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project all added to the foundations that made this work possible.

While working on the present monograph, the author was also supported in numerous other ways:
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1. Introduction

In recent years, floor cleaning has become a popular application for autonomous mobile robots.
This task is commonly solved by a wheeled robot, which carries a mechanism that cleans any
surface across which it drives. Consequently, the goal for such a robot is to completely traverse
an initially unknown floor space. As a secondary goal, the robot should minimize the time and
travel distance required for this task. In this dissertation, we focus on domestic floor-cleaning
robots which are designed for typical, unmodified home or office environments. These robots
are comparatively small, with a diameter of about 30 cm and a height of 10 cm. The commercial
market for such robots has recently undergone rapid growth. At the time of writing, a cursory
search showed over 60 different models from more than a dozen companies, typically selling for
300 to 1000 Euros. Indeed, this seems to be the only type of autonomous robot that currently sees
widespread use in domestic, indoor environments.

Based on both industry-funded and independent research, our group has developed an intelligent
floor-cleaning robot. During this research project, we encountered several unsolved problems and
open questions. In this work, we study and solve some of these problems within the context of our
cleaning robot. This includes questions concerning our cleaning robot’s strategy, visual localization,
and room segmentation. Like its commercial counterparts, our robot carries only limited onboard
resources. It is equipped with only a low-power embedded computer, and carries a single panoramic
camera as its main sensor. Even with these limited capabilities, our robot must be able to solve its
cleaning task in real time. Consequently, we focus on novel and unconventional solutions that work
within these constraints: Our robot uses a topo-metric map which does not try to achieve global
metric consistency; this greatly simplifies map maintenance and construction. The images recorded
by the single monochrome camera are used for localization, navigation, mapping, and obstacle
detection. Unlike much of the literature, we emphasize appearance-based vision techniques to solve
these tasks. Such methods do not need to build a map of external landmarks or reconstruct depth
information. However, the present work is not strictly limited to this cleaning-robot context. Where
appropriate, we also seek to provide knowledge and techniques which are useful for domestic
robots in general. For example, Chapter 3 includes general advice on choosing a method for visual
relative-pose estimation in indoor environments.

Besides this introduction, this thesis contains five subsequent chapters: We begin with an
introduction of our group’s cleaning-robot framework in Chapter 2. Here, we also outline the
improvements which the author contributed to the project. We then study three specific problems in
depth during Chapters 3 to 5. Chapter 6 provides a final summary, conclusions, and outlook. Below,
we briefly introduce each of these chapters and its contents. For more in-depth information, please
refer to the abstract at the beginning of Chapters 2 to 5.

Chapter Overview

Chapter 2 introduces our cleaning-robot framework, as well as our physical prototype. Besides
giving a general overview, this introduction provides the necessary background for the subsequent
chapters. We discuss both our framework’s overarching design philosophy and its specific hardware
and software components. Since our cleaning robot was developed by a number of people, we
also point out the specific contributions by the author. These include major advances in the robot’s
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1. Introduction

collision handling, as well as the mapping, detection, and avoidance of obstacles. The author
also improved the robot’s planning process and control automatons, which also enhanced the
performance in narrow spaces. We then present cleaning runs performed during real-world and
simulator experiments. Within these experiments, our robot demonstrates successful cleaning in
complex, multi-room domestic environments.1 To our knowledge, this is the first academic project
that describes a complete framework with this capability. We also discuss specific limitations and
trade-offs based on a series of examples.

In Chapter 3, we evaluate several methods for visual relative-pose estimation within the domestic
robot context. As discussed in Chapter 2, relative-pose estimation is one of the core components in
our robot’s localization and mapping system. The literature contains numerous holistic and feature-
based solutions for this problem. However, a lack of comprehensive comparisons makes it difficult
to select an appropriate method. To fill this gap, we evaluate several candidates for their accuracy,
speed, and robustness. To this end, we use our robot to collect novel panoramic image databases
from domestic environments. As far as we know, our study is the first specific comparison between
holistic and feature-based pose-estimation methods. We also investigate aspects which are especially
important for domestic robots: Since real-world applications often encounter strong illumination
changes, we test the methods on day-night image pairs. We also measure each candidate’s execution
time on our robot’s onboard computer. This lets us determine which candidates can meet real-time
constraints while using limited computing power. Our study also includes methods which only
estimate a limited relative pose within a 2D plane. Such candidates are especially suitable for
domestic robots which move across a floor plane; our prototype also employs such a planar-motion
method. Throughout these experiments, we found that no method is superior in all respects.
Particularly, more accurate and robust candidates are usually also much slower. Consequently, our
detailed results should be useful when choosing a visual pose-estimation method for a specific
application.

In Chapter 4, we visually estimate our robot’s tilt angle and direction relative to its movement
plane. Since our robot usually moves on an even floor, our framework assumes that this tilt is
zero. This planar-motion assumption allows for faster and more accurate visual pose estimation
(Chapter 3), and is also used in visual place recognition [69]. However, tilting the robot violates
this assumption, and can have a large negative impact on the performance of these techniques. We
therefore present two schemes that estimate the tilt angle and direction from the panoramic images
recorded by our robot. These schemes rely on the detection of vertical edges, which commonly
occur in domestic indoor environments. We improve the quality and speed of our methods by
carefully utilizing the properties of our panoramic images. To evaluate our solutions, we use our
robot to capture images with known tilts in several domestic spaces. In subsequent experiments, we
found that our methods are both accurate and fast. This should make them suitable components for
real-time tilt correction in visual planar-motion methods. However, surroundings that lack clear
vertical edges can be problematic.

During its cleaning run, our robot creates a map of its environment. Chapter 5 presents a novel
method that segments this map into individual rooms. Such a room segmentation has several
applications, including user interaction and hierarchical planning. We thus seek to produce a
segmentation that corresponds to a human-derived concept of rooms. To achieve this goal, our
method learns to detect room borders from training segmentations provided by a human operator.
In a novel approach, we integrate this machine-learning capability without the complexities of
full-scale semantic mapping. To thoroughly utilize the data collected by our robot, our solution
incorporates the map’s topology and geometry, panoramic images, and obstacle data. We evaluate
the proposed method using maps from real-world and high-detail simulated environments. In

1Since our prototype lacks an actual cleaning unit, we consider a location to be cleaned if it would have been covered
by a hypothetical 30 cm wide cleaning orifice.
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general, our segmentation successfully reproduces the rooms identified by a human user. However,
unusual room borders which are not well-represented in the training set remain a challenge.

Chapter 6 briefly reviews the previous chapters and summarizes their results. We also consider
the main conclusions drawn from these results, and formulate future research goals. Finally, we
consider some overarching lessons and insights that go beyond beyond the individual chapters.

Style and Notation

This work contains a significant volume of mathematical expressions in several different contexts.
It is thus difficult to ensure that each mathematical symbol denotes only one specific entity. Most
likely, this would only be possible by using many different and potentially obscure symbols or
subscripts. However, many variables and terms only appear within a specific section or subsection.
We therefore choose to reuse some symbols, especially generic ones like i, N , or ~x. Nevertheless,
we ensure that the notation is always consistent within each section or subsection. When in doubt,
the reader should thus always use the most recent definition of any mathematical symbol.

Note that this work uses the authorial we commonly found in the academic literature. Unless
stated otherwise, this we does not imply the authorship, contributions, or opinions of a third party.
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2. An Introduction to our Autonomous
Cleaning Robot Framework

In this chapter, we provide a general overview of our autonomous cleaning robot and its control
framework. This robot cleans an unknown floor space by fully traversing it in a systematic manner.
We combine three distinct components to achieve this goal: First, the robot builds a topo-metric
map of its environment while cleaning. This map does not require global metric consistency, which
simplifies its construction and maintenance. Second, a planner uses this map to decide where
to clean and how to navigate there. Here, our robot attempts to systematically cover the floor
with a meandering trajectory. Following this meandering-lane strategy constrains the planning
problem, thus reducing its complexity. Finally, control automatons execute the plan by translating
it into specific motor commands. Throughout this work, we emphasize visual methods to sense the
robot’s environment. Consequently, we can collect most of the required information from a single
panoramic camera. In combination, these design choices allow our robot to function with limited
onboard resources. During experiments, we found that our prototype is able to perform its cleaning
task in a variety of complex environments. However, some remaining issues can reduce the robot’s
effectiveness or efficiency.

2.1. Introduction

In this project, our group developed a prototype for an intelligent mobile cleaning robot. Our
prototype is a wheeled robot (Figure 2.1) which autonomously cleans the floor of an unknown
indoor environment. Specifically, we aim to maximize the area covered by a hypothetical cleaning
apparatus mounted on the robot. The robot should accomplish this task in the shortest possible
travel distance and time. This increases the area that can be cleaned before the robot must recharge
its batteries. Furthermore, a shorter cleaning process is less disruptive to normal human activity,
and reduces wear on the robot’s components.

To achieve these goals, our robot executes a systematic cleaning strategy. As part of this strategy,
it creates a map of the target environment. This map enables the robot to plan and execute the
actions required to solve its cleaning task. In this project, the cleaning strategy is built on the
concept of meandering lanes, as shown in Figure 2.2: The robot covers uncleaned space by driving
straight lanes parallel to the border of the previously-cleaned area. Note that we developed the
robot’s hardware and software as one combined system. Within this work, we therefore use the
term robot for both our physical prototype and the framework which controls both this physical
robot and any simulations.

However, the size, power consumption, and cost of the prototype and its components are limited:
The robot should be small enough to clean within narrow spaces, for example between the legs
of chairs or tables. It should also be low enough to fit under furniture such as beds or sofas. To
extend the robot’s battery life, the power consumption by onboard sensors and computers should be
minimized. Furthermore, the prototype should be a feasible starting point for developing a future
mass-production model. These requirements influence the design of our robot’s components: In
general, we prefer solutions and heuristics that are comparatively easy to design and implement, even
if the cleaning performance is somewhat reduced. This should lower overall resource requirements
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2. An Introduction to our Autonomous Cleaning Robot Framework

Figure 2.1.: Our cleaning robot prototype, with its outer cover installed. Our robot measures the
movement of this spring-mounted cover to detect collisions (Section 2.3.2.3). The panoramic
camera can be seen through a hole in the center. Furthermore, eight white pillars extend above
the cover’s upper lid. Each pillar contains a laser diode, which is used for obstacle detection
(Section 2.3.2.2).

Figure 2.2.: In this idealized illustration, our robot has covered a room (blue lines) with meandering
lanes. Starting from the bottom left (red dot), our robot drove a series of parallel lanes (red arrows).
The robot’s trajectory between the lanes is shown as a black line. Within the robot’s map, these
lanes consist of nodes (black dots), which are placed at regular intervals. Adjacent parallel lanes
form a part, here represented by gray boxes. Note that every node belongs to a lane, and every lane
belongs to a part. Thus, the robot’s map consists of a part-lane-node hierarchy.
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2.1. Introduction

Figure 2.3.: The topo-metric map graph generated by our cleaning robot while cleaning a simulated
apartment. Blue lines denote obstacles which restrict the floor space accessible to the robot. Unlike
the idealized illustration in Figure 2.2, this figure shows a section of the actual map generated by
our framework. The meandering lanes are drawn as red lines, while black lines represent the edges
between nodes. For the sake of clarity, we have omitted the actual map nodes, which are located at
the intersections between edges.

and system complexity.1 Additionally, all computations must be fast enough to run in real-time on
an onboard low-power CPU. Due to their space, power and cost requirements, we also want to limit
the number of sensors. This makes cameras highly suitable, as they are parsimonious, compact,
low-power and fairly cheap. We therefore favor visual techniques that operate on monochrome,
panoramic images.

2.1.1. System Overview

To execute a systematic cleaning strategy, the robot requires a map of its environment. For this
project, we use a topological map with local metric information. Within the graph of this topo-
metric map, nodes represent locations previously visited by the robot. Neighboring nodes are
connected by edges if the robot can travel directly between them. Figure 2.3 gives an example for
the resulting map graph. Each node contains a camera image captured at that location, as well as a
metric position estimate. In addition, we use a time-indexed obstacle map for free-space detection
and collision avoidance.

Since these maps do not guarantee global metric consistency, metric position estimates are only
accurate relative to nearby locations. In contrast, the relative position between distant locations may
contain larger errors. This greatly simplifies map construction, since we do not need to maintain
global metric consistency. Specifically, we only estimate the metric position of a node when adding
it to the map. Thus, we do not need to correct these position estimates based on sensor data received
later on. Our prototype uses panoramic camera images for localization within the topo-metric map:
Based on a newly-captured image, the robot visually estimates its pose relative to nearby map
nodes. It then corrects its estimated metric position based on these relative poses. Lacking global
metric consistency, this estimate is only accurate relative to nearby nodes and obstacles.

The robot extends this map through straight, meandering lanes, as shown in Figure 2.2: Each
lane is followed by a parallel one in the opposite direction, thus achieving gapless cleaning. In the

1As the developers of the successful Roomba cleaning robot have noted: “Complexity kills.” [75]
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Figure 2.4.: The main interactions between the core components of our cleaning robot framework.
Based on information from the map (Section 2.3), a planner (Section 2.4) chooses the robot’s
next action. Control automatons (Section 2.5) execute this action by generating commands for the
robot’s hardware (Section 2.2). These commands take into account the most recent information
from the map. The automatons also process sensor data, and use it to extend the map.

topo-metric map, lanes are stored as nodes placed at regular intervals. Images from these nodes
are used for localization while driving subsequent lanes. A set of uninterrupted meandering lanes
forms a part, which is extended until no more lanes can be added to it. The robot then adds a new
part by driving a lane in parallel to an existing part’s border. To reach a lane’s starting position, the
robot navigates through the previously-covered area using the topo-metric map. If no further parts
can be added, the robot returns to its home location. In practice, these actions are executed by a
system of automatons that generate the appropriate motor commands.

2.1.2. Subsequent Sections

We discuss our cleaning-robot prototype throughout the following sections: In Section 2.1.4, we
give a brief overview on existing cleaning robot projects, both commercial and academic. Next,
we introduce our prototype’s hardware in Section 2.2. The subsequent sections deal with the three
main components of our software framework, as shown in Figure 2.4: Section 2.3 describes both
the topo-metric and time-indexed obstacle map constructed by our robot. We also explain how
obstacle checks are performed within this map. In Section 2.4, we consider how the robot plans its
cleaning run. This includes the covering of uncleaned floor space, as well as planning paths through
previously-mapped areas. The automatons in Section 2.5 translate these plans into robot movements.
These automatons may also make limited adjustments to the planned actions. Controlling the robot
involves self-localization, which we also introduce in this section. Section 2.6 contains some of the
results achieved by our robot in both simulated and real-world environments. Finally, we discuss
the performance of our prototype in Section 2.7.

In this chapter, we will focus primarily on the core components governing the robot’s behavior.
We also emphasize aspects that are important in subsequent chapters, or that contain major contri-
butions by the author. In return, we omit some details from both the design and implementation of
our prototype.

2.1.3. Other Contributors

This cleaning-robot research project grew from the continuous efforts of many contributors. The
author’s contributions built upon a pre-existing, initial version of the system. This earlier prototype
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implemented the basic cleaning functionality, covering an unknown area by driving meandering
lanes. It also contained basic versions of the map, planner and control mechanisms. However,
this earlier prototype was controlled by an external laptop, and thus required a constant wireless
network connection. Earlier contributors also designed and constructed the physical robot used in
this work. Additionally, they introduced the robot simulator utilized in some of the experiments.
In the rest of this chapter, we treat the cleaning robot framework and prototype as one cohesive
system. We have therefore added this section to differentiate the contributions of the author from
those made by others.

Regarding the robot’s map (Section 2.3), the author greatly extended the obstacle map described
in Section 2.3.2. This includes the entire obstacle-checking mechanism from Section 2.3.2.1. The
author also integrated the pre-existing contact sensor (Section 2.3.2.3) into the robot’s control frame-
work. For the planning component (Section 2.4), the author made minor improvements to the path
planner (Section 2.4.1). Furthermore, the lane planner (Section 2.4.2) was extensively redesigned,
incorporating major changes. This included an enhanced method for generating lane candidates
(Section 2.4.2.1). The author also added a novel lane-selection scheme (Section 2.4.2.2) and the
local lane adjustments from Section 2.4.2.3. Within the robot control mechanism (Section 2.5),
collision handling (Section 2.5.3) was developed from scratch. Moreover, the path-following
automaton (Section 2.5.4) was improved. Most importantly, the robot gained the ability to circum-
navigate unexpected obstacles (Section 2.5.4.2). Additionally, the author contributed improvements
to the automaton for driving new lanes (Section 2.5.5). This includes the driving of piercing lanes
to clean through narrow openings (Section 2.5.5.2).

2.1.4. Related Works

Both academic and commercial projects have studied autonomous floor-cleaning robots. Commer-
cial models are now widely successful, with numerous products available on the consumer market.
In general, in-depth technical details of these robots are not known to the public. This section
is based on examinations of and preliminary experiments with several commercial models (not
presented here), and by necessity remains somewhat speculative.

In general, commercial domestic cleaning robots can be categorized into two generations. First-
generation models do not construct comprehensive maps of the environment, and thus cannot plan
for complete coverage. Instead, such robots tend to rely on random walks to traverse the cleanable
space. However, a first-generation model may still adjust its behavior to the environment. For
example, it may perform a different type of random walk within narrow spaces. Early members of
the iRobot Roomba family are a prominent example of the first generation. Additionally, Prassler
et al. [120] provide a historical overview on the first commercial cleaning robots. Although they
lack a systematic strategy, these first-generation robots nevertheless required a sizable research
effort. For example, developing the first Roomba model from an initial prototype took a team of
eight people three years [75].

In contrast, second-generation cleaning robots construct maps and plans to achieve a complete
coverage. Examples include Miele’s Scout RX1, Vorwerk’s Kobold VR200, Dyson’s 360 Eye, as
well as Samsung’s Navibot and LG’s Hom-Bot series. Although not a commercial product, our
own cleaning-robot prototype also belongs to this group. Complete coverage entails exploration
and mapping of a previously unknown environment. The robot must also be able to localize itself
within the resulting map. This commonly involves path integration through wheel odometry and
inertial measurement units (IMUs). These sensors are subject to drift, which introduces errors in the
estimated robot position. Robots from the second generation commonly correct these errors through
exteroceptive sensors. These sensors include ceiling cameras (Miele Scout RX1, Samsung Navibot
Silencio, LG Hom-Bot 2.0), laser scanners (Vorwerk Kobold VR200), or panoramic cameras
(Dyson 360 Eye, as well as our prototype). To detect free space, these robots also carry long-ranged
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Figure 2.5.: Our robot prototype from Figure 2.1, with its outer cover removed. The core com-
ponents are labeled and colored according to their function: A propulsion unit (green) contains
the motors and motor controllers, which drive the side-mounted main wheels. Sensors and related
parts are shown in red, with the robot’s panoramic camera visible in the center. Computation and
processing components are highlighted in blue, and include the onboard computer installed near the
front. A power supply and battery provide the necessary electrical energy, and are colored yellow.

obstacle sensors, such as laser rangefinders.
The academic literature covers many problems which are relevant to cleaning robots, such

as localization, mapping, navigation, and coverage planning. Due to the large number of such
publications, we do not include a comprehensive survey within this introductory chapter. Please
refer to the work by Hillen [67] for an overview on these topics within the cleaning-robot context.
In subsequent chapters, we will examine selected parts of the literature in depth. Here, we focus on
autonomous robots that systematically clean the floor in unknown, real-world environments with
multiple rooms. However, we are not aware of any academic publications that demonstrate such a
fully-featured cleaning robot for domestic use.

2.2. Robot Hardware

In general, our physical robot follows the design commonly found in commercial models. How-
ever, our prototype contains no actual cleaning equipment, such as brushes or suction units. Its
internal components can be roughly subdivided into three major sections: Structure & propulsion,
computation & sensors, and power supply. Refer to Figure 2.5 for an annotated overview of these
components.

Our robot is built on top of a circular base plate, which provides rigidity and carries the other
components. This plate is supported by three wheels: Two large, powered wheels on opposite
sides of the robot, and an unpowered ball caster which supports the rear end. The main wheels are
powered by two independent motors, allowing for differential drive propulsion. Due to its circular
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(a) Camera and lens (b) Panoramic image

Figure 2.6.: Figure (a) shows the panoramic camera and lens mounted above the center of our
robot. (b) is a typical example for the images taken by this camera. It contains the entire hemisphere
above our robot in equidistant projection.

footprint, our robot can turn on the spot without risking a collision; this simplifies motion planning.
However, a D-shaped robot with a square front end may be more suitable for cleaning corners. The
internal components are protected by a cylindrical cover with a flat lid (Figure 2.1). Our robot also
uses this spring-mounted cover to detect collisions with obstacles (Section 2.3.2.3). With its cover
installed, the robot has an outer radius of rr = 17.3 cm. The total height from the floor to the top
of the lid is hr ≈ 8.5 cm. This relatively low profile allows our prototype to drive underneath some
furniture.

The robot is controlled by an onboard embedded computer, which contains an Intel Atom N2600
1.6 GHz dual-core CPU. This computer is connected to the motor controllers via an RS-232 serial
interface, enabling it to move the main wheels. Using a wireless network interface, the computer
can also transmit real-time telemetry data. To execute its cleaning strategy, our robot also carries
several sensors. Most importantly, the robot carries a uEye UI-1246LE-M-HQ monochrome CMOS
camera (Figure 2.6a). This camera is located at the robot’s center; thus its position remains fixed
if the robot turns on the spot. Together with a Sunex DSL215 fisheye lens, the camera provides a
≈185◦ field of view in equidistant projection. The camera is mounted vertically, with the optical
axis facing upwards. Its projection center lies ≈9 cm above the ground, and thus slightly above
the robot’s body. Consequently, the entire hemisphere above the robot is visible in the images, as
seen in Figure 2.6b. The camera has a maximum resolution of 1280× 1024 pixels, with a depth of
8 bits per pixel. It also contains a 650 nm infrared cutoff filter. This camera serves as the robot’s
main sensor, and provides most of the required information. Our prototype also carries passive
laser diodes and an electro-optical contact sensor for collision detection. We describe these in more
details while discussing obstacle detection in Section 2.3.2.2 and Section 2.3.2.3. Furthermore, the
robot uses encoders to measure the rotations of its main wheels. As we explain in Section 2.5.2,
this information is used during self-localization.

To allow for independent operation, our robot prototype is powered by lithium polymer batteries.
We carry two independent batteries, one for the propulsion system and another for the computer
and sensors. A purpose-built power supply provides each component with power at the required
voltages. For stationary tests, the robot can also be connected to an external supply via a cable.

2.3. Mapping

Our prototype maintains both a topo-metric map and a time-indexed obstacle map (TIOM). The
topo-metric map (Section 2.3.1) consists of a map graph annotated with metric information. While
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metric position estimates within the map share one global coordinate system, they are only consistent
relative to nearby locations in the map graph. This map is mainly used for localization, navigation
and planning. The TIOM (Section 2.3.2) stores obstacles detected by the robot. This information
is used for free-space detection during planning and to avoid collisions. However, the obstacle
information is not used for robot self-localization.

2.3.1. Topo-Metric Map

The topo-metric map is an undirected graph that consists of nodes connected by edges. Each node
represents a distinct location within the robot’s environment. An edge connecting two neighboring
nodes indicates that direct travel between the corresponding locations is possible. Every node
contains a panoramic image captured at that location, as well as an estimate of its metric position.
Lacking global metric consistency, this estimate is only accurate relative to other nearby locations.
Consequently, the relative metric positions between two far-away nodes may be incorrect. The robot
also stores the set of timestamps at which each node was created or revisited. These timestamps
connect the topo-metric map graph with the time-indexed obstacle map from Section 2.3.2.

As shown in Figure 2.2, the nodes also form the lowest level in a hierarchy of parts, lanes and
nodes. A lane consists of several nodes in an uninterrupted, straight line. Similarly, an uninterrupted
set of meandering, parallel lanes forms a part. Lanes and parts are attached to each other, resulting
in a secondary map graph. This hierarchy is primarily used for planning, and is also stored within
the topo-metric map.

2.3.2. Time-Indexed Obstacle Map

The time-indexed obstacle map (TIOM) contains all obstacles detected by the robot. Our robot uses
this map to detect free space for cleaning, and for collision avoidance while moving. Obstacles
are represented as points in a global Cartesian coordinate system. The map combines obstacle
points from all sensors, without considering their sensor of origin. Instead, the confidence in any
given point is expressed through a weight factor. To calculate an obstacle’s position ~oi, we combine
the robot-relative obstacle location with the estimated robot position ~pr. As we later discuss in
Section 2.5.2, ~pr is not globally consistent. For this reason, the positions ~oi are only accurate in the
vicinity of the robot position from which the obstacle was detected.

