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Abstract

Research on machine learning approaches for up-
per limb prosthesis control has shown impressive
progress. However, translating these results from
the lab to patient’s everyday lives remains a chal-
lenge, because advanced control schemes tend to
break down under everyday disturbances, such as
electrode shifts. Recently, it has been suggested to
apply adaptive transfer learning to counteract elec-
trode shifts using as little newly recorded training
data as possible.

In this paper, we present a novel, simple version
of transfer learning and provide the first user study
demonstrating the effectiveness of transfer learning
to counteract electrode shifts. For this purpose, we
introduce the novel Box and Beans test to evaluate
prosthesis proficiency and compare user performance
with an initial simple pattern recognition system,
the system under electrode shifts, and the system
after transfer learning. Our results show that trans-
fer learning could significantly alleviate the impact
of electrode shifts on user performance in the Box
and Beans test.

1 Introduction

In recent years, machine learning control for upper
limb prostheses has made significant progress, driven
by new control algorithms (Janne M. Hahne, Bieb-
mann, et al. 2014; Ning Jiang et al. 2014; Muceli,
I. Vujaklija, et al. 2017; Prahm, Schulz, Paaßen, et
al. 2017; Aidan D. Roche et al. 2014), new train-
ing paradigms, such as co-adaptive training, vir-
tual reality, and games (J. M. Hahne et al. 2015;
Prahm, Ivan Vujaklija, et al. 2017; Aidan D. Roche
et al. 2014), new surgical techniques, such as tar-
geted muscle reinnervation (Todd et al. 2009; Aidan
D. Roche et al. 2014), new prosthetic devices (Belter
et al. 2013; Controzzi et al. 2017), and new elec-
trodes to record user’s control signal, such as high-
density electrode grids (Daley et al. 2012; Muceli, N.
Jiang, and D. Farina 2014) or implantable sensors
(Janne M. Hahne, Dario Farina, et al. 2016; Ortiz-
Catalan et al. 2012; Pasquina et al. 2015). However,
translating many promising results from the lab to
an amputee’s everyday life remains a challenge due
to various sources of disturbance, such as posture
changes, sweating, weight of grasped objects, long
term changes, or electrode shifts (D. Farina et al.
2014; L. Hargrove, Englehart, and Hudgins 2008;
Khushaba et al. 2014; Young, L. J. Hargrove, and
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Figure 1: An illustration of an 8 electrode grid before
(transparent) and after (opaque) an electrode shift.
The arrows indicate the direction of electrode shift
and the virtual correction, respectively. The cross
section of the arm is adapted from the 1921 German
edition of “Anatomie des Menschen”, which is in the
public domain.

Kuiken 2011; Hwang, Janne Mathias Hahne, and
Müller 2017). Indeed, the negative effects of such dis-
turbances on prosthesis control may be so severe that
users become less confident when using the prosthe-
sis, or abandon their prosthesis altogether (Biddiss
and Chau 2007; D. Farina et al. 2014). Therefore,
counteracting disturbances such as electrode shifts is
a key challenge in contemporary prosthesis research
(D. Farina et al. 2014). In this work, we focus partic-
ularly on transversal electrode shifts (see Figure 1)
which have been identified as more impactful com-
pared to longitudinal shifts (Young, L. J. Hargrove,
and Kuiken 2012).

Multiple approaches in the past have tried to cope
with electrode shifts. For example, Hargrove, Engle-
hart, and Hudghins have suggested to record training
data in all plausible shift conditions to achieve a pat-
tern recognition model that is invariant against shifts
(L. Hargrove, Englehart, and Hudgins 2008). How-
ever, this approach is limited to disturbances that
are present in the training data, and to disturbances
which do not introduce class overlap.

Alternatively, past work has recommended to use
different features of the myoelectric signal which are
more robust than time-domain features with respect
to electrode shifts. In particular, Hargrove et al. as
well as Young et al. propose auto-regressive features
(L. Hargrove, Englehart, and Hudgins 2008; Young,
L. J. Hargrove, and Kuiken 2012) and Khushaba
et al. recommend spectral features (Khushaba et
al. 2014). While both approaches improve classifi-

cation accuracy, they are still severely affected by
shifts. Therefore, we believe that other approaches
are needed in addition to these feature-based tech-
niques.

