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Abstract. In this work, we study the Dirichlet problem associated with a
strongly coupled system of nonlocal equations. The system of equations comes

from a linearization of a model of peridynamics, a nonlocal model of elasticity.

It is a nonlocal analogue of the Navier-Lamé system of classical elasticity. The
leading operator is an integro-differential operator characterized by a distinc-

tive matrix kernel which is used to couple differences of components of a vector
field. The paper’s main contributions are proving well-posedness of the system

of equations and demonstrating optimal local Sobolev regularity of solutions.

We apply Hilbert space techniques for well-posedness. The result holds for
systems associated with kernels that give rise to non-symmetric bilinear forms.

The regularity result holds for systems with symmetric kernels that may be

supported only on a cone. For some specific kernels associated energy spaces
are shown to coincide with standard fractional Sobolev spaces.

1. Introduction. We study the Dirichlet problem associated with a nonlocal sys-
tem of equations

Lu = f in Ω; u = 0 in {Ω. (1)

where the matrix-valued nonlocal operator L is of the form

Lu(x) = lim
ε→0+

∫
|x−y|>ε

k(x,y)

(
x− y

|x− y|
⊗ x− y

|x− y|

)
(u(x)− u(y)) dy, (2)

when the limit exists. In the above, Ω ⊂ Rd denotes an open, bounded set with a
sufficiently regular boundary, and {Ω denotes its complement. The functions u and f
are vector fields defined in their respective domain. The kernel k : Rd×Rd → [0,∞]
is measurable. For given vectors a = (a1, a2, · · · , ad), and b = (b1, b2, · · · , bd),
the tensor a ⊗ b is the rank-one matrix with aibj as its ijth entry. From the very
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definition of the nonlocal operator L, it is clear that (1) is a strongly coupled system
of equations.

The goal of this paper is twofold. First, we formulate a variational problem for
(1), the resolution of which provides solutions to (1). We treat more general kernels
than those covered in the literature. For given data f in an appropriate class, we
describe a notion of solution and demonstrate existence of vector-valued solutions
u : Rd → Rd to the nonlocal coupled system (1). The second goal is to prove some
results related to the optimal regularity of solutions. This will be carried out for a
specific class of kernels.

The motivation to study the above system of equations comes from applications.
Indeed, the system (1) is the equilibrium equation in linearized bond-based peridy-
namics, a nonlocal continuum model that has received a lot of attention in recent
years [34, 35, 36]. To describe the model, a body occupying Ω ⊂ Rd has undergone
the deformation that maps a material point x ∈ Ω to x+u(x) in a deformed domain.
In this case, the vector field u represents the displacement field. The peridynamic
model treats the body as a complex mass-spring system. Any two material points
y and x are assumed to be interacting through a bond vector ξ = y − x. Under
the uniform small strain theory [35], the strain of the bond y − x is given by the
nonlocal linearized strain

D(u)(x,y) = (u(x)− u(y)) · x− y

|x− y|
.

A portion of this strain contributes to the volume changing component of the de-
formation and the remaining is the shape changing component. According to the
linearized bond-based peridynamic model [35] the balance of forces is given by a
system of equations that has the same form as (1) for some appropriate kernel
k. The kernel k contains properties of the modeled material and represents the
strength and extent of interactions between material points x and y. The kernel k
may depend on x,y, their relative position y − x or, in the case of homogeneous
materials, only on their relative distance |y − x|. For general k, the equation may
model heterogeneous and anisotropic materials. The operator Lu is then the lin-
earized internal force density function due to the deformation x 7→ x + u(x) and
is a weighted average of the linearized strain function associated with the displace-
ment u [26, 35]. Indeed, rewriting (2) in terms of the nonlocal strain D(u) we get

Lu(x) = lim
ε→0+

∫
|x−y|>ε

k(x,y)D(u)(x,y)
x− y

|x− y|
dy, whenever it exists.

The usage of the “projected” difference of u, D(u)(x,y), in L makes the operator
distinct from other nonlocal operators that use the full difference u(y)− u(x). To
see this distinction, it suffices to note that for smooth vector fields

D(u)(x,y)

|y − x|
=

(y − x)ᵀ
(
ε(u)(x)

)
(y − x)

|y − x|2
+ o(|y − x|)

whereas u(y)−u(x)
|y−x| = ∇u(x) (y−x)

|y−x| + o(|y − x|), where we have used the notation

ε(u)(x) to represent the symmetric part of the gradient matrix 1
2 (∇u(x)+∇u(x)ᵀ),

commonly called the strain tensor. The action {}ᵀ denotes the transpose. A con-
sequence of this is that the nonlocal system (1) can be seen as a nonlocal analogue
of the Dirichlet problem corresponding to the strongly coupled system of partial
differential equations

divC(x)ε(u)(x) = f in Ω; u = 0 in ∂Ω ,
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where C(x) is a fourth–order tensor of bounded coefficients, which is not necessarily
uniformly elliptic but rather satisfies the weaker Legendre-Hadamard condition.
Systems of partial differential equations of the above type that are commonly used
in the theory of linearized elasticity are well studied, see [17].

Our study of the nonlocal system (1) begins with a mathematically rigorous
understanding of the operator L. The focus is to find a large class of kernels k
that may not be symmetric (k(x,y) 6= k(y,x)), may have singularity along the
diagonal {(x,y) ∈ Rd × Rd : x = y} or degeneracy on some directions such that
both the operator L and associated system of equations (1) make sense. Notice
that even for smooth functions the limit in (2) does not exist in general unless we
put a condition on k. As with partial differential equations in divergence form with
measurable coefficients, we study variational solutions based on quadratic forms. We
use use Hilbert space techniques to study the Dirichlet problem (1). Applicability
of harmonic analysis tools is also possible when the system of equations is posed
over the entire domain Rd.

To describe some of our results, following [14, 32] let us introduce a decomposition
of k(x,y) in terms of its symmetric part ks and its anti-symmetric part ka. They
are given by

ks(x,y) =
1

2
(k(x,y) + k(y,x)), ka(x,y) =

1

2
(k(x,y)− k(y,x)).

Throughout the paper we consider kernels whose symmetric part has locally integral
second moment, i.e., we assume

x 7→
∫
Rd

min{1, |x− y|2}ks(x,y) dy ∈ L1
loc(Rd). (3)

We also define the function space of vector fields

S(Rd; k) =
{

v ∈ L2(Rd;Rd) : D(v)(x,y)k1/2
s (x,y) ∈ L2(Rd × Rd)

}
.

The mapping [u,v]H(Rd;k) :=
∫∫

Rd Rd
ks(x,y)D(u)(x,y)D(v)(x,y) dy dx defines a bi-

linear form on S(Rd; k). One can easily show that the function ‖ · ‖S(Rd;k), defined
via the relation

‖v‖2S(Rd;k) = ‖v‖2L2(Rd) +

∫∫
Rd Rd

ks(x,y)(D(v)(x,y))2 dy dx,

serves as a norm for S(Rd; k). Moreover, adapting the argument used in the proof
of [14, Lemma 2.3], we can actually show that S(Rd; k) is a separable Hilbert space
with inner product (·, ·)L2 + [·, ·]S(Rd;k) . See also similar results in [12, 26, 25]. We

denote the dual space of S(Rd; k) by S∗(Rd; k).
Roughly speaking, we show the following results: for those kernels k whose an-

tisymmetric part is small relative to the symmetric part (e.g. the function x 7→∫
Rd

(ka(x,y))2

ks(x,y) dy is uniformly bounded for any u ∈ S(Rd; k)), the limit in (2) exists

in the weak-* topology of the dual space S∗(Rd; k), and therefore Lu ∈ S∗(Rd; k).
This interpretation of the operator allows us to define a generalized or weak notion
of solution to the system of equations in (1). The well-posedness of the problem
is demonstrated via the application of the Lax-Milgram theorem. To this end, we
introduce a bilinear form on the space S(Rd; k)× S(Rd; k) that is compatible with
the system (1), and by imposing additional conditions on k we show that this form
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is continuous and coercive on appropriate subspaces. Systems of the type (1) have
been studied extensively in the literature, cf. in [19, 11, 10, 13, 25]. Our results
complement the well-posedness result in the above cited papers. Indeed, our work
deals with kernels that give rise to non-symmetric bilinear forms while earlier works
are based on kernels associated to symmetric bilinear forms. As we will see in the
next section clearly, the non-symmetric bilinear forms we study account for the
the presence of lower order terms that may involve “lower order fractional” deriva-
tives, while the results in [25] deal with linear problems with lower order terms that
involve the unknown function without any derivatives.

Let us comment on the case where the vector fields are scalar. In this case, the
quadratic form under consideration becomes a regular Dirichlet form in the sense
of [15]. For this reason there is an associated strong Markov jump process, which
can be used to study the Dirichlet problem. In the particular case of translation
invariant operators, i.e., when k(x,y) depends only on (x − y), the process has
stationary independent increments and is called a Lévy process. The potential
theory of Markov jump processes including fine properties of heat kernels has been
developed in great detail in recent years. It can be shown that our notion of a
variational solution coincides with the probabilistic notion of harmonicity [4, 23]
if the source term f vanishes. For the theory of nonlocal non-symmetric Dirichlet
forms we refer to [20, 16, 32]. In the case of scalar fields, the variational approach
to the Dirichlet problem has been used by several authors [33, 14, 29]. Note that
we only comment on nonlocal operators in bounded domains which are related
to quadratic forms. For a survey of results on nonlocal Dirichlet problem in the
non-variational context, see [28].

Our study of the nonlocal system (1) for general kernels follows the variational
approach taken in [14] adapting it to the system of equations. This adaptation is
not trivial because of the structure of the operator. For instance, one can easily
check that the seminorm [u,u]S(Rd;k) vanishes over a class of affine maps of the type
u(x) = Bx + c, where B is a skew-symmetric matrix. When proving coercivity of
the form over a subspace, one has to find a mechanism to remove this large class of
maps, as opposed to constants in the case of equations. We will see that we need
to use fractional Poincaré-Korn-type inequalities for the system in contrast to the
standard fractional Poincaré inequality for problems involving scalar fields.