Each obstacle point i in the TIOM is labeled with a timestamp τi, specifying the time at which
it was detected. We also record the set of timestamps Tk = {tk,l} at which the robot created or
revisited the topo-metric map node k; here, l serves as an index for the multiple timestamps in Tk.
Given a short time span ετ , all obstacle points ~oi with

(∃tk,l ∈ Tk)[|tk,l − τi| < ετ ] (2.1)

were therefore detected shortly before or after the robot was located at k. Since our robot moves at
a finite speed, it can travel only a limited distance within the time span ετ . Thus, any obstacle point
i that satisfies Equation (2.1) must have been detected while the robot was close to the node k. The
positions of these obstacle points form the set

Ok = OTk = {~oi|(∃tk,l ∈ Tk)[|tk,l − τi| < ετ ]} . (2.2)

In our implementation, we use the robot’s main-loop cycle count as the timestamp. One main-loop
iteration requires ≈ 100 ms, and our prototype uses ετ = 70. Thus Ok contains the positions of all
obstacle points detected within ≈ 7 s of creating or visiting the node k.

The robot may also detect obstacles in the vicinity of k without actually visiting the node k. This
most commonly occurs if the robot visits another node k′ that is close to k. The obstacle set Ok′
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may contain some points that are missing from Ok. To reduce the risk of overlooking an obstacle,
we now combine Ok with the sets Ok′ from all nearby nodes k′: First, we construct the joined
timestamp set

T ′k = Tk ∪
(⋃{

Tk′ |
(
part(k) = part(k′)

)
∧
(
d(k, k′) < εd

)})
, (2.3)

which combines the timestamps from the nodes k′ close to k. Here, part(k) is the map part that
contains the node k. d(k, k′) is the Euclidean distance between the estimated positions of the nodes
k and k′. Since k and k′ belong to the same part, this distance measure is sufficiently accurate.
We limit the distance d(k, k′) to εd = 0.5 m; this should offer a fair compromise between obstacle
consistency and the area from which obstacle points are combined.

Next, we speed up subsequent steps by reducing the size of T ′k. First, we sort T ′k in descending
order, resulting in the sorted timestamp list

T ′k =
{
t′k,1, t

′
k,2, ..., t

′
k,L

}
. (2.4)

Iterating over an index l, we first remove any timestamp t′k,l from T ′k for which t′k,l−1 − t′k,l < 10.
Since t′k,l−1 and t′k,l are less than ≈ 1 s apart, the corresponding time intervals (t′k,l − ετ , t′k,l + ετ )
and (t′k,l−1 − ετ , t′k,l−1 + ετ ) are similar, thus making t′k,l redundant. Afterwards, we truncate the
remaining T ′k to the fifty most recent timestamps. While this may exclude some older obstacle
points, it also keeps T ′k from growing impractically large over time.

Finally, we construct the obstacle set O′k = OT ′k from T ′k using Equation (2.2). To reduce the
time spent on this process, we store the final T ′k in a cache. We invalidate this cache entry if the
robot creates or visits a nearby node k′ with(

part(k) = part(l′)
)
∧
(
d(k, l′) < εd

)
. (2.5)

In this case, we reconstruct T ′k the next time the local obstacle set O′k is needed.

2.3.2.1. Obstacle Checking

We can use the TIOM to check for obstacles along a given path. In general, we assume that the
robot only moves along a straight line. We approximate curved movements by multiple straight-line
segments.

To check the map for obstacles along a given line segment, we perform three steps: First, we
construct the timestamp list TK from the node set K. Depending on the robot’s current task, K
consists of one or more reference nodes. For example, our robot may be following a path through
the map by moving from node to node. Here, K contains the node along the path which the robot is
currently approaching. To include the most recent obstacle data, we also add the current timestamp
to TK . While the robot is extending the map by driving a new lane, K consists of the most recent
node added. If K includes multiple nodes k, we combine the individual timestamp lists T ′k to
form TK =

⋃
k∈K T

′
k. The robot then extracts the set of local obstacles O = OTK according to

Equation (2.2).
O may contain isolated obstacle points from incorrect sensor readings. In a second step, we

therefore apply DBSCAN clustering [39] to the obstacle points ~o ∈ O. This method identifies
obstacle clusters with a high weight density. Obstacle points that do not belong to any such high-
density cluster are eliminated from O, resulting in the set Ô. As shown in Figure 2.7, this removes
these isolated obstacle points. For the minimum cluster density, we require a summed weight of at
least wmin = 2.0 within a radius of ro = 10 cm. With typical obstacle weights, this corresponds to
clusters of 3 or more obstacle points.
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2. An Introduction to our Autonomous Cleaning Robot Framework

(a) Local obstacle points (b) After applying DBSCAN

Figure 2.7.: We use DBSCAN clustering to reject isolated obstacle points. Example (a) shows the
local obstacle map O′k (red circles) for a single map node k (black circle) in a real-world hallway.
For context, we also include other obstacle points (gray circles) which are not part of O′k. Some of
the points in the middle of the hallway originate from incorrect range-sensor measurements. In (b),
we have identified isolated obstacle points (green circles) using DBSCAN. The robot subsequently
ignores these points, thus excluding the incorrect range-sensor readings. However, we also reject a
few points which correspond to actual walls near the edge of the local obstacle map.

Figure 2.8.: An illustration of our obstacle-checking process. Here, the robot intends to move to
the cross-marked location on the right. For this planned movement, we use our map to check the
orange area for obstacles. This area encompasses the entire space covered by the robot’s external
cover, assuming movement in a straight line. Note that we do not check for obstacles within 0.6rr
(red line) of the starting position: Since the robot cannot physically overlap with an obstacle, points
within this radius are probably incorrect. In this example, the planned path is blocked by a small
cluster of obstacle points (black rings). The obstacle limits the distance our robot can travel, as
shown by the dashed orange line. This line corresponds to the robot’s leading edge after moving
the maximum obstacle-free distance lmin.
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Figure 2.9.: The laser beams used for obstacle detection on our prototype robot, illustrated as
colored lines. An arrow on our robot corresponds to the forward movement direction. To prevent
ambiguities between overlapping beams, only lasers shown in the same color are active at any given
time. Our obstacle range measurements are less accurate at longer ranges. We therefore limit the
obstacle-detection range to 1 m, as indicated by the dotted circle.

Finally, we check Ô for obstacle points in the robot’s path. Specifically, we check the area
covered by the robot during a planned straight movement, as shown in Figure 2.8. The length of
this area is equal to the planned movement distance l, while the width is twice the robot radius
rr = 17.3 cm. Since the obstacles in Ô belong to dense clusters, we consider the area blocked if
it contains any point ~o ∈ Ô. We also determine the maximum obstacle-free distance lmin, shown
in Figure 2.8. This distance is useful when evaluating candidates for future cleaning lanes. Note
that we ignore obstacles within 0.6rr of the movement’s starting position: At the beginning of
the movement, the robot already occupy this location. Consequently, no obstacles can actually be
present at that position.

Our path-following automaton (Section 2.5.4) also requires a high-speed check for nearby
obstacles. Here, we merely consider obstacle points recorded in the last ετ = 70 main loop
iterations. From these most recent points, we select those within rr + 10 cm around the estimated
robot position. Our heuristic detects an obstacle if the total weight of these recent, close-by points
exceeds wmin = 2.0. Note that this heuristic only considers obstacles within a compact volume,
and thus omits the DBSCAN clustering step.

2.3.2.2. Laser Ranging

As we have discussed previously, we want to utilize the robot’s camera as much as possible. By
mounting laser diodes on our robot (Figure 2.5), we can use the camera to detect distant obstacles.
In keeping with our design goals, these lasers are simple, cheap, compact, low-power, and require
no computational resources. The diodes emit laser beams that radiate away from the robot, as
illustrated in Figure 2.9. If one of the beam hits an opaque obstacle, some of the light is reflected as
a bright dot. Our camera captures underexposed images at regular intervals, which clearly show
these dots against a dark background. Using calibration data, we then calculate the range to an
obstacle from the image position of each dot. The resulting obstacle point is then added to the
TIOM, as described in Section 2.3.2.

We only enable these lasers while the camera captures the underexposed obstacle-detection
images. They therefore emit only short pulses, and the bright dots do not appear in any other camera
images. Note that some of the laser beams in Figure 2.9 cross each other. This prevents obstacles
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(a) Contact sensor

LDR LED

Enclosure

(b) Sensor layout (c) During a collision

Figure 2.10.: Our robot’s contact sensor in (a) consists of an light-emitting diode (LED) surrounded
by four light-dependent resistors (LDR). Each individual LDR is housed within a narrow black
cylinder, and thus can only be illuminated from above. An outer enclosure coated with a dark
material protects the sensor from stray light. This sensor faces a light-reflecting marker on the
underside of the robot’s lid. (b) illustrates the layout of this sensor and its major components. In
(c), a collision has shifted the spring-mounted cover, and with it the reflective marker (which was
omitted in (b)). Consequently, additional light from the LED reaches the top and right LDRs, while
less light is reflected towards the lower and left LDR. We can estimate a collision’s direction and
magnitude from the resulting change in LDR resistances.

from being lost in the gaps between adjacent beams. Unfortunately, this can also cause ambiguities
when associating the laser dots with their respective beams. We avoid this problem by forming
two distinct subsets, each of which contains four non-crossing beams. We then activate just one of
the subsets when capturing an obstacle-detection image. A circuit automatically switches between
these two subsets after each image. Due to the low refresh rate, beam count, and a maximum range
of 1 m, our laser-derived obstacle data is fairly sparse. We therefore combine obstacle data from
multiple readings taken across a larger area, as explained in Section 2.3.2.1.

2.3.2.3. Contact Sensor

In practice, the laser-based detection from Section 2.3.2.2 may fail for some obstacles. Examples
include a transparent glass door, furniture with a laser-deflecting chrome finish, or a light-absorbing
dark velvet curtain. For this reason, our robot carries an additional sensor that detects actual
collisions with obstacles. This electro-optical contact sensor (Figure 2.10) measures relative
movements of the robot’s cover. Since this cover is mounted on springs, a collision with an obstacle
causes it to shift. The underside of the cover’s lid carries a reflective marker, which is illuminated
by a light-emitting diode (LED). Four light-dependent resistors (LDR) capture the light reflected by
this marker. In Figure 2.10c, shifting the cover and marker changes the amount of light that reaches
each LDR. We measure the resulting changes in resistance through analog-digital converters. From
these measurements, we can estimate the direction and strength of the collision. Unlike ordinary
contact switches, this sensor thus continuously measures the collision direction and magnitude. In
practice, we found the contactless electro-optical design to be very reliable.

To make measurements more accurate, we calibrate the sensor in two different ways. Before
each cleaning run, the stationary robot takes multiple sensor readings while clear of obstacles.
Averaging these measurements gives us the sensor output for the cover at rest. We then measure
any displacements relative to this resting position. In practice, the cover’s movement direction may
differ from the collision direction. For example, friction with an obstacle may cause the cover to be
dragged or rotated.
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We can reduce this problem through a second, optional calibration step: First, the robot is
made to collide with an obstacle at predetermined angles. For each angle, we store both the real
and measured collision direction. Next, we create a mapping between these real and measured
directions through linear interpolation. During normal operation, we use this mapping to estimate
the calibrated collision direction. However, factors such impact speed and obstacle material also
affect the cover’s movement in a collision. Since our robot cannot measure these factors, the
calibrated direction still contains some residual errors.

2.4. Planning

To fulfill its cleaning task, the robot needs to plan its future movements. Based on the map from
Section 2.3, we recognize two major planning problems: Section 2.4.1 describes how the robot
plans paths through the existing map. To extend this map, the robot also plans new parts and lanes
according to Section 2.4.2.

To reduce the complexity of planning, our robot employs a two-stage approach: In this section,
we discuss how the planners create coarse, high-level plans. The control automatons (Section 2.5)
can then modify or improve the active plan while executing it. For example, the path planner
provides a sequence of edge-linked map nodes which the robot should follow. Yet the path-following
automaton may deviate from this path to avoid unexpected obstacles. Such deviations are purely
local, and are not added to the high-level plan. Thus the robot can make fine-grained adjustments
based on local conditions while keeping the overall plan simple.

2.4.1. Path Planning

We apply the well-known shortest-path algorithm by Dijkstra [37] to plan paths between two nodes
of the topo-metric map. The result is a path P = {i0, i1, ..., iN} that begins with the node i0 and
ends with the destination node iN . All subsequent node pairs (ik, ik+1) are connected by an edge;
the robot can therefore follow the path by directly traveling from node to node. In general, the cost
of traversing an edge (i, j) is wi,j = ‖~pi − ~pj‖, where ~pi is the estimated metric position of the
node i. Dijkstra’s algorithm identifies the shortest path, which minimizes the total cost

S =

N−1∑
k=0

wk,k+1. (2.6)

However, this shortest path may lead the robot through narrow spaces between obstacles. In
practice, following such a difficult path can take additional time, and a longer path with greater
obstacle clearance may thus be more efficient. For this reason, we plan paths with a modified cost
function

S′ =

N−1∑
k=0

wk,k+1ck+1. (2.7)

For a path that is free of close obstacles, the obstacle-based cost factors are c1 = c2 = ... = cN = 1,
and thus S′ = S. Obstacles in close proximity to the node position ~pi increase the value of ci, with
closer obstacles resulting in higher values. By choosing the path that minimizes S′ instead of S, we
cause the planner to prefer paths through wide-open spaces.

At times, the robot may need to move to an arbitrary position ~p that does not coincide with any
existing map node. In this case, we first navigate to a nearby node iN , and then approach ~p from
~piN . For example, when traveling to the start of a new lane, iN is the existing node to which the
lane is attached; this node is determined during lane planning (Section 2.4.2.1). Similarly, the robot
may start at a position ~p′ 6= ~pi ∀i. Here, the robot first moves from ~p′ to the position ~pi0 of the first
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Figure 2.11.: This illustration shows a situation similar to Figure 2.2: Starting from the bottom left
(red dot), the robot began to cover a room (blue lines) with meandering lanes (red arrows). Near
the center of the room, the robot encountered a narrow passageway. Since the opening is too small
to contain a regular meandering lane, our robot traverses it using a piercing lane. This piercing lane
(green arrow) extends away from a position on an existing lane (green dot). Afterwards, the robot
continues to clean by attaching a part of meandering lanes to the piercing lane.

node, and then follows the planned path. In this situation, we commonly choose i0 to be the most
recent node created or visited by the robot.

2.4.2. Part-Lane Planning

As shown in Figure 2.2, our robot covers uncleaned areas using meandering lanes. This is an
efficient strategy, as there are neither gaps nor overlaps between properly-spaced lanes. Since these
lanes run parallel to a boundary of the map, the robot always remains close to existing nodes. Using
the visual localization method from Section 2.5.2, our robot can estimate its pose relative to these
nodes. This way, the robot avoids getting lost while cleaning and mapping unknown areas. We also
found that straight lanes are comparatively simple to planning and drive.

If no obstacles are present, these meandering lanes form a rectangular part. This closely matches
the rectangular room shape commonly found in indoor environments. By attaching multiple parts
to each other, we can cover large, complex layouts, as in Figure 2.2. Finally, we hope that human
observers will regard such straight, parallel lanes to be systematic and well-organized. In practice,
it may not be feasible to cover narrow or cluttered areas using parts of meandering lanes. We
therefore incorporate occasional deviations from this idealized strategy. For example, the robot may
extend the map through narrow spaces using a so-called piercing lane. As shown in Figure 2.11,
these lanes are not parallel to a map border, instead pointing away from the map. To benefit from
the advantages of parallel lanes, we will only use these piercing lanes sparingly.

To perform this cleaning strategy, the robot must plan the lanes and parts it should drive. In
keeping with our design goals, we chose a straight-forward approach to planning: Since our robot
has no pre-existing map, we cannot construct a cleaning plan in advance. Instead, we base our
plans on the information added to the map while cleaning. Since our robot’s sensor ranges are
finite, we have only limited knowledge about the environment beyond the previously-cleaned area.
Furthermore, our robot does not construct a globally consistent map of free, uncleaned space. We
therefore do not attempt to create complex plans that contain many future parts and lanes. Building
such a long-term plan would also be computationally expensive. This effort may be wasted if new
information later invalidates the existing plan.
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Instead, our robot plans only a single lane ahead: When extending the current part, the planner
chooses merely the next meandering lane. Similarly, the robot plans a new part by deciding on
the part’s first lane. The planner then extends the new part by adding one lane at a time. In either
case, we do not explicitly include subsequent lanes in our plan. This lean planning approach is fast,
and requires only limited knowledge beyond the previously-covered area. However, we cannot
guarantee an optimal cleaning of the whole environment by considering only one lane at a time.
Instead, we select lightweight heuristics that lead to good overall cleaning results. Even so, solving
this planning problem with limited computational resources was a significant aspect of the project.

To select the next lane, we perform three distinct steps: First, the planner inspects the map’s
border regions to generate a list of lane candidates. Next, it uses a quality criterion to select one
of these candidates as the next lane. Finally, we apply an optional refining step to improve the
chosen lane. We describe these three steps in Section 2.4.2.1, Section 2.4.2.2, and Section 2.4.2.3,
respectively. The planning process generates a lane description, which is passed to the control
automatons. To clean along the planned lane, our robot then moves to the planned starting position
(Section 2.5.4). From there, it drives the planned lane according to Section 2.5.5.

2.4.2.1. Generating Lane Candidates

As a first step in lane planning, we generate a list of lane candidates Ki. Each of these candidates is
specified by the tuple Ki = (mi, θi, li, si). To drive a given lane Ki, our robot first moves to the
starting position ~pmi . Next, it creates the starting node mi, which serves as the first node of the new
lane. The robot then cleans along a straight line with direction θi and length si. Recall that new
lanes must always be attached to the existing map. Each candidate therefore specifies an existing
node li with which to connect the starting node mi.

To generate the lane candidates, we first find all possible border nodes l within the map topology.
These are nodes which are not fully surrounded by other nodes in the map graph. If the robot is
trying to add another meandering lane to the current part, it will only consider nodes from the most
recently completed lane. The specific border nodes are selected according to a complex decision
tree, which we do not describe here. For each border node l, we then identify the various positions
~pm at which a new node m could be attached. We generate these starting nodes m at 5 cm intervals
using the scheme shown in Figure 2.12a: When planning a parallel lane, these potential nodes
are placed at an intra-lane distance of δl = 30 cm from the map border. This ensures gapless and
non-overlapping coverage for a hypothetical cleaning orifice with a width of 30 cm. In contrast,
piercing lanes extend directly away from the covered area, as shown in Figure 2.11. For a piercing
lane, we thus position the possible starting nodes m directly on the map’s border. The precise
placement of the starting nodes is governed by a heuristic, which we chose to omit here.

For each pair (l,m), the robot must be able to reach the starting node m from the border node l.
We therefore eliminate (l,m) where obstacles are detected between the positions ~pl and ~pm. To
speed up this process, we flag any border node l for which no valid starting nodes m remain. This
lets us ignore such border nodes in the future, reducing the planning time. Because this depends
on the lane type, we use separate flags for parallel and piercing lanes. Note that changes in the
map may render this information out-of-date. In this case, the planner will remove the flags and
reconsider the affected border nodes.

Each starting node may be the origin of several lane candidates Ki. While these Ki share the
same mi and li, they differ in their cleaning direction θi. As seen in Figure 2.12b, these θi are
parallel to the map border which contains the border node li. Piercing lanes are only used at the
start of a new part, and therefore follow the same general scheme. However, these lanes do not run
in parallel, and should extend into uncleaned space. We therefore plan the piercing lanes at various
steep angles relative to the map border.

We now have a list of lane candidates, each with a border node li, starting node mi at position
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(a) Border and starting nodes (b) Example lane candidates

Figure 2.12.: Generating candidates for a parallel lane that begins a new part. In (a), we first
determine the border nodes l (green dots) from the existing map nodes (black dots). Next, we
attach potential starting nodes m (red circles) to these border nodes; each resulting pair (l,m) is
connected by a dashed line. Due to obstacles (blue lines), some of the border nodes have no starting
nodes attached to them. The nodes m are placed δl = 30 cm from the map border, while adjacent
m are 5 cm apart. Each of these m now serves as the starting node for one or more lane candidates.
As seen in (b), the direction θ (red, dotted arrows) of each candidate is parallel to the map border
containing the associated border node l. For clarity, we only show the lane candidates for two of
the (l,m) pairs.

~pmi , and direction θi. Next, the planner uses the map to determine the maximum length si for each
Ki. For a parallel lane candidate Ki, this length is limited by both a topo-metric and an obstacle
constraint. As we see in Figure 2.13, the topo-metric constraint consists of two parts: First, the
entire length of the planned lane must be close to nodes from the part that contains li. This prevents
gaps in the cleaned area, and ensures that the robot remains close to the previously-mapped area. It
also allows us to connect the new lane to the map by inserting edges between the new and existing
nodes. Additionally, our robot uses these nearby nodes to maintain its position estimate while
cleaning. Second, the lane should stay clear of existing nodes to avoid cleaning the same location
more than once. Given these requirements, we now find the maximum length s′i for which Ki

fulfills two conditions: Firstly, every point along the lane Ki must lie within 50 cm of an existing
map node. Secondly, Ki must not come closer than rr = 17.3 cm to an existing node.

As shown in Figure 2.14, each lane candidate must remain free of known obstacles. We therefore
use the procedure from Section 2.3.2.1 to check for obstacle points that limit the length of Ki.
For this check, we combine all obstacle points from map nodes that lie within 50 cm of the lane
candidate. Next, we determine the maximum length si ≤ s′i for which Ki remains free of obstacles.
If si lies below a threshold, we mark the candidate Ki as too short. For a parallel lane extending
the current part, this threshold is 20 cm. In all other cases, we use a threshold of 40 cm. We discard
such short lanes, since they are both inefficient and difficult for the robot to drive. Specifically, the
robot has little opportunity to correct its position estimate when driving a short lane.

The length-limiting constraints for a piercing lane are somewhat different, as seen in Figure 2.15:
A piercing lane leads the robot away from the previously-cleaned area covered by the existing
map. This makes self-localization using nearby nodes more difficult. As a result, our robot’s
pose estimate becomes less accurate when driving a piercing lane. Since the robot is moving far
into an unmapped area, the chance of being lost also increases. We therefore limit the maximum
piercing-lane length to si ≤ 140 cm. Similar to the parallel lanes, piercing lanes need to be at

20



2.4. Planning

Figure 2.13.: The topo-metric constraints that limit the length of a potential parallel lane Ki. All
points along a parallel lane candidate (red, dotted line) must remain within 50 cm of the existing
map nodes (black dots). Here, the space that fulfills this constraint is marked in gray. Additionally,
the lane candidate must keep a distance of rr = 17.3 cm or more from any map node. In this
example, the length s′i is thus restricted by the red areas. This constraint does not consider obstacles,
allowing s′i to extend beyond a wall (blue lines).

Figure 2.14.: We ensure that lane candidates remain free of known obstacles. As in Figure 2.8, the
orange area represents the space covered by the robot while driving a lane candidate (solid red line).
We choose the lane’s length si so that this area is free of known obstacles (blue lines). si must also
remain at or below the lane’s length limit s′i from Figure 2.13.

least si ≥ 60 cm long. Since these lanes point away from the map border, they do not have to
remain close to any existing nodes. As with the parallel lanes, the area covered by the piercing-lane
candidate must be free of obstacles. Since we prefer parallel lanes, piercing lanes should only be
used to pass narrow openings. Thus the initial 60 cm of a piercing lane must pass within 25 cm of a
known obstacle point. The obstacle points used for these checks are collected from the vicinity of
the border node li.

After determining the lane lengths, we commonly find that some of the parallel lane candidates
overlap. Such lanes are attached to the same map border and run in the same direction θi, but differ
in their starting node mi. Some of these candidates only cover an area already covered by a longer
alternative. To speed up subsequent planning steps, we discard such redundant candidates using the
method depicted in Figure 2.16: First, we sort the lane candidates Ki according to their direction θi
and the border to which they are attached. Within each resulting group K, all Ki share a common
θi, which we call Θ′. We now sort all Ki ∈ K in ascending order, based on the location of their
starting positions ~pmi along an axis parallel to Θ′. Finally, we iterate over the sorted Ki ∈ K,
starting with the rearmost ~pmi along the direction Θ′. We then discard anyKj for which the starting
position ~pmi′ is covered by a longer candidate Ki. Note that we cannot simply select the longest
candidate Ki from each group: Because constraints may limit the length of the lanes, a group K
can contain multiple non-overlapping lane candidates.

