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Abstract

RNN-based sequence generation is now
widely used in NLP and NLG (natural lan-
guage generation). Most work focusses
on how to train RNNs, even though also
decoding is not necessarily straightfor-
ward: previous work on neural MT found
seq2seq models to radically prefer short
candidates, and has proposed a number of
beam search heuristics to deal with this. In
this work, we assess decoding strategies
for referring expression generation with
neural models. Here, expression length
is crucial: output should neither contain
too much or too little information, in or-
der to be pragmatically adequate. We
find that most beam search heuristics de-
veloped for MT do not generalize well
to referring expression generation (REG),
and do not generally outperform greedy
decoding. We observe that beam search
heuristics for termination seem to over-
ride the model’s knowledge of what a good
stopping point is. Therefore, we also ex-
plore a recent approach called trainable
decoding, which uses a small network to
modify the RNN’s hidden state for better
decoding results. We find this approach
to consistently outperform greedy decod-
ing for REG.

1 Introduction

Recently, many NLP problems that involve
some form of natural language generation have
been modeled with encoder-decoder architectures
based on recurrent neural networks, e.g. in ma-
chine translation (Bahdanau et al., 2014), summa-
rization (Ranzato et al., 2016), conversation mod-
eling (Vinyals and Le, 2015), image captioning
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refexp: woman in light blue
background left

refexp: lady

Figure 1: RefCOCO (Yu et al., 2016) examples for
referring expressions to targets (red box) in images

(Xu et al., 2015), etc. A simple and efficient way
to apply the decoder model during testing is to
generate the most likely word at each time step,
until an end symbol has been generated or the
maximal number of time steps has been reached.
However, this greedy search method does not gen-
erally produce optimal generation output, and has
been shown to produce repetitive or invariable sen-
tences in certain tasks, e.g. (Li et al., 2016). Thus,
a common practice (particularly in MT) is to use
beam search where a fixed number of hypothe-
ses are considered (and expanded) at each time
step. Unfortunately, beam search is a heuristic al-
gorithm that can be defined and parametrized in
different ways, and brings with it further model-
ing decisions that need to be explored. A partic-
ularly tricky issue in neural MT, for instance, is
to define a good stopping criterion for search, as
neural models tend to radically prefer short hy-
potheses (Graves, 2012). To the best of our knowl-
edge, it has not yet been systematically investi-
gated whether beam search heuristics developed
for MT carry over to other generation tasks, in par-
ticular, to tasks in the area of language and vision.

In this paper, we investigate decoding strategies
for neural referring expression generation (REG)
applied to objects in real-world images. This task
is closely related to image captioning in the sense



that a visual entity has to be described by a ver-
bal, semantically adequate expression. But be-
yond semantic adequacy, REG also requires prag-
matic reasoning: referring expressions typically
do not only depend on the object they refer to, but
also on the visual context of that object, as human
speakers tend to tailor their utterances such that
a listener can easily understand them in the cur-
rent context. For instance, a short RE that sim-
ply names the object (e.g. lady in Figure 1(b)) is
unlikely to be produced than in a scene that con-
tains more objects of the same category, see Figure
1(a). Thus, previous work on neural REG has in-
vestigated techniques of incorporating contextual
knowledge into the model during training, looking
at different visual representations and optimiza-
tion techniques (Mao et al., 2015; Yu et al., 2016).
Somewhat surprisingly, however, relatively com-
plex architectural set-ups are needed to improve
over simple, context-agnostic baselines that gener-
ate descriptions for the objects as captioning mod-
els do for entire images (Yu et al., 2017).

In this paper, we take a closer look at the decod-
ing step in neural REG. As referring expressions
tend to be much shorter than full sentences in MT,
for instance, it is not guaranteed that heuristics de-
veloped for beam search in MT are equally suc-
cessful. More importantly even, the problem of
determining the appropriate length of a referring
expression, i.e. terminating beam search, is con-
ceptually different than determining the length of a
good translation: a translation is complete when it
covers the meaning of the words in the source sen-
tence, and indeed, the length of the source is used
as criterion in beam search for MT (see Section
2.3). A referring expression, on the other hand,
is complete when it describes the visual target in
a pragmatically adequate way, i.e. when it neither
provides too little nor too much information.