Let us mention that the system arising in (1) is related to the Euler-Lagrange
system generated by fractional harmonic maps. Those systems were studied first in
[7] for the half-Laplacian and then extended to more general situations [30, 6, 31,
27, 8]. In these works, the systems arise as Euler-Lagrange equations for critical

points of functionals like ‖(−∆)
s
2 u‖Lp for u ∈ Ḣs,p(Rd;M) where M ⊂ RN is a

smooth closed manifold. Obviously, these systems are nonlinear in general, which
makes the regularity theory very challenging. However, the systems generated by
harmonic maps do not possess a strong coupling in the main part of the operator
as in (1).

In this paper, we also obtain local regularity results for variational solutions
of the system (1) corresponding to a special class of kernels. For this aspect of
our study, we concentrate on translation invariant operators with kernels of the
form k(x,y) = k(x − y) that are even and comparable with the standard kernel
of fractional order. We allow this comparability to hold true in any double cone Λ
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with apex at the origin, i.e.

k(x− y) � 1

|y − x|d+2s
, s ∈ (0, 1), x− y ∈ Λ.

For these types of kernels we show that the Hilbert space S(Rd; k) is equivalent to
the standard fractional Sobolev space

Hs(Rd;Rd) :=

u ∈ L2(Rd;Rd) : |u|2Hs :=

∫∫
Rd Rd

|u(x)− u(y)|2

|x− y|d+2s
dy dx <∞

 .

Such an equivalence will be proved using the Fourier transform. See [24, 12] for re-
lated results. For such kernels we show that actually the operator L : H2s(Rd;Rd)→
L2(Rd;Rd) is continuous. More generally, for any p ∈ (1,∞), if we define the non-
homogeneous potential space

L2s,p(Rd;Rd) = {u ∈ Lp(Rd;Rd) : (−∆)su ∈ Lp(Rd;Rd)}

where the fractional Laplacian (−∆)s is acting on each component, then it can be
shown that the nonlocal matrix-valued operator L : L2s,p(Rd;Rd) → Lp(Rd;Rd) is
continuous. Most importantly, we show in this paper that for any 2 ≤ p ≤ 2d

d−2s and

f ∈ Lp(Ω;Rd), the unique variational solution u ∈ Hs(Rd;Rd) to the zero Dirichlet
problem

Lu = f in Ω, u = 0 in {Ω. (4)

belongs to L2s,p
loc (Rd;Rd). We say u ∈ L2s,p

loc (Rd;Rd) if uη ∈ L2s,p(Rd;Rd) for any

η ∈ C∞c (Rd). For nonlocal equations, results of the above type have been proved
in [2, 22, 18]. We follow an approach that is used in [2, 1], where a similar but
more general result is proved for the Dirichlet problem for the fractional Laplacian
equation when the right hand side comes from Lp for any 1 < p < ∞. In the case
of vector fields, we could not cover all ranges of p but only with the additional
assumption that the weak solution u ∈ Lp. In the scalar case such an assumption is
not necessary since it can be proven that a solution to the Dirichlet problem of the
fractional Laplacian with right hand side in Lp must also be in Lp, see [2, Lemma
2.5]. A similar Calderón-Zygmund type estimate for solutions is also proved in [22,
Theorem 16]. Unfortunately we are unable to extend their proof to the vector-valued
case because the argument in [2] relies on a monotonicity property of an associated
semigroup and the result in [22] uses a Moser-type argument where a nonlinear
function of the solution is used as a test function. Neither of these arguments can
be applied for systems.

The organization of the paper is as follows: In Section 2 we introduce additional
notation, provide some auxiliary results, and show well-posedness of the Dirichlet
problem (1) using Hilbert space methods. We present sufficient conditions that
imply the validity of fractional Poincaré-Korn-type estimates for a larger class of
kernels. We also provide examples of kernels for which the theorem is applicable.
For a smaller class of kernels we also link the energy space S(Rd; k) with classical
Sobolev spaces. In Section 3 we prove higher-order interior regularity of solutions
to the Dirichlet problem corresponding to a particular class of kernels.

2. Variational formulation. In this section we set up the variational approach
to solve the system (1).
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2.1. Notations and definitions. Throughout the paper we will be using the fol-
lowing function spaces and their associated norms. We assume that D ⊂ Rd is an
open subset, and {D denotes its complement. We begin with the function spaces

LpD(Rd) = {u ∈ Lp(Rd;Rd) : u = 0 a.e. on {D}
which collects Lp functions defined over Rd that vanish outside of D. We also use
the notation SD(Rd; k) to denote the space of functions in S(Rd; k) that vanish
outside of D:

SD(Rd; k) = {u ∈ S(Rd; k) : u = 0 a.e. on {D}.
It is not difficult to show that SD(Rd; k) is a closed subset of S(Rd; k) and that

from the definition,
(
SD(Rd; k), ‖·‖S(Rd;k)

)
↪→
(
S(Rd; k), ‖·‖S(Rd;k)

)
. We denote

the dual space of SD(Rd; k) by S∗D(Rd; k).
To set up a variational problem, we will make necessary preparations. To begin

with, we introduce a bilinear form that will be used to define a generalized notion
of a solution to the nonlocal systems of equations.

Definition 2.1. Given two measurable functions u and v, we define

Fk(u,v) =
1

2

∫∫
RdRd

ks(x,y)D(u)(x,y)D(v)(x,y) dy dx

+

∫∫
RdRd

ka(x,y)D(u)(x,y)

(
v(x) · x− y

|x− y|

)
dy dx,

whenever the integrals exist.

We notice that the form is not necessarily symmetric. We aim to find conditions
on k that allow us to have good control on the quadratic functional Fk(u,u) for u
in the function space S(Rd; k). To that end, following [14, 32] let us assume that

there exists a symmetric kernel k̃ and constants A1 ≥ 1, A2 ≥ 1 such that for all
x ∈ Rd, the measure |{y ∈ Rd : k2

a(x,y) 6= 0 and k̃(x,y) = 0}| = 0, and∫∫
Rd Rd

k̃(x,y)(D(u)(x,y))2 dy dx ≤ A1‖u‖2S(Rd;k) (5)

for all u ∈ S(Rd; k), and that

sup
x∈Rd

∫
Rd

k2
a(x,y)

k̃(x,y)
dy ≤ A2. (6)

Note that we can choose k̃ = ks, see [32] where it is used for scalar equations.
The next lemma describes the proper definition of Fk(u,v) and its continuity on
S(Rd; k). It also clarifies in what sense the operator (2) is defined.

Proposition 2.1. Let Ω ⊂ Rd be open and assume that k satisfies (3) and (5)-(6).
For n ∈ N, define the subset Dn = {(x,y) ∈ Rd × Rd : |x− y| > 1/n} and let

Lnu(x) =

∫
|x−y|>1/n

k(x,y)D(u)(x,y)
y − x

|y − x|
dy,

Fkn(u,v) =

∫∫
Dn

k(x,y)D(u)(x,y)

(
v(x) · x− y

|x− y|

)
dy dx.



NONLOCAL SYSTEMS RELATED TO PERIDYNAMICS 1309

Then we have that

i) (Lnu,v)L2(Rd) = Fkn(u,v) and lim
n→∞

Fkn(u,v) = Fk(u,v) for all

u,v ∈ C∞c (Ω).
ii) Moreover, Fk : S(Rd; k)×S(Rd; k)→ R is continuous, and thus is continuous

on SΩ(Rd; k)× SΩ(Rd; k).

Proof. We begin by noticing that if u ∈ C∞c (Rd), the expression Lnu(x) is finite
for almost all x ∈ Rd. This follows from the fact that for almost all (x,y) ∈ Rd×d,
k(x,y) ≤ ks(x,y), assumption (3), and that the integration is over Dn. Similarly,
for u,v ∈ C∞c (Rd), Fkn(u,v) is finite as well.

Now, for u,v ∈ C∞c (Rd) we have by Fubini’s theorem that

(Lnu,v)L2(Rd)

=

∫
Rd

 ∫
{B(x,1/n)

k(x,y)

(
x− y

|x− y|
⊗ x− y

|x− y|

)
(u(x)− u(y)) dy

 v(x) dx

=

∫∫
Dn

k(x,y)

(
(u(x)− u(y)) · x− y

|x− y|

)(
v(x) · x− y

|x− y|

)
dy dx.

Split the last integral using the decomposition of k into ks and ka, and interchange
x and y to obtain that

(Lnu,v)L2(Rd) =
1

2

∫∫
Dn

ks(x,y)D(u)(x,y)D(v)(x,y) dy dx

+

∫∫
Dn

ka(x,y)D(u)(x,y)

(
v(x) · x− y

|x− y|

)
dy dx.

(7)

We will be using the Lebesgue dominated convergence theorem to pass to the limit
in both term in (7). To pass to the limit in the first term we use the function
(x,y) 7→ ks(x,y)D(u)(x,y)D(v)(x,y) as a majorant. It is integrable and by the
Cauchy-Schwarz inequality,∫∫

RdRd

ks(x,y)D(u)(x,y)D(v)(x,y) dy dx ≤ [u,u]H(Rd;k)[v,v]H(Rd;k) <∞ (8)

due to (3), since u,v ∈ S(Rd, k). We next bound the integrand in the second term
in (7) as follows. For x,y ∈ Rd, using Young’s inequality we have that

ka(x,y)D(u)(x,y)

(
v(x) · x− y

|x− y|

)
≤ |ka(x,y)|k̃−1/2(x,y)|D(u)(x,y)| |v(x)|k̃1/2(x,y)

≤ 1

2

(
v(x)2 k

2
a(x,y)

k̃(x,y)
+ k̃(x,y)|D(u)(x,y)|2

)
,

where assumption (5)-(6) guarantees that both functions in the right hand side are
integrable in the product space Rd × Rd. It is now clear that

lim
n→∞

(Lnu,v)L2(Rd) = Fk(u,v).

To prove the continuity of the bilinear form Fk : S(Rd; k) × S(Rd; k) → Rd we
estimate the two terms of Fk separately. As has been shown in (8), the first term
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of Fk(u,v) cannot exceed 1
2 [u,u]S(Rd;k)[v,v]S(Rd;k). To estimate the second term,

we use (5)-(6) with A = max{A1, A2} and the Cauchy-Schwarz inequality to obtain
that ∫∫

Rd Rd

ka(x,y)D(u)(x,y)

(
v(x) · x− y

|x− y|

)
dy dx

≤
∫∫

Rd Rd

|ka(x,y)|k̃−1/2(x,y)|D(u)(x,y)||v(x)|k̃1/2(x,y) dy dx

≤

∫
Rd

v(x)2

∫
Rd

k2
a(x,y)

k̃(x,y)
dy dx

1/2∫∫
RdRd

k̃(x,y)(D(u)(x,y))2 dy dx

1/2

≤ A ‖v‖L2(Rd) ‖u‖S(Rd;k).