2.4.2.2. Lane Selection

The robot now needs to select one of theN lane candidatesK1,K2, ...,KN generated above. When
extending the current part with another parallel lane, we use a simple heuristic: We first determine
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Figure 2.15.: In this illustration, we plan a piercing lane candidate (red line) through a narrow
opening (blue lines). From the starting position (red circle), the lane extends away from the existing
map (black dots). The first 60 cm of the lane (dotted line) must pass within 25 cm of an obstacle;
here, we have marked this area in gray. This ensures that we only plan piercing lanes to pass through
narrow openings. At the same time, the area covered by the lane (orange shape, see Figure 2.8)
must remain free of obstacle points. The lane’s length si must be at least 60 cm, but may not exceed
140 cm.

Figure 2.16.: We discard lane candidates that are mere fractions of a longer alternative. This
illustration shows one group of candidates that share a common direction Θ′ and map border (green
nodes). Each candidate is represented by a starting position (red circle) and planned lane (red,
dotted line). Note that for the sake of clarity, we show these candidates offset laterally from each
other. Next, we sort the starting positions by their location along an axis with the direction Θ′

(black arrow). We then check all lanes candidates in ascending order, beginning with the rearmost
one (here highlighted in bold). Since the other starting positions are covered by this lane, they are
redundant and will be rejected.
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the maximum length s̆ = maxi si among all suitable parallel lane candidates Ki. Based on this, we
then identify the set

C = {i|i ∈ [1, N ] ∧ si ≥ 0.7s̆}, (2.8)

and select the target lane K̆ = Kĭ with

ĭ = arg min
i∈C

di. (2.9)

Here, the geodesic distance di = d(li) is the length of the shortest path from the robot’s current
position to the border node li; we calculate this length using Equation (2.6). Thus K̆ is the closest
candidate with a length that is at least 70 % of s̆. We consider this a good compromise between
driving long lanes and traveling short distances.

In contrast, selecting the first lane for a new part is somewhat more complex: These lanes can
be attached to any border of the map that is adjacent to open space. Furthermore, we now have to
choose between parallel and piercing lanes. We solve this problem by calculating a cost-benefit
ratio ri = bi/ci for each candidate Ki. Our robot then simply selects the lane K̆ = Kĭ with

ĭ = arg max
i∈[1,N ]

ri. (2.10)

Planning a lane and moving to its starting location requires time and energy. We thus assume that
a few long lanes are more efficient than many short lanes when cleaning a given area. Furthermore,
driving a long lane gives the robot more time to update its pose estimate. Longer lanes should
therefore have a higher benefit bi. For our prototype, we use the simple heuristic

bi = log
(⌊ si

10 cm

⌋
+ 5
)
, (2.11)

where si is the planned length of the candidate Ki. From Figure 2.17a, we see that this logarithmic
term rewards longer lanes, without overemphasizing lanes of extreme length.

Before driving a given lane candidate, the robot must first travel to the starting position. Since
the robot is moving through previously-cleaned space, this lowers the cleaning efficiency. As
a heuristic, we therefore prefer nearby lane candidates. Consequently, the cost factor ci should
penalize long travel distances. Additionally, it should also discourage piercing lanes: Due to the
issues discussed in Section 2.4.2.1, piercing lanes should be used sparingly. As mentioned, driving
a piercing lane decreases the accuracy of our robot’s pose estimate. This also increases the errors for
the estimated positions of the nodes within the piercing lane itself. This reduced accuracy can also
affect any parts which we later attach to the piercing lane. To keep this error from accumulating,
our planner should thus avoid attaching piercing lanes to each other. For these reasons, we use the
cost factor

ci =


[

1
10 + di tanh

(
di

20 m

)]
2Pi if Ki is a piercing lane

1
10 + di tanh

(
di

20 m

)
otherwise.

(2.12)

Here, di is the travel distance to the border node li. From Figure 2.17b, we note that the hyperbolic
tangent function ensures that ci remains low for small travel distances di. For larger distances, ci is
approximately linear in di.

In Equation (2.12), Pi is the piercing depth of the lane candidate Ki. Pi depends on the number
of piercing lanes between the first part of the map and the candidate Ki. In general, the term 2Pi

ensures that a piercing lane doubles the cost of all subsequent piercing lanes attached to it. This
factor increases exponentially for every subsequent piercing lane: Recall that every new part is
attached to an existing border node li. The part that contains li is called the parent part j = part(li)
of the lane candidate Ki. We can represent the parts in our map as nodes within a separate part
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Figure 2.17.: Benefit and cost factors for a lane candidate Ki, calculated from Equation (2.11) and
Equation (2.12), respectively. The benefit factor bi in (a) depends on the planned lane length si.
The plot in (b) shows the cost factor ci depending on the geodesic distance di. di is the length of
the shortest path from the current robot position to the border node li. For this figure, we assume
that the piercing depth from Equation (2.12) is Pi = 0.

graph. Within this graph, an edge indicates that one part is the parent of another. Those parts that
begin with a piercing lane are called piercing parts. Every part k within this part graph is connected
to the map’s very first part by a specific path Pk. The piercing depth D(j) of the parent part j is
equal to the number of piercing parts within the path Pj . We then choose Pi = D(j) for a regular
lane candidate Ki, or Pi = D(j) + 1 if the candidate Ki itself is a piercing lane. For example,
Pi′ = 1 if Ki′ is a piercing lane attached to the first part in the map. If we now attach another
piercing lane to Ki′ , this lane Ki′′ would have a piercing depth Pi′′ = 2. The resulting increase in
ci discourages the robot from planning long chains of piercing lanes.

As shown in Figure 2.18, we can now calculate the cost-benefit ratio ri from bi and ci. For
large maps, generating and selecting lane candidates in this manner may require a long time.
From Figure 2.18, we note that far-away lanes are rarely selected over closer alternatives. We
therefore implement a priority planning heuristic: When planning the first lane of a new part, we
initially only consider candidates where di ≤ 2.5 m. Note that we can perform this check without
determining the lane length si. If the planner fails to find candidates with di ≤ 2.5 m, we repeat the
lane-selection process without this heuristic. By ignoring far-away candidates that are unlikely to
be selected, we can considerably reduce the time required to plan a new part. Figure 2.19 provides
an example for the parallel lane candidates considered when planning a new part.

2.4.2.3. Lane Adjustment

We have now selected the next lane K̆ according to our cleaning strategy. Next, we adjust K̆ before
passing it to the robot’s control automatons. While these adjustments can improve the cleaning
performance, they are also computationally expensive. For this reason, it is not feasible to apply
them to all possible lane candidates Ki. Instead, we only make these improvements to the chosen
lane candidate K̆.

As mentioned, parallel lanes K̆ that begin a new part should be placed δl = 30 cm from the
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Figure 2.18.: The cost-benefit ratio ri = bi/ci for a lane candidate Ki. This ratio depends on the
planned lane length si and travel distance di. The colored lines indicate combinations of si and di
that result in the same ri. Here, nearby lane candidates with di ≤ 2.5 m almost always score higher
than those with di > 2.5 m. We indicate this threshold with a dashed, black line.

Figure 2.19.: In this example, our robot (gray shape) has just completed the first part (black arrows)
within a simulated environment (blue lines). To identify the first parallel lane of the next part, the
planner generates several candidates (colored arrows). For clarity, this figure does not contain the
piercing lanes considered by the planner. Each candidate’s starting position (colored dot) is attached
to an existing map node (colored circle). The colors indicate the cost-benefit ratio ri for a given
candidate i. Here, our robot selects a long, nearby lane (red), while skipping a closer but shorter
alternative (yellow). The rightmost lane candidates (blue, dashed arrows) lie beyond a distance of
2.5 m. Consequently, they would not be considered during the initial priority-planning step.
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2. An Introduction to our Autonomous Cleaning Robot Framework

(a) Normal lane spacing (b) Reduced lane spacing

Figure 2.20.: This illustration demonstrates the benefits of a variable lane spacing δl. In this
example, we are planning the first lane in a new part (red arrow). The lane extends from an initial
node (red dot) which is attached to an existing part (black dots and lines). In (a), we use the normal
spacing δl (dashed line) between the new lane and parent part. However, an obstacle (blue lines)
limits the area that can be covered by this lane (orange area). Using a reduced distance δ̆l leads to a
much longer lane, as shown in (b). This way, a larger previously-uncleaned area may be covered by
a single lane.

border of the existing map. Occasionally, reducing δl may allow such a lane to pass nearby obstacles,
resulting in a greater lane length. The new lane may then cover a larger uncleaned area, even if
the reduced spacing also causes some overlap. We give an example of this effect in Figure 2.20.
Reducing δl may also allow our robot to insert additional map-graph edges between the new part
and its parent. These edges can make it easier for the robot to plan paths through the map.

After selecting the first lane K̆ for a new part, we therefore vary the lane-specific spac-
ing δ̆l. Here, we consider the lane variants K̆η, which use a reduced spacing of ηδl with
η ∈ {0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. We then choose the distance factor η̆ so that K̆η̆ runs close
to the largest number of nodes from the parent part’s border. If the number of close nodes is
maximized for several different values of η ∈ H , we select

η̆ = arg max
η∈H

ηsη, (2.13)

where sη is the length of the lane candidate K̆η. Here, ηsη serves as an approximation for the
uncleaned area covered by K̆η.

As seen in Figure 2.21a, there may be uncleaned gaps between a part and nearby obstacles.
While adjusting a parallel lane K̆, we attempt to close such gaps by moving the lane’s starting node
m̆ towards the obstacle. Specifically, the planner can shift m̆ up to 50 cm backwards along the
planned lane. The example in Figure 2.21b shows that this can reduce the uncleaned area. Note
that we do not shift m̆ if there is no nearby obstacle. In the absence of obstacles, this leads to
rectangular parts with straight borders. This makes it easy for our robot to attach parallel lanes to
these straight borders later on.

2.5. Robot Control

In Section 2.4, we have discussed how to plan paths and cleaning lanes using the robot’s map from
Section 2.3. Next, we describe how the robot executes these plans using a number of state machines
called automatons. Using these automatons, our robot translates the general plan into specific
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2.5. Robot Control

(a) Without lane adjustment (b) After lane adjustment

Figure 2.21.: Adjusting the starting node m̆ (red dot) of the chosen lane candidate K̆. As seen in
(a), there may be gaps between the starting node m̆ and a nearby obstacle (blue lines). Subsequently,
some of the floor space (red area) will remain uncleaned. As illustrated in (b), the planner can close
such a gap by shifting m̆ backwards. However, we only allow shifts that keep the path from the
border node l̆ to m̆ free of obstacles.

motor commands. As long as the robot is operating, a main loop updates the active automaton
and generates motor commands at a frequency of 10 Hz. In turn, the active automaton may run
various sub-automatons to solve certain recurring problems. The main loop also performs various
housekeeping tasks, such as position estimation and obstacle detection. These tasks are generally
isolated from the automatons, which simplifies their design. In this section, we first introduce the
main loop and its housekeeping task in Sections 2.5.1 to 2.5.3. We then discuss the core automatons
for path following and cleaning in Section 2.5.4 and Section 2.5.5, respectively.

2.5.1. Main Loop

In our cleaning-robot prototype, the main loop is structured as follows: First, the robot checks for a
collision using the contact sensor described in Section 2.3.2.3. If a new collision is detected, the
robot halts all movement until it has been processed. Next, the main loop passes the commanded
wheel speeds to the motor controllers. In case of a recent collision, this movement is governed by
the collision-handling scheme from Section 2.5.3. Otherwise the wheel speeds are determined by
the active automaton.

We now process sensor information and update the robot’s internal state, beginning with the
obstacle map. First, we add any new obstacle points detected by the contact sensor. If available, we
also process a new obstacle-detection image according to Section 2.3.2.2. Next, the robot updates
its pose estimate using the most recent wheel odometry readings. If necessary, it also corrects
the estimate using the latest camera image. We discuss this probabilistic pose-estimation step in
Section 2.5.2. After the obstacle map and position estimate have been updated, we now run the
active automaton. This changes the automatons internal state and calculates the desired wheel
speeds. The automaton may decide that a new node should be added to the topo-metric map. We
process such requests at the end of the main loop, thus isolating individual automatons from the
details of node creation.

2.5.2. Localization

Both the path-following (Section 2.5.4) and lane-driving (Section 2.5.5) automatons require an
estimate of the robot’s pose. The floor space traversed by our robot usually lies within a plane,
and we can thus make a planar-motion assumption. Under this assumption, the robot only moves
within a 2D ground plane, and rotates only around an axis normal to the ground. We can therefore
represent the pose by the metric position ~pr = (xr, yr)

T and the orientation angle θr.
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To estimate this pose, we employ the probabilistic scheme presented in [104]: Here, a particle
filter (introduction: Thrun, Burgard, and Fox [145, chapter 4]) models our belief regarding the pose
using a cloud of particles. Each individual particle within the cloud represents one hypothesis for
(~pr, θr). We maintain this belief by repeatedly applying both prediction and correction steps. The
prediction step incorporates the robot’s motion, as measured by the wheel encoders. Utilizing a
kinematic model of our robot, we calculate the new pose for each particle from the observed wheel
rotations. We perform this prediction step for every iteration of the main loop. Here, we also add
some noise to the pose of each particle to model uncertainties in the wheel odometry.

Over time, this noise disperses the poses within the particle cloud. We therefore correct our pose
estimate by using nearby map nodes as landmarks. First, we estimate the relative pose between
the current location and the location of a given map node. In our prototype, we employ the visual
min-warping [100, 102, 101] relative-pose estimation method. By comparing the stored panoramic
image from the node with the current camera image, this method gives an estimate for the robot’s
orientation and bearing relative to the node. When we created the node, we also stored the particle
cloud describing the robot’s pose at the node. Using this cloud, we can now correct the current
pose estimate: First, we calculate the relative poses for all pairs of current and stored particles.
Comparing these poses to the visual pose estimate gives us the likelihood that a given particle
agrees with the panoramic images. Subsequently, we assign a greater weight to those particles that
agree with the visual observations. When resampling the particle cloud, low-weight particles are
likely to be omitted. As a result, we tend to eliminate those particles that disagree with the visual
pose estimate.

Due to the unknown scale of the environment, our visual pose estimates do not include the
distance from the node. To compensate for this, we correct the particle cloud based on multiple
nodes in different directions. The specific nodes used for the correction are chosen by the active
automaton. Accurate visual pose-estimation requires images which are somewhat close to each
other. We must therefore base our correction step on nearby nodes within the map. Since our
map lacks global metric consistency, our pose estimate is thus only accurate relative to these
nearby nodes. Note that the particle cloud encodes many possible hypotheses, yet our strategy
makes decisions based on a single pose estimate (~pr, θr). We calculate this single pose estimate by
averaging over all poses from the particle cloud. Such an averaged pose estimate is also used to
calculate the positions of new nodes or obstacle points.

2.5.3. Collision Handling

Our cleaning robot always attempts to remain free of obstacles by using its obstacle map. In
practice, position estimation errors and undetected obstacles may occasionally lead to collisions.
Our robot detects these collisions with the contact sensor introduced in Section 2.3.2.3. After the
sensor is triggered, the robot will stop and disable further movements. This prevents the robot from
pushing the obstacle or spinning its wheels while processing the collision. The robot then confirms
the collision by waiting for 200 ms. If the contact sensor reports no collision during this time, the
robot continues its previous task. Our collision handling routine also disregards rearward collisions
detected during fast forward movements. These steps alleviate problems with vibration-induced
false collisions when driving over rough ground.

In case the collision is confirmed, the robot adds the obstacle to the map. We determine the
obstacle’s position from the robot position and the contact direction measured by the sensor. Since
this contact direction is somewhat uncertain, we represent the obstacle by several points placed
within ±3.75◦ of the measured direction. Next, the robot uses a sub-automaton to back away from
the obstacle by 1 cm. If necessary, the automaton avoids recently-detected obstacles behind the
robot by turning on the spot before reversing. After successfully moving away from the obstacle,
the robot returns to its previous task. However, our robot will enter a failure state if obstacles make
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reversing completely impossible.

2.5.4. Path Following

In general, the path-following automaton attempts to follow the path planned according to Sec-
tion 2.4.1. Recall that a path is a sequence of nodes P = {i0, i1, ..., iN} within the topo-metric
map, where each pair (ik, ik+1) for k ∈ [0, N−1] is connected by a map edge. In general, the robot
therefore follows this path by driving straight from node to node. However, the path-following
automaton can make minor deviations from this planned, ideal path. Besides being more efficient,
this also lets the automaton avoid unexpected obstacles without completely replanning the path.
Note that such deviations are not represented in the idealized path P , which simplifies planning.

Since the nodes (ik, ik+1) are connected by an edge, the distance between their positions
|~pik , ~pik+1

| is bound to be low. While moving from ik to ik+1, the robot should therefore always be
close to the current subgoal node ik+1. Our topo-metric map is approximately metrically consistent
at this small scale. The automaton thus generates motor commands by comparing the estimated
robot pose (~pr, θr) to the subgoal position ~pik+1

. In a naive approach, our robot first makes a
stationary turn towards ~pik+1

, and then moves forward until it reaches the subgoal node ik+1. After
incrementing k, the robot repeats this process until it reaches the goal node iN . While following
the path, the robot continuously updates its pose estimate (~pr, θr) according to Section 2.5.2. For
the correction step, the automaton chooses three map nodes from the robot’s vicinity.

In practice, frequent stopping and turning can be time-consuming, and may seem inelegant to a
human observer. To mitigate this problem, our robot turns towards the subgoal node ik+1 while also
moving forward. Yet unlike turning on the spot, such an approach result in a curved robot trajectory.
This trajectory deviates from the planned path P , which assumes that the robot moves from node to
node in straight lines. The robot may thus face obstacles that were considered unimportant while
planning P . Considering these factors, we use a compromise that combines both types of turning:
If the robot has to turn by a large angle ∆θ > 40◦, it will turn on the spot. Once ∆θ ≤ 40◦, the
robot will instead turn while driving forward. This keeps the trajectory reasonably close to the
planned path P , while limiting the time spent on stopping and turning. However, if the robot is in
close proximity to obstacles, it should adhere to P more strictly. We therefore use a threshold of
∆θ ≤ 5◦ when in close proximity to recently-detected obstacles. This check for nearby obstacles
uses the high-speed heuristic introduced in Section 2.3.2.1. Unfortunately, unexpected obstacles
may still prevent a direct approach to the next subgoal ik+1. After approaching such an obstacle to
within 10 cm, our robot thus switches to the obstacle avoidance scheme from Section 2.5.4.2.

2.5.4.1. Off-Map Path Following

Beyond the final subgoal iN , a path may continue to a location that does not correspond to any
node ik. This usually occurs when traveling to the starting position ~pm of a new lane. Here, the
automaton generates motor commands based on ~pm and the estimated robot pose (~pr, θr). It is
important that we precisely place the robot at the position ~pm. If the robot is placed incorrectly, this
error will affect the entire lane extending from ~pm. The automaton therefore reduces the robot’s
speed and prefers precise, stationary turns once within 5 cm of ~pm.

When traveling to the starting position ~pm of a new line, the robot follows the plan shown in
Figure 2.22a: First, the robot travels along the path P to the border node l, from which it directly
approaches ~pm. To reduce travel times, the robot may however skip the remainder of P and
approach ~pm immediately (Figure 2.22b). This shortcut is taken if fewer than N − k ≤ 8 subgoals
remain on the path, and if the distance is ‖~pm − ~pr‖ ≤ 80 cm. Furthermore, the proposed shortcut
from ~pr to ~pm must be free of known obstacles. If the robot detects such obstacles, it will instead
continue the planned path P to the border node l.
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(a) Regular approach (b) Shortcut approach

Figure 2.22.: Our robot reaches the start of a new lane by following a planned path P through the
existing map (black dots). In (a), P is shown as a dashed line, which leads the robot to the planned
border node l (green dot). From there, the robot can approach the starting position ~pm (red dot) and
drive the planned lane (red arrow). To reduce the travel time and distance, our robot may take a
shortcut once it is close to ~pm. This case is shown in (b), where the robot skips the remainder of
the path P .

2.5.4.2. Obstacle Avoidance

Within our topo-metric map, edges indicate that direct travel between two nodes is possible;
consequently a planned path P should be free of obstacles. In practice, our robot may still encounter
obstacles while approaching the next subgoal ik+1. Note that this problem has at least two distinct
causes: In some cases, the robot incorrectly detects a non-existing obstacle. Alternatively, a new or
previously undetected obstacle may block the planned trajectory. The path-following automaton
can use two different schemes to deal with this problem.

To correct false-positive obstacle points, we first attempt to rebuild the nearby obstacle map. We
begin by removing all nearby obstacle points ~o ∈ O, as selected in Section 2.3.2.1. After deleting
these obstacle points, a sub-automaton steers the robot through a slow, stationary turn of ±90◦.
This gives the sensors time to repopulate the obstacle map with new readings. The robot then makes
another attempt at following the planned path.

However, we may still detect obstacles that block a straight approach towards the subgoal ik+1.
In this case, we employ another sub-automaton to reach ik+1 using a hybrid technique: This
automaton still follows the path from ik to ik+1, but is not restricted to a straight approach. Instead,
it employs a vector field histogram (VFH) to avoid obstacles and reach ik+1 through an indirect
trajectory. Specifically, we use a modified version of the VFH+ method presented by Ulrich and
Borenstein [150]. Figure 2.23 illustrates the resulting obstacle avoidance procedure.

To deal with changing environments, the obstacle-avoidance sub-automaton only considers
obstacles detected within the last 12 s. Additionally, we limit the histogram to local obstacle points
within a radius of

dv = max(min(‖~pr − ~pik+1
‖, 100 cm), 5 cm) (2.14)

from the estimated robot position ~pr. We therefore do not consider obstacles that lie far beyond the
current path-following subgoal ik+1.

Next, we add the selected obstacle points to a robot-centered angular histogram with a resolution
of 5◦. To account for the size of the robot, we surround each obstacle point with a disc of radius
rv = rr − 2 cm = 15.3 cm. Due to uncertainties in the estimated obstacle positions, this rv is
lower than the robot radius rr. Each obstacle point is now added to all bins that overlap with this
disc-shaped area.

Next, we calculate a summed weight from the obstacle points within each histogram bin. For the
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Figure 2.23.: In this illustration, the robot is trying to reach the goal position marked with a red
cross. However, a straight approach (red arrow) is blocked by a wall (blue lines) with a narrow
opening. Within the robot’s map, this wall is represented by obstacle points (black circles). To
construct a vector field histogram, we first expand each obstacle point to a circle with a radius of
rv = rr − 2 cm (light red area). Next, we add these expanded points to an angular histogram, here
illustrated using dashed lines. We only consider local points within a radius dv (outer circle), as
specified in Equation (2.14). Each bin a is shown partially filled in red or green, where the filled
proportion represents the weight ωa of that bin. For sufficiently high ωa, the bin is considered
blocked and shown in red; open bins are shown in green. From this binary histogram, the robot
selects an open movement direction (green arrow) towards the goal.

bin with index a, this weight is

ωa =
∑
t

w2
a,t max

(
1− da,t − rv

dv
, 1

)
, (2.15)

where wa,t is the weight of the tth obstacle point within the bin a. Similarly, da,t = ‖~oa,t − ~pr‖ is
the distance between the robot and the obstacle position ~oa,t. Thus, each obstacle point contributes
the square of its weight, scaled linearly with its distance.

After constructing the histogram from our obstacle map, we follow the regular VFH+ scheme:
First, we create a binary histogram by applying a threshold to the bin weights ωa. In our case, we
consider bins with a weight of ωa ≥ 2.8 to be blocked by obstacles. The robot may therefore not
move in the direction associated with a blocked bin a. Such a blocked bin a will only be considered
open once ωa falls below 2.0. This hysteresis reduces the effect of minor variations in ωa. VFH+
then generates movement candidates ϕi from the valleys formed by adjacent open bins. For narrow
valleys (< 5 bins), only the valley’s center is a valid direction of movement. Finally, VFH+ selects
the best movement direction ϕ̆ based on the cost function introduced in [150]. This cost function
takes into account the subgoal position ~pik+1

, the current robot orientation θr, and the previously
selected movement direction. To avoid collisions, we reduce the robot’s speed whenever it is not
driving directly towards the subgoal position ~pik+1

.
Note that VFH is a purely reactive scheme, and may move the robot far away from the planned

path. While some deviations from the path are necessary to avoid obstacles, the robot should not
get lost. We therefore stop the VFH sub-automaton if it fails to reach the subgoal ik+1 after 30 s.
Similarly, we stop the automaton if the robot moves more than 30 cm from the map edge (ik, ik+1).
In both cases, the robot will attempt to return to the node ik and replan its path from there.

