPalin-
drome, and Sorting, GESL is 10 to 30 times faster compared to BEDL. However, for
CopenhagenChromosomes, Cystic, and Leukemia, the runtime advantage shrinks to a
factor of 2 to 3.
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Ablation Studies

In ablation studies, we studied the difference between GESL and BEDL in more detail. In
particular, we tested the following different design choices

1. Classic GESL (G1),

2. GESL using cooptimal frequency matrices instead of a single tree mapping matrix
(G2),

3. GESL using cooptimal frequency matrices and the prototypes from MGLVQ as
neighbors N+ and N− (G3),

4. LVQ tree edit distance learning, directly learning the cost function parameters
instead of an embedding, with a pseudo-metric normalization after each gradient
step (L1), and

5. BEDL as proposed (L2).

Note that, for the ablation studies, we re-used the hyper-parameters which were
optimal for the reference versions of the methods (G1 and L2).

Figure 4.4 shows the average classification error and standard deviation (as error bars)
for all tree-structured datasets and the string dataset, both for the pseudo-edit distance
as in Equation 4.2, and for the actual tree edit distance using the learned cost function.

We observe that using cooptimal frequency matrices (G2) and MGLVQ prototypes
instead of ad-hoc nearest neighbors (G3) improved GESL on the MiniPalindrome dataset,
worsened it for the strings dataset, and otherwise showed no remarkable difference for
the Sorting, Cystic, and Leukemia dataset.

Regarding the LVQ tree edit distance learning variants L1 and L2, we note that
BEDL improved the error for the actual tree edit distance but worsened the result for the
pseudo-edit distance.

In general, GESL variants performed better for the pseudo-edit distance than for
the actual tree edit distance, and LVQ variants performed better for the actual tree edit
distance compared to the pseudo-edit distance.

4.3 conclusion

In this chapter, we have proposed embedding edit distance learning (BEDL), a novel
approach for tree edit distance learning that goes beyond the state-of-the-art in three
key aspects. First, we optimize metric parameters with respect to all cooptimal tree
mappings between the input trees, not only one Viterbi-mapping. Second, we utilize
a median generalized learning vector quantization (MGLVQ) model, which enables us
to perform the core metric optimization in linear time and permits us to optimize the
metric directly for classification, without having to select ad hoc reference pairs. Third,
and most importantly, we learn a symbol embedding instead of pairwise replacement
costs that guarantees metric properties and permits additional interpretation.

In our experiments we have shown that BEDL improves upon the state-of-the-art of
good edit similarity learning for trees on a diverse tree datasets including Java program
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Figure 4.4: Ablation results for all tree-structured datasets and the strings dataset. Each row of
the figure shows the results for one dataset. The left column shows the results for the pseudo-edit
distance, the right column for the actual tree edit distance. The x-axis in each plot displays the
different design choices as described in the text (from G1 to L2), the y-axis in each plot displays
the mean classification error after metric learning, averaged across crossvalidation trials, with
error bars displaying the standard deviation. The different lines in each plot display the different
classifiers used for evaluation.
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4.3 conclusion

syntax trees, tree-based molecule representations from a biomedical task, and syntax
trees in natural language processing.

Now that we have developed methods to obtain viable edit distances for various cases
of structured data, our next challenge is to utilize these edit distances for downstream
predictive tasks. We have already demonstrated our ability to perform classification. In
the next chapter, we cover time series prediction.
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5T I M E S E R I E S P R E D I C T I O N F O R S T R U C T U R E D D ATA

Summary: Graph theory is a flexible and general formalism providing rich models in
various important domains, such as distributed computing, intelligent tutoring systems,
or social network analysis. In many cases, such models need to take changes in the
graph structure into account, that is, changes in the number of nodes or in the graph
connectivity. Predicting such changes within graphs can be expected to yield insight
with respect to the underlying dynamics, e.g. with respect to user behavior. However,
predictive techniques in the past have almost exclusively focused on single edges or
nodes. In this chapter, we attempt to predict the future state of a graph as a whole.

Using the theory of pseudo-Euclidean and kernel embeddings outlined in Section 2.1,
we propose to phrase time series prediction as a regression problem in an implicit
vectorial space. Under this perspective, we can perform time series prediction via non-
parametric regression techniques, such as 1-nearest neighbor regression, kernel regression,
or Gaussian process regression. The output of the regression is another point in the
implicit space, which can be subsequently processed using distance-based or kernel
techniques.

We evaluate our approach on two well-established theoretical models of graph evolu-
tion as well as two real datasets from the domain of intelligent tutoring systems. We find
that simple regression methods, such as kernel regression, are sufficient to capture the
dynamics in the theoretical models but that Gaussian process regression significantly
improves the prediction error for real-world data.

Publications: This chapter is based on the following publications.

• Paaßen, Benjamin, Christina Göpfert, and Barbara Hammer (2016). “Gaussian pro-
cess prediction for time series of structured data”. In: Proceedings of the 24th European
Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learn-
ing (ESANN 2016). (Bruges, Belgium). Ed. by Michel Verleysen. i6doc.com, pp. 41–
46. url: http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2016-
109.pdf.

• — (2018). “Time Series Prediction for Graphs in Kernel and Dissimilarity Spaces”.
In: Neural Processing Letters 48.2, pp. 669–689. doi: 10.1007/s11063-017-9684-5.

Source Code: The MATLAB(R) source code is available at http://doi.org/10.4119/
unibi/2913104.

Graphs provide an ideal theoretical framework to model connective structure between
entities, for example traffic connections between and within cities (Papageorgiou 1990),
data lines between computing nodes (Casteigts et al. 2012), communication between
people in social networks (Liben-Nowell and Kleinberg 2007), or the structure of a
student’s solution to a learning task in an intelligent tutoring system (Mokbel, Gross,
et al. 2013, also refer to Chapter 6). However, a static view of graphs is seldom sufficient.
In all the previous examples, nodes as well as connections change significantly over
time. In traffic graphs, the traffic load changes significantly over the course of a day,
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time series prediction for structured data

making optimal routing a time-dependent problem (Papageorgiou 1990); in distributed
computing, the distribution of computing load and communication between machines
crucially depends on the availability and speed of connections and the current load
of the machines, which changes over time (Casteigts et al. 2012); in social networks or
communication networks, new users may enter the network, old users may leave, and the
interactions between users may change rapidly (Liben-Nowell and Kleinberg 2007); and
in intelligent tutoring systems, students change their solution over time to get closer to a
correct solution (Koedinger et al. 2013; Mokbel, Gross, et al. 2013, also refer to Chapter 6).
In all these cases it would be beneficial to predict the next state of the graph in question,
because it provides the opportunity to optimize system behavior in light of possible
future developments, for example by re-routing traffic, providing additional bandwidth
where required, or by providing helpful hints to students.

Traditionally, predicting the future development based on knowledge of the past
is the topic of time series prediction, which has wide-ranging applications in physics,
sociology, medicine, engineering, finance, and other fields (Sapankevych and Sankar 2009;
Shumway and Stoffer 2013). However, classic models in time series prediction such as
ARIMA, NARX, Kalman filters, recurrent neural networks, or reservoir models focus on
vectorial data representations and thus are not equipped to handle time series of graphs
(Shumway and Stoffer 2013). Accordingly, past work on predicting changes in graphs has
focused on simpler sub-problems that can be phrased as vectorial prediction problems,
e.g. predicting the overall load in an energy network (A. Ahmad et al. 2014) or predicting
the appearance of single edges in a social network (Liben-Nowell and Kleinberg 2007).

In this contribution, we develop an approach to address the time series prediction
problem for graphs, which we frame as a regression problem with structured data as
input and as output. Our approach has two key steps: First, we represent graphs via
pairwise distances or kernel values, which are well-researched in the scientific literature
(refer to Section 2.2). This representation implicitly embeds the discrete set of graphs
in a continuous vectorial space (refer to Section 2.1). Second, within this space, we can
apply non-parametric regression methods, such as nearest neighbor regression, kernel
regression (Nadaraya 1964), or Gaussian processes (Rasmussen and Williams 2005) to
predict the next position in the kernel space given the current position. Note that this does
not provide us with the graph that corresponds to the predicted point in the kernel space.
Indeed, identifying the corresponding graph in the primal space is a kernel pre-image
problem that is in general hard to solve (Bakır, Weston, and Schölkopf 2003; Bakır, Zien,
and Tsuda 2004; Kwok and I. W.-H. Tsang 2004). However, we will show that this data
point can still be analyzed with subsequent kernel- or distance-based methods.

A drawback of GPR is its cubic computational complexity in the number of datapoints
due to a kernel matrix inversion. Fortunately, Deisenroth and Ng (2015) have developed
a simple strategy to permit predictions in linear time, namely distributing the prediction
to multiple Gaussian processes, each of which handles only a constant-sized subset of
the data.

The key contributions of our work are the following. First, we provide an integrative
overview of research on time-varying graphs. Second, we provide a novel scheme for
time series prediction in pseudo-Euclidean and kernel spaces. This scheme is compatible
with explicit vectorial embeddings, as are provided by some graph kernel (Borgwardt
and Kriegel 2005; Aiolli, Martino, and Sperduti 2015; Bacciu, Errica, and Micheli 2018),
but does not require such a representation. Third, we discuss how the predictive result,
which is a point in an implicit kernel feature space, can be analyzed using subsequent
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Figure 5.1: An example of a time-varying graph modeling a public transportation graph drawn
for three points in time: night time (left), the early morning (middle) and mid-day (right). Present
edges or nodes are drawn as solid lines, non-present edges or nodes are drawn as dashed lines.

kernel- or distance-based methods. Fourth, we provide an efficient realization of our pre-
diction pipeline for Gaussian processes in linear time. Finally, we evaluate our proposed
approaches on two theoretical and two practical data sets.

5.1 background and related work

Time-varying graphs are relevant in many different fields, such as traffic (Papageorgiou
1990), distributed computing (Casteigts et al. 2012), social networks (Liben-Nowell and
Kleinberg 2007), or intelligent tutoring systems (Koedinger et al. 2013; Mokbel, Gross,
et al. 2013). Due to the breadth of the field, we focus here on relatively general concepts
that can be applied to a wide variety of domains.

Models of Graph Dynamics

Time-Varying Graphs: Time-varying graphs have been introduced by Casteigts et al.
(2012) in an effort to integrate different notations found in the fields of delay-tolerant
networks, opportunistic-mobility networks, and social networks. The authors note that
changes in graphs for these domains should not be regarded as anomalies, but rather as
an “integral part of the nature of the system” (Casteigts et al. 2012). Here, we present a
slightly simplified version of the notation developed in their work.

Definition 5.1 (Time-Varying Graph (Casteigts et al. 2012)). A time-varying graph is
defined as a five-tuple G = (V, E, T , ψ, ρ) where

• V is an arbitrary set called nodes,

• E ⊆ V ×V is a set of node tuples called edges,

• T = {t ∈N|t0 ≤ t ≤ T} for some t0, T ∈N is called lifetime of the graph,

• ψ : V × T → {0, 1} is called node presence function, and node x is called present at
time t if and only if ψ(x, t) = 1, and

• ρ : E× T → {0, 1} is called edge presence function, and edge e is called present at
time t if and only if ρ(e, t) = 1.

In figure 5.1, we show an example of a time-varying graph modeling the connectivity
in simple public transportation graph over the course of a day. In this example, nodes
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model stations and edges model train connections between stations. In the night (left),
all nodes may be present but no edges, because no lines are active yet. During the
early morning (middle), some lines become active while others remain inactive. Finally,
in mid-day (right), all lines are scheduled to be active, but due to a disturbance - e.g.
construction work - a station is closed and all adjacent connections become unavailable.

Note that the concept of time-varying graphs generally assumes all nodes and edges
to be known in advance. In domains where that is not the case, one can frame the
underlying graph as a fully connected graph with infinitely many nodes, from which
only a finite subset is present at any given time.

Using the notion of a presence function, we can generalize many interesting concepts
from classic graph theory to a dynamic version. In particular, we can define the temporal
subgraph Gt of graph G at time t as the graph of all nodes and edges of G that are present
at time t, that is Gt := (Vt, Et) where

Vt := {v ∈ V|ψ(v, t) = 1}, Et := {(u, v) ∈ E|ρ
(
(u, v), t

)
= 1} (5.1)

Further, we can define the neighborhood of a node u ∈ Vt at time t as the set of nodes
Nt(u) := {v ∈ Vt|(u, v) ∈ Et}; we can define a path between u ∈ Vt and v ∈ Vt at time t
as a sequence of nodes v0, . . . , vK ∈ Vt such that v0 = u, vK = v, and for all k ∈ {1, . . . , K}
it holds: (vk−1, vk) ∈ Et; and we can call two nodes u ∈ Vt and v ∈ Vt connected at time t
if a path between them exists at time t.

Note that we have assumed discrete time in our definition of a time-varying graph.
This is justified by the following consideration. Even if time is continuous, changes to
the graph take the form of discrete value changes in the node or edge presence function,
because a presence function can only take the values 0 or 1. Let us call such discrete
change points events. Assuming that there are only finitely many such events, we can
write all events in the lifetime of a graph as an ascending sequence t1, . . . , tT. Accordingly,
all changes in the graph are fully described by the sequence of temporal subgraphs
Gt1 , . . . ,GtT (Casteigts et al. 2012; Scherrer et al. 2008). Therefore, even time-varying
graphs defined on continuous time can be fully described by considering the discrete
lifetime {1, . . . , T}.

Sequential Dynamical Systems: Sequential dynamical systems (SDS) have been intro-
duced by Barrett, Mortveit, and Reidys (2000) as a generalization of cellular automata
to arbitrary neighborhood structures. In essence, SDSs assign a binary state ψ(x, t) to
each node x in a static graph G = (V, E). This state is updated according to a transition
function fx, which maps the current states of the node and all of its neighbors to the
next state of the node x itself. This induces a discrete dynamical system on graphs
(where edges and neighborhoods stay fixed) (Barrett, Mortveit, and Reidys 2000; Barrett,
Mortveit, and Reidys 2003; Barrett and Reidys 1999). Interestingly, SDSs can be related to
time-varying graphs by interpreting the binary state of a node x at time t as the value
of its presence function ψ(x, t). Note that we can predict the future state of an SDS by
simply executing the SDS transition function fx for all nodes x repeatedly. As such, SDSs
provide elegant and compact models for time series prediction on graphs. Indeed, we
use an SDS in our experimental section to compactly describe Conway’s Game of Life
(Gardner 1970). Unfortunately, there are no learning schemes to date that can infer an
SDS from data. Therefore, other predictive methods are required.
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Predicting Changes in Graphs

To our knowledge, there does not exist a time series prediction for graphs as a whole.
However, ample prior work has focused on more specific predictive problems, namely
the prediction of new edges and nodes.

Link Prediction: In the realm of social network analysis, Liben-Nowell and Kleinberg
(2007) have formulated the link prediction problem, which can be stated as follows: Given a
time series of temporal subgraphs G0, . . . ,Gt for a time-varying graph G, which edges will
be added to the graph in the next time step, i.e. for which edges do we find ρ(e, t) = 0
but ρ(e, t + 1) = 1? For example, given all past collaborations in a scientific community,
can we predict new collaborations in the future?

The simplest approach to address this problem is to compute a similarity index
s(u, v) between nodes (u, v) for which ρ((u, v), t) = 0, and to predict ρ((u, v), t + 1) = 1
if and only if s(u, v) exceeds a certain threshold (Liben-Nowell and Kleinberg 2007;
Lichtenwalter, Lussier, and Chawla 2010). Typical similarity indices for this purpose
include the number of common neighbors at time t, the Jaccard index at time t, or the
Adar index at time t (Liben-Nowell and Kleinberg 2007). A more recent approach is to
train a classifier that predicts the value of the edge presence function ρ(e, t + 1) for all
edges with ρ(e, t) = 0 using a vectorial feature representation of the edge e at time t,
where features include the similarity indices discussed above (Lichtenwalter, Lussier,
and Chawla 2010). In a survey, Lü and Zhou (2011) further list maximum-likelihood
approaches on stochastic models and probabilistic relational models for link prediction.

Growth models: In a seminal paper, Barabási and Albert (1999) described a simple
model to incrementally grow an undirected graph node by node from a small, fully
connected seed graph (also refer to the experimental section below). Since then, many
other models of graph growth have emerged, most notably stochastic block models and
latent space models (Clauset 2013; Goldenberg et al. 2010). Stochastic block models assign
each node to a block and model the probability of an edge between two nodes only
dependent on their respective blocks (Holland, Laskey, and Leinhardt 1983). Latent space
models embed all nodes in an underlying, latent space and model the probability of an
edge depending on the distance in this space (Hoff, Raftery, and Handcock 2002). Both
classes of models can be used for link prediction as well as graph generation. Further,
they can be trained with pre-observed data in order to provide more accurate models
of the data. However, graph growth models have two severe drawbacks. First, they do
not cover deletions of nodes or edges, and second, they typically can not guarantee
accurate predictions in detail, but only high-level properties, such as a certain edge
degree distribution. As such, using growth models for time series prediction would likely
yield unsatisfactory results.

In the next section, we develop our own method to predict general changes in graphs.

5.2 method

Starting from the theory of time-varying graphs, we can formalize time series prediction
for graphs as the problem of predicting the next temporal subgraph Gt+1, given the
time series of past temporal subgraphs G0, . . . ,Gt. More precisely, let X denote the set
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of possible subgraphs and let X ∗ denote the set of possible time series over X . Then,
we wish to construct a function f : X ∗ → X ∗ that maps any time series G0, . . . ,Gt to its
continued version G0, . . . ,Gt+1.

Distance-Based Time Series Prediction

In our case, we assume that either a pseudo-Euclidean distance d over X ∗ or a kernel
k over X ∗ is available. Recall that the former case is more general since any kernel k
implies a Euclidean distance, but not vice versa (refer to Section 2.1). Therefore, we will
focus here on the more general case of pseudo-Euclidean distances.

First, recall that the set of pseudo-Euclidean distances is equivalent to the set of
functions d : X ∗×X ∗ → R that are symmetric and self-equal, thus covering a broad range
of functions including all possible metrics, especially edit distances. We can construct
such a function easily, for example by first applying any of the graph edit distance
approaches from Section 2.3.4, and then plugging these distances into a sequence edit
distance from Section 2.3.1. Another option is to assume that the next temporal subgraph
Gt+1 is conditionally independent from all temporal subgraphs G0, . . . ,Gt−1 if conditioned
on Gt, i.e. a Markov assumption. In that case, we can compute a viable distance between
two time series of graphs by simply computing a distance between the end points of
these time series. We remain agnostic regarding any such design choice and only require
that d is some pseudo-Euclidean distance over X ∗, that is, d is symmetric and self-equal.

Second, recall that d being pseudo-Euclidean means, per definition, that there exist
two mappings φ+ : X ∗ → Rm and φ− : X ∗ → Rn such that for any x̄, ȳ ∈ X ∗, the
squared distance d(x̄, ȳ)2 is equivalent to the difference between the squared standard
Euclidean distances ‖φ+(x̄)− φ+(ȳ)‖2 and ‖φ−(x̄)− φ−(ȳ)‖2 (also refer to Equation 2.7).
We denote the concatenation of both spatial maps as φ : X ∗ → Rm+n, that is, for all
x̄ ∈ X ∗ we define:

φ(x̄) :=
(

φ+(x̄)
φ−(x̄)

)
Given this representation, we can re-phrase our time series prediction task as follows.

Assume we are given a training dataset {G j
t}

j=1,...,N
t=1,...,Tj

⊂ X of time series over graphs. Now,
let M = T1 + . . . + TN , let (j, t) be the ith time series/step index-tuple in lexicographic
ordering, let x̄i := G j

1, . . . ,G j
t , and let ȳi := G j

1, . . . ,G j
t+1.

Then, our aim is to construct a function f : Rm+n → Rm+n such that for all i ∈
{1, . . . , M} it holds: f

(
φ(x̄i)

)
= φ(ȳi). Note that this new version of the problem has

the shape of a classic regression problem with input data ~xi = φ(x̄i) and output data
~yi = φ(ȳi) which we can address using non-parametric regression techniques as in
Section 2.6.

In particular, without any further requirements on d, we can directly apply one-
nearest neighbor regression (1-NN) via Equation 2.45. Using the radial basis function
from Equation 2.44, we can also apply kernel regression (KR) via Equation 2.46. What
remains more challenging is the application of Gaussian process regression (GPR).
In particular, GPR requires a kernel k over the input space, in this case Rm+n. There
are multiple methods to construct such a kernel. First, we can construct the pseudo-
Euclidean embedding explicitly via Theorem 2.2 and then define a standard vectorial
kernel. Due to an eigendecomposition, this approach either requires cubic complexity,
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which may be infeasible for large data sets, or a Nyström-approximation, which distorts
the distances. Second, we can apply a transformation to the distance values d(x̄i, x̄j),
which yields a kernel. For Euclidean distances, this is straightforward. For example,
the radial basis function kd,ξ in Equation 2.44 is a kernel for any Euclidean distance d.
However, not all pseudo-Euclidean distances yield a kernel under such transformations
(Jäkel, Schölkopf, and Wichmann 2008). Finally, we can combine the latter approach with
eigenvalue correction, which is what we propose. We first apply a radial basis function
transformation, yielding a matrix of similarities K ∈ RM×M with Ki,j = kd,ξ(x̄i, x̄j).
Next, we add the noise variance σ̃2 of GPR to the diagonal (refer to Equation 2.50),
which is equivalent to a shift eigenvalue correction and potentially reduces the number of
negative eigenvalues. Now, observe that we need to invert the resulting matrix K + σ̃2 · IM

anyways to yield a prediction. Therefore, we can perform eigenvalue correction of this
matrix without extra cost as follows. We first compute the eigenvalue decomposition
V> · Λ · V = K + σ̃2 · IM, then apply eigenvalue correction to the diagonal matrix of
eigenvalues Λ, for example by clipping negative values to σ̃2, taking the absolute value,
or subtracting the smallest negative value minus σ̃2, which is equivalent to increasing the
noise variance. In either case, we obtain a diagonal matrix Λ̃ with strictly positive entries
on the diagonal such that the matrix is invertible. Finally, we compute the inverted matrix
as V> · Λ̃−1 · V . Note that this mechanism also profits from the speedup techniques of
the rBCM, because we can apply the eigenvalue correction to each cluster separately.

Using our approach until now, we can perform time series prediction on any data
for which a pseudo-Euclidean distance is available. However, our predictive result is
only some vector in the pseudo-Euclidean embedding space, which may not be useful
for downstream tasks. Indeed, inferring the original time series x̄ that corresponds to
the predictive result φ(x̄) is generally impossible, because the spatial map φ may not
be invertible and even approximate solutions are challenging to find, especially for
structured data (Bakır, Weston, and Schölkopf 2003; Bakır, Zien, and Tsuda 2004; Kwok
and I. W.-H. Tsang 2004).

Fortunately, our established theory of pseudo-Euclidean distances permits further
inferences even without an explicit representation. In particular, we can infer the distances
or kernel values to our predicted point, enabling us to use distance- or kernel-based
methods downstream.

Inferring Distances from Predictive Results

Our aim is to use Theorem 2.3 in order to infer the distance between a predictive result
and any other time series in X ∗. Recall that Theorem 2.3 implies that the distance between
any two points in a pseudo-Euclidean space that can be described as affine combinations
can be computed solely based on the original distance values. To use this result, we
need to prove that the output of our time series prediction scheme is always an affine
combination.

Theorem 5.1 (Predictive results as affine combinations). Let X be some set and let {G j
t}

j=1,...,N
t=1,...,Tj

⊂ X be a dataset of sequences over that set, let M = T1 + . . . + TN , let (j, t) be the ith tu-
ple in

{
(j, t)

∣∣j ∈ {1, . . . , N}, t ∈ {1, . . . , Tj − 1}
}

according to lexicographic ordering, let
x̄i := G j

1, . . . ,G j
t , and let ȳi := G j

1, . . . ,G j
t+1.
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Further, let d be a pseudo-Euclidean distance over X ∗ with positive spatial mapping φ+ :
X ∗ → Rm and negative spatial mapping φ− : X ∗ → Rn, and let

φ(x̄) :=
(

φ+(x̄)
φ−(x̄)

)
and X :=

(
φ(x̄1), . . . , φ(x̄M)

)
∈ R(m+n)×M

Finally, let k be a kernel over Rm+n, and let x̄ ∈ X ∗. Then, it holds:

1. The predictive result of 1-NN according to Equation 2.45 has the form f (φ(x̄)) = X ·~α
with~α having exactly one entry 1 and only zero entries otherwise.

2. For any non-negative similarity sd, the predictive result of KR according to Equation 2.46
has the form f (φ(x̄)) = X ·~α where all αi are non-negative and sum up to 1.

3. For the priors ~θ = φ(x̄) and θi = φ(x̄i), the predictive result of GPR according to
Equation 2.50 has the form f (φ(x̄)) = (X, φ(x̄)) ·~α, where αM+1 = 1 and all other αi
add up to zero.

4. For the priors ~θ = φ(x̄) and θi = φ(x̄i), the predictive result of rBCM according to
Equation 2.53 has the form f (φ(x̄)) = (X, φ(x̄)) ·~α, where αM+1 = 1 and all other αi
add up to zero.

Proof. Refer to Appendix A.15.

Based on the distance formula 2.9 we can now compute distance values to any
other time series x̄, without any need for constructing the pseudo-Euclidean embedding
explicitly. Via these distance values, we make further distance- or kernel-based methods
applicable, such as RGLVQ or MGLVQ for classification (Hammer, D. Hofmann, et
al. 2014; Nebel, Hammer, et al. 2015) or relational neural gas for clustering (Hammer
and Hasenfuss 2007). Therefore, we have achieved a full methodological pipeline for
preprocessing, prediction and post-processing.

In case we use rBCM regression, we can summarize the pipeline as follows.

1. If we intend to use a distance measure, we start off by computing the matrix of
pairwise distances D with Di,j = d(x̄i, x̄j) on our training data. If required we
symmetrize this matrix by setting D ← 1

2 · (D + D>) and set the diagonal to zero.
Implicitly, this step embeds our training data in a pseudo-Euclidean space where D
are pairwise pseudo-Euclidean distances. We transform this matrix into a similarity
matrix K using, for example, the radial basis function transformation.

If we intend to use a kernel measure, we start off by computing the kernel matrix
K with Ki,j = k(x̄i, x̄j) on our training data.

2. We cluster the input data either based on the distance matrix D e.g. via relational
neural gas (Hammer and Hasenfuss 2007), or based on the kernel matrix K, e.g. via
kernel k-means, kernel self-organizing map, or kernel neural gas (Filippone et al.
2008).

3. For each cluster c we perform an eigenvalue correction and inversion of the matrix
Kc + σ̃2 · IMc involving only the data in the cth cluster.
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Figure 5.2: An illustration of the predictive pipeline. The data is first distributed into clusters via
relational neural gas (blue circles and orange squares). Each cluster performs an independent
prediction (half transparent blue circle and orange square) for the new data point (black diamond).
Finally, these predictions are merged to a final prediction (black diamond) via the robust Bayesian
committee machine (rBCM).

4. For any test time series x̄ we compute the vector of distances d(x̄, x̄i) or kernel
values k(x̄, x̄i) to the training data. In case of distances, we need to transform these
distances to similarities and need to extend the eigenvalue correction of the training
data to these new values via out-of-sample extension as described by Gisbrecht
and Schleif (2015).

5. We perform rBCM to infer a prediction f (φ(x̄)) in form of an affine coefficient
vector~α.

6. We extend our distance matrix or kernel matrix using Theorem 2.3 to the predicted
point.

7. We apply downstream distance- or kernel-based methods on the predicted point as
desired.

The pipeline is illustrated in figure 5.2, where data points are shown as small shapes
and points within the same time series are connected via arrows. First, we cluster the
data via relational neural gas, which places prototypes (large circle and square) into the
data (small circles and squares) and thereby partitions data points into disjoint clusters
(distinguished by shape). For each cluster, we train a separate GPR model. For a test
data point (diamond shape), each of the GPs provides a separate predictive Gaussian
distribution, which are given in terms of their means (half-transparent circle and square)
and their variance (dashed, half-transparent circles). The predictive distributions are
merged to an overall predictive distribution with the mean from Equation 2.53 (solid
diamond shape) and the variance from Equation 2.52 (dashed circle). Note that the overall
predictive distribution is more similar to the prediction of the circle-cluster because the
test data point is closer to this cluster and thus the predictive variance for the circle-cluster
is lower, giving it a higher weight in the merge process.

This concludes our description of the predictive pipeline. We now go on to evaluate
our pipeline experimentally.

5.3 experiments

In our experimental evaluation, we apply the pipeline introduced in the previous section
to four datasets, two theoretical models and two Java program datasets. In all cases,

85



time series prediction for structured data

we evaluate the root mean square error (RMSE) of the prediction for each method in a
leave-one-out-crossvalidation over the time series in our dataset. We apply a Markov
assumption, thus only considering the end points for all time series. More specifically, we
denote the current test time series as x′1, . . . , x′T, the training series as {xj

1, . . . , xj
Tj
}j=1,...,N ,

the predicted affine coefficients for point x′t′ as~αt′ = (α1
t′,1, . . . , αN

t′,TN
, α′t′) and the matrix

of squared pairwise distances (including the test data points) as D2. Accordingly, the
RMSE for each fold has the following form (resulting from Theorem 2.3).

E =

√√√√ 1
T − 1

T−1

∑
t′=1

N

∑
j=1

Tj

∑
t=1

α
j
t′,td(xj

t, x′t′+1)
2 + α′t′d(x′t′ , x′t′+1)

2 − 1
2
~α>t′ D

2~αt′ (5.2)

We evaluate our four regression models, namely one-nearest neighbor regression (1-
NN), kernel regression (KR), Gaussian process regression (GPR) and the robust Bayesian
committee machine (rBCM), as well as the identity function as baseline, i.e. we predict
the current point as next point.

We optimized the hyper parameters for all methods using a random search with
10 random trials (Bergstra and Bengio 2012). In particular, given the average distance
d̄ in the training data, we drew the radial basis function bandwidth ξ from a uniform
distribution in the range [0.05 · d̄, d̄] for the theoretical datasets and fixed it to 0.3 · d̄ for
the Java datasets to avoid the need for a new eigenvalue correction in each random trial.
We drew σ̃ from an exponential distribution in the range [10−3 · d̄, d̄] for the theoretical
and [10−2 · d̄, d̄] for the Java datasets. We fixed the prior standard deviation σprior = d̄ for
all datasets. In each trial of the random search, we evaluated the RMSE in a nested leave-
one-out-crossvalidation over the training time series and chose the hyper-parameters that
corresponded to the lowest RMSE.

For rBCM we preprocessed the data via relational neural gas clustering with
⌊ M

100

⌋
clusters for all datasets. As this pre-processing could be applied before hyper-parameter
selection, the runtime overhead of clustering was negligible and we did not need to rely
on the linear-time speedup described above but could compute the clustering on the
whole training dataset.

Our experimental hypotheses are that all prediction methods should yield lower
RMSE compared to the identity baseline (H1), that rBCM should outperform 1-NN and
KR (H2) and that rBCM should not be significantly worse compared to GPR (H3). To
evaluate significance we use a Wilcoxon signed-rank test.

Theoretical Data Sets

We investigate the following theoretical datasets:

Barabási-Albert model: A simple stochastic model of graph growth in undirected
graphs (Barabási and Albert 1999). The growth process starts with a fully connected
initial graph of m0 nodes and adds m−m0 nodes one by one. Each newly added node
is connected to k of the existing nodes. The existing nodes are randomly selected with
the probability P(u) = degt(u)/(∑v degt(v)) where degt is the node degree at time t, i.e.
degt(v) = ∑u ρ((u, v), t). We generated time series data using this model by treating the
graph after every newly generated node as a new entry of the time series. In particular,
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t = 1 t = 2 t = 3 t = 4

Figure 5.3: An excerpt of a time series resulting from the Barabási-Albert model. From left to
right, the model starts with a fully connected graph with m0 = 3 nodes and then grows, one node
at a time, where each new node is connected with k = 2 new edges to the existing nodes. New
edges preferentially attach to nodes with a high degree.

blinker
t = 1 t = 2

beacon
t = 1 t = 2

toad
t = 1 t = 2

clock
t = 1 t = 2

glider
t = 1 t = 2 t = 3 t = 4

Figure 5.4: The standard patterns used for the Game of Life-dataset, except for the block and glider
pattern. All unique states of the patterns are shown. Note that the state of glider at t = 3 equals
the state at t = 1 up to rotation.

we generated 20 time series, each starting with a fully connected graph with m0 = 3
nodes and then growing, one node at a time, to a total of m = 27 nodes with k = 2
new edges per node. This resulted in 500 graphs overall. Also refer to Figure 5.3 for an
illustration of the growth process.

Conway’s Game of Life: John Conway’s Game of Life (Gardner 1970) is a simple, 2-
dimensional cellular automaton model. Nodes are ordered in a regular, 2-dimensional
grid and connected to their eight neighbors in the grid. Let N(x) denote this eight-
neighborhood in the grid. Then, we can describe Conway’s Game of Life with the following
sequential dynamical system for the node presence function ψ and the edge presence
function ρ respectively:

ψ(v, t) =

{
1 if 5 ≤ ψ(v, t− 1) + 2 ·∑u∈N(v) ψ(u, t− 1) ≤ 7
0 otherwise

(5.3)

ρ((u, v), t) =

{
1 if ψ(u, t) = 1∧ ψ(v, t) = 1
0 otherwise

(5.4)
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graph

1 2

3 4

shortest path length matrix

u \v 1 2 3 4

1 0 1 1 2
2 2 0 3 1
3 ∞ ∞ 0 ∞
4 1 2 2 0

features
length count

∞ 3
1 4
2 4
3 1

Figure 5.5: An example graph, the associated matrix of shortest path lengths as returned by
the Floyd- Warshall algorithm (Floyd 1962) and the histogram over path lengths used as feature
representation for our approach. Note that self-distances are ignored.

Table 5.1: The mean RMSE and runtime across cross validation trials for both theoretical datasets
(x-axis) and all methods (y-axis). The standard deviation is shown in brackets. Runtime entries
with 0.000 had a shorter runtime (and standard deviation) than 10−3 milliseconds. The best
(lowest) value in each column is highlighted by bold print.

Barabási-Albert Game of Life
method RMSE runtime [ms] RMSE runtime [ms]

identity 0.137 (0.005) 0.000 (0.000) 1.199 (0.455) 0.000 (0.000)
1-NN 0.073 (0.034) 0.111 (0.017) 1.191 (0.442) 0.112 (0.025)
KR 0.095 (0.039) 0.122 (0.016) 0.986 (0.398) 0.120 (0.040)
GPR 0.064 (0.028) 0.148 (0.022) 0.965 (0.442) 0.127 (0.026)
rBCM 0.062 (0.015) 0.312 (0.083) 0.967 (0.461) 0.267 (0.077)

Note that Conway’s Game of Life is Turing-complete and its evolution is, in general,
unpredictable without computing every single step according to the rules (Adamatzky
2002). We created 30 time series by initializing a 20× 20 grid with one of six standard
patterns at a random position, namely blinker, beacon, toad, block, glider, and block and glider
(see figure 5.4). The first four patterns are simple oscillators with a period of two, the
glider is an infinitely moving structure with a period of two (up to rotation) and the
block and glider is a chaotic structure which converges to a block of four and a glider after
105 steps1. We let the system run for T = 10 time steps resulting in 300 graphs overall.
In every step, we further activated 5% of the cells at random, simulating observational
noise.

As data representation for both theoretical datasets we use an explicit feature embed-
ding inspired by the shortest-path-kernel of Borgwardt and Kriegel (2005). In particular,
we compute the pairwise shortest paths between all nodes in the graph via the Floyd-
Warshall algorithm (Floyd 1962) and then use the histogram over the lengths of these
shortest paths as features. Figure 5.5 displays the feature computation for an example
graph. We use the standard Euclidean distance on these features as our graph distance
and normalize this distance by the average distance across the dataset. We obtained a
kernel via the radial basis function transformation from Equation 2.44.

The RMSE and runtimes for the two theoretical datasets are shown in Table 5.1.
As expected, KR, GPR and rBCM outperform the identity-baseline (p < 10−3 for both

1 Also refer to the Life Wiki http://conwaylife.com/wiki/ for more information on the patterns.
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Table 5.2: The mean RMSE and runtime across cross validation trials for both Java datasets (x-axis)
and all methods (y-axis). The standard deviation is shown in brackets. Runtime entries with 0.000
had a shorter runtime (and standard deviation) than 10−3 seconds. The best (lowest) value in
each column is highlighted by bold print.

MiniPalindrome Sorting
method RMSE runtime [s] RMSE runtime [s]

identity 0.295 (0.036) 0.000 (0.000) 0.391 (0.029) 0.000 (0.000)
1-NN 0.076 (0.047) 0.000 (0.000) 0.090 (0.042) 0.000 (0.000)
KR 0.115 (0.031) 1.308 (0.171) 0.112 (0.027) 1.979 (0.231)
GPR 0.075 (0.064) 111.417 (0.304) 0.020 (0.034) 114.394 (0.301)
rBCM 0.044 (0.052) 11.698 (0.085) 0.010 (0.025) 18.5709 (0.121)

datasets), supporting H1. 1-NN outperforms the baseline only in the Barabási-Albert
dataset (p < 10−3). Also, our results lend support to H2 as rBCM outperforms 1-NN
in both datasets (p < 0.05 for Barabási-Albert, and p < 0.01 for Conway’s Game of
Life). However, rBCM is significantly better than KR only for the Barabási-Albert dataset
(p < 0.001), indicating that for simple datasets such as our theoretical ones, KR might
already provide sufficient predictive quality. Finally, we do not observe a significant
difference between rBCM and GPR, as expected in H3. Interestingly, for these datasets,
rBCM is slower compared to GP, which is explained by the overhead for maintaining
multiple models.

Java Programs

Our two real-world Java datasets are MiniPalindrome and Sorting from Section 4.2. The
motivation for time series prediction on such data is to help students achieve a correct
solution in an intelligent tutoring system (ITS). In such an ITS, students incrementally
work on their program until they might get stuck and do not know how to proceed. Then,
we would like to predict the most likely next state of their program, given the time series
of other students who have already correctly solved the problem; a setting that we will
investigate in more detail in Chapter 6.

Note that our datasets only contain final, working versions of the programs. We
simulated the graph growth as follows. First, we represented the programs as abstract
syntax trees and then recursively removed the last node that opened a new scope in the
Java program, until the abstract syntax tree was entirely deleted. Reversing this deletion
process results in time series of a growing program. In particular, we thus obtained 834
syntax trees for the MiniPalindrome and 800 trees for the Sorting dataset respectively. As
a distance, we employed the learned affine edit distance from Section 3.2 and obtained a
kernel via the radial basis function in Equation 2.44 and clip eigenvalue correction as
described in the previous sections.

We show the RMSEs and runtimes for both Java datasets in Table 5.2. In line with H1,
1-NN, KR, GPR, and rBCM all outperform the identity baseline (p < 0.01 in all cases).
Further, rBCM outperforms both 1-NN and KR (p < 0.01 in all cases), which supports H2.
Interestingly, rBCM apparently achieves better results compared to GPR, which might
be the case due to additional smoothing provided by the averaging operation over all
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cluster-wise GPR results. This result supports H3. Finally, we observe that rBCM is about
10 times faster compared to GPR on these data.

5.4 discussion and conclusion

We have developed a novel pipeline to perform time series prediction for structured data,
given either a distance measure or a kernel. Our results indicate that this pipeline is indeed
able to capture information about the time series structure, significantly outperforming
the identity baseline. We further showed that, for programming data, sophisticated
predictive models such as the robust Bayesian committee machine (rBCM) can outperform
simpler models such as one-nearest neighbor regression and kernel regression. Finally,
we showed that the rBCM performs comparably to Gaussian process regression and is
considerably faster for larger datasets.

The key idea to our approach is to perform the time series prediction not on the
original structured data, but on an implicit vectorial representation in a pseudo-Euclidean
space. A limitation of our approach is that this resulting point can generally not be
interpreted as a structured datum. In the next chapter, we address this limitation and
show how the prediction in the implicit pseudo-Euclidean space can be utilized to
generate interpretable hints for students in intelligent tutoring systems.
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6A P P L I C AT I O N T O I N T E L L I G E N T T U T O R I N G S Y S T E M S

Summary: A challenge in learning complex skills such as computer programming
lies in applying learned knowledge in practical exercises. For example, students may
fail to write an entire program from scratch and get stuck along the way. In such
situations, individualized next-step hints could support students and enhance their
learning. Unfortunately, providing such hints in large courses or for large state spaces
goes far beyond the capabilities of human instructors or rule-based systems.

In this chapter, we summarize existing work on automated generation of individ-
ualized next-step hints in light of the edit distance theory established in Section 2.3.
Further, we extend the predictive pipeline of Chapter 5 to achieve a novel automatized
mechanism that can predict what successful past students’ would have done and that
uses this prediction to generate hints; a mechanism that we call the Continuous Hint
Factory (CHF).

In an experimental evaluation on two real-world tutoring datasets, we demonstrate
that our pipeline outperforms previous approaches in terms of predictive accuracy and
performs comparably in terms of the pedagogic quality of the generated hints.

Publications: This chapter is based on the following publications.

• Paaßen, Benjamin, Barbara Hammer, et al. (2018). “The Continuous Hint Factory
- Providing Hints in Vast and Sparsely Populated Edit Distance Spaces”. In: Journal of
Educational Datamining 10.1, pp. 1–35. url: https://jedm.educationaldatamining.
org/index.php/JEDM/article/view/158.

Many learning tasks require more than a single step to solve. For example, program-
ming tasks require a student to iteratively write, test, and refine code that accomplishes
a given objective (Gross, Mokbel, et al. 2014; Price, Dong, and Lipovac 2017; Rivers and
Koedinger 2015). When working on such multi-step-tasks, students start with an initial
state and then apply actions to change their state (such as inserting or deleting a piece
of code) in order to get closer to a correct solution. At some point, a student may not
know how to proceed or may be unable to find an error in her current state, in which
case external help is required. In particular, such a student may benefit from a next-step
hint, guiding her a little closer toward a correct solution and helping her to continue on
her own (Aleven, Roll, et al. 2016). Many intelligent tutoring systems attempt to create
such next-step hints automatically, and adjust such hints to the student’s current state
as well as her underlying strategy (Van Lehn 2006). Typically, hints are generated by an
expert-crafted, rule-based model (N.-T. Le 2016). However, designing such expert models
becomes infeasible if the space of possible states is too large to cover with expert rules
(Murray, Blessing, and Ainsworth 2003; Koedinger et al. 2013; Rivers and Koedinger 2015).
For example, the space of possible computer programs grows exponentially with the
program length and the set of programs that perform the same function is infinite (Piech,
Sahami, et al. 2015). Other examples are so-called ill-defined domains where explicit
domain knowledge is not available or at least very hard to formalize (Lynch et al. 2009).

Several approaches have emerged which provide next-step hints without an expert
model. Typically, these approaches provide hints in the form of edits, that is, actions
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that can be applied to the student’s current state to change it into a more correct and/or
more complete state, based on the edits that successful students have applied in the past
(Gross and Pinkwart 2015; Price, Dong, and Barnes 2016; Rivers and Koedinger 2015;
Zimmerman and Rupakheti 2015). The most basic version of this approach requires only
two ingredients: an edit distance and at least one correct solution for the task. If a student
issues a help request, the system can simply compute the cheapest edit script δ̄ which
transforms the student’s current state to the closest correct solution and use the first
edit in that edit script as a hint (Rivers and Koedinger 2015; Zimmerman and Rupakheti
2015). Note that only the correct solutions need to be task-specific, whereas the same edit
distance can be applied across tasks or even across domains (Mokbel, Gross, et al. 2013).
Furthermore, we can adjust an edit distance to a task by adapting it to student data via
metric learning as suggested in Chapters 3 and 4. Finally, the approach achieves fine
grained and personalized feedback, because the hint is based on the student’s current,
individual state and thus fits to her specific solution strategy and style (N.-T. Le and
Pinkwart 2014).

A problem with this basic hint generation mechanism is that the generated hints
may still be counter-intuitive to a human programmer because the cheapest edit script
towards a correct solution does not necessarily traverse the most intuitive states. Most
existing approaches address this problem by constraining the generated hints to states
that have been visited often by past students (Barnes and J. Stamper 2008; Lazar and
Bratko 2014; Rivers and Koedinger 2014; Piech, Sahami, et al. 2015). Unfortunately, for
many programming tasks, the space of possible programs is so large that hardly any
state is visited more than once, even if aggressive pre-processing methods are applied to
canonicalize program representations (Price and Barnes 2015).

Therefore, a novel approach is needed that can select intuitive edits even in cases
where frequency information is not available. We base this approach on the Hint Factory,
which generates hints that have led past students in the same situation to a correct
solution (Barnes and J. Stamper 2008; J. C. Stamper et al. 2012). To transfer this approach
to vast and sparsely populated spaces, we consider not only the data of past students
who have visited the same state, but also similar states as quantified by an edit distance,
and we predict the ideal next state via our predictive pipeline from Chapter 5. Because
the prediction occurs in a latent, continuous space, we call our approach the Continuous
Hint Factory (CHF).

In more detail, the key contributions of this chapter are as follows. First, we provide
precise definitions of key concepts in the field of edit-based hint policies and integrate
them into the mathematical framework of this thesis. Second, we apply the predictive
pipeline from Chapter 5 to predict student behavior. Finally, we provide a method to
translate a prediction generated by our predictive pipeline into human-readable edits.

In experiments on two real-world datasets we provide evidence that the CHF is able
to predict what capable students would do in solving a learning task, that the CHF is
able to disambiguate between many possible edits, and that the hints provided by the
CHF match the hints of human tutors at least as well as other established hint techniques.

6.1 an integrated view of edit-based hint policies

In this section, we review existing approaches to edit-based hint policies. We guide this
review by formal definitions of key concepts in the hint policy literature, which we can

92



6.1 an integrated view of edit-based hint policies
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Figure 6.1: (a) A screenshot from the Snap programming environment. (b) A 2D embedding
of ten example traces in the Snap dataset. The 2D embedding was obtained via non-metric
multi-dimensional scaling (Sammon 1969) using the pairwise edit distances as input. Colors are
used to distinguish between different traces. States within one trace are connected by arrows.

connect to the theory of edit distances as established in Section 2.3. This connection will
also motivate the application of the predictive pipeline developed in Chapter 5.

To illustrate our scenario of interest, consider the task of programming a guessing
game. The program should first ask the player for their name, then generate a random
number between 1 and 10, and finally let the player guess the number, providing feedback
to the player regarding whether the number was too low, too high, or correct. A correct
solution for this task in the Snap programming language1 is shown in Figure 6.1(a). In a
tutoring system involving this task, a student would start off with an empty program
and then would add blocks to the program, delete blocks, or replace blocks with other
blocks until the student obtains a correct solution or gets stuck. In the latter case, the
student may hit a “help” button which would trigger the system to provide a hint in the
form of an edit which leads the student closer to a correct solution (e.g., to add an “ask”
block to ask for the player’s name in the beginning).

From a pedagogical point of view, it may be suboptimal to immediately tell the
student which edit to apply. After all, we deprive students of the possibility of finding
the correct next step themselves and do not require the students to reflect on underlying
concepts, as suggested by Fleming and Levie (1993) as well as N.-T. Le (2016). Indeed,
Aleven, Roll, et al. (2016) suggest displaying hints that reveal the solution only as a last
resort (“bottom-out hints”) after exhausting options for more principle-based hints. This
begs the question why we focus here on such bottom-out hints.

First, edit hints are different from other bottom-out hints in that they display only
a very small part of the solution, namely a single edit such that students still need
finish most of the problem themselves. Second, bottom-out hints may facilitate learning if

1 http://snap.berkeley.edu
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students reflect on the hint and engage in sense-making behavior (Aleven, Roll, et al. 2016;
Shih, Koedinger, and Scheines 2008). Third, many students skip through the principle-
based hints anyway to reach the bottom-out hint, indicating that they regard such hints
as more useful (Aleven, Roll, et al. 2016; Shih, Koedinger, and Scheines 2008). Fourth,
we point to a study by Price, Zhi, and Barnes (2017b), which indicates that edit hints are
judged as relevant and interpretable by human tutors. Finally, and most importantly, we
argue that more elaborate hint strategies are simply not available in many important
learning tasks because they require expert-crafted hint messages which are difficult to
apply at scale (N.-T. Le and Pinkwart 2014; Murray, Blessing, and Ainsworth 2003; Rivers
and Koedinger 2015).

In particular, there have been some approaches to make expert-crafted hints available
in larger state spaces, for example authoring tools for tutoring systems, which aim at
reducing the expert work required for designing feedback. A prime example are the
Cognitive Tutor Authoring Tools (CTAT), which support the construction of cognitive
tutors (Aleven, McLaren, et al. 2006). Cognitive tutors can be seen as a gold standard of
intelligent tutoring systems because their effectiveness has been established in classroom
studies, and they have been successfully applied in classrooms across the US (Koedinger
et al. 2013; Pane et al. 2014). However, even with authoring tools, covering all possible
variations in a sufficiently variable state space with many viable solutions may be
infeasible (N.-T. Le and Pinkwart 2014; Murray, Blessing, and Ainsworth 2003; Rivers
and Koedinger 2015). For example, in our programming dataset (see Figure 6.1(a)), we
consider more than 40 different solution strategies, each of which involves more than 40
steps.

Another approach is “force multiplication”, which assumes that a relatively small
number of expert-crafted hint messages are available, which are then applied to new
situations automatically, thereby “multiplying the force” of expert work (Piech, Jonathan
Huang, et al. 2015). Examples include the work of Choudhury, Yin, and Fox (2016), Head
et al. (2017), as well as Yin, Moghadam, and Fox (2015) who apply clustering methods to
aggregate many different states and then provide the same hint to all states in the same
cluster. Another example is the work of Piech, Jonathan Huang, et al. (2015) who annotate
each possible expert hint with a set of example states for which this hint makes sense and
a set of example states for which this hint does not make sense. Then, they train a classifier
for each hint that can decide for any new state whether the hint should be displayed
or not. Finally, Marin et al. (2017) annotate expert-crafted hints with small snippets of
Java code for which the given hint makes sense and then display the hint whenever
the respective snippet is discovered in a student’s state. Note that these approaches are
limited by the number of hints that are provided by the teaching experts. If experts did
not foresee a situation that requires specific help, the system can not provide help in
that situation. Moreover, these approaches are limited in resolution as experts can hardly
be expected to devise specific recommended edits for any conceivable student state. As
such, we regard force multiplication as a complementary approach to edit-based hints,
with the former being coarse-grained and principled, and the latter being fine-grained
and concrete.

In the remainder of this section, we will analyze edit-based next-step hint approaches
in more detail. We start our investigation by defining the state space, edits on that space,
traces through the state space, a generalized notion of edit distance on the state space,
and hint policies. Using these definitions, we provide an overview of hint policies in the
literature and compare them in light of our mathematical framework.
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Edit Distances and Legal Move Graphs

Recall that we wish to support students in solving a multi-step learning task by providing
on-demand edit hints. More precisely, we assume the following scenario. A student starts
in some initial state provided by the system, and then successively edits this initial state
until she finishes the task or gets stuck and asks the system for help. In the latter case, we
wish to generate an edit hint for the student, meaning a change that she can apply to her
current state in order to proceed toward a correct solution and hopefully continue on her
own. To define edits, we generalize the notion of sequence edits (refer to Definition 2.5)
and tree edits (refer to Definition 2.12) as follows.

Definition 6.1 (Edits, Edit Sets, Scripts). Let X be some set, for example the state space of
a learning task. We define an edit on X as a function δ : X → X. We call a set ∆ of edits
on X an edit set on X. We call an edit set symmetric if for all all edits δ ∈ ∆ and all states
x ∈ X there exists an edit δ−1 ∈ ∆ such that δ−1(δ(x)) = x. We call δ−1 an inverse edit
for δ on x.