Combining the above estimates we have that

|Fk(u,v)| ≤ 1

2
[u,u]S(Rd;k)[v,v]S(Rd;k) +A ‖u‖S(Rd;k) ‖v‖L2(Rd)

≤ C ‖u‖S(Rd;k) ‖v‖S(Rd;k) ,
(9)

proving that Fk is indeed a continuous bilinear form on the space S(Rd; k).

Remark 2.1. A discussion on the nature of the “limiting operator” L = lim
n→∞

Ln
is in order. First, in the event that the kernel k(x,y) is integrable in the sense

that if for every x ∈ Rd,

∫
Rd

ks(x,y) dy <∞ and the function x 7→
∫
Rd

ks(x,y) dy ∈

L1
loc(Rd), then for any u ∈ S(Rd; k) and for each n ∈ N, the value Lnu(x) is finite

for almost all x ∈ Rd and for almost all x ∈ Rd we have

lim
n→∞

Lnu(x) = Lu(x)

=

∫
Rd

k(x,y)D(u)(x,y)
x− y

|x− y|
dy

=

∫
Rd

ks(x,y)D(u)(x,y)
x− y

|x− y|
dy +

∫
Rd

ka(x,y)D(u)(x,y)
x− y

|x− y|
dy.

Moreover, the above proposition implies that the sequence {Lnu} is bounded in the
dual space of S(Rd; k), and converges in the weak-* topology to Fk(u, ·). In this
case, since for any v ∈ C∞c (Rd) one can verify using Fubini’s theorem that

(Lu,v)L2 = Fk(u,v)

and thus we can identify Fk(u, ·) with the measurable vector field Lu.
More generally, for any kernel satisfying (5)-(6) and (3), and for any u ∈ S(Rd; k)

one may replace the L2 inner product by the duality pairing to define the sequence
of functionals Lnu defined by

〈Lnu,v〉 :=
1

2

∫∫
Dn

ks(x,y)D(u)(x,y)D(v)(x,y) dy dx

+

∫∫
Dn

ka(x,y)D(u)(x,y)

(
v(x) · x− y

|x− y|

)
dy dx,
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for v ∈ S(Rd, k). The proposition proved above shows that {Lnu} is bounded in
the dual space of S(Rd, k) and converges in the weak-* topology to Fk(u, ·). For
u ∈ C∞c (Rn), the limiting functional Fk(u, ·) can be identified with the function

Lu(x) = P.V.

∫
Rd

ks(x,y)D(u)(x,y)
x− y

|x− y|
dy +

∫
Rd

ka(x,y)D(u)(x,y)
x− y

|x− y|
dy.

In the event that k is not integrable and not necessarily symmetric, the second term
in the above expression corresponds to a term with “lower order derivatives”; see
[14] for a detailed discussion.

2.2. The Dirichlet problem of system of nonlocal equations. In this sub-
section we use the bilinear form introduced earlier to define a variational solution
to the Dirichlet problem of the nonlocal system of equations.

2.2.1. Zero Dirichlet data.

Definition 2.2. Assume that k satisfies both (3) and (5)-(6). Let Ω ⊂ Rd be open,
bounded. Let f ∈ S∗Ω(Rd; k). We say that u ∈ SΩ(Rd; k) is a solution of

Lu = f in Ω, u = 0 on {Ω, (D0)

if
Fk(u,ϕ) = (f ,ϕ)L2(Rd) for all ϕ ∈ SΩ(Rd; k). (10)

The main result of this section is the following well-posedness of the Dirichlet
problem (D0).

Theorem 2.2. Let Ω ⊂ Rd be open, bounded. Let k satisfy (3) and (5)-(6). Assume
further that

i) there exists CP ≥ 1 such that for all u ∈ L2
Ω(Rd),

‖u‖2L2(Ω) ≤ CP
∫∫

Rd Rd

ks(x,y)(D(u)(x,y))2 dy dx, and (PK)

ii) for every ε > 0, there exists Cε ≥ 0 such that

Cε = sup
x∈Ω

∫
{B(x,ε)

|ka(x,y)|dy <∞, and (11)

iii)

inf
x∈Rd

lim inf
ε→0+

∫
{B(x,ε)

ka(x,y)

(
x− y

|x− y|
⊗ x− y

|x− y|

)
dy ≥ 0 (12)

in the sense of quadratic forms.

Then corresponding to any f ∈ S∗Ω(Rd; k) there exists a unique solution
u ∈ SΩ(Rd; k) to (D0). Moreover, there exists a constant c > 0 such that

[u,u]SΩ(Rd;k) ≤ c‖f‖S∗Ω(Rd;k).

Remark 2.2. Condition (PK) in the theorem is called a Poincaré-Korn inequality.
In the theorem it appears as an assumption that restricts the choice of the kernel
k. Later, we provide sufficient conditions that guarantee the validity of (PK) for a
class of kernels. Conditions (11)-(12) should be treated as cancellation conditions
on the antisymmetric part of the kernel. Indeed, condition (11) is an integrability
requirement on ka away from the diagonal which allows us to apply Fubini’s theorem
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and use other properties of the integral. Condition (12) on the other hand says that
the term in the energy Fk[u,u] involving the antisymmetric part ka(x,y) should
not be “too negative.” This condition can be relaxed slightly, but verifying it may
be a challenge. A relaxed condition is given in [14, Remark 3.3]. See also nonlocal
variational problems that involve sign changing kernels in a different sense in [25].

Proof of Theorem 2.2. We use the Lax-Milgram theorem to prove the result. Con-
ditions (11)-(12) will be used to show that Fk[u,u] is positive semidefinite, while
(PK) implies positive definiteness of the energy. We show step-by-step that all the
assumptions in the Lax-Milgram theorem are satisfied. We begin by noting that as
in Proposition 2.1 the conditions (3), (5)-(6) imply that the bilinear form Fk is a
continuous form on S(Rd; k). Next, we will show that Fk is coercive on the closed
subspace SΩ(Rd; k) of S(Rd; k). We begin by showing that

Fk(u,u) ≥ 1

2
[u,u]S(Rd;k) for all u ∈ SΩ(Rd; k). (13)

For any ε > 0, and for any u ∈ SΩ(Rd; k) we have that∫∫
|x−y|>ε

D(u)(x,y)

(
u(y) · x− y

|x− y|

)
ka(x,y) dy dx

=
1

2

∫∫
|x−y|>ε

D(u)(x,y)

(
(u(x) + u(y)) · x− y

|x− y|

)
ka(x,y) dy dx

=
1

2

∫∫
|x−y|>ε

((
u(x) · x− y

|x− y|

)2

−
(

u(y) · x− y

|x− y|

)2
)
ka(x,y) dy dx,

where we have used the anti-symmetry of ka in the first equality. We use the
integrability assumption (11) in the last integral to apply Fubini’s theorem to obtain
that ∫∫

|x−y|>ε

D(u)(x,y)

(
u(y) · x− y

|x− y|

)
ka(x,y) dy dx

=

∫∫
|x−y|>ε

(
u(x) · x− y

|x− y|

)2

ka(x,y) dy dx

=

∫
Rd

u(x)ᵀ

 ∫
{B(x,ε)

ka(x,y)

(
x− y

|x− y|
⊗ x− y

|x− y|

)
dy

 u(x) dx.

We then conclude from (12) that∫∫
Rd Rd

D(u)(x,y)

(
u(y) · x− y

|x− y|

)
ka(x,y) dy dx

= lim
ε→0

∫∫
|x−y|>ε

D(u)(x,y)

(
u(y) · x− y

|x− y|

)
ka(x,y) dy dx
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=

∫
Rd

u(x)ᵀ

 ∫
{B(x,ε)

ka(x,y)

(
x− y

|x− y|
⊗ x− y

|x− y|

)
dy

 u(x) dx ≥ 0.

Hence, from the definition of the bilinear form we have that

Fk(u,u) ≥ 1

2

∫∫
Rd Rd

(D(u)(x,y))2ks(x,y) dy dx (14)

and (13) is proved. Therefore, by the Poincaré-Korn inequality (PK) and (13),

Fk(u,u) ≥ 1

4CP
‖u‖2L2(Ω) +

1

4
[u,u]S(Rd;k) ≥

1

4CP
‖u‖2S(Rd;k).

Finally, the Lax-Milgram theorem implies that there exists a unique u ∈ SΩ(Rd; k)
such that

Fk(u,ϕ) = 〈f , ϕ〉 for all ϕ ∈ SΩ(Rd; k).

A Sufficient Condition for the Poincaré-Korn Inequality. We emphasize that the
Poincaré-Korn inequality (PK) is an assumption in Theorem 2.2. Here we present
a theorem that gives sufficient conditions on the kernel k for the validity of the
Poincaré-Korn inequality. Given I an open subset of the unit sphere Sd−1 such
that the Hausdorff measure Hd−1(I) > 0, we call the set Λ defined as

Λ =

{
h ∈ Rd \ {0} :

h

|h|
∈ I ∪ (−I)

}
a double cone with apex at the origin. Note that for any such cone Λ = −Λ. Define
ΛBr := Λ ∩Br(0), a part of a double cone with apex at the origin in Br(0).

Proposition 2.3. Let Ω ⊂ Rd be open, bounded. Assume that there is an even,
nonnegative function ρ ∈ L1(Rd) satisfying the following conditions:

i) There exists δ0 > 0 and a cone Λ with apex at the origin such that ΛBδ0 ⊂
{ρ > 0}.

ii) There exists c0 > 0 such that for all u ∈ SΩ(Rd; k)∫∫
Rd Rd

ks(x,y)

(
(u(x)− u(y)) · x− y

|x− y|

)2

dy dx

≥ c0
∫∫

Rd Rd

ρ(x− y)

(
(u(x)− u(y)) · x− y

|x− y|

)2

dy dx .