We explore a range of different variants of beam
search that have been proposed for MT and, in-
terestingly, find that most of them decrease per-
formance as compared to simple greedy decoding
in REG. Whereas greedy decoding leads to refer-
ring expressions that, on average, have an ade-
quate length, beam search produces REs that are
markedly shorter and various heuristics can only
partially remedy for this problem. Therefore, we
look at trainable decoding, a method proposed by
Gu et al. (2017), that offers a principled solution
for obtaining a decoder that maximizes a given ob-

jective (e.g. BLEU scores). This method has been
shown to outperform greedy decoding and to be
computationally more efficient than beam search
in MT (Gu et al., 2017; Chen et al., 2018). We
find that it qualitatively outperforms both greedy
and beam search in the case of neural REG.

2 Related Work

2.1 Symbolic formalizations of REG

Traditionally, research on NLG has conceived of
REG as a multi-stage process that involves the
tasks of lexicalization, content selection and sur-
face realization (Reiter and Dale, 2000; Krahmer
and Van Deemter, 2012). But foundational work
in REG has mostly focused on algorithms for at-
tribute selection (Dale and Reiter, 1995). In this
paradigm, the task is to generate a distinguishing
referring expression for an object in a visual scene,
which is defined as a target object, a set of distrac-
tor objects and a set of symbolic attributes (e.g.
type, position, size, color, ...), see Krahmer and
Van Deemter (2012). In this setting, an attribute is
said to rule out a distractor object, if the target and
distractor have different values. Dale and Reiter
(1995)’s well-known Incremental Algorithm (IA)
iterates over the attribute set in a pre-defined or-
der, selects an attribute if it rules out objects from
the set of distractors and terminates when the set is
empty. In the context of our work, this algorithm
can be seen as a decoding procedure over a sym-
bolically specified input for REG that heuristically
defines the stopping criterion, i.e. when to termi-
nate the expansion of the RE. A lot of subsequent
work has looked at refining and extending this
algorithm, testing it on human-generated expres-
sions (Krahmer et al., 2003; Mitchell et al., 2010;
van Deemter et al., 2012; Clarke et al., 2013).

2.2 Neural REG from real-world images

More recently, research on REG has started to
investigate set-ups based on real-world images
(Kazemzadeh et al., 2014; Gkatzia et al., 2015;
Mao et al., 2015; Zarrieß and Schlangen, 2016),
representing scenes with many different types of
real-world objects. Here, the input to the REG
system is defined as a low-level visual represen-
tation such that various aspects of the task have
to be addressed, including lexicalization and con-
tent selection. Inspired by research on image cap-
tioning, Mao et al. (2015) proposed the first neural
end-to-end model for REG that uses a CNN to rep-



resent the image, followed by an LSTM to gener-
ate the referring expression. Yu et al. (2016, 2017)
investigate a number of ways to incorporate prag-
matic reasoning into a CNN-LSTM architecture
for REG, and also collected two datasets of refer-
ring expressions for objects in the MSCOCO cor-
pus in the ReferItGame setup (Kazemzadeh et al.,
2014). All these authors state that they use beam
search during decoding, but do not investigate the
effect of this search method (nor do they state ex-
actly which variant of beam search was used). Our
work suggests that the effectiveness of contextual
features interacts with the decoding procedure.

2.3 Decoding for neural MT

We now turn to (neural) MT, where decoding algo-
rithms for sequence generation have been inves-
tigated in detail. Here, beam search is the stan-
dard method for syntax- and phrase-based models
(Rush et al., 2013), as well as for neural encoder-
decoders (Freitag and Al-Onaizan, 2017). How-
ever, an important difference between the two is
that candidates in phrase-based MT are completed
in the same number of steps, whereas neural mod-
els generate hypotheses of different length and
are biased for shorter output (Huang et al., 2017).
To counteract this bias, OpenNMT (Klein et al.,
2017) adopts three metrics for normalizing the
coverage, length and end of sentence of candidate
translations. Unfortunately, two of these metrics
(coverage and end of sentence normalization) are
based on the length of the source sentence, which
is not available in REG. Another common NMT
framework (Bahdanau et al., 2014) uses a shrink-
ing beam where beam size is reduced each time a
completed hypothesis is found, and search termi-
nates when the beam size has reached 0.