We define an edit script over ∆ as a finite list of elements δ̄ = δ1 . . . δT from ∆. We
denote the set of all possible edit scripts over edit set as ∆∗. We define the application
δ̄(x) of an edit script δ̄ = δ1 . . . δT to a state x as the function composition δT ◦ . . . ◦ δ1(x),
where δ ◦ δ′(x) := δ(δ′(x)). If δ̄ = ε, we define δ̄(x) = x.

The notion of an edit set should cover all actions that a student can perform to
change their current state to a different state. Recall our example of the guessing game
programming task in Figure 6.1(a). In this scenario, the set of possible states is the set of
possible Snap programs. The edit set includes adding a single block at any point in the
program, replacing a block with another one, and deleting a block. For example, we may
delete the “say ’Hello!’ for 2 secs” block in Figure 6.1(a) or replace it with a “say ’Hello!’
for 1 sec”-block. Note that this edit set is symmetric, in the sense that we can reverse
every edit we have applied by deleting an inserted block, re-inserting a deleted block,
or replacing a replaced block with its prior version. This is a desirable property for edit
sets because it ensures that we can reach a correct solution from any state by reversing
erroneous actions and then continueing towards the correct solution. We can make this
notion of reachability precise by introducing the notions of legal move graphs, traces,
interaction networks, and solution spaces following the work of Piech, Sahami, et al.
(2015), Eagle, M. Johnson, and Barnes (2012), as well as Rivers and Koedinger (2014).

Definition 6.2 (Legal Move Graph, Trace, Solution Space). Let X be a state set and ∆
be an edit set on X. Then, the legal move graph according to X and ∆ is defined as the
directed graph GX,∆ = (X, E) where E = {(x, y)|∃δ ∈ ∆ : δ(x) = y}.

Now, let x, y ∈ X. We define a trace between x and y as a sequence x0, δ1, . . . , δT, xT
with x0 = x, xT = y, and for all t ∈ {1, . . . , T} : xt ∈ X, δt ∈ ∆, and δt(xt−1) = xt.2 We
call a state y reachable from x if a trace p from x to y exists.

2 Note that this definition is not exactly equivalent to the one given by Eagle, M. Johnson, and Barnes (2012),
because they do not require actions to be deterministic. In their framework, the same action applied to the
same state may lead to different subsequent states. For the sake of brevity, we refrain from this probabilistic
extension here.
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(a) The legal move graph
according to the state set X =
{a, aa, aac, ab, abc, b, bb, bbc}
and the edit set of the string
edit distance. x = ab is the
student’s current state (red).
Further, two traces with
states x1 = a, y1 = aac, and
x2 = b, y2 = bbc respectively
form an interaction network
(blue).

φ(x1)

φ(x2)

φ(x)

φ(y1)
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(b) The embedding of the trace
states (blue) and the student
state (red) from the left into the
edit distance space via the em-
bedding φ. The recommenda-
tion of the Gaussian process re-
gression (GPR) policy πGPR(x)
for the current student state x
is shown in orange.
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δ

(c) The legal move graph from
the left figure, including the edit
δ (orange) which corresponds to
the recommended edit of GPR
from the center figure.

Figure 6.2: An illustration of the Continuous Hint Factory (CHF) on a simple dataset of strings.
First, we compute pairwise edit distances between the student’s current state (red) and trace data
(blue). These edit distances correspond to the shortest paths in the legal move graph (left). The
edit distances also correspond to a continuous embedding, which we call the edit distance space
(center). In this space, we can infer an optimal edit (orange) using machine learning techniques,
such as Gaussian process regression (GPR). Finally, we infer the corresponding hint in the original
legal move graph (right), which can then be displayed to the student.

Now, let X̄ = {(xj
0, δ

j
1, . . . , δ

j
Tj

, xj
Tj
)}j=1,...,N be a set of traces. The interaction network

corresponding to this set of traces is defined as the graph GX̄ = (V, E) where

V =
{

xj
t

∣∣∣j ∈ {0, . . . , N}, t ∈ {1, . . . , Tj}
}

(6.1)

E =
{
(xj

t−1, xj
t)
∣∣∣j ∈ {1, . . . , N}, t ∈ {1, . . . , Tj}

}
(6.2)

We also call V a solution space.

As an example, consider the set of strings X = {a, aa, aac, ab, abc, b, bb, bbc} and the
edit set ∆ALI,{a,b,c} from Section 2.3.2. An excerpt of the legal move graph for this example
is shown in Figure 6.2(a). In particular, “ab” is connected to “a”, “aa”, “b”, “bb”, and
“abc” because we can delete b, replace b with a, delete a, replace a with b, and insert c
to transform “ab” to the respective other strings. Note that all edges in this legal move
graph are bi-directional, indicating the symmetry of the edit set.

Figure 6.2(a) also shows two traces in blue. These traces cover the strings “a”, “aac”,
“b”, and “bbc”. Therefore, the interaction network for this case would only contain these
four strings and the edges (“a”, “aac”) as well as (“b”, “bbc”). Note that these traces use
multiple edits at the same time and thus are defined over a different edit set compared
to the original legal move graph - in particular the edit set is ∆∗. Such “jumps” in the
legal move graph are typical if not every action of a user in the system can be recorded
(Piech, Sahami, et al. 2015).
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The basic suggestion of Piech, Sahami, et al. (2015) to construct a hint is the following.
If a student gets stuck in state x, our hint should guide them to the first state x1 on a
trace x0, δ1, . . . , δT, xT from x to the closest correct solution y in the legal move graph. Per
default, we could consider the number of states T in a trace as its length. However, we can
also generalize this notion by using the concept of a cost function as in Definition 2.6. This
concept also yields a generalized version of the edit distance as given in Definitions 2.6
and 2.13

Definition 6.3 (Cost Function and Edit Distance). Let X be a set and ∆ be an edit set on
X. A function c : ∆× X → R+ is called a cost function on ∆. We call c(δ, x) the cost of
applying edit δ to the state x.

We call a cost function symmetric if c(δ, x) = c(δ−1, δ(x)) for all states x ∈ X, all edits
δ ∈ ∆, and at least one inverse edit δ−1 for δ on x.

We define the cost of an edit script δ̄ ∈ ∆∗ recursively as c(ε, x) = 0 and c(δ1 . . . δT, x) =
c(δ1, x) + c(δ2 . . . δT, δ1(x)). We define the edit distance according to ∆ and c as follows.

d∆,c : X× X → R+

d∆,c(x, y) := min
δ̄∈∆∗

{
c(δ̄, x)

∣∣∣δ̄(x) = y
}

(6.3)

Let GX,∆ = (V, E) be the legal move graph according to X and ∆ and let c be an edit
cost function on ∆. We define the length or cost of a trace p = x0, δ1, . . . , δT, xT in GX,∆ as
c(p) := c(δ1 . . . δT, x0).

We call any trace p such that c(p) = min{c(p)|p is a trace from x to y} a shortest trace
from x to y.

We can show that, searching for a shortest trace in the legal move graph is essentially
equivalent to computing the edit distance. In particular, we obtain the following results.

Theorem 6.1. Let X be a state set, let ∆ be an edit set on X, and let c be a cost function over ∆.

Then, the following statements hold for any x, y ∈ X where y is reachable from x.

First, for each trace p = x0, δ1, . . . , δT, xT from x to y, δ1, . . . , δT is an edit script such that
δ̄(x) = y and c(δ̄, x) = c(p).

Second, for each edit script δ̄ = δ1, . . . , δT such that δ̄(x) = y there exists a trace p =
x0, δ1, . . . , δT, xT from x to y, such that c(δ̄, x) = c(p).

Third, it holds:
d∆,c = min{c(p)|p is a trace from x to y}. (6.4)

Proof. Let x, y ∈ X such that y is reachable from x.

We prove all claims in turn. First, let p = x0, δ1 . . . , δT, xT be a path from x to y.
Then, per definition of a trace, for each t ∈ {1, . . . , T} it holds: δt(xt−1) = xt. Therefore,
δ1, . . . , δT is an edit script such that δ̄(x) = y. c(δ̄, x) = c(p) follows from the definition
of c(p).

Second, let δ̄ = δ1, . . . , δT be an edit script such that δ̄(x) = y. We can construct the cor-
responding trace recursively as x0 := x and xt := δt(xt−1). Accordingly, x0, δ1, . . . , δT, xT
is a trace from x to y. Further, c(δ̄, x) = c(p) follows from the definition of c(p).
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When clicked

say

“Hello!”

. . . repeat until

answer = random ask and wait

“What’s the number?”

if

random = answer say

“Good job! You got it!”

if

random < answer say

“Too high!”

say

“Too low!”

Figure 6.3: An abstract syntax tree, simplified for clarity, corresponding to the Snap program
shown in Figure 6.1(a).

Finally, consider the third claim. If the claim would not hold, then either there exists
a path from x to y that is shorter than the cost of the cheapest edit script, or there exists
an edit script that is cheaper than the length of the shortest path. Due to the first two
claims, neither case can occur.

In other words, we can construct a hint mechanism by computing the cheapest edit
script δ̄ = δ1, . . . , δT which transforms the student’s current state x into the closest correct
solution y and return δ1 as hint. Because the cheapest edit script corresponds to a shortest
trace, this leads the student toward the correct solution with the least amount of work.
Unfortunately, not all edit distances permit the efficient computation of the cheapest edit
script.

Consider the Snap example from Figure 6.1(a). In this domain, the order of many
blocks in the program is insignificant to the function of the program. Therefore, one may
wish to apply an edit distance that works on unordered trees. However, edit distances
on such unordered trees are NP-hard (Zhang, Statman, and Shasha 1992), making them
infeasible in practice. Therefore, we focus here on the subset of efficiently computable
edit distances, namely the edit distances covered in Section 2.3.

For our scenario, the tree edit distance of Zhang and Shasha (1989) is particularly
interesting, because many learning environments for computer programming have ap-
plied the tree edit distance to compare abstract syntax trees of computer programs (e.g.
Choudhury, Yin, and Fox 2016; Freeman, Watson, and Denny 2016; Nguyen et al. 2014;
Rivers and Koedinger 2015). An abstract syntax tree covers the syntactic structure of a
computer program with syntactic building blocks as nodes. For example, the program
shown in Figure 6.1(a) would correspond to the abstract syntax tree shown in Figure 6.3.
Mokbel, Gross, et al. (2013) as well as Price, Zhi, and Barnes (2017a) have extended the
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tree edit distance to a two-stage approach where some special subtrees, such as functions
in a program, may be arbitrarily re-ordered but all subtrees below these order-invariant
nodes are still compared using a classic tree edit distance. In another approach, Zimmer-
man and Rupakheti (2015) have suggested to reduce the computational complexity of the
tree edit distance by approximating it with the pq-gram-edit distance of Augsten, Böhlen,
and Gamper (2008), which results in a considerably faster runtime of O(m · log(m)).

Beyond computational complexity, a key challenge to edit distance is that it does not
necessarily correspond to the semantic distance between states. Consider again the Snap
example in Figure 6.1(a). Here, we could replace any of the strings in “say” or “ask”
blocks without changing the basic computed function of the program. More generally,
we can apply arbitrarily many edits to a given program without changing the computed
function. Conversely, even small syntactic changes can result in severe semantic changes,
for example if we would remove the “repeat until” block in the program. This mismatch
between edit distance and semantic distance can negatively impact the utility of generated
hints. In particular, edits may be recommended that get the student syntactically closer
to a correct solution but may be semantically irrelevant or even confusing.

One approach to address this issue is canonicalization, which essentially transforms
the raw states in a state space X to a canonic form such that semantically equivalent
states have the same canonic form. The edit distance is then defined between canonic
forms instead of raw states, yielding a much smaller legal move graph and edits that
put stronger emphasis on semantically relevant changes. Canonicalization is particularly
common for computer programs, where we can normalize variable names or the order of
binary relations (such as <) and remove unreachable code (Rivers and Koedinger 2012).
In all these cases, a canonicalization is a function from the state space to a subset of itself.
However, more generally, one could define a canonicalization as any kind of mapping φ
into an auxiliary space. For example, Paaßen, Jensen, and Hammer (2016) canonicalize
computer programs by representing them in terms of their execution trace, to which they
apply a string edit distance d̃, yielding the distance d(x, y) = d̃(φ(x), φ(y)) between any
two states x and y.

A challenge in canonicalization lies in the fact that edits on the canonic form may not
be directly applicable or interpretable for students. For example, students cannot easily
adapt their program to directly influence the program’s execution in the way indicated
by an edit on the execution trace. To address this problem, Rivers and Koedinger
(2015) suggest aligning the edits on the canonic form with the student’s original state
in a process called state reification. Another challenge lies in the fact that too drastic
canonicalization may remove features of the original state for which feedback would
be desirable. For example, tutoring systems for computer programming often not only
intend to teach functionally correct programming but also programming style such that
important stylistic differences, even though semantically irrelevant, need to be preserved
in the canonic form (Piech, Jonathan Huang, et al. 2015; Choudhury, Yin, and Fox 2016).
Furthermore, there can be in principle no canonicalization which uniquely identifies all
relevant functions because this would solve the halting problem. As such, we propose to
combine modest canonicalization with other adaptation approaches, especially metric
learning, to achieve a semantic-aware distance measure on states. In our experiment, we
normalize variable names, the order of variable declarations, and the order of binary
relations for canonicalization purposes.

In summary, we have introduced the concepts of edits, legal move graphs, shortest
paths, edit distances, and canonicalization. These concepts cover everything we need to
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know to provide a review of existing hint policies in the literature.

Hint policies

Formally, our goal is to devise a function π that can, for any state x students may visit,
return an edit δ = π(x) they should apply next. Inspired by Piech, Sahami, et al. (2015),
we call such a function a hint policy.3

Definition 6.4 (Hint Policy). Let X be a state set and ∆ be an edit set on X. A hint policy
is a function π : X → ∆.

The arguably simplest policy is the one of Zimmerman and Rupakheti (2015), which
always recommends the first edit δ1 in a cheapest edit script δ1, . . . , δT toward the closest
correct solution. Such an approach does not even require student data, except for at least
one example of a correct solution of the task. A drawback of the Zimmerman policy is
that it can not disambiguate between multiple possible cheapest edit scripts and thus
may recommend edits which do lead to the correct solution but are still counter-intuitive.

Rivers and Koedinger (2015) address this issue in their Intelligent Teaching Assistant
for Programming (ITAP). Their technique involves the following steps: First, they apply
canonicalization. Second, they retrieve the closest solution according to the tree edit
distance on canonic forms. Third, they compute a shortest trace p = x0, δ1, . . . , δT, xT
from the student’s state to the closest correct solution. Fourth, of the states x1, . . . , xT,
they select the one with the highest desirability score, where the desirability score is a
weighted sum of the frequency in past student trace data, the edit distance to the student’s
state, the number of successful test cases the state passes, and the edit distance to the
solution (Rivers and Koedinger 2015). Finally, they apply an inverse canonicalization
(state reification) to infer edits that can be directly applied to the student’s state to
transform it to the selected state. This approach has been shown to provide helpful edits
in almost all cases for a broad range of tasks (Rivers and Koedinger 2015). Note that
the success of the Rivers policy hinges upon meaningful frequency information. If no
or little frequency information is available, the hints provided by the Rivers policy may
not be representative of generic steps toward a solution but rather of specificities of the
reference solution that was selected.

Piech, Sahami, et al. (2015) have suggested a similar approach to the previous two by
also recommending the first edit on a shortest trace towards the next correct solution,
but assigning different costs to edits. In particular, they defined the cost of any edit
connecting two states x and y as the inverse frequency of y in student data, such that the
policy is more likely to recommend states that were visited often. In an evaluation on a
large-scale dataset consisting of over a million states from the Hour of Code Massive Open
Online Course (MOOC), Piech, Sahami, et al. (2015) found that this policy outperformed
all other approaches, including the previous two. Note that this approach still relies on
frequency information, which may not be available in sparsely populated spaces where
almost no state is visited more than once.

3 Note that Piech, Sahami, et al. (2015) define a hint policy differently, namely as a function π′ mapping a
state to a state. Our definition is a proper generalization of this concept because we can always generate a
Piech-style hint policy π′ from a policy π in our sense by setting π′(x) := δ(x) where δ = π(x). The inverse
conversion is not always possible because there may be multiple edits leading to the same state.
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As an alternative to policies that approach the closest correct solution directly, Gross
and Pinkwart (2015) suggest to guide students along the traces of successful past students.
They first construct an interaction network of past students’ trace data. When a student
requests help, they retrieve the closest state xj

t to the student’s current state in the
interaction network according to an edit distance. Then, they distinguish between two
kinds of help-seeking behavior. If students are trying to find an error in their code, the
system recommends an edit toward xj

t, thereby attempting to correct the error. If students
assume that their current state is correct, but they are looking for a next step, the system
recommends an edit toward the successor xj

t+1 of xj
t, thereby guiding the student closer to

a solution (Gross and Pinkwart 2015). This policy can be seen as an instance of case-based
reasoning, where recommendations are based on a similar case from an underlying case
base. Similarly, Freeman, Watson, and Denny (2016) have taken this view to analyze
Python programs and used a weighted tree edit distance to retrieve similar cases. Further,
Gross, Mokbel, et al. (2014) proposed example-based feedback, in which the closest
prototypical state in a dataset is retrieved and shown to the student to elicit self-reflection
and sense-making in order to improve their own state. If the closest state in the case base
is sufficiently similar to the student’s state and corresponds to a capable student, such an
approach can provide hints that emulate the actions of a capable “virtual twin” of the
student. However, if only few reference solutions exist, the selected next state may still
be fairly dissimilar and edits toward the next state may include not only error-correcting
hints or next-step hints but also stylistic or strategic choices that do not correspond to
the student’s goals.

Lazar and Bratko (2014) propose yet a different approach by recommending edits that
have been frequent in past student traces and increase unit test scores. As with the Piech
policy, the policy of Lazar and Bratko (2014) critically relies on frequency information,
albeit for edits instead of states, which may not always be available. Furthermore, edits
that may be generally important for a task may not necessarily be helpful in a specific
situation.

An alternative view is provided by the Hint Factory, which analyzes the question
of choosing the optimal edit according to a Markov Decision Process (Barnes and J.
Stamper 2008). In particular, the Hint Factory always returns the edit that maximizes
the expected future reward, where a reward is given whenever a student has achieved a
correct solution. Several studies have demonstrated that the Hint Factory reduces student
dropout and helps students to complete more problems more efficiently in logic problem
solving (J. C. Stamper et al. 2012; Eagle and Barnes 2013). The Hint Factory has also
been applied to further domains, such as the serious game BOTS (Hicks, Peddycord, and
Barnes 2014) or the SNAP programming environment (Price, Dong, and Lipovac 2017).

Note that the Markov Decision Process model relies on an estimate of the transition
probability distribution P(x′|x, δ) of moving to state x′ from x via the edit δ. The Hint
Factory estimates this probability distribution based on transition frequencies in the trace
data and therefore requires meaningful frequency information. As such, the Hint Factory
can provide hints only for states that are part of the interaction network, and for which a
trace to a correct solution in the interaction network exists. This has been dubbed the
hintable subgraph (Barnes, Mostafavi, and Eagle 2016). In practice, students may move
outside the hintable subgraph. Indeed, research has shown that for a reasonably small,
open-ended programming task, over 90% of states are visited only once, indicating that
future students will likely visit states that have not been seen before and may not even
be connected to previously seen states in the legal move graph (Price and Barnes 2015).
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Also note that the number of unique states remained high even after applying harsh
canonicalization (Price and Barnes 2015). This result matches our own two datasets,
where 97.23% and 82.79% of states were visited only once. This begs the question, how
can the Hint Factory be extended to such sparsely populated state spaces? To address
this question, Price, Dong, and Barnes (2016) have introduced contextual tree decomposition
(CTD), which generates interaction networks only for small subtrees of the students’
abstract syntax trees. Due to the size limitation, the state space for each subtree is
significantly smaller and thus more densely populated with student data. However, the
approach faces an ambiguity challenge in that one hint is generated for each (small)
subtree of the student’s state, and the student or the system has to select from these
possible hints (Price, Zhi, and Barnes 2017a).

Overall, we observe that previous approaches are either limited by their reliance
on frequency data, namely the Hint Factory, the Piech policy, and the Lazar policy, or
by generating hints based only on a single reference solution, namely the Zimmerman
policy, the Gross policy, or the Rivers policy. Our approach is an attempt to generate
hints based on multiple reference solutions, but without relying on frequency information.
More specifically, we use an affine combination of multiple reference solutions to express
a virtual state to which the student should move, and we generate this affine combination
such that it predicts what a capable student would have done in the same situation. As
such, we use the same basic approach as the Hint Factory, in that we also try to bring the
student closer to the next state of capable students in the same situation. However, we
extend the Hint Factory by basing our prediction not on frequency, but on the movements
of students in similar situations through the space of possible solutions. This state of
possible virtual solutions, expressible as affine combinations of states we have seen before,
is continuous; hence the name Continuous Hint Factory (CHF).

Note that embedding states in a continuous space has already been proposed by
Piech, Jonathan Huang, et al. (2015), who constructed such an embedding via neural
networks. More precisely, the embedding is computed by executing the programs on
example data and recording the variable states P before executing a block of code A as
well as the variable states Q after A has been executed. Both P and Q are embedded
in a common space via a single-layer neural network, yielding the representations fP
and fQ. Then, a matrix MA is constructed that maps fP to fQ, that is, MA is constructed
such that fQ ≈ MA · fP. This matrix MA is the embedding of the code block A (Piech,
Jonathan Huang, et al. 2015). However, this work has two crucial limitations: First, it relies
on a task-specific representation of fP and fQ that is generated via execution, whereas
the CHF only relies on edit distances, which are not task-specific (Mokbel, Gross, et al.
2013). Second, we provide a technique to convert the predictive result in the continuous
space to an actual, human-readable edit, which the Piech approach lacks.

We also note connections to other approaches cited before. First, the CHF is connected
to the work of Gross and Pinkwart (2015), in that we also recommend following the
actions of students in a similar situation, but we integrate knowledge of more than one
student. Second, similar to the work of Lazar and Bratko (2014), we recommend edits
that are frequent in past student data but focus on those edits which have been applied
in similar states. Finally, we incorporate many of the key concepts and approaches of
Rivers and Koedinger (2015), in that we also apply canonicalization, and build upon the
concept of path construction, a desirability score, as well as state reification to infer an
edit that corresponds to the optimal hint in the embedding space. However, we extend
this approach by considering not only edits toward the closest correct solution but edits
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toward all reference solutions and by replacing their desirability score with the distance to
the recommended next state in the edit distance space. This alternative score incorporates
the spirit of many of the criteria proposed by Rivers and Koedinger (2015), as it also
punishes going too far away from the student’s current solution, rewards getting closer
to the goal, and represents what other students generally did, but it relies neither on
frequency information, nor on an expert-chosen weighting between the different criteria.

In the next section, we introduce the CHF in more detail.

6.2 method

The goal of the Continuous Hint Factory (CHF) is to predict what capable students would
do and to generate an edit that corresponds to this prediction. To implement this goal,
the CHF involves three steps. First, we collect trace data of capable past students. Second,
we apply the predictive pipeline from Chapter 5. Third, we translate the prediction into
a human-readable edit.

With respect to the first step, we recommend to record trace data of students whose
success could be verified either by human tutors or via auto-grading approaches (e.g.
unit tests). Further, we propose to pre-process these traces to avoid detours. More
precisely, let x0, δ1, . . . , δT, xT be a trace. If for any t, t′ ∈ {0, . . . , T} with t′ > t it holds
that d(xt, xT) < d(xt′ , xT), we remove the entire subtrace δt+1, . . . , δt′ , xt′ . This way, we
ensure that the edit distance to the final solution always shrinks along the trace.

Once such a dataset is collected, we apply the predictive pipeline from Chapter 5
using Gaussian process regression (GPR). In particular, given a student’s current state x,
the GPR predictive function f yields a vector f (x) = φ(y) in an implicit kernel space for
some unknown y ∈ X. As an example, consider the string edit distance example shown
in Figure 6.2(b). In this example, the string edit distances are d∆,c(x, x1) = d∆,c(x, x2) = 1
and d∆,c(x1, x2) = d∆,c(x2, x1) = 1. For the hyper-parameters ξ = 1 and σ̃2 = 0 we obtain

~k(x) = (
1√

e
,

1√
e
), K =

(
1 1√

e
1√

e 1

)
, and ~γ(x) = K−1 ·~k(x) ≈

(
0.3775
0.3775

)
Thus, the recommended next state in the kernel space, indicated by the orange arrow in
Figure 6.2(b), is

f (x) ≈ φ(x) + 0.3775 ·
(
φ(y1)− φ(x1)

)
+ 0.3775 ·

(
φ(y2)− φ(x2)

)
Now, the key remaining challenge is that we do not know the predicted next state

y in the original state, but only its vectorial representation f (x) = φ(y) in terms of an
affine combination. Further, as discussed in Chapter 5, inverting φ is a hard problem,
especially for structured data (Bakır, Weston, and Schölkopf 2003; Bakır, Zien, and Tsuda
2004; Kwok and I. W.-H. Tsang 2004). Fortunately, our problem is conceptually simpler.
We only need to infer an edit δ that brings the student closer to y, that is, we wish to
solve the problem

min
δ∈∆

d∆,c
(
δ(x), y

)
(6.5)

where c is some cost function over ∆. We can address this problem by generalizing the
edit distance theory we have already established in Section 2.3. In particular, we can
show that Equation 6.5 simplifies drastically.
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Theorem 6.2. Let X be a state set, let ∆ be a symmetric edit set over X, and let c be a symmetric
cost function over ∆.

Then, d∆,c is a pseudo-Euclidean distance for some positive spatial map φ+ : X → Rm and
some negative spatial map φ− : X → Rn.

Now, let {xi}i=1,...,M ⊂ X, let x, y ∈ X, let X+ :=
(
φ+(x1), . . . , φ+(xM), φ(x)

)
∈

Rm×M+1, let X− :=
(
φ−(x1), . . . , φ−(xM), φ(x)

)
∈ Rn×M+1, and let~α ∈ RM+1 such that:

φ+(y) = X+ ·~α, φ−(y) = X− ·~α, and
M+1

∑
i=1

αi = 1

Then, the maximization problem in Equation 6.5 can be re-written as:

min
δ∈∆

αM+1 · d∆,c
(
δ(x), x

)2
+

M

∑
i=1

αi · d∆,c
(
δ(x), xi

)2 (6.6)

Proof. The outline of the proof is as follows: We first show that the edit distance ∆c,∆
is self-equal and symmetric such that Theorem 2.2 applies and guarantees pseudo-
Euclideanicity. Then, we apply Equation 2.9 to arrive at Equation 6.6.

For the details, refer to Appendix A.16.

The minimization problem in Equation 6.6 has multiple key advantages. First, it does
not require us to compute the vectorial embedding for any state. Instead, we can infer
the optimal edit script solely based on the edit distance d∆,c(δ(x), x), as well as the edit
distances d∆,c(δ(x), xi), which we can compute explicitly. Second, our revised form of the
problem provides the following, useful re-interpretation. We need to find an edit δ such
that the resulting state stays close to the original state x, gets closer to states xi for which
αi is positive, and gets further away from state xi for which αi is negative. Note that
this re-interpretation is consistent with the criterion of Rivers and Koedinger (2014) that
a next state should stay close to the student’s current state. Finally, the re-formulation
shrinks our search space, because we only have to consider edits that bring us closer to
states xi with positive coefficients αi. We can extract such edits from the cheapest edit
scripts between x and states xi with positive coefficients αi. For all these possible edits
we can evaluate the error in Equation 6.6 and select the edit with the lowest error.

Consider the example illustrated in Figure 6.2(c). Recall that the coefficients α resulting
from the GPR hint policy are αx1 = αx2 ≈ −0.3775 and αy1 = αy1 ≈ +0.3775. So we need
to find an edit that brings us closer to y1 = aac and y2 = bbc but further away from
x1 = a and x2 = b. The cheapest edit script between x and y1 is rep2,ains3,c, and the
cheapest edit script between x and y2 is rep1,bins3,c. Therefore, we need to consider the
edits rep2,a, ins3,c, and rep1,b. The resulting states of these edits would be aa, abc, and bb
respectively. Amongst these options, abc minimizes our error because it is closer to both
aac and bbc, further away from both a and b, and stays close to ab. Therefore, we would
recommend ins3,c as hint.

In practical examples, this approach would be limited by the number of edits to be
considered. For many training data points with positive coefficients and long edit scripts,
this number could become infeasibly large. One way to limit the number of edits is to
incorporate more of the criteria suggested by Rivers and Koedinger (2014) and consider
only edits that result in syntactically correct states, result in programs that fulfill at least
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a

b

ab

aa aac

bb bbc

abcd

-0.3775

-0.3775

+0.3775

+0.3775

1

+0.3043

+0.3043

+0.3914

Figure 6.4: An illustration of the sparse representation of the recommended state for the string
example of Figure 6.2. The student’s current state is the string x = ab (shown in red), the closest
correct solution is the string x∗ = abcd (shown in green). The coefficients αi and the represented
state φ(x) + πGPR(x) returned by the Gaussian process regression (GPR) policy are shown in
orange. The sparse coefficients and the corresponding represented state are drawn in purple. The
constraints d(xi, x) ≤ d(x, x∗) and d(xi, x∗) ≤ d(x, x∗) are illustrated by dashed purple lines.

as many test cases or get us closer to a correct solution. In addition, we propose to
limit the search space to a reasonable size by using fewer coefficients to represent the
recommended state, namely a subset of those states which lie between the student’s
current state x and the next correct solution x∗. This is consistent with another criterion
proposed by Rivers and Koedinger (2014), namely that the recommended state should
both be close to a correct solution and to the student’s current state.

In formal terms, we look for a coefficient vector α̃ such that α̃i is nonzero only if
d(xi, x) ≤ d(x, x∗) and d(xi, x∗) ≤ d(x, x∗), such that at most m entries are nonzero,
such that the sum over all entries of α̃ is 1, and such that the state represented by α̃
is as close as possible to the state represented by ~α. While this is a NP-hard problem,
multiple simple heuristics exist, which have been summarized by D. Hofmann et al.
(2014). In our experiments, we apply both kernelized orthogonal matching pursuit and
an approximation via the largest entries of~α and use whatever approximation is closer
to the actual recommended state.4

Consider the example illustrated in Figure 6.4. Here, the original coefficients α re-
turned by the GPR hint policy are shown in orange and represent the state shown as
an orange diamond. Now, assume that the student’s current state is the string “ab”
and the closest correct solution is the string “abcd”. In that case, only the strings “ab”,
“aac”, “bbc”, and “abcd” fulfill the constraints d(xi, x) ≤ d(x, x∗) and d(xi, x∗) ≤ d(x, x∗)
(indicated by dashed purple lines). If we now try to represent the recommended state by
using only 3 of those four strings, this results in a representation via the strings “aac”,
“bbc”, and “abcd” with roughly equal coefficients, resulting in a represented state (shown
in purple) close to the original hint. The selected hint, in this case, would still be ins3,c.

4 We note that kernelized OMP does, per default, not guarantee an affine combination. For an adjusted version
that guarantees an affine combination, refer to Appendix A.17.
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Summary

To conclude our description of the Continuous Hint Factory (CHF), we provide a short
summary of all steps involved. First, we need to perform the following preparation steps:

1. Collect trace data from successful students.

2. Remove all intermediate states in the traces that do not get closer to the goal.

3. Compute the canonic forms of the trace data and their pairwise edit distances.

4. Compute the pairwise radial basis function kernel values K. The length scale
parameter ξ, as well as the noise parameter σ̃, can be selected such that the predictive
accuracy of the GPR model on unseen evaluation data is as high as possible.

5. Perform eigenvalue correction on K.

Now, assume that a new student is in state x and requests help. In that case, the
following steps need to be performed.

1. Compute the canonic form of x and the edit distance of this canonic form to all
canonic forms in the trace data before.

2. Compute the radial basis function kernel values~k(x) based on these distances.

3. Extend the eigenvalue correction to the new kernel values.

4. Compute the coefficients α of the GPR hint policy via the formulae in Theorem 5.1.

5. Optionally, sparsify these coefficients via one of the techniques of D. Hofmann et al.
(2014).

6. Compute the cheapest edit scripts between x and all training states xi for which αi
is positive.

7. Optionally, subselect edits δ from these edit scripts that result in states δ(x) that
conform to further criteria, e.g., unit test fulfillment, or syntactic correctness (Rivers
and Koedinger 2014).

8. Compute the error term in Equation 6.6 for all remaining edits.

9. Select the edit with the lowest error as hint.

This concludes our description of the CHF. In the next section, we evaluate the CHF
approach experimentally.

6.3 experiments

We consider two datasets for our analysis.
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Guessing Game Dataset

First, we consider a dataset collected in an introductory undergraduate computing course
for non-computer science majors during the Fall of 2015 at a research university in the
south-eastern United States. The course had approximately 80 students, split among six
lab sections. The first half of the course focused on learning the Snap5 programming
language through a curriculum based on the Beauty and Joy of Computing (Garcia, Harvey,
and Barnes 2015). Here, we focus on the “Guessing Game” task, which had the following
description: “The computer chooses a random number between 1 and 10 and continuously
asks the user to guess the number until they guess correctly.” Students did not receive
specific instructions regarding the form of the program. An example solution for the
task is presented in Figure 6.1(a). Students worked on this assignment during class for
approximately one hour, with a teaching assistant available to assist them and the option
of working in pairs. The class was conducted as normal, and the students were not
informed that data was being collected. The state of the student’s program was recorded
after every edit. Students who did not correctly select the assignment they were working
on were excluded from the analysis. The dataset consists of 52 traces with 8669 states
overall.

Each of the final states was graded by two independent graders. The graders used a
rubric consisting of nine assignment objectives and marked whether each state success-
fully or unsuccessfully completed each objective. The graders had an initial agreement
of 94.5%, with Cohen’s κ = 0.544. After clarifying objective criteria, each grader inde-
pendently regraded each state where there was disagreement, reaching an agreement of
98.1%, with Cohen’s κ = 0.856. Any remaining disagreements were discussed to create
final grades for each assignment. As our aim is to predict what capable students would
do, we kept only traces that successfully completed at least eight of the nine objectives.
This left 47 traces with 7864 states.

UML Dataset

As a second dataset, we utilize data collected in an introductory programming course for
computer scientists at a German university in 2012. The students were asked to draw
a Unified Modelling Language (UML) activity diagram that describes the process of
adding two binary numbers. An example solution is shown in Figure 6.5. From the
available student data, we extracted six typical strategies and created two correct traces
and one erroneous trace for each strategy. Overall, the correct traces contained 364 states
and the erroneous traces 115 states. We presented each state in the erroneous traces to
three graders who independently were asked to suggest all possible edit hints that could
be given to a student in the particular situation, taking past states into account. We also
instructed the tutors to provide an estimate of hint quality in the interval [0, 1] for each of
their hints, taking into account the following criteria: 1) Does the hint follow the strategy
of the student? 2) Does the hint conform to the student’s current focus of attention or
does it address a different part of the state? 3) Is the hint effective in addressing the
problems in the student’s state? 4) Is the hint effective in guiding the student toward a
solution? In a second meeting, all tutors met to add ratings for the hints of the respective
other tutors and to discuss discrepancies in the ratings. If after discussion at least one

5 http://snap.berkeley.edu
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Let m = |x|. 1
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Figure 6.5: A correct example solution for the UML binary adder task. Numbers indicate the
order in which nodes have been added to the UML diagram.
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expert rated a hint with a grade below 0.5, the hint was excluded from the set. 1053
hints remained after this process. The average inter-rater correlation via Pearson’s r was
r = 0.588, indicating moderate agreement.

Procedure

We represent the states of both datasets as trees. In case of the Snap dataset, we directly
used the abstract syntax trees as displayed in Figure 6.3. For the UML dataset, we
removed back-references, such as the arrow from node 21 to node 11 in Figure 6.5, to
obtain a tree structure. We also added the text of the respective node to the label, for
example, “return z” for node 21 in Figure 6.5. In both datasets, we canonicalized the trees
by normalizing variable names and literals, normalizing the order of binary relations,
and removing non-executable code, as recommended by Rivers and Koedinger (2012).

As an edit distance, we employ the tree edit distance of Zhang and Shasha (1989)
as introduced in Section 2.3.3. For the Snap dataset we use a uniform cost function of
1 for deletions, insertions, and replacements. For the UML dataset, we define deletion
and insertion costs as 1, replacement costs between unequal node types as infinite, and
replacement costs between action nodes (displayed as ellipses in Figure 6.5) as the
string edit distance between the node text, normalized to the interval [0, 1]. We ensure
Euclideanicity of the edit distances via clip eigenvalue correction (Gisbrecht and Schleif
2015). Based on the tree edit distance, we exclude states that do not get closer to the
final state in the respective trace. For the guessing game dataset, this left 1005 states,
812 of which were unique. Of these 812 unique states, 94.09% were visited only once.
For the UML dataset, the procedure did not remove any states. Of the 364 states in the
UML dataset, 215 were unique, and of these unique states, 82.79% were visited only once.
These numbers indicate that meaningful frequency information is only available for very
few training states, which is consistent with the findings reported by Price and Barnes
(2015) on similar data from an open-ended Snap programming task.

We considered all hint policies mentioned in this chapter as reference policies for
comparison. Due to the lack of meaningful frequency information in our data, however,
we can neither apply the Hint Factory (Barnes and J. Stamper 2008) nor the Piech policy
(Piech, Sahami, et al. 2015). Furthermore, to keep the approach generic, we do not use
task-specific syntactic or unit test information for our experiments, which rules out
the policy of Lazar and Bratko (2014). There remain the policy of Gross and Pinkwart
(2015), which uses the successor of the next state in the trace data to construct a hint,
the policy of Zimmerman and Rupakheti (2015), which uses the closest correct solution
to construct a hint, and the policy of Rivers and Koedinger (2015), which also uses the
closest correct solution. The Zimmerman policy and the Rivers policy mainly differ in
how hints are constructed from the closest correct solution. However, given that we use
neither frequency nor syntactic or semantic correctness information, and consider only
single edits instead of edit combinations, both policies become very similar such that we
only consider the Gross policy and the Zimmerman policy in this case.

We implemented all hint policies in MATLAB® and utilized the same implementation
for Gaussian process regression (GPR) as in Chapter 5. To optimize the kernel length
scale ξ and the noise standard deviation σ̃ of the GPR model, we employ a random
hyper-parameter search with 10 repeats as recommended by Bergstra and Bengio (2012).
We set the maximum number of training states to represent the hint of the CHF policy to
m = 11.
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Table 6.1: Mean RMSE ± standard deviation in predicting the next step and the final step of
capable students for both the Snap dataset, as well as the UML dataset. The first column lists the
different prediction schemes. Lower values are better, and a value of 0 is ideal.

Snap UML

Prediction scheme Next Final Next Final

Do nothing 17.5± 3.89 39.3± 9.36 5.27± 0.53 28.9± 5.28
1-NN 23.7± 5.39 39.1± 9.49 7.89± 3.50 29.1± 6.00
Closest-correct 26.7± 5.46 43.0± 8.60 25.50± 1.23 19.9± 8.42
GPR 16.6± 4.09 37.8± 9.15 3.18± 1.66 27.8± 5.32

Research Questions & Results

In our experiments, we investigate two research questions, which we will cover in turn.
We evaluate statistical significance using a one-sided Wilcoxon sign-rank test. Further,
we apply a Bonferroni correction to avoid type I errors due to multiple tests.

RQ1: How well does the GPR model capture the behavior of capable students, that is,
can GPR predict what a capable student would do?

To investigate RQ1, we consider two measures of predictive accuracy. First, we mea-
sure the distance between the predicted next state of the GPR model and the actual next
state of the respective student (next-step error). Second, we measure the distance between
the predicted next state and the final state of the respective student (final-step error). We
measure both distances in terms of root mean square error (RMSE) as in Equation 5.2.
We evaluate the next-step error and the final-step error in a leave-one-out crossvalidation
over the traces, which means that in each fold we use all but one trace as training data
for the prediction and the remaining trace to evaluate the model.

Note that RQ1 is only concerned with the prediction module of each hint policy, that
is, the reference state based on which edits are generated, not the edits that are used as
hints. As such, we do not directly compare with the Gross or Zimmerman policy but
with the reference states they would use, namely the successor of the closest next solution
(1-NN), and the closest correct solution (closest-correct) respectively. Given the nature of
these references, we would expect that the 1-NN prediction would perform well in the
next-step error but badly in the final-step error and that the closest-correct prediction
would perform badly in terms of the next-step error but good in terms of the final-step
error. As an additional reference, we provide the error for the trivial prediction of staying
in the same state, that is, π(x) = x (do nothing).

Table 6.1 shows the RMSE averaged over the crossvalidation folds (± standard
deviation) for both datasets where each column lists one error measure for all prediction
schemes6.

6 Note that the RMSE cannot be interpreted directly as the average number of edits between the predicted next
state and the gold standard because the RMSE assigns higher weight to larger deviations due to the square.
Further, in this particular evaluation, but not for RQ2, eigenvalue correction distorts the edit distances to
become larger.
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Statistical analysis reveals that GPR is significantly better in predicting the next state
compared to all other baselines for both datasets (p < .01). Further, GPR is significantly
better in predicting the final state compared to the “Do nothing” and the 1-NN prediction
for both datasets (p < .01), and better than the Closest-correct prediction for the Snap
dataset (p < .001). Interestingly, the 1-NN prediction does not perform better in predicting
the actual next state of a student compared to staying in the same state, indicating that
students in both data sets do not necessarily move along the same states, even though
their directions may be consistent. This is also visible in the embedding in Figure 6.1(b).

Furthermore, we note that, counter to our expectations, the Closest-correct prediction
has a higher final-step error on the Snap dataset than any other prediction scheme, which
indicates that students’ final solutions are quite diverse. This effect is likely explained by
the high strategic variability in an open-ended programming task such as the guessing
game task. For such tasks, we expect that the averaging approach of GPR to be particularly
helpful, because the general trends in the datasets may be more akin to the student’s
actual plans than a single closest correct solution. Conversely, the UML dataset features
less strategic variability, and the closest correct solution of another student is still close
to the final state of the student for which the prediction is made, which is reflected in
significantly better predictions of the Closest-correct prediction compared to all other
prediction schemes (p < 10−3). Overall, we can conclude that GPR is more accurate in
predicting the next state of students compared to other baselines on our example datasets
and that this is especially the case for the Snap dataset, which is characterized by high
strategic variability.

RQ2: Do the hints of the Continuous Hint Factory correspond to the hints of human
tutors?

To investigate RQ2, we require a reference measure of hint quality, which is provided
by the quality judgments of human tutors in the UML dataset. In particular, we iterate
over every state in the erroneous traces of the UML dataset and generate a hint with
each hint policy, using all correct traces as training data. If multiple edits achieve the
lowest error rank, we resolve ties by selecting the edit as hint that is closest to the root
of the tree. If the recommended hint of the policy matches at least one tutor hint, we
assign the average quality rating of the human tutors for that hint. Otherwise we set
the rating to 0. This is similar to the evaluation scheme suggested by Price, Zhi, Dong,
et al. (2018). We report five evaluation measures, namely the median and mean hint
quality, the fraction of hints with a quality > 0, the distance between the policy hint and
the closest human tutor hint in terms of RMSE, and the fraction of states for which a
hint could be generated. In addition to the Gross and the Zimmerman policy, we also
compare to a random policy, which selects a random reference state from the training
state and recommends an edit on the shortest path towards that state as hint. Finally, we
also evaluate the best-rated tutor hint as the gold standard.

The experimental results are shown in Table 6.2, where each column displays one
evaluation measure, and each row lists the results for one hint policy. Regarding hint
quality, we observe that the CHF performs significantly better compared to a random
policy (p < .01), and significantly worse compared to human tutor hints (p < .001), but
otherwise there are no significant differences between the hint policies. This indicates that
for simple datasets like the UML dataset, which feature low strategic variability, single
reference states are sufficient to generate viable hints. Interestingly, though, we could also
observe cases where the CHF did perform better. In particular, Figure 6.6 displays a UML
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Table 6.2: The hint evaluation measures for all hint policies on the UML dataset. Mean hint
quality and mean ambiguity are reported with standard deviation. For all measures except the
RMSE, higher numbers are better with a value of 1 and 100% respectively being ideal.

Hint quality RMSE Hintable

Hint policy Median Mean > 0

Random 0.0 0.360± 0.456 39.1% 1.42 83.5%
Tutor 1.0 0.994± 0.021 100.0% 0.00 100.0%
Gross 0.8 0.569± 0.465 60.9% 1.42 100.0%
Zimmerman 0.8 0.557± 0.431 64.3% 1.48 100.0%
CHF 0.9 0.590± 0.471 61.7% 1.36 97.4%

0

Let x be the first input.
Let m = |x|.1

Let y be the second input.
Let n = |y|.2

Initialize z as binary number with m digits.3

Initialize c← 0.4

Initialize i← m.5

6 return z.
7i < 0

CHF policy

Zimmerman policy

Figure 6.6: An example state from the UML dataset, where the Zimmerman policy generates a
hint (purple) that is not in the student’s current focus of attention. In contrast, the Continuous
Hint Factory (CHF) generates a hint (orange) that acts upon the last added node.

diagram where the Zimmerman policy recommends appending a decision node close
to the root (purple), which is outside the student’s current focus of attention because
the last node the student added was the “return z” node at the bottom of the diagram.
Accordingly, the CHF recommends appending a “finish” node to that branch (orange).

Another interesting finding is that the CHF and the Gross policy consistently achieved
perfect hint quality for the first three steps in each trace. This is important in light of the
research of Price, Zhi, and Barnes (2017b), which indicates that students are more likely
to seek help and follow hints if early hints provided by the system were useful.
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6.4 conclusion

This chapter makes three primary contributions. First, we have reviewed existing work
on edit-based hint policies in light of the mathematical framework of edit distance theory.
Second, we have applied our time series prediction pipeline to predict the behavior of
capable students in solving a multi-step learning task. Finally, we have introduced a
simple algorithm to compute an edit that brings students closer to the predicted next
state. We call this scheme the Continuous Hint Factory (CHF).

In our experiments, we have shown that the CHF model outperforms other approaches
in predicting what capable students would do, especially in an open-ended programming
dataset with high strategic variability. We also showed that the CHF reproduces human
tutor hints about as well as existing hint policies on a simple UML diagram task. These
results indicate that the averaging approach of the CHF is beneficial for prediction, but
that this advantage is not necessarily reflected in higher hint quality, at least for a simple
learning task with low strategic variability.

We note that the CHF still has several limitations. In particular, the CHF can only be
applied if an edit distance is available that is efficient, takes syntax and semantics into
account appropriately, and yields edits that are actionable for students. Further, as in
any data-driven hint approach, hint quality will suffer if the strategy of a new student
is substantially different from anything that the system has seen before. More subtly,
eigenvalue correction may distort distances and loose information that may be critical
for prediction or hint generation (Nebel, Kaden, et al. 2017). Finally, our approximation
scheme to infer an edit from a predictive result may fail to capture all of the predictive
information.

With regards to evaluation, our assessment of hint quality is not definitive, and it
appears likely that our proposed approach only yields significant advantages compared
to existing work on more complicated tasks than to the ones we investigated. Further,
we do not yet know how a difference in hint quality translates to learning outcomes
in students. After all, better hints from the view of a tutor may not always yield better
learning outcomes, due to difficulties in sense-making or lack of prior knowledge on the
student’s side (Aleven, Roll, et al. 2016). Finally, we acknowledge that our evaluation is
rather narrow, including only two learning tasks from different domains.

These limitations notwithstanding, we have developed an accurate predictive ap-
proach for student behavior in multi-step tasks and have provided a general hint-
generation pipeline that is applicable far beyond the domain of computer progamming.
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Summary: Most machine learning models implicitly assume stationarity of the data,
meaning that the data distribution does not change over time. Whenever this stationarity
assumption is violated, models trained at one point in time may not correctly process
later data. Transfer learning methods try to account for the difference between training
and test data and learn mappings between the two. We propose a novel transfer learning
framework where a mapping from test to training data is learned based on a supervised
loss on the training data. We implement our framework for linear transfer mappings and
the loss functions of generalized learning vector quantization as well as labelled Gaussian
mixture models. On artificial data we demonstrate that we are able to successfully
transfer target data back to the source space even in cases where reference methods in the
literature fail and that our approach is orders of magnitude faster compared to training a
new model.

Publications: This chapter is based on the following publications.

• Paaßen, Benjamin, Alexander Schulz, and Barbara Hammer (2016). “Linear Super-
vised Transfer Learning for Generalized Matrix LVQ”. In: Proceedings of the Workshop
New Challenges in Neural Computation (NC2 2016). (Hannover, Germany). Ed. by
Barbara Hammer, Thomas Martinetz, and Thomas Villmann. Best presentation
award, pp. 11–18. url: https://www.techfak.uni-bielefeld.de/~fschleif/
mlr/mlr_04_2016.pdf#page=14.

• Paaßen, Benjamin et al. (2017). “An EM transfer learning algorithm with applica-
tions in bionic hand prostheses”. In: Proceedings of the 25th European Symposium on
Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN
2017). (Bruges, Belgium). Ed. by Michel Verleysen. i6doc.com, pp. 129–134. url:
http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2017-57.pdf.

• — (2018). “Expectation maximization transfer learning and its application for
bionic hand prostheses”. In: Neurocomputing 298, pp. 122–133. doi: 10.1016/j.
neucom.2017.11.072.

Source Code: The MATLAB(R) source code corresponding to the content of this chapter
is available at http://doi.org/10.4119/unibi/2912671.

The aim of machine learning is to identify patterns in a set of training data such that
these patterns hold for unseen and new data. The ability to correctly apply patterns to
unseen data is called generalization (Bishop 2006). Generalization is simple if the training
data and the new data are similar, in the sense that they stem from the same underlying
distribution. However, in many scenarios, this assumption is violated (Cortes et al. 2008).
For example, the training data may have been selected in a biased way and thus patterns
that hold for the training data may not hold for the overall population (Cortes et al. 2008).
Further, the generative process of the data may change over time, for example due to
external disturbances (Ditzler et al. 2015). Finally, one may want to generalize to data
which are generated from another source (Ben-David et al. 2006). Each of these scenarios
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Figure 7.1: An illustration of two kinds of concept drift. Left: Virtual concept drift, also known as
covariate shift or sample selection bias. Right: Real concept drift, where source and target data are
related by rotation. Colors and shapes illustrate class assignments. Source data is drawn dashed
and transparent, while target data is opaque.

leads to a mismatch between a model derived from the training data and the new data,
which in turn may limit generalization.

In cases of abrupt changes in the data distribution, many classical approaches would
suggest to discard the entire learned model and start learning a new model using only
data from the new distribution (Ditzler et al. 2015). However, if only few data from the
target distribution are available, this newly trained model may be inaccurate. Instead, we
propose to re-use the trained model from the source domain, and to only learn the transfer
function between the source and target domain, which makes our proposed framework an
instance of transfer learning (S. J. Pan and Q. Yang 2010; Weiss, Khoshgoftaar, and D. Wang
2016). In particular, our proposed approach can be regarded as a case of heterogeneous
domain adaptation, which is concerned with learning mappings between domains such
that knowledge can be transferred from one to the other (Weiss, Khoshgoftaar, and D.
Wang 2016).

In more detail, we propose to learn a mapping h from the target domain to the
source domain using only few target domain data such that the loss of the source model
on these target data is minimized. In other words, we adapt the representation of the
target space data to the source model. The main contributions of this chapter are to
formalize this supervised transfer learning framework, and to provide two instances of
supervised transfer learning, one for learning vector quantization models and one for
labeled Gaussian mixture models. Note that both models can be seen as an instance of
metric learning. In particular, our transfer learning approach adapts the target space
representation such that the source space metric becomes applicable to the target space.