If both of these obstacle-avoidance schemes fail, the robot must take a different path. We
therefore block the impassable map-graph edge (ik, ik+1) by greatly increasing its travel cost. The
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(a) Without lane extension (b) With lane extension

Figure 2.24.: In this illustration, the robot cleans a diagonal corridor (blue lines) from the top to the
bottom. As usual, the resulting map nodes are shown as black dots, connected by black lines. In the
naive approach shown in (a), lanes do not extend beyond their immediate predecessors. This leaves
a gap in the coverage (red area), which the robot would have to cover separately. We therefore
allow the automaton to ignore this constraint to reach an obstacle up to 50 cm ahead. In (b), this is
the case for the middle lane, which now ends close to a wall. This proximity to the wall also lets the
planner apply the adjustment from Figure 2.21 to the subsequent lane. As shown by the additional
nodes with green borders, the covered area is thus increased.

robot then replans the path to the current goal node iN using the regular planner from Section 2.4.1.
If this fails to find a traversable path, the goal node iN is marked as unusable. Such unusable
nodes are no longer considered as border nodes when planning new lanes. In case uncleaned space
remains, the robot simply selects a new lane according to Section 2.4.2. However, if the robot
cannot return to its home location after cleaning is complete, it stops and enters a failure state.

2.5.5. Driving Lanes

We use an automaton to extend the cleaned area by driving the new lanes as planned. This automaton
assumes control after the robot has reached the new lane’s starting position ~pm (Section 2.5.4). The
behavior of the lane-driving automaton differs between parallel (regular) lanes, piercing lanes, and
the very first lane in a cleaning run.

2.5.5.1. Parallel Lanes

First, we will discuss the most common case of driving a parallel lane. The automaton follows
a line with a cleaning direction θ and length s, which extends from the starting position ~pm. A
PI controller steers the robot towards a point on the line that is dl = 60 cm ahead of the current
position ~pr. For this dl, the robot quickly corrects displacements from the planned lane without
making sharp turns. Motor commands are thus based purely on the estimated metric pose of the
robot and the planned lane. To estimate its pose while driving the lane, our robot applies the
localization method from Section 2.5.2. Recall that this method requires reference images from
nearby nodes to correct the pose estimate. Here, the automaton selects nodes along the map border
to which the new lane is attached.

While driving the lane, the automaton extends the map by requesting a new node every 10 cm.
This continues until the new lane reaches the planned length s. An additional constraint arises if the
new lane extends the current part: Here, the lane ends once it passes the first node of the previous,
antiparallel lane, even if the length remains below s. In the absence of obstacles, all lanes in a part
will thus have the same length. As seen in Figure 2.2, this leads to parts with straight sides. This is
a useful property, as it is easy to attach future parts to such straight borders.
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(a) Edges between parts (b) Edges between lanes

Figure 2.25.: After completing a new lane (red line), we connect its nodes (black dots, red outline)
to the existing map (black line, black dots). For each given node ni within the new lane (red dot),
we first add an edge to the previous node along the same lane. In this illustration, new edges are
shown as green, dashed lines, while the nodes newly connected to ni are shown with a green outline.
In (a), the new lane is the first of a new part. We therefore connect ni to all nodes from the parent
part that lie within a radius of 50 cm (gray circle). In (b), we consider a new lane that is added to an
existing part. Here, we first add an edge between ni and its nearest neighbor n′i along the previous
lane (green dot). We then connect ni with up to three predecessors and successors of n′i along that
previous lane.

In practice, obstacles may also affect the actual lane length: While driving a new lane, the
automaton continuously checks for obstacles in front of the robot. If such an obstacle is less than
10 cm away, the robot will carefully approach it at a reduced speed. Once the obstacle distance
reaches 1 cm, the automaton ends the current lane. Yet if this has not occurred after 5 s, the robot
must have passed the obstacle; the automaton therefore continues the lane at a normal speed.

Our robot may also react to obstacles by lengthening the current lane: As discussed, a lane
extending an existing part should not pass the end of its immediate predecessor. However, this may
leave small uncleaned gaps between the lane’s end and a nearby obstacle. To prevent this, the robot
continues the lane if it detects an obstacle less than 50 cm ahead. In this case, the lane ends after it
reaches either the obstacle or its planned length s.

Since our map lacks global metric consistency, the robot may occasionally encounter an un-
expected previously-cleaned area. After creating a new node, we therefore compare the current
camera image to those from the border nodes of the existing parts. This comparison is based on an
image-distance heuristic contributed by Horst and Möller [69]. If the automaton detects that the
robot has reached such a previous part, it ends the current lane.

Upon reaching the end of the current lane, the automaton requests the creation of a final node.
Having thus completed the lane, we now have to connect its new nodes ni through edges. Here, we
follow the procedure shown in Figure 2.25. First, we add an edge between each new node ni and its
immediate successor ni+1. Next, we also connect these nodes to the rest of the map graph in one of
two ways: For the first lane in a new part (Figure 2.25a), we add edges between the new nodes and
nodes from the parent part. Specifically, we connect nodes with an estimated Euclidean distance
≤50 cm. If the new lane extends an existing part (Figure 2.25b), we connect it to the previous,
parallel lane. In general, we insert an edge between the new node ni and its closest neighbor n′i
from the previous lane. Additionally, we connect ni with up to three nodes that follow and precede
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n′i, for up to seven total edges. In this case, we also apply several checks to eliminate edges which
the robot may be unable to traverse.

2.5.5.2. Piercing Lanes

In general, the control mechanism for piercing lanes is similar to that used for parallel lanes: As
before, our robot follows a planned straight line which extends from a starting position. However,
piercing lanes require some modifications: First, the robot cannot rely on nodes from other parts to
correct its position estimate. Recall that we only use piercing lanes to pass through narrow obstacles.
Since the obstacles are close, moving the robot may cause large changes within the camera image.
This increases the error of our visual pose-estimation method, leading to greater pose uncertainty.
We therefore correct the estimated pose using nearby nodes within the piercing lane. Relying on
such few nearby nodes within the current lane still leads to an increased pose uncertainty. However,
recall that the planner restricts piercing lanes to a length of s ≤ 140 cm. This limits the errors in
the robot’s pose estimate, allowing the control automaton to function normally.

While driving a piercing lane, the robot explores a new area away from the existing map. Yet at
the same time, the limited lane length leaves little time to detect new obstacles. Thus, the robot
may have little information about free space around the piercing lane. To compensate for this, our
robot will rotate on the spot after completing a piercing lane. This turn lets us gather the obstacle
data needed to plan subsequent lanes.

2.5.5.3. First Lane

The very first lane for a new cleaning run poses a special challenge, since there is no existing map
to which it could be attached. A straight and well-formed first lane is important, since it serves as
the foundation on which our robot builds the subsequent map. In practice, an approach similar to
the piercing lanes gave good results: From its start-up position, the robot simply drives a straight
line. As in Section 2.5.5.2, we use nearby nodes within the lane to correct the pose estimate. We
also limit the length of the first lane to 190 cm. We consider this to be a good compromise between
the straightness and length of the lane. Since we assume that the robot starts within a fairly open
area, we skip the obstacle-detection turn .

2.6. Experiments and Results

To test our cleaning robot, we order it to clean an unknown environment. Experiments on our
physical robot are important to judge our framework’s real-world performance. However, testing
in a simulated environment also offers some advantages: First, we can easily determine the true
state of both the environment and the robot within it. This makes it much easier to analyze our
robot’s behavior. Second, we can experiment with a greater variety of environments, including
some not accessible for real-robot experiments. Finally, the simulation runs faster than our real
robot, allowing us to perform a large number of experiments within a limited time. Consequently,
this section includes results from both the real robot and our simulation.

Figure 2.26 shows cleaning runs from two different real-world apartments. These apartments
contain different room types, including a bedroom, living room, hallway, kitchen, and bathroom. In
each case, our robot manages to cover most of the free space with meandering lanes. However, the
robot also uses piercing lanes to clean some of the narrow areas. Afterwards, the robot successfully
returned to its starting location.

Figure 2.27 shows similar results for two simulated environments. As in the real-world experi-
ments, the robot also succeeds in cleaning these larger apartments. For these simulated experiments,
we made a small change to the self-localization component from Section 2.5.2: Since simulating
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(a) Apartment A (real)

(b) Apartment B (real)

Figure 2.26.: Cleaning runs from real-world apartments, as performed by our robot prototype. We
represent lanes as thick arrows, with a dot indicating the starting position of each lane. Regular
lanes are colored red, while piercing lanes are shown in green. A thinner, black line represents the
trajectory of the robot between the lanes. Small black circles depict the obstacle points detected by
the robot. Lacking a ground truth, we base the positions of these elements on the robot’s internal
estimates. Because the estimates lack global metric consistency, the obstacle map and lanes in these
illustrations appear somewhat distorted.

35



2. An Introduction to our Autonomous Cleaning Robot Framework

(a) Apartment C (simulated)

(b) Apartment D (simulated)

Figure 2.27.: Simulated cleaning runs from two comparatively large apartments. We visualize the
robot’s behavior using the same elements as in Figure 2.26. However, we omit the obstacle points,
and instead show the actual simulated obstacles as blue lines. Since they are based on a simulation,
these illustrations show the robot’s true trajectory within the environment.
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(a) Cleaning around a small table (b) Cleaning under a table and chairs

Figure 2.28.: We found that narrow spaces may be difficult to cover with meandering lanes. These
figures show two details from the cleaning run in Figure 2.27a: In (a), the robot uses a chain of
piercing lanes (green arrows) to clean around a small table in the apartment’s top-left corner. The
detail (b) was taken from the center-right room. Here, the robot attempts to clean the narrow space
between the legs of a table with four chairs. We have highlighted the area underneath this furniture
using blue, transparent rectangles. The black line represents the robot’s trajectory while not driving
a lane. Note how our robot repeatedly moves around the obstacles to travel between the piercing
lanes.

realistic camera images is both difficult and time-consuming, we do not use the visual min-warping
method for pose estimation. Instead, we provide the robot with relative-pose estimates by adding
noise to the true relative pose between two locations. Note that the rest of the localization scheme
remains unchanged, and works as described in Section 2.5.2.

We also highlight some of the difficulties encountered by our cleaning robot, which we will
discuss in Section 2.7: Figure 2.28 shows two narrow spaces from Figure 2.27a. These areas
are poor fits for the meandering lanes employed by our cleaning robot. Consequently, the robot
performs numerous piercing lanes (green arrows) while repeatedly driving around the area (black
lines). While this contravenes our meandering-lane strategy, Figure 2.29 shows that our robot
cannot cover such narrow spaces with parallel lanes.

In Section 2.3.2, we discussed how our robot retrieves local obstacle data from our obstacle map.
Given a map node k, we constructed a set of local obstacle points O′k by combining data from
multiple range-sensor readings. To compensate for sparse obstacle data, this set also contains points
recorded at nearby nodes k′. However, even within this local neighborhood of k our map does not
provide perfect metric consistency. For performance reasons, we also do not process the obstacle
points in O′k to ensure their consistency. As shown in Figure 2.30, the combined set O′k may thus
be somewhat inconsistent.

To estimate the efficiency of our robot, we compare the number of map nodes to the distance
traveled: While cleaning a new area, our robot inserts one node every ≈ 10 cm. However, we add
no nodes when traveling within the previously-mapped area. Thus, creating more nodes within a
given travel distance means that more of this distance was spent on cleaning new areas. Figure 2.31
shows such an estimate for the cleaning runs from Figure 2.27. Note that the node-distance curves
flatten over time, indicating a decrease in efficiency as the cleaning run progresses.
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(a) Small table, no piercing lanes (b) Table and chairs, no piercing lanes

Figure 2.29.: This figure shows an attempt to clean the areas from Figure 2.28 using only me-
andering lanes. Without piercing lanes, our robot failed to clean behind the small table in (a) or
underneath the table and chairs in (b). However, the black trajectory shows that the robot also spent
comparatively less time traveling around the obstacle.

(a) Single-node obstacles Ok (b) Combined obstacles O′k

Figure 2.30.: This figure shows the local obstacle points (red circles) for the node k (green disc)
in a simulator experiment. Black lines denote the true obstacles in the environment; for clarity,
these are drawn above the obstacle points. In (a), we only show the point set Ok (Section 2.3.2).
These points were recorded within 7 s before or after the robot created or visited the node k. Here,
some obstacles are not detected, while others are represented by isolated obstacle points; as per
Figure 2.7 these may be eliminated during the DBSCAN filtering step. The point set O′k in (b) also
contains obstacle points from other nearby nodes k′. While this increases the number of obstacle
points, these points are also less consistent and appear somewhat spread out.
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Figure 2.31.: The number of nodes in the map compared to the distance traveled by the robot,
based on the experiments from Figure 2.27. A black, dashed line represents the upper bound of one
node per 10 cm. Since our robot also travels through the previously-cleaned area without creating
new nodes, the actual results remain below this limit.

2.7. Discussion

In general, we found that our cleaning robot can solve its task. It has proven capable of covering
a variety of indoor environments, including apartments, offices, and laboratories. As an example,
Figure 2.26 and Figure 2.27 show successful cleaning runs in real and simulated environments,
respectively. Next, we focus our discussion on specific aspects and problems of our robot’s
fundamental design.

One problem arises because the robot cleans the floor by driving parts of meandering lanes. As
discussed in Section 2.4.2, this leaves no uncleaned gaps between adjacent lanes. The resulting
parts also match the rectangular room shapes commonly found in domestic environments. In
practice however, rooms usually contain many obstacles of varying shape and size, such as furniture.
Thus, the actual shape of the free floor space is often highly irregular. We found that our fairly
rigid part-lane structure is not an ideal fit for such areas. This problem is more severe within
narrow spaces, for example underneath tables and chairs. Figure 2.28 shows two such cases,
which our robot encountered within a simulated apartment. Here, our systematic cleaning strategy
is reduced to driving many short piercing lanes. Unfortunately, the straight piercing lanes are
sometimes difficult to fit into narrow, complex spaces. The resulting uncleaned gaps lower our
robot’s effectiveness. In Figure 2.28b, the robot covers a considerable distance while traveling
between the short piercing lanes. This is somewhat inefficient, since we spend both time and
energy on traversing a previously-cleaned area. However, our robot cannot currently cover these
narrow spaces using meandering lanes, as demonstrated in Figure 2.29. In the future, it might be
advantageous to clean such areas with curved lanes. Such curved lanes would however increase the
complexity of the map and planning components.

In Section 2.4.2, we explained that our robot only plans ahead by a single lane. This allows the
robot to operate with a limited map, while also saving computational resources. Without planning
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far ahead, the order of the individual parts is sometimes not optimal. For example, the robot may
leave small niches uncleaned, instead choosing to clean a large area first. Our robot must then
return to this niche later, which increases the overall travel distance. The node-distance graphs from
Figure 2.31 demonstrate this problem: Early on, our robot creates new map nodes at a steady rate
while covering previously-uncleaned areas. However, the node-creation rate eventually declines
as the robot runs out of easily-cleaned space. Towards the end of the cleaning run, the robot
travels long distances to add just a few additional nodes before returning to its starting location.
As discussed in Chapter 5, it may be more efficient to clean the environment room-by-room.
Alternatively, the robot could plan several lanes and parts in advance, with a goal of minimizing the
travel distance. However, this likely requires a map that extends far beyond the previously-cleaned
area. These changes also require more computational resources, extending the time and power
spent on planning.

Our rather sparse obstacle map and relaxed metric consistency also affect our robot’s efficiency.
Figure 2.30 illustrates this problem by comparing two sets of obstacle points: Figure 2.30a shows
the obstacle points recorded shortly before or after the robot created or visited a map node k.
While these points are largely consistent with the actual obstacles, they are also rather sparse. As
described in Section 2.3.2, we thus also include obstacle points from other nearby map nodes k′. In
Figure 2.30b, this increases the density of the obstacle points, but also makes them less precise. Due
to these issues, the robot may create a plan which is valid according to the map. While executing
the plan, the robot then however encounters an unexpected obstacle. Alternatively, the robot may
also falsely detect a nonexistent obstacle. As discussed in Section 2.5, the control automatons
try to deal with such problems by modifying the plan. Yet in some cases, our robot is forced to
abandon its current action. It must then create a new plan, which takes time and reduces the robot’s
efficiency. Note that this kind of problem cannot be avoided entirely when dealing with uncertain
maps. Nevertheless, a higher-resolution obstacle sensor or a map-correction scheme may provide
better obstacle data. We hope that this would reduce the impact that map uncertainties have on the
robot’s behavior.

A comprehensive, quantitative analysis of our robot’s cleaning performance would also be useful.
In practice, even minor variations in the robot’s starting pose or environment can considerably
influence a cleaning run. A meaningful study thus requires repeated cleaning runs, as well as
experiments in a number of different environments. To analyze our robot’s cleaning performance,
we need to track its movement through the environment. While our group has previously developed
a suitable tracking system using overhead video cameras, installing and calibrating several of these
systems across multiple rooms is a time-consuming procedure. Ideally, the experiments would be
conducted in realistic environments, such as inhabited apartments. However, this may also irritate
the regular human occupants of these spaces. This makes it harder to find a sufficient number
of suitable domestic environments. Consequently, a comprehensive, quantitative analysis of our
robot’s performance remains an unresolved task.

Overall, we believe that our robot performs its cleaning task reasonably well. The remaining
issues seem comparatively minor, and may be unavoidable trade-offs in the face of limited resources.
More importantly, our prototype provides a practical example for a domestic floor-cleaning robot. It
thus offers a valuable experimental platform for the research questions discussed in the subsequent
chapters.
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3. Comparing Holistic and Feature-Based
Methods for Visual Relative-Pose
Estimation

The localization scheme used by our domestic cleaning robot estimates relative poses from pairs of
camera images. Feature-based and holistic methods present two fundamentally different approaches
to this pose-estimation problem. While our prototype currently uses the holistic min-warping
method [102], the literature also contains numerous other solutions. In this chapter, we therefore
evaluate a selection of such methods within the context of our cleaning robot. We find that min-
warping gives good and fast results, while being fairly robust to strong illumination changes. Some
of the feature-based candidates can provide excellent and robust results, but at much slower speeds.
Other such methods also achieve high speeds, but at reduced robustness to illumination changes.
We also provide novel image databases and auxiliary data for public use. Please note that this
chapter is based on an earlier publication by the author [49].

3.1. Introduction

Visual relative-pose estimation is the problem of estimating the relative orientation and movement1

between two camera postures from the two corresponding camera images. This has at least four
applications in mobile robotics: First, pose estimation can be used to solve visual homing problems.
These include returning to the point at which an image was taken, and traversing a route formed by a
series of images [52, 153, 60, 12, 82, 100]. Second, when image sequences are available, successive
pose estimates can be integrated to perform visual odometry, for example [26, 117]; overview: [131,
53]. However, this integration requires information about the (relative) movement distance between
the individual camera postures. Third, pose estimation can act as a visual odometry component
in visual localization and mapping (SLAM) systems [143, 79]. Visual relative-pose estimation
can also serve as one component within a more complex SLAM system, where, for example, it
is used as an input for structure-from-motion methods [20]. As described in Section 2.5.2, our
cleaning-robot framework uses visual relative-pose estimation to determine its pose relative to the
map. Additionally, our research group has previously presented similar navigation systems for
cleaning robots [57, 59]. Fourth, at least one work uses relative-pose estimates only indirectly to
compute an image similarity measure [16].

There are two fundamentally different approaches to relative pose estimation from two camera
images: Feature-based methods, which we discuss in Section 3.1.1, and holistic methods, which
we cover in Section 3.1.2. Evaluating these two approaches within the context of our domestic
cleaning robot is the main goal of this chapter.

3.1.1. Feature-Based Methods

Methods based on local visual features are clearly the most popular solution for the visual pose-
estimation problem. They serve as components in most of the works referenced above.

1Without depth information, it is impossible to determine movement distances from just two images. However, the
relative bearing can still be derived.
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As the name implies, these methods rely on distinct local image elements, such as corners, blobs,
or edges. In a first step, a detector locates these keypoints for each image. The SIFT [89] and SURF
[7] detectors, or variants thereof [4, 76, 106], represent one common choice. Detectors based on
segment tests have also become popular in recent years, in part because they can be computed
very quickly [127, 128, 93, 129, 84]. For a comparison of several detectors in the context of robot
navigation, refer to the assessment by Schmidt et al. [134].

After the keypoint locations are known, a feature descriptor vector is extracted from the vicinity
of each keypoint. These descriptors are often designed for a specific type of detector. As such,
the SIFT [89] and SURF [7] descriptors are commonly used with their corresponding detectors.
Binary feature descriptors, offering high computational efficiency, are also widely used [129, 2,
3]; comparison: [11, 43]. For an overview over numerous local-feature detectors and extractors,
see [56]. Local features often rely on information contained in high spatial frequencies, and thus
typically benefit from high-resolution images.

Once features have been extracted, a matcher identifies corresponding features between the
two images based on their descriptors. A straightforward solution is matching through a brute-
force, exhaustive search. Alternatively, approximative matchers [108, 109] or visual bag-of-words
approaches [20] can be used. When working with video sequences, features can also be tracked
across multiple frames [116].

Using the intrinsic and extrinsic camera calibration, we can compute a robot-relative bearing
vector for each keypoint. The relative pose is then derived from the bearings of matching features
in the two images. In general, at least five feature pairs [138, 117] are required, although two
pairs suffice if planar robot motion is assumed [17]. If the movement of the camera is further
constrained to that of a nonholonomic wheeled vehicle, the pose may be estimated from just a
single pair [130]. Where the 3D position of features is known, it can also be used in the pose
estimation [63]. The necessary depth information can be acquired through stereo cameras [116,
117], structure-from-motion on image sequences [143], or RGB-D cameras [71].

Incorrect feature matches greatly reduce the quality of the pose estimate, and must thus be
rejected. This is commonly accomplished through random sample consensus (RANSAC) [44], a
hypothesize-and-test scheme with numerous variants [148, 24, 115, 124]. An alternative approach
uses Bayesian methods to determine the likelihood function for all possible planar relative poses,
without explicitly rejecting incorrect matches [15]. The relative pose can then be estimated by
searching for the maximum likelihood. For a wider view on feature-based relative-pose estimation,
we direct the reader towards a tutorial in feature-based visual odometry [131, 53], as well as a
general survey of visual SLAM [55].

3.1.2. Holistic Methods

Holistic methods follow a different approach: Instead of focusing on specific points of interest,
they use the entire image to solve the pose-estimation problem. These methods typically operate
on panoramic, lower-resolution images with only a moderate amount of preprocessing. Holistic
methods also use lower spatial frequencies and make few assumptions about the environment.
They specifically do not require the presence of certain kinds of local visual features. Originally
developed as models of insect visual navigation, these methods have recently found applications
in robotics. Examples include visual homing [52, 12], route following [82], and localization and
mapping [51, 72, 50]. As we have explained in Section 2.5.2, our cleaning-robot framework also
uses a holistic method for relative-pose estimation [103, 105, 102]. For a wider survey of these
methods, see [33].

Holistic methods based on pixel-wise image comparisons (overview: [102, 101]) execute either
actual or simulated test movements to explore the resulting changes in the panoramic images. In
methods based on a spatial descent in translational image distance functions [158, 141] and in multi-
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snapshot methods [61, 112], the robot has to execute actual, physical test movements. The bearing
towards the capture position of image 1 can then be estimated from the image distance between
image 1 and the images captured during the test movements in the vicinity of the capture position of
image 2. In contrast, other methods only simulate test movements by distorting panoramic images
accordingly. Some methods calculate short test steps to simulate the physical test movements used
for spatial descent in image distance functions [12, 103, 82, 105]. Alternatively, warping methods
use simulated long-distance movements to directly determine the relative-pose hypothesis [52, 140,
50, 100, 102, 97]. These simulated methods have the advantage that only a single input image from
each location is required. Optical-flow methods are a second group of holistic methods, which have
been studied in [151]. These methods estimate the optical flow by matching blocks of pixels or
through differential techniques. They require an external orientation estimate, although this can be
determined from the input images using a separate visual compass [158].

Like the feature-based candidates, the holistic min-warping method used in these experiments
also estimates the pose from the displacement of image patches. However, as a holistic method it
selects these patches according to a fixed scheme, without searching for distinct image elements
like corners or edges.2 Instead, min-warping operates on all pixel columns in a panoramic image,
without deciding on whether a specific column is of interest or not. Similarly, an optical-flow
method based on block matching may use blocks of pixels which are arranged in a fixed grid [151].

3.1.3. Our Contributions

As we have mentioned above, we base our comparisons on our cleaning-robot framework from
Chapter 2. Consequently, we employed our robot’s onboard camera to acquire the image databases
for this study (Section 3.2.1). We use these panoramic views as the input for both the holistic
method and the feature methods. To make comparisons between different methods possible, we
assume that pose estimation must be performed using only a single, arbitrary pair of monocular,
panoramic images. We thus do not include techniques that rely on image sequences or video to track
features, perform structure-from-motion, or construct maps. This use of image pairs also matches
the way in which our cleaning-robot framework employs visual pose estimation, as discussed in
Section 2.5.2. Since our robot is equipped with a single monocular camera, we cannot acquire
stereo or depth images. Similarly, we do not take into account methods that rely on robot odometry
or additional sensors.