Another shortcoming of beam search observed
in previous work is that the beam tends to con-
tain many candidates that share the same (most
likely) prefix (Freitag and Al-Onaizan, 2017).
This means that a relatively high value for beam
size is needed to ensure that more diverse hy-
potheses that could potentially lead to more prob-
able output are not excluded too early. A range
of works have looked at modifying the objective
of beam search such that more diverse candidates
are considered during search (Li et al., 2016; Fre-
itag and Al-Onaizan, 2017). See Section 4 for an
overview of the beam search heuristics we use in
this paper.

To overcome the limitations of heuristically de-
fined beam search, Gu et al. (2017) introduce
the notion of trainable decoding that takes a pre-
trained neural MT system and optimizes the de-
coder for any objective. They treat the decoder
as a small actor network that learns to manipulate
the hidden state of the underlying trained MT sys-
tem. Whereas Gu et al. (2017) train the decoder
actor network with a policy gradient method, Chen
et al. (2018) present a supervised method to train
the decoder. We will follow the latter approach, as
described in Section 4.

3 REG Models

As the focus of this work is on the decoding
step for neural REG models, we adopt a standard
model architecture in language and vision: we use
the pre-softmax layer of a pre-trained CNN to rep-
resent the image and the image region that a given
target expression refers to. We train a standard
LSTM to generate a word at each time step, condi-
tioned on the visual vector and the previous words.
Our LSTM mainly follows the implementation of
(Xu et al., 2015)1, one of the most widely known
models for image captioning, but does not use at-
tention over the image.

We note that Xu et al. (2015) use a deep de-
coding layer that computes the output word prob-
ability given the LSTM state, the context vector
and the previous word including dropout and non-
linear (tanh) activation functions, similar to Yu
et al. (2017) who also use dropout in the decod-
ing layer, but only linear activation functions. Mao
et al. (2015), on the other hand, adopt a simple lin-
ear layer for decoding the LSTM. In the following,
we will investigate how these modeling decisions
affect the performance, and how they interact with
different search methods during inference.2 We
distinguish two variants of our model according to
their decoding layer:

Linear decoding layer:

p = softmax(Whh+ bh) (1)

where p is the distribution over the vocabulary,
Wh is the weight matrix, bh is the bias term, and h
is the hidden state of the LSTM.

1https://github.com/yunjey/
show-attend-and-tell

2Please note that there are two aspects of decoding in our
set-up: the decoding layer of the LSTM, and the decoding
inference procedure applied during testing.

https://github.com/yunjey/show-attend-and-tell
https://github.com/yunjey/show-attend-and-tell


Deep decoding layer:

h1 = dropout(h0)

h2 = tanh((Whh1 + bh) + (Wzz + bz) + xprev)

h3 = dropout(h2)

p = softmax(Wouth3 + bout)

(2)

where h0 is the hidden state, z is the visual vector
and xprev the embedding of the previous word.

Finally, we also vary the input visual represen-
tation that the LSTM is conditioned on. Whereas
Mao et al. (2015) extract visual representations of
the region representing the target referent and the
global image, Yu et al. (2016) report a slightly
detrimental effect of including these global con-
text features. Thus, we distinguish two variants of
the model according to its visual representation:

Target: 4103-dimensional vector, obtained by
cropping the image to the target region, resizing
to 224 × 224, extracting its CNN pre-softmax
features with VGG19 (Simonyan and Zisserman,
2014) and concatenating 7 spatial features of the
region (see Schlangen et al. (2016) for these)

Global+target: 8119-dimensional vector, ob-
tained by extracting the CNN pre-softmax features
with VGG19 (Simonyan and Zisserman, 2014) for
the entire image, and concatenating it with target-
only

Training We set the word embedding layer size
to 512, and the hidden state to 1024. We optimized
with ADAM (with α = 0.001), and the batch size
set to 50. The word embedding layer is initial-
ized with random weights. The number of training
epochs was tuned for each model on the validation
set.

4 Decoding Strategies

We now explain the different decoding strategies
that will be combined with the REG models.