We begin by covering some related work on changing data distributions and adapta-
tions, then describe our own method, before we evaluate our approach experimentally
and close with a conclusion.

7.1 related work

In this chapter, we consider classification tasks. In particular, we assume a list of tuples
(~x1, y1), . . . , (~xM, yM), which we call the source dataset. Each of these tuples consists of
an input data point ~xi ∈ Rm for some m ∈N, and a label of interest yi ∈ {1, . . . , L} for
some L ∈ N. Our task is to construct a machine learning model f : Rm → {1, . . . , L},
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such that f predicts the correct label for the source dataset, and generalizes to target data.
However, the literature covers several scenarios in which the model f may be able able to
correctly predict the source data, but may fail to generalize.

For example, Shimodaira (2000) has introduced the notion of covariate shift, which
refers to differences in the marginal density p(~x) between source and target data, while
the conditional label distribution P(y|~x) remains the same. In that case, the target data
may contain more samples in a region of the data space where the model is inaccurate
and thus the model may fail to generalize (see Figure 7.1, left).

Similarly, Cortes et al. (2008) have established sample selection bias correction theory,
which assumes that a true underlying distribution P(y,~x) exists, but that the source data
is sampled not from this distribution directly but only from a limited region of the space.
In that case, the model may fail to correctly predict samples in the regions from which
no samples were available and thus fail to generalize.

Note that both scenarios assume that the change from source to target data is discrete,
without regard for the time dimension. By contrast, research on concept drift is concerned
with changes over time. In particular, a change in the marginal distribution p(~x) is called
virtual concept drift, while a change that also affects the conditional distribution P(y|~x) is
called real concept drift (Ditzler et al. 2015). Furthermore, one can distinguish between
gradual drift and sudden drift (Ditzler et al. 2015). From the perspective of concept drift,
covariate shift and sample selection bias would be special cases of sudden, virtual concept
drift. In our work, we focus on cases of real concept drift because in these cases even
target data that are close to source data may be misclassified (see Figure 7.1, right).

A final perspective is provided by the fields of transfer learning and domain adaptation,
which are concerned with settings in which source and target data stem from different
domains (Ben-David et al. 2006; S. J. Pan and Q. Yang 2010; Weiss, Khoshgoftaar, and D.
Wang 2016). In these cases, a model f learned on the source data is a priori not applicable
and needs to be adapted to the target domain.

The first step in adapting to changes between source and target data is to detect
whether a change has occurred. In some cases, a change may be obvious, for example
in case of domain adaptation. For non-obvious cases, various change detection tests
exist, for example based on deviations in the sample mean, the sample variance, or the
classification error (Ditzler et al. 2015). Once a change has been detected, the next step is
to adapt to the change.

In case of gradual concept drift, be it virtual or real, one can apply incremental
learning schemes to smoothly adapt a model to a new distribution via single samples or
mini-batches, such as incremental support vector machines, Learn++, on-line random
forests, or incremental learning vector quantization (Ditzler et al. 2015; Gepperth and
Hammer 2016; Losing, Hammer, and Wersing 2016a).

In case of a sudden virtual concept drift, such as covariate shift or sample selection
bias, the source data can be augmented by re-weighing the source data points ~xi, such
that the distribution of the re-weighted source data corresponds to the distribution of the
target data (Cortes et al. 2008; Jiayuan Huang et al. 2007; Sugiyama et al. 2008). If the
drift is sudden and real, the source data is typically considered to be invalid and should
be forgotten entirely, which also means that the old model f should be discarded and
replaced by a new one (Ditzler et al. 2015). Note that models are typically optimized
only for either sudden or gradual drift. To our knowledge, only the the long-and-short-
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term-memory model by Losing, Hammer, and Wersing (2016b), has the ability to adapt
to both kinds of drift.

A lacuna in all these approaches is that they do not take the relatedness between
source and target data into account. By contrast, transfer learning and domain adaptation
approaches assume that source and target data can be embedded in a common latent
space in which a model can be learned that applies to all data (S. J. Pan and Q. Yang
2010; Weiss, Khoshgoftaar, and D. Wang 2016). One class of transfer learning approaches
are concerned with invariant feature representations that can be computed for both source
and target data and then permit a correct classification of both, such as the first layers
of deep convolutional neural networks or scale-invariant features (Glorot, Bordes, and
Bengio 2011; Long et al. 2015; Lowe 1999). Note that this approach does not help in cases
of real concept drift where the label for a region of the data space changes, because this
region would have to be mapped to different locations for correct classification, which a
single mapping can intrinsically not do.

By contrast, Blitzer, McDonald, and Pereira (2006) and Blöbaum, Schulz, and Hammer
(2015) as well as others use different mappings from source and target space to a common
latent space. As such, the approach is conceptually strong enough to deal with real
concept drift and re-use a learned model on source data for the target domain. However,
these approaches do not take label information in the target data into account, which leads
to failure in all cases where the relation between source and target data is ambiguous.
Consider the right plot in Figure 7.1 as an example. In this case, source and target data
are related by a 180◦ rotation. However, without label information for the target data, it
would be equally plausible to assume that no change between source and target data has
occurred, because the marginal density p(~x) is the same for source and target data.

Only few approaches to date have taken label information into account as well.
First, the adaptive support vector machine (a-SVM) (J. Yang, Yan, and Hauptmann 2007),
which assumes that source and target space are the same, but that real concept drift
has occurred. In turn, a model f on the source data may misclassify some target data
points. The a-SVM learns a support vector machine model f ′ that predicts the difference
between the predicted labels of f for some target sample points and the actual labels
of these points. As such, the source model f is re-used for all data points that are still
correctly classified but adapts the source model for all other points. However, the a-SVM
may still fail for the real concept drift example in Figure 7.1, because it has to re-learn
the entire model and does not exploit the simple, linear relationship between source and
target data.

By contrast, the asymmetric regularized cross-domain transformation (ARC-t) ap-
proach (Kulis, Saenko, and Darrell 2011) learns a linear mapping H between source data
points ~x and target data points x̂ by maximizing the inner product ~x> · H · x̂ if ~x and
x̂ have the same label and minimizing it otherwise. The mapping can then be used to
transfer source data to the target space and train a target domain classifier there. In line
with our framework, it is also possible to transfer target space data to the source space
to make a source classifier applicable again. Note, however, that ARC-t is challenged
whenever classes are multi-modal because in that case, maximizing the inner product
between all points within classes may yield conflicting objectives.

A more flexible approach is offered by heterogeneous feature augmentation (HFA)
(Duan, Xu, and I. Tsang 2012), which learns two linear mappings P and Q from the
source and the target space to a shared latent space such that the loss of a support
vector machine trained on all data in the latent space is minimized. Note that this bears
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some similarity to our proposed framework as the transfer mappings P and Q are also
learned based on a classifier loss function, namely that of the support vector machine. In
contrast to our method, though, the mappings P and Q are learned only implicitly in a
kernel-based approach and can not be used to transfer target space data to the source
space, which would be necessary to re-use an already trained source space classifier.
Instead, HFA has to train a new classifier in the latent space.

As such, our proposed framework fills a notable gap in the existing literature by
a) learning a transfer mapping explicitly (other than a-SVM and HFA) that b) permits
the application of an already learned source space classifier without retraining (other
than HFA) and c) is trained based on the loss of that classifier (other than ARC-t). In the
following section, we will formalize this problem and develop two learning approaches,
one based on learning vector quantization, and one based on labeled Gaussian mixture
models.

7.2 method

We consider the following scenario. In a first step, we are given a source dataset
(~x1, y1), . . . , (~xM, yM) of data points ~xi ∈ Rm and corresponding labels yi ∈ {1, . . . , L}.
Based on this source dataset, we train a source model f from some set of possible models
F by solving the optimization problem

min
f∈F

E
(

f , (~x1, y1), . . . , (~xM, yM)
)

(7.1)

for some loss function E : F × (Rm × {1, . . . , L})∗ → R.

In a second step, we receive a target dataset (x̂1, ŷ1), . . . , (x̂N , ŷN) of data points
~̂xj ∈ Rn and corresponding labels ŷj ∈ {1, . . . , L}. Note that we generally assume that the
target dataset is much smaller than the source dataset (i.e. N � M), and may not even
cover all labels (i.e. |{ŷ1, . . . , ŷN}| < L). Given this target dataset, our goal is to find a
transfer function h : Rn → Rm from some function set H such that f ◦ h is a classifier that
generalizes well to other target data. We can learn this transfer function by minimizing
the loss E with respect to h instead of f , that is:

min
h∈H

E
(

f ,
(
h(x̂1), ŷ1

)
, . . . ,

(
h(x̂N), ŷN

))
(7.2)

This learning problem has an intuitive interpretation. We are looking for a function h
that “cleans up” any disturbance that has occurred for the target data such that for each
transferred target data point the original model f can be applied as before. It is important
to note that the transfer function h does not need to match the marginal distribution of
the source space, but only the conditional distribution, which may be a considerably
simpler task.

Note that we could also take the approach of discarding the source model f entirely
and solving problem 7.1 only for the target space data. However, in two cases, problem 7.2
is preferable to problem 7.1. First, in case the available target data available is insufficient
to accurately estimate the conditional distribution P(ŷ|x̂), for example because of too
few samples, because not all labels are covered, or because of biased sampling. Second,
in case the transfer function h is sufficiently simple such that it is easier to optimize
compared to the model f .
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Figure 7.2: A visualization of a GMLVQ model trained on a toy dataset with three Gaussian
clusters. Prototypes are highlighted via bigger size. Shape and color indicate the class assignment.
Top row: The source space data X, target space data X̂ and transferred target space data H · X̂.
Bottom row: The same data after multiplication via the GMLVQ projection matrix Ω.

In order to solve problem 7.2, we need to define the set of possible models F , the
loss function E, and the set of possible transfer functions H. In our further investigation,
we will restrict H to the set of linear functions between the target and source space, or,
equivalently, the set of matrices Rm×n. This restriction is equivalent to the assumption
that the ’true’ transfer function h can be approximated by its first-order Taylor expansion
with a zero constant term (Saralajew and Villmann 2017). By virtue of this assumption,
we guarantee that the transfer function is at most as hard to learn as the original model
in case the original model is at least a linear function. In case the linearity assumption
fails, we may be better off by learning a new model for the target space directly.

With respect to F we will consider two classes of models, namely generalized learning
vector quantization models and labeled Gaussian mixture models.

Transfer Learning for Generalized Learning Vector Quantization

Recall that generalized matrix learning vector quantization (GMLVQ) is a prototype-
based metric learning classifier (refer to Section 2.5.1). Consider the example of the
three-class toy dataset shown in Figure 7.2 (top left). One hundred data points for each
class are drawn from a two-dimensional normal distribution with standard deviation
0.3 in both dimensions and with respective means (−1, 0), (0, 0), and (1, 0). If we train
a GMLVQ model with K = 3 prototypes, one per class, we end up with prototypes ~w1,
~w2, and ~w3 close to the class means (see Figure 7.2, top left) and a projection matrix Ω

that discards the second dimension of the data and emphasizes the first dimension (see
Figure 7.2, bottom left).

After we have learned the prototypes w1, . . . , wK and the matrix Ω for the source data,
we are now confronted with target data points x̂1, . . . , x̂N with labels ŷ1, . . . , ŷN that do
not fit our model anymore. In our toy dataset in Figure 7.2, the target data is rotated by
just over 90◦ (middle column). In this case, almost all data from the outer classes would
be misclassified, implying a classification error of about 2/3.
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Following our transfer learning scheme introduced above, our next step is to learn a
transfer matrix H ∈ Rm×n that minimizes the GLVQ cost function in Equation 2.28. This
can be done by initializing H as the identity matrix (padded with zeros if necessary) and
learning H via stochastic gradient descent, including a Frobenius-norm regularization.
For the gradient of the GLVQ cost function with respect to H we obtain:

∇H EGLVQ

(
(w1, z1), . . . , (wK, zK), (H · x̂1, ŷ1), . . . , (H · x̂N , ŷN)

)
(7.3)

=4 ·Ω> ·Ω ·
N

∑
j=1

Φ′(µj)

(d+j + d−j )
2
·
(

H · x̂j · x̂>j · (d−j − d+j )− (d−j · ~w
+
j − d+j · ~w

−
j ) · x̂

>
j

)
where ~w+

j is the closest prototype to the jth transferred target data point H · x̂j with
the same label, where ~w−j is the closest prototype to the jth transferred target data
point H · x̂j with a different label label, where d+j = ‖Ω · H · x̂j − Ω · ~w+

j ‖2, where
d−j = ‖Ω · H · x̂j −Ω · ~w−j ‖2, where µj = (d+j − d−j )/(d

+
j + d−j ), and where Φ is some

differentiable, monotonously increasing function. To this gradient, we add the gradi-
ent of the Frobenius-norm regularization ∇Hλ · ‖H‖2

F = λ · 2 · H, where λ ∈ R is a
small, positive regularization constant. We can thus perform transfer learning using any
gradient-based optimization method of choice, such as stochastic gradient descent or
limited-memory BFGS (Liu and Nocedal 1989).

For our example, this optimization does indeed rotate our target data such that our
model applies again (see Figure 7.2, right column). Also note that the rotation flattens
the data in the second dimension because this dimension of the data is not relevant for
classification.

A challenge in transfer learning via the GLVQ cost function is that we require numeric
solvers to optimize the cost function EGLVQ. These solvers may be computationally
expensive. As a fast alternative, we also provide a fast expectation maximization approach
for transfer learning based on labeled Gaussian mixture models.

Transfer Learning for Labeled Gaussian Mixture Models

Recall that a lGMM is a supervised, generative model that is trained via an expectation
maximization scheme (refer to Section 2.5.2). After having learned a lGMM for our source
data, we are confronted with disturbed target space data x̂1, . . . , x̂N with labels ŷ1, . . . , ŷN ,
for which the likelihood according to our model is low. As an example, consider Figure 7.3.
If we have trained a model for the source data shown on the top left, the likelihood of
target space data shown on the top right according to this source model would be low.

Following our transfer learning formalization in Equation 7.2, we are now looking
for a linear transformation H ∈ Rm×n that minimizes the negative log-likelihood of our
target space data, that is:

min
H∈Rm×n

N

∑
j=1
− log

[
p(H · x̂j, ŷj)

]
(7.4)

Note that the negative log-likelihood may be non-convex with respect to H, such as
in our example in Figure 7.3 (bottom left). However, it is worth noting that more label
information may make the problem convex. For example, if we had instead considered
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Figure 7.3: Top left and right: A transfer learning problem with an ambiguous transfer mapping.
The data has been generated as in Figure 7.2 with the difference that the data clusters to the left
and right in the left figure and the top and bottom in the right figure share the same label. Bottom
left: The log-likelihood according to Equation 7.4 of transfer mappings of the form H = (0, h; 0, 0).
h is shown on the x-axis, while the log-likelihood is shown on the y-axis. As can be seen, the
log-likelihood has two local optima at h ≈ ±0.5. Bottom right: The log-likelihood if the data is
labeled as in Figure 7.2. In this case, there is only one global optimum at h ≈ −0.5.

the labeling from Figure 7.2, the negative log-likelihood would be convex (see Figure 7.3,
bottom right).

As in the case of lGMM learning, we can find a local optimum of the negative log-
likelihood via an expectation maximization scheme as suggested by Dempster, Laird,
and Rubin (1977). In particular, our expectation step and maximization step take the
following form.

Expectation step: For each data point x̂j, we compute the posterior for the Gaussian
that has generated the data point according to Bayes’ rule.

γk|j := P(k|H · x̂j, ŷj) =
P(ŷj|k) · p(H · x̂j|k) · P(k)

∑K
k′=1 P(ŷj|k′) · p(H · x̂j|k′) · P(k′)

(7.5)
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Maximization step: Assuming fixed posterior γk|j we minimize the negative expected
log-likelihood Q̂ of the data with respect to H. Q̂ has the following form:

Q̂ =−
N

∑
j=1

K

∑
k=1

γk|j · log
[
p(ŷj, H · x̂j, k)

]
(7.6)

=
N

∑
j=1

K

∑
k=1

γk|j ·
(
− log

[
P(ŷj|k)

]
− log

[
p(H · x̂j|k)

]
− log

[
P(k)

])
=

N

∑
j=1

K

∑
k=1

γk|j ·
(
− log

[
P(ŷj|k)

]
− log

[
P(k)

]
− 1

2
log
[

det(Λk)
]

+
m
2
· log

[
2 · π

]
+

1
2
· (~µk − H · x̂j)

> ·Λk · (~µk − H · x̂j)
)

We can show that Q̂ is convex with respect to H and that we obtain a closed-form
solution in case all Gaussians of our lGMM share the same precision matrix.

Theorem 7.1. Under the assumption of fixed γk|j, Q̂ (Equation 7.6) is convex with respect to H.

Further, if our source model is a slGMM, Q̂ takes a unique optimum at H = W · Γ · X̂†, where
X̂ := (x̂1, . . . , x̂N) ∈ Rn×N , W := (~µ1, . . . ,~µK) ∈ Rm×K, Γ denotes the K × N-dimensional
matrix with the entries Γk,j = γk|j, and X̂† denotes the Moore-Penrose Pseudo-Inverse of X̂.

Proof. Refer to Appendix A.18.

Algorithm 7.1 shows how we can learn H based on this theorem.

Regarding computational complexity, we observe that we need to compute O(K · N)
posterior values γk|j in each iteration, each of which takes constant time if we regard the
source space dimensionality m and the target spaces dimensionality n as constants. If the
input model is a slGMM, the maximization step requires O(K · N) operations to evaluate
Equation A.78. Otherwise, we need to minimize Q̂ with respect to H via a gradient-based
solver, where each gradient computation according to Equation A.76 requires O(K · N)
operations. As Q̂ is convex with respect to H, we can assume that the optimum can be
found by evaluating the gradient only a constant number of times. Overall, we obtain a
complexity of O(T ·K ·N) where T is the number of iterations required until |E− E′| < ε.
Because Q̂ is bounded below and is guaranteed to decrease in every step by at least ε, T
needs to be finite. However, an exact estimate is challenging. For the special case that
every Gaussian generates only data with a single label and there is only one Gaussian
for each label, we can infer that γk|j is independent of H because γk|j is 1 if yj is the label
of the kth Gaussian and 0 otherwise. Therefore, the global optimum is already found
in the first optimization step and will not change subsequently. Thus, the error in the
second iteration will be the same, which implies |E− E′| = 0 < ε, such that the algorithm
terminates. As such, T is at least 2 and increases with the ambiguity in assigning data
points to Gaussians. One way to reduce the amount of ambiguity is to use lGMMs based
on LVQ models because these models feature a crisp assignment of Gaussians to labels
leading to a lot of constant zeros entries for γk|j. Alternatively, one can impose a strict
limit on T.

This concludes our description of transfer learning schemes. In the next section, we
evaluate our transfer learning algorithms experimentally.
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Algorithm 7.1 An expectation maximization algorithm for linear supervised transfer
learning on a labeled Gaussian Mixture Model (lGMM) with K Gaussians. As input, the
algorithm receives an lGMM, a set of labeled target space data points (x̂j, ŷj), and an
error threshold ε. The transfer matrix is initialized as Im×n, which denotes the min{m, n}-
dimensional identity matrix, padded with zeros where necessary.

1: E← ∞, H ← Im×n

2: while true do
3: for k ∈ {1, . . . , K} do
4: for j ∈ {1, . . . , N} do
5: Compute γk|j according to Equation 7.5. . Expectation
6: end for
7: end for
8: if the input model is a slGMM then
9: H ←W · Γ · X̂† (Theorem 7.1). . Maximization

10: else
11: Minimize Q̂ with respect to H using gradient A.76. . Maximization
12: end if
13: E′ ← Q̂(H).
14: if |E− E′| < ε then
15: return H.
16: end if
17: E← E′.
18: end while

7.3 experiments

In this section, we evaluate our proposed transfer learning algorithms experimentally
on two balanced, artificial, three-class datasets. For both datasets, we first train a LVQ
classifier model on the source data. Then, we perform both GLVQ transfer learning
(GLVQ) and expectation maximization transfer learning (EM). We further compare with
the following baseline methods.

• naively applying the source space model to the target data (naive),

• re-training a new model solely on the target space data (retrain),

• training an adaptive support vector machine (a-SVM, J. Yang, Yan, and Hauptmann
2007),

• transfer learning via asymmetric regularized cross-domain transformation (ARC-t,
Kulis, Saenko, and Darrell 2011), and

• transfer learning via heterogeneous feature augmentation (HFA, Duan, Xu, and
I. Tsang 2012).

Note that, to ensure a fair comparison, ARC-t and HFA only received the LVQ prototype
positions as source data for training and the same target space data as the other transfer
learning methods.

Our evaluation measure is the mean classification error on the test dataset across
crossvalidation folds (10 folds in the first, 30 folds in the second dataset). We analyze the
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Figure 7.4: Mean classification error (left) and mean runtime (right) in a ten-fold crossvalidation
on the toy dataset shown in Figure 7.2 with the left and middle class being available for transfer
learning. The x-axis indicates the number of available target space training data points N (in log
scaling) while the y-axis displays the mean classification error (left) or the runtime (right, log
scale). Error bars indicate the standard deviation.

average classification error on unseen target data across multiple sizes of the target space
training dataset. In all cases, we only use training data from the target space from the first
two classes. As such, the classification error of a newly trained model necessarily stays
above 1/3. Our hypothesis is that transfer learning can achieve a considerably better error
than a newly trained model (H1), and that transfer learning generally achieves a better
error with less data (H2) because it only needs to learn a simple linear transformation
compared to a non-linear classification model.

We also report the runtime of all transfer learning approaches running on a Intel Core
i7-7700 HQ CPU. We expect that our proposed expectation maximization (EM) transfer
learning approach will be considerably faster compared to re-training a new model, the
a-SVM and GLVQ transfer learning (H3), because it involves only a convex optimization
for a linear transformation matrix with fairly few parameters.

For all significance tests we employ a one-sided Wilcoxon signed rank test.

Data Set 1

Our first dataset is the two-dimensional toy dataset shown in Figure 7.2. The data is
generated via a labeled Gaussian mixture model with one component for each of the
three classes with means ~µ1 = (−1, 0), ~µ2 = (0, 0), and ~µ3 = (1, 0) and shared covariance
matrix Λ−1 = 0.32 · I2. The target data is generated with a similar model but with the
means set to ~µ1 = (−0.1,−2), ~µ2 = (0, 0), and ~µ3 = (0.1, 2). In both source and target
space we generate 100 data points per class.

On the source space data, we train a GMLVQ model with one prototype per class,
as shown in Figure 7.2 (left column). The GMLVQ model correctly identifies the x-axis
as discriminative and learns a linear projection matrix Ω that disregards the y-axis (see
Figure 7.2, left bottom). However, for the target space data this model does not apply
because all target space data points are now close to the prototype for the center class (see
Figure 7.2, middle column), resulting in 2/3 misclassifications for a naive application of
the source space model (Figure 7.4, left). As such, we require a transfer learning approach
to make our data fit to the model again.
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Figure 7.5: The source (left) and target data (right) for the second experiment.

For transfer learning, we only use target space data from the first and second class
(blue circles and black squares), but not the third class (orange diamonds). Figure 7.4
(left) displays the mean classification error in a ten-fold crossvalidation for each approach.
We observe that the EM transfer learning scheme performs best and achieves a consistent
classification error of below 1%. ARC-t achieves the same level of performance if at least
4 data points are available and GLVQ transfer learning requires at least 26 = 64 data
points to achieve the same level of performance. By constrast, the a-SVM, HFA, and
retraining methods can not classify the third class (orange diamonds) correctly without
having training data for that class such that their error stays above 1/3. These results
lend support for both H1 and H2.

Figure 7.4 (right) displays runtime results. We observe that our proposed transfer
learning scheme is roughly 10 times faster compared to a-SVM and roughly 30 times
faster compared to GLVQ transfer learning and learning a new GMLVQ model (see
Figure 7.4, right), supporting H3. Interestingly, we also observe that there is little if any
runtime advantage in performing GLVQ transfer learning compared to learning a new
GMLVQ model.

Data Set 2

Our second artificial dataset illustrates the advantage of individual precision matrices in
cases of strong class overlap. The dataset is inspired by the cigars dataset by (Schneider,
Biehl, and Hammer 2009a) and consists of 1000 data points for each of the three classes,
which are generated via a lGMM with one Gaussian per class, with means at ~µ1 =
(−0.5, 0), ~µ2 = (0.5, 0), and ~µ3 = (1.5, 0), and with covariance matrices

Λ−1
1 = Λ−1

3 =

(
0.485 0.36
0.36 0.485

)
, and Λ−1

2 =

(
0.485 −0.36
−0.36 0.485

)
The target data is generated from the same distribution, with the model being rotated by
90◦ (see Figure 7.5).
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Figure 7.6: Mean classification error (left, middle) and mean runtime (right) in a 30-fold crossvali-
dation on the cigars dataset shown in Figure 7.5 with the left and middle class being available for
transfer learning. The x-axis indicates the number of available target space training data points
N (in log scaling) while the y-axis displays the mean classification (left middle) or the runtime
(right, log scale). Error bars indicate the standard deviation.

As a source space model, we employ GMLVQ and LGMLVQ with one prototype
per class. The challenge for GMLVQ in this dataset is that there is not one consistent
discriminative direction for the whole dataset. While the direction is the same for the
first and second class (blue circles and orange diamonds), it differs for the second class
(black squares).

LGMLVQ can account for this by learning different precision matrices for each
prototype. Accordingly, we observe that the source classification error for GMLVQ is
much higher compared to LGMLVQ with 21.07% versus 10.53% on average.

For transfer learning, we only use target space data from the first and second class
(blue circles and black squares), but not the third class (orange diamonds), and we use the
LGMLVQ model as basis for transfer learning for all methods. Figure 7.6 (left) displays
the mean classification error in a 30-fold crossvalidation for each approach. In line with
H1 and H2, we observe that EM transfer learning performs better compared to all other
reference methods. Indeed, the difference is significant if at least 8 training data points
are available for transfer learning (p < 10−3). The relatively weak performance of both
a-SVM and HFA is likely explained by the missing class. In contrast to the first data set,
however, ARC-t also underperforms on this data set, which is likely due to the fact that
ARC-t can not take local metric information into account.

Also note that the error after EM transfer learning with 64 data points is close to the
performance of the source model (11.27% versus 10.53% on average) and is statistically
indistinguishable. Interestingly, GLVQ transfer learning performs about as well as a
newly trained model, which is likely due to unfortunate local optima.

Figure 7.4 (right) displays runtime results. In this regard we notice the overhead
implied by a numeric solution for H compared of a closed-form one. The runtime of our
EM transfer learning approach is now about 2 times slower compared to the a-SVM but
still around 3 times faster compared to GLVQ transfer learning, 6 times faster compared
to ARC-t, 8 times faster compared to HFA, and about 5 times faster compared to learning
a new LGMLVQ model on the target data. Thus, H3 is partially supported.
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7.4 conclusion

In this chapter, we have introduced a novel approach to transfer learning, namely learning
an explicit linear mapping between target and source space such that the mapped target
data fits to a learned source space model. We have developed two transfer learning algo-
rithms based on this general setup, namely gradient-based learning on the generalized
learning vector quantization (GLVQ) cost function, and expectation maximization (EM)
transfer learning to maximize the likelihood of the mapped target space data according
to a labeled Gaussian mixture model for the source space.

We have evaluated both approaches on two artificial datasets. In both cases, EM
transfer learning identified linear transfer mappings which significantly improved the
classification accuracy compared to naively applying the source space model to the target
data, learning a new model only on target space data, or performing transfer learning via
a-SVM, ARC-t, HFA, or GLVQ approaches. We also observed that EM transfer learning
was generally faster compared to all alternatives, especially in case of models with shared
precision matrices.

In summary, EM transfer learning is a simple, data- and time-efficient alternative
compared to re-learning a new classification model, as well as our tested alternative
domain adaptation and transfer learning approaches. These properties make our transfer
learning scheme ideal for the domain of bionic hand prostheses, which we will cover in
the next chapter.
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Summary: Research on hand prostheses has shown impressive progress in recent years
with bionic prostheses that enable amputees to achieve comparable hand function to able-
bodied people in lab studies. Unfortunately, these promising results are limited to the
lab because prosthetic user interfaces tend to break down under everyday disturbances.
Electrode shifts are particularly challenging because they disturb the user’s control signal
abruptly and cause a high rate of misclassifications.

In this chapter, we apply the transfer learning algorithms from Chapter 7 to counteract
electrode shifts. In an experimental evaluation on two real-world datasets we show that
as little as a few seconds of recorded training data from an incomplete set of motions are
sufficient to adapt a user interface to disturbed data. As such, transfer learning requires
less data, computation time, and class coverage compared to all tested baselines.

Publications: This chapter is based on the following publications.

• Prahm, Cosima et al. (2016). “Transfer Learning for Rapid Re-calibration of a
Myoelectric Prosthesis after Electrode Shift”. In: Proceedings of the 3rd International
Conference on NeuroRehabilitation (ICNR 2016). (Segovia, Spain). Ed. by Jaime Ibáñez
et al. Vol. 15. Converging Clinical and Engineering Research on Neurorehabilitation
II. Biosystems & Biorobotics. Runner-Up for Best Student Paper Award. Springer,
pp. 153–157. doi: 10.1007/978-3-319-46669-9_28.

• Paaßen, Benjamin et al. (2018). “Expectation maximization transfer learning and its
application for bionic hand prostheses”. In: Neurocomputing 298, pp. 122–133. doi:
10.1016/j.neucom.2017.11.072.

The human hand is a tremendously versatile and precise tool that we use for a wide
range of our everyday actions (Napier 1956). As such, losing a hand can have dramatic
impact on life quality, including the ability to work (Biddiss and Chau 2007; Raichle
et al. 2008; Ziegler-Graham et al. 2008). Over 40,000 people in the US alone are classified
as having suffered major upper limb loss, highlighting the relevance of the problem
(Ziegler-Graham et al. 2008). Bionic hand prostheses promise to regain lost hand function
by executing desired hand motions with a robotic hand attached to the patient’s arm
stump (Farina et al. 2014). Indeed, amputees have achieved similar performance as able-
bodied participants in a variety of lab studies (Hahne, Dähne, et al. 2015; Jiang et al. 2014).
Unfortunately, these results are still limited to constrained laboratory settings because
prostheses tend to not work as desired under everyday disturbances, leading users to be
less confident in using their prosthesis or abandoning the prosthesis altogether (Biddiss
and Chau 2007; Farina et al. 2014; Hargrove, Englehart, and Hudgins 2008; Khushaba
et al. 2014; Young, Hargrove, and Kuiken 2011). As such, we sorely need a mechanism to
make bionic prostheses more robust in patients’ everyday lives.

The reason bionic prostheses are so brittle is their user interface. The state-of-the-art
in prosthesis control is to apply a small number of electromyography (EMG) electrodes
to the patient’s stump and to infer the desired motion from the EMG signal of those
electrodes (Farina et al. 2014). More specifically, the user interface is based on some model
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f that infers for every time t the desired motion yt from the EMG signal ~xt. Training
data is generated by letting patients execute precisely timed motions with their phantom
hand, which triggers activity of the residual muscles in the patients’ stump, which is in
turn reflected in the EMG signal ~xt. With sufficient training and a sufficient number of
electrodes, patients learn to generate a characteristic EMG pattern for each motion such
that the model f can be trained via machine learning. In each time step, the model’s
prediction is then forwarded to the bionic prosthesis itself, which executes the motion
with a time delay below 200ms (Farina et al. 2014).

Unfortunately, patients’ EMG signals tend to be non-stationary. For example, when
donning and doffing their prostheses, patients tend to apply the EMG electrodes slightly
differently, or electrodes may shift due to external force or soft materials (Farina et al.
2014; Hargrove, Englehart, and Hudgins 2008; Khushaba et al. 2014; Young, Hargrove,
and Kuiken 2011). In all these cases, the signal ~xt is disturbed such that the model f
misclassifies the signal, i.e. f (~xt) 6= yt (also refer to Figure 8.1).

Several approaches in the past have attempted to address this issue. In particular,
Hargrove, Englehart, and Hudgins (2008) have proposed to record training data in all
plausible shift conditions to achieve a model f that is invariant against shifts. Addi-
tionally, various authors have suggested alternatives to time-domain features which are
supposedly more shift-invariant, such as auto-regressive features (Hargrove, Englehart,
and Hudgins 2008; Young, Hargrove, and Kuiken 2012) or spectral features (Khushaba
et al. 2014). While all these approaches improve classification accuracy, they are limited
to cases of virtual concept drift. In case of real concept drift, there exists at least one
region of conflict where patterns of one class in the source data overlap with patterns
of a different class in the target data. In invariant feature representations, this region of
conflict has to be mapped to one class such that either the source or the target space data
in this region are necessarily misclassified.

A different route is to improve the input signal itself by virtue of alternative sensors.
For example, Muceli, Jiang, and Farina (2014) and L. Pan et al. (2015) propose high-
density electrode grids in conjunction with alternative features to improve robustness
and Hahne, Farina, et al. (2016), Ortiz-Catalan, Brånemark, Håkansson, and Delbeke
(2012), and Pasquina et al. (2015) developed implantable sensors that are not affected by
electrode shifts. Unfortunately, neither of these advanced sensor technologies are likely
to be featured in commercially available prostheses in the near future (Farina et al. 2014).

As such, it is unlikely that we will be able to completely prevent disturbances to
the input signal ~xi. However, we may still be able to adapt our user interface to the
disturbed situation using only little new training data. For example, Vidovic et al. (2015)
adapt their model to changed means and covariances in the disturbed data. While this
approach is certainly viable, it fails to exploit the structured nature of the disturbance.
We argue that electrode shifts are structurally simple and that learning the electrode
shift explicitly is advantageous compared to adapting a potentially complicated model.
As such, our transfer learning scheme from Chapter 7 appears as a perfect fit for the
electrode shift scenario. Not only are we likely to save data and computation time, we
can also perform learning using only few training motions. Reducing the number of
precisely timed motions a patient has to record is a critical advantage because it makes
the recording process easier for patients and reduces the likelihood of label noise.

The main contribution of this chapter is to empirically evaluate transfer learning
on two real-world datasets of EMG data. We show that transfer learning can improve
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Figure 8.1: An illustration of electrode shifts in electromyographic (EMG) data. Top left: A grid
of eight EMG electrodes placed around the forearm of a user. Top right: Example EMG signals
from an eight-electrode EMG recording for two different hand motions (dashed and dotted lines)
as well as resting (solid lines). Bottom left: The electrode grid is shifted around the forearm
(electrode shift). Bottom right: Another set of EMG signals from a shifted eight-electrode EMG
recording for the same set of hand motions (dashed and dotted lines) as well as resting (solid
lines). Due to the shifted signal, a model trained on the source data (top right) may misclassify
shifted data (bottom right).

classification accuracy beyond a disturbed model using less data, fewer classes, and less
computational time compared to learning a new model.

8.1 experiments

We evaluate the transfer learning schemes from Chapter 7 on two real-world datasets of
EMG data. In both cases, the data was recorded by instructing able-bodied participants to
execute a sequence of pre-defined hand motions at pre-defined times and recording EMG
data during the execution of those motion sequences. We considered three degrees of
freedom (DoFs) that are key to prosthesis control, namely a wrist rotation DoF (pronation
and supination), a wrist pitch DoF (flexion and extension), and a finger opening DoF
(finger spread and fist).
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Figure 8.2: The experimental results for the first EMG dataset. The x axis shows the number of
target space data points used for training the transfer matrix H. The y axis shows the average error
and standard deviation across participants. Different DoFs are differentiated by color. Dashed
lines show the naive error in all three degrees of freedom, solid lines the transfer learning error.

Data Set 1

In the first dataset, we evaluate whether transfer learning can improve accuracy beyond
the baseline of naively applying the source space model. We recorded data from four
able-bodied subjects who each executed a sequence of all atomic motions in our three
DoFs, as well as all pairwise combinations, resulting in nineteen motions overall. We
recorded each movement for five seconds, followed by two seconds of rest. To simulate
disturbance we moved the EMG electrodes by 8mm transversally around the forearm and
repeated the protocol. This work was approved by the ethics commitee of the Medical
University of Vienna (#1301/2015).

As recording device we utilized an eight channel Ottobock Healthcare electrode array
(13E200) at 1000Hz sampling rate placed equidistantly in a ring around the forearm (see
figure 8.1, top left). We preprocessed the data using a 90Hz to 450Hz band pass filter
and computed the 17 standard features of the BioPatRec suite (Ortiz-Catalan, Brånemark,
and Håkansson 2013) on time windows of 100ms with 50ms overlap, combined with the
log-variance as suggested by Hahne, Biebmann, et al. (2014).

We coded the motion at time t as a three-dimensional vector ~yt ∈ {−1, 0, 1}3 where
yt,l = −1 denotes motion in negative direction in the lth DoF, where yt,l = 1 denotes
motion in positive direction, and where yt,l = 0 denotes no motion. For example, ~yt =
(0, 0, 0)> codes resting, i.e. no motion in any DoF, ~yt = (1, 0, 0)> denotes supination, and
~yt = (0,−1, 1)> denotes extension combined with a fist. As a classifier architecture we
trained three GMLVQ models, one for each degree of freedom, with five prototypes per
class. We trained each model five times using random initializations and used the one
with highest training accuracy.

For the experiment, we distributed the data randomly into 10 crossvalidation folds,
both for source and target space data. In each fold, we used the source data to train
the GMLVQ models and we used N ∈ [50, 512] randomly selected samples from the
target data to train the transfer matrix H. As algorithm for transfer learning we used the
gradient-based GLVQ scheme from Section 7.2.

Figure 8.2 displays the average classification error for the source model on the target
space (dashed lines), and after transfer learning (solid lines). On the source data, the
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GMLVQ models achieved below 1% test error consistently. On the target data, the
performance of the source model dropped to 36% for the rotation DoF, to 11% for the
flexion/extension DoF, and to 29% for the open/close DoF. After transfer learning, even
with as little as N = 50 training samples, classification error was notably lower at about
10%, 3%, and 15% respectively. With more samples, this dropped further to 3%, 1%, and
3% respectively for N = 350 samples. The difference between the error before and after
transfer learning was highly significant for all participants and all models (p < 0.01 using
the Wilcoxon rank sum test and Bonferroni correction).

These results provide a proof of concept that transfer learning can indeed enhance
accuracy. However, for a fair comparison, we also need to show that our transfer learning
scheme outperforms a newly trained model and alternative transfer learning approaches.
To this end, we evaluate a second, larger dataset.

Data Set 2

Our second dataset contains EMG recordings of 10 able-bodied participants who per-
formed all six atomic hand motions in our three DoFs as well as resting. Each participant
performed 15 to 35 repetitions (236 repetitions in total) of these seven motions. Each
motion lasted 3 seconds from which the first and the last second were cut to avoid label
noise, leaving 1 seconds of each motion for analysis. The experiments are in accordance
with the declaration of Helsinki and approved by the ethics commission of the Medical
University of Göttingen. Further details on the experimental protocol are provided by
Hahne, Graimann, and Müller (2012).

The EMG data was recorded with a high-density grid of 96 EMG electrodes with
8 mm inter-electrode distance, located around the forearm at 1/3 of the distance from
elbow to wrist. The raw EMG signal was filtered with a low pass (500 Hz, fourth-
order Butterworth), a high pass (20 Hz, fourth-order Butterworth), and a band stop
filter (45− 55 Hz, second-order Butterworth) to remove noise, movement artefacts, and
power line interferences respectively. As features, we computed the logarithm of the
signal variance for each electrode, computed on non-overlapping time windows of 100ms
length. Thus, depending on the number of runs, 1925 to 3255 samples were available per
participant, balanced for all classes (for the participant with the fewest runs we obtained
275 samples per class, for the participant with the most runs 465 samples per class).

Since high-density EMG recordings are not common in prosthetic hardware (Farina
et al. 2014), we only used recordings from a subset of 8 equidistant electrodes located on
a ring around the forearm (see figure 8.1, top left). In order to obtain disturbed target
data, we simulated an electrode shift by utilizing eight different electrodes, located one
step within the array (8mm) transversally to the forearm (see figure 8.1, bottom left).

For this experiment, we coded motions as a scalar label yt ∈ {1, . . . , 7} and trained a
single model for classification.

Model Selection: In a pre-analysis, we evaluated multiple classifiers on the source data.
In particular, we compared a generalized matrix learning vector quantization (GMLVQ),
a local generalized matrix learning vector quantization (LGMLVQ), a labeled Gaussian
Mixture Model with shared precision matrix (slGMM), a labeled Gaussian Mixture
Model (lGMM) with individual precision matrices, a slGMM with GMLVQ initialization
(GMLVQ + slGMM), and a lGMM with LGMLVQ initialization (LGMLVQ + lGMM). The
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Table 8.1: Mean classification test error and standard deviation on the source space data across
all runs on the second dataset. The different classification models are listed on the x axis, the
number of prototypes / Gaussians K per class for the model on the y axis. The best results in
each row are highlighted via bold print.

K GMLVQ LGMLVQ slGMM lGMM GMLVQ +
slGMM

LGMLVQ +
lGMM

1 6.7± 7.1% 7.0± 7.2% 5.9 ± 6.7% 6.7± 7.1% 5.9 ± 6.7% 6.7± 7.1%
2 6.5± 6.8% 8.4± 7.9% 5.8± 6.5% 6.5± 6.6% 5.6 ± 6.2% 9.9± 8.0%
3 6.7± 7.3% 9.3± 8.5% 6.1± 6.7% 7.1± 7.7% 5.7 ± 6.4% 9.6± 8.7%
4 6.5± 7.4% 9.9± 8.9% 5.9 ± 6.6% 7.8± 7.4% 5.9 ± 6.7% 11.9± 12.8%
5 6.4± 7.4% 10.1± 8.8% 5.9 ± 6.7% 7.8± 7.3% 5.9 ± 6.4% 23.1± 28.9%

Gaussian mixture models were trained with expectation maximization while restricting
the standard deviation in each dimension to be at least 0.001, as recommended by Barber
(2012). For each of the methods, we varied the number of prototypes/Gaussians K per
class from 1 to 5. In our analysis, we iterate over all 236 runs in the dataset and treat the
data of the current run as test data, yielding a leave-one-out crossvalidation over the 236
runs. As training data we utilize a random sample of 175 data points, balanced over the
classes, drawn from the remaining runs of the same subject. We train each model starting
from 5 random initializations and select the model with the lowest training error. For
this model, we then record the classification error on the test data.

The results of our pre-experiment are shown in Table 8.1. As can be seen, a slGMM
with GMLVQ initialization consistently achieves the best results. The difference in error
is significant compared to GMLVQ (p < 0.05), LGMLVQ (p < 0.001), lGMM (p < 0.001),
and lGMM with LGMLVQ initialization (p < 0.001; all p-values stem from one-sided
Wilcoxon signed rank tests). The difference to a slGMM without GMLVQ initialization is
insignificant. Regarding the number of prototypes, we obtain the best results for K = 2
prototypes per class, although the error difference to other values for K is insignificant.
For the main analysis, we select the overall best model, namely slGMM with GMLVQ
initialization and K = 2.

Transfer Learning: In our main analysis, we first considered the case where data from
all classes is available for transfer learning. Again, we iterate over all 236 runs and
treat the data in the current run as test data, both for the source as well as for the
target space. As training data in the source space, we use the data from all remaining
runs of the same subject. We train a slGMM with GMLVQ initialization and K = 2
prototypes per class starting from 5 random initializations and select the one with the
lowest training error. Then, we use N ∈ [4, 8, 16, 32, 64, 128] randomly selected target
samples from the remaining runs of the same subject as training data for transfer learning
and record the classification error on the test target space data from the current run. For
transfer learning, we compare gradient-based transfer learning based on the GMLVQ
cost function (refer to Section 7.2), EM transfer learning (refer to Section 7.2), and the
adaptive support vector machine (a-SVM) of J. Yang, Yan, and Hauptmann (2007). We
also ran the experiment with the asymmetric regularized cross-domain transformation
(ARC-t) and heterogeneous feature augmentation (HFA) techniques, but these resulted in
errors consistently above 70%, such that we do not report these results here. As additional
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Figure 8.3: Mean classification error (left, middle) and mean runtime (right) across all runs in the
second dataset. The x-axis indicates the number of available target space training data points N
(in log scaling) while the y-axis displays the mean classification error (left, middle) or the runtime
(right, log scale). Error bars indicate the standard deviation.

Table 8.2: Mean classification test error and standard deviation across all runs in the second
dataset. The different transfer learning approaches are listed on the x axis, the number of data
points N for transfer learning on the y axis. The best results in each row are highlighted via bold
print.

N naive EM retrain GMLVQ a-SVM

4 18.8± 12.8% 24.3± 10.5% 53.1± 8.3% 18.0 ± 13.6% 53.3± 7.9%
8 18.8± 12.8% 21.8± 13.8% 21.5± 13.3% 16.5 ± 13.9% 18.6± 12.7%
12 18.8± 12.8% 13.1 ± 9.5% 17.8± 11.4% 14.4± 11.8% 18.6± 12.7%
16 18.8± 12.8% 10.5 ± 8.9% 14.6± 10.7% 14.5± 13.2% 17.8± 12.2%
32 18.8± 12.8% 7.1 ± 7.1% 8.8± 8.4% 12.9± 11.5% 16.1± 11.3%
64 18.8± 12.8% 6.8± 7.0% 6.0 ± 6.4% 12.5± 11.3% 13.7± 10.1%
128 18.8± 12.8% 6.2± 6.5% 4.4 ± 5.5% 11.5± 10.9% 11.0± 8.4%

baselines, we also compare to the classification error of the source model both on the
source and on the target data (naive), and to a newly trained model. Our hypotheses are
that EM transfer learning should achieve batter accuracy than a retrained model when
trained with few data (H1) or with few classes (H2). Further, we expect that EM transfer
learning is considerably faster compared to all alternatives, given that we can utilize a
closed-form optimization (H3).

The mean classification error across all 236 runs is shown in Table 8.2 and Figure 8.3
(left and middle). We observe several significant effects using a one-sided Wilcoxon
signed rank test:

1. After electrode shift, the classification performance degrades, i.e. the naive error is
significantly higher than the source error (p < 10−3).

2. If at least 12 data points are available for training, EM transfer learning outperforms
a naive application of the source space model (p < 10−3).

3. If between 12 and 32 data points are available, EM transfer learning outperforms a
retrained model on the target data (p < 10−3), lending support for H1.
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Figure 8.4: Mean classification error across all runs in the myoelectric dataset if one movement
was excluded from the training data for transfer learning. The excluded class is listed in the title
of each plot. The x-axis indicates the number of available target space training data points N
(in log scaling) while the y-axis displays the mean classification error. Error bars indicate the
standard deviation.

Table 8.3: Mean classification test error and standard deviation across all runs in the second
dataset when no samples for the extension movement were available for transfer learning. The
different transfer learning approaches are listed on the x axis, the number of data points N for
transfer learning on the y axis. The best results in each row are highlighted via bold print.

N naive EM retrain GMLVQ a-SVM

4 18.8 ± 12.8% 25.4± 11.5% 52.4± 9.2% 18.9± 15.0% 52.8± 7.6%
8 18.8± 12.8% 24.4± 14.7% 31.0± 11.5% 17.8 ± 17.1% 29.7± 10.8%
12 18.8± 12.8% 16.5± 12.8% 27.3± 10.6% 15.0 ± 12.5% 29.5± 10.8%
16 18.8± 12.8% 13.6 ± 10.2% 23.9± 8.9% 15.1± 12.3% 29.3± 10.6%
32 18.8± 12.8% 9.3 ± 8.0% 21.0± 7.0% 13.8± 11.9% 26.7± 9.1%
64 18.8± 12.8% 8.2 ± 7.6% 18.9± 6.0% 13.3± 11.8% 24.5± 8.1%
128 18.8± 12.8% 7.7 ± 7.2% 17.9± 5.0% 12.4± 11.6% 22.8± 7.5%

4. If at least 12 data points are available for training, EM transfer learning outperforms
the adaptive SVM (p < 10−3).

5. If at least 16 data points are available for training, EM transfer learning outperforms
GLVQ transfer learning (p < 10−3).

With regards to runtime, we note that our proposed algorithm is roughly 30 times
faster compared to GMLVQ transfer learning and a-SVM and roughly 100 times faster
compared to re-training a new model on the target space data (see Figure 8.3, right),
supporting H3. We also observed a runtime advantage of around factor 100 versus HFA
and of around 500 compared to ARC-t.
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8.2 conclusion

To investigate H2, we repeated our experiments six times, each time excluding one
of the atomic hand motions from the training data for transfer learning. We also exper-
imented with omitting more than one class in the training data but observed that no
transfer method outperformed the baseline of naively applying the source model to the
target space data.

The average results across participants and trials are depicted in Figure 8.4. Ta-
ble 8.3 shows the results without extension motions in the training data. We observe the
following significant effects using a one-sided Wilcoxon signed rank test.

1. If at least 32 data points are available for training, EM transfer learning outperforms
a naive application of the source space model (p < 10−3).

2. Irrespective of the number of available data points, EM transfer learning outper-
forms a retrained model on the target data (p < 10−3).

3. If at least 12 data points are available for training, EM transfer learning outperforms
the a-SVM (p < 10−3).

4. If extension, pronation, supination, or spread are excluded and at 32 data points
are available for training, EM transfer learning outperforms GLVQ transfer learning
function (p < 0.01).

In conjunction, these results support H2. We also note again that ARC-t and HFA
resulted in errors consistently above 70% on these data, such that our method significantly
outperforms these references across all conditions.

8.2 conclusion

In this chapter, we have introduced the application domain of bionic hand prostheses
and the challenge of electrode shifts. In particular, any machine learning model that
serves as a user interface to map muscle signals to desired actions of the prosthesis can
be disturbed by shifts of EMG electrodes on the skin. To counteract such shifts, we have
proposed to record a small calibration set of disturbed data and to learn a linear function
that cleans up the disturbed data such that the model can correctly classify the data
again. To learn this linear function, we have applied the transfer learning algorithms
from Chapter 7.

In our experimental evaluation on two EMG datasets we found that transfer learning
can indeed improve classification error after disturbance, and that EM transfer learning
can improve classification error beyond retraining a new model and other transfer
learning techniques if few data or few classes are available. We also showed that EM
transfer learning is orders of magnitude faster compared to learning a new model or
other transfer learning techniques. These results give reason to hope that transfer learning
can give patients a quick, efficient, and robust tool to re-calibrate their prosthesis after
everyday disturbances and thus improve their quality of life.
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9C O N C L U S I O N S A N D O U T L O O K

In this dissertation, I have addressed the challenge of metric learning for structured data
and enhanced the utility of a learned metric. In Chapter 3, I have developed a gradient-
based metric learning scheme for all sequence edit distances that can be expressed in
terms of a signature, a differentiable algebra, and an edit tree grammar. Experimentally,
I have shown that this scheme can improve classification of biological sequences and
computer programs. Further, I have extended this scheme to trees in Chapter 4, decreased
the runtime complexity, thus making metric learning applicable to much larger data sets,
and parametrized the edit distance in terms of symbol embeddings, which guarantees
metric properties, is more interpretable, and simplifies the application to large alphabets. I
also demonstrated experimentally that my proposed metric learning scheme outperforms
a state-of-the-art method in terms of metric learning for structured data.

Once we have learned a metric, we typically wish to apply it for downstream tasks.
Existing methods already cover mappings to vectorial outputs, such as dimensionality
reduction, classification, clustering, and regression. However, mapping to a distance
representation as output has not yet been subject to extensive research. In Chapter 5, I
established such an approach based on Gaussian process regression to perform time series
prediction on structured data. Experimentally, I have shown that my proposed scheme
outperforms baselines such as one-nearest neighbor regression and kernel regression.
I applied this novel technique in Chapter 6 to support students in learning computer
programming. Whenever a student gets stuck before completing a programming task, my
proposed scheme can predict what a capable student would do in the student’s situation
and I can infer an edit that guides a student closer to a correct solution along a path that
a capable student would take. In experiments on real-world student data, I showed that
my proposed model could accurately predict what capable students would do and that
the pedagogical quality of the resulting hints was on par with state-of-the-art baselines.