For the feature-based methods, we include a variety of feature detectors and descriptors combined
with a brute-force matcher. From the resulting feature pairs, we estimate the relative pose using
5-point and planar 2-point algorithms with outlier rejection through standard RANSAC. We also
investigate the effects of a final iterative refinement on the pose estimate. Regarding the holistic
methods, our research group tested several warping methods in earlier studies [100, 103, 102].
Based on these results, we use min-warping both for this study and in our cleaning-robot framework:
Except for one much slower but only marginally better method, it produced the best relative-pose
estimates. In an earlier publication [49], we also tested a holistic method based on the block-
matching algorithm [151]. Since the performance of this method remained notably below that of
the other candidates, we choose to omit it from this chapter.

Figure 3.1 outlines how the feature-based and holistic methods estimate the relative robot pose
from the camera images. Details on the selection of methods and their parameters and use are
found in Section 3.2. As we have discussed in Section 2.1, small domestic robots such as ours have
to operate with limited onboard computational resources. The real-time constraints faced by our
robot allow us to formulate meaningful time constraints for our evaluation. Beyond our cleaning

2The class of holistic methods is not equivalent to that of visual-appearance methods, as at least some appearance
methods use local visual features such as SIFT or SURF [16, 29].
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Figure 3.1.: From two camera images to a relative pose estimate: Features are extracted and
matched for the two images captured by a robot (top). The relative robot pose is then estimated
from the feature locations in the two images. Alternatively, a holistic method determines the relative
pose from all pixels in the low-resolution unfolded images (below). The feature matches shown
here are merely an illustration, and the actual number of features is much higher.
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robot, we also want to provide insights for a variety of other applications. We therefore analyze our
results using general criteria for quality, speed, and robustness.

We have organized the remainder of this chapter as follows: Section 3.2 describes the general
design and acquisition of the image databases which we created for this study (Section 3.2.1). Next,
we give an overview of holistic (Section 3.2.2) and feature-based (Section 3.2.3) pose-estimation
methods, and explain our choice of methods. Finally, we describe our experiments and evaluation
criteria in Section 3.2.4. Section 3.3 contains comprehensive results from our experiments, including
measurements of quality (Section 3.3.1) and computational speed (Section 3.3.2). We also study the
candidates’ robustness to strong illumination changes or violations of the planar-motion assumption
(Section 3.3.3). We discuss our results in Section 3.4, with an emphasis on the strengths and
weaknesses of the individual methods. Lastly, we offer brief conclusions and suggest avenues for
further research in Section 3.5.

3.2. Materials and Methods

In this section, we first introduce the image databases which we collected for this work (Sec-
tion 3.2.1). We then discuss the holistic (Section 3.2.2) and feature-based (Section 3.2.3) pose-
estimation methods evaluated in this study. Finally, we present our experiments and evaluation
criteria in Section 3.2.4.

3.2.1. Image Databases

To meet the specific requirements of this comparative study, we recorded novel image databases.
We found this necessary as existing databases do not provide the image types, calibration, or
ground truth data suitable for our experiments. We acquired these images using our robot and
its onboard panoramic camera, which we introduced in Section 2.2. For these experiments, we
captured images using the camera’s full 1280× 1024 resolution. With the fisheye lens, the resulting
usable image area is a disc with a diameter of approximately 900 pixels, as shown in Figure 3.2. A
controller adjusted the camera exposure time with the goal of maintaining a constant average image
brightness.3 All images and related information are made available for download [47].

Our robot recorded images on a regular grid with ≈15 cm spacing. This grid merely ensures
that there is an approximately uniform image coverage of the chosen area. The grid is not used
to provide ground truth data,4 therefore precise positioning of the robot at each location was not
required. Using wheel odometry, the robot autonomously captured images on each individual grid
column. In between, we cleaned the lens and positioned the robot for the next column. For each grid
location, we recorded images with four different robot orientations: 0◦, 90◦, 180◦ and 270◦. These
orientations are parallel to the axes of the location grid. Each grid consists of 16× 12 locations,
covering an area of 225 cm by 165 cm. With the four different orientations per location, a database
contains 768 images in total. To provide a stable platform and to simplify the synchronization with
the ground truth data, our robot remained stationary during each image capture. This behavior also
avoids any motion blur.

The ground truth was acquired by overhead cameras, which tracked two differently-colored
LEDs built into the robot’s upper lid. From the LED positions in the overhead camera images, we
calculated the robot position and orientation on the 2D floor plane. Specifically, the ground truth
position corresponds to the location of the onboard camera. We can therefore directly compare

3The topmost 15◦ of azimuth were not included in the average brightness calculation, due to concerns regarding the
effect of strong ceiling-mounted light sources in this area.

4Ground truth data is captured with an overhead video tracking system.
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(a) Lab, daytime (LabD) (b) Lab, nighttime (LabN)

(c) Office, daytime (OfficeD) (d) Office, nighttime (OfficeN)

Figure 3.2.: Raw example images from each database, each captured at grid position (5,5).

relative poses estimated by the visual methods with those calculated from the ground truth. The
tracking system uses calibrated cameras and achieves a resolution of a few millimeters.

In total, we gathered four image databases in two different environments under two illumination
conditions. The Lab databases were recorded in a typical lab environment. LabD was recorded in
the early afternoon, with the windows as the only source of light. The lab faces an interior courtyard,
and there is no direct sunlight entering the room. For LabN, recording began 30 minutes after
sunset. Two rows of overhead fluorescent lights provided the illumination. The Office database
was recorded in an office. As before, OfficeD was recorded around noon, while OfficeN was
captured at night under fluorescent illumination. The northeast-facing windows of the office did
not allow any direct sunlight to enter the room. Figure 3.2 shows a raw example image from each
database.

For our actual experiments, we randomly selected 10000 out of 589056 possible image pairs
from each database. Experiments with strong illumination changes also use 10000 out of 1179648
image pairs for both the LabD-LabN and OfficeD-OfficeN database pairs, selected from both
day-night and night-day combinations. We use these random subsets of image pairs to reduce the
computation time taken by the experiments to a reasonable level. For any given database, the same
set of image pairs is used for all experiments. To test a pose-estimation method, we compute the
relative-pose estimate for each image pair. We then calculate the estimation error by comparing
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(a) Lab, daytime (LabD) (b) Lab, nighttime (LabN)

(c) Office, daytime (OfficeD) (d) Office, nighttime (OfficeN)

Figure 3.3.: Unfolded and preprocessed images from each database, as used by min-warping.
All images were taken at the same grid position and correspond to the raw example images in
Figure 3.2.

these estimates to the ground truth.

3.2.2. Holistic Method: Min-Warping

Here, we provide a verbal description of the min-warping algorithm; details are available in the
literature [100, 102, 101]. To reduce the degrees of freedom (DOF) in the relative-pose problem,
min-warping assumes that robot motion is planar. Note that this matches the planar-motion
assumption used in our cleaning-robot framework, as per Section 2.5.2. For a scene of unknown
scale, this leaves only the relative bearing angle α and orientation ψ as the parameters of the relative
pose. To estimate the relative pose, min-warping performs a systematic search for the (α,ψ) pair
with the best match score. The match score expresses how well the given image pair agrees with a
hypothetical relative pose, as explained further below.

3.2.2.1. The Min-Warping Algorithm

Min-warping operates on “unfolded” images, as shown in Figure 3.3. In this type of panoramic
image, each image column with index i corresponds to a particular azimuth in robot coordinates.
Min-warping also assumes that all pixels in a column correspond to points with the same ground dis-
tance from the camera. Even though this equal-distance assumption is often violated, min-warping
produces good estimates of the relative pose in many environments. Under these assumptions,
image columns can be used as landmarks. A column at position i can only reappear in another image
at certain positions j ∈ Mi, where the search range Mi depends on the pose hypothesis (α,ψ).
When the ground distance for a column differs between the images, the vertical magnification at
which it appears will also change. If the column i is shifted to position j, the relative vertical scale
σi,j is determined by the pose hypothesis.

Min-warping now estimates the shift for each image column by finding its closest match within
the search range in the other image. To identify matches, a visual distance d(i, j, σi,j) is calculated
from the columns’ pixels [101]. This pixel-wise comparison is a typical characteristic of holistic
methods. In this chapter, we use a distance measure which averages the normalized sum of absolute
differences (NSAD) and the normalized sum of absolute differences of absolute values (NSADA)
on edge-filtered images, as described in [99]. For each column i, min-warping then searches for
the match j ∈ Mi with the lowest distance d̆(i) = minj d(i, j, σi,j). The sum

∑
i d̆(i) over all

image columns gives the match score for a hypothesis (α,ψ). Finally, the hypothesis (ᾰ, ψ̆) with
the lowest score is the relative-pose estimate determined by min-warping. This corresponds to the
pose hypothesis for which the best-case disagreement between the images is minimized.
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Several optimizations markedly increase the speed of this algorithm: We precompute the search
range Mi at which each column i can appear in the other image. For each possible column pair
(i, j), we also precompute the relative vertical scale σi,j . Binning is used to map these continuous
σi,j to a finite set of discrete σk. For a given image pair, the distance d(i, j, σk) is precomputed for
all column pairs (i, j) and discrete σk. The precomputed d(i, j, σk) for a given scale σk are called
a scale plane, and the scale planes for all possible σk form the scale-plane stack.

Here, we use a heuristic called compass acceleration to speed up the search for the best pose
hypothesis [102]: First, a fast approximate search identifies the most promising orientation estimates
ψ from the scale-plane stack. The search for the best hypothesis (ᾰ, ψ̆) is then limited to this
fraction of ψ. This speeds up the second phase of min-warping, with only a slight impact on the
quality of the results. When using min-warping to correct our cleaning robot’s pose estimate in
Section 2.5.2, we can reduce the execution time even further: Based on the robot’s uncorrected
pose estimate, we first precompute the expected relative pose between the robot and a map node.
We then use this coarse estimate to restrict the search space for both the bearing ᾰ and orientation
ψ̆ to one-quarter of their full range (Section 3.2.2.1). This reduces the overall search space by a
fraction of 15

16 , thus speeding up min-warping’s second phase. In our cleaning-robot framework, this
search-space restriction replaces the compass-acceleration heuristic. To allow for a fair comparison
between the various methods, we do not use this application-specific optimization in this chapter.

Due to its regular structure, the entire min-warping algorithm can be parallelized efficiently using
vector instructions, such as SSE and AVX on x86 CPUs. We employ such an accelerated implemen-
tation for the tests in this work [98].5 To optimally exploit the parallelism of vector instructions, our
implementation uses small integer data types for almost all stages of the computation. We provide
the specific min-warping parameters used for our experiments in Table A.2.

3.2.2.2. Calibration and Preprocessing

The camera mounted on our robot can operate in a 640 × 512 pixel half-resolution mode. Min-
warping does not require high-resolution camera images, and a lower resolution reduces the
image-processing time. Consequently, our cleaning-robot framework use this half-resolution mode
for all images captured during a regular cleaning run. In these experiments, we simulate the
half-resolution mode by reducing the resolution of the database images through binning.

As mentioned, min-warping requires some moderate image preprocessing. This includes un-
folding the fisheye image (Figure 3.2) into a low-resolution panoramic image (Figure 3.3). To
determine the mapping between the fisheye image and the unfolded panoramic image, we perform
an initial calibration step: First, we place and align the robot inside a cylinder covered with a grid
of black dots. These dots are visible in a calibration image captured by the robot’s camera, which is
shown in Figure 3.4a. Next, we use thresholding and segmentation to extract these dots, as seen in
Figure 3.4b. The bearing of each dot in robot coordinates can easily be calculated from the known
sizes of the grid and cylinder.

We thus know the image coordinate and robot-relative bearing for each dot. From this, we calcu-
late a mapping between the camera image and the bearing vectors through bilinear interpolation.
Based on this result, we can now create unfolded panoramic images from the fisheye camera images.
In these unfolded images, each column corresponds to a specific azimuth in robot coordinates,
while each row corresponds to a certain elevation angle. Figures 3.4c and 3.4d demonstrate the
relationship between the camera and unfolded images. Note that elevation angles above ≈45◦,
corresponding to the central region of the fisheye image, are not covered by the calibration pattern.
Even if we would extend the pattern, the dots would appear very close together in the image, making

5A version of this implementation is available to the public at http://www.ti.uni-bielefeld.de/html/
people/moeller/tsimd_warpingsimd.html.

48

http://www.ti.uni-bielefeld.de/html/people/moeller/tsimd_warpingsimd.html
http://www.ti.uni-bielefeld.de/html/people/moeller/tsimd_warpingsimd.html


3.2. Materials and Methods

(a) Calibration image (b) Extracted grid pattern

(c) The final mapping used for image unfolding.
Each point corresponds to a pixel in the camera
image that is mapped to a pixel in the unfolded
image (Figure 3.4d). For the sake of clarity only
every sixth point is shown.

(d) The structure of the unfolded image. Each point
represents a pixel, and each row of pixels corre-
sponds to one of the concentric rings in Figure 3.4c.
Points of equal brightness represent pixels of equal
elevation angle.

Figure 3.4.: Calibration for image unfolding, as described in Section 3.2.2.2.

calibration difficult. As our fisheye lens uses equidistant projection, we instead approximate the
high-elevation mapping through linear extrapolation. The extrapolation coefficient for this step is
derived from the calibration toolbox used in Section 3.2.3.2 [132].

For our experiments with holistic methods, we use unfolded images with a resolution of 288×48
pixels, which encompass elevation angles from 0◦ to 75◦. Note that, as the unfolded image does
not cover elevation angles above 75◦, min-warping cannot utilize the innermost region of the
fisheye image. To avoid aliasing, we apply an averaging filter with a 7 × 7 mask to the camera
image; this also lowers the effective resolution. Finally, histogram equalization is applied to the
unfolded image to improve invariance under different illumination conditions. Here, we use the
implementation from the OpenCV library [21] on integer images. Figure 3.5 shows the effects of
these preprocessing steps. Further examples of unfolded and preprocessed images are shown in
Figure 3.3.
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(a) Raw camera image, from the LabD dataset. (b) Figure 3.5a with an averaging filter.

(c) Unfolded image generated with the mapping shown in Figures 3.4c and 3.4d.

(d) Unfolded image after histogram equalization. In practice, this effect can be subtle.

Figure 3.5.: Preprocessing for holistic methods: Prefiltering, unfolding and histogram equalization.
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3.2.3. Feature Methods

There are numerous feature-based techniques that can be used for visual relative-pose estimation
[11, 43, 131, 134, 53, 55]. For this comparison, we decided to focus our attention on a selection of
popular methods. We are less experienced in implementing feature-based algorithms compared
to holistic methods. To reduce the risks posed by a bad implementation, we rely on established
libraries where possible. Table A.1 lists the most important libraries and programs used, together
with their version number. Unless otherwise noted, we also used the default parameters for each
method within these libraries. We include the feature-method parameters in Tables A.3a to A.3d.

3.2.3.1. Detection and Extraction

As feature detectors and descriptors, we chose SIFT, SURF, ORB and BRISK. SIFT is a widely
used detector and descriptor known for its robustness and the quality of its results [89, 11, 43].
As initial results with SIFT were promising, we include SURF as a potentially faster alternative
[7]. In contrast, ORB represents a newer class of algorithms that use fast detectors and binary
descriptors [129, 11, 43]. Its high speed, especially compared to SIFT, is a strong argument for
including ORB [134]. BRISK also uses binary descriptors and offers robust results, making it
an interesting competitor to ORB [84]. In all cases, we use the implementation from the popular
OpenCV library [21]. All four methods are invariant under rotation and some illumination changes.
The former is especially important, since we extract features directly from the original fisheye
image: Given the equidistant projection of our fisheye lens, a change in camera pose may also
change the orientation of the features. SIFT, SURF, BRISK and the OpenCV implementation of
ORB are also scale-invariant through the use of a scale pyramid.

To keep the number of detected features within a reasonable range, the ORB implementation
requires an upper limit on the number of features. We use the OpenCV default of 500 as well as
a value of 1500. The latter is close to the average number of features that SIFT detects on these
databases (Table 3.3). Throughout this chapter, we call these two variants ORB-500 and ORB-1500.
With the OpenCV default parameters, SURF also generates a large number of features — often
more than twice as many as SIFT. We therefore adjusted the SURF feature detection threshold to
reduce the average number of features to about 1500 (see Table A.3d). Without this adjustment, the
matching and pose estimation steps take much longer compared to SIFT or ORB, without any great
improvement in quality.

Unlike min-warping, the feature methods do not depend on a specific type of camera projection.
This simplifies preprocessing, since the input images in equidistant projection are used without
reprojection (see Figure 3.2 for example images). However, these raw camera images contain areas
that are not exposed by the fisheye lens or that only show the robot’s chassis. To exclude these
areas, we crop the image and mask out the pixels below the horizon. This reduces the usable image
area to a disc with a diameter of ≈ 880 pixels.

We employ the OpenCV implementation of the brute-force matcher to identify pairs of features
across two images. For each feature from one image, the matcher selects the nearest neighbor
from another image through linear search. While faster, approximate matchers exist [108, 109], the
brute-force matcher it is guaranteed to find the best match for each feature. In general, linear search
is the fastest exact solution for this high-dimensional nearest neighbor problem [108]. The matcher
also performs mutual consistency checking to reduce the number of false matches: Feature A is
only matched with its nearest neighbor B in another image if A is also the nearest neighbor of B.
We employ the L2 norm to calculate the distance between the SIFT and SURF feature vectors. For
the binary descriptors extracted by ORB and BRISK, we use the much faster Hamming distance
instead.
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3.2.3.2. Relative-Pose Estimation

To estimate the relative pose of the robot, we need to know each feature’s bearing vector in robot
coordinates. We use a camera projection model to calculate the bearing vectors p̄ and q̄ from the
feature keypoint locations. p̄ represents the bearing in one camera image, while q̄ denotes the
matching feature in the other image. For this step, we rely on the widely-used calibration toolbox
introduced by Scaramuzza, Martinelli, and Siegwart [132]. This calibration technique supports
fisheye lenses up to 195◦ and thus meets the demands of our camera. Careful calibration resulted in
a reported reprojection error of 0.10 pixels.

To transform the bearing vectors from camera to robot coordinates, we measure the orientation
of the camera relative to the robot chassis. Here, we use the calibration cylinder described in
Section 3.2.2.2: Given the intrinsic calibration, we first calculate the bearing vectors of the grid
dots in the camera coordinate system. As before, the bearings of these dots in the robot coordinate
system are already known. We then use the eigensolver described in [78] to find the relative
orientation matrix O between the robot and the camera. Finally, the simple multiplications p = Op̄
and q = Oq̄ transform the bearing vectors from camera to robot coordinates.

We compare two different algorithms that estimate the relative pose from these feature bearing
vectors: Like min-warping, the two-point method described in [17] utilizes the planar-motion
assumption. Its relative-pose estimate is thus limited to two degrees of freedom. We also test the
five-point method introduced by Stewenius, Engels, and Nistér [138], which extends a well-known
previous work by Nistér, Naroditsky, and Bergen [117]. This method estimates the relative pose in
five degrees of freedom, six minus the unknown scale. It is not limited to planar motion and thus
robust against violations of this constraint. Here, we use the five-point implementation provided
by the OpenGV library [77]. For the two-point method, we add our own implementation based
on the description in [17]. In practice, the five-point method actually uses three additional feature
pairs for disambiguation and decomposition of the results. The two-point method also requires one
additional pair for this reason. Combining SIFT, SURF, BRISK and the two ORB variants with
both the two-point and five-point algorithm results in ten distinct candidates.

The two- and five-point methods are highly susceptible to outliers, for example from incorrectly
matched features. A standard random sample consensus (RANSAC) scheme is therefore used
to find outlier-free sets of feature pairs [44, 131, 55]. Under RANSAC, the methods discussed
above generate pose hypotheses from randomly drawn minimal point sets. The algorithm then
keeps the hypothesis which is in consensus with the largest number of other point pairs. To decide
whether a point pair is in consensus with a pose hypothesis, OpenGV calculates the reprojection
error e. If e is greater than a threshold ε, the feature pair is rejected. We could estimate ε based
on the reprojection error of the intrinsic calibration. However, a search revealed that the value of
ε which minimizes the actual pose-estimation error is not constant. Among others, it depends on
the image set, feature method, pose-estimation method and distance between the image-capture
locations. We decided to use ε = 3× 10−5, which gives good results for all the methods we test.
RANSAC terminates once the estimated probability of an outlier-free hypothesis or the number
of iterations exceed predetermined thresholds. Finally, an optional refinement step may improve
the best hypothesis using the information from all feature pairs that are in consensus with it. In
some of our experiments, we employ the OpenGV implementation of the Levenberg-Marquardt
algorithm to perform this step [85, 95, 77].

As shown in Figure 3.6, the number of RANSAC iterations required for a given success rate
grows rapidly as the rate of incorrectly matched features increases [53]. For an application with
real-time constraints, the number of iterations thus has to be limited. The OpenGV default of 250
iterations caused high pose-estimation errors in many of the experiments. Unless stated otherwise,
we therefore increased the limit to 1000 iterations. This value usually keeps the time taken by
RANSAC comparable to the time taken by the other steps. For some methods, we later vary this
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Figure 3.6.: This logarithmic plot shows the number of RANSAC iterations required to identify an
outlier-free set with a probability of p = 0.95. It is based on the formula from [53], which assumes
that the number of feature pairs is much larger than the size of the outlier-free set. The five-point and
two-point methods require three or one additional feature pairs, respectively. These are required for
disambiguation and decomposition of the pose estimate. The actual required RANSAC iterations
are thus likely to be higher than those shown in this figure.

limit to study its effect on the pose-estimation errors.

3.2.4. Evaluation Criteria

We group our evaluation criteria into three categories: The quality criteria in Section 3.2.4.1 focus
on the general accuracy of the estimated poses. Section 3.2.4.2 discusses how we measure the
computational speed of the candidates. Finally, we evaluate the effects of strong illumination
changes or violations of the planar-motion assumption according to Section 3.2.4.3.

3.2.4.1. Quality

We use the relative orientation and bearing errors to judge the quality of the pose estimates. Since
our robot moves on a level floor, we only consider errors in the floor plane. For the 5-point method,
we project the three-dimensional pose estimates onto this plane. Interpretation of these errors
depends on the task at hand: For a simple visual homing task, the acceptable error can be quite
large if catastrophic errors are avoided. In SLAM applications low errors are desirable, because the
resulting maps and absolute robot pose estimates can be more accurate [40, 134, 55]. For the same
reason, we prefer low errors when using visual pose estimation in our cleaning-robot framework.

The magnitude of the relative-pose errors strongly depends on the distance between the two
image-capture locations. In turn, the typical distance between capture locations depends on the
application at hand. For example, homing tasks or sparse topological maps will usually involve
longer distances. When using dense maps, or when images are acquired frequently as with a video
sequence, the distances will be shorter. For our cleaning robot, we typically estimate poses between
locations which are 25 cm to 50 cm apart. To provide estimates of the error magnitude for a given
application, we plot the errors over the distance between the image-capture locations.
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3.2.4.2. Speed

When running on an actual robot, visual pose estimation may be subject to strict real-time constraints.
We use two scenarios to evaluate the time required by the pose-estimation candidates. The first
scenario is built around our cleaning-robot prototype. As discussed in Section 2.2, a dual-core
Intel Atom N2600 1.6 GHz processor — a typical CPU for embedded applications — controls
the entire robot. One core is available for visual pose estimation, while the second core performs
other tasks. Ideally, the robot should be able to perform several pose estimates per second for
visual homing or as part of a SLAM system. For example, our robot calculates about six estimates
per second while extending the map during a cleaning run (Section 2.5.2). The second scenario
uses a modern desktop PC with an Intel Core i7-4790K quad-core CPU, which supports vector
instructions up to AVX2. Such a high-performance system might be available on larger robotic
platforms, or for robots that offload computations to external systems. It also offers an outlook into
the future, where similar processors might become feasible for smaller platforms like our domestic
cleaning robot. In both scenarios, we measured the elapsed wall-clock time using the system’s
internal monotonic high-resolution clock. The time required for ancillary operations — like trivial
conversions between data structures — was not included. These values are small by comparison
and highly implementation-dependent.

The various implementations used in this study do not consistently support parallel computing
on multiple CPU cores. Many of them do not support parallelization at all, even where the under-
lying algorithm would allow this. Using multiple CPU cores would thus distort the performance
measurements. To avoid this problem, we limit our test programs to one CPU core each by using
Linux’s numactl command. This also avoids the cost associated with the migration of a single
thread between CPU cores.