4.1 Greedy decoding

This is the simplest way to apply an LSTM based
generator for testing: at each time step, the most
likely word is selected and added to the generation
history. Greedy decoding terminates when the end
symbol is generated.

4.2 Beam search

Beam search generalizes greedy decoding and
keeps a fixed number K of generation candidates

that are expanded at each time step (greedy de-
coding corresponds to beam search with K = 1).
This is computationally less efficient than greedy
search, but often yields better results in NLP (see
Section 2). A definition of a standard beam search
algorithm that a lot of previous work has followed
can be found in Graves (2012).

As discussed in Section 2.3, the general skele-
ton of the beam search algorithm allows for a num-
ber of modifications, that concern the following
criteria: (i) pruning: which candidates are added
to the beam for the next time step, (ii) termination:
when does search stop, (iii) normalization: how to
treat candidates of different length, (iv) beam size:
constant or dynamic value forK. The summary of
search strategies we will test is shown in Table 1.

In the simple beam search version, the decoder
checks after each iteration, whether the top-most
candidate is complete. If this is not the case, all
current candidates remain for the next iteration, in-
cluding complete hypotheses that have a rank> 1.
During development, we noticed that this causes
short, lower ranked complete hypotheses to climb
up the beam too quickly and win over long hy-
potheses (see results in Section 6.3). Therefore,
we also introduce a new variation of simple beam,
called same-len in Table 1.The same-len variant
excludes complete hypotheses on the beam that
have a rank > 1, whereas in the standard version
these would remain on the beam. In the same-len
version a complete hypothesis either wins (when
it is on top) or is pruned, which means that all can-
didates on the beam are of the same length (when
counting the end symbol).

When candidates of different length are kept on
the beam, we can normalize according to the fol-
lowing scores taken from Klein et al. (2017):

lp(y) =
(5 + |Y |)α

(5 + 1)α
(3)

where |Y | is the length of the candidate output and
α is usually set to a value between 0.6 and 0.8 (Wu
et al., 2016). We could not find an explanation for
the constant being set to 5 in the literature. This
length penalty is then used to boost probabilities
of longer sequences in the following way:

score(y, x) =
logP (y|x)

lp(y)
(4)

where P (y|x) corresponds to the probability as-
signed to the candidate y at the given time step.
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Figure 2: Illustration of neural REG architecture including
an actor network that manipulates the hidden state; the dot-
ted line indicates the information flow in the standard model
where the hidden state is directly passed to the decoding layer

4.3 Trainable decoding

Finally, we set up a trainable decoder as in Chen
et al. (2018) that adds a new actor module to the
trained REG model. As illustrated in Figure 2, the
actor learns to manipulate the hidden state that is
then passed to the decoding layer. When training
the actor, the weights of the underlying REG sys-
tem are fixed. Thus, instead of optimizing the en-
tire architecture in one stage, we adopt a procedure
that first learns an REG model as usual, and then
learns to decode this model in a second step.

For training the decoding actor in a supervised
way, we need an ‘artificial’ corpus of referring ex-
pressions paired with objects in images that are
both considered to be likely by the model and
achieve a good BLEU score when compared to
the original human expression. Thus, for an ob-
ject x we use the REG model and beam search
to produce a set of referring expressions Y =
y1, y2, ..., yn that correspond to all completed hy-
potheses from all time steps, with a certain beam
size K. But in contrast to the methods explained
in Section 4.2, we do not need to define a heuristic
stopping criterion. Instead, we use an oracle that
selects y from the set Y that achieves the high-
est BLEU score given the human references. Of
course, this oracle is only needed at training time.
The actor itself is a simple feedforward layer that
updates the hidden state as follows:

h′ = h+ relu(Whh) (5)

This is a slightly simpler definition than the one
used in Chen et al. (2018) where the actor is also
conditioned on the original input vector. We ex-
perimented with their version, but found a simple

layer with ReLU activation to yield the best per-
formance. When applying the actor at test time,
it is possible to combine it with beam search (Gu
et al., 2017). However, we only use it in a greedy
fashion, as beam search did not lead to clear im-
provements in our experiments.

Training The main parameters to configure for
training concern the definition of the oracle for
compiling the new training data. We set K (beam
size of the oracle) to 10, and use BLEU1 (re-
stricted to unigrams) as objective. We train the
actor for 10 epochs, with ADAM.