(15)

Then, there exists CP = CP (Ω, c0, ρ, δ0,Λ) > 0 such that for all u ∈ SΩ(Rd; k)

‖u‖L2(Rd) ≤ CP
∫∫

Rd Rd

ks(x,y)

(
(u(x)− u(y)) · x− y

|x− y|

)2

dy dx. (16)

In the next subsection we give a number of examples of kernels that satisfy the
hypothesis of the proposition. We need the following lemma which generalizes [38,
Proposition 1.2] and [12, Lemma 2.2] that give a characterization of infinitesimal
rigid motions.
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Lemma 2.4. Suppose that u : Rd → Rd is a measurable vector-valued function
such that for some fixed δ0 > 0, and J ⊂ Sd−1, an open subset of the unit sphere
Sd−1 with Hd−1(J ) > 0, it holds that for almost every x ∈ Rd,

(u(x)− u(y)) · (x− y) = 0 for almost every y ∈
{

y ∈ Bδ0(x) :
x− y

|x− y|
∈ J

}
.

Then u is an affine map of the form u(x) = Ax + b, almost everywhere, where A
is a constant skew symmetric matrix (Aᵀ = −A), and b ∈ Rd.

Proof. For x ∈ Rd, define Γ(x) =
{

y ∈ Bδ0(x) : x−y
|x−y| ∈ J

}
. For each x, the set

Γ(x) is an open set and is in fact the intersection of the ball Bδ0(x) with the cone
whose directions lie in J with apex at x. Let {ei}di=1 denote a basis for Rd contained
in J ; such a basis exists because J is nontrivial. Then since the Lebesgue integral is
continuous with respect to translations, there exists a δ1 > 0 such that the function

δ 7→
∫
Rd

(
d∏
i=1

χΓ(δei)

)
χΓ(0) dx

is positive. For x ∈ Rd, set Γ̃(x) :=
(⋂d

i=1 Γ(x+ δ1ei)
)
∩ Γ(x). By the discussion

above, Γ̃(x) is an open set of positive measure.
Now fix x0 ∈ Rd (up to a set of measure zero). Then by the main assumption in

the lemma, for almost every x ∈ Γ̃(x0) we have

((u(x)− u(x0)) · (x− x0)) = 0 (17)

and
((u(x)− u(x0 + δ1ei)) · (x− x0 − δ1ei)) = 0 . (18)

Therefore, adding and subtracting u(x0) in the first argument of (18) and x0 in the
second and using (17) we see that

(u(x)− u(x0)) · δ1ei = −(u(x0 + δ1ei)− u(x0)) · (x− x0).

So,

u(x) · ei =
1

δ1
((u(x0 + δ1ei)− u(x0)) · (x− x0)) + u(x0) · ei

for every x ∈ Γ̃(x0) and every i, which is clearly a linear map. Then, letting E = [ei]
be the matrix of basis vectors, and u = (u1, u2, · · · , ud), we have that

ui(x) =
(
E−1(Eu)

)
i

=
∑
j

e−1
ij (ej · u(x))

which, being a sum of of linear maps, is still linear. We conclude that for almost
all x ∈ Γ̃(x0) the vector field u is of the form A(x0)x + b(x0), where A is matrix
with constant entries (depending possibly on x0) and b is a constant vector (also
depending on x0) in Rd.

Next given any two points in Rd, outside of a set of measure zero, we connect
them by finitely many sets of the form Γ̃(x), i.e. for any two points x0 and x1

in Rd there exists a finite subcover of (Γ̃(x))x∈Rd , denoted (Γ̃(xk))Nk=1, such that

Γ̃(xk) ∩ Γ̃(xk+1) 6= ∅ and x0 ∈ Γ̃(x0), x1 ∈ Γ̃(xN ). This is possible, since the
line segment connecting x0 and x1 is compact. Therefore the u given above is the
same in neighboring intersecting open sets and so u = Ax + b on Rd where A, b
are now constants. Again from the main assumption, the matrix A must be skew
symmetric.
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Corollary 2.4.1. Let Ω ⊂ Rd be open, bounded. Assume that there is a nonnegative
even function ρ ∈ L1(Rd) satisfying the following:

There exist δ0 > 0 and a symmetric cone Λ with vertex at the origin such that
Λ ∩Bδ0(0) ⊂ supp ρ.

Suppose that u ∈ L2(Rd;Rd) satisfies∫∫
Rd Rd

ρ(x− y)

(
(u(x)− u(y)) · x− y

|x− y|

)2

dy dx = 0.

Then u = 0 almost everywhere.

Proof. Since the integrand is nonnegative, we see that for almost every x ∈ Rd,

(u(x)− u(y)) · (x− y) = 0

for almost every y ∈ supp ρ + x := {z : z − x ∈ supp ρ}. By assumption and by
Lemma 2.4, u is an affine map. But since u ∈ L2(Rd), it follows that u must be
the zero vector field.

Now, we are ready to prove the sufficiency for the Poincaré-Korn inequality. The
proof follows the argument presented in the proof of [26, Proposition 2] that applies
to the case when ρ is radial.

Proof of Lemma 2.3. Without loss of generality we assume that ρ has compact sup-
port of positive measure. (else replace ρ by ρχB(0,r)). Then ρ satisfies (3). To prove
the lemma, it suffices to show that there exists a constant C > 0 such that for all
u ∈ L2

Ω(Rd),
‖u‖L2 ≤ C[u,u]H(Rd;ρ).

Suppose to the contrary; that there exists {un} ⊂ SΩ(Rd; ρ) such that ∀n ∈ N
‖un‖L2(Rd) = 1 and [un,un]S(Rd;ρ) → 0 as n→∞. Let u be the weak L2(Rd) limit

of {un}. We first show that u = 0. Note that because of the properties of ρ the
operator

Lρu(x) :=

∫
Rd

ρ(x− y)

(
x− y

|x− y|
⊗ x− y

|x− y|

)
(u(x)− u(y)) dy

is a bounded linear map from L2(Rd;Rd) to L2(Rd;Rd). Let ϕ ∈ C∞c (Rd). Then,
by the Cauchy-Schwartz inequality,

[Fρ(un,ϕ)]
2

=

 ∫∫
Rd Rd

ρ(x− y)

(
(un(x)− un(y)) · x− y

|y − x|

)(
ϕ(x) · x− y

|y − x|

)
dy dx

2

≤

∫∫
Rd Rd

ρ(x− y)

(
(un(x)− un(y)) · x− y

|y − x|

)
dy dx

∫∫
Rd Rd

ρ(x− y)|ϕ(x)|2 dy dx

= ‖ρ‖L1(Rd) [un,un]S(Rd;ρ) ‖ϕ‖
2
L2(Rd) ,

and the last term approaches 0 as n → ∞. Now, since ρ is symmetric, Fρ is
symmetric. Thus,

(Lρun,ϕ)L2 = Fρ(un,ϕ) = Fρ(ϕ,un) = (un,Lρϕ)L2 ∀n ∈ N.
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Since Lρϕ ∈ L2(Rd;Rd), it follows that Fρ(ϕ,un) → Fρ(ϕ,u) as n → ∞. There-
fore, for all ϕ ∈ C∞c (Rd;Rd), (Lρϕ,u)L2 = (Lρu,ϕ)L2 = 0. Thus Lρu = 0 a.e. As
a consequence, since ρ is even and assumption ii)

(Lρu,u)L2 = Fρ(u,u)

=
1

2
[u,u]S(Rd;ρ) =

1

2

∫∫
Rd Rd

ρ(x− y)

(
(u(x)− u(y)) · x− y

|x− y|

)2

dy dx = 0.

We can now apply Corollary 2.4.1 to conclude that u ≡ 0 on Rd.
Next we show that in fact, up to a subsequence, un → 0 strongly in L2, and arrive

at our contradiction. To show this it suffices to demonstrate that ‖un‖L2(Ω) → 0

as n → ∞. Define K(ξ) = ρ(ξ)ξ⊗ξ|ξ|2 . Note that K ∈ L1(Rd;Rd × Rd) since ρ ∈
L1 ∩ L∞(Rd). Then, define K ∗ u(x) and B as

(K ∗ u(x))i =

d∑
j=1

∫
Rd

(K(x− y))iju(y)j dy, B =

∫
Rd

K(ξ) dξ.

Both quantities converge absolutely and are well-defined. Further, Lρu(x) = K ∗
u(x) − Bu(x). Note that B is a positive definite constant matrix, which follows

from the fact that Φ(v) = vᵀBv =

∫
Rd

ρ(ξ)

∣∣∣∣ ξ|ξ| · v
∣∣∣∣2 dξ is a continuous and positive

function on the unit sphere Sd−1. From an above estimate, we have that

(Lρun,un)L2 ≤ ‖ρ‖L1(Rd) [un,un]S(Rd;ρ) ‖un‖L2(Rd) → 0 as n→∞.

Since un ⇀ 0 weakly in L2(Rd), by compactness of the convolution operator [3,
Corollary 4.28] we have that

K ∗ un(x)→ 0 strongly in L2(Ω;Rd).
Therefore, since B ≥ γI in the sense of quadratic forms, we have that

γ lim
n→∞

∫
Rd

|un|2 dx ≤ lim
n→∞

(Bun,un)L2(Rd)

= lim
n→∞

(Bun,un)L2(Rd) + lim
n→∞

(K ∗ un,un)L2(Ω)

= lim
n→∞

(Lρun,un)L2(Ω) = 0,

which completes the proof.

2.2.2. Examples of kernels. There are several examples of kernels that satisfy all
the conditions of the theorem; a number of them are discussed in detail in [14]
in connection with the solvability of the Dirichlet problem associated to nonlocal
equations. For some of these examples, the verification of (PK) is nontrivial. We list
several examples of nontrivial kernels, for which we can verify all the conditions.
This shows that the nonlocal Dirichlet problem for the corresponding system of
equations is well-posed.

Example 1: Suppose that ρ(ξ) is a nonnegative, even, integrable function in Rd.
Define now

k(x,y) = ρ(x− y)χΛB1
(x− y),

where ΛB1 is as defined before Proposition 2.3. Since K is symmetric, we only need
to verify the Poincaré-Korn inequality (PK). But this is a consequence of Lemma
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2.3. See also [26, Proposition 2] for a similar result that is valid for radial kernels.
Note that for these types of kernels the space S(Rd; k) is just L2(Rd;Rd).