As we discussed before, the camera on our robot provides a 640×512 half-resolution mode. Since
min-warping does not require high-resolution images, it uses this mode to reduce preprocessing
costs. For the sake of fairness, we also tested some of the feature-based methods on these lower-
resolution images. This should reduce the time needed to detect and extract the features. However,
the lower resolution may also reduce the precision of the measured feature bearings. Recalibrating
the camera for the low-resolution mode could distort the experiments if the calibration errors
change. Instead, we recompute the camera parameters directly from the original, full-resolution
calibration results.

3.2.4.3. Robustness

While the planar-motion assumption simplifies the pose-estimation problem, it also makes the
estimation process more fragile: Even in planar-floor domestic environments, movement on rough
surfaces, accelerating motion, or extrinsic calibration errors can lead to poses outside of the ground
plane in the robot’s coordinate system. Booij and Zivkovic [17] noted that the two-point algorithm
performs poorly if the planarity constraint is not met: In their experiments, the performance of
the two-point algorithm on an actual robot remained below the level achieved in simulations.
The authors suggested a tilt caused by the robot’s movement as a possible explanation. During
preliminary cleaning-robot experiments, we observed similar problems if the robot was tilted on
rough ground.

To study this effect, we include tilt-induced violations of the planar-motion assumption in our
experiments. Additionally, we will examine the tilting problem in depth throughout Chapter 4. For
our robot, common indoor causes of rough ground include gaps between floor tiles, carpets or door
thresholds. We conducted a survey of these causes in typical domestic environments, which we
will fully discuss in Section 4.2.3. Using a statics model of our cleaning robot, we found that the
resulting tilts would usually be ≈3◦ or less. We therefore perform experiments with tilts up to 3◦ in
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the forward, backward, and sideways directions. For the feature methods, we simulate the tilts by
rotating the feature bearing vectors. This is faster than simulating tilts through distortions of the
camera images, and a reasonable approximation for small angles. For the min-warping method, we
modify the image unfolding process, so that the resulting low-resolution panoramic images already
incorporate the tilt.6

In this study, we also examine each candidate’s robustness to varying illumination conditions:
In a domestic environment, the lighting conditions are likely to change over time. For a cleaning
robot, these changes may be especially stark if the robot has to recharge its batteries during a
cleaning run, or when reusing previously-created maps. The pose-estimation methods must thus
be able to cope with such changes when operating over longer timespans. The SIFT, SURF, ORB
and BRISK methods already offer some degree of illumination invariance. Min-warping also
incorporates illumination invariance into the distance measure used to compare image columns
[101]. Consequently, we perform cross-database experiments between daytime and nighttime
images to test the effectiveness of these invariances.

3.3. Results

3.3.1. Quality

Figures 3.7 to 3.12 show the pose-estimation errors depending on the distance between the two
images. Here, images are only combined with other images from the same database, and thus the
environment and illumination are approximately constant. We also generated such plots for the
half-resolution camera images. We include such results for ORB in Figures 3.13 and 3.14, as these
exhibited the most noteworthy changes. The solid lines in each plot represent the median errors
in the estimated orientation and bearing. Besides the median, the plots also contain the 95th error
percentile as a dashed line. We choose this measure to indicate the magnitude of larger errors that
might still occur quite frequently. Even though larger values do occasionally occur, we fix the
vertical axis to a maximum of 30◦. This uniform scale makes it easier to compare the different
figures.

To create these figures, we sort the image pairs into bins with a size of 10 cm. The first bin,
with the value appearing at 0.1 m in the plots, thus contains image pairs with a distance of 5 cm
to 15 cm. We leave out long-distance bins that contain less than 100 image pairs, since this low
sample size makes the results less conclusive. Additionally, these long-distance image pairs can
only occur between a few regions in each database. This makes them less meaningful and prone
to large fluctuations in the error magnitudes. We also discard the bearing error for image-capture
distances of less than 5 cm: As mentioned, our databases consist of 15 cm grids, with four different
orientations captured per position. Therefore, any close-range image pairs must come from the
same grid position, and the bearing cannot be determined.

In Table 3.1, we also list the mean, median, and 95th percentile of the errors for all image pairs
in the random sample. These offer a closer look at the differences in the pose-estimation quality,
making it easier to compare the candidates. Due to the nature of the image databases, the distances
between image-capture locations are not uniformly distributed. As seen in Figure 3.15, some
distances occur more often than others and thus have a stronger influence on the values in this
table. Note that these image-capture distances are often larger than the 25 cm to 50 cm typically
encountered by our cleaning robot. We include such image pairs to ensure that our results are also

6To preserve the effect of small simulated tilt angles, we use bilinear interpolation when unfolding the tilted camera
images. This slightly improves results compared to our regular experiments, where a nearest-neighbor interpolation
is used to speed up the unfolding. We also noticed that a small simulated tilt (≈0.1◦) in one of the directions actually
slightly improves the min-warping results. This effect does not occur for the feature-based methods. We suspect that
this is due to a minor residual error in the extrinsic camera calibration used by min-warping.

55



3. Comparing Holistic and Feature-Based Methods for Visual Relative-Pose Estimation

Orientation err. median
Bearing err. median
Orientation err. 95%
Bearing err. 95%

(a) Legend

0 0.5 1 1.5 2 2.5
Distance (m)

0

5

10

15

20

25

30

E
rr

o
r 

(d
e
g

.)

(b) Min-warping

Figure 3.7.: Pose-estimation errors depending on the image-capture distance, using min-warping
and images paired within the same database. Pairing images only within the same database keeps
illumination and environment approximately constant. Errors are given in degrees, distances in
meters. Combined data from all four databases, 10000 random image pairs per database.
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(a) ORB-500, two-point
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(b) ORB-500, five-point

Figure 3.8.: Pose-estimation errors depending on the image-capture distance, using up to n = 500
ORB features and full-resolution images paired within the same database. Other settings and
legend as in Figure 3.7.
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(a) ORB-1500, two-point
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(b) ORB-1500, five-point

Figure 3.9.: Pose-estimation errors depending on the image-capture distance, using up to n = 1500
ORB features and full-resolution images paired within the same database. Other settings and
legend as in Figure 3.7.
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(a) SIFT, two-point

0 0.5 1 1.5 2 2.5
Distance (m)

0

5

10

15

20

25

30

E
rr

o
r 

(d
e
g

.)

(b) SIFT, five-point

Figure 3.10.: Pose-estimation errors depending on the image-capture distance, using SIFT features
and full-resolution images paired within the same database. Other settings and legend as in
Figure 3.7.
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(a) SURF, two-point
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(b) SURF, five-point

Figure 3.11.: Pose-estimation errors depending on the image-capture distance, using SURF fea-
tures and full-resolution images paired within the same database. Other settings and legend as
in Figure 3.7.
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Figure 3.12.: Pose-estimation errors depending on the image-capture distance, using BRISK
features and full-resolution images paired within the same database. Other settings and legend
as in Figure 3.7.
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3.3. Results
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Figure 3.13.: Pose-estimation errors depending on the image-capture distance, using up to n = 500
ORB features and half-resolution images paired within the same database. Other settings and
legend as in Figure 3.7.
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(a) ORB-1500, two-point
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Figure 3.14.: Pose-estimation errors depending on the image-capture distance, using up to n =
1500 ORB features and half-resolution images paired within the same database. Other settings
and legend as in Figure 3.7.
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3. Comparing Holistic and Feature-Based Methods for Visual Relative-Pose Estimation

Method Orientation error (◦) Bearing error (◦)

Mean Median 95% Mean Median 95%

ORB-500, two-point 1.22 0.46 2.53 2.21 0.97 7.00
ORB-500, five-point 8.85 1.51 43.42 21.01 5.67 112.87
ORB-1500, two-point 0.47 0.33 1.18 1.08 0.66 3.40
ORB-1500, five-point 3.40 0.66 16.10 8.58 2.52 39.76
SIFT, two-point 0.32 0.25 0.80 0.99 0.64 3.07
SIFT, five-point 1.99 0.40 9.67 4.24 1.21 19.13
SURF, two-point 0.33 0.26 0.85 0.88 0.60 2.60
SURF, five-point 2.83 0.63 12.53 6.84 2.41 28.30
BRISK two-point 0.51 0.28 0.94 0.97 0.62 2.68
BRISK five-point 5.84 1.08 25.74 13.39 4.49 57.48
Min-warping 1.89 0.54 3.52 3.02 1.73 8.20

Table 3.1.: Pose-estimation errors for full-resolution image pairs within the same database. As
images are paired within the same database, the illumination and environment are approximately
constant. Mean, median, and 95th percentile of errors are given in degrees. Calculated from 10000
random image pairs for each of the four databases. For the feature methods, RANSAC was limited
to 1000 iterations per image pair. The min-warping results are identical to Table 3.2 and included
for comparison only.

applicable to other applications, which may involve longer distances. As before, image pairs with a
distance of less than 5 cm are not included in the bearing error. We repeat these calculations for the
half-resolution camera images in Table 3.2. Furthermore, Table 3.3 lists the number of features that
are actually detected and matched by each candidate.

To study the effect of a post-RANSAC Levenberg-Marquardt optimization of the pose estimate,
we compared the estimation error and homing time to the values observed without the optimization
step. The homing time includes the preprocessing of a single image, combined with pose estimation
on one image pair. Section 3.3.2 described this measure in greater detail. The resulting errors and
execution times are listed in Table 3.4 and Table 3.12, respectively.

3.3.2. Speed

Tables 3.5, 3.6 and 3.9 list the computation time required for the visual pose-estimation steps,
measured according to Section 3.2.4.2. As this time can vary depending on the specific image pair,
we list both the median and the 95th percentile. A real-time system must be able to accommodate
the 95th percentile execution times, as these can still occur quite frequently. Table 3.5 shows the
results for the embedded Atom N2600 platform, Table 3.6 contains the same data for a modern
desktop PC. Min-warping data for both platforms is listed in Table 3.9. We measured these results
using the same random 4 × 10000 image-pair sample already described in Section 3.3.1. Each
table contains the time required for feature detection and extraction, feature matching, and the pose
estimation with RANSAC. The data for the half-resolution images is listed in Tables 3.7 and 3.8.

To make the execution times from Tables 3.5 to 3.9 more accessible, we constructed a “Homing”
scenario: Here, a robot captures an image and performs visual pose estimation relative to a
previously stored image. The total execution time thus combines the time required for preprocessing
the new image and estimating the pose. We assume that the preprocessing or feature extraction
result of the previous image has been cached. This means that no second preprocessing step is
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3.3. Results

Method Orientation error (◦) Bearing error (◦)

Mean Median 95% Mean Median 95%

ORB-500, two-point 1.04 0.40 2.07 2.00 1.05 5.93
ORB-500, five-point 6.59 0.87 31.99 15.60 3.78 88.95
ORB-1500, two-point 0.42 0.31 1.03 1.25 0.81 3.80
ORB-1500, five-point 2.52 0.53 11.03 6.69 2.28 28.13
SIFT, two-point 0.33 0.27 0.84 0.93 0.61 2.81
SIFT, five-point 1.50 0.38 6.47 3.21 1.14 13.37
SURF, two-point 0.43 0.29 0.99 1.01 0.68 2.90
SURF, five-point 2.16 0.56 8.54 5.49 2.28 20.86
BRISK two-point 0.74 0.35 1.28 1.30 0.79 3.49
BRISK five-point 5.27 0.85 23.64 12.03 3.76 56.34
Min-warping 1.89 0.54 3.52 3.02 1.73 8.20

Table 3.2.: Pose-estimation errors for half-resolution image pairs within the same database. As
images are paired within the same database, the illumination and environment are approximately
constant. Mean, median, and 95th percentile of errors, in degrees. Other settings are the same as
for Table 3.1.
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Figure 3.15.: Histogram of the distances between image-capture locations in the database sample.
Here, we use the same 10 cm bins as for the error-distance plots. The grid structure of the image
databases causes the prominent spikes in the plot.
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3. Comparing Holistic and Feature-Based Methods for Visual Relative-Pose Estimation

Method No. of Features No. of Matches

Mean Median Mean Median

ORB-500 500 500 262 258
ORB-1500 1500 1500 786 772
SIFT 1579 1586 914 903
SURF 1503 1515 837 828
BRISK 623 591 337 317
ORB-500 (half-res) 494 498 266 262
ORB-1500 (half-res) 1382 1387 745 733
SIFT (half-res) 710 711 422 415
SURF (half-res) 621 620 354 350
BRISK (half-res) 299 289 166 159

Table 3.3.: Number of features per image, and number of matched features per image pair. We
use all 3072 images to calculate the number of features per image. The number of matches was
determined from the union of the 10000 random image pairs per databases (images paired within
the same database, 40000 total pairs).

Method Orientation error (◦) Bearing error (◦)

Median 95% Median 95%

ORB-500 two-point 0.38 (0.46) 2.44 (2.53) 0.83 (0.97) 6.20 (7.00)
ORB-500 five-point 1.36 (1.51) 44.87 (43.42) 5.00 (5.67) 112.65 (112.87)
ORB-1500 two-point 0.27 (0.33) 0.98 (1.18) 0.52 (0.66) 2.55 (3.40)
ORB-1500 five-point 0.55 (0.67) 16.41 (16.72) 2.05 (2.53) 40.38 (40.87)
SIFT two-point 0.23 (0.25) 0.69 (0.80) 0.49 (0.64) 2.27 (3.07)
SIFT five-point 0.36 (0.40) 9.99 (9.88) 0.96 (1.22) 19.94 (19.59)
SURF two-point 0.23 (0.26) 0.75 (0.85) 0.49 (0.60) 2.07 (2.60)
SURF five-point 0.57 (0.63) 12.32 (12.53) 2.06 (2.41) 27.41 (28.30)
BRISK two-point 0.24 (0.28) 0.83 (0.94) 0.51 (0.62) 2.11 (2.68)
BRISK five-point 0.96 (1.08) 24.88 (25.74) 3.90 (4.49) 56.86 (57.48)

Table 3.4.: Effect of Levenberg-Marquardt optimization of the RANSAC result for full-resolution
images, paired within the same databases (constant illumination). All errors in degrees. Original
values without optimization given in parentheses, as per Table 3.1. Execution-time changes caused
by the final optimization are covered by Table 3.12.
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3.3. Results

Method Extraction Matching RANSAC

Median 95% Median 95% Median 95%

ORB-500, two-point 192.1 196.7 47.3 47.5 34.9 191.1
ORB-500, five-point 192.1 196.7 47.3 47.4 1567.2 1590.2
ORB-1500, two-point 218.1 221.8 428.0 428.6 74.8 515.1
ORB-1500, five-point 218.1 221.8 427.9 428.5 1929.8 1978.7
SIFT, two-point 2667.8 2802.3 1034.1 1360.1 77.7 576.2
SIFT, five-point 2667.8 2802.3 1033.8 1359.5 1988.2 2099.2
SURF, two-point 3582.1 3927.1 983.3 1214.5 184.0 570.6
SURF, five-point 3582.1 3927.1 983.3 1214.5 1960.0 2052.7
BRISK, two-point 163.0 185.1 125.0 243.0 114.7 291.7
BRISK, five-point 163.0 185.1 125.0 243.0 1623.5 1714.9

Table 3.5.: Feature-method execution times, embedded system (Atom N2600 CPU), full-
resolution images. All times single-core wall-clock times in milliseconds. Extraction time
measured across all images. Matching and RANSAC times measured for the union of the 10000
random image pairs per database (images paired within the same database, 40000 total pairs).

Method Extraction Matching RANSAC

Median 95% Median 95% Median 95%

ORB-500, two-point 16.8 17.9 3.9 3.9 3.7 20.2
ORB-500, five-point 16.8 17.9 3.9 3.9 135.4 137.8
ORB-1500, two-point 20.0 20.6 34.2 34.3 8.0 55.1
ORB-1500, five-point 20.0 20.6 34.3 34.3 171.5 176.5
SIFT, two-point 222.7 234.1 55.6 73.5 8.4 61.8
SIFT, five-point 222.7 234.1 56.0 76.4 179.6 191.8
SURF, two-point 386.0 420.1 52.8 65.1 19.7 61.0
SURF, five-point 386.0 420.1 53.0 66.0 175.5 184.7
BRISK, two-point 21.3 23.5 9.8 19.0 12.1 31.2
BRISK, five-point 21.3 23.5 9.8 19.0 140.4 150.7

Table 3.6.: Feature-method execution times, modern desktop PC (Core i7-4790K CPU), full-
resolution images. All times single-core wall-clock times in milliseconds. Extraction time
measured across all images. Matching and RANSAC times measured for the union of the 10000
random image pairs per database (images paired within the same database, 40000 total pairs).
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3. Comparing Holistic and Feature-Based Methods for Visual Relative-Pose Estimation

Method Extraction Matching RANSAC

Median 95% Median 95% Median 95%

ORB-500, two-point 66.2 67.3 46.7 47.3 38.1 196.3
ORB-500, five-point 66.2 67.3 46.7 47.3 1573.9 1612.8
ORB-1500, two-point 87.6 90.6 365.5 397.7 74.7 497.1
ORB-1500, five-point 87.6 90.6 365.4 397.7 1881.4 1939.1
SIFT, two-point 866.5 930.4 204.0 262.3 30.6 268.2
SIFT, five-point 866.5 930.4 203.6 262.4 1664.3 1715.0
SURF, two-point 987.2 1093.6 159.0 192.6 71.6 253.6
SURF, five-point 987.2 1093.6 158.8 192.5 1644.2 1682.8
BRISK, two-point 59.2 66.7 29.9 51.1 53.7 149.5
BRISK, five-point 59.2 66.7 29.9 51.1 1511.8 1552.4

Table 3.7.: Feature-method execution times, embedded system (Atom N2600 CPU), half-
resolution images. All times single-core wall-clock times in milliseconds. Extraction time
measured across all images. Matching and RANSAC times measured for the union of the 10000
random image pairs per database (images paired within the same database, 40000 total pairs).

Method Extraction Matching RANSAC

Median 95% Median 95% Median 95%

ORB-500, two-point 7.0 7.3 3.8 3.9 4.1 21.3
ORB-500, five-point 7.0 7.3 3.8 3.9 136.3 138.7
ORB-1500, two-point 9.5 10.4 29.3 31.8 8.0 53.3
ORB-1500, five-point 9.5 10.4 29.3 31.8 169.2 175.0
SIFT, two-point 72.7 78.2 11.5 14.8 3.3 28.6
SIFT, five-point 72.7 78.2 11.5 14.7 146.3 151.4
SURF, two-point 108.7 119.0 9.0 10.9 7.6 26.9
SURF, five-point 108.7 119.0 9.0 11.0 142.1 146.0
BRISK, two-point 7.5 8.5 2.4 4.0 5.6 15.7
BRISK, five-point 7.5 8.5 2.4 4.0 129.3 133.3

Table 3.8.: Feature-method execution times, modern desktop PC (Core i7-4790K CPU), half-
resolution images. All times single-core wall-clock times in milliseconds. Extraction time
measured across all images. Matching and RANSAC times measured for the union of the 10000
random image pairs per database (images paired within the same database, 40000 total pairs).
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3.3. Results

System Unfolding / preprocessing Column distances Search

Median 95% Median 95% Median 95%

Embedded 11.9 12.0 57.6 58.0 95.5 99.1
Desktop 1.1 1.2 3.5 3.5 3.1 3.3

Table 3.9.: Execution times for min-warping. Wall-clock single-core times in milliseconds. Unfold-
ing time measured across all images. Image column distance calculation and search measured for
the union of the 10000 random image pairs per database (images paired within the same database,
40000 total pairs). This table includes data for both the embedded Intel Atom N2600 CPU and the
modern Intel Core i7-4790K-equipped desktop PC.

Method Embedded Desktop

Median 95% Median 95%

ORB-500 two-point 274.8 430.8 24.5 41.0
ORB-500 five-point 1806.9 1829.5 156.1 158.8
ORB-1500 two-point 721.1 1162.2 62.2 109.5
ORB-1500 five-point 2576.0 2626.4 225.8 230.8
SIFT two-point 3844.4 4396.6 292.5 342.9
SIFT five-point 5627.5 6210.4 454.6 496.3
SURF two-point 4804.2 5420.3 465.0 524.2
SURF five-point 6473.3 7073.4 610.6 661.4
BRISK two-point 440.5 692.9 46.1 71.4
BRISK five-point 1909.8 2138.3 171.3 192.9
Min-warping 165.1 168.8 7.8 7.9

Table 3.10.: Total execution time for a “Homing” scenario on full-resolution images, in mil-
liseconds. Includes preprocessing / feature extraction for one image, followed by relative pose
estimation with another image. Calculated across the standard 10000 image pairs for each of the
four databases (images paired within the same database, thus constant illumination). Min-warping
values are identical to Table 3.11 and included for comparison only.

required. Our cleaning robot also performs these operations while visually correcting its pose
estimate (Section 2.5.2). The total execution time for this scenario is listed in Table 3.10 for
full-resolution images and Table 3.11 for half-resolution images. Table 3.12 contains the execution
time when using Levenberg-Marquardt optimization of the final result.

Figure 3.16 shows the mean bearing error in relation to the mean execution time on the desktop
PC platform. This visualizes the trade-off between estimation error and execution time for various
methods. The execution time is based on the “Homing” scenario described in Section 3.3.2. To
calculate this execution time, the preprocessing time for one image is added to the pose-estimation
time of the image pair. This two-dimensional plot can show only one type of estimation error
without becoming overcrowded. We choose the bearing error over the orientation error, since
it varies more across the different methods. Figure 3.17 shows the results for strong day-night
illumination changes.
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3. Comparing Holistic and Feature-Based Methods for Visual Relative-Pose Estimation

Method Embedded Desktop

Median 95% Median 95%

ORB-500 two-point 150.3 309.5 14.8 32.1
ORB-500 five-point 1685.7 1726.8 147.1 149.5
ORB-1500 two-point 527.6 979.5 46.7 94.3
ORB-1500 five-point 2331.3 2414.6 207.6 215.6
SIFT two-point 1126.2 1322.0 89.4 111.2
SIFT five-point 2712.2 2877.1 229.0 242.0
SURF two-point 1245.7 1456.5 127.8 149.6
SURF five-point 2778.2 2931.5 258.6 272.7
BRISK two-point 148.7 260.1 16.0 27.2
BRISK five-point 1599.9 1668.8 139.1 145.4
Min-warping 165.1 168.8 7.8 7.9

Table 3.11.: Total execution time for a “Homing” scenario for half-resolution images, in millisec-
onds. Calculated across the standard 10000 image pairs for each of the four databases (images
paired within the same database, thus constant illumination). See Table 3.10 for details.

Method Desktop

Median 95%

ORB-500 two-point 26.8 (24.5) 41.9 (41.0)
ORB-500 five-point 157.4 (156.1) 161.2 (158.8)
ORB-1500 two-point 69.1 (62.2) 111.4 (109.5)
ORB-1500 five-point 229.3 (225.8) 239.4 (230.8)
SIFT two-point 300.3 (292.5) 345.9 (342.9)
SIFT five-point 459.2 (454.6) 501.2 (496.3)
SURF two-point 470.2 (465.0) 527.3 (524.2)
SURF five-point 614.0 (610.6) 666.1 (661.4)
BRISK two-point 48.2 (46.1) 72.5 (71.4)
BRISK five-point 172.6 (171.3) 193.8 (192.9)

Table 3.12.: “Homing” execution time for Levenberg-Marquardt optimization with full-resolution
images paired within the same database (constant illumination). Original values without optimiza-
tion given in parentheses, as per Table 3.10. The impact of post-RANSAC optimization the on
pose-estimation errors is listed in Table 3.4. All times measured on the desktop PC and given in
milliseconds.
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Figure 3.16.: Mean bearing estimation error against the mean desktop PC execution time, for
images paired within the same databases (constant illumination). The mean estimation error was
taken from Tables 3.1 and 3.2. The execution time includes preprocessing or feature extraction on
one image, in addition to pose estimation for a single image pair. We use desaturated colors for
methods that utilize the planar-motion assumption and high-saturation colors for those that do not.
Filled-in markers indicate that a method uses full-resolution images.
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3. Comparing Holistic and Feature-Based Methods for Visual Relative-Pose Estimation
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Figure 3.17.: Mean bearing estimation error against the mean desktop PC execution time, for
image pairs with strong day-night illumination changes. The mean estimation error was taken
from Tables 3.13 and 3.14. See Figure 3.16 for details.

3.3.3. Robustness

To study the effect of planar-motion constraint violations, we determined the pose-estimation error
for simulated robot tilts from 0.2◦ to 3.0◦. Experiments were conducted at 0.2◦ intervals and in
each of the four cardinal robot directions. We then calculated the mean error for each tilt magnitude
across all tilt directions and image databases. As we do not expect the results to fundamentally
differ across the feature types, we only used ORB with up to n = 1500 features. The results are
shown in Figure 3.18.