5 Data

We conduct experiments on the RefCOCO(+)
datasets, same as (Yu et al., 2016), which con-
tain referring expressions to objects in MSCOCO
(Lin et al., 2014) images. The data was col-
lected via crowdsourcing with the ReferIt Game
(Kazemzadeh et al., 2014) where two players were
paired and a director needed to refer to a prede-
termined object to a matcher, who then selected
it. Note that (Mao et al., 2015) performed experi-
ments on a different data set for MSCOCO images
in a non-interactive set-up. Thus, our evaluation
set-up largely follows Yu et al. (2016, 2017).

RefCOCO and RefCOCO+ contain 3 referring
expressions on average per object, and overall
150K expressions for 50K objects. The two
datasets have been collected for an (almost) identi-
cal set of objects, but in RefCOCO+, players were
asked not to use location words (on the left, etc.).
See Yu et al. (2016) for more details. We use the
predefined training and test splits. The respective
test sets are divided into two subsets: testA is re-
stricted to objects of the category human, testB
consists of all other object types.

6 Experiments

6.1 Evaluation

Since we compare a whole range of REG models
and decoding strategies, we opt for automatic eval-
uation measures, even though these might not fully
reflect the performance that would be achieved
in interaction with human users, cf. (Zarrieß and
Schlangen, 2016). Unfortunately, different mea-
sures have been used in Yu et al. (2016) (BLEU1,
Meteor, ROUGE), and (Yu et al., 2017) (CIDEr,
Meteor), which makes comparison less straight-
forward. Also note that Yu et al. (2017) state that



they collected additional expressions for the test-
sets, resulting in 10 expressions per objects. As we
did not have access to these additional expressions
at the time of writing, we follow Yu et al. (2016)
and evaluate on the original RefCOCO collections
with 3 expressions on average per object.

In the experiments below, we look at three
measures: BLEU1 for unigrams (Papineni et al.,
2002), CIDEr (Vedantam et al., 2015) and lenr
(length ratio) as provided by the MSCOCO eval-
uation server (Chen et al., 2015). We are inter-
ested in the length ratio as a simple approximation
of traditionally used measures in REG (Gatt and
Belz, 2010), reflecting whether the generation out-
put contains too much or too little information (at-
tributes or words). BLEU1 gives us an indication
of the lexical overlap between output and target,
whereas CIDEr operates on the level of n-grams.

6.2 Simple beam search

In Table 2, we present results for the different con-
figurations of our REG model, tested with greedy
decoding and the simple variant of beam search,
with K = 3 and K = 10. Our results for
greedy decoding are comparable in BLEU1 to the
baseline results reported by Yu et al. (2016), with
lower performance on RefCOCO+. This is likely
due to different hyperparameter settings. The
model comparison also shows that the combina-
tion of global context features and a deep decod-
ing layer is clearly disadvantageous, especially for
RefCOCO+. However, for the region model, the
linear decoder outperforms the deep one on Ref-
COCO+, but underperforms it on RefCOCO.

When analyzing the effect of beam size on per-
formance for 16 model-test set combinations in
Table 2, some clear patterns can be observed:

• a wider beam always leads to shorter expres-
sions as shown be the average length ratio, the
effect is drastic on the RefCOCO+ data (e.g. the
av. ratio on testB is 0.92 for greedy decoding
and 0.45 for beam search with K = 3)

• a wider beam leads to lower BLEU1 scores for
most models and test sets, except for 1 out of 16
model-test set combinations

• a wider beam sometimes leads to better CIDEr
scores, BLEU1 and CIDEr disagree in 7 out of
16 model-test set combinations

These results clearly suggest that the stopping
criterion defined in standard beam search is not

appropriate for neural REG models. The greedy
decoding can estimate the appropriate expression
length surprisingly well, even in the region model
that does not have access to global context. In con-
trast, the standard beam search that keeps candi-
dates of different length seems clearly biased to-
wards output that is too short. However, the fact
that CIDEr scores still improve in some cases sug-
gests that beam search leads to linguistically more
well-formed expressions (expressions with a lot of
repetitions are avoided, e.g. the blue blue shirt).