Another challenge in applying a learned metric is that the distribution or representa-
tion of target data may differ from the source data on which the metric was learned. In
Chapter 7, I have developed a novel framework to address this challenge by learning a
transfer mapping from the target space to the source space, such that the learned source
space metric is applicable again. I have provided two implementations of this framework,
one for transfer learning on generalized matrix learning vector quantization classifiers,
and one for transfer learning on labeled Gaussian Mixture Model. Further, I applied
transfer learning in Chapter 8 to counteract disturbances in bionic prostheses control.
To date, such disturbances prevent patients from using bionic prostheses to their full
potential because the prostheses fail to execute the desired motions in everyday life.
Using transfer learning, I could clean up electrode shifts in the data and thus enhance
the accuracy of a bionic prosthesis user interface. I also showed that transfer learning
needs much less data and computation time compared to several baselines.

Limitations: The work presented in this dissertation still offers opportunity for further
improvement. First, as mentioned in Chapter 3, the gradient computation via ADP for
edit distances learning is too slow to be applicable for large-scale tasks and our proposed
improved version of the method from Chapter 4, embedding edit distance learning
(BEDL), has not yet been combined with the ADP framework, which is a gap in this work.
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conclusions and outlook

Second, BEDL does not yet reliably improve classification accuracy on all tasks, which
indicates that there are still generalization issues to be addressed.

Third, the time series prediction method via Gaussian process regression (GPR)
suggested in Chapter 5 still relies on an eigenvalue correction, which distorts the space
and complicates the application to novel data. Further, our proposed method requires
storing all training samples to perform predictions, which may become prohibitive for
very large structured datasets. In such large-scale scenarios, a parametric model with an
explicit vectorial embedding, such as a recursive neural network, may be more promising.
Fourth, while we could improve predictive performance over several baselines, these
results did not translate to significantly better hint quality for intelligent tutoring systems
in Chapter 6, indicating that the translation from kernel to primal space still could be
improved, either by secondary criteria like syntactic correctness or unit test performance,
or by using multiple edits instead of a single edit.

Fifth, our transfer learning method proposed in Chapter 7 is currently limited to linear
functions, which may be insufficient for more complicated disturbances. Conversely, a full
linear transformation may entail too many free parameters for very simple disturbances
like electrode shifts in Chapter 8. In this scenario, we could inject more prior knowledge
to simplify the problem further and thus achieve better results with even less data,
especially less classes to record.

Outlook: Beyond improvements of the methods presented in this paper, this thesis
opens up multiple exciting avenues for further research.

First, I have shown that grammars and automata can serve as efficient and general
interfaces to compute continuous gradients over discrete structures. In Chapter 3, I have
used this connection to compute gradients over general string edit distances. Beyond edit
distances, this connection could be useful for any domain that can be modeled in terms
of formal grammars, such as computer programs (Aho et al. 2006), biological structures
(Searls 2012), or chemical molecules (Weininger 1988). Kusner, Paige, and Hernández-
Lobato (2017) have done first promising steps in this direction by modeling chemical
molecules via a grammar and then learning continuous vectorial representations for the
words produced by said grammar.

Second, this work has explored the connection between representation learning and
metric learning. In vectorial metric learning, this connection is obvious since metric
learning corresponds to a linear mapping of the input data into an alternative space,
i.e. an alternative representation (Bunte et al. 2012). However, this connection has not
yet been well explored for structured data. Previous work has shown that any pseudo-
Euclidean distance and any kernel, including those for structured data, correspond to an
implicit vectorial representation (Pekalska and Duin 2005, also refer to Section 2.1). In this
work, I have developed metric learning for edit distances on structured data by learning
an explicit vectorial representation of symbols (refer to Chapter 4), which can be seen
as a supervised version of word embedding learning (Mikolov et al. 2013; Pennington,
Socher, and Manning 2014). I have also shown that we can translate affine combinations
in the pseudo-Euclidean space of edit distances back to actual structured data (refer to
Chapter 6). Future work could extend this link between metric learning on and vectorial
representations of structured data with the aim to make such representations easier to
learn, easier to interpret, and easier to invert.

Third, we have seen that we can interpret edit distances as shortest paths in a graph
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of possible structured data. This re-interpretation also enabled us to generate hints for
students in intelligent tutoring systems (refer to Chapter 6). Future work could explore
this application in more detail, for example in the form of classroom studies regarding
how much students actually profit from edit hints, and by incorporating additional
constraints for possible edits, such as syntactic of semantic correctness. Beyond this
application, edit distances provide an avenue towards interpreting learned models in
machine learning more generally. For example, we could ask which edits we would need
to apply to a structured datum such that it is classified differently, maximizes a certain
property, or moves along a desired trajectory in the space of possible structured data.

Finally, I posed the general problem of supervised transfer learning with explicit
transfer functions, and achieved a particularly data- and time-efficient expectation maxi-
mization transfer learning algorithm in order to make a learned model from one domain
applicable in another domain. This makes bionic hand prostheses easy to re-calibrate
after everyday disturbances. Future work in this regard could go further and incorporate
more domain-specific knowledge regarding the form of the transfer function and evaluate
the utility of transfer learning in clinical studies. Supervised transfer learning could also
be applicable far beyond prosthetic research. By exploring nonlinear transfer functions,
alternative parametrizations, and transfer functions for structured data, supervised trans-
fer learning could become a useful tool in transferring machine learning models from the
lab to actual, real-world applications using only minimal data and computational effort.

Overall, this thesis provides ample opportunity for further research incorporating
knowledge from classical grammar theory, representation learning, and application
domains to push the boundaries of machine learning on structured data.
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glossary

G L O S S A RY

adaptive support vector machine a domain adaptation algorithm which trains a support
vector machine as a classifier for the difference between target space labels and predicted
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(~x1, y1), . . . , (~xM, yM) where yi is the label for the ith data point. 116, 161, 163, 164
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99, 104, 110, 113, 139, 140, 161, 163–165, 172, 174, 231, 233
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or, more generally, a square, non-negative, and symmetric matrix with zero diagonal. 51,
56, 84, 85, 161, 166

edit (δ) a function which maps a data point to another data point, e.g. a sequence edit or
a tree edit; refer to Definitions 2.5, 2.12, and 6.1. 12, 15, 16, 21, 29, 46, 59, 91–97, 99–104,
106, 107, 109–111, 113, 139, 141, 161, 163, 164, 183, 226
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edit set (∆) a set of edits; refer to Definitions 2.5, 2.12, and 6.1. 13–16, 21–23, 27, 45, 46,
95–97, 100, 104, 161, 163, 198, 233
edit tree grammar (G) a formal grammar which restricts the set of possible script trees
that can be generated; refer to Definition 2.10. 15, 18–20, 45–51, 53, 56, 139, 161, 165, 166,
200, 205
electromyography a technique to record electrical activity of muscles. In Chapter 8,
electromyographic data is used to infer the intended motion of amputees who use a
bionic hand prosthesis. 129, 161, 167
empty list (ε) the sequence of length 0 also known as the empty list. 13, 161
Euclidean (d) a distance is called Euclidean if it is equivalent to the square root of an
inner product of difference vectors in some space; refer to Definition 2.2. 7–11, 32, 36, 38,
39, 48, 60, 65, 67, 68, 82, 83, 88, 109, 161, 169, 170, 173, 174
expectation maximization a general optimization scheme introduced by Dempster, Laird,
and Rubin (1977) used in this thesis for maximizing the likelihood in training or trans-
ferring a Gaussian Mixture Models, and for training a MGLVQ model. Also refer to
Sections 2.5.2, 7.2, and 2.5.4. 124, 125, 128, 161, 167

forest (X, Y) a list of trees; refer to Definition 2.11. 21–23, 161, 175, 178–180, 183–185,
209–214

Gaussian density function (N ) the probability density function for the multivariate
Gaussian distribution. N (~x|~µ, Λ) denotes the probability mass assigned to vector ~x
by the Gaussian density function with mean ~µ and precision matrix Λ; also refer to
Equation 2.31. 161, 164, 166
Gaussian Mixture Model a generative model of vectorial data via a sum of Gaussian
density functions; also refer to Section 2.5.2. 33–35, 124, 133, 139, 161, 164, 167
GLVQ cost function (EGLVQ) the loss function of generalized learning vector quantization;
also refer to Equation 2.28. 32, 33, 36, 48, 49, 56, 60, 64, 66, 67, 121, 161
graph (G) a tuple G = (V, E) of a (finite) node set V and an edge set E ⊆ V ×V; refer to
Definition 5.1. 11–14, 21, 27, 77–82, 86–89, 161, 165

heterogeneous feature augmentation a domain adaptation algorithm which learns linear
mappings from target and source space to a shared latent space where a shared support
vector machine is trained; also refer to Duan, Xu, and I. Tsang (2012). 118, 124, 134, 161,
167

identity matrix (Im, Im×n) the m×m or m× n identity matrix, that is, the matrix which
contains only zeros except for ones on the diagonal. 40, 124, 161

kernel (k) a function d : X × X → R which measures the inner product between two
data points; refer to Definition 2.3. 8, 9, 11, 12, 38, 39, 68, 77–79, 82–85, 89, 90, 103, 106,
140, 161, 165, 169, 170, 231, 234
kernel matrix (K) a matrix of pairwise inner products between all points in a set, or,
more generally, a square, symmetric, positive semi-definite matrix. 9, 41, 84, 85, 161, 235
keyroots (K(x̃)) the set of keyroots for the tree x̃; refer to Definition 2.15. 26, 28, 161, 178,
189

label (y, yi) the label for the ith data point. In case of a classification scenario, this is
assumed to be a natural number in the range {1, . . . , L}. In a time series prediction
scenario, it is assumed to be a data point from the data space. 116, 161, 163–165
learning vector quantization a classification approach where a dataset is represented
by a few prototypes which can classify the data by assigning the label of the closest
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prototype. Variants include generalized learning vector quantization (GLVQ) with a cost
function, generalized matrix learning vector quantization (GMLVQ) which also learns
a metric, and local generalized matrix learning vector quantization (LGMLVQ) which
learns an individual metric for each prototype. Also refer to Section 2.5. 8, 11, 31–33, 36,
44, 48, 60, 66, 68, 73, 120, 128, 133, 139, 161, 164, 165, 167

mean (~µ, ~µk) the mean vector of the kth Gaussian in a Gaussian mixture model. 33, 161
model ( f ) a function which represents a classification or regression model. 161, 165
model space (F ) the base set from which models are drawn. 161
Moore-Penrose Pseudo-Inverse (A†) the Moore-Penrose Pseudo-Inverse of matrix A
which is defined as A> · (A · A>)−1. 67, 123, 161

node (u, v) a node in an graph. 161
nonterminal symbol (A, B, S) an auxiliary symbol in an edit tree grammar; the overall
set of nonterminal symbls is denoted as Φ; refer to Definition 2.10. 18, 161, 166, 200, 206

outermost right leaf (rlx̃(i)) the pre-order index of the outermost right leaf corresponding
to the subtree x̃i; refer to Definition 2.15. 26, 27, 161, 178, 189, 212, 213

precision matrix (Λ, Λk) the precision matrix of of the kth Gaussian in a Gaussian mixture
model, or the relevance matrix of a GMLVQ model, or the relevance matrix of the kth
prototype in a LGMLVQ model. 33, 35, 36, 133, 161, 190
probability density function (p) a probability density function over Rm for some m ∈N.
p(~x) denotes the probability mass assigned to vector ~x. 161
probability distribution (P) a probability distribution over some finite set. P(x) denotes
the probability assigned to outcome x. 161
production rule (A ::= δ(x, B, y)) a rule of an edit tree grammar; the overall set of
production rules is denoted as R; refer to Definition 2.10. 18, 161, 166, 200, 206
projection matrix (Ω, Ωk) the linear projection matrix of a generalized matrix learning
vector quantization (GMLVQ) model or the linear projection matrix of the kth prototype
in a local generalized matrix learning vector quantization (LGMLVQ) model; also refer
to Equation 2.29. 32, 36, 67, 120, 161
prototype (~wk, wk, W) the kth prototype of a learning vector quantization model. A
prototype is a point from the data space. W denotes the matrix of all K prototypes of a
learning vector quantization model. 31, 32, 36–38, 48, 51, 54, 56, 60, 64, 73, 120, 121, 125,
127, 132, 134, 161, 164, 165
prototype label (zk) the label of the kth prototype of a learning vector quantization model.
31, 36, 161
pseudo-Euclidean (d) a distance is pseudo-Euclidean if it is symmetric and self-equal;
refer to Definition 2.4 and Theorem 2.2. 9–11, 14, 25, 46, 77, 78, 82–84, 90, 104, 140, 161,
171, 172, 231, 233

radial basis function (kd,ξ) also known as Gaussian kernel; the function kd,ξ(x, y) :=
exp(−0.5 · d(x, y)2/ξ) with the hyperparameter ξ > 0 called bandwidth; also refer to
Equation 2.44. 38, 39, 52, 68, 82–84, 86, 88, 89, 106, 161
regularization constant (λ) a positive real number regulating the strength of regulariza-
tion. 161

script tree (δ̃) a special kind of tree which takes symbols from an alphabet as leaves and
edit types from a signature as inner nodes; refer to Definition 2.9. 16, 17, 19, 20, 45, 46,
161, 164, 166, 195–198, 200–202
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sequence (x̄, ȳ) a finite-length list over some alphabet A; refer to Definition 2.5. 12–22,
25, 27, 32, 36, 42–50, 52–57, 60, 66, 82, 83, 139, 161, 164, 166, 195, 196, 198, 200, 205, 231
sequence edit (δ) a function which maps a sequence to another sequence; refer to
Definition 2.5. 13, 17, 22, 95, 161, 163, 166, 195, 196, 199
signature (S) a specification of types of sequence edits; refer to Definition 2.7. 13, 15–19,
45, 46, 49, 51, 53, 56, 139, 161, 163, 165, 195, 198, 200, 205
similarity matrix (S) a matrix of pairwise similarities between all data points in a set, for
example the double-centered version of a distance matrix. 161
softmin (softmin) a differentiable approximation of the minimum operation; refer to
Equation 3.4. 49, 57, 161, 163, 202, 205, 206
standard deviation (σ) the standard deviation of a sample or of a Gaussian density
function. 161

tree (x̃, ỹ) a tree over some alphabet A, defined by a root and a list of trees as children;
refer to Definition 2.11. 12, 21–28, 30–32, 38, 53, 57, 59–70, 73–75, 89, 98–102, 109, 111, 139,
161, 163–166, 174, 175, 177, 178, 180, 183, 187, 207, 208, 216, 218, 222, 226
tree edit (δ) a function which maps a tree to another tree; refer to Definition 2.11. 21–24,
95, 161, 163, 177
tree language (L(G,A)) the script tree language produced by the edit tree grammar G
over the alphabet A, that is, the set of all script trees which can be generated from the
starting nonterminal symbol of G using the production rules of G; refer to Definition 2.10.
18, 19, 161
tree mapping (M) a set of tuples which assigns nodes from one tree to another tree; refer
to Definition 2.14. 25–27, 30, 31, 60–64, 73, 161, 163, 178, 180–183, 185–187, 209, 213–216,
218, 219, 221–223, 225–228
tree set (T (A)) the set of all possible trees over alphabet A; refer to Definition 2.11. 161

worst case complexity (O
(

p(n)
)
) the set of functions which are bounded above by c · p(n)

for some sufficiently big n, some function p : N→N and some constant factor c. 161

yield (Y(δ̃)) The concatenation of all left-hand-side and right-hand-side leaves of the
script tree δ̃; refer to Definition 2.9. 16, 17, 19, 20, 45, 46, 161, 195
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1-NN one-nearest neighbor regression. 38–40, 82, 84, 86, 88–90, 110, 111, 139, 161, 231

a-SVM adaptive support vector machine. 118, 119, 124–128, 134–137, 161
ADP algebraic dynamic programming. 13–15, 20, 21, 44–46, 139, 161
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137, 161
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132–136, 139, 161, 165
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165
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rBCM robust Bayesian committee machine. 41, 83–86, 88–90, 161, 231, 232
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slGMM labeled Gaussian Mixture Model with shared precision matrix. 35, 36, 123, 124,
133, 134, 161, 236
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AP R O O F S

a .1 proof of theorem 2.1

Recall the theorem we intend to prove.

Let X be some arbitrary set and let d : X ×X → R. Then it holds: d is Euclidean if
and only if there exists a kernel k : X × X → R, such that for all x, y ∈ X : d(x, y)2 =
k(x, x)− 2 · k(x, y) + k(y, y).

Now, let X = {x1, . . . , xM} be a finite set and let s : X ×X → R. It holds: s is a kernel
if and only if the matrix S ∈ RM×M with entries Si,j = s(xi, xj) is symmetric and positive
semi-definite.

Further, let d : X ×X → R be a self-equal and symmetric function on X , and let sd
be defined as follows.

sd(xi, xj) :=
1
2

(
− d(xi, xj)

2 +
1
M

M

∑
k=1

d(xi, xk)
2 + d(xk, xj)

2 − 1
M

M

∑
l=1

d(xk, xl)
2
)

(A.1)

Then it holds for all i, j ∈ {1, . . . , M}: d(xi, xj)
2 = sd(xi, xi)− 2 · sd(xi, xj) + sd(xj, xj).

Finally, it holds: d is Euclidean if and only if the matrix S ∈ RM×M with entries
Si,j = sd(xi, xj) is positive semi-definite.

Proof

The first claim is straightforward. Let k : X × X → R be a kernel with spatial map
φ : X → Rm. Then, for all x, y it holds:

d(x, y)2 = k(x, x)− 2 · k(x, y) + k(y, y)

= φ(x)> · φ(x)− 2 · φ(x)> · φ(y) + φ(y)> · φ(y)

=
(
φ(x)− φ(y)

)> · (φ(x)− φ(y)
)
= ‖φ(x)− φ(y)‖2

Because this is a square number, it also holds d(x, y) = ‖φ(x)− φ(y)‖, which shows that
d is Euclidean with spatial mapping φ.

Conversely, if d is Euclidean with spatial mapping φ : X → Rm, then the function
k(x, y) = φ(x)> · φ(y) is, per definition, a kernel and we obtain:

d(x, y)2 = ‖φ(x)− φ(y)‖2 =
(
φ(x)− φ(y)

)> · (φ(x)− φ(y)
)

= φ(x)> · φ(x)− 2 · φ(x)> · φ(y) + φ(y)> · φ(y)
= k(x, x)− 2 · k(x, y) + k(y, y)

Now, consider the second claim, which we prove following Pekalska and Duin (2005,
pp. 118-119). If s is a kernel with spatial mapping φ, then let X =

(
φ(x1), . . . , φ(xM)

)
. In

that case, S = X> · X. Because S is an inner product of a matrix with itself, it follows that
S must be symmetric and positive semi-definite.

169



proofs

Conversely, if S is symmetric, then the eigenvalue decompostion of S yields V> ·Λ ·
V = S for an M×M matrix of orthogonal eigenvectors V and a M×M diagonal matrix
of corresponding eigenvalues Λ.

If S is positive semi-definite, all entries of Λ are non-negative. Now, let
√

Λ denote
the element-wise square-rooted version of Λ, that is,

√
Λi,j =

√
Λi,j. Then, we set

X :=
(
φ(x1), . . . , φ(xM)

)
:=
√

Λ · V

Accordingly, it holds: X> · X = V> ·
√

Λ ·
√

Λ · V = S, meaning that for all i, j we obtain:
Si,j = φ(xi)

> · φ(xj) which proves that s is a kernel with the spatial mapping φ.

The third claim is due to double-centering as described by Torgerson (1952). First, we
define the following auxiliary variables.

di,j := d(xi, xj)
2, d :=

1
M2

M

∑
i=1

M

∑
j=1

di,j, and di :=
1
M

M

∑
j=1

di,j

Now, recall that d is symmetric and self-equal. Therefore, we obtain:

sd(xi, xi)− 2 · sd(xi, xj) + sd(xj, xj) =
1
2

(
− di,i + di + di − d

)
− 2 · 1

2

(
− di,j + di + dj + d

)
+

1
2

(
− dj,j + dj + dj − d

)
=
(
di −

1
2

d
)
+
(
di,j − di − dj + d

)
+
(
dj −

1
2

d
)
= di,j

Finally, consider the fourth claim. If S with entries Si,j = sd(xi, xi) is symmetric and
positive semi-definite, then sd is a kernel according to the second claim. Further, if sd is a
kernel, then d is Euclidean according to the first claim.

Conversely, if d is Euclidean with spatial mapping φ : X → Rm, then it holds:

Si,j =
1
2

(
− di,j + di + dj − d

)
=− 1

2
(
φ(xi)− φ(xj)

)> · (φ(xi)− φ(xj)
)

+
1

2M

M

∑
i′=1

(
φ(xi′)− φ(xj)

)> · (φ(xi′)− φ(xj)
)

+
1

2M

M

∑
j′=1

(
φ(xi)− φ(xj′)

)> · (φ(xi)− φ(xj′)
)

− 1
2M2

M

∑
i′=1

M

∑
j′=1

(
φ(xi′)− φ(xj′)

)> · (φ(xi′)− φ(xj′)
)
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a .2 proof of theorem 2.2

=− 1
2

φ(xi)
> · φ(xi) + φ(xi)

> · φ(xj)−
1
2

φ(xj)
> · φ(xj)

+
1
M

M

∑
i′=1

1
2

φ(xi′)
> · φ(xi′)− φ(xi′)

> · φ(xj) +
1
2

φ(xj)
> · φ(xj)

+
1
M

M

∑
j′=1

1
2

φ(xi)
> · φ(xi)− φ(xi)

> · φ(xj′) +
1
2

φ(xj′)
> · φ(xj′)

+
1

M2

M

∑
i′=1

M

∑
j′=1
−1

2
φ(xi′)

> · φ(xi′) + φ(xi′)
> · φ(xj′)−

1
2

φ(xj′)
> · φ(xj′)

=φ(xi)
> · φ(xj)−

1
M

M

∑
i′=1

φ(xi′)
> · φ(xj)−

1
M

M

∑
j′=1

φ(xi)
> · φ(xj′)

+
1

M2

M

∑
i′=1

M

∑
j′=1

φ(xi′)
> · φ(xj′)

=φ(xi)
> · φ(xj)−

( 1
M

M

∑
i′=1

φ(xi′)
)>
· φ(xj)− φ(xi)

> ·
( 1

M

M

∑
j′=1

φ(xj′)
)

+
( 1

M

M

∑
i′=1

φ(xi′)
)>
·
( 1

M

M

∑
j′=1

φ(xj′)
)

=
(

φ(xi)−
1
M

M

∑
i′=1

φ(xi′)
)>
·
(

φ(xj)−
1
M

M

∑
j′=1

φ(xj′)
)

In other words, we can re-write S as S = X> · X, where

X :=
(

φ(x1)−
1
M

M

∑
i=1

φ(xi), . . . , φ(xM)− 1
M

M

∑
i=1

φ(xi)
)

Because S is an inner product of a matrix with itself, S is positive semi-definite.

a .2 proof of theorem 2.2

Recall the theorem we intend to prove.

Let X = {x1, . . . , xM} be a finite set and let d : X × X → R. It holds: d is pseudo-
Euclidean if and only if d is symmetric and self-equal.

Proof

According to Theorem 2.1, we know that sd fulfills the property: d(xi, xj)
2 = sd(xi, xi)−

2 · sd(xi, xj) + sd(xj, xj) for all i, j ∈ {1, . . . , M}.

Further, because d is symmetric, we also know that the matrix S with entries Si,j =

sd(xi, xj) is symmetric. Accordingly, the eigenvalue decompostion of S yields V> ·Λ ·V =
S for an M×M matrix of orthogonal eigenvectors V and a M×M diagonal matrix of
corresponding eigenvalues Λ. Without loss of generality, assume that the eigenvalues
are sorted descendingly in Λ with Λm,m being the smallest eigenvalue that is strictly
positive, and with ΛM−n+1,M−n+1 being the largest eigenvalue that is strictly negative.
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Accordingly, all entries Λm+1,m+1, . . . ΛM−n,M−n are zero. Further, let V+ ∈ Rm×M be the
matrix consisting of the first m rows of V , let V− ∈ Rn×M be the matrix consisting of
the last n rows of V , let Λ+ ∈ Rm×m be the diagonal matrix with the diagonal entries√

Λ1,1, . . . ,
√

Λm,m, and let Λ− ∈ Rn×n be the diagonal matrix with the diagonal entries√
−ΛM−n+1,M−n+1, . . .

√
−ΛM,M. Finally, let

X+ =
(
φ+(x1), . . . , φ+(xM)

)
:= Λ+ · V+

X− =
(
φ−(x1), . . . , φ−(xM)

)
:= Λ− · V−

Per construction, it holds:

X+> · X+−X−> · X− = V+> ·Λ+ ·Λ+ · V+ + V−> · (−Λ− ·Λ−) · V−

=

 V+

0M−m−n×M

V−

> ·
(Λ+)2 0m×M−m

0M−m−n×M

0n×M−n −(Λ−)2

 ·
 V+

0M−m−n×M

V−


=V> ·Λ · V = S

where 0rxs is a r × s matrix of zeros. Accordingly, we obtain for any i, j ∈ {1, . . . , M}:
sd(xi, xj) = φ+(xi)

> · φ+(xj)− φ−(xi)
> · φ−(xj).

For the squared distance we thus obtain:

d(xi, xj)
2 = sd(xi, xi)− 2 · sd(xi, xj) + sd(xj, xj)

=φ+(xi)
> · φ+(xi)− φ−(xi)

> · φ−(xi)− 2 · φ+(xi)
> · φ+(xj)

+ 2 · φ−(xi)
> · φ−(xj) + φ+(xj)

> · φ+(xj)− φ−(xj)
> · φ−(xj)

=
(
φ+(xi)− φ+(xj)

)> · (φ+(xi)− φ+(xj)
)
−
(
φ−(xi)− φ−(xj)

)> · (φ−(xi)− φ−(xj)
)

Therefore, d is pseudo-Euclidean with the positive spatial mapping φ+ and the negative
spatial mapping φ−.

Conversely, if d is pseudo-Euclidean, then the right-hand-side of Equation 2.7 is
obviously self-equal and symmetric.

a .3 proof of theorem 2.3

Recall the theorem we intend to prove.

Let X be some arbitrary set and let d : X ×X → R be a pseudo-Euclidean distance on
X with the spatial mappings φ+ : X → Rm and φ− : X → Rn. Further, let {x1, . . . , xM} ⊆
X be a finite subset of X , and let ~α,~β ∈ RM such that ∑M

i=1 αi = ∑M
i=1 βi = 1. Finally,

let X+ =
(
φ+(x1), . . . , φ+(xM)

)
∈ RM×m and X− =

(
φ−(x1), . . . , φ−(xM)

)
∈ RM×n be

the matrices of positive and negative spatial representations for all xi, and let D2 be the
M×M matrix with the entries D2

i,j = d(xi, xj)
2. Then, it holds:

‖X+ ·~α−X+ ·~β‖2−‖X− ·~α−X− ·~β‖2 =~α> ·D2 ·~β− 1
2
~α> ·D2 ·~α− 1

2
~β> ·D2 ·~β (A.2)

Further, for any x ∈ X it holds:

‖φ+(x)− X+ ·~α‖2 − ‖φ−(x)− X− ·~α‖2 =
M

∑
i=1

αi · d(x, xi)
2 − 1

2
~α> · D2 ·~α (A.3)
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If d is Euclidean with spatial mapping φ : X → Rm, then let X :=
(
φ(x1), . . . , φ(xM)

)
∈

Rm×M. It holds:

‖X ·~α− X · ~β‖2 =~α> · D2 · ~β− 1
2
~α> · D2 ·~α− 1

2
~β> · D2 · ~β (A.4)

Further, for any x ∈ X it holds:

‖φ(x)− X ·~α‖2 =
M

∑
i=1

αi · d(x, xi)
2 − 1

2
~α> · D2 ·~α (A.5)

Proof

This proof is adapted from Hammer and Hasenfuss (2010). We begin with Equation A.2.
As a notational shorthand, let Si,j := φ+(xi)

> · φ+(xj)− φ−(xi)
> · φ−(xj).

Now, consider the term~α> · D2 · ~β. We can re-write:

~α> · D2 · ~β =
M

∑
i=1

M

∑
j=1

αi · β j · d(xi, xj)
2

=
M

∑
i=1

M

∑
j=1

αi · β j · (Si,i − 2 · Si,j + Sj,j)

=
M

∑
i=1

αi · Si,i ·
( M

∑
j=1

β j

)
− 2 ·

M

∑
i=1

M

∑
j=1

αi · β j · Si,j +
M

∑
j=1

β j · Sj,j ·
( M

∑
i=1

αi

)
=

M

∑
i=1

αi · Si,i − 2 ·
M

∑
i=1

M

∑
j=1

αi · β j · Si,j +
M

∑
j=1

β j · Sj,j

Accordingly, we obtain the following results for~α> · D2 ·~α and ~β> · D2 · ~β

~α> · D2 ·~α =2 ·
M

∑
i=1

αi · Si,i − 2 ·
M

∑
i=1

M

∑
j=1

αi · αj · Si,j

~β> · D2 · ~β =2 ·
M

∑
i=1

βi · Si,i − 2 ·
M

∑
i=1

M

∑
j=1

βi · β j · Si,j

Hence, the right-hand-side of Equation A.2 adds up to:

~α> · D2 · ~β− 1
2
~α> · D2 ·~α− 1

2
~β> · D2 · ~β

=
M

∑
i=1

αi · Si,i − 2 ·
M

∑
i=1

M

∑
j=1

αi · β j · Si,j +
M

∑
j=1

β j · Sj,j

−
M

∑
i=1

αi · Si,i +
M

∑
i=1

M

∑
j=1

αi · αj · Si,j

−
M

∑
i=1

βi · Si,i +
M

∑
i=1

M

∑
j=1

βi · β j · Si,j

=
M

∑
i=1

M

∑
j=1

αi · αj · Si,j − 2 · αi · β j · Si,j + βi · β j · Si,j
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=~α> · X+> · X+ ·~α−~α> · X−> · X− ·~α− 2 ·~α> · X+> · X+ · ~β

+ 2 ·~α> · X−> · X− · ~β + ~β> · X+> · X+ · ~β− ~β> · X−> · X− · ~β
=(X+ ·~α− X+ · ~β)> · (X+ ·~α− X+ · ~β)
− (X− ·~α− X− · ~β)> · (X− ·~α− X− · ~β)

=‖X+ ·~α− X+ · ~β‖2 − ‖X− ·~α− X− · ~β‖2

which concludes the proof of Equation A.2.

Regarding Equation A.3, let X ′ = {x1, . . . , xM, xM+1} with xM+1 = x, let ~α′ =

(α1, . . . , αM, 0)> ∈ RM+1, let ~β be the M+ 1th unit vector, let X+ ′ =
(
φ+(x1), . . . , φ+(xM+1)

)
,

let X−′ =
(
φ−(x1), . . . , φ−(xM+1)

)
, and let D′ be the M + 1×M + 1 matrix with D′i,j =

d(xi, xj). Then, according to the first claim, it holds:

‖φ+(x)− X+ ·~α‖2 − ‖φ−(x)− X− ·~α‖2

=‖X+ ′ · ~β− X+ ′ ·~α′‖2 − ‖X−′ · ~β− X−′ ·~α′‖2

=~α′> · D′ · ~β− 1
2
~α′> · D′ ·~α′ − 1

2
~β> · D′ · ~β

=
M

∑
i=1

αi · 1 · D′i,M+1 −
1
2
~α> · D2 ·~α− 1

2
1 · d(x, x)2 · 1

=
M

∑
i=1

αi · d(x, xi)
2 − 1

2
~α> · D2 ·~α

which concludes the proof of Equation A.3.

With respect to the remaining two equations, we utilize the first result in Theorem 2.2.
According to this result, we obtain for an Euclidean distance d:

‖X ·~α− X · ~β‖2 = ‖X+ ·~α− X+ · ~β‖2 − ‖X− ·~α− X− · ~β‖2 and

‖φ(x)− X ·~α‖2 = ‖φ+(x)− X+ ·~α‖2 − ‖φ−(x)− X− ·~α‖2

such that the equations follow directly from the first two claims.

a .4 proof of theorem 2.4

Recall the theorem we intend to prove.

Let A be an alphabet with − /∈ A and let c be a cost function over A. Then it holds:
For any trees x̃, ỹ ∈ T (A), there exists at least one edit script δ̄ ∈ ∆A such that δ̄(x̃) = ỹ.

Further it holds: If c is a (pseudo-)metric over A∪ {−}, then dc is a (pseudo-)metric
over T (A). More specifically, the following claims hold if c is non-negative (i.e. ∀x, y ∈
A ∪ {−} : c(x, y) ≥ 0).

Non-Negativity: ∀x̃, ỹ ∈ T (A) : dc(x̃, ỹ) ≥ 0.

Self-Equality: ∀x̃ ∈ T (A) : dc(x̃, x̃) = 0.

Discernibility: ∀x, y ∈ A ∪ {−} : x 6= y ⇒ c(x, y) > 0 implies ∀x̃, ỹ ∈ T (A) : x̃ 6= ỹ ⇒
dc(x̃, ỹ) > 0.
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Table A.1: The number of children RX(i), the child indices rX(i), and the ancestors ancX(i) for
the example tree x̃ = a(b(c, d), e) from Figure 2.6.

i x̃i RX(i) rX(i) ancX(i)

1 a(b(c, d), e) 2 1 ∅
2 b(c, d) 2 1 {1}
3 c 0 1 {1, 2}
4 d 0 2 {1, 2}
5 e 0 2 {1}

Symmetry: ∀x, y ∈ A ∪ {−} : c(x, y) = c(y, x) implies ∀x̃, ỹ ∈ T (A) : dc(x̃, ỹ) =
dc(ỹ, x̃).

Triangular Inequality: ∀x̃, ỹ, z̃ ∈ T (A) : dc(x̃, ỹ) + dc(ỹ, z̃) ≥ dc(x̃, z̃)

Proof

First, we need to introduce some auxiliary concepts for this proof.

Definition A.1 (Parents, children, and ancestors for forests). Let A be an alphabet and
let X = x̃1, . . . , x̃R be a forest over A. Further, let i ∈ {1, . . . , |X|}, let x̃i = xi(x̃i

1, . . . , x̃i
Ri
),

let r ∈ {1, . . . , Ri}, and let ir := i + 1 + ∑r−1
l=1 |x̃i

l |. We also include the special case
0r := 1 + ∑r−1

l=1 |x̃l |.

Then, we denote the number of children Ri of subtree x̃i as RX(i), and we define for
any ir: rX(ir) := r.

Further, we define the parent index parX(ir) of ir in X as i, that is, parX(ir) := i.

For any i ∈ {1, . . . , |X|} we define the ancestors ancX(i) of i in X recursively as
ancX(i) := ∅ if parX(i) = 0 and ancX(i) := {parX(i)} ∪ ancX(parX(i)) otherwise.

Consider the example tree x̃ = a(b(c, d), e) from Figure 2.6. The number of children
RX(i), the child indices rX(i), and the ancestors ancX(i) are shown in Table A.1.

To justify the definition of parent indices, we next show that the subtree identified
with index ir is actually the rth child of the subtree x̃i.

Lemma A.1. Let A be an alphabet and let X = x̃1, . . . , x̃R be a forest over A.

Then, the number of elements in the pre-order π(X) is equal to |X|.

Further, for any i ∈ {1, . . . , |X|} and any j ∈ {1, . . . , |x̃i|} it holds x̃i,j = x̃i+j−1, that is, the
jth tree in the pre-order of the ith tree in the pre-order of X is the same as the i + j− 1th tree in
the pre-order of X.

Finally, let i ∈ {1, . . . , |X|}, let x̃i = xi(x̃i
1, . . . , x̃i

Ri
), let r ∈ {1, . . . , Ri}, and let ir :=

i + 1 + ∑r−1
l=1 |x̃i

l |. Then, it holds: x̃ir = x̃i
r.

Proof. We prove the first claim via a simple induction over |X|. Let ‖π‖ denote the
number of elements in the list π.
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If |X| = 0, then X = ε and |X| = |ε| = 0 = ‖ε‖ = ‖π(X)‖. If |X| > 0, then ‖π(X)‖ =
‖x̃1, π($̄(x̃1)), π(x̃2, . . . , x̃R)‖ = 1 + ‖π($̄(x̃1))‖+ ‖π(x̃2, . . . , x̃R)‖. Per induction, this is
equal to 1 + |$̄(x̃1)|+ |x̃2, . . . , x̃R| = |X|, which concludes the proof.

Regarding the second claim, we perform an induction over i. If i = 1, then x̃1 = x̃1.
Accordingly, we obtain x̃1,j = x̃j = x̃1+j−1 for any j ∈ {1, . . . , |x̃i|}.

Now, if i > 1, consider the pre-order of X, that is, π(X) = x̃1, π($̄(x̃1)), π(x̃, . . . , x̃R).
We distinguish two cases.

First, if i ∈ {2, . . . , |x̃1|}, it must hold: x̃i = π($̄(x̃1))i−1. Further, because i− 1 < i,
our induction hypothesis applies, which means that, for any j ∈ {1, . . . , |x̃i|}, we obtain
x̃i,j = π($̄(x̃1))

j
i−1 = π($̄(x̃1))i+j−2 = π(X)i+j−1 = x̃i+j−1 as claimed.

Now, if i ∈ {|x̃1|+ 1, . . . , |X|}, it must hold: x̃i = π(x̃2, . . . , x̃R)i−|x̃1|, because |x̃1| =
‖x̃1, π($̄(x̃1))‖. Because i− |x̃1| < i, our induction hypothesis applies, which means that,
for any j ∈ {1, . . . , |x̃i|}, we obtain: x̃i,j = π(x̃2, . . . , x̃R)

j
i−|x̃1| = π(x̃2, . . . , x̃R)i−|x̃1|+j−1 =

π(X)i+j−1 = x̃i+j−1 as claimed. This concludes the proof.

Finally, regarding the third claim, consider the pre-order of x̃i. It holds:

π(x̃i) = x̃i, π(x̃i
1, . . . , x̃i

Ri
), π(ε)

= x̃i, x̃i
1, π($̄(x̃i

1)), π(x̃i
2, . . . , x̃i

Ri
)

= . . . = x̃i, x̃i
1, π($̄(x̃i

1)), x̃i
2, π($̄(x̃i

2)), . . . , x̃i
r, π($̄(x̃i

r)), π(x̃i
r+1, . . . , x̃i

Ri
)

According to the first claim, the number of elements in π($̄(x̃i
l)) for any l is exactly

|$̄(x̃i
l)|. Accordingly, x̃i

r is exactly the 2 + ∑r−1
l=1 |x̃i

l |th element in the pre-order of x̃i. In
other words, we obtain x̃i

r = x̃i,2+∑r−1
l=1 |x̃

i
l |, which, according to the second claim, is equal

to x̃i+1+∑r−1
l=1 |x̃

i
l | = x̃ir . This concludes the proof.

Now, consider the well-definedness claim. Let x̃, ỹ ∈ T (A). Then, we define the two
edit scripts δ̄del,x̃ := del|x̃| . . . del1 and δ̄ins,ỹ := inspỹ(1),y1,rỹ(1),rỹ(1) . . . inspx̃(|ỹ|),y|ỹ|,rỹ(|ỹ|),rỹ(|ỹ|).
Per construction we have δ̄del,x̃(x̃) = ε and δ̄ins,ỹ(ε) = ỹ. Therefore, for the edit script
δ̄ := δ̄del,x̃ δ̄ins,ỹ we obtain δ̄(x̃) = ỹ such that the set {δ̄ ∈ ∆∗|δ̄(x̃) = ỹ} is not empty.

Now, we consider each of the metric axioms in turn.

Non-Negativity: Let x̃, ỹ ∈ T (A) and let δ̄ be some edit script over ∆A such that δ̄(x̃) = ỹ.
Because the cost c(δ̄, x̃) is a sum of non-negative contributions, the cost itself is
non-negative. Because this holds for any edit script, we obtain dc(x̃, ỹ) ≥ 0.

Self-Equality: Let x̃ ∈ T (A). Then, the empty edit script δ̄ = ε yields δ̄(x̃) = x̃ and
has a cost of 0. Because we have already shown that dc is non-negative we obtain
dc(x̃, ỹ) = 0.

Discernibility: Let x̃, ỹ ∈ T (A) with x̃ 6= ỹ and let δ̄ = δ1 . . . δT be some edit script over
∆A such that δ̄(x̃) = ỹ. Further, let X0 = x̃ and Xt = δt(Xt−1) for all t ∈ {1, . . . , T}.
Because x̃ 6= ỹ, there must exist at least one t ∈ {1, . . . , T} such that δt(Xt−1) 6= Xt−1.
If δt is a deletion or insertion, the cost of applying δt to Xt−1 must be strictly positive,
because for any x ∈ A it holds c(x,−) > 0 and c(−, x) > 0. If δt is a replacement,
the cost of applying δt to Xt−1 can only be 0 if the replaced node is replaced with
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itself. However, then δt(Xt−1) = Xt−1, which is a contradiction. Therefore, in any
case we obtain c(δt, Xt−1) > 0. Because c is non-negative, the cost of applying
δ̄ to x̃ is a sum of non-negative contributions with at least one strictly positive
contribution, which means that c(δ̄, x̃) > 0. Because this reasoning applies to all
edit scripts, we obtain dc(x̃, ỹ) > 0.

Symmetry: We prove a more general auxiliary claim, from which the symmetry of dc
follows.

Let δ̄ be an edit script in ∆∗A such that δ̄(x̃) = ỹ. Then, there exists an edit script
δ̄−1 in ∆∗A such that δ̄−1(ỹ) = x̃, and c(δ̄−1, ỹ) = c(δ̄, x̃).

We prove this claim via induction over the length of δ̄. The base case is the empty
edit script δ̄ = ε, i.e. x̃ = ỹ. In this case, we define δ̄−1 = ε, such that δ̄−1(δ̄(x̃)) =
δ̄−1(x̃) = x̃ and c(δ̄−1, ỹ) = c(ε, ỹ) = 0 = c(δ̄, x̃).

Now, let δ̄ = δ1 . . . δT be a non-empty edit script. Per induction, there exists an edit
script δ̄−1

2 such that δ̄−1
2 (δ2 . . . δT(δ1(x̃))) = δ1(x̃) and c(δ̄−1

2 , ỹ) = c(δ2, . . . , δT, δ1(x̃)).
Now, consider the first tree edit δ1. If δ1(x̃) = x̃ we define δ̄−1 := δ̄−1

2 and we
thus obtain δ̄−1(δ̄(x̃)) = δ̄−1

2 (δ2 . . . δT(δ1(x̃))) = δ1(x̃) = x̃, as well as c(δ̄−1, ỹ) =
c(δ̄−1

2 , ỹ) = c(δ2 . . . δT, x̃) = c(δ̄, x̃).

If δ1(x̃) 6= x̃, consider the following cases.

δ1 = deli: In that case, we define δ−1
1 := insparx̃(i),xi ,rx̃(i),rx̃(i)+Rx̃(i). Per construction,

we obtain δ−1
1 (δ1(x̃)) = x̃ as well as c(δ−1

1 , δ1(x̃)) = c(−, xi) = c(xi,−) =
c(δ1, x̃).

δ1 = repi,y: In that case, we define δ−1
1 := repi,xi

. Per construction we obtain
δ−1

1 (δ1(x̃)) = x̃ as well as c(δ−1
1 , δ1(x̃)) = c(y, xi) = c(xi, y) = c(δ1, x̃).

δ1 = insi,y,l,r: In that case, let x̃i = xi(x̃i
1, . . . , x̃i

Ri
) and let il := i + 1 + ∑l−1

l′=1 |x̃i
l′ |.

We define δ−1
1 := delil . Per construction we obtain δ−1

1 (δ1(x̃)) = x̃ as well as
c(δ−1

1 , δ1(x̃)) = c(y,−) = c(−, y) = c(δ1, x̃).

We define the edit script δ̄−1 as δ̄−1 := δ̄−1
2 δ−1

1 in all three cases. Therefore, we can

conclude that δ̄−1(δ̄(x̃)) = δ−1
1

(
δ̄−1

2

(
δ2 . . . δT(δ1(x̃))

))
= δ−1

1 (δ1(x̃)) = x̃ as well as

c(δ̄−1, ỹ) = c(δ̄−1
2 , ỹ) + c(δ−1

1 , δ1(x̃)) = c(δ2 . . . δT, x̃) + c(δ1, x̃) = c(δ̄, x̃).

As an example for this construction, consider Figure 2.4. In this example, the
edit script δ̄ = rep1,fdel2del2rep2,gdel3 transforms the tree x̃ = a(b(c, d), e) into
the tree ỹ = f(g) with the cost c(δ̄, x̃) = c(a, f) + c(b,−) + c(c,−) + c(d, g) +
c(e,−). The corresponding inverse edit script via the construction above is δ̄−1 =
ins1,e,2,2rep2,dins1,c,1,1ins1,b,1,3rep1,a with the cost c(δ̄−1, ỹ) = c(−, e)+ c(g, d)+ c(−, c)
+ c(−, b) + c(f, a). Therefore, if c is symmetric, these edit scripts have the same
cost.

Now, let δ̄ be an edit script over ∆A with δ̄(x̃) = ỹ, such that dc(x̃, ỹ) = c(δ̄, x̃).
Because dc is well-defined, such an edit script exists. Per our induction above we
know that there is a edit script δ̄−1 ∈ ∆∗A such that δ̄(δ̄−1, ỹ) = x̃ and c(δ̄−1, ỹ) =
c(δ̄, x̃). Therefore, we obtain dc(ỹ, x̃) ≤ c(δ̄−1, ỹ) = dc(x̃, ỹ). Using a symmetric
reasoning, we can also conclude that dc(ỹ, x̃) ≥ dc(x̃, ỹ), i.e. dc(x̃, ỹ) = dc(ỹ, x̃).

Triangular Inequality: Let x̃, ỹ, z̃ ∈ T (A) and let δ̄, δ̄′ be edit scripts over ∆A such that
δ̄(x̃) = ỹ, δ̄′(ỹ) = z̃, c(δ̄, x̃) = dc(x̃, ỹ), and c(δ̄′, ỹ) = dc(ỹ, z̃). Then, δ̄′′ := δ̄δ̄′ is
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an edit script over ∆A such that δ̄′′(x̃) = z̃, and we obtain dc(x̃, z̃) ≤ c(δ̄′′, x̃) =
c(δ̄, x̃) + c(δ̄′, ỹ) = dc(x̃, ỹ) + dc(ỹ, z̃).

a .5 proof of theorem 2.5

Recall the theorem we intend to prove.

Let A be an alphabet, let c be a cost function over A, and let x̃ and ỹ be trees over A.
Then, Algorithm 2.1 computes the tree mapping edit distance Dc(x̃, ỹ) between x̃ and
ỹ. Further, Algorithm 2.1 runs in O(|x̃| · |ỹ|) space complexity and O(|x̃|2 · |ỹ|2) time
complexity.

Finally, it holds: If c is self-equal, non-negative, and fulfills the triangular inequality,
then Dc(x̃, ỹ) = dc(x̃, ỹ).

Proof

Note that our proof is conceptually equivalent to the original proof of Zhang and Shasha
(1989). All differences are due to notational changes and the fact that we use the pre-order
instead of the post-order for simplicity.

First, consider the complexity claims. Algorithm 2.1 maintains two matrices, each of
size O(|x̃| · |ỹ|) and does otherwise only store the input such that the space complexity
claim follows immediately. Regarding runtime, Algorithm 2.1 executes four nested loops,
in which only constant operations are necessary (assuming that access to auxiliary
tree properties is possible in constant time). Therefore, we obtain a worst-case runtime
complexity of O(|K(x̃)| · |K(ỹ)| · |x̃| · |ỹ|). Note that |K(x̃)| ≤ |x̃| and |K(ỹ)| ≤ |ỹ| such
that we obtain our desired worst-case-bound of O(|x̃|2 · |ỹ|2) time complexity.

Proving the correctness of Algorithm 2.1 is substantially more complex and we will
rely on multiple intermediate lemmata to do so. In a first step, we will generalize our tree
concepts to forests and establish some lemmata regarding the relations between these
auxiliary concepts. Then, we will go on to show that the tree edit distance and the tree
mapping edit distance are equivalent. Finally, we will prove a decomposition lemma for
the tree mapping edit distance and hence the correctness of Algorithm 2.1.

In a next step, we generalize the concepts of outermost right leaves and keyroots from
trees (refer to Definition 2.15) to forests, because our remaining argument will apply to
forests in general, not only to trees.

Definition A.2 (Outermost Right Leaves and Keyroots for Forests). Let A be an alphabet
and let X be a forest over A. For any i ∈ {1, . . . , |X|} we define the outermost right
leaf rlX(i) of i in X as rlX(i) := i + |x̃i| − 1; we define the keyroot kX(i) of i in X as
kX(i) := min{j|rlX(i) = rlX(j)}; and we define the keyroots K(X) of X as the set
K(X) := {j|∃i ∈ {1, . . . , |X|} : j = kX(i)}.

Note that ancestral relationships have a deep connection to outermost right leaves. In
particular, all i which have k as ancestor are in the range (k, rlX(k)] and vice versa.
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Lemma A.2. Let A be an alphabet, let X be a forest over A and let k ∈ {1, . . . , |X|}. Then, it
holds:

∀i ∈ {1, . . . , |X|} : k ∈ ancX(i)⇒ k < i ≤ rlX(i) ≤ rlX(k) (A.6)
∀i ∈ {1, . . . , |X|} : k < i ≤ rlX(k)⇒ k ∈ ancX(i) (A.7)

∀i, j ∈ ancX(k) : i < j⇔ i ∈ ancX(j) (A.8)

Proof. We first provide a proof for Equations A.6 and A.7, and then go on to prove
Equation A.8. Our first proof works via induction over the size of the subtree x̃k.

If |x̃k| = 1, then k can not be an ancestor of any element and, likewise, there exist no i
such that k < i ≤ rlX(k) = k or k < rlX(i) ≤ rlX(k) = k. Therefore, the base case holds
for Equations A.6 and A.7.

Now, assume that |x̃k| > 1. Let x̃k = xk(x̃k
1, . . . , x̃k

Rk
). Further, let for all r ∈ {1, . . . , Rk +

1} : kr := k + ∑r−1
l=1 |x̃k

l |+ 1. Recall that, according to Lemma A.1, for all r ∈ {1, . . . , Rk}
it holds: x̃kr = x̃k

r . Further note that rlX(kr) = kr + |x̃k
r | − 1 = k + ∑r

l=1 |x̃k
l | = kr+1 − 1.

Finally, it holds: kRk+1 = k + ∑Rk
l=1 |x̃k

l |+ 1 = k + |x̃k| = rlX(k) + 1.

Regarding Equation A.6, we consider k ∈ ancX(i). Then per definition of ancestors,
one of the following two cases applies.

parX(i) = k: In that case, let r be the index such that i = kr. Then, it holds:

k < k +
r−1

∑
l=1
|x̃k

1|+ 1 = kr = i ≤ rlX(i) = rlX(kr) = kr+1 − 1 ≤ kRk+1 − 1 = rlX(k)

parX(i) 6= k: In that case, there is some j ∈ ancX(i) such that parX(j) = k, otherwise k
would not be in ancX(i). Let r be the index such that kr = j. Then, per induction,
we know that

k < k +
r−1

∑
l=1
|x̃k

1|+ 1 = kr = j
I.H.
< i ≤ rlX(i)

I.H.
≤ rlX(j) = rlX(kr) = kr+1 − 1 ≤ kRk+1 − 1 = rlX(k)

which concludes the proof.