Further, several authors have suggested alterna-
tive sensors to increase the robustness against elec-
trode shifts. For instance, Muceli et al. as well as
Pan et al. propose high-density electrode grids and
subsequently extracted features (Muceli, N. Jiang,
and D. Farina 2014; L. Pan et al. 2015). An invasive
option is offered by implantable sensors which are
not subject to electrode shifts because they directly
surface the muscle (Janne M. Hahne, Dario Farina,
et al. 2016; Ortiz-Catalan et al. 2012; Pasquina et al.
2015). However, to date, neither high-density elec-
trodes, nor implantable sensors have been very com-
mon in commercial or research systems for prosthesis
control(D. Farina et al. 2014).

Finally, there are approaches which adapt the ma-
chine learning model to the disturbed data. In par-
ticular, Amsüss et al. propose a post-processing ap-
proach which rejects uncertain decisions by the ma-
chine learning model, yielding smoother and more
accurate decisions (S. Amsüss et al. 2014). Vidovic et
al. interpolate between the means and covariances of
the original training data and a small set of disturbed
training data to adapt their machine learning model
to the disturbed condition (Vidovic et al. 2015). Fi-
nally, Prahm et al. as well as Paassen et al. propose
to learn a transformation which cleans up the dis-
turbed data, such that the original model is appli-
cable again (Prahm, Paaßen, et al. 2016; Paaßen,
Schulz, J. Hahne, et al. 2018). The key benefit of
these latter approaches is that they only need to
model the effect of the disturbance while leaving the
controller itself as is. In this paper, we build upon
this transfer learning approach and simplify it for
easier application in practice.

More specifically, we contribute a new adaptation
scheme for transversal electrode shifts in regular elec-
trode grids, which is compatible with any machine
learning model based on a loss function. Secondly,
we provide a novel, easily accessible, and cost effec-
tive way to evaluate prosthetic proficiency in form
of the virtual Box and Beans test, which is based
on the popular Box and Blocks test. Finally, we
present the first user study on transfer learning for
counteracting transversal electrode shifts. Our re-
sults show that transfer learning could significantly
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improve user performance in the Box and Beans test.

2 Method

In our study, we evaluated a prosthetic pattern recog-
nition user interface in three conditions, namely an
initial, undisturbed condition (A), a condition dis-
turbed by electrode shift (B), and a condition where
transfer learning is applied after electrode shift (C).
Note that we did not directly compare to a reference
method from the literature because these methods
are either complementary to our method (L. Har-
grove, Englehart, and Hudgins 2008; Young, L. J.
Hargrove, and Kuiken 2012; Khushaba et al. 2014; S.
Amsüss et al. 2014), apply to different sensor settings
(Muceli, N. Jiang, and D. Farina 2014; L. Pan et al.
2015; Janne M. Hahne, Dario Farina, et al. 2016;
Ortiz-Catalan et al. 2012; Pasquina et al. 2015), or
need calibration data from all movements whereas
our approach requires only a calibration set for a
subset of movements (Vidovic et al. 2015).

We first introduce our signal extraction (Sec-
tion 2.1.1) and pattern recognition (Section 2.1.2)
schemes and then describe our proposed transfer
learning approach for condition C (Section 2.1.3). In
all conditions, we evaluated prosthetic proficiency by
a novel Box and Beans test (Section 2.2.1) and we
evaluated the users’ attitudes toward the system by
a questionnaire (Section 2.2.2). Finally, we present
the study design in more detail (Section 2.2.3).

2.1 Algorithm description

2.1.1 Signal extraction

We recorded the myoelectric signal via the 8-channel
Thalmic Myo armband with a sampling rate of
200Hz. The 8 channels are ordered in a regular grid
around the forearm, as illustrated in Figure 1. Due
to its comparably low sampling rate, pattern recogni-
tion is harder in the Thalmic Myo compared to pro-
fessional systems (Phinyomark, N. Khushaba, and
Scheme 2018), such that satisfactory results on the
Thalmic Myo are likely to translate well to higher-
quality setups.