Example 2: More generally, if C =
{

h ∈ B1(0) : h
|h| ∈ J

}
, and J is an open sub-

set of the unit sphere Sd−1 with Hausdorff measure Hd−1(J ) > 0, then k(x,y) =
ρ(x−y)χC(x−y) satisfies all the conditions of the theorem. In this case the kernel
is not symmetric. However, its symmetric part is ks(x,y) = ρ(x−y)χC∪(−C)(x−y),
and the union C ∪ (−C) is now a double cone with apex at the origin. The antisym-
metric part ka is given by ka(x,y) = 1

2

(
ρ(x− y)χC(x− y)− ρ(x− y)χ(−C)(x− y)

)
and satisfies both conditions (11) and (12) as can easily be seen.

Before we give other examples let us first prove a lemma that helps us compare
function spaces. The result is an improvement of [12, Lemma 2.12], where the same
result is shown for radial kernels that are supported on ΛBr = Br.

Lemma 2.5 (Fractional Korn inequality). Let s ∈ (0, 1) and let m(ξ) be an
even function defined on Br(0) with the property that 0 < α1 ≤ m(ξ) ≤ α2 < ∞
for some positive constants α1 and α2. For a given Λ a double cone with apex at
the origin and a given r > 0 define the kernel

kr(x,y) =
m(x− y)

|x− y|d+2s
χΛBr

(x− y).

Then the function space S(Rd; kr) is precisely Hs(Rd;Rd). Moreover, there exists a
function β(r) with the property that β(r)→ 0 as r →∞ and positive constants C1,
C2 such that

C1[u,u]S(Rd;kr) ≤ |u|2Hs ≤ C2[u,u]S(Rd;kr) + C2β(r)‖u‖2L2 . (19)

If ΛBr is replaced by Λ, then β can be taken to be the zero function. The constants
C1, C2 and the function β depend on αi, Λ, d and s.

Proof. We prove the lemma using the Fourier transform. First let us introduce the
following modification

m̃(ξ) =

{
m(ξ) ξ ∈ ΛBr

α1 ξ ∈ Λ ∩ {Br(0).

Then m̃ is even, and m̃(ξ) ≥ α1 for all ξ ∈ Λ. Now, for u ∈ S(Rd; kr)

[u,u]S(Rd;kr) +

∫∫
Rd Rd

α1

∣∣∣(u(y)− u(x)) · (y−x)
|y−x|

∣∣∣2
|y − x|d+2s

χΛ∩{Br(0)(x− y) dy dx

=

∫∫
Rd Rd

m̃(x− y)

∣∣∣(u(y)− u(x)) · (y−x)
|y−x|

∣∣∣2
|y − x|d+2s

χΛ(x− y) dy dx

=

∫∫
Rd Rd

m̃(x− y)

∣∣∣(u(y)− u(x)) · (y−x)
|y−x|

∣∣∣2
|y − x|d+2s

χΛ(x− y) dy dx

=

∫
Λ

m̃(h)

|h|d+2s
‖τhu‖2L2(Rd) dh
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where τhu(x) = (u(x + h)− u(x)) · h
|h| . Note that the Fourier transform of τhu(x)

is given by

F(τhu)(ξ) = (eı2πξ·h − 1)F(u)(ξ) · h

|h|
.

Using Parseval’s identity and after a simple calculation we see that

‖τhu‖2L2(Rd) = 2

∫
Rd

∣∣∣∣F(u)(ξ) · h

|h|

∣∣∣∣2 (1− cos(2πξ · h)) dξ.

Plugging the last expression in the above semi-norm and interchanging the integral
we get that∫

Λ

m̃(h)

|h|d+2s
‖τhu‖2L2(Rd) dh

= 2

∫
Rd

∫
Λ

m̃(h)

|h|d+2s

∣∣∣∣F(u)(ξ) · h

|h|

∣∣∣∣2 (1− cos(2πξ · h)) dh

 dξ

≥ 2α1

∫
Rd

∫
Λ

(1− cos(2πξ · h))

|h|d+2s

∣∣∣∣F(u)(ξ) · h

|h|

∣∣∣∣2 dh

 dξ

= 2α1

∫
Rd

|ξ|2s
∫

Λ

(1− cos(2π ξ
|ξ| · h))

|h|d+2s

∣∣∣∣F(u)(ξ) · h

|h|

∣∣∣∣2 dh

 dξ,

where in the last step we have made a change of variables h 7→ |ξ|h and used the
fact that Λ remains invariant under scaling. Notice that the last inequality can be
written as

[u,u]S(Rd;kr) +

∫∫
Rd Rd

α1

∣∣∣(u(y)− u(x)) · (y−x)
|y−x|

∣∣∣2
|y − x|d+2s

χΛ∩{Br(0)(x− y) dy dx

≥ 2α1

∫
Rd

|ξ|2s|F(u)(ξ)|2Ψ

(
F(u)(ξ)

|F(u)(ξ)|
,
ξ

|ξ|

)
dξ,

where Ψ(ν,η) =
∫

Λ
(1−cos(2πν·h))
|h|d+2s

∣∣∣η · h
|h|

∣∣∣2 dh, and maps Ψ : Sd−1×Sd−1 → [0,∞).

It is not difficult to see that Ψ is a continuous positive function on the compact set
Sd−1 × Sd−1, and therefore has a positive minimum, Ψmin. As a consequence we
have

2α1Ψmin|u|2Hs = 2α1Ψmin

∫
Rd

|ξ|2s|F(u)(ξ)|2 dξ

≤ [u,u]S(Rd;kr) +

∫∫
Rd Rd

α1

∣∣∣(u(y)− u(x)) · (y−x)
|y−x|

∣∣∣2
|y − x|d+2s

χΛ∩{Br(0)(x− y) dy dx.
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Next, we estimate the second term on the right hand side of the above inequality.
Again using the Fourier transform we have that

∫∫
Rd Rd

α1

∣∣∣(u(y)− u(x)) · (y−x)
|y−x|

∣∣∣2
|y − x|d+2s

χΛ∩{Br(0)(x− y) dy dx

= 2α1

∫
Rd

∫
Λ∩{Br(0)

(1− cos(2πξ · h))

|h|d+2s

∣∣∣∣F(u)(ξ) · h

|h|

∣∣∣∣2 dh dξ

≤ 2α1β(r)

∫
Rd

|F(u)(ξ)|2 dξ,

where β(r) =
∫

Λ∩{Br(0)
dh

|h|d+2s → 0, as r → ∞ and depends only on d, s, and Λ.

We conclude that there exists a constant C > 0 such that for every u ∈ S(Rd; kr)
we have |u|2Hs ≤ C[u,u]S(Rd;kr) + Cβ(r)‖u‖2L2 . The bound

[u,u]S(Rd;kr) ≤ 2α2Ψmax|u|2Hs

can be proved in a similar fashion.

Let us now continue discussing examples of kernels that may satisfy our well-
posedness result.

Example 3: Let kr be as in Lemma 2.5. Since the kernel is symmetric, to check
the applicability of Theorem 2.2 for this kernel, we need to verify only the Poincaré-
Korn inequality. But this follows from Lemma 2.3 by taking ρ(ξ) = |ξ|2kr(ξ), for
any r > 0. By the above lemma, the space S(Rd; kr) is in fact Hs(Rd;Rd).

Example 4: Another nontrivial non-symmetric kernel given in [14] is the follow-
ing. For s ∈ (0, 1), fix α ∈

(
0, s2
)
. Let Λ be a double cone with apex at the origin.

Given the cone C =
{

h ∈ B1(0) : h
|h| ∈ J

}
, where J is a nontrivial open subset of

the unit sphere Sd−1 such that −J 6= J , let us consider the kernel

k(x,y) =
1

|x− y|d+2s
χΛ(y − x) +

1

|x− y|d+2α
χC(y − x).

Then the symmetric and antisymmetric part of k are given by

ks(x,y) =
1

|x− y|d+2s
χΛ(y − x) +

1

2

1

|x− y|d+2α
χC∪(−C)(y − x)

ka(x,y) =
1

2

1

|x− y|d+2α
χC(y − x)− 1

2

1

|x− y|d+2α
χ(−C)(y − x).

Conditions (3) and (11)-(12) can be shown as in [14]. Let us show (5)-(6) with

k̃(x,y) = 1
|x−y|d+2s . Again, (6) is shown in [14] where the constant A2 depends on

C and s− 2α, but to show (5) we use the fact that ks(x,y) ≥ 1
|x−y|d+2sχΛ(y − x).

Indeed, using Lemma 2.5 and the remark following it, there exist constants c1, c2 > 0
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such that ∫∫
Rd Rd

k̃(x,y)

(
(u(y)− u(x)) · y − x

|y − x|

)2

dx dy

≤ c1|u|2Hs

≤ c2
∫∫

Rd Rd

χΛ(y − x)

|x− y|d+2s
|D(u)(x,y)|2 dx dy

≤ 2c2[u,u]S(Rd;k) .

The Poincaré-Korn inequality (PK) now follows from the standard Fractional
Poincaré inequality, because the function space S(Rd; k) coincides with Hs(Rd;Rd),
and because by Lemma 2.5

|u|2Hs ≤ C[u,u]S(Rd;k).

2.2.3. Variants of the Dirichlet problem. As indicated earlier in the proof of The-
orem 2.2, conditions (11)-(12) on the kernel k are used to show the positive semi-
definiteness of the bilinear form on S(Rd; k). There are however kernels for which
either these conditions are not true or difficult to verify. For this class of kernels,
well-posedness of the Dirichlet problem corresponding to the addition of a positive
multiple of the identity operator can be obtained.

Proposition 2.6. Let Ω ⊂ Rd be open, bounded. Let k satisfy (3) and (5)-(6).
Assume also that (PK) holds. Then there exists β0 > 0 such that for any β > β0

and any f ∈ S∗Ω(Rd; k), there exists a unique solution u ∈ SΩ(Rd; k) to{
Lu + βu = f in Ω ,

u = 0 on {Ω .
(20)

Moreover, there exists a constant c > 0 independent of f such that

[u,u]SΩ(Rd;k) ≤ c‖f‖S∗Ω(Rd;k).