Figures 3.19 to 3.24 show the pose-estimation errors for strong illumination changes. These
figures are generated in the same manner as the figures in Section 3.3.1. However, we now combine
images from different databases: Images from the daytime LabD and OfficeD databases are
paired with images from the nighttime LabN and OfficeN databases, respectively (Section 3.2.1).
Random sampling from these cross-database pairs gives us 2 × 10000 image pairs. For these
experiments, the pose-estimation errors frequently grow very large. We therefore set the vertical
axis to show errors up to the theoretical maximum of 180◦. For these day-night experiments,
we only show the half-resolution results in Figure 3.25. Since the other plots do not differ greatly
from their full-resolution counterparts, we omit them here. Half-resolution results for all candidates
can however be found in Table 3.14. As before in Table 3.1, we include the mean, median, and
95th percentile of the errors for the illumination-variance experiments in Table 3.13. Similarly,
Table 3.14 shows the results from the half-resolution images under illumination changes. Because
incorrectly-matched features are more common under strong illumination changes, RANSAC
might also take longer to identify a mismatch-free set. We include a comparison of the RANSAC
execution times for constant and varying illumination conditions in Table 3.15.

68



3.3. Results

0 0.5 1 1.5 2 2.5 3
Robot tilt (deg.)

0

2

4

6

8

10

12

14

16

18

20
M

e
a
n
 p

o
se

 e
st

im
a
ti

o
n
 e

rr
o
r 

(d
e
g

.)

Min-warping orientation
Min-warping bearing
ORB-1500 two-point orientation
ORB-1500 two-point bearing
ORB-1500 five-point orientation
ORB-1500 five-point bearing

Figure 3.18.: Mean orientation and bearing error for a simulated tilting of the robot. Combined
data from tilts in the four cardinal directions. Full-resolution images, 10000 random image pairs
for each of the four image databases. Images paired within the same database, thus illumination is
constant.
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Figure 3.19.: Pose-estimation errors depending on the image-capture distance, using min-warping
and images paired across day-night databases. Cross-database image pairs contain strong changes
in illumination. Errors are given in degrees, distances in meters. Combined data from two cross-
databases, 10000 random image pairs per database.
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3. Comparing Holistic and Feature-Based Methods for Visual Relative-Pose Estimation
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Figure 3.20.: Pose-estimation errors depending on the image-capture distance, using up to n = 500
ORB features and full-resolution images paired across day-night databases. Other settings and
legend as in Figure 3.19.
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Figure 3.21.: Pose-estimation errors depending on the image-capture distance, using up to n =
1500 ORB features and full-resolution images paired across day-night databases. Other settings
and legend as in Figure 3.19.
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Figure 3.22.: Pose-estimation errors depending on the image-capture distance, using SIFT features
and full-resolution images paired across day-night databases. Other settings and legend as in
Figure 3.19.
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Figure 3.23.: Pose-estimation errors depending on the image-capture distance, using SURF fea-
tures and full-resolution images paired across day-night databases. Other settings and legend as
in Figure 3.19.
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Figure 3.24.: Pose-estimation errors depending on the image-capture distance, using BRISK
features and full-resolution images paired across day-night databases. Other settings and legend
as in Figure 3.19.
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Figure 3.25.: Pose-estimation errors depending on the image-capture distance, using SURF fea-
tures and half-resolution images paired across day-night databases. Other settings and legend
as in Figure 3.19.
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Method Orientation error (◦) Bearing error (◦)

Mean Median 95% Mean Median 95%

ORB-500, two-point 52.68 24.14 158.35 50.62 30.02 159.56
ORB-500, five-point 68.68 61.83 161.70 82.55 78.81 169.35
ORB-1500, two-point 27.15 2.09 135.94 24.38 3.38 126.34
ORB-1500, five-point 48.78 29.04 155.98 69.39 57.53 166.06
SIFT, two-point 0.82 0.33 1.62 1.51 0.81 4.06
SIFT, five-point 13.91 5.52 55.44 30.88 18.28 108.94
SURF, two-point 1.48 0.45 3.54 2.17 1.03 5.62
SURF, five-point 23.90 9.14 115.29 44.33 29.69 140.24
BRISK two-point 12.22 0.80 98.71 11.93 1.86 73.03
BRISK five-point 43.79 21.19 153.06 63.78 50.96 161.72
Min-warping 10.52 1.23 86.91 13.02 4.02 64.85

Table 3.13.: Pose-estimation errors for full-resolution image pairs across day-night databases.
Pairing images across databases causes a strong change in illumination. Mean, median, and 95th
percentile of errors are given in degrees. Calculated from 10000 random image pairs for each of the
two cross-databases. For the feature methods, RANSAC was limited to 1000 iterations per image
pair. The min-warping results are identical to Table 3.14 and included for comparison only.

Method Orientation error (◦) Bearing error (◦)

Mean Median 95% Mean Median 95%

ORB-500, two-point 48.52 17.19 160.26 55.31 34.08 163.97
ORB-500, five-point 69.96 62.35 162.50 86.48 85.41 170.24
ORB-1500, two-point 17.63 1.36 128.23 19.03 3.17 119.50
ORB-1500, five-point 46.54 22.71 155.91 71.56 61.33 166.45
SIFT, two-point 1.56 0.40 2.62 2.21 0.89 5.71
SIFT, five-point 14.79 5.32 64.07 29.74 16.81 109.62
SURF, two-point 6.04 0.75 28.63 6.88 1.61 36.24
SURF, five-point 31.46 12.46 138.87 52.65 37.77 152.83
BRISK two-point 18.82 1.69 125.15 20.35 3.95 113.68
BRISK five-point 44.76 22.39 153.84 68.04 56.27 164.99
Min-warping 10.52 1.23 86.91 13.02 4.02 64.85

Table 3.14.: Pose-estimation errors for half-resolution image pairs across day-night databases.
Pairing images across databases causes a strong change in illumination. Mean, median, and 95th
percentile of errors are given in degrees. Other settings are the same as for Table 3.13.
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Method Two-point Five-point

Median 95% Median 95%

ORB-500 18.8 (3.7) 20.4 (20.2) 134.4 (135.4) 136.1 (137.8)
ORB-1500 51.1 (8.0) 55.0 (55.1) 168.0 (171.5) 172.0 (176.5)
SIFT 57.3 (8.4) 65.5 (61.8) 176.8 (179.6) 182.9 (191.8)
SURF 53.4 (19.7) 60.2 (61.0) 169.3 (175.5) 176.0 (184.7)
BRISK 24.9 (12.1) 28.3 (31.2) 142.0 (140.4) 146.2 (150.7)

Table 3.15.: RANSAC wall-clock execution times for day-night databases with strong illumina-
tion changes. These values were measured on the desktop system and are given in milliseconds.
Times for constant-illumination image pairs given in parenthesis, as in Table 3.6. All times
calculated from 10000 random full-resolution image pairs per database.

3.4. Discussion

To discuss the results of our experiments, we once again consider the three aspects of quality
(Section 3.4.1), speed (Section 3.4.2), and robustness (Section 3.4.3).

3.4.1. Quality

Figures 3.7 to 3.12 and Table 3.1 show that, on average, most methods can successfully solve
the relative-pose estimation problem when changes in illumination are small. All methods except
for the ORB-500 five-point combination show median estimation errors below 5◦ across most of
the image-capture distances. Furthermore, even this method gives good results for intermediate
ranges (Figure 3.8b). To present an example of the pose estimation performance, we include
several bearing vector-field plots in Figure 3.26. These plots show the estimated bearing to a
specific reference image, as calculated for all other images. They offer a quick overview of the
pose-estimation quality, although only for a single reference image.

One major difference between the candidates lies in how well close- or long-range image pairs
are handled. ORB-1500, SIFT or SURF features with two-point RANSAC provide good results
across the entire distance range, as seen in Figures 3.9a, 3.10a and 3.11a. Some methods show a
sharp increase in the severity of the outliers at short or long ranges. For ORB-500 and BRISK with
two-point RANSAC, as well as for min-warping, this is shown by their 95th percentile curves. For
the five-point methods, the increase in outliers occurs for shorter distances. It is also accompanied
by a marked increase in the median errors. Recall that our cleaning-robot framework usually
performs pose estimation at ranges below≈50 cm. Thus, such large errors at long ranges are mostly
relevant for other applications.

Figure 3.6 indicates that the five-point candidates require more RANSAC iterations than their
two-point counterparts. We suspect that the limit of 1000 RANSAC iterations degrades the five-
point results if mismatched features are common. Figure 3.27 gives an example of five-point
RANSAC with a limit of 100000 iterations. Greatly increasing the iteration limit does indeed
improve the quality of the pose estimate. In return, the execution time is also greatly increased: On
our modern desktop PC, the median homing time rises from 225.8 ms (Table 3.10) to 6.03 s. The
95th percentile increases even further, from 230.8 ms to 17.34 s. We also used these results to plot
the median RANSAC inlier rate in Figure 3.28. The rate is calculated by finding the number of
features that are in agreement with the RANSAC solution, and then dividing it by the total number
of matched features for that image pair. The RANSAC inlier rate is only a coarse approximation
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Figure 3.26.: Bearing vector fields for the full-resolution (min-warping: half-resolution)
OfficeD database. The black lines indicate the estimated bearing from the image position
(black circle) to the reference image (black cross at the origin). Ideally, all black lines would point
directly from the circle at their base to the black cross. The reference image is the same one that is
shown in Figure 3.2c. Axis labels are distances in meters.

0 0.5 1 1.5 2 2.5
Distance (m)

0

5

10

15

20

25

30

E
rr

o
r 

(d
e
g

.)

(a) ORB-1500, five-point (1000)
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(b) ORB-1500, five-point (100000)

Figure 3.27.: Pose-estimation errors depending on the image-capture distance for varying RANSAC
iteration limits. Comparison between the five-point method with a limit of 1000 (as in Figure 3.9b)
and 100000 RANSAC iterations. Up to n = 1500 ORB features and full-resolution images
paired within the same database. Other settings and legend as in Figure 3.7.
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Figure 3.28.: Median fraction of inliers identified by RANSAC. Determined from ORB-1500
features and the five-point method with a 100000 RANSAC iteration limit. Here, we use the same
10 cm bins as for the error-distance plots. Based on 10000 full-resolution image pairs for each of
the four constant-illumination databases (images paired within the same database).

of the true fraction of correctly matched features. However, it does show a steady decline as the
distance between the images increases.

A high outlier rate at long distances would explain why some feature-based methods struggle
at these ranges: An increasing outlier rate causes a rapid growth in the number of RANSAC
iterations required to achieve a given success rate (Figure 3.6) [53]. However, we limit the number
of iterations to prevent very long RANSAC execution times, as discussed in Section 3.2.3.2. As
image-capture distances and thus outlier rates increase, it is more likely that RANSAC will fail
to find an outlier-free feature set within this limit. These failures decrease the quality of the pose-
estimation results. Since the number of required iterations increases more rapidly for the five-point
method, this effect should be more pronounced for these candidates. This is also in agreement with
our results.

For constant-illumination conditions, there is no marked improvement from using the high-
resolution images. Indeed, Tables 3.1 and 3.2 and Figure 3.16 show that half-resolution images
actually result in lower errors for ORB-500, ORB-1500 and BRISK features with the five-point
method. Extracting local visual features from half-resolution images is also faster. For SIFT and
SURF features especially, using half-resolution images greatly reduces the overall execution time
(compare Tables 3.10 and 3.11).

Using Levenberg-Marquardt to improve the RANSAC result can reduce the pose-estimation
error, as seen in Table 3.4. Table 3.12 shows that this step also takes little time. However, refinement
does not work if RANSAC fails completely, and can even increase the error. This occurs for some
of the 95th percentile entries in Table 3.4. Where computational resources are limited, moderately
increasing the number of RANSAC iterations might thus be a better choice.
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3.4.2. Speed

The methods we investigated vary widely in execution time, as shown in Section 3.3.2. Considering
Tables 3.10 and 3.11, min-warping and two-point ORB-500 or BRISK offer by far the lowest total
execution time. On our cleaning-robot prototype, only these three can reliably perform multiple
pose estimations per second. On the desktop PC however, this is possible for almost all methods.
SIFT, with its very low pose-estimation error, routinely runs in under 100 ms when used with the
two-point method. As more powerful embedded CPUs become available, we expect that further
candidates will become feasible for onboard use. In addition, we have not exhausted the range of
optimizations that could improve the speed of these methods, as discussed in Section 3.6.

In our experiments, we found that the detection and extraction of the SURF features was
unexpectedly slow. SURF was often slower than SIFT, which disagrees with the literature [7].
We repeated our experiments on additional systems and with the newest OpenCV 2.4 version
(2.4.13), but observed similar results. We assume that this behavior is caused by the OpenCV
implementation. Using the OpenSURF implementation of the SURF algorithm [41], we achieved
execution times closer in line with the literature. However, the other implementations we evaluated
did not support masking out part of the input image. This is required when working directly with
the fisheye camera images. Some implementations were either written in a different programming
language, such as Java, or did not provide the source code required to compile versions optimized
for our test architectures. This makes them unsuitable for a direct comparison. We therefore decided
to include our OpenCV-based results as they are.

Min-warping always executes the same number of steps, and its execution time is approximately
constant. Note that this property is advantageous when operating under real-time constraints, such
as on a domestic robot: With a near-constant execution time, we will rarely encounter delays caused
by unexpectedly lengthy pose estimations. For the feature methods we use in this chapter, the
execution time varies according to the number of features found and RANSAC iterations required.
The difference between the median and 95th percentile times can thus be greater than 100% for
a “Homing” scenario. Limiting the number of features and RANSAC iterations makes it possible
to limit the execution time. Unfortunately, this will also negatively affect the quality of the pose
estimates, as seen with the ORB-500 and ORB-1500 results.

3.4.3. Robustness

For our experiments, methods that use the planar-motion assumption outperform those that do
not. This is unsurprising, given that our experiments fulfill this constraint. The planar-motion
assumption then greatly reduces the complexity of the pose-estimation problem. However, if the
planar-motion assumption is violated, this situation can be reversed: Figure 3.18 shows that this
occurs even at small tilt angles. Beyond ≈1.5◦ to 2.1◦, the min-warping and ORB-1500 two-point
mean bearing errors surpass that of the five-point method. The planar-motion methods are thus
less robust whenever the planar-motion assumption is likely to be violated. We will discuss this
problem and possible solutions in Chapter 4.

For the day-night cross-database tests, the various candidates respond very differently to strong
illumination changes: The holistic min-warping method gives mixed results, as seen in Figure 3.19.
Median pose-estimation errors remain low, except at long distances. However, we see pose-
estimation failures — with bearing errors of more than 90◦ — for very short or long image-capture
distances. Table 3.13 also reflects this, showing elevated mean errors for min-warping. We point to
the bearing-vector plot in Figure 3.29a for an example.

When the illumination varies strongly, ORB-based methods frequently fail for almost all image-
capture distances. This can be seen in Figures 3.20, 3.21 and 3.29b. Here, ORB with n = 500
features gives the largest errors out of all candidates. ORB-1500 performs somewhat better: The
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median error for the two-point variant remains low, and is similar to min-warping (Tables 3.13
and 3.14). However, common pose-estimation failures cause high mean errors. Comparing
Tables 3.13 and 3.14, we notice a somewhat lower error for the half-resolution images. With
the five-point method, ORB performs badly, with median bearing errors of more than 50◦ in all
experiments. This is to be expected: For strong illumination changes, the fraction of correctly-
matched ORB features decreases. Because the five-point method requires RANSAC to find a larger
set of correct matches, it is affected more severely than the two-point method; we discussed this
connection in Section 3.4.1.

SIFT and SURF perform very well in our day-night experiments when used with two-point pose
estimation. In this case, both methods give excellent results for all image-capture distances. The
bearing vector plot in Figure 3.29c also shows these very good results. As seen in Figures 3.22
and 3.23, SIFT performs somewhat better than SURF. Outliers remain low, and we observe only a
moderate increase at very long distances. When used with the five-point method, SIFT still gives
acceptable results at short distances. We give an example for this in the bearing vector plot from
Figure 3.29d.

According to Tables 3.13 and 3.14 and Figure 3.25, SURF performs worse on low-resolution
day-night image pairs. This effect was not observed for the constant-illumination image pairs in
Tables 3.1 and 3.2. The choice of image resolution can thus affect the robustness under illumination
changes. It is possible that changes in the feature-method parameters would alter this behavior.
Consequently, it may be worthwhile to vary these parameters during future experiments.

BRISK, when paired with the two-point method, also performs well under strong illumination
variations. As per Table 3.13, it provides the best results among the fast, binary-feature methods
when operating on full-resolution images. On half-resolution images, BRISK performs somewhat
worse and is similar to the ORB-1500 variant, as shown in Table 3.14. However, according
to Tables 3.10 and 3.15 BRISK still requires less time than ORB-1500. When using the five-
point method in these day-night experiments, BRISK displays the same problems as the ORB
variants: Pose-estimation errors are high, and pose-estimation failures occur at all ranges, as seen
in Figure 3.24.

Since incorrectly-matched features occur more commonly under strong illumination changes,
the RANSAC step might take longer to complete. Table 3.15 clearly shows this effect, but only for
the median execution time when using the two-point method. For the 95th percentile values and the
five-point method, there is no obvious effect: Here, RANSAC will often reach the limit of 1000
iterations, and this also limits the execution time. Increasing the rate of incorrect feature-matches
will therefore not increase the execution time any further. As RANSAC is only one step in the
pose-estimation process, the effect is rather small compared to the total execution time. This can be
seen when comparing the total execution times in Figures 3.16 and 3.17.

3.5. Conclusions

All methods had at least some success with solving the visual relative-pose estimation problem
in domestic environments (Table 3.1). We found that each method has specific advantages and
disadvantages. No method is clearly superior under all circumstances. Selecting an appropriate
method then depends on the specifics of the task.

The holistic min-warping method gives good results and is very fast, with a near-constant
execution time (Figures 3.7 and 3.26a). It is also fairly robust under strong illumination changes
(Figures 3.19 and 3.29a). For these reasons, min-warping remains the method of choice for our
cleaning robot. However, its pose estimates are not as good as those from some of the feature
methods (Table 3.1). Min-warping is also currently limited to panoramic cameras and planar
motion.
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Figure 3.29.: Bearing vector fields for full-resolution (min-warping: half-resolution) Office
day-night database tests. The reference image was taken under daylight conditions (OfficeD),
all other images were taken at night (OfficeN). Refer to Figure 3.26 for further details.
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ORB is one of the fastest feature methods we studied (Table 3.10). With 500 features on
half-resolution images and two-point pose estimation, its median execution time is similar to
that of min-warping. ORB also gives good results under steady illumination (Figures 3.8, 3.9
and 3.26b). Unfortunately, these candidates do not perform as well for day-night illumination
changes (Figures 3.20, 3.21 and 3.29b).

SIFT features give excellent results, even under strong illumination changes (Figures 3.10, 3.22,
3.26 and 3.29). Unfortunately, the implementation we used is not fast enough for real-time use on
our cleaning-robot prototype (Table 3.10). Nevertheless, SIFT is the strongest of all our candidates
whenever its computational requirements are not an issue. SURF offers similar performance, and
should be a good contender with a faster implementation (Figures 3.11 and 3.23).

Under constant-illumination conditions, two-point BRISK gives good, high-speed pose esti-
mates (Figure 3.16). Using half-resolution images, it is one of the fastest feature-based methods
(Table 3.11). BRISK also achieves some of the lowest pose-estimation errors on full-resolution
images (Table 3.1). However, outliers can occur at long distances (Figure 3.12), and the five-point
results are not as good. Where illumination varies, BRISK provides better pose estimates at greater
speeds than ORB (Figure 3.17). Unfortunately, it is still less robust than the slower SIFT or SURF
candidates.

In our experiments, planar-motion methods are superior if the constraint is actually fulfilled
(Figures 3.16 and 3.17). If the constraint is violated, the full five-point method can give better results,
although it is also slower (Figure 3.18). The effect of using Levenberg-Marquardt optimization or
half-resolution images for the feature-based methods also depends on the circumstances (Tables 3.4
and 3.12).

3.6. Outlook

This comparison of holistic and feature-based visual pose-estimation methods revealed several
open questions: For this chapter, all images were taken from just two domestic environments.
The behavior of the methods across many different environments is thus open to further study.
Furthermore, outdoor environments were not considered at all. We might also include additional
changes in the illumination conditions, for example due to weather. A robot reusing older images
may also encounter extensive scene changes, for example from rearranged furniture.

A variety of promising local visual-feature algorithms have been presented in the literature[2,
11, 43], and could be used to extend our results. Additionally, the feature candidates in this study
have several user-selectable parameters, as shown in Tables A.3a to A.3d. They might perform
better if the parameters are carefully optimized. The large number of parameters makes this a very
extensive task, and we therefore use the default values where possible. This is also the case for
the parameters of the holistic min-warping method shown in Table A.2. We also made no attempt
to fine-tune the available implementations for our specific problem. We expect that many of the
algorithms can be sped up by employing SIMD instructions and multi-core parallelism. This could
make additional methods feasible for real-time use on embedded systems, such as a domestic robot.

For this initial study, we relied on robust but simple algorithms for feature matching and RANSAC.
However, there are several more sophisticated variants for approximate matching [108, 109] and
RANSAC [148, 24, 115, 124]. Other visual pose-estimation methods are based on entirely different
paradigms, such as 3D-reconstruction of features or stereo cameras [116, 117, 131, 53, 55]. These
variants should be able to improve on our results, or at least offer additional trade-offs between
quality and speed. Due to the large number of possible candidates and the lack of compatible
implementations, we did not yet tackle this task.

All our image databases are available for download [47], including information such as the
ground truth and camera calibrations. We hope that this will allow others to extend our results.
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4. Visually Estimating Camera Tilts from
Panoramic Images in Domestic
Environments

Visual methods have applications in many mobile robotics problems, such as localization, nav-
igation, and mapping. Some of these methods assume that the robot moves in a plane without
tilting. This planar-motion assumption simplifies the problem, and may lead to improved results.
For example, in Section 3.4 we found that pose-estimation techniques benefit from exploiting this
assumption. However, tilting the robot violates the assumption, and may cause planar-motion
methods to fail. In Section 3.3.3, we demonstrated that this problem occurs for the pose-estimation
scheme used by our cleaning robot. To correct for such a tilt, we first have to measure its direction
and magnitude. In this chapter, we thus estimate our robot’s tilt relative to the ground plane from
individual panoramic images. This estimate is based on the vanishing point of vertical elements,
which commonly occur in domestic environments. Here, we propose two different methods: An
image-space method exploits several approximations to detect the vanishing point in a panoramic
fisheye image. The vector-consensus method uses a calibrated camera model to solve the tilt-
estimation problem in 3D space. We evaluate the accuracy of these methods using images recorded
by our cleaning robot. Furthermore, we measure the time required on both a desktop PC and our
robot’s embedded CPU. We also consider our results in the context of our cleaning-robot framework
and its use of visual relative-pose estimation. Overall, we find the methods to be accurate and fast
enough for real-time use on domestic robots, such as our prototype. However, the tilt-estimation
error increases markedly in environments that contain relatively few vertical edges. Note that we
base this chapter on an earlier publication by the author [48].

4.1. Introduction

Visual methods operating on images from a robot’s onboard camera have many applications in
mobile robotics. These include relative-pose estimation (Chapter 3), visual odometry [131, 53],
place recognition [90], and simultaneous localization and mapping (SLAM) [55]. Some of these
visual methods are based on a planar-motion assumption, where the robot travels in a flat plane
without pitching or rolling. As seen in Figure 4.1, the robot thus moves with only three instead
of six degrees of freedom (DOF). This simplification is used, for example, in visual relative-pose
estimation [52, 140, 50, 17, 102, 15] or place recognition [58, 69]. We also utilize the planar-motion
assumption throughout our cleaning-robot framework, as for example in Section 2.5.2. In Chapter 3,
we compared visual relative-pose estimation methods in the context of our cleaning robot. As
discussed in Section 3.4, we found that planar-motion methods can be more accurate and faster
than their nonplanar counterparts.

During preliminary experiments, we discovered that uneven ground may cause our robot to pitch
or roll even when in a benign indoor environment. Tilting the robot in such a manner violates the
planar-motion assumption. For our pose-estimation experiments, this introduced large errors in the
results, as seen in Figure 3.18. Here, even a small tilt of ≈2◦ eliminated the quality advantage of
the planar-motion methods. Larger tilts then increased these errors beyond those of the nonplanar
alternatives. Such a small tilt angle can be caused even by a slight roughness of the movement
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Figure 4.1.: A robot tilted relative to the ground plane (gray tiles). The robot is an abstraction
of our cleaning-robot prototype. Colored arrows illustrate the coordinate system of an untilted
robot. Under the planar-motion assumption, movement is restricted to the x–y plane. Furthermore,
rotations may only occur around the blue z-axis, which is orthogonal to the ground plane. This
reduces the degrees of freedom from six to three. Here, the robot has been tilted by an angle α in
the direction β, as shown by the robot’s tilted z-axis (black arrow). For reasons of legibility, this
illustration shows an exaggerated α.

surface (see Section 4.2.3). Booij, Kröse, and Zivkovic [15] encountered a similar effect while
testing planar-motion pose-estimation methods. The authors suspected tilts from an accelerating
robot as the cause.