Regarding Equation A.7, we consider k < i ≤ rlX(k). Then, there exists exactly one
r such that kr ≤ i < kr+1. Now, if kr = i, we obtain parX(i) = k, which in turn implies
k ∈ ancX(i). If kr < i, then kr < i ≤ kr−1 − 1 = rlX(kr). Therefore, per induction, it
holds: kr ∈ ancX(i). Due to the definition of ancestors, we also know that k ∈ ancX(kr).
Therefore, k ∈ ancX(i), which concludes the proof.

Now, consider Equation A.8. We perform an inductive proof over the size of the
ancestor set |ancX(k)|.

If ancX(k) is empty or contains only a single element, then the claim holds trivially.
If |ancX(k)| > 1, consider i := parX(k). Then, per definition of ancestors, we have
ancX(k) = {i}∪ ancX(i). Because |ancX(i)| < |ancX(k)|, our induction hypothesis applies
and the claim holds for all pairwise comparisons within ancX(i). It remains to show that
the claim holds for all pairwise comparisons (i, j) with j ∈ ancX(k). There are only two
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possible cases for j. Either i = j, in which case the claim holds trivially, or j ∈ ancX(i).
In that case, Equation A.6 implies j < i, which means that the claim holds as well. This
concludes the proof.

Next, we generalize the notion of tree mappings between trees (refer to Definition 2.14)
to tree mappings between forests.

Definition A.3 (Mappings). Let A be an alphabet and let X, Y be forests over A. Then,
we define a tree mapping M between X and Y as a subset M ⊆ {1, . . . , |X|} × {1, . . . , |Y|}
such that the following conditions hold for all entries (i, j), (i′, j′) ∈ M.

i ≥ i′ ⇐⇒ j ≥ j′ (pre-order preservation) (A.9)
i ∈ ancX(i′) ⇐⇒ j ∈ ancY(j′) (ancestral preservation) (A.10)

We define the left-complement of M as I(M, X, Y) :=
{

i ∈ {1, . . . , |X|}
∣∣@j ∈ {1, . . . , |Y|} :

(i, j) ∈ M
}

and we define the right-complement of M as J(M, X, Y) :=
{

j ∈ {1, . . . , |Y|}
∣∣@i ∈

{1, . . . , |X|} : (i, j) ∈ M
}

. Finally, we define the cost of M according to some cost function
c over A as follows.

c(M, X, Y) := ∑
(i,j)∈M

c(xi, yj) + ∑
i∈I(M,X,Y)

c(xi,−) + ∑
j∈J(M,X,Y)

c(−, yj)

In a next step, we show that we can always find an edit script which is exactly as
expensive as the tree mapping in question. Conversely, we can always find a tree mapping
which is at most as expensive as the edit script in question. This very fact permits us to
search for cheapest tree mappings instead of cheapest edit scripts, as we show in the next
Lemma. First, however, we define an alternative distance based on tree mappings, which
we will then show to be equivalent.

Definition A.4 (Forest Edit Distance, Forest Mapping Distance). Let A be an alphabet
and let X, Y be forests over A. Further, let c be a cost function over A. Then, we define
the forest edit distance dc(X, Y) between X and Y as

dc(X, Y) := min
δ̄∈∆∗A
{c(δ̄, X)|δ̄(X) = Y} (A.11)

Further, we define the forest tree mapping distance Dc(X, Y) between X and Y as

Dc(X, Y) := min
M⊂{1,...,|X|}×{1,...,|Y|}

{c(M, X, Y)|M is a tree mapping between X and Y}

(A.12)

In the next lemma, we demonstrate that under some conditions to the cost function,
dc and Dc are equivalent.

Lemma A.3. Let A be an alphabet and let X, Y be forests over A. Further, let c be a cost function
over A. Then, it holds:

1. For any tree mapping M between X and Y there exists an edit script δ̄M ∈ ∆A such that
δ̄(X) = Y and c(δ̄, X) = c(M, X, Y).
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2. If c fulfills the triangular inequality and is self-equal, then for any edit script δ̄ ∈ ∆A with
δ̄(X) = Y there exists a tree mapping Mδ̄ between X and Y such that c(Mδ̄, X, Y) ≤
c(δ̄, X).

3. If c fulfills the triangular inequality and is self-equal, then dc(X, Y) = Dc(X, Y).

Proof. We will consider each claim in turn.

Regarding the first claim, we define two more auxiliary sets, namely IC(M, X, Y) :={
i ∈ {1, . . . , |X|}

∣∣∃j ∈ {1, . . . , |Y|} : (i, j) ∈ M
}

and JC(M, X, Y) :=
{

j ∈ {1, . . . , |Y|}
∣∣∃i ∈

{1, . . . , |X|} : (i, j) ∈ M
}

. Then, we can construct δ̄M as the concatenation of three edit
scripts δ̄

rep
M , δ̄del

M , and δ̄ins
M as follows. We define δ̄

rep
M as the list of repi,yj

for all (i, j) ∈ M
in lexical ascending order, first sorted according to i and then according to j. Per con-
struction, this edit script replaces all xi with the mapped label yj according to the tree
mapping M.

Next, we define δ̄del
M as the list of deli for all i ∈ I(M, X, Y) in descending order. Per

construction, δ̄del
M (X) contains exactly those xi such that i ∈ IC(M, X, Y).

Finally, we define δ̄ins
M as the list of insparY(j),yj,rY(j),rY(j)+RM,X,Y(j) for all j ∈ J(M, X, Y)

in ascending order, where we define RM,X,Y(j) recursively as RM,X,Y(j) := |adjY(j) ∩
JC(M, X, Y)|+ ∑j′∈adjY(j)∩J(M,X,Y) RM,X,Y(j′) and where adjY(j) = {j′|parY(j′) = j}.

Per construction, δ̄ins
M inserts all labels of Y which are missing in δ̄

rep
M δ̄del

M (X). The
definition of rY(j) and RM,X,Y(j) ensures that label yj is inserted at the correct position
and uses all children which are mapped to labels in X and are descendants of ỹj in Y.

For δ̄M := δ̄
rep
M δ̄del

M δ̄ins
M we thus obtain δ̄M(X) = Y and

c(δ̄M, X) = c(δ̄rep
M , X) + c(δ̄del

M , δ̄
rep
M (X)) + c(δ̄ins

M , δ̄
rep
M δ̄del

M (X))

= ∑
(i,j)∈M

c(xi, yj) + ∑
i∈I(M,X,Y)

c(xi,−) + ∑
j∈J(M,X,Y)

c(−, yj) = c(M, X, Y).

Regarding the second claim, we perform an inductive proof. As base case, consider
the empty edit script δ̄ = ε, which implies that δ̄(X) = Y = X. In that case, we define
Mδ̄ =

{
(i, i)

∣∣i ∈ {1, . . . , |X|}
}

. Accordingly, we obtain c(Mδ̄, X, Y) = c(Mδ̄, X, X) =

∑|X|i=1 c(xi, xi). Because c is self equal, c(xi, xi) is zero for all i, which in turn implies that
c(Mδ̄, X, Y) = 0 = c(ε, X) as desired.

Now, consider a non-empty edit script δ̄ = δ1 . . . δT+1 over ∆A such that δ̄(X) = Y
and let δ̄′ := δ1 . . . δT as well as Y′ := δ̄′(X). Due to induction, we know that there exists
a tree mapping Mδ̄′ between X and Y′ such that c(Mδ̄′ , X, Y′) ≤ c(δ̄′, X). Now, consider
the final edit δT+1. If δT+1(Y′) = Y′ = Y, we define Mδ̄ := Mδ̄′ . Because Mδ̄′ is a valid
tree mapping between X and Y′ it is also a valid tree mapping between X and Y = Y′.

Further, for the cost we obtain c(δ̄, X) = c(δ̄′, X)
Induction
≥ c(Mδ̄′ , X, Y′) = c(Mδ̄, X, Y).

It remains to consider all cases in which Y = δT+1(Y′) 6= Y′. We distinguish the
following cases.

δT+1 = repj,yj
for some j ∈ {1, . . . , |Y|}. Then, we define Mδ̄ := Mδ̄′ . Mδ̄ is a tree map-

ping between X and Y because the ancestral structure of Y′ and Y is exactly the
same and Mδ̄′ was per induction a valid tree mapping between X and Y′.
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Further, if there exists an i such that (i, j) ∈ Mδ̄′ we obtain:

c(δ̄, X) = c(δ̄′, X) + c(y′j, yj)
Induction
≥ c(Mδ̄′ , X, Y′) + c(y′j, yj)

= c(Mδ̄, X, Y)− c(xi, yj) + c(xi, y′j) + c(y′j, yj)

triang.
≥ c(Mδ̄, X, Y)− c(xi, yj) + c(xi, yj) = c(Mδ̄, X, Y)

Conversely, if there is no i such that (i, j) ∈ Mδ̄′ we obtain:

c(δ̄, X) = c(δ̄′, X) + c(y′j, yj)
Induction
≥ c(Mδ̄′ , X, Y′) + c(y′j, yj)

= c(Mδ̄, X, Y)− c(−, yj) + c(−, y′j) + c(y′j, yj)

triang.
≥ c(Mδ̄, X, Y)− c(−, yj) + c(−, yj) = c(Mδ̄, X, Y)

δT+1 = delj for some j ∈ {1, . . . , |Y′|}. Then, for all j′,∈ {1, . . . , j− 1} it holds ancY(j′) =
ancY′(j′), and for all j′,∈ {j+ 1, . . . , |Y′|} it holds ancY(j′) = {j′′|j′′ ∈ ancY′(j′), j′′ <
j} ∪ {j′′ − 1|j′′ ∈ ancY′(j′), j′′ ≥ j}. Accordingly, we define Mδ̄ := {(i, j′) ∈ Mδ̄′ |j′ <
j} ∪ {(i, j′ − 1) ∈ Mδ̄′ |j′ > j} such that Mδ̄ is a valid tree mapping between X and
Y.

Further, if there exists an i such that (i, j) ∈ Mδ̄′ we obtain:

c(δ̄, X) = c(δ̄′, X) + c(y′j,−)
Induction
≥ c(Mδ̄′ , X, Y′) + c(y′j,−)

= c(Mδ̄, X, Y)− c(xi,−) + c(xi, y′j) + c(y′j,−)
triang.
≥ c(Mδ̄, X, Y)− c(xi,−) + c(xi,−) = c(Mδ̄, X, Y)

Conversely, if there is no i such that (i, j) ∈ Mδ̄′ we obtain:

c(δ̄, X) = c(δ̄′, X) + c(y′j,−)
Induction
≥ c(Mδ̄′ , X, Y′) + c(y′j,−)

= c(Mδ̄, X, Y) + c(−, y′j) + c(y′j,−)
triang.
≥ c(Mδ̄, X, Y) + c(−,−) sel f−id.

= c(Mδ̄, X, Y)

δT+1 = inspar(j),yj,l,r for some j ∈ {1, . . . , |Y|}, l ≤ r ∈ {1, . . . , |$̄(ỹj)|}. Then, for all j′ < j
it holds: ancY(j′) = ancY′(j′). For all j′ with j ∈ ancY(j′) it holds: ancY(j′) =
{j′′ ∈ ancY′(j′ − 1)|j′′ < j} ∪ {j} ∪ {j′′ + 1|j′′ ∈ ancY′(j′ − 1), j′′ ≥ j}. Finally, for
all j′ with j′ > j and j /∈ ancY(j′) it holds: ancY(j′) = {j′′ ∈ ancY′(j′ − 1)|j′′ <
j} ∪ {j′′ + 1|j′′ ∈ ancY′(j′ − 1), j′′ ≥ j}. In other words, the ancestors for all j′ < j
are maintained, while the ancestors for j′ > j in Y are the ancestors of j′ − 1
in Y′, except for j, which may be added as an ancestor. Accordingly, we define
Mδ̄ := {(i, j′) ∈ Mδ̄′ |j′ < j} ∪ {(i, j′ + 1)|(i, j′) ∈ Mδ̄′ , j′ ≥ j} such that Mδ̄ is a valid
tree mapping between X and Y.

Further, for the cost we obtain:

c(δ̄, X) = c(δ̄′, X) + c(−, yj)
Induction
≥ c(Mδ̄′ , X, Y′) + c(−, yj) = c(Mδ̄, X, Y)
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Therefore, in all cases, we obtain c(Mδ̄, X, Y) ≤ c(δ̄, X) which concludes the proof by
induction.

Finally, the third claim follows from the previous two. In particular, consider the
following proof by contradition. If Dc(X, Y) < dc(X, Y), then there exists a tree mapping
M between X and Y such that c(M, X, Y) < dc(X, Y). However, we have shown that
we can construct an edit script δ̄M such that δ̄M(X) = Y and c(δ̄M, X) = c(M, X, Y).
Therefore, dc(X, Y) ≤ c(δ̄M, X) = c(M, X, Y) < dc(X, Y), which is a contradiction. Con-
versely, if dc(X, Y) < Dc(X, Y), then there exists an edit script δ̄ such that δ̄(X) = Y
and c(δ̄, X) < Dc(X, Y). However, we have shown that we can construct a tree map-
ping Mδ̄ between X and Y such that c(Mδ̄, X, Y) ≤ c(δ̄, X). Therefore, Dc(X, Y) ≤
c(Mδ̄, X, Y) ≤ c(δ̄, X) < Dc(X, Y), which is also a contradiction. This only leaves the
option Dc(X, Y) = dc(X, Y), which concludes the proof.

As an example for the first construction in Lemma A.3, consider the trees x̃ = a(b)
and ỹ = c(d), as well as the tree mapping M = {(1, 2)}. M would be translated into the
following three edit scripts. First, δ̄

rep
M = rep1,y2

= rep1,d; second, δ̄del
M = del2; and third,

δ̄ins
M = insparỹ(1),y1,rỹ(1),rỹ(1)+RM,x̃,ỹ(1) = ins0,c,1,2. Note that the third construction works

because

RM,x̃,ỹ(1) = |adjỹ(1) ∩ JC(M, x̃, ỹ)|+ ∑
j′∈adjỹ(1)∩J(M,x̃,ỹ)

RM,x̃,ỹ(j′) = |{2} ∩ {2}|+ 0 = 1

Accordingly, the tree mapping M = {(1, 2)} would be translated into the edit script
δ̄M = rep1,ddel2ins0,c,1,2, which does indeed result in δ̄M(x̃) = del2ins0,c,1,2(d(b)) =

ins0,c,1,2(d) = c(d) = ỹ. The costs are c(δ̄M, x̃) = c(a, d) + c(b,−) + c(−, d) = c(M, x̃, ỹ).

As an example for the second construction in Lemma A.3, consider the trees x̃ = a and
ỹ = b, as well as the edit script δ̄ = rep1,cins0,b,1,2del2. This edit script would be translated
into a tree mapping as follows. First, we initialize our tree mapping as Mε = {(1, 1)}.
Next, consider the first edit, δ1 = rep1,c, which transforms x̃ into rep1,c(a) = c. The
corresponding tree mapping remains Mrep1,c

= {(1, 1)}. Next, consider the second edit,
δ2 = ins0,b,1,2, which transforms c into ins0,b,1,2(c) = b(c). The according tree mapping
would thus be Mrep1,cins0,b,1,2 = {(1, 2)}. Finally, consider the third edit, δ3 = del2, which
transforms b(c) into del2(b(c)) = ỹ. The according tree mapping would thus become
Mδ̄ = ∅. For the costs we obtain

c(Mδ̄, x̃, ỹ) = c(a,−) + c(−, b)
triang.
≤ c(a, c) + c(−, b) + c(c,−) = c(δ̄, x̃)

By virtue of Lemma A.3 we can compute the cheapest tree mapping between two
forests instead of the cheapest edit script which transforms one forest into the other, as
long as our cost function fulfills the triangular inequality and is self-equal. This already
simplifies our problem significantly because there is only a finite number of possible
valid tree mappings between two input forests, while there is an infinite number of edit
scripts. However, the number of tree mappings is in O(2|x̃|·|ỹ|) such that an exhaustive
enumeration is infeasible. Instead, Zhang and Shasha (1989) propose a dynamic program-
ming scheme which relies on decomposing the edit distance between two input forests
into edit distances between subforests. In particular, we define subforests as follows.
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Definition A.5 (subforest). Let A be an alphabet, let X be a forest over A, and let
k ∈ N, i ∈ Z. Then, we define the subforest X[k, i] from k to i recursively as follows. If
X = ε, then X[k, i] := ε. Otherwise, let X = x(X1), X′ for some x ∈ A and some forests
X1, X′ ∈ T (A)∗. In that case, we define:

X[k, i] :=


ε if k > i ∨ k > |X|
(X1, X′)[k− 1, i− 1] if 1 < k ≤ i
x(X1[1, i− 1]), X′[1, i− |X1| − 1] if 1 = k ≤ i

(A.13)

For example, the subforest (a, b, c)[2, 3] would be b, c. The subforest x̃[2, 4] for x̃ =
a(b(c, d), e) would be b(c, d). In general, subforests maintain the structure of the input
forest, as the following Lemma demonstrates.

Lemma A.4. Let A be an alphabet, and let X 6= ε be a forest over A. Then, for any i ∈
{1, . . . , |X|} it holds: X[i, rlX(i)] = x̃i, that is, the subforest from i to rlX(i) is the ith subtree
according to pre-order.

Proof. Note that X 6= ε and i ≤ rlX(i) ≤ |X| such that the first case of Equation A.13
does not apply. Now, let X = x(X1), X′ for some x ∈ A and some forests X1, X′ ∈
T (A)∗ and consider the third case of Equation A.13, that is, i = 1. In that case, we
obtain X[1, rlX(1)] = X[1, |X1| + 1] = x(X1[1, |X1|), X′[1, 0] = x(X1[1, |X1|). Recursive
application of case 3 yields x(X1[1, |X1|) = . . . = x(X1, ε[1, 0]) = x(X1) = x̃1.

Now, consider case 2 of Equation A.13, that is, i > 1, and distinguish the following
subcases.

If parX(i) = 0, let X = x̃1, . . . , x̃R and let r ∈ {1, . . . , R} be the index such that x̃i = x̃r.
Accordingly, i = ∑r−1

l=1 |x̃l |. Further, let x̃i = x̃r = xi(Xi) for some forest Xi. Now, recursive
application of case 2 of Equation A.13 yields X[i, rlX(i)] = (X1, X′)[i− 1, rlX(i)− 1] =
. . . = (x̃2, . . . , x̃R)[i− |x̃1|, rlX(i)− |x̃1|] = . . . = (x̃r, . . . , x̃R)[1, |x̃r|] At this point, case 3
of Equation A.13 applies and yields (x̃r, . . . , x̃R)[1, |x̃r|] = xi(Xi[1, |Xi|]), (x̃r+1, x̃R)[1, 0] =
xi(Xi[1, |Xi|]) = . . . = x̃i, which concludes the proof.

Using the concept of subforests, we can now go on to establish the Bellman equations
which will form the basis for the dynamic programming Algorithm 2.1.

Lemma A.5. Let A be an alphabet and let X, Y be non-empty forests over A. Further, let c be a
cost function over A.

Then, for any i ∈ {1, . . . , |X| + 1}, j ∈ {1, . . . , |Y| + 1}, k ∈ ancX(i) ∪ {i}, and l ∈
ancY(j) ∪ {j} it holds:
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Dc(ε, ε) =0 (A.14)
Dc(X[i, rlX(k)], ε) =c(xi,−) + Dc(X[i + 1, rlX(k)], ε) (A.15)
Dc(ε, Y[j, rlY(l)]) =c(−, yj) + Dc(ε, Y[j + 1, rlY(l)]) (A.16)

Dc(X[i,rlX(k)], Y[j, rlY(l)]) = min
{

(A.17)

c(xi,−) + Dc(X[i + 1, rlX(k)], Y[j, rlY(l)]),
c(−, yj) + Dc(X[i, rlX(k)], Y[j + 1, rlY(l)]),

c(xi, yj) + Dc(X[i + 1, rlX(i)], Y[j + 1, rlY(j)])+

Dc(X[rlX(i) + 1, rlX(k)], Y[rlY(j) + 1, rlY(l)])
}

Dc(X[i,rlX(k)], Y[j, rlY(l)]) = min
{

(A.18)

c(xi,−) + Dc(X[i + 1, rlX(k)], Y[j, rlY(l)]),
c(−, yj) + Dc(X[i, rlX(k)], Y[j + 1, rlY(l)]),

Dc(x̃i, ỹj) + Dc(X[rlX(i) + 1, rlX(k)], Y[rlY(j) + 1, rlY(l)])
}

Dc(x̃i, ỹj) = min{c(xi,−) + Dc(X[i + 1, rlX(i)], Y[j, rlY(j)]), (A.19)

c(−, yj) + Dc(X[i, rlX(i)], Y[j + 1, rlY(j)]),

c(xi, yj) + Dc(X[i + 1, rlX(i)], Y[j + 1, rlY(j)])
}

Proof. First, consider Equations A.14, A.15, and A.16. In all these cases, only the empty
tree mapping M = ∅ is possible because at least one input forest is empty. The cost of
the empty tree mapping for any two forests X and Y is

c(∅, X, Y) =
|X|

∑
i=1

c(xi,−) +
|Y|

∑
j=1

c(−, yj)

This cost decomposes as desired, in particular:

c(∅, ε, ε) = 0,
c(∅, X[i, rlX(k)], ε) = c(xi,−) + c(∅, X[i + 1, rlX(k)], ε), and
c(∅, ε, Y[j, rlY(l)]) = c(−, yj) + c(∅, ε, Y[j + 1, rlY(l)])

Next, consider Equations A.17 and A.18. In particular, let M be a tree mapping be-
tween the subforests X[i, rlX(k)] and Y[j, rlY(l)] such that c(M, X[i, rlX(k)], Y[j, rlY(l)]) =
Dc(X[i, rlX(k)], Y[j, rlY(l)]). To avoid symbol clutter, we will use the shorthands Xi :=
X[i, rlX(k)], Xi+1 := X[i + 1, rlX(k)], Yj := Y[j, rlY(l)], and Yj+1 := Y[j + 1, rlY(l)]. Now,
one of the following three cases has to apply:

1 ∈ I(M, Xi, Yj): In this case, M′ := {(i′ − 1, j′)|(i′, j′) ∈ M} is a tree mapping be-
tween Xi+1 and Yj. Further, it holds c(M′, Xi+1, Yj) = Dc(Xi+1, Yj). Otherwise, there
would exist a tree mapping M̃′ between Xi+1 and Yj, such that c(M̃′, Xi+1, Yj) <
c(M′, Xi+1, Yj). In that case, consider M̃ := {(i′ + 1, j′)|(i′, j′) ∈ M̃′}, which is a tree
mapping between Xi and Yj, such that:

Dc(Xi, Yj) ≤ c(M̃, Xi, Yj) = c(xi,−) + c(M̃′, Xi+1, Yj)

< c(xi,−) + c(M′, Xi+1, Yj) = c(M, Xi, Yj) = Dc(Xi, Yj)
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which is a contradiction. Therefore, it holds:

Dc(Xi,Yj) = c(M, Xi, Yj) = c(xi,−) + c(M′, Xi+1, Yj)

= c(xi,−) + Dc(Xi+1, Yj) (A.20)

1 ∈ J(M, Xi, Yj): In this case, M′ := {(i′, j′ − 1)|(i′, j′) ∈ M} is a tree mapping be-
tween Xi and Yj+1. Further, it holds c(M′, Xi, Yj+1) = Dc(Xi, Yj+1). Otherwise, there
would exist a tree mapping M̃′ between Xi and Yj+1, such that c(M̃′, Xi, Yj+1) <
c(M′, Xi, Yj+1). In that case, consider M̃ := {(i′, j′ + 1)|(i′, j′) ∈ M̃′}, which is a tree
mapping between Xi and Yj, such that:

Dc(Xi, Yj) ≤ c(M̃, Xi, Yj) = c(−, yj) + c(M̃′, Xi, Yj+1)

< c(−, yj) + c(M′, Xi, Yj+1) = c(M, Xi, Yj) = Dc(Xi, Yj)

which is a contradiction. Therefore, it holds:

Dc(Xi,Yj) = c(M, Xi, Yj) = c(−, yj) + c(M′, Xi, Yj+1)

= c(−, yj) + Dc(Xi, Yj+1) (A.21)

1 ∈ IC(M, Xi, Yj) ∧ 1 ∈ JC(M, Xi, Yj): In this case, we first show that (1, 1) ∈ M. If that
would not be the case, there would exist a i ∈ {1, . . . , |Xi|} and a j ∈ {1, . . . , |Yj|},
such that (1, j) ∈ M, (i, 1) ∈ M, and i 6= 1 or j 6= 1. If i > 1, Equation 2.21 implies
that j < 1, which is a contradiction. Conversely, if j > 1, Equation 2.21 implies that
i < 1, which is a contradiction. Therefore, i = j = 1 and, thus, (1, 1) ∈ M.

Now, Equation 2.22 implies that for all (i′, j′) ∈ M it must hold: 1 ∈ ancXi(i
′) ⇐⇒

1 ∈ ancYj(j′). In conjunction with Equation A.6, we obtain 1 ≤ i′ ≤ |x̃i| ⇐⇒
1 ≤ j′ ≤ |ỹj|. Accordingly, M must be decomposable as M = M1 ∪ M2 where
for all (i′, j′) ∈ M1 it holds i′ ≤ |x̃i| and j′ ≤ |ỹj|; and for all (i′, j′) ∈ M2 it
holds i′ > |x̃i| and j′ > |ỹj|. This, in turn, implies that M1 is a tree mapping

between X[i, rlX(i)]
Lemma A.4

= x̃i and Y[j, rlY(j)] Lemma A.4
= ỹj, and M′2 := {(i′ −

|x̃i|, j′ − |ỹj|)|(i′, j′) ∈ M2} is a tree mapping between X′ := X[rlX(i) + 1, rlX(k)]
and Y′ := Y[rlY(j) + 1, rlY(l)].

Further, it holds c(M1, x̃i, ỹj) = Dc(x̃i, ỹj). Otherwise, there would exist a tree
mapping M̃1 between x̃i and ỹj, such that c(M̃1, x̃i, ỹj) < c(M1, x̃i, ỹj). In that case,
consider M̃ := M̃1 ∪M2, which is a tree mapping between Xi and Yj such that:

Dc(Xi, Yj) ≤ c(M̃, Xi, Yj) = c(M̃1, x̃i, ỹj) + c(M′2, X′, Y′)

< c(M1, x̃i, ỹj) + c(M′2, X′, Y′) = c(M, Xi, Yj) = Dc(Xi, Yj)

which is a contradiction. Also, it holds c(M2, X′, Y′) = Dc(X′, Y′). Otherwise, there
would exist a tree mapping M̃′2 between X′ and Y′, such that c(M̃′2, X′, Y′) <
c(M2, X′, Y′). In that case, consider M̃ := M1 ∪ {(i′ + |x̃i|, j′ + |ỹj|)|(i′, j′) ∈ M̃′2}
which is a tree mapping between Xi and Yj such that:

Dc(Xi, Yj) ≤ c(M̃, Xi, Yj) = c(M1, x̃i, ỹj) + c(M̃′2, X′, Y′)

< c(M1, x̃i, ỹj) + c(M′2, X′, Y′) = c(M, Xi, Yj) = Dc(Xi, Yj)
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which is a contradiction. Therefore, we obtain:

Dc(Xi,Yj) = c(M, Xi, Yj) = c(M1, x̃i, ỹj) + c(M′2, X′, Y′) (A.22)

= Dc(x̃i, ỹj) + Dc
(
X[rlX(i) + 1, rlX(k)], Y[rlY(j) + 1, rlY(l)]

)
Finally, consider the term Dc(x̃i, ỹj). Because (1, 1) ∈ M1, it follows that M′1 :=
{(i′ − 1, j′ − 1)|(i′, j′) ∈ M1 \ {(1, 1)}} is a tree mapping between X′i+1 := X[i +
1, rlX(i)] and Y′j+1 := Y[j+ 1, rlY(j)]. Further, it holds c(M′1, X′i+1, Y′j+1) = Dc(X′i+1, Y′j+1).
If that would not be the case, there would exist a tree mapping M̃′1 between X′i+1
and Y′j+1, such that c(M̃′1, X′i+1, Y′j+1) < c(M′1, X′i+1, Y′j+1). In that case, consider
M̃1 := {(1, 1)} ∪ {(i′ + 1, j′ + 1)|(i′, j′) ∈ M̃′1}, which is a tree mapping between x̃i

and ỹj, such that:

Dc(x̃i, ỹj) ≤ c(M̃1, x̃i, ỹj) = c(xi, yj) + c(M̃′1, X′i+1, Y′j+1)

< c(xi, yj) + c(M′1, X′i+1, Y′j+1) = c(M1, x̃i, ỹj) = Dc(x̃i, ỹj)

which is a contradiction. Therefore, it holds:

Dc(x̃i,ỹj) = c(M1, x̃i, ỹj) = c(xi, yj) + c(M′1, X′i+1, Y′j+1) (A.23)

= c(xi, yj) + Dc(X[i + 1, rlX(i)], Y[j + 1, rlY(j)])

Note that these three cases are exhaustive, that is, one of the Equations A.20, A.21,
or A.22 has to apply. Further, the cheapest option of these three has to apply, oth-
erwise c(M, Xi, Yj) > Dc(Xi, Yj), which would be a contradiction. The minimum of
Equations A.20, A.21, and A.22 yields Equation A.18. If we then plug Equation A.23 into
Equation A.18 we obtain Equation A.17.

Finally, consider Equation A.19. We obtain this equation by setting k = i and l = j in
Equation A.17, thus yielding:

Dc(x̃i,ỹj)
Lemma A.4

= Dc(X[i, rlX(i)], Y[j, rlY(j)]) = min
{

c(xi,−) + Dc(X[i + 1, rlX(i)], Y[j, rlY(j)]),
c(−, yj) + Dc(X[i, rlX(i)], Y[j + 1, rlY(j)]),

c(xi, yj) + Dc(X[i + 1, rlX(i)], Y[j + 1, rlY(j)])+

Dc(X[rlX(i) + 1, rlX(i)], Y[rlY(j) + 1, rlY(j)])
}

Note that X[rlX(i) + 1, rlX(i)] = ε and Y[rlY(j) + 1, rlY(j)] = ε. Therefore, Dc(X[rlX(i) +

1, rlX(i)], Y[rlY(j)+ 1, rlY(j)]) = Dc(ε, ε)
Eq. A.14
= 0, which in turn yields Equation A.19.

An example for the decompositions in Equations A.18 and A.19 is shown in Fig-
ure A.1.

Using these decompositions, we can finally prove the invariants of Algorithm 2.1,
which then imply the correctness of the algorithm.

Lemma A.6. Let A be an alphabet, let x̃ and ỹ be trees over A, and let c be a cost function over
A. Then, after each completion of lines 6-26 in Algorithm 2.1 for the input x̃, ỹ, and c it holds for
all i ∈ {k, . . . , rlx̃(k)} and all j ∈ {l, . . . , rlỹ(l)}:

Di,j = Dc(x̃[i, rlx̃(k)], ỹ[j, rlỹ(l)]) and (A.24)

di,j = Dc(x̃i, ỹj) (A.25)
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Dc

(
b

dc

e, f

g

)
c(b,−) + Dc

(
c d e, f

g

)

Dc

(
b

dc

, f

g

)
+ Dc(e, ε)

c(−, f) + Dc

(
b

dc

e, g
)

c(b,−) + Dc

(
c d, f

g

)

c(b, f) + Dc

(
c d, g

)

c(−, f) + Dc

(
b

dc

, g
)

delete b

replace b with f

insert f

delete b

replace b with f

insert f

Figure A.1: An illustration of the decompositions in Equations A.18 (top) and A.19 (bottom) for
the example subforests Xi = b(c, d), e and Yj = f(g).

Proof. We perform an inductive argument over i and j in descending order. First, con-
sider the base cases. If i = rlx̃(k) + 1 and j = rlỹ(l) + 1, we obtain Dc(x̃[rlx̃(k) +

1, rlx̃(k)], ỹ[rlỹ(l) + 1, rlỹ(l)]) = Dc(ε, ε)
Eq. A.14
= 0, which is correctly computed in line

6.

Further, if i ≤ rlx̃(k) and j = rlỹ(l) + 1, we obtain Dc(x̃[i, rlx̃(k)], ỹ[rlỹ(l) + 1, rlỹ(l)]) =

Dc(x̃[i, rlx̃(k)], ε)
Eq. A.15
= c(xi,−) + Dc(x̃[i + 1, rlx̃(k)], ỹ[rlỹ(l) + 1, rlỹ(l)]), which is cor-

rectly computed in lines 7-9 for all i ∈ {k, . . . , rlx̃(k)}.

Similarly, if j ≤ rlỹ(l) and i = rlx̃(k)+ 1, we obtain Dc(x̃[rlx̃(k)+ 1, rlx̃(k)], ỹ[j, rlỹ(l)]) =

Dc(ε, ỹ[j, rlỹ(l)])
Eq. A.15
= c(−, yj) + Dc(x̃[rlx̃(k) + 1, rlx̃(k)], ỹ[j + 1, rlỹ(l)]), which is cor-

rectly computed in lines 10-12 for all j ∈ {l, . . . , rlỹ(l)}.

Now, consider the case i ≤ rlx̃(k) and j ≤ rlỹ(l). Per induction, we already know that

Di+1,j = Dc(x̃[i + 1, rlx̃(k)], ỹ[j, rlỹ(l)]),

Di,j+1 = Dc(x̃[i, rlx̃(k)], ỹ[j + 1, rlỹ(l)]),

Di+1,j+1 = Dc(x̃[i + 1, rlx̃(k)], ỹ[j + 1, rlỹ(l)]), and

Drlx̃(i)+1,rlỹ(j)+1 = Dc(x̃[rlx̃(i) + 1, rlx̃(k)], ỹ[rlỹ(j) + 1, rlỹ(l)]).

Now, distinguish the following cases.

If rlx̃(i) = rlx̃(k) and rlỹ(j) = rlỹ(l), we obtain x̃[i, rlx̃(k)] = x̃[i, rlx̃(i)]
Lemma A.4

= x̃i

and ỹ[j, rlỹ(l)] = ỹ[j, rlỹ(j)] Lemma A.4
= ỹj, such that Dc(x̃[i, rlx̃(k)], ỹ[j, rlỹ(l)]) = Dc(x̃i, ỹj),

which can be computed according to Equation A.19. Therefore, lines 16-18 of Algo-
rithm 2.1 ensure that Di,j = Dc(x̃[i, rlx̃(k)], ỹ[j, rlỹ(l)]). Further, because Di,j is now equiv-
alent to Dc(x̃i, ỹj), line 19 is correct as well.
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If rlx̃(i) 6= rlx̃(k) or rlỹ(j) 6= rlỹ(l), the decomposition of Dc(x̃[i, rlx̃(k)], ỹ[j, rlỹ(l)])
according to Equation A.18 applies. Accordingly, lines 21-23 of Algorithm 2.1 ensure
Di,j = Dc(x̃[i, rlx̃(k)], ỹ[j, rlỹ(l)]), under the condition that di,j = Dc(x̃i, ỹj). We know that
this condition holds if we have executed lines 6-26 before with the keyroots kx̃(i) and
kỹ(j). Because the loops in lines 4-5 iterate the keyroots in descending oder, it remains to
show that k < kx̃(i) and l ≤ kỹ(j), or k ≤ kx̃(i) and l < kỹ(j).

First, consider the case rlx̃(i) 6= rlx̃(k). In that case, k 6= kx̃(i) and k 6= i, otherwise
rlx̃(k) = rlx̃(i) = rlx̃(kx̃(i)), which is a contradiction. Further, it must hold k < i ≤ rlx̃(k),
otherwise i would not be accessed in the loop in line 13. In turn, Equation A.7 implies
that k ∈ ancx̃(i). Further, due to the definition of keyroots, kx̃(i) ≤ i ≤ rlx̃(i) = rlx̃(kx̃(i)).
Now, if kx̃(i) = i, we obtain k < i = kx̃(i) as desired. Otherwise, we obtain kx̃(i) <
i ≤ rlx̃(kx̃(i)), such that Equation A.7 implies that kx̃(i) ∈ ancx̃(i). Now, assume that
kx̃(i) < k. In that case, Equation A.8 implies kx̃(i) ∈ ancx̃(k). Consequently, Equation A.6
tells us that rlx̃(k) ≤ rlx̃(kx̃(i)). However, due to k ∈ ancx̃(i), Equation A.6 also tells
us that rlx̃(k) ≥ rlx̃(i) = rlx̃(kx̃(i)), such that rlx̃(k) = rlx̃(kx̃(i)) = rlx̃(i), which is
a contradiction. Therefore, we can conclude that k < kx̃(i). It remains to show that
l ≤ kỹ(j). If rlỹ(l) = rlỹ(j), then l = kỹ(j), because the minimum is unique. Otherwise,
rlỹ(l) 6= rlỹ(j).

If rlỹ(j) 6= rlỹ(l), we know that l 6= kỹ(j) and l 6= j, otherwise rlỹ(l) = rlỹ(j) =
rlỹ(kỹ(j)), which is a contradiction. Further, it must hold l < j ≤ rlỹ(l), otherwise j would
not be accessed in the loop in line 14. In turn, Equation A.7 implies that l ∈ ancỹ(j).
Further, due to the definition of keyroots, kỹ(j) ≤ j ≤ rlỹ(j) = rlỹ(kỹ(j)). Now, if
kỹ(j) = j, we obtain l < j = kỹ(j) as desired. Otherwise, we obtain kỹ(j) < j ≤ rlỹ(kỹ(j)),
such that Equation A.7 implies that kỹ(j) ∈ ancỹ(j). Now, assume that kỹ(j) < l. In
that case, Equation A.8 implies kỹ(j) ∈ ancỹ(l). Consequently, Equation A.6 tells us
that rlỹ(l) ≤ rlỹ(kỹ(j)). However, due to l ∈ ancỹ(j), Equation A.6 also tells us that
rlỹ(l) ≥ rlỹ(j) = rlỹ(kỹ(j)), such that rlỹ(l) = rlỹ(kỹ(j)) = rlỹ(j), which is a contradiction.
Therefore, we can conclude that l < kỹ(j). It remains to show that k ≤ kx̃(i). If rlx̃(k) =
rlx̃(i), then k = kx̃(i), because the minimum is unique. Otherwise, rlx̃(k) 6= rlx̃(i), which
implies k < kx̃(i), as we have shown above.

Now, we can finally complete the proof. First, note that Lemma A.3 implies that
dc(x̃, ỹ) is equivalent to Dc(x̃1, ỹ1) if c fulfills the triangular inequality and is self-equal.
Further, Lemma A.6 tells us that the output of Algorithm 2.1, d1,1, is equal to Dc(x̃1, ỹ1)
if keyroots k ∈ K(x̃) and l ∈ K(ỹ) exist such that k ≤ 1 ≤ rlx̃(k) and l ≤ 1 ≤ rlỹ(l). Per
definition of outermost right leaves, we know that rlx̃(1) = |x̃| and rlỹ(1) = |ỹ|. Further,
per definition of keyroots, we know that kx̃(|x̃|) = min{k|rlx̃(k) = rlx̃(|x̃|)} = 1, and
kỹ(|ỹ|) = min{l|rlỹ(l) = rlỹ(|ỹ|)} = 1 because 1 is the lowest possible index. Therefore,
1 ∈ K(x̃) and 1 ∈ K(ỹ), which concludes the overall proof.

a .6 proof of theorem 2.7

Recall the theorem we intend to prove.

Under the assumption of fixed γk|i, Q (Equation 2.36) is convex with respect to P(k),
P(y|k), ~µk, and Λk.
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Further, the optima of Q with respect to these parameters are given as follows.

P(k) =
1
M
·

M

∑
i=1

γk|i (A.26)

P(y|k) =
∑i:yi=y γk|i

∑M
i=1 γk|i

(A.27)

~µk =
∑M

i=1 γk|i ·~xi

∑M
i=1 γk|i

(A.28)

Λk =
(∑M

i=1 γk|i · (~µk −~xi) · (~µk −~xi)
>

∑M
i=1 γk|i

)−1
(A.29)

Finally, if we restrict the precision matrix to be shared across all Gaussians, that is,
Λ1 = . . . = ΛK = Λ, we obtain the following optimum of Q with respect to Λ.

Λ =
( 1

M
·

M

∑
i=1

K

∑
k=1

γk|i · (~µk −~xi) · (~µk −~xi)
>
)−1

(A.30)

Proof

The following derivations mostly follow Barber (2012) and Bishop (2006). Our matrix
calculus is based on Fackler (2005) and Petersen and Pedersen (2012). In particular, we
follow Fackler (2005) in defining the gradient of Q with respect to a m×m matrix Λ as

the m×m matrix ∇ΛQ with entries
(
∇ΛQ

)
r,s

:= ∂
∂Λr,s

Q; and in defining the Hessian of

Q with respect to Λ as the m2 ×m2 matrix ∇2
ΛQ which contains the second derivatives

of Q with respect to all possible combinations of two matrix entries of Λ. Equivalently,
∇2

ΛQ can be seen as the Hessian of Q with respect to a vector which contains all entries
of Λ in concatenated form.

In the following, we check convexity and optima for every single parameter.

Priors P(k): Note that we need to take a side constraint into account, namely that
∑K

k=1 P(k) = 1. This translates into a Lagrange multiplier ν in our optimization, which
we take into account for our first and second derivatives:

∂

∂P(k)
Q + ν ·

( K

∑
k′=1

P(k′)− 1
)
= −

M

∑
i=1

γk|i ·
1

P(k)
+ ν (A.31)

∂2

∂2P(k)
Q + ν ·

( K

∑
k′=1

P(k′)− 1
)
=

M

∑
i=1

γk|i ·
1

P(k)2 (A.32)

Because all terms γk|i are non-negative, we obtain a non-negative second derivative such
that every point with zero first derivative is a global optimum. If we set the first derivative
to zero we obtain:

P(k) =
1
ν
·

M

∑
i=1

γk|i (A.33)

Due to our side constraint we can infer the correct value for ν:
K

∑
k=1

P(k) = 1 ⇐⇒ 1
ν
·

K

∑
k=1

M

∑
i=1

γk|i = 1 ⇐⇒ M = ν (A.34)
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which yields Equation A.26.

Label Distributions P(y|k): Again, for all terms P(y|k) we have the side constraint
∑L

y=1 P(y|k) = 1. Accordingly, we consider the following first and second derivatives:

∂

∂P(y|k)Q +
K

∑
k′=1

νk′ ·
( L

∑
y′=1

P(y′|k′)− 1
)
= −

M

∑
i:yi=y

γk|i ·
1

P(y|k) + νk (A.35)

∂2

∂2P(y|k)Q +
K

∑
k′=1

νk′ ·
( L

∑
y′=1

P(y′|k′)− 1
)
=

M

∑
i:yi=y

γk|i ·
1

P(y|k)2 (A.36)

Because all terms γk|i are non-negative, we obtain a non-negative second derivative such
that every point with zero first derivative is a global optimum. If we set the first derivative
to zero we obtain:

P(y|k) = 1
νk
· ∑

i:yi=y
γk|i (A.37)

Due to our side constraint we can infer the correct value for νk:

L

∑
y=1

P(y|k) = 1 ⇐⇒ 1
νk
·

L

∑
y=1

∑
i:yi=y

γk|i = 1 ⇐⇒
M

∑
i=1

γk|i = νk (A.38)

which yields Equation A.27.

Means ~µk: The gradient and the Hessian of Q with respect to ~µk are given as:

∇~µk
Q =

M

∑
i=1

γk|i ·Λk · (~µk −~xi) (A.39)

∇2
~µk

Q =
M

∑
i=1

γk|i ·Λk (A.40)

If Λk is positive definite, the Hessian is also positive definite such that every vector ~µk
with zero gradient is a global optimum. If we set the gradient to zero we obtain:

M

∑
i=1

γk|i ·Λk · (~µk −~xi) = 0

⇐⇒ Λk ·~µk ·
M

∑
i=1

γk|i = Λk ·
M

∑
i=1

γk|i~xi

∗⇐⇒ ~µk =
∑M

i=1 γk|i ·~xi

∑M
i=1 γk|i

(A.41)

The last step depends on Λk being invertible. This is fulfilled if Λk is positive definite.

Precision Matrices Λk: The gradient and the Hessian of Q with respect to Λk are given
as:

∇Λk Q =
1
2
·

M

∑
i=1

γk|i ·
(
(~µk −~xi) · (~µk −~xi)

> −Λ>k
−1
)

(A.42)

∇2
Λk

Q =
1
2
·

M

∑
i=1

γk|i · (Λ>k
−1 ⊗Λ−1

k ) (A.43)
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where ⊗ denotes the Kronecker product. Because the set of positive definite matrices is
closed under inversion, the Kronecker product, multiplication with positive scalars, and
addition, the Hessian is positive definite if Λk itself is positive definite (Fackler 2005). In
turn, Q is convex with respect to Λk if Λk is positive definite. Finally, this implies that
every positive definite Λk with zero gradient is a global optimum.

If we set the gradient to zero we obtain:

1
2
·

M

∑
i=1

γk|i ·
(
(~µk −~xi) · (~µk −~xi)

> −Λ>k
−1
)
= 0

⇐⇒ Λ>k
−1 ·

M

∑
i=1

γk|i =
M

∑
i=1

γk|i · (~µk −~xi) · (~µk −~xi)
>

⇐⇒ Λk =
(∑M

i=1 γk|i · (~µk −~xi) · (~µk −~xi)
>

∑M
i=1 γk|i

)−1
(A.44)

Note that the matrix Λ−1
k is guaranteed to be symmetric and positive semi-definite,

because it is a convex combination of outer products. To ensure strict positive definiteness,
and thus invertibility, we can add a small positive number to the diagonal of Λ−1

k as
suggested by Barber (2012). Given that Λk is thus positive definite in every step, the
convexity claims above hold.

Shared Precision Matrix Λ: If all Gaussians have the same shared precision matrix Λ,
we obtain the following gradient and Hessian of Q with respect to Λ:

∇ΛQ =
1
2
·

M

∑
i=1

K

∑
k=1

γk|i ·
(
(~µk −~xi) · (~µk −~xi)

> −Λ>
−1
)

(A.45)

∇2
ΛQ =

1
2
·

M

∑
i=1

K

∑
k=1

γk|i · (Λ>
−1 ⊗Λ−1) =

M
2
· (Λ>−1 ⊗Λ−1) (A.46)

where ⊗ denotes the Kronecker product. As noted before, the set of positive definite
matrices is closed under inversion, the Kronecker product, and multiplication with
positive scalars, such that the Hessian is positive definie if Λ itself is positive definite.
In turn, Q is convex with respect to Λ if Λ is positive definite. Finally, this implies that
every positive definite Λ with zero gradient is a global optimum.

If we set the gradient to zero we obtain:

1
2
·

M

∑
i=1

K

∑
k=1

γk|i ·
(
(~µk −~xi) · (~µk −~xi)

> −Λ>
−1
)
= 0

⇐⇒ Λ>
−1 ·

M

∑
i=1

K

∑
k=1

γk|i =
M

∑
i=1

γk|i · (~µk −~xi) · (~µk −~xi)
>

⇐⇒ Λ =
( 1

M
·

M

∑
i=1

K

∑
k=1

γk|i · (~µk −~xi) · (~µk −~xi)
>
)−1

(A.47)

Note that the matrix Λ−1 is guaranteed to be symmetric and positive semi-definite,
because it is a convex combination of outer products. To ensure strict positive definiteness,
and thus invertibility, we can add a small positive number to the diagonal of Λ−1 as
suggested by Barber (2012). Given that Λ is thus positive definite in every step, the
convexity claims above hold.
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a .7 proof of theorem 2.8

Recall the theorem we intend to prove.

Let x1, . . . , xM be elements from some set X with labels y1, . . . , yM ∈ {1, . . . , L} and
let w1, . . . , wK ⊆ {x1, . . . , xM}.

Then, the expectation maximization scheme above converges to a local optimum of
the loss 2.42.

Further, the sum of the GLVQ loss 2.28 with nonlinearity Φ(µ) = log(α + µ) and the
loss 2.42 lies in O

(
2 ·M · log(α)− 1

α2 ·∑M
i=1 µ2

i
)
.

Proof

We prove the first claim by showing that the pseudo-likelihood L from Equation 2.43
underestimates the loss 2.42 and becomes equivalent to the loss after each expectation
step. Thus, whenever the maximization step can not find an improvement for L anymore,
there can also be no improvement in the original loss 2.42.

In detail, we define:

p+i =
g+i

(g+i + g−i )
and p−i =

g−i
(g+i + g−i )

Note that it holds: p+i ≥ 0, p−i ≥ 0, and p+i + p−i = 1.

Further, for all i, let γ+
i , γ−i ∈ R with γ+

i ≥ 0, γ−i ≥ 0, and γ+
i + γ−i = 1. Then we

define the Kullback-Leibler divergence K(p||γ) between p and γ as

K(p||γ) :=
M

∑
i=1

γ+
i · log(

γ+
i

p+i
) + γ−i · log(

γ−i
p−i

)

where we define 0 · log( x
0 ) := 0. Note that K(p||γ) is non-negative due to Gibb’s inequal-

ity. Further, K(p||γ) = 0 if and only if γ+
i = p+i and γ−i = p−i for all i.

Now, recall the pseudo-likelihood L from Equation 2.43. Using K(p||γ), we can now
show that:

L+K(p||γ) =
M

∑
i=1

γ+
i · log(

g+i
γ+

i
) + γ−i · log(

g−i
γ−i

) +
M

∑
i=1

γ+
i · log(

γ+
i

p+i
) + γ−i · log(

γ−i
p−i

)

=
M

∑
i=1

γ+
i ·
[

log(
g+i
γ+

i
) + log(

γ+
i

p+i
)
]
+ γ−i ·

[
log(

g−i
γ−i

) + log(
γ−i
p−i

)
]

=
M

∑
i=1

γ+
i · log(

g+i
p+i

) + γ−i · log(
g−i
p−i

)

=
M

∑
i=1

γ+
i · log(g+i + g−i ) + γ−i · log(g+i + g−i )

=
M

∑
i=1

log(g+i + g−i ) · (γ
+
i + γ−i ) =

M

∑
i=1

log(g+i + g−i )

which is exactly the loss 2.42.
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Since K(p||γ) ≥ 0, we know that L always underestimates this loss. Further, in every
expectation step, we set γ+

i = p+i and γ−i = p−i for all i such that K(p||γ) = 0. Therefore,
whenever K(p||γ) = 0 and L is (locally) optimal, the loss 2.42 must also be locally
optimal.

Now, regarding the second claim, we perform a Taylor expansion of the functions
Φ(µ) = log(α + µ) and Φ̃(µ) = log(α− µ) around the point µ = 0. Since α ≥ 4, the log
function is infinitely differentiable at that point. Thus, we obtain:

Φ(µ) =
∞

∑
n=0

1
n!
· µn · ∂nΦ(0)

∂nµ
= log(α) +

∞

∑
n=1

1
n!
· µn · 1

αn · (−1)n+1

Φ̃(µ) =
∞

∑
n=0

1
n!
· µn · ∂nΦ̃(0)

∂nµ
= log(α)−

∞

∑
n=1

1
n!
· µn · 1

αn

Now, let µi =
d+i −d−i
d+i +d−i

for all i. Accordingly, the sum of the loss 2.28 and the loss 2.42 is
given as:

M

∑
i=1

log(α + µi) + log(α− µi)

=
M

∑
i=1

log(α) +
∞

∑
n=1

1
n!
· µn

i ·
1
αn · (−1)n+1 + log(α)−

∞

∑
n=1

1
n!
· µn

i ·
1
αn

=
M

∑
i=1

2 · log(α)− 2 ·
∞

∑
n=1

1
(2n)!

· µ2n
i ·

1
α2n

Since µi ∈ [−1, 1] it holds that µ2
i ≥ µ2n

i for all n ≥ 1. Further, 1
2 ≥

1
(2n)! for all n ≥ 1

and 1
α2 ≥ 1

α2n for all n ≥ 1. Therefore, the sum lies in O(2 ·M · log(α)− 1
α2 ·∑M

i=1 µ2
i ) as

claimed. Accordingly, by increasing α, we can ensure that local maxima of the loss 2.42
coincide with local minima of the loss 2.28.
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a .8 proof of theorem 3.1

Recall the theorem we intend to prove.