6.3 Modified beam search

In Table 3, we report performance of the region
and global model with the linear decoder and in-
vestigate the effect of different beam search vari-
ants on performance (for reasons of space, we omit
the models with a deep decoder, as these were
more unstable on RefCOCO+).

• a shrinking beam has a clearly detrimental effect
on performance in all cases

• the other beam search variants consistently im-
prove over simple beam search on all metrics

• there is no clear improvement of the beam
search variants over greedy decoding

• len-norm and same-len achieve better length ra-
tios than simple beam, but not better than greedy
decoding

These results support our initial hypothesis that
knowing when to terminate is an essential aspect
of REG, and this aspect is learnt relatively well
by the LSTM. Beam search heuristics for termi-
nation seem to override the model’s knowledge of
what a good stopping point is. The heuristics for
length normalization and stopping have some pos-
itive effect over simple beam search, but are not
fully effective, and might need more extensive tun-
ing. But overall, this suggests that a more princi-
pled decoding solution for neural REG is needed
as greedy decoding also leads to undesired output
patterns (repeated words, for instance).

6.4 Trainable decoding

Table 4 compares the results for the greedy
decoder against a decoder trained to optimize
BLEU1 scores, as explained in Section 4. Some
interesting observations can be made:

• the trained decoder improves over the greedy
decoder on all test sets, models and measures



method filtering termination normalization beam size

simple – when top y is complete – constant
len-norm – when top y is complete length (eq. 3, 4) constant
same-len discard y if complete, but not top when top y is complete – constant
pruning (Freitag and
Al-Onaizan, 2017)

discard y if complete, but not top;
discard y if m candidates with
same history are in beam

when top y is complete – constant

shrinking (Bahdanau
et al., 2014)

– when beam size is 0, select top
y that is complete

length (eq. 3, 4) -1 for each
complete y

Table 1: Beam search variants, y refers to generation candidates

testA testB testA+ testB+
model K Bleu1 CIDEr lenr Bleu1 CIDEr lenr Bleu1 CIDEr lenr Bleu1 CIDEr lenr

Yu et al. (2016)’s BL - 0.477 - - 0.553 - - 0.391 - - 0.331 - -

target,deep 1 0.484 0.625 0.89 0.516 1.096 0.77 0.361 0.436 1.04 0.264 0.552 0.85
target,deep 3 0.452 0.604 0.77 0.471 1.088 0.63 0.304 0.412 0.67 0.180 0.587 0.43
target,deep 10 0.430 0.592 0.70 0.454 1.093 0.60 0.208 0.379 0.50 0.148 0.582 0.38

target,lin 1 0.445 0.555 0.85 0.513 1.078 0.85 0.378 0.443 1.00 0.296 0.506 0.99
target,lin 3 0.420 0.568 0.70 0.480 1.077 0.69 0.302 0.415 0.65 0.252 0.604 0.57
target,lin 10 0.369 0.535 0.62 0.464 1.065 0.66 0.222 0.393 0.51 0.212 0.601 0.48
target+global,deep 1 0.400 0.602 1.12 0.464 1.011 0.86 0.329 0.387 1.04 0.231 0.525 0.95
target+global,deep 3 0.440 0.597 0.72 0.399 1.014 0.56 0.231 0.337 0.57 0.140 0.567 0.36
target+global,deep 10 0.387 0.569 0.62 0.371 1.003 0.53 0.147 0.326 0.41 0.150 0.576 0.37
target+global,lin 1 0.461 0.593 0.89 0.497 1.043 0.78 0.357 0.382 0.91 0.281 0.558 0.92
target+global,lin 3 0.426 0.588 0.72 0.443 1.046 0.61 0.267 0.350 0.61 0.192 0.590 0.45
target+global,lin 10 0.370 0.546 0.61 0.420 1.028 0.58 0.186 0.327 0.47 0.154 0.586 0.39

Table 2: Effect of beam size K on generation performance (beam with K = 1 corresponds to greedy decoding); comparing
models with region and global features, and a deep vs. linear decoding layer.