Proof. The proof follows from standard arguments once G̊arding-type estimates are
established. To that end, we show that there is a constant γ = γ(A1, A2) > 0 such
that

Fk(u,u) ≥ 1

4
‖u‖2S(Rd;k) − γ‖u‖

2
L2(Rd) for all u ∈ S(Rd; k). (21)

To prove this, let u ∈ S(Rd; k). From (5)-(6) and by Young’s inequality,

Fk(u,u)

≥ 1

2

∫∫
Rd Rd

ks(x,y)(D(u)(x,y))2 dy dx−
∫∫

Rd Rd

ka(x,y)|D(u)(x,y)|
∣∣∣∣u(x) · x− y

|x− y|

∣∣∣∣ dy dx

≥ 1

2
[u,u]S(Rd;k) −

∫∫
Rd Rd

|D(u)(x,y)|k̃1/2(x,y)|u(x)|ka(x,y)k̃−1/2(x,y) dy dx

≥ 1

2
[u,u]S(Rd;k) −

∫∫
Rd Rd

(
ε|D(u)(x,y)|2k̃(x,y) + 1

4ε
|u(x)|2k2a(x,y)k̃−1(x,y)

)
dy dx

≥ 1

4
[u,u]S(Rd;k) − C(ε)‖u‖2L2(Rd)

≥ 1

4
‖u‖2S(Rd;k) − γ‖u‖

2
L2(Rd),
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if ε is chosen sufficiently small such that A1ε < 1/4 and then γ = γ(A1, A2) chosen
sufficiently large.

We next discuss an example of a nontrivial kernel that satisfies all the condi-
tions of the proposition. The example is taken from [32, 16, 14] and discussed in
detail there. For two given positive numbers 0 < α1 ≤ α2 < 2, let α : Rd →
[α1, α2] be a continuous function, with its modulus of continuity ω[α] satisfying∫ 1

0
(ω[α](r) ln(r))2

r1+α2
dr <∞. We introduce the non-symmetric kernel

k(x,y) =
b(x)

|x− y|d+α(x)
,

where b(x) is a continuous function bounded from below and above by positive
numbers and satisfying the inequality |b(x)− b(y)| ≤ c|α(x)−α(y)| for some c > 0
provided |x − y| < 1. To see if Proposition 2.6 applies to this kernel, we need to
verify (3), (5)-(6) and (PK). It has been shown in [32] that this kernel satisfies (3)

and (5)-(6), with k̃ taken to be the symmetric part ks of k. What remains is the
show the Poincaré-Korn inequality (PK) holds for k. But this follows from Lemma
2.3 and the fact that ks(x,y) ≥ bmin

|x−y|d+α1
when |x− y| < 1.

We remark that in [14] for the kernel k′(x,y) = χBR(0)(y−x)k(x,y) with 1� R,
the Dirichlet problem for scalar equations is shown to be well-posed even for β = 0,
see [14, Theorem 4.4]. This was proved using the Fredholm Alternative theorem
via the application of the weak maximum principle that is used to prove uniqueness
of the solution to the Dirichlet problem with zero right-hand side. Following the
argument in [14], one can write a Fredholm Alternative theorem for the Dirichlet
problem (D0) of the system of nonlocal equations. However, since we are dealing
with a system of equations a maximum principle is not applicable and we are unable
to show uniqueness of the solution of the linear system of equations (D0). The
uniqueness of the zero solution (D0) corresponding to f = 0 under the assumption
of Proposition 2.6 or even the stronger assumption on k given in [14, Theorem 4.4]
remains an open problem.

We end this section by noting that well-posedness of the Dirichlet problem with
nonzero complementary data can also be proved. To that end, again following the
set up in [14], let us introduce the function space of vector fields v : Rd → Rd
defined by

V (D; k) =

{
v|D ∈ L2(D;Rd) : (v(x)− v(y)) · (x− y)

|x− y|
k1/2
s (x,y) ∈ L2(D × Rd)

}
.

The mapping [u,v]V (D;k) is given by

[u,v]V (D;k)

:=

∫∫
D Rd

ks(x,y)

(
(u(x)− u(y)) · x− y

|x− y|

)(
(v(x)− v(y)) · x− y

|x− y|

)
dy dx

defines a bilinear form on V (D; k). In the event that D = Rd, it is clear that
V (Rd; k) = S(Rd; k). For a given g ∈ V (Ω; k), we say u ∈ V (Ω; k) is called a
solution of

Lu = f in Ω, u = g on {Ω, (D)

if u− g ∈ SΩ(Rd; k) and (10) holds.
We now state the well-posedness of the Dirichlet Problem. We omit the proof

here as it can be done following the argument in [14].
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Theorem 2.7. Let Ω ⊂ Rd be open, bounded. Let k be a kernel that satisfies
(3), (11)-(12), and (PK). Assume further that there exists a k̃ such that for all
u ∈ V (Ω; k) ∫∫

ΩRd

(
(u(x)− u(y)) · x− y

|x− y|

)2

k̃(x,y) dy dx

≤ A1

∫∫
ΩRd

(
(u(x)− u(y)) · x− y

|x− y|

)2

ks(x,y) dy dx

(22)

and such that (6) holds for this k̃. Then (D) has a unique solution u ∈ V (Ω; k),
with

[u,u]V (Ω;k) ≤ C
(
‖f‖2S∗Ω(Rd;k) + [g, g]V (Ω;k)

)
, (23)

where C = C(CP , A1, A2) > 0.

Remark 2.3. Condition (22) obviously holds if one chooses k̃(x,y) = ks(x,y).
The integration allows for more flexibility here, see [14] for examples. Note that
Theorem 2.7 opens up an interesting question concerning data on {Ω. The result
requires g ∈ V (Ω; k), i.e., the data is given in all of Rd. This condition is similar
to the condition g ∈ H1(Ω) when searching for a solution v solving some partial
differential equation of second order in Ω with v−g ∈ H1

0 (Ω). From the point of view
of applications it is desirable to prescribe g only on the complement {Ω and to have
some extension theorem. Such results are nowadays standard for classical Sobolev
function spaces. They put into relation the trace space H

1
2 (Ω) with H1(Ω). For

spaces characterized by derivatives of fractional order, a similar relation has been
addressed in [21].

3. Interior regularity of solutions.

3.1. Setup and main results. We now turn to the question of regularity of so-
lutions. We want to answer the following question: if the data f are in Lp(Ω;Rd),
what is the optimal space for the weak solution u of the Dirichlet problem of the
system of nonlocal equations (D0)? From the existence result proved in the previous
section, if f ∈ S∗Ω(Rd; k) then u ∈ SΩ(Rd; k), which is the largest space to which
the solution can belong. This space is, in general, not the optimal space. Moreover,
for general kernels k there is no good characterization of the space or other finer
subspaces in which the solution may live. With this in mind, in this section we give
a partial result concerning regularity of solutions. The result applies to systems of
equations with leading operator L defined using an even function comparable with
the fractional kernel. To be precise, let s ∈ (0, 1) and m(ξ) be an even function
with the property that 0 < α1 ≤ m(ξ) ≤ α2 < ∞ for some positive constants α1

and α2. For a given Λ, a double cone with apex at the origin, and 0 < r ≤ ∞ we
consider translation-invariant kernels that may be supported on Λ:

kr(x− y) =
m(x− y)

|x− y|d+2s
χΛBr

(x− y). (24)

For kernels of this form we have shown in Lemma 2.5 that S(Rd; k) = Hs(Rd;Rd).
Thus, SΩ(Rd; k) = L2

Ω(Rd;Rd) ∩ S(Rd; k) = L2
Ω(Rd;Rd) ∩Hs(Rd;Rd). We denote

this set by Hs
Ω(Rd;Rd). We also denote

H2s
loc(Ω;Rd) = {u ∈ L2(Ω;Rd) : ηu ∈ H2s(Rd;Rd), ∀η ∈ C∞c (Ω)}.



NONLOCAL SYSTEMS RELATED TO PERIDYNAMICS 1323

We also need the following potential spaces. For u ∈ S ′, the space of tempered
distributions, then

Ls,p(Rd) := {u ∈ S ′ : F−1[(1 + |ξ|2)s/2F(u)] ∈ Lp(Rd;Rd)},
where 1 < p <∞ and s ≥ 0. The space is equivalent to {u ∈ S ′ : (−∆)s/2u ∈ Lp},
where (−∆)s/2 is the standard fractional Laplacian operator applied component-
wise. We also denote

Ls,ploc(Ω;Rd) := {u ∈ Lp(Ω;Rd) : ηu ∈ Ls,p(Rd;Rd), ∀η ∈ C∞c (Ω)}.
When p = 2, Ls,2(Rd) = Hs(Rd;Rd).

The following theorem contains one of the results of this section.

Theorem 3.1. Assume that kr has the form (24). Let Ω ⊂ Rd be a bounded open
set, f ∈ L2

Ω(Rd;Rd) and u ∈ SΩ(Rd; k) be the unique weak solution to the system{
Lu = f on Ω

u = 0 on {Ω.
(25)

Then u ∈ H2s
loc(Ω;Rd). Moreover, for any η ∈ C∞c (Ω), there exists a constant C > 0

depending on η such that
|ηu|H2s ≤ C‖f‖L2 .

Our second regularity result corresponds to the case when f ∈ LpΩ(Rd;Rd) for
p ≥ 2. For this result, we only study L corresponding to m = 1 and Λ = Rd. That
is, k is the standard fractional kernel given by k(x, y) = |x− y|−d−2s. To separate

this special operator from generic ones, we introduce the notation (−∆̊)s to denote
the matrix operator. That is,

(−∆̊)su = P.V.

∫
Rd

(
x− y

|x− y|
⊗ x− y

|x− y|

)
u(x)− u(y)

|x− y|d+2s
dy.

Note that, here and above, we omit a normalizing constant depending on s and d in
the intro-differential representation of the fractional Laplace-type operator (−∆̊)s.
We do not study the limit cases s↗ 1 or s↘ 0.

Theorem 3.2. Let p ∈ [2,∞), f ∈ LpΩ(Rd) and u ∈ SΩ(Rd; k) be the unique weak

solution to the Dirichlet problem (25) with L replaced by (−∆̊)s. Then u ∈ L2s,p
loc (Ω)

provided

a) 2 ≤ p ≤ 2∗s , where 2∗s := 2d
d−2s ;

or
b) p > 2∗s and u ∈ Lp(Ω;Rd).