Let A be an alphabet with $, match /∈ A, let S = (Del, Rep, Ins) be a signature with
$, match /∈ Del∪Rep∪ Ins, and let F be an algebra over S and A. Finally, let δ̃ ∈ T (S ,A)
be a script tree and let (x̄, ȳ) := Y(δ̃) be the yield of δ̃. Then there exists an edit script
δ̄δ̃ ∈ ∆S ,A such that ȳ = δ̄δ̃(x̄) and cF (δ̃) = cF (δ̄δ̃, x̄).

Now, let F conform to the following conditions.

∀rep ∈ Rep : ∀x, y ∈ A : crep(x, y) ≥ 0 (A.48)
∀del ∈ Del : ∀x ∈ A : cdel(x) ≥ 0 (A.49)
∀ins ∈ Ins : ∀y ∈ A : cins(y) ≥ 0 (A.50)

∀rep, rep′ ∈ Rep : ∀x, y, z ∈ A : crep′(x, y) + crep(y, z) ≥ crep(x, y) (A.51)

∀rep ∈ Rep : ∀ins ∈ Ins : ∀x, y ∈ A : cins(x) + crep(x, y) ≥ cins(y) (A.52)
∀del ∈ Del : ∀rep ∈ Rep : ∀x, y ∈ A : crep(x, y) + cdel(y) ≥ cdel(x) (A.53)

Then, for all edit scripts δ̄ ∈ ∆S ,A and all x̄ ∈ A∗, there exists a script tree δ̃δ̄,x̄ such that
Y(δ̃δ̄,x̄) = (x̄, δ̄(x̄)) and cF (δ̃δ̄,x̄) ≤ cF (δ̄, x̄).

Further, it holds for all sequences x̄, ȳ ∈ A∗:

dS ,F (x̄, ȳ) = min
δ̃∈T (S ,A)

{cF (δ̃)|Y(δ̃) = (x̄, ȳ)} (A.54)

Proof

We prove the first claim via induction over the size of the script tree δ̃. First, let δ̃ = $. In
that case, Y(δ̃) = (ε, ε). Therefore, the edit script δ̄δ̃ = ε fulfills the conditions δ̄δ̃(ε) = ε
and cF (δ̄δ̃, ε) = 0 = cF (δ̃).

Now, consider a script tree δ̃ with a size larger than 0 and distinguish the following
cases:

δ̃ = match(x, δ̃′, x) for some x ∈ A and some script tree δ̃′. Let (x̄, ȳ) := Y(δ̃′). Then it
holds: Y(δ̃) = (xx̄, xȳ). Further, per induction, there exists an edit script δ̄δ̃′ such
that δ̄δ̃′(x̄) = ȳ and cF (δ̄δ̃′ , x̄) = cF (δ̃′). Now, consider the edit script δ̄δ̃ which
contains the same sequence edits as δ̄δ̃′ , but with all indices being incremented by
one. Then, it holds: δ̄δ̃(xx̄) = xȳ and cF (δ̄δ̃, xx̄) = cF (δ̄δ̃′ , x̄) = cF (δ̃′) = cF (δ̃).

δ̃ = del(x, δ̃′) for some del ∈ Del, some x ∈ A, and some script tree δ̃′. Let (x̄, ȳ) := Y(δ̃′).
Then it holds: Y(δ̃) = (xx̄, ȳ). Further, per induction, there exists an edit script
δ̄δ̃′ such that δ̄δ̃′(x̄) = ȳ and cF (δ̄δ̃′ , x̄) = cF (δ̃′). Now, consider the edit script
δ̄δ̃ := del1δ̄δ̃′ . Then, it holds: δ̄δ̃(xx̄) = δ̄δ̃′(del1(xx̄)) = δ̄δ̃′(x̄) = ȳ, and cF (δ̄δ̃, xx̄) =
cdel(x) + cF (δ̄δ̃′ , x̄) = cdel(x) + cF (δ̃′) = cF (δ̃).

δ̃ = rep(x, δ̃′, y) for some rep ∈ Rep, some x, y ∈ A, and some script tree δ̃′. Let (x̄, ȳ) :=
Y(δ̃′). Then it holds: Y(δ̃) = (xx̄, yȳ). Further, per induction, there exists an edit
script δ̄δ̃′ such that δ̄δ̃′(x̄) = ȳ and cF (δ̄δ̃′ , x̄) = cF (δ̃′). Now, consider the edit script
δ̄δ̃ := rep1,yδ̄′ where δ̄′ contains the same sequence edits as δ̄δ̃′ , but with all indices
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being incremented by one. Then, it holds: δ̄δ̃(xx̄) = δ̄′(rep1,y(xx̄)) = δ̄′(yx̄) =

yδ̄δ̄′(x̄) = yȳ and cF (δ̄δ̃, xx̄) = crep(x, y) + cF (δ̄′, yx̄) = crep(x, y) + cF (δ̄δ̃′ , x̄) =
crep(x, y) + cF (δ̃′) = cF (δ̃).

δ̃ = ins(δ̃′, y) for some ins ∈ Ins, some y ∈ A, and some script tree δ̃′. Let (x̄, ȳ) := Y(δ̃′).
Then it holds: Y(δ̃) = (x̄, yȳ). Further, per induction, there exists an edit script δ̄δ̃′

such that δ̄δ̃′(x̄) = ȳ and cF (δ̄δ̃′ , x̄) = cF (δ̃′). Now, consider the edit script δ̄δ̃ :=
ins1,yδ̄′ where δ̄′ contains the same sequence edits as δ̄δ̃′ , but with all indices being
incremented by one. Then, it holds: δ̄δ̃(x̄) = δ̄′(ins1,y(x̄)) = δ̄′(yx̄) = yδ̄δ̄′(x̄) = yȳ
and cF (δ̄δ̃, x̄) = cins(y) + cF (δ̄′, yx̄) = cins(y) + cF (δ̄δ̃′ , x̄) = cins(y) + cF (δ̃′) =
cF (δ̃).

This concludes the proof of the first claim.

Regarding the second claim, we first need to introduce an auxiliary concept. Let δ̃ be
a script tree over S and A. Then, we define the jth right-subtree δ̃j of δ̃ as follows.

δ̃j :=


$ if δ̃ = $
δ̃′j if δ̃ = del(x, δ̃′)

δ̃ if j = 1 and δ̃ = match(x, δ̃′, x) or δ̃ = rep(x, δ̃′, y) or δ̃ = ins(δ̃′, y)
δ̃′j−1 if j > 1 and δ̃ = match(x, δ̃′, x) or δ̃ = rep(x, δ̃′, y) or δ̃ = ins(δ̃′, y)

where rep ∈ Rep, del ∈ Del, ins ∈ Ins, x, y ∈ A and δ̃′ is a script tree over S and A.

Let Y(δ̃) = (x̄, y1 . . . yn). It is simple to show via induction that for all j ∈N it holds:
If j > n, then δ̃j = $. Otherwise, Y(δ̃j) = (x̄′, yj . . . yn), where x̄′ is some suffix of x̄.
Further, it holds that δ̃j = match(x, δ̃′, yj), or δ̃j = rep(x, δ̃′, yj), or δ̃j = ins(δ̃′, yj) for some
x in x̄, some rep ∈ Rep, some ins ∈ Ins, and some script tree δ̃′.

Given this concept, we can now show the actual claim via induction over the length
of δ̄. First, consider δ̄ = ε and some sequence x̄ = x1 . . . xm. In that case, the script
tree δ̃δ̄,x̄ := match(x1, match(. . . match(xm, $, xm) . . .), x1) fulfills the conditions Y(δ̃δ̄,x̄) =

(x̄, x̄) = (x̄, δ̄(x̄)) and cF (δ̃δ̄,x̄) = 0 = c(δ̄, x̄).

Now, let δ̄ = δ1 . . . δT+1 be a nonempty edit script, and let x̄ = x1 . . . xm some sequence
overA. Then, consider the script δ̄′ = δ1 . . . δT, and let ȳ = y1 . . . yn := δ̄′(x̄). Per induction,
there exists a script tree δ̃′ := δ̃δ̄′,x̄ such that Y(δ̃′) = (x̄, ȳ) and cF (δ̃′) ≤ cF (δ̄′, x̄). It
remains to show that there exists a script tree δ̃δ̄,x̄ such that Y(δ̃δ̄,x̄) = (x̄, δ̄(x̄)) and
cF (δ̃δ̄,x̄) ≤ cF (δ̄, x̄).

Consider the last sequence edit δT+1. We distinguish the following cases.

δT+1 = delj for some del ∈ Del, and some j ∈N. If j > n, δ̄(x̄) = delj(ȳ) = ȳ. Thus, we
can define δ̃δ̄,x̄ := δ̃′ and obtain Y(δ̃δ̄,x̄) = (x̄, ȳ) = (x̄, δ̄(x̄)), as well as cF (δ̃δ̄,x̄) ≤
cF (δ̄′, x̄) = cF (delj, ȳ) + cF (δ̄′, x̄) = cF (δ̄, x̄), which proves the claim.

If j ≤ n, consider δ̃′j and distinguish the following cases.

δ̃′j = match(yj, δ̃′′, yj) for some script tree δ̃′′. In that case, we define δ̃δ̄,x̄ to be the
same as δ̃′, but with the subtree δ̃′j replaced by the subtree del(yj, δ̃′′). Accord-
ingly, we obtain Y(δ̃δ̄,x̄) = (x̄, y1 . . . yj−1yj+1 . . . yn) = (x̄, delj(ȳ)) = (x̄, δ̄(x̄)),

as well as cF (δ̃δ̄,x̄) = cF (δ̃′) + cdel(yj)
Ind.
≤ cF (δ̄′, x̄) + cdel(yj) = cF (δ̄, x̄).
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δ̃′j = rep(x, δ̃′′, yj) for some rep ∈ Rep, some x ∈ A, and some script tree δ̃′′. In that
case, we define δ̃δ̄,x̄ to be the same as δ̃′, but with the subtree δ̃′j replaced by the
subtree del(x, δ̃′′). Accordingly, we obtain Y(δ̃δ̄,x̄) = (x̄, y1 . . . yj−1yj+1 . . . yn) =

(x̄, delj(ȳ)) = (x̄, δ̄(x̄)), as well as cF (δ̃δ̄,x̄) = cF (δ̃′) + cdel(x)− crep(x, yj)
A.53
≤

cF (δ̃′) + cdel(yj)
Ind.
≤ cF (δ̄′, x̄) + cdel(yj) = cF (δ̄, x̄).

δ̃′j = ins(δ̃′′, yj) for some ins ∈ Ins and some script tree δ̃′′. In that case, we define
δ̃δ̄,x̄ to be the same as δ̃′, but with the subtree δ̃′j replaced by the subtree δ̃′′.
Accordingly, we obtain Y(δ̃δ̄,x̄) = (x̄, y1 . . . yj−1yj+1 . . . yn) = (x̄, delj(ȳ)) =

(x̄, δ̄(x̄)), as well as cF (δ̃δ̄,x̄) = cF (δ̃′) − cins(yj)
A.49,A.50
≤ cF (δ̃′) + cdel(yj)

Ind.
≤

cF (δ̄′, x̄) + cdel(yj) = cF (δ̄, x̄).

δT+1 = repj,y for some rep ∈ Rep, some j ∈ N, and some y ∈ A. If j > n, δ̄(x̄) =

repj,y(ȳ) = ȳ. Thus, we can define δ̃δ̄,x̄ := δ̃′ and obtain Y(δ̃δ̄,x̄) = (x̄, ȳ) = (x̄, δ̄(x̄)),
as well as cF (δ̃δ̄,x̄) ≤ cF (δ̄′, x̄) = cF (repj,y, ȳ) + cF (δ̄′, x̄) = cF (δ̄, x̄), which proves
the claim.

If j ≤ n, consider δ̃′j and distinguish the following cases.

δ̃′j = match(yj, δ̃′′, yj) for some script tree δ̃′′. In that case, we define δ̃δ̄,x̄ to be
the same as δ̃′, but with the subtree δ̃′j replaced by the subtree rep(yj, δ̃′′, y).
Accordingly, we obtain Y(δ̃δ̄,x̄) = (x̄, y1 . . . yj−1yyj+1 . . . yn) = (x̄, repj,y(ȳ)) =

(x̄, δ̄(x̄)), as well as cF (δ̃δ̄,x̄) = cF (δ̃′) + crep(yj, y)
Ind.
≤ cF (δ̄′, x̄) + crep(yj, y) =

cF (δ̄, x̄).

δ̃′j = rep′(x, δ̃′′, yj) for some rep′ ∈ Rep, some x ∈ A, and some script tree δ̃′′. In that
case, we define δ̃δ̄,x̄ to be the same as δ̃′, but with the subtree δ̃′j replaced by the
subtree rep(x, δ̃′′, y). Accordingly, we obtain Y(δ̃δ̄,x̄) = (x̄, y1 . . . yj−1yyj+1 . . . yn)

= (x̄, repj,y(ȳ)) = (x̄, δ̄(x̄)), as well as cF (δ̃δ̄,x̄) = cF (δ̃′)− crep′(x, yj)+ crep(x, y)
A.51
≤ cF (δ̃′) + crep(yj, y)

Ind.
≤ cF (δ̄′, x̄) + crep(yj, y) = cF (δ̄, x̄).

δ̃′j = ins(δ̃′′, yj) for some ins ∈ Ins and some script tree δ̃′′. In that case, we de-
fine δ̃δ̄,x̄ to be the same as δ̃′, but with the subtree δ̃′j replaced by the sub-
tree ins(δ̃′′, y). Accordingly, we obtain Y(δ̃δ̄,x̄) = (x̄, y1 . . . yj−1yyj+1 . . . yn) =

(x̄, repj,y(ȳ)) = (x̄, δ̄(x̄)), as well as cF (δ̃δ̄,x̄) = cF (δ̃′)− cins(yj) + cins(y)
A.52
≤

cF (δ̃′) + crep(yj, y)
Ind.
≤ cF (δ̄′, x̄) + crep(yj, y) = cF (δ̄, x̄).

δT+1 = insj,y for some ins ∈ Ins, some j ∈ N, and some y ∈ A. If j > n + 1, δ̄(x̄) =

insj,y(ȳ) = ȳ. Thus, we can define δ̃δ̄,x̄ := δ̃′ and obtain Y(δ̃δ̄,x̄) = (x̄, ȳ) = (x̄, δ̄(x̄)),
as well as cF (δ̃δ̄,x̄) ≤ cF (δ̄′, x̄) = cF (insj,y, ȳ) + cF (δ̄′, x̄) = cF (δ̄, x̄), which proves
the claim.

If j ≤ n+ 1, we define δ̃δ̄,x̄ to be the same as δ̃′, but with the subtree δ̃′j being replaced
by the subtree ins(δ̃′j, y). Accordingly, we obtain Y(δ̃δ̄,x̄) = (x̄, y1 . . . yj−1yyj . . . yn) =

(x̄, insj,y(ȳ)) = (x̄, δ̄(x̄)), as well as cF (δ̃δ̄,x̄) = cF (δ̃′) + cins(y)
Ind.
≤ cF (δ̄′, x̄) +

cins(y) = cF (δ̄, x̄).
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This covers all possible cases such that we can always extend the script tree δ̃′ corre-
sponding to the edit script δ̄′ and the sequence x̄ to a script tree δ̃δ̄,x̄ corresponding to the
edit script δ̄ and the sequence x̄, which concludes the induction.

Regarding the third claim, let d∗S ,F (x̄, ȳ) := minδ̃∈T (S ,A){cF (δ̃)|Y(δ̃) = (x̄, ȳ)}.
Now, assume that the claim does not hold for two sequences x̄, ȳ ∈ A∗, that is,

dS ,F (x̄, ȳ) 6= d∗S ,F (x̄, ȳ). Then, either dS ,F (x̄, ȳ) < d∗S ,F (x̄, ȳ) or dS ,F (x̄, ȳ) > d∗S ,F (x̄, ȳ).

In the first case, let δ̄ be an edit script in ∆S ,F , such that δ̄(x̄) = ȳ and cF (δ̄, x̄) <
d∗S ,F (x̄, ȳ). According to the second claim, there exists a script tree δ̃δ̄,x̄ such that Y(δ̃δ̄,x̄) =

(x̄, ȳ) and cF (δ̃δ̄,x̄) ≤ cF (δ̄, x̄). This, however, implies that d∗S ,F (x̄, ȳ) ≤ cF (δ̃δ̄,x̄) ≤
cF (δ̄, x̄) < d∗S ,F (x̄, ȳ), which is a contradiction.

In the second case, let δ̃ be a script tree in T (S ,A), such that Y(δ̃) = (x̄, ȳ) and
cF (δ̃) < dS ,F (x̄, ȳ). According to the first claim, there exists an edit script δ̄δ̃ such that
δ̄δ̃(x̄) = ȳ and cF (δ̄δ̃, x̄) = cF (δ̃). This, however, implies that dS ,F (x̄, ȳ) ≤ cF (δ̄δ̃, x̄) =
cF (δ̃) < dS ,F (x̄, ȳ), which is a contradiction.

Therefore, dS ,F (x̄, ȳ) = d∗S ,F (x̄, ȳ), which concludes the proof.

a .9 proof of theorem 3.2

Recall the theorem we intend to prove.

Let A be an alphabet, let S = (Del, Rep, Ins) be a non-trivial signature, and let F be
an algebra over S and A. Further, let ∆S ,A be the edit set with respect to S and A, and
let cF be the cost function with respect to F such that the following conditions hold.

∀del ∈ Del : ∀x ∈ A : cdel(x) ≥ 0
∀ins ∈ Ins : ∀y ∈ A : cins(y) ≥ 0

∀del ∈ Del : ∃ins ∈ Ins : ∀x ∈ A : cdel(x) = cins(x)
∀ins ∈ Ins : ∃del ∈ Del : ∀y ∈ A : cins(y) = cdel(y)

∀rep ∈ Rep : ∀x, y ∈ A : crep(x, y) = crep(y, x) ≥ 0

Then, the edit distance dS ,F is a pseudo-metric over A∗.

Proof

Let x̄, ȳ, z̄ ∈ A∗, and let x̄ = x1 . . . xm, as well as ȳ = y1 . . . yn. Then, we can show the
following properties of dS ,F .

Well-Definedness: Because S is non-trivial, both Del and Ins are non-empty. Let del ∈
Del and ins ∈ Ins. Then, δ̄ := delm . . . del1ins1,y1 . . . insn,yn is a edit script in ∆∗S ,A and
it holds δ̄(x̄) = ȳ. Therefore, dS ,F (x̄, ȳ) is well-defined, and is bounded from above by
cF (δ̄, x̄).

Non-Negativity: Let δ̄ be an edit script in ∆∗S ,A such that δ̄(x̄) = ȳ and cF (δ̄, x̄) =

dS ,F (x̄, ȳ). As shown above, such an edit script exists. Further, cF (δ̄, x̄) is a sum over
non-negative contributions according to our conditions, and is thus non-negative itself.
Therefore, dS ,F (x̄, ȳ) is non-negative.
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Self-Identity: The empty edit script ε transforms x̄ to itself, and has per definition a cost
of 0. Therefore, dS ,F (x̄, x̄) ≤ 0. Further, dS ,F (x̄, x̄) is non-negative, therefore dS ,F (x̄, x̄) =
0.

Symmetry: We prove a more general auxiliary claim, from which the symmetry of dS ,F
follows.

Let δ̄ be an edit script in ∆∗S ,A such that δ̄(x̄) = ȳ. Then, there exists an edit script δ̄−1

in ∆∗S ,A such that δ̄−1(ȳ) = x̄, and cF (δ̄−1, ȳ) = cF (δ̄, x̄).

We prove this claim via induction over the length of δ̄. First, consider δ̄ = ε. Then,
we define δ̄−1 = ε, and we obtain δ̄−1(ȳ) = x̄, as well as cF (δ̄−1, ȳ) = 0 = cF (δ̄, x̄). Now,
assume that the claim holds for all edit scripts δ̄ up to length T. Finally, consider an edit
script ˆ̄δ = δ1 . . . δT+1.

Now, consider the sequence edit δ1 and distinguish the following cases.

δ1 = deli for some del ∈ Del, and some i ∈ N. Then, there exists some ins ∈ Ins such
that cins(xi) = cdel(xi). We now define δ−1

1 = insi,xi , such that δ−1
1 (δ1(x̄)) = x̄, and

cF (δ−1
1 , δ1(x̄)) = cins(xi) = cdel(xi) = cF (δ1, x̄).

δ1 = repi,y for some rep ∈ Rep, some i ∈N, and some y ∈ A. Because crep is symmetric,
we know that crep(xi, y) = crep(y, xi). We now define δ−1

1 = repi,xi
, such that

δ−1
1 (δ1(x̄)) = x̄, and cF (δ−1

1 , δ1(x̄)) = crep(y, xi) = crep(xi, y) = cF (δ1, x̄).

δ1 = insi,y for some ins ∈ Ins, some i ∈N, and some y ∈ A. Then, there exists some del ∈
Del such that cdel(y) = cins(y). We now define δ−1

1 = deli, such that δ−1
1 (δ1(x̄)) = x̄,

and cF (δ−1
1 , δ1(x̄)) = cdel(y) = cins(y) = cF (δ1, x̄).

These three cases cover all possibilities for δ1.

Now, consider the edit script δ̄ = δ2 . . . δT+1. Since |δ̄| ≤ T, we obtain via induction
an edit script δ̄−1 such that δ̄−1(ȳ) = δ1(x̄), and cF (δ̄−1, ȳ) = cF (δ̄, δ1(x̄)). Accordingly,
we define the script ˆ̄δ−1 := δ̄−1δ−1

1 , for which we obtain ˆ̄δ−1(ȳ) = δ−1
1 (δ1(x̄)) = x̄,

and cF ( ˆ̄δ−1, ȳ) = cF (δ̄−1, ȳ) + cF (δ−1
1 , δ1(x̄)) = cF (δ̄, δ1(x̄)) + cF (δ1, x̄) = cF ( ˆ̄δ, x̄). This

concludes our induction.

It follows that the cost of the cheapest edit script transforming x̄ to ȳ is also the cost
of an edit script transforming ȳ to x̄, such that dS ,F (ȳ, x̄) ≤ dS ,F (x̄, ȳ). By applying the
same argument in the other direction we obtain dS ,F (ȳ, x̄) = dS ,F (x̄, ȳ).

Triangular Inequality: Let δ̄ be an edit script from ∆∗S ,A such that δ̄(x̄) = z̄, as well as
cF (δ̄, x̄) = dS ,F (ȳ, z̄), and let δ̄′ be an edit script from ∆∗S ,A, such that δ̄′(z̄) = x̄, as well
as cF (δ̄, z̄) = dS ,F (z̄, ȳ).

Then, δ̄′′ := δ̄δ̄′ is an edit script from ∆∗S ,A, such that δ̄′′(x̄) = ȳ, and cF (δ̄′′, x̄) =

cF (δ̄, x̄) + cF (δ̄′, z̄) = dS ,F (x̄, z̄) + dS ,F (z̄, ȳ). Thus, we obtain: dS ,F (x̄, ȳ) ≤ dS ,F (x̄, z̄) +
dS ,F (z̄, ȳ).
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a .10 proof of theorem 3.3

Recall the theorem we intend to prove.

Let S be a signature, let G be an edit tree grammar over S , let A be an alphabet, and
let F be an algebra over S and A. Then, for any two sequences x̄, ȳ ∈ A∗, Algorithm 3.1
computes the edit distance dG,F (x̄, ȳ) in O(|x̄| · |ȳ|) time and space complexity.

Proof

First, consider the claim regarding the complexity classes. Algorithm 3.1 maintains |Φ|
arrays, each of size (|x̄|+ 1)× (|ȳ|+ 1). We consider |Φ| to be a constant. Therefore,
the space complexity is O(|x̄| · |ȳ|). Furthermore, Algorithm 3.1 involves two nested
loops with |x̄|+ 1 and |ȳ|+ 1 iterations respectively. All other loops inside the algorithm
iterate over constants, namely the number of production rules |R|, or the number of
nonterminal symbols |Φ|. Therefore, we obtain a runtime complexity of O(|x̄| · |ȳ|).

It remains to show that Algorithm 3.1 does indeed compute the edit distance dG,F (x̄, ȳ).
We first prove a more general, auxiliary result.

Let x̄ = x1 . . . xm and ȳ = y1 . . . yn. Further, let A ∈ Φ, and let:

T (A, i, j) :={δ̃|Y(δ̃) = (xi . . . xm, yj . . . yn), A→∗ δ̃}

D̃A
i,j :=

{
min{cF (δ̃)|δ̃ ∈ T (A, i, j)} if T (A, i, j) 6= ∅
∞ otherwise

Then, it holds for all i ≤ m + 1 and all j ≤ n + 1: DA
i,j = D̃A

i,j.

We prove this claim via induction over (i, j) in descending lexicographic order. First,
consider i = m + 1 and j = n + 1. In that case, T (A, i, j) = T (A, m + 1, n + 1) = {$}
if A ::= $ ∈ R and T (A, i, j) = ∅ otherwise. Further, cF ($) = 0 for any algebra F .
Therefore, D̃A

i,j = 0 if A ::= $ ∈ R and D̃A
i,j = ∞ otherwise. This is precisely modelled by

lines 4-9 of Algorithm 3.1.

Now, consider the i ≤ m or j ≤ n. Assume that DA
i,j 6= D̃A

i,j. In that case, one of the
following cases has to apply.

DA
i,j > D̃A

i,j: In that case, there exists a script tree δ̃ ∈ T (A, i, j), such that cF (δ̃) < DA
i,j.

Distinguish the following cases with respect to δ̃.

δ̃ = del(xi, δ̃′) for some del ∈ Del, and some script tree δ̃′ such that Y(δ̃′) = (xi+1 . . . xm,
yj . . . yn) and ∃B ∈ Φ with A→1 del(xi, B) as well as B→∗ δ̃′. Then, per definition,
δ̃′ ∈ T (B, i + 1, j). Furthermore, we have i ≤ m such that all conditions in lines
14 and 15 of Algorithm 3.1 are fulfilled. This, in turn, implies that there exists

a l such that θl = DB
i+1,j + cdel(xi), which means that: DA

i,j ≤ DB
i+1,j + cdel(xi)

Ind.
=

D̃B
i+1,j + cdel(xi) ≤ cF (δ̃′) + cdel(xi) = cF (δ̃) < DA

i,j, which is a contradiction.

δ̃ = match(xi, δ̃′, yj) for some script tree δ̃′ such that Y(δ̃′) = (xi+1 . . . xm, yj+1 . . . yn)

and ∃B ∈ Φ with A →1 match(xi, B, yj) as well as B →∗ δ̃′. Then, per definition,
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δ̃′ ∈ T (B, i + 1, j + 1). Furthermore, we have i ≤ m, j ≤ n and xi = yj, otherwise
A→1 match(xi, B, yj) would not hold. Therefore, all conditions in lines 20, 21, and
22 of Algorithm 3.1 are fulfilled, and thus there exists a l such that θl = DB

i+1,j+1.

This, in turn, implies that: DA
i,j ≤ DB

i+1,j+1
Ind.
= D̃B

i+1,j+1 ≤ cF (δ̃′) = cF (δ̃) < DA
i,j,

which is a contradiction.

δ̃ = rep(xi, δ̃′, yj) for some rep ∈ Rep, and some script tree δ̃′ such that Y(δ̃′) = (xi+1 . . . xm,
yj+1 . . . yn) and ∃B ∈ Φ with A→1 rep(xi, B, yj) as well as B→∗ δ̃′. Then, per def-
inition, δ̃′ ∈ T (B, i + 1, j + 1). Furthermore, we have i ≤ m and j ≤ n, such that
the conditions in lines 20 and 27 of Algorithm 3.1 are fulfilled. This, in turn, im-
plies that there exists some l such that θl = DB

i+1,j+1 + crep(xi, yj), which means

that: DA
i,j ≤ DB

i+1,j+1 + crep(xi, yj)
Ind.
= D̃B

i+1,j+1 + crep(xi, yj) ≤ cF (δ̃′) + crep(xi, yj) =

cF (δ̃) < DA
i,j, which is a contradiction.

δ̃ = ins(δ̃′, yj) for some ins ∈ Ins, and some script tree δ̃′ such that Y(δ̃′) = (xi . . . xm,
yj+1 . . . yn) and ∃B ∈ Φ with A →1 ins(B, yj) as well as B →∗ δ̃′. Then, per
definition, δ̃′ ∈ T (B, i, j + 1). Furthermore, we have j ≤ n, such that all conditions
in lines 32 and 33 of Algorithm 3.1 are fulfilled. This, in turn, implies that there exists

some l such that θl = DB
i,j+1 + cins(yj), which means that: DA

i,j ≤ DB
i,j+1 + cins(yj)

Ind.
=

D̃B
i,j+1 + cins(yj) ≤ cF (δ̃′) + cins(yj) = cF (δ̃) < DA

i,j, which is a contradiction.

This covers all possible cases for δ̃ such that we must conclude by contradiction that
DA

i,j ≤ D̃A
i,j.

DA
i,j < D̃A

i,j: In that case, one of the following cases must apply.

i ≤ m and DB
i+1,j + cdel(xi) < D̃A

i,j for some del ∈ Del and some B ∈ Φ such that A ::=
delB ∈ R. Then, per induction, we have D̃B

i+1,j = DB
i+1,j, which means that there

exists a script tree δ̃′ such that Y(δ̃′) = (xi+1 . . . xm, yj . . . yn), B→∗ δ̃′, and cF (δ̃′) =
DB

i+1,j. Now, consider the script tree δ̃ := del(xi, δ̃′). It holds A →∗ δ̃ because
A →1 del(xi, B) and B →∗ δ̄′. Furthermore, it holds Y(δ̃) = (xi . . . xm, yj . . . yn).
Therefore, per definition, δ̃ ∈ T (A, i, j), which in turn implies that: D̃A

i,j ≤ cF (δ̃) =
cF (δ̃′) + cdel(xi) = DB

i+1,j + cdel(xi) < D̃A
i,j, which is a contradiction.

i ≤ m, j ≤ n, xi = yj, and DB
i+1,j+1 < D̃A

i,j for some B ∈ Φ such that A ::= matchB ∈
R. Then, per induction, we have D̃B

i+1,j+1 = DB
i+1,j+1, which means that there

exists a script tree δ̃′ such that Y(δ̃′) = (xi+1 . . . xm, yj+1 . . . yn), B →∗ δ̃′, and
cF (δ̃′) = DB

i+1,j+1. Now, consider the script tree δ̃ := match(xi, δ̃′, yj). It holds
A→∗ δ̃ because A→1 match(xi, B, yj) and B→∗ δ̄′. Furthermore, it holds Y(δ̃) =
(xi . . . xm, yj . . . yn). Therefore, per definition, δ̃ ∈ T (A, i, j), which in turn implies
that: D̃A

i,j ≤ cF (δ̃) = cF (δ̃′) = DB
i+1,j+1 < D̃A

i,j, which is a contradiction.

i ≤ m, j ≤ n, and DB
i+1,j+1 + crep(xi, yj) < D̃A

i,j for some rep ∈ Rep and some B ∈ Φ such
that A ::= repB ∈ R. Then, per induction, we have D̃B

i+1,j+1 = DB
i+1,j+1, which

means that there exists a script tree δ̃′ such that Y(δ̃′) = (xi+1 . . . xm, yj+1 . . . yn),
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B →∗ δ̃′, and cF (δ̃′) = DB
i+1,j+1. Now, consider the script tree δ̃ := rep(xi, δ̃′, yj).

It holds A →∗ δ̃ because A →1 rep(xi, B, yj) and B →∗ δ̄′. Furthermore, it holds
Y(δ̃) = (xi . . . xm, yj . . . yn). Therefore, per definition, δ̃ ∈ T (A, i, j), which in turn
implies that: D̃A

i,j ≤ cF (δ̃) = cF (δ̃′) + crep(xi, yj) = DB
i+1,j+1 + crep(xi, yj) < D̃A

i,j,
which is a contradiction.

j ≤ n and DB
i,j+1 + cins(yj) < D̃A

i,j for some ins ∈ Ins and some B ∈ Φ such that A ::=
insB ∈ R. Then, per induction, we have D̃B

i,j+1 = DB
i,j+1, which means that there

exists a script tree δ̃′ such that Y(δ̃′) = (xi . . . xm, yj+1 . . . yn), B→∗ δ̃′, and cF (δ̃′) =
DB

i,j+1. Now, consider the script tree δ̃ := ins(δ̃′, yj). It holds A →∗ δ̃ because
A →1 ins(B, yj) and B →∗ δ̄′. Furthermore, it holds Y(δ̃) = (xi . . . xm, yj . . . yn).
Therefore, per definition, δ̃ ∈ T (A, i, j), which in turn implies that: D̃A

i,j ≤ cF (δ̃) =
cF (δ̃′) + cins(yj) = DB

i,j+1 + cins(yj) < D̃A
i,j, which is a contradiction.

This covers all possible cases for a value of DA
i,j, such that we must conclude by contradic-

tion that DA
i,j ≥ D̃A

i,j, which in turn implies DA
i,j = D̃A

i,j.

Note that, in case L = 0 or T (A, i, j) = ∅, both DA
i,j as well as D̃A

i,j are defined as ∞,
keeping the equality intact. This concludes our proof by induction.

By virtue of this general result we can now conclude that it holds:

DS
1,1 = D̃S

1,1 = min{cF (δ̃)|δ̃ ∈ T (S, 1, 1)} = min{cF (δ̃)|Y(δ̃) = (x̄, ȳ), S→∗ δ̃}
= min

δ̃∈L(G)
{cF (δ̃)|Y(δ̃) = (x̄, ȳ)} = dG,F (x̄, ȳ)

a .11 proof of theorem 3.4

Recall the theorem we intend to prove.

Let θ1, . . . , θL ∈ R. Then, for any β > 0, softminβ is differentiable with the following
gradient.

∇~λsoftminβ(θ1, . . . , θL) =
L

∑
l=1

softmin′β,l(θ1, . . . , θL) · ∇~λθl where (A.55)

softmin′β,l(θ1, . . . , θL) =
exp(−β · θl)

∑L
l′=1 exp(−β · θl′)

·
(

1− β ·
[
θl − softminβ(θ1, . . . , θL)

])
Further, there exists a constant CL ∈ R such that for all β > 0 it holds:

0 ≤ softminβ(θ1, . . . , θL)−min{θ1, . . . , θL} ≤
CL

β

Proof

We prove the claims in turn. First, recall the definition of the softmin from Equation 3.4.

softminβ(θ1, . . . , θL) := ∑L
l=1 exp(−β · θl) · θl

∑L
l=1 exp(−β · θl)
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To avoid symbol clutter, we introduce the notational shorthands el := exp(−β · θl)
and Z := ∑L

l=1 el . Accordingly, we can write the gradient of softminβ(θ1, . . . , θL) with
respect to parameters ~λ as follows.

∇~λsoftminβ(θ1, . . . , θL) = ∇~λ

( 1
Z
·

L

∑
l=1

el · θl

)
=

1
Z2 ·

(
Z ·

L

∑
l=1
∇~λ(el · θl)−

( L

∑
l=1

el · θl

)
· ∇~λZ

)
=

1
Z
·
( L

∑
l=1
∇~λ(el · θl)− softminβ(θ1, . . . , θL) · ∇~λZ

)
(A.56)

It remains to compute the gradients of el · θl and Z with respect to ~λ. In that regard, we
obtain

∇~λel · θl =
(
∇~λel

)
· θl + el · ∇~λθl

= −β · el · θl · ∇~λθl + el · ∇~λθl

= el · (−β · θl + 1) · ∇~λθl

as well as

∇~λZ =
L

∑
l=1
∇~λel =

L

∑
l=1
−β · el · ∇~λθl

Plugging these results into Equation A.56, we obtain:

1
Z
·
([ L

∑
l=1

el · (−β · θl + 1) · ∇~λθl

]
− softminβ(θ1, . . . , θL) ·

[ L

∑
l=1
−β · el · ∇~λθl

])

=
L

∑
l=1

el

Z
·
(
− β · θl + 1 + softminβ(θ1, . . . , θL) · β

)
· ∇~λθl

=
L

∑
l=1

el

Z
·
(

1− β · [θl − softminβ(θ1, . . . , θL)]
)
· ∇~λθl

which concludes the gradient computation.

Regarding the second claim, we re-write softminβ(θ1, . . . , θL) as follows. Let θ∗ :=
minl{θl}. Then, we obtain:

softminβ(θ1, . . . , θL) =
∑L

l=1 exp(−β · θl) · (θl − θ∗ + θ∗)

∑L
l=1 exp(−β · θl)

=
exp(−β · θ∗)
exp(−β · θ∗) ·

∑L
l=1 exp(−β · θl) · (θl − θ∗)

∑L
l=1 exp(−β · θl)

+ θ∗

=
∑L

l=1 exp(−β · [θl − θ∗]) · (θl − θ∗)

∑L
l=1 exp(−β · [θl − θ∗])

+ θ∗

Now, let E denote the difference softminβ(θ1, . . . , θL)− θ∗. Further, let Θ∗ denote the
set Θ∗ := {l|θl = θ∗}. Note that, per construction, this set must contain at least one
element. We can re-write E using this set as follows.

E =
∑l /∈Θ∗ exp(−β · [θl − θ∗]) · (θl − θ∗)

|Θ∗|+ ∑l /∈Θ∗ exp(−β · [θl − θ∗])
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Note that this term is non-negative and strictly positive for |Θ∗| < L, because exp(−β ·
[θl − θ∗]) > 0, (θl − θ∗) > 0 for all l /∈ Θ∗, and |Θ∗| > 0. It remains to show that the
upper bound holds.

First, note that decreasing the number of elements in Θ∗ increases the enumerator and
decreases the denominator. Therefore, we obtain an upper bound for |Θ∗| = 1. Further,
note that E is symmetric with respect to all θl , auch that we obtain a maximum if for all
l /∈ Θ∗ we have θl = θ∗ + ε for some constant ε > 0. Plugging this into our expression
above, we obtain:

E ≤ max
ε∈R

(L− 1) · exp(−β · ε) · ε
1 + (L− 1) · exp(−β · ε) = max

ε∈R

(L− 1) · ε
exp(β · ε) + L− 1

(A.57)

We obtain the maximum by deriving with respect to ε. In particular, let E(ε) := ε/(exp(β ·
ε) + L− 1). Then, we obtain the following first and second derivative of E(ε) with respect
to ε.

∂

∂ε
E(ε) =

exp(β · ε) + L− 1− ε · β · exp(β · ε)(
exp(β · ε) + L− 1

)2 =
1− β · exp(β · ε) · E(ε)

exp(β · ε) + L− 1
(A.58)

∂2

∂2ε
E(ε) =

(
− β · exp(β · ε) ·

( ∂

∂ε
E(ε) + β · E(ε)

)
· (exp(β · ε) + L− 1) (A.59)

−
(
1− β · exp(β · ε

)
· E(ε)) · β · exp(β · ε)

)
· 1(

exp(β · ε) + L− 1
)2

First, consider the second derivative with respect to any candidate ε > 0 with ∂
∂ε E(ε) = 0.

For these points, we obtain the following result for the enumerator of Equation A.59.

− β2 · exp(β · ε) · E(ε) · (exp(β · ε) + L− 1)− (1− β · exp(β · ε) · E(ε)) · β · exp(β · ε)

=− β · exp(β · ε) ·
(

β · E(ε) · exp(β · ε) + (L− 1) · β · E(ε) + 1− β · exp(β · ε) · E(ε)
)

=− β · exp(β · ε) ·
(
(L− 1) · β · E(ε) + 1

)
Note that this expression is strictly negative because L− 1 ≥ 0, β > 0, E(ε) ≥ 0 and
exp(β · ε) > 0. Further, due to the square, the denominator in Equation A.59 is strictly
positive. Therefore, every ε > 0 with ∂

∂ε E(ε) = 0 is a maximum.

Next, we solve the equation ∂
∂ε E(ε) = 0, for which we obtain:

exp(β · ε) + L− 1− β · ε · exp(β · ε) !
= 0

⇐⇒ exp(β · ε) · (1− β · ε) !
= 1− L (A.60)

Note that the function exp(β · ε) · (1 − β · ε) is strictly descending with respect to ε,
starting from exp(β · 0) · (1− β · 0) = 1. We can verify this finding by considering the
derivative with respect to ε, which yields −β2 · ε · exp(β · ε). Since β > 0 and ε > 0, this
value is strictly negative. Due to this shape, this equation has only one solution for any
L ∈N.

To solve Equation A.60, we require the Lambert W function, which is defined via the
equation W(x · exp(x)) = x. Note that W is invertible for non-negative values of x and
that we can thus obtain the equation

W(x) · exp(W(x)) = W−1
[
W
(
W[x] · exp(W[x])

)]
= W−1(W[x]) = x (A.61)
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As unique solution of Equation A.60 we now obtain ε = 1
β ·
(

W
(

L−1
e

)
+ 1
)

, which
we can verify by plugging this solution into Equation A.60.

exp(W
(L− 1

e

)
+ 1) ·

(
1− (W

(L− 1
e

)
+ 1)

) !
= 1− L

⇐⇒ − e · exp(W
(L− 1

e

)
) ·W

(L− 1
e

)
!
= 1− L

A.61⇐⇒ − e · L− 1
e

!
= 1− L

⇐⇒ 1− L !
= 1− L

Finally, note that E(ε) tends to zero for boundary values. In particular, we obtain
E(0) = 0 and limε→∞ E(ε) = 0. Therefore, our solution is a global maximum of E(ε).

We obtain our upper bound by plugging our result for ε into Equation A.57.

E ≤ 1
β
·

(L− 1) ·
(

W
(

L−1
e

)
+ 1
)

exp(W
(

L−1
e

)
+ 1) + L− 1

Therefore, we can set our constant CL to

CL =
W
(

L−1
e

)
+ 1

1
L−1 · exp(W

(
L−1

e

)
+ 1) + 1

which concludes our proof.

a .12 proof of theorem 3.5

Recall the theorem we intend to prove.

Let S be a signature, let G be an edit tree grammar over S , let A be an alphabet, and
let F be an algebra over S and A. Finally, let ~λ be arbitrary parameters of F , and let
β ∈ R with β > 0.

Then, for any two sequences x̄, ȳ ∈ A, we define the β-softmin-approximated edit
distance dβ,G,F (x̄, ȳ) as the result of Algorithm 3.1 with a softmin operation in line 39
instead of a strict minimum operation.

Further, it holds: Algorithm 3.2 computes the gradient of the β-softmin-approximated
edit distance dβ,G,F (x̄, ȳ) with respect to ~λ in O(|x̄| · |ȳ|) time and space complexity.

Proof

First, consider the claim regarding the complexity classes. Algorithm 3.2 maintains |Φ|
arrays of size (|x̄|+ 1)× (|ȳ|+ 1), and |Φ| arrays of size (|x̄|+ 1)× (|ȳ|+ 1)× |~λ|. We
consider f |Φ| and |~λ| to be constants. Therefore, the space complexity is O(|x̄| · |ȳ|).
Furthermore, Algorithm 3.2 involves two nested loops with |x̄|+ 1 and |ȳ|+ 1 iterations
respectively. All other loops inside the algorithm iterate over constants, namely the
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number of production rules |R|, or the number of nonterminal symbols |Φ|. Therefore,
we obtain a runtime complexity of O(|x̄| · |ȳ|).

It remains to show that Algorithm 3.1 does indeed compute the gradient∇~λdβ,G,F (x̄, ȳ).

Recall that dβ,G,F (x̄, ȳ) is defined as the result of Algorithm 3.1 with softmin instead
of the minimum in line 39. Observe that Algorithm 3.2 computes this approximated
distance, which is contained in DS

1,1 after executing the loops in line 11 and 12. To obtain
the gradient ∇~λDS

1,1, we can trace back its computation through the algorithm and adjust
it accordingly.

First, note that DS
1,1 is computed in the last iteration of the loops in line 11 and 12.

In particular DS
1,1 is computed in line 44, which reads Ai,j ← softmin(θ1, . . . , θL). To

obtain the gradient ∇~λDA
i,j, we utilize Equation 3.5, which yields line 45, i.e.: GA

i,j ←
∑L

l=1 softmin′β,l(θ1, . . . , θL) · ∇~λθl .

Note that this equation depends on the gradients∇~λθl for all l ∈ {1, . . . , L}. The terms
θl are computed in lines 18, 26, 32, and 39 of Algorithm 3.2. Accordingly, we introduce
lines 19, 27, 33, and 40, which compute the gradients∇~λθl . These gradients in turn depend
on the gradients ∇~λDB

i+1,j = GB
i+1,j, ∇~λDB

i+1,j+1 = GB
i+1,j+1, and ∇~λDB

i,j+1 = GB
i,j+1, all of

which are already pre-computed due to prior runs of the loop.

It remains to consider the base case. The entries DA
m+1,n+1 are either zero or ∞. In

the former case, the entry is a constant independent of ~λ. Therefore, the initialization
with zeros is correct. In case the entry is ∞, the value of GA

m+1,n+1 is irrelevant for the
final result, because for any term θl = ∞ it holds: softmin′β,l(θ1, . . . , θL) = 0 such that the
corresponding term in the sum in line 45 is discarded.

Therefore, we can conclude that the result of Algorithm 3.2 is indeed the desired
gradient, which concludes the proof.

206



a .13 proof of theorem 4.2

a .13 proof of theorem 4.2

Recall the Theorem we intend to prove.

Let x̃ and ỹ be trees over some alphabet A and let c be a cost function over A which
conforms to the triangular inequality. Then, Algorithm 4.1 computes Pc(x̃, ỹ) · |M(c, x̃, ỹ)|
as first output and |M(c, x̃, ỹ)| as second output. Further, Algorithm 4.1 runs in O(|x̃|6 ·
|ỹ|6) time complexity and O(|x̃|2 · |ỹ|2) space complexity in the worst case.

Algorithm A.1 An algorithm which computes the matrix A for two trees x̃ and ỹ and a
cost function c.

1: function forward(Two trees x̃ and ỹ, the matrices d and D after executing Algo-
rithm 2.1, and a cost function c)

2: Initialize A as a (|x̃|+ 1)× (|ỹ|+ 1) matrix of zeros.
3: A1,1 ← 1, Q← {(1, 1)}
4: C ← ∅.
5: while Q 6= ∅ do
6: (i, j)← min Q. . Lexicographic ordering
7: Q← Q \ {(i, j)}.
8: C ← C ∪ {(i, j)}.
9: if i ≤ |x̃| ∧ Di,j = c(xi,−) + Di+1,j then

10: Ai+1,j ← Ai+1,j + Ai,j.
11: Q← Q ∪ {(i + 1, j)}.
12: end if
13: if j ≤ |ỹ| ∧ Di,j = c(−, yj) + Di,j+1 then
14: Ai,j+1 ← Ai,j+1 + Ai,j.
15: Q← Q ∪ {(i, j + 1)}.
16: end if
17: if i = |x̃|+ 1∨ j = |ỹ|+ 1∨ c(xi, yj) = c(xi,−) + c(−, yj) then
18: continue
19: end if
20: if rlx̃(i) = rlx̃(1) ∧ rlỹ(j) = rlỹ(1) then
21: if Di,j = Di+1,j+1 + c(xi, yj) then
22: Ai+1,j+1 ← Ai+1,j+1 + Ai,j
23: Q← Q ∪ {(i + 1, j + 1)}.
24: end if
25: else
26: if Di,j = Drlx̃(i)+1,rlỹ(j)+1 + di,j then
27: Compute D′ and d′ via Algorithm 2.1 for the subtrees x̃i and ỹj.
28: D′1,2 ← ∞. D′2,1 ← ∞.
29: (Q′, A′)← forward(x̃i, ỹj, d′, D′, c).
30: Arlx̃(i)+1,rlỹ(j)+1 ← Arlx̃(i)+1,rlỹ(j)+1 + A′|x̃i |+1,|ỹj|+1 · Ai,j.
31: Q← Q ∪ {(rlx̃(i) + 1, rlỹ(j) + 1)}.
32: end if
33: end if
34: end while
35: return (C, A).
36: end function
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Algorithm A.2 An algorithm which computes the matrix B for two trees x̃ and ỹ and a
cost function c.

1: function backward(Two trees x̃ and ỹ, the matrices d and D after executing Algo-
rithm 2.1, a cost function c, and a set of tuples C as returned by Algorithm A.1.)

2: Initialize B as a (|x̃|+ 1)× (|ỹ|+ 1) matrix of zeros.
3: B|x̃|+1,|ỹ|+1 ← 1.
4: while C 6= ∅ do
5: (i, j)← max C. . Lexicographic ordering
6: C ← C \ {(i, j)}.
7: if i ≤ |x̃| ∧ Di,j = c(xi,−) + Di+1,j then
8: Bi,j ← Bi,j + Bi+1,j
9: end if

10: if j ≤ |ỹ| ∧ Di,j = c(−, yj) + Di,j+1 then
11: Bi,j ← Bi,j + Bi,j+1
12: end if
13: if i = |x̃|+ 1∨ j = |ỹ|+ 1∨ c(xi, yj) = c(xi,−) + c(−, yj) then
14: continue
15: end if
16: if rlx̃(i) = rlx̃(1) ∧ rlỹ(j) = rlỹ(1) then
17: if Di,j = Di+1,j+1 + c(xi, yj) then
18: Bi,j ← Bi,j + Bi+1,j+1
19: end if
20: else
21: if Di,j = Drlx̃(i)+1,rlỹ(j)+1 + di,j then
22: Compute D′ and d′ via Algorithm 2.1 for the subtrees x̃i and ỹj.
23: D′1,2 ← ∞. D′2,1 ← ∞.
24: (Q′, A′)← forward(x̃i, ỹj, d′, D′, c).
25: Bi,j ← Bi,j + Brlx̃(i)+1,rlỹ(j)+1 · A′|x̃i |+1,|ỹj|+1.
26: end if
27: end if
28: end while
29: return B.
30: end function

Proof

First, consider the efficiency claims and consider Algorithm A.1. In the worst case,
lines 27-31 need to be executed in each possible iteration. In that case, D′ and d′ need
to be computed via Algorithm 2.1, which requires O(|x̃|2 · |ỹ|2) steps and O(|x̃| · |ỹ|)
space. Including the recursive calls, this can occur O(|x̃|2 · |ỹ|2) times at worst such that
Algorithm A.1 has an overall runtime complexity of O(|x̃|4 · |ỹ|4).

Regarding space complexity, each level of recursion needs to maintain a constant
number of matrices of size O(|x̃| · |ỹ|). A worst, there can be O(|x̃| · |ỹ|) levels of recursion
active at the same time, implying a space complexity of O(|x̃|2 · |ỹ|2).

Now, note that Algorithm A.2, by construction, iterates over the same elements as
Algorithm A.1 and has the same structure, such that the complexity results carry over.

Finally, regarding Algorithm 4.1 itself, we find that, in the worst case, lines 15-23 get
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executed in every possible iteration. These lines include a recursive call to Algorithm 4.1,
and in each such recursive call, Algorithm A.1 and Algorithm A.2 get executed. With
the same argument as before, we perform at most O(|x̃|2 · |ỹ|2) of such recursive calls,
yielding an overall runtime complexity of O(|x̃|6 · |ỹ|6) in the worst case.

Regarding space complexity, each level of recursion needs to maintain a constant
number of matrices of size O(|x̃| · |ỹ|). A worst, there can be O(|x̃| · |ỹ|) levels of recursion
active at the same time, implying a space complexity of O(|x̃|2 · |ỹ|2).

The remainder of this section is now dedicated to proving the correctness of Algo-
rithm 4.1, that is, that the first output of Algorithm 4.1 is Pc(x̃, ỹ) · |M(c, x̃, ỹ)|, and that
the second output is |M(c, x̃, ỹ)|.