Following Hahne et al. (Janne M. Hahne, Bieb-
mann, et al. 2014), we pre-processed the data in
each channel by a 50Hz comb filter to avoid poten-
tial power line interference via capacitive coupling,
and by computing the logarithm of the variance on

windows of 120ms with 40ms overlap. According
to Hahne et al., the log variance is roughly linearly
related to the strength of the motion intent, thus
promising a good representation for motion classifi-
cation. In the following, we denote the 8 dimensional
vector of log-variances per channel at time step t as
xt ∈ X ⊂ R8.

2.1.2 Pattern Recognition

Our system should be able to infer the intended mo-
tion yt from the current signal xt. In our case, we
are interested in motions in two degrees of freedom
(DoF) yt = (y1t , y

2
t ), namely wrist rotation encoded

by y1t and hand opening/closing by y2t . Thereby
y1t , y

2
t ∈ {−1, 0, 1}, where a value of 0 implies no

movement in that DoF, yt = (−1,−1) encodes
wrist pronation combined with hand closing, and
yt = (1, 1) encodes wrist supination combined with
hand opening.

To solve this task we utilize Generalized Matrix
Learning Vector Quantization (GMLVQ) (Schnei-
der, Biehl, and Hammer 2009). In particular, we
train two GMLVQ models, one per DoF r, which
are executed in parallel to achieve an independent
classification in both DoFs. GMLVQ works by
initializing m (hyperparameter) so-called prototypes
wr

1, . . . ,w
r
m ∈ X in the space of the data X , each

of which is associated with one corresponding move-
ment yrt ∈ {−1, 0, 1}. The term prototype refers to
the fact that every EMG pattern xt in the data set
should be closest to a prototype corresponding to
the actual movement yrt and further away from pro-
totypes for different movements. We achieve this
property by minimizing the following loss function:∑

t

`(xt, y
r
t) where `(xt, y

r
t) =

d+(xt)− d−(xt)

d+(xt) + d−(xt)

(1)
where d+/−(xt) is the distance from xt to the near-
est prototype with the same/different label, respec-
tively. The distance between a data point xt and a
prototype wr

k with k ∈ {1, . . . ,m} and r ∈ {1, 2} is
quantified as follows.

d(xt,w
r
k) = (xt −wr

k)
T(Ωr)TΩr(xt −wr

k), (2)

where the matrix Ωr ∈ R8×8 is a linear projec-
tion learned by the model to facilitate classifica-
tion. To optimize the loss (1), we utilize the
limited-memory Broyden-Fletcher-Goldfarb-Shanno
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Figure 2: Overview over the considered transfer learning setting, from left to right. We first train a pattern
recognition model on data recorded under lab conditions, i.e. from the source domain (original). The colors
of the points indicate their according class. Then, the incoming data is disturbed via an electrode shift
such that the model may not be appropriate (disturbed). To estimate the disturbance, we record a few new
data instances from a few of the classes in the disturbed condition, i.e. in the target domain (record new
data). Grey points indicate possible positions of future data. Finally, the transfer learning step utilizes
the gathered data to learn a transformation of disturbed data, such that the original classification model
is applicable again (transfer learning).

(BFGS) algorithm (Fletcher 1987) and the GMLVQ
implementation provided as part of the SOM tool-
box1.

After we obtain a GMLVQ model for a data set,
we can predict the label for a new instance xt by
computing the distances d(xt,w

r
k) to all prototypes

wr
1, . . . ,w

r
m and selecting the label of the closest pro-

totype.
Benefits of GMLVQ include good generalization

properties due to low model complexity, inter-
pretable components (the prototypes, the relevance
assigned to each feature by Ωr), and a low compu-
tational complexity (Schneider, Biehl, and Hammer
2009). As such, the GMLVQ algorithm provides a
model which is feasible for rapid classification in sys-
tems with very limited computational resources, such
as embedded systems in a prosthetic device.

Now that we have obtained a GMLVQ model, our
main challenge is to adapt the model to electrode
shifts.

2.1.3 Transfer Learning

Our aim is to counteract electrode shifts via transfer
learning. In general, transfer learning is concerned
with transferring knowledge from some source do-
main or task to a different target domain or task
(S. J. Pan and Yang 2010). In our case, we have

1https://github.com/ilarinieminen/SOM-Toolbox

already learned a model f : X → {−1, 0, 1}2 which
infers intended motions from EMG data. However,
in an everyday situation, electrode displacements
change the recording of user motions such that these
are no longer mapped to the same positions in X , but
to different ones which we refer to as the disturbed
data space X̂ ⊂ R8. Here, our model f makes incor-
rect predictions, i.e. f(x̂t) 6= yt, with x̂t ∈ X̂ .