testA testB testA+ testB+
model decoder,K Bleu1 CIDEr lenr Bleu1 CIDEr lenr Bleu1 CIDEr lenr Bleu1 CIDEr lenr

target greedy,1 0.445 0.555 0.85 0.513 1.078 0.85 0.378 0.443 1.00 0.296 0.506 0.99
target simple,3 0.420 0.568 0.70 0.480 1.077 0.69 0.302 0.415 0.65 0.252 0.604 0.57
target len-norm,3 0.454 0.598 0.77 0.504 1.097 0.75 0.314 0.417 0.71 0.275 0.616 0.64
target len-norm,10 0.444 0.595 0.74 0.502 1.090 0.75 0.279 0.409 0.65 0.275 0.622 0.64
target same-len,3 0.464 0.601 0.81 0.507 1.100 0.77 0.337 0.417 0.82 0.294 0.615 0.72
target same-len,10 0.451 0.598 0.77 0.505 1.092 0.75 0.302 0.403 0.73 0.283 0.624 0.68
target pruning,10 0.461 0.602 0.80 0.506 1.099 0.76 0.324 0.410 0.80 0.285 0.610 0.70
target shrinking,3 0.237 0.317 2.48 0.272 0.600 2.06 0.254 0.319 1.45 0.230 0.460 1.34
target shrinking,10 0.361 0.462 1.11 0.400 0.792 1.19 0.299 0.382 0.81 0.277 0.501 1.03

target+global greedy,1 0.461 0.593 0.89 0.497 1.043 0.78 0.357 0.382 0.91 0.281 0.558 0.92
target+global simple,3 0.426 0.588 0.72 0.443 1.046 0.61 0.267 0.350 0.61 0.192 0.590 0.45
target+global len-norm,3 0.456 0.613 0.79 0.480 1.073 0.68 0.282 0.359 0.64 0.221 0.589 0.51
target+global len-norm,10 0.441 0.601 0.76 0.484 1.073 0.69 0.237 0.355 0.57 0.218 0.593 0.50
target+global same-len,3 0.462 0.616 0.84 0.490 1.079 0.71 0.328 0.380 0.79 0.264 0.588 0.64
target+global same-len,10 0.447 0.606 0.79 0.490 1.072 0.71 0.269 0.357 0.66 0.255 0.582 0.60
target+global pruning,10 0.459 0.617 0.83 0.488 1.068 0.70 0.302 0.366 0.74 0.258 0.588 0.61
target+global shrinking,3 0.240 0.368 2.21 0.282 0.731 1.73 0.179 0.226 1.89 0.167 0.429 1.79
target+global shrinking,10 0.379 0.469 0.89 0.436 0.843 1.00 0.275 0.314 0.75 0.233 0.545 0.62

Table 3: Model with linear decoding layer, different ways of normalizing/parametrizing beam search

testA testB testA+ testB+
model decoder Bleu1 CIDEr lenr Bleu1 CIDEr lenr Bleu1 CIDEr lenr Bleu1 CIDEr lenr

target,deep greedy 0.484 0.625 0.89 0.516 1.096 0.77 0.361 0.436 1.04 0.264 0.552 0.85
target,deep bleu-actor 0.507 0.658 0.95 0.534 1.112 0.82 0.377 0.4 1.02 0.269 0.527 0.75

target,lin greedy 0.445 0.555 0.85 0.513 1.078 0.85 0.378 0.443 1.00 0.296 0.506 0.99
target,lin bleu-actor 0.487 0.625 0.99 0.535 1.089 0.94 0.377 0.452 1.09 0.320 0.579 0.97

target+global,lin greedy 0.461 0.593 0.89 0.497 1.043 0.78 0.357 0.382 0.91 0.281 0.558 0.92
target+global,lin bleu-actor 0.498 0.655 1.02 0.549 1.083 0.93 0.375 0.419 1.02 0.315 0.587 0.93

Table 4: Results for trainable decoding (actor model)



(a1) lexical finetuning

greedy: left vase
actor: left glass
(a2)

greedy: man on left
actor: girl on left

(b1) use object names

greedy: left
actor: left dog
(b2)

greedy: bottom right
actor: stove bottom right

(c1) use precise attributes

greedy: guy on left
actor: person on far left
(c2)

greedy: person on left
actor: person in blue
shirt on left

(d) add function words

greedy: right bike
actor: bike on the right
(e) avoid rare words

greedy: bride
actor: woman in white
dress

Figure 3: Examples from the RefCOCO validation set for strategies learned by the trained decoder

with only few exceptions (CIDEr scores on
testA+ and testB+ for the deep region model)