As we described in the introduction, to prove Theorem 3.1 and Theorem 3.2 we
follow an argument used in [2], where a similar but more general result is proved for
the Dirichlet problem for the fractional Laplacian equation when the right-hand side
comes from Lp for any 1 < p < ∞. The argument relies on an optimal regularity
result for weak solutions of the same system posed on the entire space. Multiplying
the weak solution of the Dirichlet problem by a cutoff function, the product becomes
a weak solution of a system of equations posed on Rd with a perturbed right-hand
side. The task is then to show that the perturbed force term lives in the same
space as the original right-hand side function. In implementing the strategy of [2]
to our case, although the cutoff function argument remains the same, we have to
demonstrate the optimal regularity result for weak solutions of the strongly coupled
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system in Rd. For strong solutions of nonlocal equations defined on Rd, optimal
regularity is obtained in [9].

We should mention that, for the scalar case, the result [2, Theorem 1.4] does
not require u be in Lp(Ω) for large p as we do in Theorem 3.2. Roughly speaking,
they prove that a solution to the Dirichlet problem of the fractional Laplacian with
right-hand side in Lp must also be in Lp, see [2, Lemma 2.5]. A similar Calderón-
Zygmund type estimate is also proved in [22, Theorem 16]. Unfortunately we are
unable to extend their proof to the vector-valued case because the argument in [2]
relies on a monotonicity property of an associated semigroup and in the result in
[22] uses a Moser-type argument where a function that is a power of the solution is
used as a test function. Neither of these arguments can be applied for systems.

3.2. Interior H2s regularity for the Dirichlet problem of the system of
equations. Now we turn to the main point. We recall that for a given f ∈
L2(Rd;Rd), we say that u ∈ S(Rd; k) is a weak solution to Lu = f in Rd if for
any ψ ∈ C∞c (Rd;Rd), we have

〈Lu,ψ〉 :=

∫∫
Rd Rd

D(u)(x,y)D(ψ)(x,y)k(x− y) dx dy =

∫
Rd

f(x) ·ψ(x) dx. (26)

The following lemma gives an optimal regularity result for weak solutions of the
system.

Lemma 3.3. Assume that kr has the form (24). Suppose that f ∈ L2(Rd;Rd). Let
u ∈ Hs(Rd;Rd) be a weak solution to the system of nonlocal equations

Lu = f , in Rd.
Then u ∈ H2s(Rd;Rd), and |u|H2s ≤ c (‖f‖L2 + ‖u‖L2) for some constant c de-
pending only on r, s, d, and Λ.

Remark 3.1. Note that [5] establishes very similar regularity results.

Proof. Let ψ ∈ C∞c (Rd;Rd). Then iterating the integral in (26) and changing
variables we have that∫

Rd

kr(h)

∫
Rd

(
(u(x + h)− u(x)) · h

|h|

)(
(ψ(x + h)−ψ(x)) · h

|h|

)
dx dh

=

∫
Rd

f(x) ·ψ(x) dx.

We apply the Fourier transform and Plancherel theorem to rewrite the above integral
in the frequency space as∫

Rd

(Mr(ξ)û(ξ)) · ψ̂(ξ) dξ =

∫
Rd

f̂(ξ) · ψ̂(ξ) dξ,

where Mr(ξ) is the matrix of Fourier symbols given by

Mr(ξ) =

∫
Rd

kr(h)(eı2πξ·h − 1)2 h

|h|
⊗ h

|h|
dh.

We now use the density of the Fourier transform of C∞c (Rd;Rd) in L2(Rd;Rd) to
conclude that

Mr(ξ)û(ξ) = f̂(ξ), almost everywhere in Rd. (27)
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Let us write kr = k − k̃r where k(z) = m(z)
|z|d+2sχΛ(z). Notice that k̃r is supported

outside of the ball Br. If we denote the matrix of symbols by M and M̃r, we have
that

M(ξ)û(ξ) = M̃r(ξ)û(ξ) + f̂(ξ), almost everywhere in Rd. (28)

To estimate the relevant norms of u, let us first estimate the eigenvalues of the
matrix M(ξ). To that end, for any η ∈ Sd−1, noting the form of k we have that

(M(ξ)η) · η =

∫
Rd

k(h)(eı2πξ·h − 1)2

∣∣∣∣η · h

|h|

∣∣∣∣2 dh

≥ 2α1

∫
Λ

(1− cos(2πξ · h))

|h|d+2s

∣∣∣∣η · h

|h|

∣∣∣∣2 dh

≥ 2α1Ψmin|ξ|2s ,

where the last inequality is from the proof of Lemma 2.5. As a consequence the
eigenvalues of the matrix function |ξ|−2sM(ξ) are uniformly bounded from below by
a positive number. We also note that since M(ξ) is symmetric and positive definite
for each ξ, the eigenvalues of the square of M(ξ) are precisely the squares of the
eigenvalues of M(ξ). It then follows that for any vector w

|M(ξ)w|2 = M(ξ)w · (M(ξ)w) = M(ξ)M(ξ)w ·w = |w|2 min
β
{β(ξ)2} ,

where the minimum is taken over the eigenvalues β(ξ) of M(ξ). We conclude that
there exists a positive number α0 that depends only on α1, s,Λ, such that for all
vectors ξ and w in Rd we have that

|M(ξ)w|2 ≥ α0(|ξ|2s|w|)2 .

We now easily see from (27) that

‖(−∆)su‖L2(Rd) = ‖|ξ|2sû‖L2 ≤ α0‖M(ξ)û‖L2

= α0

(
‖f̂‖L2(Rd) + +‖M̃r(ξ)û(ξ)‖2L2

)
≤ α0

(
‖f̂‖L2(Rd) + β(r)‖û‖2L2

)
,

where in the last inequality β(r) is from Lemma 2.5. Thus, since we already know
that u ∈ L2(Rd;Rd), we get that u ∈ L2s,2(Rd).

Proof of Theorem 3.1. Let Ω1 b Ω2 b Ω. Let η ∈ C∞c (Ω2) be a real-valued function
such that

η(x) ≡ 1, x ∈ Ω1, η(x) ∈ [0, 1], x ∈ Ω2 \ Ω1, and η(x) = 0, x ∈ Rd \ Ω2.

Let f ∈ L2
Ω(Rd;Rd) and let u ∈ HΩ(Rd; k) be the unique weak solution to

the Dirichlet problem (25). Notice that because of the form of k, u is in fact in
Hs

Ω(Rd;Rd). Now, it is clear that the function ηu ∈ Hs
Ω(Rd;Rd). Using the identity

D(uη)(y,x) = (η(x)−η(y))u(x)· y − x

|y − x|
+η(x)D(u)(x,y)+(η(y)−η(x))D(u)(x,y)

we see that for every v ∈ C∞c (Rd;Rd),

Fk(ηu,v)−Fk(u, ηv) = ([Lη]u,v)L2(Rd) − (Is(u, η),v)L2(Rd), (29)
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where for almost all x ∈ Rd the vector valued function is

Is(u, v)(x) =

∫
Rd

k(y − x)(η(x)− η(y))D(u)(x,y)
x− y

|x− y|
dy,

which is finite via Hölder’s inequality. In the above and hereafter we suppress the
dependence of k on r. The matrix valued function Lη(x) is given by

Lη(x) = P.V.

∫
Rd

k(x− y)(η(x)− η(y))

(
x− y

|x− y|
⊗ x− y

|x− y|

)
dy.

Let us justify the L2 inner products in the right-hand side of (29). To that end, we
introduce the vector field

g := (Lη)u− Is(u, η),

and show that g ∈ L2(Rd;Rd). In fact, we also show that there exists a constant
C > 0 independent of u (but depending on η) such that

‖g‖L2(Rd) ≤ C ‖u‖Hs . (30)

The rest of the argument is similar to that given in [2] adjusted for the system case.
We include it here for clarity and completeness. We begin by noting that Lη is
uniformly bounded in Rd. Indeed, using the fact that η ∈ Cc(Rd) and k is even,
we can easily show that ‖Lη‖∞ ≤ C(‖D2η‖L∞ + ‖η‖L∞ .) As a consequence of this
and the Poincaré-Korn inequality, since u ∈ Hs

Ω(Rd,Rd) we have

‖(Lη)u‖2L2(Rd) ≤ ‖Lη‖
2
L∞(Rd) ‖u‖

2
L2(Rd) ≤ C|u|

2
Hs . (31)

To bound the L2 norm of Is(u, η)(x), we begin by breaking the region of integration
as

Is(u, η)(x) =

∫
Ω

k(y − x)(η(x)− η(y))D(u)(x,y)
x− y

|x− y|
dy

+

∫
Rd\Ω

k(y − x)(η(x)− η(y))D(u)(x,y)
x− y

|x− y|
dy

=

∫
Ω

k(y − x)(η(x)− η(y))D(u)(x,y)
x− y

|x− y|
dy

+ η(x)

∫
Rd\Ω

k(y − x)D(u)(x,y)
x− y

|x− y|
dy

:= I1(x) + I2(x).

Let us estimate the first integral I1(x). Using Cauchy-Schwarz,

|I1(x)| ≤

∫
Ω

k(y − x)|η(x)− η(y)|2 dy

1/2∫
Ω

k(y − x)|D(u)(x,y)|2 dy

1/2

.

Since Ω is bounded, taking R = diam(Ω), we see that for any x ∈ Ω, Ω ⊂ B2R(x).
We now use the fact that η is smooth and the kernel is comparable with the fractional
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kernel to obtain that a constant C > 0 depending on η such that for any x ∈ Ω∫
Ω

k(y − x)|η(x)− η(y)|2 dy ≤ ‖∇η‖L∞
∫

B2R(x)

k(y − x)|y − x|2 dy

= ‖∇η‖L∞
∫

B2R(0)

k(ξ)|ξ|2 dξ ≤ C.

For x ∈ {Ω, we use the fact η(x) = 0, and supp(η) ⊂ Ω2, and that δ = dist(Ω2, ∂Ω)
> 0 to conclude that∫
Ω

k(y − x)|η(x)− η(y)|2 dy =

∫
Ω2

k(y − x)|η(y)|2 dy ≤ ‖η‖2L∞
∫

{|ξ|>δ}

k(ξ) dξ ≤ C.