In our work, we follow the basic approach of
Paaßen et al., who propose to exploit the relationship
between the source data and target data in order to
apply the source model f to the target data. If this
relationship is simple compared to the model f itself,
learning the relationship should also be simpler com-
pared to learning a new model for the disturbed con-
dition (Paaßen, Schulz, and Hammer 2016; Paaßen,
Schulz, J. Hahne, et al. 2018). Figure 2 illustrates
this transfer learning scenario.

While previous work has applied an ad-hoc lin-
earity assumption (Paaßen, Schulz, J. Hahne, et al.
2018; Prahm, Paaßen, et al. 2016), we explore the
relationship between the undisturbed and disturbed
data in more detail and exploit additional knowl-
edge about the domain. In particular, we know
that the data is recorded via a regular 8 electrode
grid, where the distance between the electrodes is
held roughly equal by the armband (see Figure 1).
In formal terms, we assume that the jth electrode
sits at position j · 45◦ around the forearm, where

https://github.com/ilarinieminen/SOM-Toolbox
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Figure 3: An illustration of our proposed scheme to
estimate the undisturbed features of the jth electrode
xt,j from the disturbed features x̂t,j−1 and x̂t,j after
an electrode shift by c ∈ [0, 1] electrodes. The x-
axis displays the angle around the forearm, the y-
axis the feature amplitude. Note that we assume
that the feature can be linearly interpolated between
the electrodes.

j ∈ {1, . . . , 8}. Now, let φ(t, θ) denote the features
corresponding to time step t and angle θ around the
forearm, let xt,j denote the features of electrode j at
time step t, and let x̂t,j denote the features of elec-
trode j at time step t after an electrode shift. For
all t and all j ∈ {1, . . . , 8} it holds per definition
xt,j = φ(t, j · 45◦). Further, for any electrode shift by
c ∈ [0, 1] electrodes we obtain x̂t,j = φ(t, [j + c] · 45◦)
for all j ∈ {1, . . . , 8}.

Based on this setup, and the assumption that
features change linearly between neighboring elec-
trodes, we can estimate the features at the jth un-
shifted electrode xt,j based on the features at the jth
shifted electrode x̂t,j and the features at the j − 1th
shifted electrode x̂t,j−1 as follows (see Figure 3).

xt,j = φ(t, j · 45◦)

=φ(t, [j + c] · 45◦)−
( ∂
∂c
φ(t, [j + c] · 45◦)

)
· c · 45◦

=x̂t,j −
φ(t, [j + c] · 45◦)− φ(t, [j− 1 + c] · 45◦)

[j + c] · 45◦ − [j− 1 + c] · 45◦
· c · 45◦

=x̂t,j − (x̂t,j − x̂t,j−1) · c
=(1− c) · x̂t,j + c · x̂t,j−1

Note that the equality in the second and third line
rely on our linearity assumption. In other words, we
estimate xt,j = φ(t, j · 45◦) via a first-order Taylor
expansion of φ at point x̂t,j = φ(t, [j + c] · 45◦) and a
finite-difference approximation of the derivative us-
ing point x̂t,j−1.

If we generalize this result over all electrodes, we
obtain xt = T(c) · x̂t, where T(c) is the matrix with
entries T(c)i,i = 1− c, T(c)i+1,i = c, T(c)1,8 = c and
T(c)i,j = 0 otherwise. We can repeat this argument
for the case of electrode shifts in the inverse direction,
which we denote by a negative c, in which case we
obtain the equation xt = T(−c)T · x̂t.

So far, we considered electrode shifts of up to one
electrode. Larger shifts can be analysed analogously,
i.e. reconstructing the signal of an old electrode by
the signals of its two new neighbors. For general
c ∈ R we obtain the matrix T(c) as T(c−8) if c ≥ 8,
as T(−c)T if c < 0, and otherwise:

T(c)i,j =



1−mod(c, 1) if j = i− bcc
1−mod(c, 1) if j = i + 8− bcc
mod(c, 1) if j = i− dce
mod(c, 1) if j = i + 8− dce
0 otherwise

where mod(c, 1) is mod(c − 1, 1) if c ≥ 1 and c if
c < 1, bcc is the largest integer which is at least as
small as c and dce is the smallest integer larger than
c.