• the improvements are substantial in many cases
(between 2 and 8 points for BLEU1, and up to 7
points for CIDEr)

• given the trained decoder, the global model now
improves over the region model in the case of
testB (BLEU, CIDEr, lenr) and testB+ (CIDEr)

These results demonstrate the importance of ap-
plying the right decoding procedure when gener-
ating with neural REG models. Interestingly, the
qualitative improvements in performance we ob-
tain clearly exceed the effects found with the same
methods for MT (Chen et al., 2018), but generally
support previous findings on positive effects when
optimizing a sequence model for external evalu-
ation metrics (Ranzato et al., 2016). A possible
explanation is that our REG models benefit from a
two-stage optimization procedure, similar to cur-
riculum learning (Bengio et al., 2009). Another
important question is whether BLEU1, the objec-
tive we used to train the decoder, is conceptually
appropriate for REG or whether we simply tune
the model to our final evaluation measure. The
fact that the actor model also improves the CIDEr
scores and length ratios is a first positive indication
that the BLEU1-actor does not just fit to the met-
ric in a superficial way. The qualitative analysis in
Section 6.6 will shed more light on this.

6.5 Global context

Besides the effect of different decoding strategies
on the performance of our neural REG model, an

interesting and somewhat counterintuitive obser-
vation is that the models that incorporate global
context features do not generally outperform the
local models which only ‘look’ at the target ref-
erent. This finding seems to contradict some very
basic assumptions that have been formulated in the
REG literature, namely that the content of a refer-
ring expression (e.g. its attributes) depend on the
distractors, cf. (Krahmer and Van Deemter, 2012).
At the same time, a lot of theoretical and computa-
tional work on referring expressions has observed
that human speakers tend to overspecify, i.e. use
attributes even though they are not strictly needed
to discriminate the target referent from its distrac-
tors (Koolen et al., 2011). Moreover, our findings
seem to corroborate previous work on RefCOCO
that even observed a detrimental effect of includ-
ing global context features in a neural REG model.

Unfortunately, the RefCOCO corpora lack a
ground truth annotation for attributes, hence, is it
is hard to analyze whether the (missing) effect of
global context is due to shortcomings of existing
neural models for REG or due to inherent patterns
in the data (such as e.g. overspecification). We be-
lieve that a more systematic approach to assess-
ing the effect of distractors on content of referring
expressions in real-world image corpora is a very
promising direction for future research.

6.6 Analysis: Strategies learned via BLEU

We manually go through examples in the Ref-
COCO validation set, and broadly categorize the
cases where the actor model improves over the
greedy decoder. Figure 3 illustrates some frequent



patterns we discovered with representative exam-
ples for each. Our analysis suggests that the ac-
tor has indeed automatically discovered strategies
that lead to contextually more appropriate expres-
sions: it learns to (a) fine-tune its lexicon and use
object names in a sematically more adequate way,
(b) include object names more often making ex-
pressions more pragmatically adequate, and (c)
use more precise attributes also leading to more
pragmatically adequate output. At the same time,
the decoder also learns a strategy that can be con-
sidered as ‘metric fitting’, namely to (d) use more
function words (articles, prepositions) which is a
rather cheap strategy to increase BLEU scores. Fi-
nally, we find that the actor sometimes prevents
the model from using short expressions containing
rare words, as e.g. ‘bride’ in Figure 3(e).

These findings support the interpretation that a
two-stage optimization set-up can help an REG
model to pragmatically fine-tune its generation
output. Vedantam et al. (2017) have recently
adopted a similar approach, tuning a context-
agnostic captioning system to produce discrimina-
tive captions at the stage of decoding (Yu et al.,
2016).

7 Conclusion

We have investigated decoding strategies for neu-
ral REG, finding a clear advantage of trainable de-
coding optimized for BLEU over standard beam
search methods. We think that this two-stage op-
timization set-up offers interesting directions for
future work and can possibly be applied, for in-
stance, in interactive learning scenarios and be
tuned to more explicit communicative objectives.
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