The outline of the correctness proof is as follows. We will first show that the problem
of counting cooptimal tree mappings is related to the graph-theoretic problem of counting
backtracing paths through the dynamic programming matrix D of Algorithm 4.1. Then,
we show that Algorithm A.1 computes the number of paths from the first cell of matrix
D to any other cell, and Algorithm A.2 computes the number of paths from any cell to
the last cell of matrix D. Finally, the correctness of Algorithm 4.1 follows naturally from
these two prior claims because Pc(x̃, ỹ)i,j is proportional to the number of paths to cell
(i, j) multiplied with the number of paths from cell (i + 1, j + 1).

We begin our proof by establishing auxiliary concepts, namely the concept of the
cooptimal edit graph, and paths through that graph.

Definition A.6 (Co-optimal Edit Graph). Let X and Y be forests over some alphabet A
and let c be a cost function over A. Then, we define the cooptimal edit graph between X
and Y according to c as the directed graph Gc,X,Y = (V, E) with nodes V and edges E as
follows.

If X = ε and Y = ε we define V := {(1, 1, 1, 1)} and E := ∅.

If X = ε but Y 6= ε we define V :=
{
(1, 1, 1, j)

∣∣j ∈ {1, . . . , |Y| + 1}
}

and E :={(
(1, 1, 1, j), (1, 1, 1, j + 1)

)∣∣j ∈ {1, . . . , |Y|}
}

.

If X 6= ε but Y = ε we define V :=
{
(1, i, 1, 1)

∣∣i ∈ {1, . . . , |X| + 1}
}

and E :={(
(1, i, 1, 1), (1, i + 1, 1, 1)

)∣∣i ∈ {1, . . . , |X|}
}

.

If neither forest is empty, we define:

V :=
{
(k, i, l, j)

∣∣∣k ∈ K(X), i ∈ {k, . . . , rlX(k) + 1}, l ∈ K(Y), j ∈ {l, . . . , rlY(l) + 1}
}

E :=
{(

(k, i, l, j), (k, i + 1, l, j)
)∣∣∣Dc

(
X[i, rlX(k)], Y[j, rlY(l)]

)
= c(xi,−) + Dc

(
X[i + 1, rlX(k)], Y[j, rlY(l)]

)}
∪{(

(k, i, l, j), (k, i, l, j + 1)
)∣∣∣Dc

(
X[i, rlX(k)], Y[j, rlY(l)]

)
= c(−, yj) + Dc

(
X[i, rlX(k)], Y[j + 1, rlY(l)]

)}
∪
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{(
(k, i, l, j), (k, i + 1, l, j + 1)

)∣∣∣Dc
(
X[i, rlX(k)], Y[j, rlY(l)]

)
= c(xi, yj) + Dc

(
X[i + 1, rlX(k)], Y[j + 1, rlY(l)]

)
∧ rlX(i) = rlX(k) ∧ rlY(j) = rlY(l)

}
∪{(

(k, i, l, j), (k, i + 1, l, j + 1)
)∣∣∣Dc

(
X[i, rlX(k)], Y[j, rlY(l)]

)
= c(xi, yj) + Dc

(
X[i + 1, rlX(k)], Y[j + 1, rlY(l)]

)
∧ c(xi, yj) = c(xi,−) + c(−, yj)

}
∪{(

(k, i, l, j), (kX(i), i + 1, kY(j), j + 1)
)∣∣∣Dc

(
X[i, rlX(k)], Y[j, rlY(l)]

)
= Dc(x̃i, ỹj) + Dc

(
X[rlX(i) + 1, rlX(k)], Y[rlY(j) + 1, rlY(l)]

)
∧
(
rlX(i) 6= rlX(k) ∨ rlY(j) 6= rlY(l)

)
∧ c(xi, yj) < c(xi,−) + c(−, yj)

}
∪{(

(k, rlX(k) + 1, l, rlY(l) + 1), (kX(rlX(k) + 1), rlX(k) + 1, kY(rlY(l) + 1), rlY(l) + 1)
)∣∣∣

rlX(k) + 1 ≤ |X| ∧ rlY(l) + 1 ≤ |Y|
}

{(
(k, rlX(k) + 1, l, |Y|+ 1), (kX(rlX(k) + 1), rlX(k) + 1, 1, |Y|+ 1)

)∣∣∣rlX(k) + 1 ≤ |X|
}

{(
(k, |X|+ 1, l, rlY(l) + 1), (1, |X|+ 1, kY(rlY(l) + 1), rlY(l) + 1)

)∣∣∣rlY(l) + 1 ≤ |Y|
}

Further, we define a path between two nodes u, v ∈ V as a sequence of nodes v0, . . . , vT
where v0 = u, vT = v, and for all t ∈ {1, . . . , T} it holds: (vt−1, vt) ∈ E. If T = 0, we call
a path trivial.

We call a path between (1, 1, 1, 1) and (1, |X|+ 1, 1, |Y|+ 1) a path through Gc,X,Y.

We call a node v ∈ V reachable from another node u ∈ V, if a path from u to v exists.

As an example, consider the cooptimal edit graph between the trees x̃ = a(b(c, d), e)
and ỹ = f(g) in Figure 2.4. An excerpt of this graph is shown in Figure A.2.

A key property of this graph is that, from any node, (1, |X|+ 1, 1, |Y|+ 1) is reachable.
We will require this property to prove the correctness of Algorithms A.1 and A.2 later on.

Lemma A.7. Let X and Y be forests over some alphabet A, let c be a cost function over A, and
let Gc,X,Y be the cooptimal edit graph between X and Y according to c. Then it holds: From any
node in Gc,X,Y, (1, |X|+ 1, 1, |Y|+ 1) is reachable.

Proof. First, consider the cases in which one of the forests is empty.

If X = Y = ε, only the node (1, 1, 1, 1) = (1, |X|+ 1, 1, |Y|+ 1) exists. As any node is
reachable from itself via a trivial path, the claim holds.

If X = ε but Y 6= ε, then (1, 1, 1, 1), (1, 1, 1, 2), . . . , (1, 1, 1, |Y|+ 1) = (1, |X|+ 1, 1, |Y|+
1) is a valid path in Gc,X,Y which connects any node in Gc,X,Y to (1, |X|+ 1, 1, |Y|+ 1).
Therefore, the claim holds.

If X 6= ε but Y = ε, then (1, 1, 1, 1), (1, 2, 1, 1), . . . , (1, |X|+ 1, 1, 1) = (1, |X|+ 1, 1, |Y|+
1) is a valid path in Gc,X,Y which connects any node in Gc,X,Y to (1, |X|+ 1, 1, |Y|+ 1).
Therefore, the claim holds.
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(1, 1, 1, 1)
Dc
(
a(b(c, d), e), f(g)

)
(1, 2, 1, 1)

Dc
(
(b(c, d), e), f(g)

) (1, 2, 1, 2)
Dc
(
(b(c, d), e), g

)
(1, 3, 1, 2)

Dc
(
(c, d, e), g

)
(1, 4, 1, 2)

Dc
(
(d, e), g

)
(1, 5, 1, 2)
Dc
(
e, g
) (1, 5, 1, 3)

Dc
(
e, ε
)

(1, 6, 1, 3)
Dc
(
ε, ε
)

(2, 3, 1, 2)
Dc
(
(c, d), g

) (2, 3, 1, 3)
Dc
(
(c, d), ε

)
(2, 4, 1, 2)
Dc
(
d, g
) (2, 4, 1, 3)

Dc
(
d, ε
)

(2, 5, 1, 3)
Dc
(
ε, ε
)

(3, 4, 1, 3)
Dc
(
ε, ε
)

Figure A.2: An excerpt of the cooptimal edit graph between the trees x̃ and ỹ from Figure 2.4.
The figure only shows nodes which are reachable from (1, 1, 1, 1). Further, to support clarity, the
nodes are labelled with indices and with the corresponding subforest edit distance.

Finally, if neither X nor Y is empty, consider the following argument. Let u = (k, i, l, j)
and v = (k′, i′, l′, j′) be two nodes in Gc,X,Y. We define the binary relation � as follows.
u � v if and only if i > i′, or i = i′ and j > j′, or i = i′ and j = j′ and k < k′, or i = i′ and
j = j′ and k = k′ and l < l′. In other words, � is equivalent to the lexicographic ordering
on (i, j,−k,−l′).

Now, note that this binary relation is antisymmetric and transitive and that for any
two nodes u and v always either u � v or v � u holds except if u = v. Further note that
(1, |X|+ 1, 1, |Y|+ 1) is the maximum according to this relation, meaning that for any
other node u it holds: (1, |X|+ 1, 1, |Y|+ 1) � u.

Turning back to the cooptimal edit graph, we observe that for any two nodes u and v,
(u, v) ∈ E implies that v � u. Finally, we observe that any node except (1, |X|+ 1, 1, |Y|+
1) has at least one outgoing edge. Therefore, it must be the case that, from any node, we
can continue a path with strictly growing nodes according to the relation �, until we
reach the maximum, that is, (1, |X|+ 1, 1, |Y|+ 1). Therefore, from all nodes in the graph,
(1, |X|+ 1, 1, |Y|+ 1) is reachable and the claim holds.

We can check this theorem exemplarly in Figure A.2.

Another important property we will require for inductive proofs over the cooptimal
edit graph is the relation between an entire cooptimal edit graph and the cooptimal edit
graph for subforests. To establish such properties, we first introduce a lemma regarding
the relationship between forests and subforests as such.
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Lemma A.8. Let X = x(X1)X2 be a forest over some alphabet A with |X| > 0, and let
X′ := X[2, |X|].

Then, for any k ∈ K(X), and any i ∈ {k, . . . , rlX(k) + 1} with i > 1 it holds:

x̃i = (x̃′)i−1 (A.62)
rlX(i) = rlX′(i− 1) + 1 (A.63)
K(X′) = {kX′(|X1|)} ∪ {k− 1|k > 1∧ k ∈ K(X)} (A.64)

X[i, rlX(k)] = X′[i− 1, rlX′(k′)] where (A.65)

k′ :=

{
kX′(|X1|) if k = 1
k− 1 otherwise

Proof. We prove the single claims in turn. Per definition of the pre-order, the first claim
follows directly.

The second claim follows by applying the definition of outermost right leaves, that is,
rlX(i) = i + |x̃i| − 1 = i + |(x̃′)i−1| − 1 = i− 1 + |(x̃′)i−1| − 1 + 1 = rlX′(i− 1) + 1.

We prove the third claim by contradiction. Let k ∈ K(X′) but not in {kX′(|X1|)} ∪
{k − 1|k > 1 ∧ k ∈ K(X)}. Then, in particular, k + 1 /∈ K(X). Therefore, there exists
some k′ ∈ K(X) such that k′ < k + 1 and rlX(k′) = rlX(k + 1). Now, consider the case
k′ = 1. Then, it holds: rlX(k′) = |X1| + 1. Further, by virtue of the second claim, we
obtain: rlX′(k) = rlX(k + 1)− 1 = rlX(k′)− 1 = |X1|. Therefore, k = kX′(|X1|), which is a
contradiction.

Now, consider the case k′ > 1. Then, by virtue of the second claim, we obtain:
rlX′(k′ − 1) = rlX(k′)− 1 = rlX(k + 1)− 1 = rlX′(k). Further, we know that k′ − 1 < k.
Therefore, k /∈ K(X′), which is a contradiction.

Regarding the last claim, we observe that, per definition of subforests, it holds:
X[2, |X|] = X1X2, which, in turn, implies:

X[i, rlX(k)] = (X1X2)[i− 1, rlX(k)− 1] = X′[i− 1, rlX(k)− 1]

It remains to show that rlX(k)− 1 = rlX′(k′). In case k > 1 it holds: k′ = k− 1. By
virtue of the second claim we obtain rlX(k)− 1 = rlX′(k′).

Now, consider the case k = 1. In that case, we obtain rlX(1)− 1 = |X1| = rlX′(|X1|) =
rlX′(kX′(|X1|)).

This lemma has an important implication regarding the structure of the cooptimal
edit graph for subforests. In particular, we obtain the following result.

Lemma A.9. Let X and Y be non-empty forests over some alphabet A, let X′ := X[2, |X|], let
Y′ := Y[2, |Y|], and let c be a cost function over A. Further, let Gc,X,Y = (V, E). Then, it holds:

1. Let Gc,X′,Y = (V ′, E′). Further, for any u = (k, i, l, j) let u′ = (k′, i− 1, l, j) with k′ defined
as in the previous lemma. Then, for any u with i > 1 it holds: u ∈ V ⇐⇒ u′ ∈ V ′.
Further, for any (u, v) it holds: (u, v) ∈ E ⇐⇒ (u′, v′) ∈ E′.
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2. Let Gc,X,Y′ = (V ′, E′). Further, for any u = (k, i, l, j) let u′ = (k, i, l′, j− 1) with l′ defined
as in the previous lemma. Then, for any u with j > 1 it holds: u ∈ V ⇐⇒ u′ ∈ V ′.
Further, for any (u, v) it holds: (u, v) ∈ E ⇐⇒ (u′, v′) ∈ E′.

3. Let Gc,X′,Y′ = (V ′, E′). Further, for any u = (k, i, l, j) let u′ = (k′, i− 1, l′, j− 1) with
k′, l′ defined as in the previous lemma. Then, for any u with i > 1 and j > 1 it holds:
u ∈ V ⇐⇒ u′ ∈ V ′. Further, for any (u, v) it holds: (u, v) ∈ E ⇐⇒ (u′, v′) ∈ E′.

Proof. First, we conclude from the third claim in the previous lemma that all claims
regarding nodes hold.

Second, we conclude from the last claim in the previous lemma:

Dc

(
X′[i− 1, rlX′(k′)], Y[j, rlY(l)]

)
= Dc

(
X[i, rlX(k)], Y[j, rlY(l)]

)
Dc

(
X[i, rlX(k)], Y′[j− 1, rlY′(l′)]

)
= Dc

(
X[i, rlX(k)], Y[j, rlY(l)]

)
Dc

(
X′[i− 1, rlX′(k′)], Y′[j− 1, rlY′(l′)]

)
= Dc

(
X[i, rlX(k)], Y[j, rlY(l)]

)
Therefore, the edge conditions on for the subforest cooptimal edit graphs are equivalent
to the respective edge conditions on the overall cooptimal edit graph. From the second
claim in the previous lemma we can also conclude that the outermost right leaf structure
is equivalent, which concludes the proof.

Based on this lemma we can show that the cooptimal edit graph does indeed capture
cooptimal tree mappings. For that purpose, we define the tree mapping corresponding
to a path.

Definition A.7 (path mapping). Let X and Y be forests over some alphabet A, let c be a
cost function over A, and let Gc,X,Y = (V, E) be the cooptimal edit graph with respect to
X, Y, and c. Further, let p = v0, . . . , vT be a path in Gc,X,Y. Then, we define the path tree
mapping Mp for path p as follows.

Mp =
{
(i, j)

∣∣∣∃t ∈ {1, . . . , T}, k, k′, l, l′ : (A.66)

vt−1 = (k, i, l, j) ∧ vt = (k′, i + 1, l′, j + 1)
}

As an example, consider the cooptimal edit graph in Figure A.2. A path through
this graph would be p = (1, 1, 1, 1), (1, 2, 1, 2), (1, 3, 1, 2), (3, 4, 1, 3), (2, 4, 1, 3), (2, 5, 1, 3),
(1, 5, 1, 3), (1, 6, 1, 3). The corresponding tree mapping would be Mp = {(1, 1), (3, 2)}.

An important property of such tree mappings is that they decompose along the path,
that is, if we cut the path in two parts at any points, the corresponding path mapping
also decomposes into two parts.

Lemma A.10. Let X and Y be forests over some alphabet A, let c be a cost function over A,
and let Gc,X,Y = (V, E) be the cooptimal edit graph with respect to X, Y, and c. Further, let
p = v0, . . . , vT be a path in Gc,X,Y.

Then, for any t ∈ {1, . . . , T} with vt−1 = (k, i, l, j) and vt = (k′, i + 1, l′, j + 1) for some
k, k′, l, l′, i, j it holds:

Mp = Mv0,...,vt−1 ∪ {(i, j)} ∪Mvt,...,vT
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where the union is disjoint. For all other t it holds:

Mp = Mv0,...,vt−1 ∪Mvt,...,vT

where the union is disjoint.

Proof. The result follows directly from the definition of the path tree mapping above.

Note that the example tree mapping above is one of the cooptimal tree mappings
shown in Figure 4.1. This is no coincidence. Indeed, it holds generally that the path
tree mapping for any path through the cooptimal edit graph is cooptimal, and that any
cooptimal tree mapping has a corresponding path through the cooptimal edit graph.

Lemma A.11. Let X and Y be forests over some alphabet A, let c be a cost function over A, and
let Gc,X,Y = (V, E) be the cooptimal edit graph with respect to X, Y, and c. Then it holds:

1. For all paths p through Gc,X,Y, the tree mapping Mp is inM(c, X, Y).

2. For all M ∈ M(c, X, Y) it holds: There exists a path p through Gc,X,Y such that Mp = M.

Proof. We start by considering the trivial cases of empty forests. If X = ε or Y = ε, the
only possible tree mapping is M = ∅. It remains to show that, in these cases, there is
only one possible path p through Gc,X,Y and that for this path it holds Mp = ∅. Let
(V, E) := Gc,X,Y and consider the following cases:

X = ε and Y = ε: In this case, we obtain V = {(1, 1, 1, 1)} and E = ∅. Accordingly,
the trivial path p = (1, 1, 1, 1) is the only possible path through Gc,X,Y and it does
indeed hold Mp = ∅.

X = ε and Y 6= ε: In this case, we obtain V =
{
(1, 1, 1, j)

∣∣j ∈ {1, . . . , |Y| + 1}
}

and
E =

{(
(1, 1, 1, j), (1, 1, 1, j + 1)

)∣∣j ∈ {1, . . . , |Y|}
}

. Accordingly, the only possible
path through Gc,X,Y is p = (1, 1, 1, 1), (1, 1, 1, 2), . . . , (1, 1, 1, |Y|+ 1). And indeed it
holds Mp = ∅.

X 6= ε and Y = ε: In this case, we obtain V =
{
(1, i, 1, 1)

∣∣i ∈ {1, . . . , |X| + 1}
}

and
E =

{(
(1, i, 1, 1), (1, i + 1, 1, 1)

)∣∣i ∈ {1, . . . , |X|}
}

. Accordingly, the only possible
path through Gc,X,Y is p = (1, 1, 1, 1), (1, 2, 1, 1), . . . , (1, |X|+ 1, 1, 1). And indeed it
holds Mp = ∅.

It remains to show both claims for the case of non-empty forests. For both claims,
we apply an induction over |X|+ |Y|. We have already covered the base cases of empty
forests, so consider now |X| and |Y| to be larger than 0.

Regarding the first claim, let p = v0, . . . , vT be a path through Gc,X,Y, let X′ := X[2, |X|],
let Y′ := Y[2, |Y|], and consider the following cases regarding v1.

v1 = (1, 2, 1, 1): In this case, it must hold Dc(X, Y) = c(x1,−) + Dc(X′, Y), otherwise
(v0, v1) /∈ E. Now, if X′ is empty, then p must have the form p = (1, 1, 1, 1), (1, 2, 1, 1),
(1, 2, 1, 2), . . . , (1, 2, 1, |Y|+ 1), and ∅ must be a cooptimal tree mapping between X′

and Y. Accordingly, ∅ = Mp must also be a cooptimal tree mapping between X and
Y, because c(∅, X, Y) = c(x1,−) + c(∅, X′, Y) = c(x1,−) + Dc(X′, Y) = Dc(X, Y).
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If X′ is not empty, then the first result in Lemma A.9 tells us that p′ := v′1, . . . , v′T
with v′t constructed as in the lemma, is a path through Gc,X′,Y. Accordingly, by virtue
of our induction hypothesis, Mp′ is a cooptimal tree mapping between X′ and Y.
Further, we obtain per construction Mp = {(i + 1, j)|(i, j) ∈ Mp′}. Accordingly, it
holds: c(Mp, X, Y) = c(x1,−) + c(Mp′ , X′, Y) = c(x1,−) + Dc(X′, Y) = Dc(X, Y),
which means that Mp is cooptimal, as claimed.

v1 = (1, 1, 1, 2): In this case, it must hold Dc(X, Y) = c(−, y1) + Dc(X, Y′), otherwise
(v0, v1) /∈ E. Now, if Y′ is empty, then p must have the form p = (1, 1, 1, 1), (1, 1, 1, 2),
(1, 2, 1, 2), . . . , (1, |X|+ 1, 1, 2), and ∅ must be a cooptimal tree mapping between X
and Y′. Accordingly, ∅ = Mp must also be a cooptimal tree mapping between X and
Y, because c(∅, X, Y) = c(−, y1) + c(∅, X, Y′) = c(−, y1) + Dc(X, Y′) = Dc(X, Y).

If Y′ is not empty, then the second result in Lemma A.9 tells us that p′ := v′1, . . . , v′T
with v′t constructed as in the lemma, is a path through Gc,X,Y′ . Accordingly, by virtue
of our induction hypothesis, Mp′ is a cooptimal tree mapping between X and Y′.
Further, we obtain per construction Mp = {(i, j + 1)|(i, j) ∈ Mp′}. Accordingly, it
holds: c(Mp, X, Y) = c(−, y1) + c(Mp′ , X, Y′) = c(−, y1) + Dc(X, Y′) = Dc(X, Y),
which means that Mp is cooptimal, as claimed.

v1 = (1, 2, 1, 2): In this case, it must hold Dc(X, Y) = c(x1, y1) + Dc(X′, Y′). Now, if X′ is
empty, then p must have the form p = (1, 1, 1, 1), (1, 2, 1, 2), . . . , (1, 2, 1, |Y|+ 1), and
∅ must be a cooptimal tree mapping between X′ and Y′. Accordingly, {(1, 1)} = Mp
must also be a cooptimal tree mapping between X and Y, because c({(1, 1)}, X, Y) =
c(x1, y1) + c(∅, X′, Y′) = c(x1, y1) + Dc(X′, Y′) = Dc(X, Y).

If Y′ is empty, then p must have the form p = (1, 1, 1, 1), (1, 2, 1, 2), . . . , (1, |X| +
1, 1, 2), and ∅ must be a cooptimal tree mapping between X and Y′. Accordingly,
{(1, 1)} = Mp must also be a cooptimal tree mapping between X and Y, because
c({(1, 1)}, X, Y) = c(x1, y1) + c(∅, X′, Y′) = c(x1, y1) + Dc(X′, Y′) = Dc(X, Y).

If neither X′ nor Y′ are empty, then the third result in Lemma A.9 tells us that
p′ := v′0, . . . , v′T with v′t constructed as in the lemma, is a path through Gc,X′,Y′ .
Accordingly, by virtue of our induction hypothesis, Mp′ is a cooptimal tree mapping
between X′ and Y′. Further, we obtain per construction Mp = {(1, 1)} ∪ {(i + 1, j +
1)|(i, j) ∈ Mp′}. Accordingly, it holds: c(Mp, X, Y) = c(x1, y1) + c(Mp′ , X′, Y′) =
c(x1, y1) + Dc(X′, Y′) = Dc(X, Y), which means that Mp is cooptimal, as claimed.

Other cases can not occur such that our induction is concluded.

Regarding the second claim, let M ∈ M(c, X, Y), i.e. c(M, X, Y) = Dc(X, Y), and
distinguish the following cases.

1 ∈ I(M, X, Y): In this case it holds c(M, X, Y) = c(x1,−) + c(M′, X′, Y) with M′ =
{(i− 1, j)|(i, j) ∈ M}. It must hold that M′ ∈ M(c, X′, Y). Otherwise, we would
obtain Dc(X, Y) ≤ Dc(X′, Y) + c(x1,−) < c(M′, X′, Y) + c(x1,−) = c(M, X, Y) =
Dc(X, Y), which is a contradiction. This also implies that Dc(X, Y) = c(x1,−) +
Dc(X′, Y), which in turn implies that

(
(1, 1, 1, 1), (1, 2, 1, 1)

)
∈ E.

Now, if X′ = ε, M must be ∅, and we can construct the path p = (1, 1, 1, 1), (1, 2, 1, 1),
. . . , (1, 2, 1, |Y|+ 1), which is a path through Gc,X,Y such that Mp = ∅.

If X′ is not empty, our induction hypothesis implies that there exists a path p′

through Gc,X′,Y such that Mp′ = M′. By virtue of the first result in Lemma A.9,
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we can construct an isomorphic path p̃ between (1, 2, 1, 1) and (1, |X|+ 1, |Y|+ 1)
in Gc,X,Y. Accordingly, p := (1, 1, 1, 1), p̃ must be a path through Gc,X,Y, and per
construction it must hold that Mp = M.

1 ∈ J(M, X, Y): In this case it holds c(M, X, Y) = c(−, y1) + c(M′, X, Y′) with M′ =
{(i, j− 1)|(i, j) ∈ M}. It must hold that M′ ∈ M(c, X, Y′). Otherwise, we would
obtain Dc(X, Y) ≤ Dc(X, Y′) + c(−, y1) < c(M′, X, Y′) + c(−, y1) = c(M, X, Y) =
Dc(X, Y), which is a contradiction. This also implies that Dc(X, Y) = c(−, y1) +
Dc(X, Y′), which in turn implies that

(
(1, 1, 1, 1), (1, 1, 1, 2)

)
∈ E.

Now, if Y′ = ε, M must be ∅, and we can construct the path p = (1, 1, 1, 1), (1, 1, 1, 2),
. . . , (1, |X|+ 1, 1, 2), which is a path through Gc,X,Y such that Mp = ∅.

If X′ is not empty, our induction hypothesis implies that there exists a path p′

through Gc,X,Y′ such that Mp′ = M′. By virtue of the second result in Lemma A.9,
we can construct an isomorphic path p̃ between (1, 2, 1, 1) and (1, |X|+ 1, |Y|+ 1)
in Gc,X,Y. Accordingly, p := (1, 1, 1, 1), p̃ must be a path through Gc,X,Y, and per
construction it must hold that Mp = M.

1 ∈ IC(M, X, Y) and 1 ∈ JC(M, X, Y): In this case, (1, 1) ∈ M, which we can show as
follows. Let (1, j) ∈ M and (i, 1) ∈ M. Now, consider the case j > 1. In that case,
i < 1, which is impossible. Similarly, if i > 1, it must hold j < 1, which is impossible.
Therefore i = 1 and j = 1.

In this case it holds c(M, X, Y) = c(x1, y1) + c(M′, X, Y′) with M′ = {(i − 1, j −
1)|(i, j) ∈ M \ {(1, 1)}}. It must hold that M′ ∈ M(c, X′, Y′). Otherwise, we would
obtain Dc(X, Y) ≤ Dc(X′, Y′) + c(x1, y1) < c(M′, X′, Y′) + c(x1, y1) = c(M, X, Y) =
Dc(X, Y), which is a contradiction. This also implies that Dc(X, Y) = c(x1, y1) +
Dc(X′, Y′), which in turn implies that

(
(1, 1, 1, 1), (1, 2, 1, 2)

)
∈ E.

Now, if X′ = ε, M must be {(1, 1)}, and we can construct the path p = (1, 1, 1, 1),
(1, 2, 1, 2), . . . , (1, 2, 1, |Y| + 1), which is a path through Gc,X,Y such that Mp =
{(1, 1)}.
If Y′ = ε, M must be {(1, 1)}, and we can construct the path p = (1, 1, 1, 1), (1, 2, 1, 2),
. . . , (1, |X|+ 1, 1, 2), which is a path through Gc,X,Y such that Mp = {(1, 1)}.
If neither X′ nor Y′ is empty, our induction hypothesis implies that there exists
a path p′ through Gc,X′,Y′ such that Mp′ = M′. By virtue of the third result in
Lemma A.9, we can construct an isomorphic path p̃ between (1, 2, 1, 2) and (1, |X|+
1, |Y|+ 1) in Gc,X,Y. Accordingly, p := (1, 1, 1, 1), p̃ must be a path through Gc,X,Y,
and per construction it must hold that Mp = M.

As no other cases can occur, this concludes the proof.

This lemma implies that we can replace the computation of cooptimal tree mappings
with the computation of paths through the cooptimal edit graph. Therefore, we will limit
our consideration mostly to paths from now on.

We continue by proving the correctness of Algorithm A.1. First, we establish an
auxiliary statement regarding the order of executions in Algorithm A.1.

Lemma A.12. Let x̃ and ỹ be trees over some alphabet A, let c be a cost function over A which
conforms to the triangular inequality, and let Gc,x̃,ỹ = (V, E) be the cooptimal edit graph with
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respect to x̃, ỹ, and c. Further, we say that Algorithm A.1 visits a node (1, i, 1, j) if (i, j) is pulled
from Q in line 6.

Then, it holds: Algorithm A.1 visits all reachable nodes (1, i, 1, j) from (1, 1, 1, 1), and only
those nodes, exactly once in lexicographic order.

Proof. First, to see that only reachable nodes from (1, 1, 1, 1) are visited, observe that the
algorithm starts at the tuple (1, 1) and then only adds tuples (i′, j′) during the visit of
(1, i, 1, j) if an edge from (1, i, 1, j) to (1, i′, 1, j′) exists. Therefore, all visited nodes must
be reachable.

Regarding the inverse claim, that all reachable nodes are visited in lexicographic as-
cending order, we perform an induction over the nodes of Gc,x̃,ỹ = (V, E) in lexicographic
order. The first node in lexicographic order is (1, 1, 1, 1), which is indeed visited first by
Algorithm A.1.

Now, assume that the claim holds for all nodes v ∈ V with v ≤ u for some u, and let
v = (1, i, 1, j) be the lexicographically smallest node larger than u which is reachable from
(1, 1, 1, 1). Because v is reachable, there must exist a path p = v0, . . . , vT from (1, 1, 1, 1)
to v. Now, consider the following cases regarding v′ := vT−1.

v′ = (1, i− 1, 1, j): Then, v′ < v and v′ is reachable from (1, 1, 1, 1). Therefore, per in-
duction, v′ has been visited before. Further, because (v′, v) ∈ E it must hold that
Di−1,j = Dc(x̃[i − 1, rlx̃(1)], ỹ[j, rlỹ(1)]) = c(xi−1,−) + Dc(x̃[i, rlx̃(1)], ỹ[j, rlỹ(1)])
= c(xi−1,−) + Di,j. Therefore, line 11 has been executed during the visit of v′ and
thus (i, j) has been added to Q. Per induction, all reachable nodes smaller than v
have been visited before v, and therefore v is the minimum in Q and is visited next.

v′ = (1, i, 1, j− 1): Then, v′ < v and v′ is reachable from (1, 1, 1, 1). Therefore, per in-
duction, v′ has been visited before. Further, because (v′, v) ∈ E it must hold that
Di,j−1 = Dc(x̃[i, rlx̃(1)], ỹ[j− 1, rlỹ(1)]) = c(−, yj−1) + Dc(x̃[i, rlx̃(1)], ỹ[j, rlỹ(1)]) =
c(−, yj−1) + Di,j. Therefore, line 15 has been executed during the visit of v′ and
thus (i, j) has been added to Q. Per induction, all reachable nodes smaller than v
have been visited before v, and therefore v is the minimum in Q and is visited next.

v′ = (1, i− 1, 1, j− 1): Then, v′ < v and v′ is reachable from (1, 1, 1, 1). Therefore, per
induction, v′ has been visited before. Further, because (v′, v) ∈ E it must hold that
Di−1,j−1 = Dc(x̃[i− 1, rlx̃(1)], ỹ[j− 1, rlỹ(1)]) = c(xi−1, yj−1)+Dc(x̃[i, rlx̃(1)], ỹ[j, rlỹ(1)])
= c(xi−1, yj−1) + Di,j.

Now, consider two different cases. If c(xi−1, yj−1) < c(xi−1,−) + c(−, yj−1), then
line 23 has been executed during the visit of v′ and thus (i, j) has been added to Q.
Per induction, all reachable nodes smaller than v have been visited before v, and
therefore v is the minimum in Q and is visited next.

Otherwise, due to the triangular inequality we have c(xi−1, yj−1) = c(xi−1,−) +
c(−, yj−1). This, in turn, implies Di−1,j−1 = c(xi−1,−) + Di,j−1. Otherwise, it would
hold that Di−1,j−1 < c(xi−1,−)+Di,j−1 ≤ c(xi−1,−)+ c(−, yj−1)+Di,j = c(xi−1, yj−1)
+ Di,j = Di−1,j−1 which is a contradiction. Now, let v′′ = (1, i, 1, j − 1). Due to
Di−1,j−1 = c(xi−1,−) + Di,j−1 we know that (v′, v′′) ∈ E, which implies that v′′ is
reachable. Further, because v′′ < v, the induction hypothesis implies that v′′ has
been visited before. Finally, we also know that Di,j−1 = c(−, yj−1) + Di−1,j−1. Oth-
erwise, we would obtain Di−1,j−1 = c(xi−1,−) + Di,j−1 < c(xi−1,−) + c(−, yj−1) +
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Di,j = c(xi−1, yj−1) + Di,j = Di−1,j−1, which is a contradiction. Therefore, line 15 has
been executed during the visit of v′′ and thus (i, j) has been added to Q. Per induc-
tion, all reachable nodes smaller than v have been visited before v, and therefore v
is the minimum in Q and is visited next.

v′ = (k, i, l, j) with rlx̃(k) + 1 = i and rlỹ(l) + 1 = j: Then, there must exist some t < T−
1 such that vt = (1, i′, 1, j′) with kx̃(i′) = k, kỹ(j′) = l, rlx̃(k) 6= rlx̃(1) or rlỹ(l) 6=
rlỹ(1), and vt+1 = (k, i′ + 1, l, j′ + 1). Otherwise v′ would not be reachable.

Because E only contains edges in non-descending lexicographic order of (i, j) and
because vt+1 > vt, it must also hold that v > vt. Therefore, per induction hypothesis,
vt has been visited before. Further, because (vt, vt+1) ∈ E it must hold that Di′,j′ =

Dc(x̃[i′, rlx̃(1)], ỹ[j′, rlỹ(1)]) = Dc(x̃i′ , ỹj′) + Dc(x̃[i, rlx̃(1)], ỹ[j, rlỹ(1)]) = di′,j′ + Di,j.

Therefore, line 31 has been executed during the visit of vt and thus (i, j) has been
added to Q. Per induction, all reachable nodes smaller than v have been visited
before v, and therefore v is the minimum in Q and is visited next.

This concludes the proof by induction.

By virtue of this lemma, we can now go on to prove the correctness of Algorithm A.1.

Lemma A.13. Let x̃ and ỹ be trees over some alphabet A, let c be a cost function over A which
conforms to the triangular inequality, and let Gc,x̃,ỹ = (V, E) be the cooptimal edit graph with
respect to x̃, ỹ, and c. Then it holds:

After Algorithm A.1 has been executed, C contains all nodes of the form (1, i, 1, j) which are
reachable from (1, 1, 1, 1). Further, for all (i, j) it holds:

Ai,j = |{Mp|p is a path from (1, 1, 1, 1) to (1, i, 1, j) in Gc,x̃,ỹ}|. (A.67)

It also holds: A|x̃|+1,|ỹ|+1 = |{M(c, x̃, ỹ)}|.

Proof. The first claim follows directly from the previous lemma.

Regarding the second claim, consider an alternative version of Algorithm A.1. In this
alternative version, we do not just count the number of cooptimal path tree mappings,
but we accumulate these tree mappings themselves. In particular:

• We replace line 2 with “Initialize Ã as a (|x̃|+ 1)× (|ỹ|+ 1) matrix of empty sets”.

• We replace the first statement in line 3 with Ã1,1 ← {∅}.

• We replace line 10 with Ãi+1,j ← Ãi+1,j ∪ Ãi,j.

• We replace line 14 with Ãi,j+1 ← Ãi,j+1 ∪ (Ãi,j \ Ãi,j+1) ∪
{
{(i − 1, j)} ∪ M

∣∣M ∈
Ãi,j ∩ Ãi,j+1

}
.

• We replace line 22 with Ãi+1,j+1 ← Ãi+1,j+1 ∪
{
{(i, j)} ∪M

∣∣M ∈ Ãi,j
}

.

• We replace line 30 with Ãrlx̃(i)+1,rlỹ(j)+1 ← Ãrlx̃(i)+1,rlỹ(j)+1 ∪
{

M ∪ {(i − 1 + i′, j−
1 + j′)|(i′, j′) ∈ M′}

∣∣M ∈ Ãi,j, M′ ∈ Ã′|x̃i |+1,|ỹj|+1

}
.
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Our proof now works as follows. First, we will show that

Ãi,j = {Mp|p is a path from (1, 1, 1, 1) to (1, i, 1, j) in Gc,x̃,ỹ} (A.68)

Then, we will show that Ai,j = |Ãi,j|, which will conclude our proof.

We show Equation A.68 via induction over all entries (i, j) in lexicographic order. In
case i = j = 1, we obtain Ã1,1 = {∅}. Indeed, the trivial path p = (1, 1, 1, 1) is the only
path from (1, 1, 1, 1) to (1, 1, 1, 1) and the corresponding tree mapping Mp is ∅.

Now, consider some entry (i, j) > (1, 1) and assume that the claim holds for all
(i′, j′) < (i, j).

First, we show that for any M ∈ Ãi,j, there exists a path p from (1, 1, 1, 1) to (1, i, 1, j)
such that Mp = M. We distinguish the following cases.

If M has been added to Ãi,j via line 10, then M ∈ Ãi−1,j and Di−1,j = c(xi−1,−) + Di,j.
Further, per induction, there exists a path p′ from (1, 1, 1, 1) to (1, i− 1, 1, j) such
that Mp′ = M. Finally, due to Di−1,j = c(xi−1,−) + Di,j, we know that

(
(1, i −

1, 1, j), (1, i, 1, j)
)
∈ E, such that p := p′, (1, i, 1, j) is a path from (1, 1, 1, 1) to (1, i, 1, j)

in Gc,x̃,ỹ and Mp = M.

If M has been added to Ãi,j via line 14, then it must hold Di,j−1 = c(−, yj−1) + Di,j. Now,
consider the case that (i− 1, j− 1) /∈ M, that is, M is not a duplicate with a tree
mapping that has been added before. Then, per induction, there exists a path p′ from
(1, 1, 1, 1) to (1, i− 1, 1, j) such that Mp′ = M. Finally, due to Di,j−1 = c(−, yj) + Di,j,
we know that

(
(1, i, 1, j− 1), (1, i, 1, j)

)
∈ E, such that p := p′, (1, i, 1, j) is a path

from (1, 1, 1, 1) to (1, i, 1, j) in Gc,x̃,ỹ and Mp = M.

Next, consider the case that (i− 1, j− 1) ∈ M, that is, M′ = M \ {(i− 1, j− 1)} is a
duplicate with a tree mapping that has been added before. However, M′ can not
have been via line 22 because in that case (i− 1, j− 1) ∈ M′, which is a contradiction.
Further, it can not have been via line 30 because in that case, line 30 would have
to have been executed before during the visit of some entry (1, k, 1, l), such that
(k, l) ∈ M′. However, in that case, there exists no path from (1, 1, 1, 1) to (1, i, 1, j− 1)
such that (k, l) ∈ Mp′ , which would be a contradiction to our induction hypothesis.
Therefore, the only option remaining is that M′ has been added before via line 10,
which implies that Di−1,j = c(xi−1,−) + Di,j.

Further, due to our induction hypothesis, there must exist two paths p′ from
(1, 1, 1, 1) to (1, i, 1, j− 1) and p′′ = v0, . . . , vT from (1, 1, 1, 1) to (1, i− 1, 1, j), such
that Mp′′ = Mp′ = M′. Because of this latter constraint, i − 1 ∈ I(M′, x̃, ỹ) and
j − 1 ∈ J(M′, x̃, ỹ), which means that there exists some t < T such that vt =
(1, k, 1, j− 1) for some k ≤ i− 1 and vt+1 = (1, k, 1, j), vt+2 = (1, k + 1, 1, j), and so
forth, until vT = (1, i− 1, 1, j). Due to this form of the path, we can further conclude
that Dk,j−1 = c(−, yj−1)+ Dk,j = . . . = c(−, yj−1)+ c(xk,−)+ . . .+ c(xi−1,−)+ Di,j.
Due to Di,j−1 = c(−, yj−1) + Di,j, we can re-write this expression as Dk,j−1 =
c(xk,−)+ . . .+ c(xi−1,−)+ Di,j−1. This, in turn, implies that Di−1,j−1 = c(xi−1,−)+
Di,j−1. Otherwise, we would obtain Dk,j−1 ≤ c(xk,−)+ . . .+ c(xi−2,−)+ Di−1,j−1 <
c(xk,−) + . . . + c(xi−1,−) + c(xi−1,−) + Di,j−1 = Dk,j−1, which is a contradiction.

Furthermore, it holds c(xi−1,−)+ c(−, yj−1)+Di,j = c(xi−1,−)+Di,j−1 = Di−1,j−1 ≤
c(xi−1, yj−1) + Di,j which implies c(xi−1,−) + c(−, yj−1) ≤ c(xi−1, yj−1). In conjunc-
tion with the triangular inequality on c this gives us c(xi−1,−) + c(−, yj−1) =
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c(xi−1, yj−1), which in turn implies that
(
(1, i− 1, 1, j− 1), (1, i, 1, j)

)
is an edge in the

graph. Finally, we can construct the path p = v0, . . . , vt, (1, k + 1, 1, j− 1), . . . , (1, i−
1, 1, j− 1), (1, i, 1, j). For this path it holds per construction that Mp = M.

If M has been added via line 22, then M \ {(i − 1, j − 1)} ∈ Ãi−1,j−1, Di−1,j−1 =
c(xi−1, yj−1) + Di,j, rlx̃(i) = rlx̃(1), and rlỹ(j) = rlỹ(1). Further, per induction, there
exists a path p′ from (1, 1, 1, 1) to (1, i− 1, 1, j− 1) such that Mp′ = M. Finally, due to
Di−1,j−1 = c(xi−1, yj−1) + Di,j, we know that

(
(1, i− 1, 1, j− 1), (1, i, 1, j)

)
∈ E, such

that p := p′, (1, i, 1, j) is a path from (1, 1, 1, 1) to (1, i, 1, j) in Gc,x̃,ỹ and Mp = M.

Finally, if M has been added via line 30, there exist two indices k, l such that rlx̃(k)+ 1 = i,
rlỹ(l) + 1 = j, i ≤ |x̃| or j ≤ |ỹ|, Dk,l = dk,l + Di,j, and M can be re-written as the
disjoint union of two sets M̃ and M̃′, where M̃ ∈ Ãk,l and M′ := {(i′− k + 1, j′− l +
1)|(i′, j′) ∈ M̃′} ∈ Ã′|x̃k |+1,|ỹl |+1. By virtue of our induction hypothesis, there exist
two paths, p̃ from (1, 1, 1, 1) to (1, k, 1, l) in Gc,x̃,ỹ and p′ = v0, . . . , vT through Gc,x̃i ,ỹj

such that Mp̃ = M̃ and Mp′ = M′. Note that v1 is necessarily (1, 2, 1, 2) because any
other path has been blocked via line 29.

Further, because Dk,l = dk,l + Di,j and i ≤ |x̃| or j ≤ |ỹ| we know that
(
(1, k, 1, l),

(kx̃(k), k + 1, kỹ(l), l + 1)
)
∈ E and due to the definition of Gc,x̃,ỹ we know that(

(kx̃(k), i, kỹ(l), j), (1, i, 1, j)
)
∈ E.

Now, let p̃′ = ṽ1, . . . , ṽT with ṽt = (k̃, k + i′ − 1, l̃, l + j′ − 1) if and only if vt =
(k′, i′, l′, j′) where k̃ := kx̃(k) if k′ = 1 and k̃ := k′ + k − 1 otherwise, and where
l̃ := kỹ(l) if l′ = 1 and l̃ := l′ + l − 1 otherwise. This is a path in Gc,x̃,ỹ and it
holds, per construction, Mp̃′ = M̃′ \ {(k, l)}. Accordingly, the concatenated path
p := p̃, p̃′, (1, i, 1, j) is a path from (1, 1, 1, 1) to (1, i, 1, j) in Gc,x̃,ỹ and Mp = M.

Now, it remains to show that for any path p from (1, 1, 1, 1) to (1, i, 1, j), Mp is in Ãi,j.
Let p = v0, . . . , vT, p′ = v0, . . . , vT−1 and v′ = vT−1. Then, consider the following cases
for v′.

v′ = (1, i− 1, 1, j): Then, Di−1,j = c(xi−1,−) + Di,j and line 10 has been executed during
the visit of v′. Further, due to the induction hypothesis, we know that Mp′ ∈ Ãi−1,j,
and thus Mp′ will now be added to Ãi,j. Finally, because Mp = Mp′ , it follows that
Mp ∈ Ai,j.

v′ = (1, i, 1, j− 1): Then, Di,j−1 = c(−, yj−1) + Di,j and line 14 has been executed during
the visit of v′. Further, due to the induction hypothesis, we know that Mp′ ∈ Ãi,j−1,
and thus Mp′ will now be added to Ãi,j (or is already element of this set). Finally,
because Mp = Mp′ , it follows that Mp ∈ Ai,j.

v′ = (1, i− 1, 1, j− 1): Then, Di−1,j−1 = c(xi−1, yj−1) + Di,j.

Now, consider two different cases. If c(xi−1, yj−1) < c(xi−1,−) + c(−, yj−1), then
rlx̃(i− 1) = rlx̃(1) and rlỹ(j− 1) = rlỹ(1), otherwise

(
(1, i− 1, 1, j− 1), (1, i, 1, j)

)
would not be an edge in Gc,x̃,ỹ. Therefore, line 20 has been executed during the
visit of v′. Further, due to the induction hypothesis, we know that Mp′ ∈ Ãi−1,j−1,
and thus Mp′ ∪ {(i− 1, j− 1)} will now be added to Ãi,j. Finally, because Mp =
Mp′ ∪ {(i− 1, j− 1)}, it follows that Mp ∈ Ai,j.

If c(xi−1, yj−1) = c(xi−1,−) + c(−, yj−1), we obtain Di−1,j−1 ≤ c(xi−1,−) + Di,j−1 ≤
c(xi−1,−)+ c(−, yj−1)+Di,j = c(xi−1, yj−1)+Di,j = Di−1,j−1 and Di−1,j−1 ≤ c(−, yj−1)

220



a .13 proof of theorem 4.2

+ Di−1,j ≤ c(xi−1,−) + c(−, yj−1) + Di,j = c(xi−1, yj−1) + Di,j = Di−1,j−1, which in
turn implies Di−1,j−1 = c(xi−1,−) + Di,j−1, Di−1,j−1 = c(−, yj−1) + Di−1,j, Di,j−1 =
c(−, yj−1) + Di,j, and Di−1,j = c(xi−1,−) + Di,j.

Therefore, (1, i − 1, 1, j) is reachable via the path pl = p′, (1, i − 1, 1, j) and line
10 has been executed while visiting (1, i − 1, 1, j). Further, due to the induction
hypothesis, we know that Mpl ∈ Ãi−1,j and thus Mpl ∈ Ãi,j.

We also know that (1, i, 1, j − 1) is reachable via the path pr = p′, (1, i, 1, j − 1)
and that line 14 has been executed while visiting (1, i, 1, j− 1). Further, due to the
induction hypothesis, we know that Mpr ∈ Ãi,j−1. Now, note that Mp′ = Mpl = Mpr .
Therefore, at the execution time of line 14 while visiting (1, i, 1, j − 1), Mpr is
already element of Ãi,j. Therefore, line 14 adds Mpr ∪ {(i− 1, j− 1)} to Ãi,j. Because
Mp = Mp′ ∪ {(i− 1, j− 1)} = Mpr ∪ {(i− 1, j− 1)}, this implies that Mp ∈ Ãi,j.

v′ = (k, i, l, j) with rlx̃(k) + 1 = i and rlỹ(l) + 1 = j: Then, there must exist some t < T−
1 and some i′, j′, such that vt = (1, i′, 1, j′) with kx̃(i′) = k, kỹ(j′) = l, rlx̃(k) 6= rlx̃(1)
or rlỹ(l) 6= rlỹ(1), vt+1 = (k, i′ + 1, l, j′ + 1), and c(xi′ , yj′) < c(xi′ ,−) + c(−, yj′).
Otherwise, v′ would not be reachable. Therefore, lines 27-31 get executed during
the visit of (1, i′, 1, j′).

Now, let p̃ = v0, . . . , vt, let p̃∗ = vt+1, . . . , vT−1, and let p∗ = (1, 1, 1, 1), ṽt+1, . . . , ṽT−1
with ṽt′ = (k̃, i′′ − i′ + 1, l̃, j′′ − j′ + 1) if and only if vt′ = (k′, i′′, l′, j′′) where k̃ := 1
if k′ = k and k̃ := k′ − i′ + 1 otherwise and where l̃ := 1 if l′ = l and l̃ := l′ − j′ + 1
otherwise. Per induction hypothesis, Mp̃ ∈ Ãi′,j′ and Mp∗ ∈ Ã′|x̃i′ |+1,|ỹj′ |+1

. Finally,

note that Mp = Mp̃ ∪ {(i′, j′)} ∪Mp̃∗ . Therefore, Mp gets added to Ãi,j during the
execution of line 30 during the visit of (1, i′, 1, j′).

This concludes the proof of Equation A.68. Now, it remains to show that, for all
(1, i, 1, j) which are reachable from (1, 1, 1, 1) it holds: Ai,j = |Ãi,j|.

First, observe that A1,1 = 1 = |{∅}| = |Ãi,j|.

Second, we note that, whenever line 10 is executed, none of the tree mappings in
Ãi,j are in Ãi+1,j yet. Otherwise, these tree mappings would have to have been added
via another line. However, line 14 can not yet have been executed with (i + 1, j− 1) due
to lexicographic ordering, line 22 only adds tree mappings which contain the element
(i, j− 1), which is not contained in any tree mapping in Ai,j, and line 30 only adds tree
mappings which contain some element (k, l) for which rlx̃(k) 6= rlx̃(1) or rlỹ(l) 6= rlỹ(1),
which is not contained in any tree mapping in Ai,j. Therefore, the union operation in the
changed line 10 is disjoint, which in turn implies that |Ãi+1,j| = |Ãi+1,j|+ |Ãi,j|, which
yields the original line 10 in Algorithm A.1.

Third, we show that the set unions in the modified line 14 are also disjoint. In particu-
lar, any tree mapping which does not contain (i− 1, j) is not added as a duplicate. Thus, it
remains to show that all tree mappings of the type M∪{(i− 1, j)} where M ∈ Ãi,j ∩ Ai,j+1
are not yet contained in Ai,j+1. As we have shown above, the fact that the intersection
M ∈ Ãi,j ∩ Ai,j+1 is not empty means that any elements in this intersection have been
previously added via line 10, which in turn implies that c(xi−1, yj) = c(xi−1,−) + c(−, yj).
Therefore, (i− 1, j) could not have been added via line 22 or 31, because these lines are
not executed for the entry (i− 1, j) due to the continue statement in line 18. Therefore,
we obtain |Ãi,j+1| = |Ãi,j+1|+ |Ãi,j|, which yields the original line 14 in Algorithm A.1.
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Fourth, we show that the set union in the modified line 22 is disjoint. This follows
from the fact that (1, i, 1, j) is visited before (1, i + 1, 1, j) as well as (1, i, 1, j + 1), such
that there can be no duplicates due to lines 10 or 14. Further, there can be no duplicates
due to line 30 because the conditions for line 30 and line 22 are mutually exclusive.
Therefore, we obtain |Ãi+1,j+1| = |Ãi+1,j+1|+ |Ãi,j|, which yields the original line 22 in
Algorithm A.1.