The only remaining challenge now is to estimate
the single parameter c from data. More precisely, we
wish to identify a parameter c such that our existing
model f performs as well as possible on the disturbed
data after applying T(c). Hence, we can optimize c
by solving the following minimization problem.

argmin
c

1

2

2∑
r=1

∑
t

`(T(c) · x̂t, y
r
t) (3)

where ` may be any loss function which quantifies
the deviation between the prediction of a model for
the input T(c) · x̂t and the desired motion yt, in
our case the GMLVQ loss from Equation (1). To
solve this problem we can simply sample c from a
range of possible shifts, e.g. [−2, 2], compute the cost
function (3) for each and select the c with minimum
cost.

An example of the selection procedure is depicted
in Figure 4. The x-axis depicts different c values,
where a positive sign implies corrections for lateral
shifts and a negative sign for medial shifts of amount
|c|. The y-axis denotes the value of the cost func-
tion (3) that we wish to optimize. The orange and
blue curve mark the according values for the two de-
grees of freedom in our system, i.e. hand open/close
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−2 −1.5 −1 −0.5 0
0

0.1

0.2

0.3

0.4

c

∑ t
`(

T
(c
)
·x̂

t,
y
r t)

wrist rotation (r = 1)
hand closing (r = 2)
mean

Figure 4: An example for the selection procedure for
the best value of c. The X-axis denotes different val-
ues of c where a positive sign indicates a lateral, and
a negative sign indicates a medial shift. The y-Axis
displays the value of the cost function (3) for both
degrees of freedom (wrist rotation in blue and hand
opening/closing in orange), as well as the mean of
both (gray). The gray, dashed, vertical line indicates
the c with minimum error.

Figure 5: The different grasp-forms the virtual
grasper can perform: open, close, rotate left, rotate
right and the simultaneous combinations of those.

and supination/pronation, the black curve is their
average. Finally, the vertical dashed black line indi-
cates the selected best value of c, according to the
minimum of the black curve. If there are multiple
minimum values, we select c as the median of those.

Note that the estimated c does not need to exactly
correspond to the ground truth (c = −0.8, in this
case). Yet, we can still achieve a low predictive error
in a range around the ground truth c value (c ∈
[−1.4,−0.5], in this case).

2.2 Experiment description

2.2.1 From Blocks to Beans - the Box and
Beans Test

The Box and Blocks test is a quick and common
tool in physiotherapy to measure unilateral manual
dexterity. Patients are scored based on the num-
ber of blocks they are able to transfer within 60s
from one compartment to the opposite one. The
two compartments are separated from another by a
board which is higher than the box’ walls (Math-

iowetz et al. 1985). A common way to test pros-
thetic proficiency with a novel algorithm is to fit the
patient with a personalized socket and to provide
able-bodied participants with a hybrid prosthesis at-
tached to their healthy arm (Aidan Dominic Roche
et al. 2015). As both solutions are impractical and
cost-intensive, we propose to implement the Box and
Blocks test in a virtual environment instead2. Be-
cause a direct 2D implementation of the Box and
Blocks test would mean losing one DoF (either ro-
tation for transradial prosthesis users or elbow func-
tion for transhumeral users), we replaced the blocks
by beans. With this bean or barbell shape, the users
of the virtual Box and Beans test were coerced to ro-
tate their virtual grasper in order to catch the beans
because the grasper needs to slide over the bulky end-
ings of the bean before attaching to the thin middle
part. Using the EMG signals, the grasper could be
opened, closed, rotated left and right or perform any
expedient simultaneous combination of these move-
ments (see Figure 5). The grasper was controlled
by pattern recognition as described above, where
each movement was executed at a constant speed.
The built-in gyroscope of the Myo armband allowed
the users to freely move their arm, just like in the
real Box and Blocks test, and thereby maneuver the
grasper across the screen. When only one bean was
left in the start compartment, three new, randomly
oriented, colored and positioned beans would spawn
in the start compartment so that there would never
be a shortage of beans (see Figure 6).