Using the two preceding estimates, we see that there exists a positive constant
C > 0, that depends on η such that∫

Rd

|I1(x)|2 dx ≤ C
∫∫
Rd Ω

k(y − x)|D(u)(x,y)|2 dy dx ≤ C|u|2Hs . (32)

To estimate the L2 norm of I2, again using Cauchy-Schwarz we get that

|I2(x)|2 ≤ |η(x)|2

 ∫
Rd\Ω

k(y − x) dy


 ∫

Rd\Ω

k(y − x)|D(u)(x,y)|2 dy

 .

As before, since η(x) = 0, and supp(η) ⊂ Ω2, and that δ = dist(Ω2, ∂Ω) > 0, we
have that the function

x 7→ |η(x)|2
∫

Rd\Ω

k(y − x) dy

is bounded. Thus,∫
Rd

|I2(x)|2 dx =

∫
Ω2

|I2(x)|2 dx

≤ C
∫∫

Ω2 {Ω

k(y − x)|D(u)(x,y)|2 dy dx

≤ C|u|2Hs .

(33)

Therefore, the estimate (30) of g follows from (32) and (33). We have shown that
ηu is a weak solution to the equation

L(ηu) = F in Rd,

where F = ηf + (Lη)u− Is(u, η) ∈ L2(Rd;Rd). By Lemma 3.3, ηu ∈ H2s,2(Rd;Rd).
Thus u ∈ H2s,2

loc (Ω) and the proof is complete.

3.3. Interior L2s,p regularity for p > 2. In this section we prove Theorem 3.2.
As before we start with an optimal regularity estimate for the system of equations
posed on Rd.
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Lemma 3.4. Let p ∈ (1,∞). For f ∈ Lp(Rd;Rd)∩L2(Rd;Rd), if u ∈ Hs
Ω(Rd;Rd)∩

Lp(Rd;Rd) is a weak solution of

(−∆̊)su = f in Rd.

Then u ∈ L2s,p(Rd;Rd), Moreover, there exists a constant C = C(d, s) > 0 such
that

‖(−∆̊)su‖Lp ≤ C‖f‖Lp .

Proof. We proceed as in the proof of Lemma 3.3 to obtain that in the Fourier space

the equation is M(ξ)û(ξ) = f̂(ξ) almost everywhere, where M(ξ) is as given in (28)
with k replaced by the kernel 1

|x−y|d+2s . For the particular form of the kernel, we

can explicitly compute the matrix of symbols. M(ξ) is given by

M(ξ) = |ξ|2s
(
`1I + `2

ξ

|ξ|
⊗ ξ

|ξ|

)
,

where `1 and `2 are positive numbers given by the formula `i=
∫
Rd

1−cos(2πh1)
|h|d+2s

h2
i

|h|2 dh,

for i = 1, 2, and I is the d×d identity matrix. The matrix `1I+`2 ξ|ξ|⊗
ξ
|ξ| is invertible

for any ξ 6= 0, with(
`1I + `2

ξ

|ξ|
⊗ ξ

|ξ|

)−1

=

(
1

`1
I− `2

`1(`1 + `2)

ξ

|ξ|
⊗ ξ

|ξ|

)
.

Using this formula, we can rewrite M(ξ)û(ξ) = f̂(ξ) as

|ξ|2sû(ξ) =

(
1

`1
I− `2

`1(`1 + `2)

ξ

|ξ|
⊗ ξ

|ξ|

)
f̂(ξ) .

The conclusion of the lemma now follows from the assumption that u ∈ Lp(Rd;Rd)
and for any real numbers a and b, the matrix multiplier aI + b ξ|ξ| ⊗

ξ
|ξ| is a Lp-

multiplier for any 1 < p < ∞. The latter follows immediately from the Lp-
boundedness of the Riesz Transforms.

We use this regularity theorem to prove the second main result of this section.
Let us begin by reviewing the standard fractional Sobolev spaces. For p ∈ [1,∞),
Ω an open subset of Rd and s ∈ (0, 1), we define

W s,p(Ω;Rd) :=

u ∈ Lp(Ω) :

∫∫
Ω Ω

|u(x)− u(y)|p

|x− y|d+sp
dx dy <∞

 .

With norm ‖u‖pW s,p := ‖u‖Lp +
∫

Ω

∫
Ω
|u(x)−u(y)|p
|x−y|d+sp dx dy, it is well known that

W s,p(Ω;Rd) is a Banach space.
If s > 1, then let we write s = m+ σ, where m is the largest integer less than s,

and define

W s,p(Ω;Rd) = {u ∈Wm,p(Ω;Rd) : Dαu ∈Wσ,p(Ω;Rd), |α| = m}.

With the norm ‖u‖pW s,p := ‖u‖Wm,p +
∑
|α|=m ‖Dαu‖Wσ,p , the space W s,p(Ω;Rd)

is known to be a Banach space.
We also need the Sobolev embedding result

W r,p(Rd;Rd) ↪→W s,q(Rd;Rd),
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provided 0 < s ≤ r, 1 < p ≤ q <∞, and r − d
p = s− d

q . If Ω is open and bounded

with smooth enough boundary then

W r,p(Ω;Rd) ↪→W s,q(Ω;Rd),

provided 0 < s ≤ r, 1 < p ≤ q < ∞, and r − d
p ≥ s − d

q . Let us recall the relation

between the potential spaces and the fractional Sobolev spaces, [37, Chapter 5,
Theorem 5]. For our purpose it suffices to recall

Ls,p(Rd;Rd) ⊂W s,p(Rd;Rd), if p ≥ 2.

For p = 2, the spaces are the same; Hs(Rd;Rd) = Ls,2(Rd;Rd) = W s,2(Rd;Rd).

Proof of Theorem 3.2. Let f ∈ LpΩ(Rd). Since p ≥ 2, and Ω is bounded, f ∈ L2
Ω(Rd).

Therefore a unique weak solution u in Hs
Ω(Rd) exists. Let η be the cutoff function

constructed in the proof of Theorem 3.1. Then we have that ηu ∈ H2s(Rd;Rd) =
W 2s,2(Rd). By Sobolev Embedding, ηu ∈W s,2∗s (Rd;Rd). Now, let ω1, ω2 be open
sets such that ω b ω1 b ω2 b Ω. The cutoff function η was arbitrary, so therefore
u ∈W s,2∗s (ω2;Rd).

Part a. (p ≤ 2∗s) Since ω2 is bounded and p ≤ 2∗s , again by Sobolev Embedding
u ∈ W s,p(ω2;Rd). Moreover, since u ∈ Hs

Ω(Rd;Rd), we have that u ∈ W s;2(Ω) ↪→
LpΩ(Rd). In summary, u ∈ Hs(Rd;Rd)∩W s,p(ω2;Rd)∩LpΩ(Rd;Rd). Now we proceed
as in the proof of Theorem 3.1. With the same reasoning, ηu is a weak solution of

(−∆̊)s(ηu) = F in Rd,

where F = ηf + ((−∆̊)sη)u − Is(u, η). Let g := ((−∆̊)sη)u − Is(u, η). We have
shown already that g ∈ L2(Rd;Rd). Noting that ηu ∈ Hs(Rd;Rd) ∩ LpΩ(Rd;Rd),
we can now apply Lemma 3.4 to conclude that ηu ∈ L2s,p(Rd;Rd) provided we
successfully show g ∈ Lp(Rd;Rd). In fact, we demonstrate that for some constant
C > 0 independent of u

‖g‖Lp(Rd) ≤ C(‖u‖W s,p(ω2;Rd) + ‖u‖Lp(Ω;Rd)). (34)

The last estimate follows from a similar argument as in Theorem 3.1. We sketch its
proof. More detail can be found in [2]. As before, the matrix function (−∆̊)sη ∈
L∞(Rd). Thus,∥∥∥(−∆̊)sη)u

∥∥∥p
Lp(Rd)

=

∫
Rd

∣∣∣∣∣∣
∫
Rd

η(x)− η(y)

|x− y|d+2s

(
x− y

|x− y|
⊗ x− y

|x− y|

)
dy u(x)

∣∣∣∣∣∣
p

dx

≤
∥∥∥(−∆̊)sη

∥∥∥p
L∞(Rd)

‖u‖pLp(Ω) .

The second term Is(u, η) can also be dealt with in the same way as in the proof of
Theorem 3.1. We begin by breaking the integral as

Is(u, η)(x) =

∫
ω1

η(x)− η(y)

|x− y|d+2s
Du(x,y) dy + η(x)

∫
Rd\ω1

D(u)(x,y)

|x− y|d+2s
dy

:= I1(x) + I2(x).

We estimate I1(x): Using Hölder’s inequality with conjugate p′ = p/(p− 1),

|I1(x)| ≤
∫
ω1

|η(x)− η(y)|
|x− y|d+2s

∣∣∣∣(u(x)− u(y)) · x− y

|x− y|

∣∣∣∣ dy
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≤

∫
ω1

|η(x)− η(y)|p′

|x− y|d+sp′
dy

1/p′

×

∫
ω1

∣∣∣∣(u(x)− u(y)) · x− y

|x− y|

∣∣∣∣p 1

|x− y|d+sp
dy

1/p

,

from which we get that∫
Rd

|I1(x)|p dx ≤ C
(
‖u‖pW s,p(ω2) + ‖u‖pLp(Ω)

)
. (35)

Similarly, we also get that ∫
Rd

|I2(x)|p dx ≤ C ‖u‖pLp(Ω) . (36)

Therefore, the estimate (34) of g follows from (35) and (36).

Part b. (p > 2∗s) From Part a) we have that u ∈ W 2s,2∗s

loc (Ω;Rd), and so

u ∈ W 2s,2∗s (ω2;Rd). By Sobolev Embedding we have that u ∈ W s,q1(ω2;Rd) with

q1 = min
{
p, N2∗s

N−s2∗s

}
= min

{
p, 2N

N−4s

}
. By assumption u ∈ Lq1(Ω;Rd). With

this information, we can now repeat the argument in Part a) to conclude that

u ∈ W 2s,q1
loc (Ω;Rd). Now, if 2 ≤ p ≤ 2N

N−4s , the proof is completed. Otherwise we

iterate the above procedure to obtain u ∈W 2s,qj
loc (Ω;Rd) with qj = min

{
p, 2N

N−js

}
,

for all j ≥ 2. For p ≥ 2∗s , we can now choose j ∈ N such that 2 ≤ p ≤ 2N
N−js . That

completes the proof of the theorem.
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