Finally, we show that the set union in the modified line 30 is disjoint. This follows
from the fact that for any two indices k, l, (1, k, 1, l) is visited before (1, rlx̃(k), 1, rlỹ(l) + 1)
as well as (1, rlx̃(k) + 1, 1, rlỹ(l)), such that there can be no duplicates due to lines 10 or 14.
Further, there can be no duplicates due to line 22 because the conditions for line 22 and
line 30 are mutually exclusive. Therefore, we obtain |Ãrlx̃(k)+1,rlỹ(l)+1| = |Ãrlx̃(k)+1,rlỹ(l)+1|+
|Ãi,j| · |Ã′|x̃i′ |+1,|ỹj′ |+1

|, which yields the original line 30 in Algorithm A.1.

This concludes the proof of Equation A.67.

The second claim, A|x̃|+1,|ỹ|+1 = |{M(c, x̃, ỹ)}|, follows from the first. By virtue of
Lemma A.7 we know that (1, |x̃|+ 1, 1, |ỹ|+ 1) is reachable from (1, 1, 1, 1). Therefore,
Lemma A.12 tells us that it will be visited. As we have just shown, this implies that
A|x̃|+1,|ỹ|+1 = |{Mp|p is a path through Gc,x̃,ỹ}|. Finally, by virtue of Lemma A.11 we
know thatM(c, x̃, ỹ) = {Mp|p is a path through Gc,x̃,ỹ}, which concludes the proof.

Now that we have shown the correctness of Algorithm A.1, we can go on to show the
correctness of Algorithm A.2.

Lemma A.14. Let x̃ and ỹ be trees over some alphabet A, let c be a cost function over A which
conforms to the triangular inequality, let Gc,x̃,ỹ = (V, E) be the cooptimal edit graph with respect
to x̃, ỹ, and c, and let C be the second output of Algorithm A.1 for x̃, ỹ, and c. Then, after the
execution of Algorithm A.2, it holds for all (1, i, 1, j) which are reachable from (1, 1, 1, 1):

Bi,j = |{Mp|p is a path from (1, i, 1, j) to (1, |x̃|+ 1, 1, |ỹ|+ 1) in Gc,x̃,ỹ}|.

Proof. First, note that, due to the previous lemma, C contains all (i, j) such that (1, i, 1, j)
is reachable from (1, 1, 1, 1). Therefore, Algorithm A.2 visits all these notes exactly once
in descending lexicographic order, starting with (1, |x̃|+ 1, 1, |ỹ|+ 1).

The outline of this proof is the same as in the previous lemma: We first consider an
alternative version of Algorithm A.2 which accumulates all cooptimal tree mappings. In
particular:

• We replace line 2 with “Initialize B̃ as a (|x̃|+ 1)× (|ỹ|+ 1) matrix of empty sets”.

• We replace line 3 with B̃|x̃|+1,|ỹ|+1 ← {∅}.

• We replace line 8 with B̃i,j ← B̃i,j ∪ B̃i+1,j.

• We replace line 11 with B̃i,j ← B̃i,j ∪ B̃i,j+1 \ B̃i,j ∪
{
{(i, j)} ∪M

∣∣M ∈ B̃i,j+1 ∩ B̃i,j
}

.

• We replace line 18 with B̃i,j ← B̃i,j ∪
{
{(i, j)} ∪M

∣∣M ∈ B̃i+1,j+1
}

.

• We replace line 25 with B̃i,j ← B̃i,j ∪
{

M ∪ {(i′ − 1 + i, j′ − 1 + j)|(i′, j′) ∈ M′}
∣∣M ∈

B̃rlx̃(i)+1,rlỹ(j)+1, M′ ∈ Ã′|x̃i |+1,|ỹj|+1

}
.
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Note that we also assume that the call to Algorithm A.1 refers to the changed version as
presented in the proof of the previous lemma.

As in the previous lemma, we will first show that

B̃i,j = {Mp|p is a path from (1, i, 1, j) to (1, |x̃|+ 1, 1, |ỹ|+ 1) in Gc,x̃,ỹ} (A.69)

and then go on to show that Bi,j = |B̃i,j|, which will conclude our proof.

We prove Equation A.69 via induction over all entries (i, j) ∈ C in descending
lexicographic order. The lexicographic maximum is (|x̃|+ 1, |ỹ|+ 1). In this case it holds
B|x̃|+1,|ỹ|+1 = {∅}. Indeed, the trivial path p = (1, |x̃|+ 1, 1, |ỹ|+ 1) is the only path from
(1, |x̃|+ 1, 1, |ỹ|+ 1) to (1, |x̃|+ 1, 1, |ỹ|+ 1) and the corresponding tree mapping Mp is
∅.

Now, consider some entry (i, j) < (|x̃|+ 1, |ỹ|+ 1) and assume that claim holds for
all entries (i′, j′) > (i, j).

First, we show that for any M ∈ B̃i,j there exists a path p from (1, i, 1, j) to (1, |x̃|+
1, 1, |ỹ|+ 1), such that Mp = M. We distinguish the following cases.

If M has been added to B̃i,j via line 8, then M ∈ B̃i+1,j and Di,j = c(xi,−) + Di+1,j.
Further, per induction, there exists a path p′ from (1, i + 1, 1, j) to (1, |x̃|+ 1, 1, |ỹ|+
1) such that Mp′ = M. Finally, due to Di,j = c(xi,−) + Di+1,j we kow that(
(1, i, 1, j), (1, i + 1, 1, j)

)
∈ E, such that p := (1, i, 1, j), p′ is a path from (1, i, 1, j) to

(1, |x̃|+ 1, 1, |ỹ|+ 1) in Gc,x̃,ỹ and Mp = M.

If M has been added to B̃i,j via line 11, then it must hold Di,j = c(−, yj) + Di,j+1. Now,
we distinguish two cases.

First, consider the case that (i, j) /∈ M, that is, M is not a duplicate with a tree
mapping that has been added to B̃i,j before. Then, per induction, there exists a
path p′ from (1, i, 1, j + 1) to (1, |x̃| + 1, 1, |ỹ| + 1), such that Mp′ = M. Further,
due to Di,j = c(−, yj) + Di,j+1 we kow that

(
(1, i, 1, j), (1, i, 1, j + 1)

)
∈ E, such

that p := (1, i, 1, j), p′ is a path from (1, i, 1, j) to (1, |x̃|+ 1, 1, |ỹ|+ 1) in Gc,x̃,ỹ and
Mp = M.

Next, consider the case that (i, j) ∈ M, that is, M′ := M \ {(i, j)} is a duplicate
with a tree mapping that has been added to B̃i,j before. The only line in which that
could have happened is line 8 such that it must hold Di,j = c(xi,−) + Di+1,j. Due
to our induction hypothesis, there must exist two paths, p′ from (1, i, 1, j + 1) to
(1, |x̃|+ 1, 1, |ỹ|+ 1) and p′′ = v0, . . . , vT from (1, i + 1, 1, j) to (1, |x̃|+ 1, 1, |ỹ|+ 1)
such that Mp′′ = Mp′ = M′. Because of this latter constraint, i ∈ I(M′, x̃, ỹ) and
j ∈ J(M′, x̃, ỹ), which means that there exists some t > 0 such that vt = (1, k, 1, j+ 1)
for some k ≥ i + 1 and vt−1 = (1, k, 1, j), vt−2 = (1, k− 1, 1, j), and so forth, until
v0 = (1, i + 1, 1, j). Due to this form of the path we can further conlude that
Di,j = c(xi,−) + Di+1,j = . . . = c(xi,−) + . . . + c(xk−1,−) + Dk,j = c(xi,−) + . . . +
c(xk−1,−) + c(−, yj) + Dk,j+1. Due to Di,j = c(−, yj) + Di,j+1 we can re-write this
expression as Di,j+1 = c(xi,−) + . . . + c(xk−1,−) + Dk,j+1. This, in turn, implies
that Di,j+1 = c(xi,−) + Di+1,j+1. Otherwise, we would obtain Di,j+1 < c(xi,−) +
Di+1,j+1 ≤ c(xi,−) + . . . + c(xk−1,−) + Dk,j+1 = Di,j+1, which is a contradiction.

Furthermore, it holds: c(xi,−) + c(−, yj) + Di+1,j+1 = c(−, yj) + Di,j+1 = Di,j ≤
c(xi, yj) + Di+1,j+1, which in turn implies c(xi,−) + c(−, yj) ≤ c(xi, yj). In conjunc-
tion with the triangular inequality on c this gives us c(xi,−) + c(−, yj) = c(xi, yj),
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which in turn implies that
(
(1, i, 1, j), (1, i + 1, 1, j + 1)

)
is an edge in the graph.

Finally, we can construct the path p := (1, i, 1, j), (1, i + 1, 1, j + 1), . . . , (1, k− 1, 1, j +
1), vt, . . . , vT. For this path it holds per construction that Mp = M.

If M has been added via line 18, then M′ := M \ {(i, j)} ∈ B̃i+1,j+1, Di,j = c(xi, yj) +
Di+1,j+1, rlx̃(i) = rlx̃(1), and rlỹ(j) = rlỹ(1). Further, per induction, there exists a
path p′ from (1, i + 1, 1, j + 1) to (1, |x̃|+ 1, 1, |ỹ|+ 1) such that Mp′ = M. Finally,
due to Di,j = c(xi, yj) + Di+1,j+1 we know that

(
(1, i, 1, j), (1, i + 1, 1, j + 1)

)
∈ E,

such that p := (1, i, 1, j), p′ is a path from (1, i, 1, j) to (1, |x̃|+ 1, 1, |ỹ|+ 1) in Gc,x̃,ỹ
and Mp = M.

Finally, if M has been added via line 25, then M can be re-written as the disjoint union
of two sets, M̃ and M̃′, where M̃ ∈ B̃rlx̃(i)+1,rlỹ(j)+1 and M′ := {(i′ − i + 1, j′ −
j + 1)|(i′, j′) ∈ M̃′} ∈ Ã′|x̃i |,|ỹj|. By virtue of our induction hypothesis, there exist
two paths, p̃ from (1, rlx̃(i) + 1, 1, rlỹ(j) + 1) to (1, |x̃|+ 1, 1, |ỹ|+ 1) in Gc,x̃,ỹ, and
p′ = v0, . . . , vT through Gc,x̃i ,ỹj such that Mp̃ = M̃ and Mp′ = M′. Note that v1 is
necessarily (1, 2, 1, 2) because any other path has been blocked via line 24.

Further, because Di,j = di,j + Drlx̃(i)+1,rlỹ(j)+1 we know that
(
(1, i, 1, j), (k, i + 1, l, j +

1)
)
∈ E with k = kx̃(i) and l = kỹ(j). Because rlx̃(i) < |x̃| or rlỹ(j) < |ỹ| we know

that
(
(k, rlx̃(i) + 1, l, rlỹ(j) + 1), (1, rlx̃(i) + 1, 1, rlỹ(j) + 1)

)
∈ E.

Now, let p̃′ := ṽ1, . . . , ṽT with ṽt = (k̃, i + i′ − 1, l̃, j + j′ − 1) if and only if vt =
(k′, i′, l′, j′) where k̃ := k if k′ = 1 and k̃ := k′ + i − 1 otherwise, and where
l̃ := l if l′ = 1 and l̃ := l′ + j − 1 otherwise. This is a path in Gc,x̃,ỹ and, per
construction, it holds that Mp̃′ = M̃′ \ {(i, j)}. Accordingly, the concatenated path
p := (1, i, 1, j), p̃′, p̃ is a path from (1, i, 1, j) to (1, |x̃| + 1, 1, |ỹ| + 1) in Gc,x̃,ỹ and
Mp = M.

Now, it remains to show that for any path p from (1, i, 1, j) to (1, |x̃|+ 1, 1, |ỹ|+ 1) in
Gc,x̃,ỹ, Mp is in B̃i,j. Let p = v0, . . . , vT and p′ = v1, . . . , vT. Then, consider the following
cases for v1.

v1 = (1, i + 1, 1, j): Then, Di,j = c(xi,−) + Di+1,j and line 8 is executed during the visit
of v0. Further, due to the induction hypothesis, we know that Mp′ ∈ B̃i+1,j, and
thus Mp′ is added to B̃i,j during the execution of line 8. Finally, because Mp = Mp′

it follows that Mp ∈ B̃i,j.

v1 = (1, i, 1, j + 1): Then, Di,j = c(−, yj) + Di,j+1 and line 11 is executed during the visit
of v0. Further, due to the induction hypothesis, we know that Mp′ ∈ B̃i,j+1, and
thus Mp′ is added to B̃i,j during the execution of line 11 (or is already element of
this set). Finally, because Mp = Mp′ it follows that Mp ∈ B̃i,j.

v1 = (1, i + 1, 1, j + 1): Then, Di,j = c(xi, yj) + Di+1,j+1.

Now, consider two different cases. If c(xi, yj) < c(xi,−) + c(−, yj), then rlx̃(i) =

rlx̃(1) and rlỹ(j) = rlỹ(1), otherwise
(
(1, i, 1, j), (1, i + 1, 1, j + 1)

)
would not be an

edge in Gc,x̃,ỹ. Therefore, line 18 is executed during the visit of v0. Further, due
to the induction hypothesis, we know that Mp′ ∈ B̃i,j+1, and thus Mp′ ∪ {(i, j)} is
added to B̃i,j during the execution of line 18. Finally, because Mp = Mp′ ∪ {(i, j)} it
follows that Mp ∈ B̃i,j.
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If c(xi, yj) = c(xi,−) + c(−, yj), we obtain Di,j ≤ c(xi,−) + Di+1,j ≤ c(xi,−) +
c(−, yj) + Di+1,j+1 = c(xi, yj) + Di+1,j+1 = Di,j and Di,j ≤ c(−, yj) + Di,j+1 ≤
c(xi,−) + c(−, yj) + Di+1,j+1 = c(xi, yj) + Di+1,j+1 = Di,j, which in turn implies
Di,j = c(xi,−) + Di+1,j, Di,j = c(−, yj) + Di,j+1, Di+1,j = c(−, yj) + Di+1,j+1, and
Di,j+1 = c(xi,−) + Di+1,j+1.

Therefore, pl := (1, i + 1, 1, j), p′ is a path in Gc,x̃,ỹ and line 8 is executed during the
visit of v0. Further, due to the induction hypothesis, we know that Mpl ∈ B̃i+1,j and
thus Mpl ∈ B̃i,j.

We also know that pr := (1, i, 1, j + 1), p′ is a path in Gc,x̃,ỹ and line 11 is executed
during the visit of v0. Further, due to the induction hypothesis, we know that
Mpr ∈ B̃i,j+1. Now, note that Mp′ = Mpl = Mpr . Therefore, when line 11 is executed,
Mpr is already element of B̃i,j. Therefore, line 11 adds Mpr ∪ {(i, j)} to B̃i,j. Because
Mp = Mp′ ∪ {(i, j)} = Mpr ∪ {(i, j)}, this implies that Mp ∈ B̃i,j.

v1 = (kx̃(i), i + 1, kỹ(j), j + 1): Then, there must exist some t > 1 such that vt = (1, rlx̃(i)+
1, 1, rlỹ(i) + 1) and vt−1 = (kx̃(i), rlx̃(i) + 1, kỹ(j), rlỹ(i) + 1), otherwise p would
never reach (1, |x̃|+ 1, 1, |ỹ|+ 1). Further, Di,j = di,j + Drlx̃(i)+1,rlỹ(i)+1, c(xi, yj) <

c(xi,−) + c(−, yj), and rlx̃(i) 6= rlx̃(1) or rlỹ(j) 6= rlỹ(1), otherwise (v0, v1) /∈ E.
Therefore, lines 22-26 are executed.

Now, let p̃∗ = v0, v1, . . . , vt−1, and let p∗ = (1, 1, 1, 1), v′1, . . . , v′t−1 with v′t′ = (k̃, i′ −
i + 1, l̃, j′ − j + 1) if and only if vt′ = (k′, i′, l′, j′) where k̃ := 1 if k′ = kx̃(i) and
k̃ := k′ − i + 1 otherwise, and where l̃ := 1 if l′ = kỹ(j) and l̃ := l′ − j + 1
otherwise. Further, let p̃ = vt, . . . , vT. Per induction hypothesis, Mp∗ ∈ Ã′|x̃i |+1,|ỹj|+1

and Mp̃ ∈ B̃rlx̃(i)+1,rlỹ(j)+1. Further, note that Mp = Mp̃∗ ∪Mp̃. Therefore, Mp gets
added to B̃i,j during the execution of line 25.

This concludes the proof of Equation A.69. Now, it remains to show that, for all
(1, i, 1, j) which are reachable from (1, 1, 1, 1) it holds: Bi,j = |B̃i,j|.

First, observe that B|x̃|+1,|ỹ|+1 = 1 = |{∅}| = |B̃|x̃|+1,|ỹ|+1|.

Second, note that, whenever line 8 is executed, B̃i,j is empty. So it holds |B̃i,j| =
|B̃i,j|+ |B̃i+1,j|, which yields the original line 8 in Algorithm A.2.

Third, note that line 11, per construction, never adds any tree mappings which have
already been added in line 8. Therefore, it holds |B̃i,j| = |B̃i,j|+ |B̃i,j+1|, which yields the
original line 11 in Algorithm A.2.

Fourth, note that, whenever line 18 is executed, either line 8 or line 11 can not
have been executed. Otherwise, as we have shown above, c(xi,−) + c(−, yj) = c(xi, yj),
which would in turn imply that the continue statement in line 14 would have been
executed, which prevents the execution of line 18. Because either line 8 or line 11 have
thus not been executed, the duplicate case in line 11 can not apply, such that no tree
mappings which contain (i, j) have yet been added to B̃i,j. Because line 18 only adds tree
mappings which contain (i, j), the set untion in line 18 must be disjoint. Therefore, it
holds |B̃i,j| = |B̃i,j|+ |B̃i+1,j+1|, which yields the original line 18 in Algorithm A.2.

Finally, note that, whenever line 25 is executed, either line 8 or line 11 can not
have been executed by the same reasoning as above, and line 18 can not have been
executed, otherwise line 25 would not be executed. Therefore, B̃i,j does not yet contain
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tree mappings which contain (i, j). However, since Ã′|x̃i |+1,|ỹj|+1 only contains such tree

mappings, the set union in line 25 must be disjoint. Therefore, it holds |B̃i,j| = |B̃i,j|+
|B̃rlx̃(i)+1,rlỹ(j)+1| · |Ã′|x̃i |+1,|ỹj|+1|, which yields the original line 25 in Algorithm A.2.

This concludes the proof.

Now we have established all intermediate results we can prove the overall correctness
of Algorithm 4.1. As in the lemmas above, we first consider a variant of Algorithm 4.1
where Γ̃i,j contains all tree mappings which contain (i, j) and then go on to show that
Γi,j = |Γ̃i,j|. In particular, consider the following variations of Algorithm 4.1.

• We replace line 2 with (C, Ã) ← forward(x̃, ỹ, d, D, c), where “forward” refers to
the variant of the forward algorithm introduced in the proof to Lemma A.13.

• We replace line 3 with B̃← backward(x̃, ỹ, d, D, c, C), where “backward” refers to
the variant of the backward algorithm introduced in the proof to Lemma A.14.

• We replace line 4 with “Initialize Γ̃ as a |x̃| × |ỹ| matrix of empty sets”.

• We replace line 11 with Γ̃i,j ← Γ̃i,j ∪
{

M̃ ∪ M̃′ ∪ {(i, j)}
∣∣M̃ ∈ Ãi,j, M̃′ ∈ B̃i+1,j+1

}
.

• We replace line 15 with γ̃← {M̃ ∪ M̃′|M̃ ∈ Ãi,j, M̃′ ∈ B̃rlx̃(i)+1,rlỹ(j)+1}.

• We replace the symbol Γ′ in line 19 with the symbol Γ̃′.

• We replace line 21 with Γ̃i+i′−1,j+j′−1 ← Γ̃i+i′−1,j+j′−1 ∪
{

M̃ ∪ {(i + i′′ − 1, j + j′′ −
1)|(i′′, j′′) ∈ M∗}

∣∣M̃ ∈ γ̃, M∗ ∈ Γ′i′,j′
}

.

We now show that, after Algorithm 4.1 has been executed, Γ̃i,j contains for all (i, j)
exactly the cooptimal tree mappings which contain (i, j).

To prove this claim, we perform an induction over |x̃|+ |ỹ|.

If both x̃ and ỹ contain only a single node, then, D2,2 = 0 and

D1,1 =min{c(x1, y1) + D2,2, c(x1,−) + D2,1, c(−, y1) + D1,2}
=min{c(x1, y1) + D2,2, c(x1,−) + c(−, y1) + D2,2}

Due to the triangular inequality, c(x1, y1) ≤ c(x1,−) + c(−, y1). Therefore, D1,1 =
c(x1, y1) + D2,2. Further, rlx̃(1) = 1 = |x̃| and rlỹ(1) = 1 = |ỹ|. Finally, (1, 1, 1, 1) is
always trivially reachable in the cooptimal edit graph Gc,x̃,ỹ such that line 11 is executed
for i = 1 and j = 1.

Due to the previous lemmas, we know that Ã1,1 = {∅} and B̃2,2 = B̃|x̃|+1,|ỹ|+1 = {∅}.
Therefore, Γ1,1 = {∅ ∪ ∅ ∪ {(1, 1}} = {{(1, 1)}}. Indeed {(1, 1)} is the only possible
cooptimal tree mapping containing (1, 1). Therefore, the claim holds.

Now, consider two trees x̃ and ỹ such that |x̃|+ |ỹ| > 2, let (V, E) := Gc,x̃,ỹ be the
cooptimal edit graph for x̃ and ỹ with respect to c, and assume that the claim holds for
all combinations of trees with added size smaller than |x̃|+ |ỹ|.

We now show that all tree mappings in Γi,j are cooptimal tree mappings between x̃
and ỹ which contain (i, j). In particular, let M ∈ Γi,j and consider the following cases.
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If M has been added via line 11, then it must hold that both rlx̃(i) = |x̃| = rlx̃(1)
and rlỹ(j) = |ỹ| = rlỹ(1) or c(xi, yj) = c(xi,−) + c(−, yj), and it must hold that
Di,j = c(xi, yj) + Di+1,j+1. Otherwise, line 11 would not have been executed for i
and j. Further, it must be possible to re-write M as the disjoint union of three sets
{(i, j)}, M̃ ∈ Ãi,j, and M̃′ ∈ B̃i+1,j+1. Otherwise, M could not have been added via
line 11.

Since M̃ ∈ Ãi,j, there must exist a path p̃ from (1, 1, 1, 1) to (1, i, 1, j) with M̃ = Mp̃.
Further, because M̃′ ∈ B̃i+1,j+1, there must exist a path p̃′ from (1, i + 1, 1, j + 1) to
(1, |x̃|+ 1, 1, |ỹ|+ 1) with M̃′ = Mp̃′ .

Due to the conditions necessary to execute line 11, we also know that
(
(1, i, 1, j), (1, i+

1, 1, j + 1)
)

is an edge in Gc,x̃,ỹ. Therefore, p := p̃, p̃′ is a path through Gc,x̃,ỹ, and
therefore Mp = Mp̃ ∪ {(i, j)} ∪Mp̃′ = M̃ ∪ {(i, j)} ∪ M̃′ = M is a cooptimal map-
ping which contains (i, j).

If M has been added via line 21, then it must hold that there exist two indices, k
and l such that rlx̃(k) 6= rlx̃(1) or rlỹ(l) 6= rlỹ(1), Dk,l = dk,l + Drlx̃(k)+1,rlỹ(l)+1,
and such that M can be re-written as the disjoint union of three sets, M̃ ∈ Ãk,l ,
M̃′ ∈ B̃rlx̃(k)+1,rlỹ(l)+1, and M̃∗ such that M∗ = {(i′− k+ 1, j′− l + 1)|(i′, j′) ∈ M̃∗} ∈
Γ′i−k+1,j−l+1. Otherwise, M would not have been added via line 21.

Since M̃ ∈ Ãk,l , there exists a path p̃ from (1, 1, 1, 1) to (1, k, 1, l) in Gc,x̃,ỹ such
that M̃p̃ = M̃. Further, since M̃′ ∈ B̃rlx̃(k)+1,rlỹ(l)+1, there exists a path p̃′ from
(1, rlx̃(k) + 1, 1rlỹ(l) + 1) to (1, |x̃|+ 1, 1, |ỹ|+ 1) such that M̃′ = Mp̃′ . Finally, since
M∗ ∈ Γ′i−k+1,j−l+1, the induction hypothesis implies (i− k + 1, j− l + 1) ∈ M∗. Also
due to the induction hypothesis, M∗ is a cooptimal tree mapping for x̃k and ỹl .
Therefore, there exists a path p∗ = v0, . . . , vT through Gc,x̃k ,ỹl , such that M∗ = Mp∗ .
Accordingly, we can construct the path p̃∗ = ṽ1, . . . , ṽT with ṽt = (k̃, k + i′ − 1, l̃, l +
j′ − 1) for vt = (k′, i′, l′, j′) where k̃ = kx̃(k) if k′ = 1 and i + k′ − 1 if k′ > 1, as well
as l̃ = kỹ(l) if l′ = 1 and j + l′ − 1 if l′ > 1 such that M̃∗ = Mp̃∗ ∪ {(k, l)}. Also
note that, per construction, (i, j) ∈ M̃∗.

Because rlx̃(k) 6= rlx̃(1) or rlỹ(l) 6= rlỹ(1) and Dk,l = dk,l + Drlx̃(k)+1,rlỹ(l)+1 we know
that

(
(1, k, 1, l), (kx̃(k), k+ 1, kỹ(l), l + 1)

)
∈ E. Further, we know that

(
(kx̃(k), rlx̃(k)+

1, kỹ(l), rlỹ(l)+ 1), (1, rlx̃(k)+ 1, 1, rlỹ(l)+ 1)
)
∈ E. Therefore, p := p̃, p̃∗, p̃′ is a path

through Gc,x̃,ỹ, and therefore Mp = Mp̃ ∪ {(k, l)} ∪Mp̃∗ ∪Mp̃′ = M̃∪ M̃∗ ∪ M̃′ = M
is a cooptimal mapping which contains (i, j).

Next, we show that all cooptimal tree mappings which contain (i, j) are contained
in Γ̃i,j. In particular, let M ∈ M(c, x̃, ỹ) such that (i, j) ∈ M. Then, a path p = v0, . . . , vT
through Gc,x̃,ỹ exists such that M = Mp. Further, because (i, j) ∈ M, there must exist
an index t ∈ {1, . . . , T}, such that vt−1 = (k, i, l, j) and vt = (k′, i + 1, l′, j + 1) for some
k, k′, l, l′. Now, consider the following cases.

k = k′ = l = l′ = 1: In that case, it must hold Di,j = c(xi, yj) + Di+1,j+1, and it must
hold rlx̃(i) = |x̃| and rlỹ(j) = |ỹ| or c(xi, yj) = c(xi,−) + c(−, yj). Otherwise,
(vt−1, vt) /∈ E. Further, v0, . . . , vt−1 is a path from (1, 1, 1, 1) to (1, i, 1, j) in Gc,x̃,ỹ,
such that (1, i, 1, j) is reachable from (1, 1, 1, 1) and thus (i, j) ∈ C. Therefore, line
11 is executed for (i, j).
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Now, let p̃ := v0, . . . , vt−1 and let p̃′ := vt, . . . , vT. Then, Mp̃ ∈ Ãi,j and Mp̃′ ∈
B̃i+1,j+1. Accordingly, Mp̃ ∪ {(i, j)} ∪Mp̃′ = Mp = M ∈ Γ̃i,j.

k′ > 1∨ l′ > 1: In that case, there must exist two indices τ, ρ ∈ {0, . . . , T} with τ < t and
ρ > t such that vτ = (1, iτ, 1, jτ) and vτ+1 = (kx̃(iτ), iτ + 1, kỹ(jτ), jτ + 1), as well as
vρ−1 = (kx̃(iτ), rlx̃(iτ) + 1, kỹ(jτ), rlỹ(jτ) + 1) and vρ = (1, rlx̃(iτ) + 1, 1, rlỹ(jτ) + 1)
for some iτ, jτ such that iτ ≤ i and jτ ≤ j. Otherwise, the path would be impossible.

Now, let p̃ := v0, . . . , vτ, let p̃∗ := vτ+1, . . . , vρ−1, and let p̃′ := vρ, . . . , vT. Then, it
holds: Mp̃ ∈ Ãiτ ,jτ and Mp̃′ ∈ B̃rlx̃(iτ)+1,rlỹ(jτ)+1.

Further, consider the path p∗ := (1, 1, 1, 1), ṽτ+1, . . . , ṽρ−1 with ṽt′ = (k̃, i′′ − iτ +

1, l̃, j′′ − jτ + 1) if and only if vt′ = (k′′, i′′, l′′, j′′), where k̃ = 1 if k′′ = kx̃(iτ) and
k̃ = k′′ − iτ + 1 otherwise, as well as l̃ = 1 if l′′ = kỹ(jτ) and l̃ = l′′ − jτ + 1
otherwise. This path is, per construction, a path through Gc,x̃iτ ,ỹjτ . Therefore, Mp∗ ∈
M(c, x̃iτ , ỹjτ ). Further, per construction, (i − iτ + 1, j − jτ + 1) ∈ Mp∗ . Therefore,
per induction, M∗p ∈ Γ̃′i−iτ+1,j−jτ+1. It also holds per construction Mp̃∗ = {(i′ + iτ −
1, j′ + jτ − 1)|(i′, j′) ∈ Mp∗} \ {(iτ, jτ)}.
Finally, because (vτ, vτ+1) ∈ E, it must hold that rlx̃(iτ) 6= rlx̃(1) or rlỹ(jτ) 6= rlỹ(1),
Diτ ,jτ = diτ ,jτ + Drlx̃(iτ)+1,rlỹ(jτ)+1, and c(xi, yj) < c(xi,−) + c(−, yj). Otherwise
(vτ, vτ+1) would not be an edge in Gc,x̃,ỹ. Therefore, lines 15-25 are executed for iτ

and jτ and Mp = Mp̃ ∪ {(iτ, jτ)} ∪Mp̃∗ ∪Mp̃′ is added to Γ̃i,j.

This concludes the proof that Γ̃i,j contains precisely the cooptimal tree mappings
which contain (i, j). It remains to show that Γi,j = |Γ̃i,j|.

To that end, note that any tree mapping M which is added in line 11 has a correspond-
ing path p which traverses the edge

(
(1, i, 1, j), (1, i+ 1, 1, j+ 1)

)
, as shown above. Because

of this edge, the path can not traverse an edge
(
(1, k, 1, l), (kx̃(k), k + 1, kỹ(l), l + 1)

)
such

that k < i ≤ rlx̃(k) or l < j ≤ rlỹ(l). Otherwise, it would not also reach (1, i, 1, j). This, in
turn, implies that (k, l) /∈ M, because no edge

(
(1, k, 1, l), (1, k + 1, 1, l + 1)

)
can exist if

an edge
(
(1, k, 1, l), (kx̃(k), k + 1, kỹ(l), l + 1)

)
exists.

By contrast, note that any tree mapping M which is added in line 21 has a corre-
sponding path which does traverse an edge

(
(1, k, 1, l), (kx̃(k), k + 1, kỹ(l), l + 1)

)
before

it traverses some edge
(
(k′, i, l′, j), (k′′, i + 1, l′′, j + 1)

)
. Therefore, (k, l) ∈ M. It follows

that the tree mappings added via line 11 and via line 21 have no overlap. Therefore, the
union in line 11 is disjoint and it holds: |Γ̃i,j| = |Γ̃i,j|+ |Ãi,j| · |B̃i+1,j+1|, which yields the
original line 11.

Further, the tree mappings added via line 21 also have no overlap with other tree
mappings added via line 21, because our argument above applies recursively to sub-
trees as well. Therefore, the union in line 21 is disjoint and it holds: |Γi+i′−1,j+j′−1| ←
|Γi+i′−1,j+j′−1|+ |Γ′i′,j′ | · |γ|, which yields the original line 21.

This concludes the correctness proof.

a .14 proof of theorem 4.3

Recall the Theorem we intend to prove.
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a .14 proof of theorem 4.3

Let A = {x1, . . . , xn} be an alphabet. Then, the following function φ : A → Rn with

φ(xi)j :=


0 if j > i
ρj if j < i
ρi · (i + 1) if j = i

where (A.70)

ρi = 1/
√

2 · i · (i + 1) (A.71)

is a symbol embedding of A such that:

cφ(x, y) =

{
0 if x = y
1 otherwise

Proof

We consider an alphabet A = {x1, . . . , xn}.
Before we go on to prove the actual result, we first show an auxiliary claim regarding

the array ρ. In particular, we show that:√√√√1−
i−1

∑
j=1

ρ2
j = ρi · (i + 1) (A.72)

Our proof works via induction. For the base case, we observe that
√

1−∑1−1
j=1 ρ2

j =√
1− 0 = 1 = 1

2 · 2 = 1√
2·1·(1+1)

· (1 + 1) = ρ1 · (1 + 1).

Now, let’s assume that the claim holds for all i′ ≤ i and consider i + 1. Then, we
obtain √√√√1−

i

∑
j=1

ρ2
j =

√√√√(1−
i−1

∑
j=1

ρ2
j

)
− ρ2

i
I.H.
=

√(
ρi · (i + 1)

)2
− ρ2

i

= ρi ·
√
(i + 1)2 − 1 =

√
(i + 1)2 − 1
2 · i · (i + 1)

=

√
i2 + 2 · i

2 · i · (i + 1)

=

√
i + 2

2 · (i + 1)
·
√

i + 2√
i + 2

=
i + 2√

2 · (i + 1) · (i + 2)
= ρi+1 · (i + 2)

which completes the induction.

Now, consider the cost cφ(xi,−). We obtain:

cφ(xi,−) = ‖φ(xi)‖ =

√√√√ n

∑
j=1

φ(xi)
2
j =

√√√√i−1

∑
j=1

φ(xi)
2
j + φ(xi)

2
i

=

√√√√i−1

∑
j=1

ρ2
j + (ρi · (i + 1))2

A.72
=

√√√√i−1

∑
j=1

ρ2
j + 1−

i−1

∑
j=1

ρ2
j =
√

1 = 1
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Due to symmetry reasons, this is the same as cφ(−, xi).

Finally, consider cφ(xi, xj). If i = j, then cφ(xi, xi) = 0 per definition. Now, consider
the case j > i. In this case, we obtain:

cφ(xi, xj) =‖φ(xi)− φ(xj)‖2 =
n

∑
l=1

(φ(xi)l − φ(xj)l)
2

=
i−1

∑
l=1

(φ(xi)l − φ(xj)l)
2 + (φ(xi)i − φ(xj)i)

2

+
j−1

∑
l=i+1

(φ(xi)l − φ(xj)l)
2 + (φ(xi)j − φ(xj)j)

2

=
i−1

∑
l=1

(ρl − ρl)
2 + (ρi · (i + 1)− ρi)

2

+
j−1

∑
l=i+1

(0− ρl)
2 + (0− ρj,j · (j + 1))2

A.72
= ρ2

i · (i + 1− 1)2 +
j−1

∑
l=i+1

(ρl)
2 + 1−

j−1

∑
l=1

(ρl)
2

=ρ2
i · i2 + 1−

i

∑
l=1

(ρl)
2

A.72
= ρ2

i · i2 + ρ2
i+1 · (i + 2)2

=
i2

2 · i · (i + 1)
+

(i + 2)2

2 · (i + 1) · (i + 2)

=
i

2 · (i + 1)
+

i + 2
2 · (i + 1)

=
i + i + 2

2 · (i + 1)
= 1

Due to symmetry reasons, the same holds for cφ(xj, xi), which concludes our proof.
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a .15 proof of theorem 5.1

a .15 proof of theorem 5.1

Recall the theorem we intend to prove.

Let X be some set and let {G j
t}

j=1,...,N
t=1,...,Tj

⊂ X be a dataset of sequences over that set, let

M = T1 + . . . + TN , let (j, t) be the ith tuple in
{
(j, t)

∣∣j ∈ {1, . . . , N}, t ∈ {1, . . . , Tj − 1}
}

according to lexicographic ordering, let x̄i := G j
1, . . . ,G j

t , and let ȳi := G j
1, . . . ,G j

t+1.

Further, let d be a pseudo-Euclidean distance over X ∗ with positive spatial mapping
φ+ : X ∗ → Rm and negative spatial mapping φ− : X ∗ → Rn, and let

φ(x̄) :=
(

φ+(x̄)
φ−(x̄)

)
and X :=

(
φ(x̄1), . . . , φ(x̄M)

)
∈ R(m+n)×M

Finally, let k be a kernel over Rm+n, and let x̄ ∈ X ∗. Then, it holds:

1. The predictive result of 1-NN according to Equation 2.45 has the form f (φ(x̄)) =
X ·~α with~α having exactly one entry 1 and only zero entries otherwise.

2. For any non-negative similarity sd, the predictive result of KR according to Equa-
tion 2.46 has the form f (φ(x̄)) = X ·~α where all αi are non-negative and sum up to
1.

3. For the priors ~θ = φ(x̄) and θi = φ(x̄i), the predictive result of GPR according to
Equation 2.50 has the form f (φ(x̄)) = (X, φ(x̄)) ·~α, where αM+1 = 1 and all other
αi add up to zero.

4. For the priors ~θ = φ(x̄) and θi = φ(x̄i), the predictive result of rBCM according to
Equation 2.53 has the form f (φ(x̄)) = (X, φ(x̄)) ·~α, where αM+1 = 1 and all other
αi add up to zero.

Proof

We prove the single claims in turn.

1. This follows directly from the form of the predictive function in Equation 2.45. In
particular, αi = 1 if i = i+ and αi = 0 otherwise.

2. The form of the coefficients follows directly from Equation 2.46. In particular, we
obtain

αi =
sd(x̄, x̄i)

∑M
j=1 sd(x̄, x̄j)

Due to the normalization, these coefficients necessarily add up to 1, which makes the
combination affine. Given that we assumed that sd is non-negative, the combination
is convex.

3. Let~k =
(
k(x̄, x̄1), . . . , k(x̄, x̄M)

)> and let K be the M×M matrix with entries Ki,j =
k(x̄i, x̄j). Then, the predictive mean of GPR according to Equation 2.50 is given as
~µ = φ(x̄)+ (Y−X) ·~γ for~γ = (K+ σ̃2 · IM)−1 ·~k. Now, let (γ1

1, . . . , γ1
T1−1, . . . , γN

TN−1)
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:= ~γ>, and let x̄j
t = G

j
1, . . . ,G j

t for all j ∈ {1, . . . , N} and all t ∈ {1, . . . , Tj}. Then,
we obtain:

~µ = φ(x̄) +
N

∑
j=1

Tj−1

∑
t=1

γ
j
t ·
(

φ(x̄j
t+1)− φ(x̄j

t)
)

= 1 · φ(x̄) +
N

∑
j=1
−γ

j
1 · φ(x̄j

1) +

( Tj−1

∑
t=2

(γ
j
t−1 − γ

j
t) · φ(x̄j

t)

)
+ γ

j
Tj−1 · φ(x̄j

Tj
)

Therefore, we can re-write ~µ as ~µ = (X, φ(x̄)) ·~α with the coefficients ~α> =

(α1
1, . . . , α1

T1
, . . . , αN

TN
, 1), where α

j
1 = −γ

j
1, α

j
2 = γ

j
1 − γ

j
2, . . ., α

j
Tj−2 = γ

j
Tj−1 − γ

j
Tj−1,

and α
j
Tj
= γ

j
Tj−1 for all j ∈ {1, . . . , N}. Note that α

j
1 + . . .+ α

j
Tj
= 0 for all j. Therefore,

the sum over all coefficients in~α is 1, which makes the combination affine.

4. First, we observe that the previous result implies that the predictive mean for every
single c has the shape

~µc = φ(x̄) +
M

∑
i=1

αc
i · φ(x̄i) where

M

∑
i=1

αc
i = 0

Accordingly, using Equation 2.53, we can re-write the predictive result of rBCM as
αM+1 · φ(x̄) + (X, φ(x̄)) ·~α with the following coefficients.

αi = σ2
rBCM ·

C

∑
c=1

βc

σ2
c
· αc

i for all i ≤ M

αM+1 = σ2
rBCM ·

(
C

∑
c=1

βc

σ2
c
· 1 +

(
1−

C

∑
c=1

βc

)
· 1

σ2
prior

)

Note that the latter coefficient is equal to σ2
rBCM · σ

−2
rBCM = 1.

Further, for the sum of all other coefficients we obtain:

M

∑
i=1

αi =
M

∑
i=1

σ2
rBCM ·

C

∑
c=1

βc

σ2
c
· αc

i

=σ2
rBCM ·

C

∑
c=1

βc

σ2
c
·
( M

∑
i=1

αc
i

)
= σ2

rBCM ·
C

∑
c=1

βc

σ2
c
· 0 = 0

Therefore, we obtain an affine combination as claimed.
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a .16 proof of theorem 6.2

a .16 proof of theorem 6.2

Recall the theorem we intend to prove.

Let X be a state set, let ∆ be a symmetric edit set over X, and let c be a symmetric
cost function over ∆.

Then, d∆,c is a pseudo-Euclidean distance for some positive spatial map φ+ : X → Rm

and some negative spatial map φ− : X → Rn.

Now, let {xi}i=1,...,M ⊂ X, let x, y ∈ X, let X+ :=
(
φ+(x1), . . . , φ+(xM), φ(x)

)
∈

Rm×M+1, let X− :=
(
φ−(x1), . . . , φ−(xM), φ(x)

)
∈ Rn×M+1, and let~α ∈ RM+1 such that:

φ+(y) = X+ ·~α, φ−(y) = X− ·~α, and
M+1

∑
i=1

αi = 1

Then, the maximization problem in Equation 6.5 can be re-written as:

min
δ∈∆

αM+1 · d∆,c
(
δ(x), x

)2
+

M

∑
i=1

αi · d∆,c
(
δ(x), xi

)2 (A.73)

Proof

The proof has multiple steps. First, we show that d∆,c is a non-negative, self-equal and
symmetric function.

In particular, let x, y ∈ X. Then, it holds:

The cost of any edit script δ̄ ∈ ∆∗ with δ̄(x) = y is a sum over outputs of c. Since
c maps to R+, the cost of any edit script must thus be non-negative. Therefore, d∆,c is
non-negative as well.

For all x we can use the empty edit script to transform x to x. The cost of the empty
edit script is 0, independent of the cost function c. Therefore, d∆,c(x, x) ≤ 0. Because
d∆,c(x, x) ≥ 0, we obtain d∆,c(x, x) = 0

Let x, y ∈ X such that x and y are connected in the legal move graph. Let δ1, . . . , δT
be a cheapest edit script that transforms x to y, let x0 = x and let xt = δt(xt−1) for all
t ∈ {1, . . . , T}.

Because ∆ and c are symmetric, we can construct the edit script δ−1
T , . . . , δ−1

1 which
transforms y to x such that for all t ∈ {1, . . . , T}we obtain δ−1

t (xt) = xt−1 and c(δ−1
t , xt) =

c(δt, xt−1), which in turn implies c(δ−1
T , . . . , δ−1

1 , y) = c(δ1, . . . , δT, x). Finally, we conclude
that d∆,c(y, x) ≤ c(δ−1

T , . . . , δ−1
1 , y) = c(δ1, . . . , δT, x) = dc(x, y).

We can apply a symmetric argument in the inverse direction yielding d∆,c(x, y) ≤
d∆,c(y, x), which in turn implies d∆,c(x, y) = d∆,c(y, x). If there is no path from x to y in
the legal move graph, then there is also no path from y to x, and it holds d∆,c(x, y) =
∞ = d∆,c(y, x).

Because d∆,c is self-equal and symmetric, it is pseudo-Euclidean for some positive
spatial map φ+ : X → Rm and some negative spatial map φ− : X → Rn according to
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Theorem 2.2. Accordingly, we obtain:

d∆,c
(
δ(x), y

)2
=‖φ+(δ(x))− φ+(y)‖2 − ‖φ−(δ(x))− φ−(y)‖2

=‖φ+(δ(x))− X+ ·~α‖2 − ‖φ−(δ(x))− X− ·~α‖2

Following Equation 2.9 from Theorem 2.3, we obtain:

‖φ+(δ(x))− X+ ·~α‖2 − ‖φ−(δ(x))− X− ·~α‖2

=αM+1 · d(δ(x), x)2 +
M

∑
i=1

αi · d(δ(x), xi)
2 − 1

2
~α′> · D2 ·~α′ (A.74)

where D2 is the M + 1×M + 1 matrix with entries D2
i,j = d(xi, xj)

2 for i ≤ M and j ≤ M,
with D2

M+1,i = D2
i,M+1 = d(x, xi)

2 for all i ≤ M, and with D2
M+1,M+1 = 0.

Because the latter term in Equation A.74 does not depend on δ, we can ignore it for
the minimization problem in Equation 6.5. This directly yields Equation 6.6.

a .17 kernelized othogonal matching pursuit

Let X be some set and let k : X ×X → R be a kernel on X with spatial map φ : X → Rm.
Further, let {x1, . . . , xM} ⊆ X , let X = (φ(x1), . . . , φ(xM)), and let ~α ∈ RM, such that
∑M

i=1 αi = 1. Finally, let J ⊆ {1, . . . , M} and let m ∈N.

Our aim is to identify a coefficient vector α̃ ∈ Rm, such that ∑M
i=1 α̃i = 1, such that at

most m entries of α̃ are nonzero, and such that α̃i 6= 0 implies that i ∈ J.

To do so, we adapt kernelized orthogonal matching pursuit (k-OMP) as introduced
by D. Hofmann et al. (2014). Recall that OMP has the following basic structure: Initialize
I as an empty set. Then, until |I| = m, select the element i from {1, . . . , M} \ I such that
the absolute value of the inner product between φ(xi) and the residual X ·~α− X · α̃ is
maximized. Add i to I. Then, adapt the coefficients α̃I for the selected indices I such that
the Euclidean distance between X ·~α and X · α̃ is minimized.

Now, let K = X> · X, let KI,I be the submatrix of K limited to the indices in I, let KI,:
be the submatrix of K containing only the rows I of K, and let K:,I bet the submatrix of
K containing only the columns I of K.

We can re-write the selection process of the next index as follows.

argmax
i∈J\I

|φ(xi)
> · (X ·~α−X · α̃)| = argmax

i∈J\I
|φ(xi)

> ·X · (~α− α̃)| = argmax
i∈J\I

|K{i},: · (~α− α̃)|

Now, let α̃I be the subvector of α̃ limited to the entries I, and let ~1|I| be the |I|-
dimensional vector of ones. Then, we can re-write the optimization step for the coefficients
α̃I as follows, using a Lagrangian dual to express the side-constraint~1>|I| · α̃I = 1.

min
α̃I

‖X ·~α− X · α̃‖2 + ν · (~1>|I| · α̃I − 1)

=min
α̃I

~α> · X> · X ·~α− 2 ·~α> · X> · X · α̃ + α̃> · X> · X · α̃ + ν · (~1>|I| · α̃I − 1)

=min
α̃I

~α> · K ·~α− 2 ·~α> · K · α̃ + α̃> · K · α̃ + ν · (~1>|I| · α̃I − 1)

=min
α̃I

~α> · K ·~α− 2 ·~α> · K:,I · α̃I + α̃>I · KI,I · α̃I + ν · (~1>|I| · α̃I − 1)
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a .17 kernelized othogonal matching pursuit

For the gradient and the Hessian we obtain the following expressions according to
Petersen and Pedersen (2012).

∇α̃I‖X ·~α− X · α̃‖2 + ν · (~1>|I| · α̃I − 1) = −2 · KI,: ·~α + 2 · KI,I · α̃I + ν ·~1|I|
∇2

α̃I
‖X ·~α− X · α̃‖2 + ν · (~1>|I| · α̃I − 1) = 2 · KI,I

First, note that the Hessian is positive semi-definite because it is a kernel matrix. Therefore,
any coefficient vector with zero gradient is a global optimum. Now, we set the gradient
to zero and solve for α̃I .

−2 · KI,: ·~α + 2 · KI,I · α̃I + ν ·~1|I|
!
= 0

K−1
I,I · (KI,: ·~α−

1
2
· ν ·~1|I|)

!
= α̃I

Using the side-constraint~1>|I| · α̃I = 1 we can solve for ν.

~1>|I| · K
−1
I,I · (KI,: ·~α−

1
2
· ν ·~1|I|)

!
= 1

−2 ·
1−~1>|I| · K

−1
I,I · KI,: ·~α

~1>|I| · K
−1
I,I ·~1|I|

!
= ν

Finally, plugging this result into our solution for α̃I , we obtain:

α̃I = K−1
I,I · (KI,: ·~α +

1−~1>|I| · K
−1
I,I · KI,: ·~α

~1>|I| · K
−1
I,I ·~1|I|

·~1|I|) (A.75)

Overall, we obtain Algorithm A.3.

Algorithm A.3 A variant of kernelized Orthogonal Matching Pursuit (k-OMP, D. Hof-
mann et al. 2014) which ensures affine combinations.

1: function k -OMP(A M × M-kernel matrix K, a coefficient vector ~α ∈ RM, a set
J ⊆ {1, . . . , M}, a number m ∈N.)

2: Initialize I ← ∅.
3: Initialize α̃←~0M.
4: while |I| < m do
5: i = argmaxi∈J |K{i},: · (~α− α̃)|.
6: I ← I ∪ {i}, J ← J \ {i}.
7: Set α̃I according to Equation A.75.
8: end while
9: return α̃.

10: end function
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a .18 proof of theorem 7.1

Recall the theorem we intend to prove.

Under the assumption of fixed γk|i, Q̂ (Equation 7.6) is convex with respect to H.

Further, if our source model is a slGMM, Q̂ takes a unique optimum at H = W · Γ · X̂†,
where X̂ := (x̂1, . . . , x̂N) ∈ Rn×N , W := (~µ1, . . . ,~µK) ∈ Rm×K, Γ denotes the K × N-
dimensional matrix with the entries Γk,j = γk|j, and X̂† denotes the Moore-Penrose-
Pseudoinverse of X̂.

Proof

Following standard matrix calculus conventions, we define the gradient ∇H Q̂ as the

matrix with entries
(
∇H Q̂

)
r,s

:= ∂
∂Hr,s

Q̂. Further, following the suggestion of Fackler

(2005), we define the Hessian ∇2
H Q̂ as a (n · m) × (n · m) dimensional matrix which

contains the second derivatives of Q̂ with respect to all pairs of entries in H. Equivalently,
∇2

H Q̂ can be seen as the Hessian of Q̂ with respect to a vector which contains all entries
of H in concatenated form.

We obtain the following results for the gradient and Hessian of Q̂ with respect to H
(Fackler 2005; Petersen and Pedersen 2012).

∇H Q̂ = 2 ·
K

∑
k=1

Λk ·
N

∑
j=1

γk|j · (H · x̂j −~µk) · x̂>j (A.76)

∇2
H Q(H) = 2 ·

K

∑
k=1

Λk ⊗
(

N

∑
j=1

γk|j · x̂j · x̂>j

)
(A.77)

where ⊗ denotes the Kronecker product of two matrices. Recall that Λk is a positive
definite matrix and note that ∑N

j=1 γk|j · x̂j · x̂>j is positive semi-definite due to its quadratic
form. Further, positive semi-definite matrices are closed under the Kronecker product,
addition, and the multiplication with positive scalars such that the Hessian is also positive
semi-definite, which in turn shows that Q̂ is convex with respect to H (Fackler 2005).
This concludes the first part of the proof.

For the second part of the proof, we replace all Λk with Λ and set the gradient A.76
to zero.

2 ·
K

∑
k=1

Λ ·
N

∑
j=1

γk|j · (H · x̂j −~µk) · x̂>j = 0

⇐⇒ Λ · H ·
N

∑
j=1

x̂j · x̂>j = Λ ·
K

∑
k=1

N

∑
j=1

γk|j ·~µk · x̂>j

⇐⇒ Λ · H · X̂ · X̂> = Λ ·W · Γ · X̂>

⇐⇒ H = W · Γ · X̂† (A.78)
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