2.2.2 Questionnaire

A modified version of the intrinsic motivation inven-
tory (IMI) questionnaire was given to the partici-
pants after finishing performing the Box and Beans
test in each condition in order to assess the expe-
rience of the game control and whether participants
noticed differences in the control method at all (Ryan
1982). The IMI included in this study consisted of
19 questions corresponding to four subscales: En-
joyment, perceived pressure, effort and usefulness.
The questions were adapted to fit the study by ex-
changing “working” and “doing” from the original IMI
with “using this control”. Participants could mark
their answer on a 7-point Likert scale ranging from

2Refer to https://github.com/joeschman/BoxAndBeans
for the source code

https://github.com/joeschman/BoxAndBeans
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Figure 6: Layout of the Box and Beans test: The
beans are to be transferred from the start compart-
ment to the finish compartment. They have to be
passed over the wall between both compartments and
fall to or be placed on the the ground to successfully
score a point. The score and remaining time can be
seen at the top left of the screen.

1 (“strongly disagree”) to 7 (“strongly agree”).

2.2.3 Study design

Four upper limb amputees on a transradial level (be-
low elbow) and nine able-bodied participants took
part in this study. They were each seated in front of a
computer screen showing the Box and Beans test and
wearing the Myo Armband by Thalmic Labs around
their forearm (Figure 7). The circumference of each
participant’s forearm was measured to calculate the
distance the armband had to be rotated.

This study consisted of three conditions (A, B, C)
which are listed in detail in Table 1. In each con-
dition, the Box and Beans test was performed nine
times and a questionnaire was conducted. At first
condition A was executed, consisting of recording the
participant’s myoelectric signals in order to train the
pattern recognition algorithm. Each of the five move-
ments in both DoFs (resting, hand open, hand close,
supination, pronation) and the four combinations
(hand open with supination, hand open with prona-
tion, hand close with supination, hand close with
pronation) were recorded once for 6.5s each. Ad-
ditionally, the five single movements were recorded
two additional times to increase the robustness of
the machine learning model. Afterwards, the Box
and Beans test was performed to establish a baseline
performance.

After finishing condition A, the Myo Armband was

Figure 7: Study set-up: The patient is wearing the
Myo armband around his forearm with the elbow
resting on the table and facing the computer screen.

rotated by c = 0.8 electrodes. In practice, this re-
sulted in shifts around 2cm, being an upper bound to
electrode shifts with custom made sockets reported
in the literature (Sebastian Amsüss 2015) (section
2 therein). We investigate an upper bound to en-
sure that our approach can handle disturbances that
severely affect functionality.

Three additional movements - resting, to estimate
the shift from baseline activity, as well as hand close
and supination - were recorded in this state for 6.5s
each and the transfer learning algorithm was applied.
Note that the data of these three movements would
be insufficient to train a new model because several
classes are missing (hand open and pronation). Two
experimental conditions followed in randomized or-
der:

B) Performing the Box and Beans test nine times
using the original model.

C) Performing the Box and Beans test nine times
using the result of the transfer learning algo-
rithm together with the original model.

The current condition was concealed to participants
by performing an apparently equivalent setup for
both conditions. In condition C, the learned trans-
formation was applied to the incoming data, while
in condition B, a mock transformation was used that
did not change the data.

This study was approved by the ethics committee
at the Medical University of Vienna, Austria, under
[1301/2015] and all participants provided their con-
sent prior to the study.
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3 Results

3.1 Questionnaire

The mean scores across all 13 participants of the five
subscales of the IMI for all three conditions are dis-
played in Figure 8. Error bars indicate standard
deviation. There was no significant difference be-
tween ratings by patients and able-bodied partici-
pants. Across all 13 participants, a Kruskal-Wallis
test with significance threshold α = .05 revealed that
participants enjoyed using the control algorithm sig-
nificantly more during condition A and C (p = .001).
Moving the controller in condition B also required
significantly (p = .01) more effort than during con-
dition A and C. Subsequently, this algorithm was
rated as significantly less useful for controlling a my-
oelectric arm prosthesis in condition B compared to
condition A and C (p = .004).

3.2 Transfer Learning

The median scores over 9 runs in the Box and Beans
test for all participants and all conditions are dis-
played in Figure 9. The first four bars correspond
to amputees, the latter nine to able-bodied partic-
ipants. Bar height corresponds to median score in
conditions A (gray), B (blue, dotted), and C (or-
ange, striped) respectively. Error bars indicate the
inter-quartile range.

We compared median scores for conditions B and
C across the nine able-bodied participants using a
one-sided Wilcoxon sign-rank test, revealing a sig-
nificant difference (p < 0.05 after Bonferroni correc-
tion). Additionally, for each of the 13 participants,
we compared the 9 Box and Beans test scores in con-
dition B with the scores in condition C using a one-
sided Wilcoxon rank-sum test, revealing significant
differences for seven of the 13 participants (p < 0.05
after Bonferroni correction; also refer to Figure 9).
Note that we do not make claims regarding the dif-
ference to condition A because this condition was
always performed before the other two, such that
training effects may confound the statistical analy-
sis.

4 Discussion and Conclusion

In this paper, we proposed a novel transfer learning
scheme to counteract electrode shifts, introduced the

Table 1: Overview of study procedures
Cond. Data / prosthesis control Box’n’Beans Questionnaire

A recording initial movements 9 times IMI
rotate Myo armband, record 3 movements

B use original model 9 times IMI
C apply transfer learning 9 times IMI

virtual Box and Beans test as a novel test of pros-
thetic proficiency, and we provided the first experi-
mental study to evaluate transfer learning to coun-
teract electrode shifts. Given that the muscle con-
figuration and muscle mass of upper limb amputees
differs from able-bodied participants, it is important
to evaluate any algorithm which is aimed at clin-
ical application on actual patients. In our study,
we evaluated transfer learning both on able-bodied
participants and on transradial amputees, and found
consistent results for both groups. In particular,
we could show significant improvements in Box and
Beans score for five out of nine able-bodied partici-
pants and two out of four transradial amputees com-
pared to the control condition, indicating that a wide
range of transradial prosthesis users could benefit
from transfer learning. In no cases did the perfor-
mance decrease. Further, we observed a significant
overall improvement across the able-bodied popula-
tion. Consistent with score improvements, partici-
pants regarded the system after transfer learning as
more enjoyable, more effortless in handling and more
useful for a potential myoelectric prosthesis control
compared to the control condition

The approach as presented in this paper is limited
to electrode shifts, specifically transversal shifts in
regular electrode grids around the forearm. In case
of irregular electrode placements, different transfer
functions need to be applied, adjusted to the spe-
cific configuration of the electrodes. We also as-
sumed that features change linearly between neigh-
boring electrodes, which is only justified if electrodes
are sufficiently dense to make a linear approxima-
tion plausible. Therefore, configurations with fewer
than eight electrodes may not benefit as much from
the presented transfer learning scheme. Also, our
approach is limited to cases where electrode shifts
act on all electrodes equally, which may not hold in
case of very soft materials or disturbances beyond
electrode shifts, such as sweat, fatigue, or electrode
liftoff. Generalizations to these kinds of disturbances
could be possible if a model for the impact exists and
can be parametrized in a low-dimensional space. Fi-
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Figure 8: The average response for the questionnaire
on a 7-point Likert scale after using the original pat-
tern recognition system (condition A, grey bar), after
using the system under electrode shift (condition B,
blue dotted bar), after using the system after trans-
fer learning (condition C, orange striped bar). Error
bars indicate standard deviation.

nally, the virtual Box and Beans test has its own
limitations in neglecting the weight of the prosthesis
and the blocks. It is a general limitation for vir-
tual environments that there is neither haptic nor
weight related feedback. However, it does not com-
promise the transfer learning results. Also, we co-
erced the participants to actively employ a DoF (ro-
tation) that they do not necessarily need during the
analogue Box and Block test. We showed that for
a low-cost consumer-grade sensor with a moderate
number of electrodes, our transfer learning approach
offers a data-parsimoneous, fast, easy to implement,
and effective way to counteract electrode shifts. This
gives reason to hope that transfer learning could im-
prove prosthetic applications in the future, enhanc-
ing usability and robustness, and, in turn, patients’
lives.
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