To tackle this problem, we estimate the tilt angle α and tilt direction β (Figure 4.1) with which
an image was captured. A planar-motion method can then use this information to correct for tilts
in the input image. We could also measure the tilts using an additional sensor, such as an inertial
measurement unit (IMU). However, this increases the cost and complexity of the robot, more so
because the sensor needs to be calibrated [88] and synchronized relative to the camera. Instead,
we estimate the tilt parameters (α, β) from a single panoramic camera image by following the
algorithm outlined in Figure 4.2.

Here, we utilize vertical elements — such as vertical parts of shelves, windows or doors —
commonly found in domestic environments. These elements are orthogonal to the floor, and thus
orthogonal to the robot’s movement plane. Some of the elements will appear as edges in the camera
image, which we can then detect. From this, we determine the robot’s tilt by locating the vanishing
point of these edges. We evaluate our results in the context of the visual pose-estimation methods
discussed in Chapter 3: The tilt-estimation accuracy should allow the planar-motion methods to
remain competitive with their nonplanar counterparts. Furthermore, tilt estimation should add only
a small overhead to the time required for planar-motion pose estimation.

4.1.1. Related Works

Visually estimating a camera’s orientation relative to the world is a prominent research problem. As
in our work, vanishing points are widely used, and offer several advantages [10]: because they lie at
infinity, their position is not affected by camera translation. Furthermore, the vanishing points are
determined from an image’s edge pixels. Thus, many non-edge pixels can be disregarded, which
speeds up processing time.
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Image Space Vector Consensus

Figure 4.2.: An overview of the tilt-estimation pipeline used in this chapter. We propose two
different methods, which are shown on the left and right, respectively. First, a single panoramic
camera image is edge-filtered (top). Next, edge pixels corresponding to vertical elements are
identified (top left, top right, shown in red). For the image-space method (Section 4.2.1), we
approximate the tilt’s effect as a shifting of the edge pixels within the image. We estimate the
shift direction and shift magnitude by fitting a function (bottom left, red line) to two parameters
derived from the edge pixels (black dots). These parameters are based solely on the edge pixels’
positions and gradient directions in the image space. The vector-consensus method (Section 4.2.2)
determines a 3D normal vector for each edge pixel. Each of these normals is orthogonal to the
direction of the vanishing point. We then estimate this direction from a consensus of the normal
vectors (bottom right, blue normals are orthogonal to tilt direction). Finally, we compute the tilt
parameters (α, β) from the edge-pixel shift or the vanishing-point direction (bottom).
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A popular class of methods assumes a Manhattan world, as described by Coughlan and Yuille
[28]: Here, image edges are assumed to belong to world elements that are either parallel or
orthogonal to each other. These three orthogonal sets of parallel elements serve as the axes of
a world coordinate system. One example for such a world is an environment consisting only of
parallel cuboids.

Košecká and Zhang [80] present one early work based on the Manhattan world. The authors
group edge pixels from nonpanoramic images into distinct straight lines. They then determine the
Manhattan-world vanishing points from these lines using expectation maximization [31]. Denis,
Elder, and Estrada [32] compare several early Manhattan-world orientation-estimation methods.
This work also introduces additional methods based on straight lines in nonpanoramic images.
Tardif [142] uses the J-linkage algorithm [146] to identify distinct vanishing points from straight
image edges. This method then selects those three vanishing points that best correspond to the
Manhattan directions. All of these works require straight image edges. For this reason, they are not
directly applicable to our fisheye images, which contain strong radial distortions.

Bazin et al. [10] search panoramic images for edges belonging to straight elements in the world
[9]. They then perform a coarse-fine search over the space of possible camera orientations. For
a Manhattan world, each hypothetical orientation predicts a distinct set of vanishing points. This
method selects the orientation under which the highest number of images edges are consistent with
these predicted vanishing points. Another work by Bazin et al. [10] follows the same Manhattan-
world approach. As before, orientations are scored by comparing their predicted vanishing points
to the image edges. To find the best orientation, a branch-and-bound algorithm [65] divides the
orientation space into intervals. Those intervals that contain only inferior solutions are discarded
using interval analysis. The orientation estimate is then narrowed down by subdividing the
remaining intervals.

In the Manhattan world, there are six (three orthogonal, plus their antipodals) vanishing points:
one vertical pair, and two additional orthogonal pairs that lie on the horizon. Schindler and Dellaert
[133] generalize this to an Atlanta world. In contrast to the Manhattan case, this world may contain
additional vanishing point pairs located on the horizon. The authors estimate these vanishing points
for nonpanoramic images using expectation maximization [31]. Tretyak et al. [149] also use an
Atlanta-like world. They propose a scene model that encompasses lines, their vanishing points, and
the resulting horizon and zenith location. The model parameters are then jointly optimized based
on the edge pixels in a nonpanoramic image. Thus, the detection of lines, vanishing points, and the
horizon and zenith are performed in a single step. However, these two methods assume images
without radial distortion; thus, they cannot directly be used for our panoramic fisheye images.

Antone and Teller [5] also estimate camera orientations using vanishing points, but do not assume
a specific world. Vanishing-point candidates are found by a Hough transform (survey: [73]), and
refined through expectation maximization [31]. The authors then identify a set of global vanishing
points that appear across an entire collection of images. Camera orientations relative to these global
vanishing points are then jointly estimated for all images. Lee and Yoon [83] also do not require a
Manhattan or Atlanta world. Using an extended Kalman filter, they jointly estimate the vanishing
points and camera orientations over a sequence. These two methods place no prior restrictions on
the locations of the vanishing points. Consequently, the alignment between the vanishing points
and the robot’s movement plane is not known. To use them for tilt correction, this alignment must
first be determined. Thus, these methods are not directly suitable to estimate the tilt from a single
image.

The works discussed above estimate camera orientations relative to global vanishing points.
Many other works determine the relative camera poses between two images [131, 53]: One popular
approach works by matching local visual features, such as those from the scale-invariant feature
transform (SIFT) [89], between two images. The relative pose can then estimated from epipolar
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geometry [138]. However, these relative poses provide no information about the ground plane.
Subsequently, they cannot be used to estimate tilts for planar-motion methods.

Some of the methods discussed here may also solve our tilt-estimation problem. For example,
Bazin et al. [10] determine the camera orientation relative to a Manhattan world from a single
panoramic image. However, we seek a solution that is optimized specifically towards tilt-estimation
for planar-motion methods. Within this problem, we need only the tilt angle and direction, and
can ignore the robot’s yaw. We can estimate these angles from vertical elements alone, without
requiring a full Manhattan or Atlanta world. Thus, we do not have to restrict our cleaning robot to
environments that correspond to one of these two world types. In our application, the tilt angle α is
also bound to be small, which allows further simplifications. By exploiting these properties, we can
achieve good and fast tilt estimates using considerably simpler methods.

4.1.2. Our Contributions

In this chapter, we introduce two different visual methods to determine a robot’s tilt relative to a
ground plane. We evaluate and discuss these methods within the context of our cleaning robot: In
Section 2.5.2, we examined how our robot performs localization by estimating the relative camera
pose between two images. For our prototype, we employ the planar-motion min-warping algorithm
for this task (Section 3.2.2, [102]). As discussed in Section 3.4, this provides accurate relative-pose
estimates while requiring very few computational resources.

However, the robot may tilt when driving over uneven ground, such as carpets or door thresholds.
Such a violation of the planar-motion assumption degrades the pose-estimation quality, as seen
in Figure 3.18. For this chapter, we use this problem as a guide for designing experiments
(Sections 4.2.3 and 4.2.4) and evaluating results (Section 4.4). As per Section 4.2.3, we also use
our cleaning-robot prototype to record a plausible database of tilted images. However, the methods
presented here are not limited to our specific cleaning robot; they may be used with other robots or
planar-motion methods.

Both methods in this work operate on panoramic fisheye images, as captured by our robot’s
onboard camera (Figure 4.2). Recall that these images show the hemisphere above the robot, but
exclude everything below the horizon. Thus, the camera cannot see the ground plane, relative to
which the tilt should be measured. Instead, we use vertical elements in the environment, which are
orthogonal to the movement plane. Examples include room corners, door- and window frames, as
well as the edges of furniture such as shelves. Some of these parallel elements appear as visually
distinct edges in the robot’s camera images.

We now estimate the tilt parameters from the vanishing point of these edges: First, we apply
an edge filter to the camera image and extract pixels with a strong edge response. Second, we
identify the set of edge pixels belonging to vertical elements in the world, while rejecting those
from non-vertical elements. Here, we assume that the tilt angle is small and that vertical elements
far outnumber the near-vertical ones. Third, we determine the tilt angle α and direction β from
the remaining edge pixels. Step one is identical for both methods, but steps two and three differ.
The image-space method uses several approximations to simplify vanishing-point detection in the
fisheye images. We then apply a correction factor to reduce the tilt-estimation errors introduced by
these approximations. Operating directly on the panoramic fisheye image, this method is fast and
simple to implement. In contrast, the vector-consensus method solves the tilt-estimation problem in
3D world coordinates. This method makes fewer approximations, but requires a calibrated camera
model. It is also more similar to the existing vanishing-point methods discussed in Section 4.1.1.

We test the two methods on images recorded by the onboard camera of our cleaning-robot
prototype. Here, we placed our prototype at 43 locations spread across six different environments.
For each location, we recorded images for the untilted and six different tilted configurations. The
tilts estimated from these images were then compared to the ground truth, giving a tilt-estimation
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error. We also measure the execution time required for tilt estimation on both a modern desktop PC
and our robot’s onboard computer.

The rest of this work is structured as follows: Sections 4.2.1 and 4.2.2 describe the two methods
used in this work. We introduce the image database in Section 4.2.3, and the experiments in
Section 4.2.4. Section 4.3 contains the results of these experiments, which we discuss in Sec-
tion 4.4. Finally, we summarize our results and give an outlook to possible future developments in
Section 4.5.

4.2. Materials and Methods

Our specific goal is to estimate the robot’s tilt angle α and tilt direction β, as shown in Figure 4.1. β
is given relative to the robot’s heading, with β = 0◦ and β = 90◦ describing a forward and leftward
tilt, respectively. α is measured relative to the robot’s untilted pose on a planar surface; thus, we
have α = 0◦ for an untilted robot. We choose our world coordinate system so that ~n = (0, 0, 1)T is
the surface normal of the movement plane. If ~nR = Rα,β~n = (nx,R, ny,R, nz,R)T is the normal
vector in the coordinate system of a tilted robot, we then find that

α = arccos(nz,R),

β = atan2(−ny,R,−nx,R).
(4.1)

Here, Rα,β is the rotation matrix for the tilt (α, β), and atan2 is the quadrant-aware arctangent
function. We can therefore determine (α, β) by first determining ~nR. Both methods perform this
step using visually distinct environment elements which are parallel to ~n.

4.2.1. Image-Space Method

This method is based on the apparent location ~pn of the vertical elements’ vanishing point. ~pn
is the point in the camera image where the vertical elements would appear to meet, if they were
extended to infinity. We estimate ~pn using several problem-specific approximations, which simplify
and speed up the method. We then determine the tilt parameters (α, β) using the location of ~pn.

4.2.1.1. Preliminary Calculations

We first determine the vanishing point for an untilted robot, which we call ~pc. For convenience,
we find ~pc using an existing camera calibration based on [132]. However, this point could also be
determined separately, without requiring a fully calibrated camera. The calibrated camera model
provides a projection function P . P maps the camera-relative bearing vector ~v to the image point
~p = P (~v). Multiplying with the extrinsic rotation matrix R gives the bearing vector ~vR = R~v in
robot coordinates. By definition, the surface normal is ~nR,α=0 = ~n for an untilted robot. ~nR,α=0

is parallel to the environment’s vertical elements, and consequently shares their vanishing point.
Transforming ~nR,α=0 into camera coordinates and projecting it gives us

~pc = P (R−1~nR,α=0). (4.2)

If the robot is tilted, the apparent vanishing point ~pn will be shifted from ~pc. We will determine the
tilt parameters (α, β) from this shift. Figure 4.3 illustrates ~pn and ~pc for an untilted example image.

Note that it is irrelevant whether or not the camera image actually shows the environment at or
around ~pc. Thus, this method would still work for robots where this part of the field of view is
obscured. For a robot with an upward-facing fisheye camera, ~pc lies close to the geometric center
of the image. However, this may not apply for an upward-facing camera that captures panoramic
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Figure 4.3.: An illustration of the vertical element’s vanishing point. This untilted image from
our database shows a typical office environment. A blue dot represents the predicted vanishing
point for an untilted robot ~pc. The red, dashed lines represent vertical elements, which we manually
extended to their vanishing point ~pn (red ring, overlapping the blue dot). As expected, the predicted
and actual vanishing point of the vertical elements are nearly identical.

images using a mirror. Here, the image center corresponds to a direction below instead of above
the robot. In this case, we can simply use the antipodal vanishing point of the vertical elements.
This vanishing point lies below the robot, and thus we calculate ~pc from ~nR,α=0 = −~n instead.
Subsequent steps in the method then use this antipodal vanishing point.

4.2.1.2. Edge Pixel Extraction

As a first step towards tilt estimation, we detect edges in the camera image. We apply the Scharr
operator to compute the horizontal and vertical edge gradients gx and gy for each pixel. This edge
detector is somewhat similar to the popular Sobel operator, but was optimized to be invariant to
edge orientation [74, 154]. Since vertical elements can appear at any orientation within the image,
this is a highly desirable property. In this work, we use the implementation provided by the OpenCV
library [21]. Figure 4.4 contains an example of the resulting edge gradients.

We ignore pixels below the camera’s horizon, since they mostly show the robot’s chassis. We
also reject pixels with a bearing of more than 45◦ above the camera horizon. Such pixels mainly
show the ceiling, which contains horizontal elements that may be mistaken for vertical ones. To
speed up computations, we only apply the Scharr operator to a bounding box around the remaining
pixels. Finally, we discard pixels with a low gradient intensity g2

x + g2
y < I2

min. Such pixels are of
limited use to us, since camera noise may strongly disturb their edge gradients. Eliminating these
pixels also speeds up subsequent processing steps.

In this study, we do not try to identify straight lines of edge pixels, and instead consider each
pixel individually. This simplifies and speeds up our method, and lets us extract information even
from very short edges. In contrast, combining connected pixels into long edges (as in [9]) may
reduce the number of incorrect edge pixels, and may make the edge-gradient estimate more accurate
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(a) Horizontal (b) Vertical

Figure 4.4.: The result of the Scharr operator applied to the example image from Figure 4.3. The
operator was only applied to a bounding box containing the pixels above the camera horizon. Black
and white correspond to a strong dark-bright or bright-dark edge, respectively; gray indicates a
weak edge response. We artificially increased the contrast of these images to make the gradients
more noticeable.

[32]. The trade-off between using individual edge pixels or long edges thus poses a possible subject
for future experiments.

4.2.1.3. Edge Pixel Processing

Next, we estimate the tilt from the edge pixels identified in Section 4.2.1.2. For a camera with
linear projection, a linear element in the environment would appear as a straight edge in the image.
We can derive the edge direction for each pixel from the gradient ~g = (gx, gy)

T . Extending a line
from each edge pixel along its edge direction result in a vanishing point, similar to Figure 4.3.

However, the projection of a panoramic camera is typically not linear. Here, we assume that
the robot’s camera fits the panoramic, nonlinear model proposed by Scaramuzza, Martinelli, and
Siegwart [132]. Due to radial distortion, straight environment elements commonly appear as curves
in the camera image. One example is given by the horizontal elements in Figure 4.3. Nevertheless,
we can use two simplifying approximations for this tilt-estimation problem: First, we assume that
vertical elements appear as straight edges in the panoramic image. This is approximately true
for small tilt angles, as for example in Figure 4.5. Second, since α is small, we assume that a
tilt appears as a shift in the image. The edges and their vanishing point thus appear to move by
a uniform amount (Figure 4.6c). In reality, tilting changes the orientation of these edges in the
image. Due to the radial distortions of our fisheye lens, the vertical elements may also appear as
curves (Figure 4.6b). Under our approximations, we ignore these effects and determine only an
approximated vanishing point ~pa (Figure 4.5) instead of the actual vanishing point ~pn. This greatly
simplifies our method, but also introduces tilt-estimation errors. We therefore apply a correction
factor after estimating the tilt from the shift between ~pa and ~pc.

Panoramic Projections of Vertical Elements

We now use the camera model to justify our previous assumption that vertical elements are projected
linearly. According to the projection P of the camera model [132], a bearing vector ~v = (x, y, z)T
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Figure 4.5.: The same as Figure 4.3, but for a forward-tilted robot (αT = 4.15◦, βT = 0◦). Due to
the tilt, the approximated vanishing point ~pa (red dot) is shifted from ~pc (blue dot). Close inspection
reveals that the tilt caused a slight curvature in the vertical lines. Thus, the dashed red lines and the
resulting ~pa are merely an approximation of the true edges and vanishing point, respectively.

(a) Untilted (α = β = 0◦) (b) Tilted (α = 15◦, β = 180◦) (c) Shifted (α = 15◦, β = 180◦)

Figure 4.6.: The effect of tilts on image edges. This illustration shows the outlines of several
cuboids, as seen by a robot’s panoramic fisheye camera. In (a), the robot is not tilted. The vertical
elements appear as straight lines oriented towards a vanishing point (red dot). (b) shows the effect
of an exaggerated tilt, where vertical elements appear as curves. These curves no longer point
straight towards the expected vanishing point (blue dot). This point has been shifted from its
untilted position (red dot). This figure also contains the untilted outlines in a light shade of red. In
the image-space method, we assume that small tilts do not cause the distortions in (b). Instead,
we model the effect of such tilts as a mere shift in the image. This approximation is shown in (c),
where the vanishing point and outlines are shifted without distortion.
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(a) Projection to the idealized sensor plane (b) Projection to the image plane

Figure 4.7.: The camera model used in this work, which was first introduced by Scaramuzza,
Martinelli, and Siegwart [132]. In (a), the point ~X (red circle) lies at a bearing of (x, y, z)T

(red arrow) relative to the camera center ~O (black circle). A fisheye lens (light blue shape)
projects (x, y, z)T onto the point (u, v)T (red circle) in an idealized sensor plane (gray square).
This nonlinear projection is described by Equation (4.3) and the camera parameters ak from
Equation (4.5). The distance between (u, v)T and the image center at (0, 0)T is specified by ρ.
Applying Equation (4.4) to (u, v)T gives us the corresponding pixel coordinates (u′, v′)T in the
actual digital image, as shown in (b). Here, the center of this image has the pixel coordinates
(x′c, y

′
c)
T .

and corresponding image point ~p = (u′, v′)T = P (~v) are related by

~v = (x, y, z)T = (u, v, f(ρ))T , (4.3)(
u′

v′

)
=

(
c d
e 1

)(
u
v

)
+

(
x′c
y′c

)
. (4.4)

Here, c, d, e, x′c and y′c are camera parameters, while ρ =
√
u2 + v2. While (u′, v′)T refers to the

actual pixel coordinates in the image, (u, v)T is the corresponding point in an idealized sensor plane.
This idealized sensor plane is orthogonal to the optical axis, which corresponds to the camera’s
z-axis. Figure 4.7 illustrates this camera model.

The n+ 1 coefficients ak of the polynomial function

f(ρ) =

n∑
k=0

akρ
k (4.5)

are also camera parameters determined during calibration; in our experiments, we use n = 5.
We now consider a straight line in space that is parallel to the camera’s optical axis. In camera
coordinates, such a line consists of all points ~X , which satisfy

~X = (X,Y, Z)T = (X0, Y0, Z0 + µ)T , (4.6)

where (X0, Y0, Z0)T is a point on the line and µ ∈ R. The bearing vector from the projection center
to ~X is simply ~v = λ−1 ~X; here, λ−1 ≥ 0 is the unknown distance factor. From Equation (4.3), we
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see that the sensor-plane projection of this line must fulfill

(uµ, vµ, f(ρµ))T = λ−1(X,Y, Z)T = λ−1(X0, Y0, Z0 + µ)T . (4.7)

We now express this projection in polar coordinates

(uµ, vµ)T = ρµ(cos(γ), sin(γ))T (4.8)

and, from Equation (4.7), find that

γ = atan2(vµ, uµ) = atan2(λ−1Y0, λ
−1X0) = atan2(Y0, X0) (4.9)

is constant. Since the orientation γ for the projection of ~X is constant, the vertical element ~X
appears as a straight line in the sensor plane. Because Equation (4.4) is linear, this also corresponds
to a line in the final image.

From Equation (4.8), we note that the sensor-plane projections of all lines ~X intersect at the
origin point (uµ, vµ)T = ~0 for ρµ = 0. At this origin point, we have uµ = vµ = 0, and thus the
distance factor from Equation (4.7) must be λ−1 = 0 (except for lines with X0 = Y0 = 0). We
now wish to find the specific point along a line ~X that is projected to the sensor-plane origin. At
this origin ρµ = 0, and we thus evaluate

lim
ρµ→0

Z = lim
ρµ→0

→a0︷ ︸︸ ︷
f(ρµ)

λ−1︸︷︷︸
→0+

=∞ sgn(a0). (4.10)

We can assume that a0 6= 0, since Equation (4.3) would otherwise give a malformed bearing of
~v = ~0 for the origin (u, v)T = ~0.

We have now shown that lines parallel to the optical axis are projected linearly. Additionally, we
found that these projections all meet at the vanishing point (u, v)T = ~0 as Z approaches infinity. As
per Equation (4.4), this point corresponds to (u′, v′)T = (x′c, y

′
c)
T in image coordinates. However,

even for an untilted robot, the optical axis is usually not perfectly parallel to the vertical elements.
Here, we assume that this misalignment is small for an upward-facing panoramic camera (≈0.16◦

in our cleaning-robot prototype, as calculated from the extrinsic calibration matrix R). We therefore
choose to ignore this effect.

Approximating Tilts through Image Shifts

Next, we determine how tilting the robot affects the vanishing point of the vertical elements. A tilt
is a rotation around an axis ~w = (wx, wy, 0)T parallel to the movement plane, with ‖~w‖ = 1. We
derive the rotation matrix S′ for such a tilt from by Rodrigues’ formula [111], with

S′ =

cos(α) + w2
x(1− cos(α)) wxwy(1− cos(α)) wy sin(α)

wywx(1− cos(α)) cos(α) + w2
y(1− cos(α)) −wx sin(α)

−wy sin(α) wx sin(α) cos(α)

 . (4.11)

For a small tilt angle α, we approximate S′ using cos(α) ≈ 1 and sin(α) ≈ α, which gives us

S =

 1 0 wyα
0 1 −wxα

−wyα wxα 1

 . (4.12)

As discussed above, we assume that the optical axis is parallel to the vertical elements for an
untilted robot. Thus, these elements are parallel to ~nC = (0, 0, a0)T in camera coordinates. After
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rotating the camera around ~w by a small angle α, this is ~nC,t ≈ S−1~nC = a0(−wyα,wxα, 1)T .
According to Equation (4.3), the sensor-plane projection (ut, vt) of ~nC,t obeys

(ut, vt, f(ρt))
T = a0(−wyα,wxα, 1)T . (4.13)

Here, (ut, vt) is sensor-plane location of the vanishing point for the tilted camera.
Since α is small, this vanishing point shifts only a small distance from its untilted location

of (u, v)T = ~0. In that case, ρt =
√
u2
t + v2

t ≈ 0, and we can approximate Equation (4.5) as
f(ρt) ≈ f(0) = a0. This approximation is favorable because a1 = 0 for cameras with fisheye
lenses, or parabolic or hyperbolic mirrors [132]. A tilt around the axis ~w therefore shifts the
vanishing point in proportion to the tilt angle α:

(ut, vt)
T = a0α(−wy, wx)T , (4.14)(

u′t
v′t

)
= a0α

(
−cwy + dwx
−ewy + wx

)
+

(
x′c
y′c

)
. (4.15)

Here, (u′t, v
′
t)
T is the vanishing-point location in the actual image according to Equation (4.4). The

direction of this shift depends on ~w, and thus on the tilt direction β.
Next, we estimate the shift of ~pa from the edge pixels extracted in Section 4.2.1.2. For each edge

pixel k, we know the position ~pk = (u′k, v
′
k)
T , as well as the horizontal and vertical edge gradients

gk,x and gk,y. From this, we calculate the gradient direction angle

ϕk =

{
atan2(−gk,y,−gk,x), if gk,y < 0 ∨ (gk,y = 0 ∧ gk,x < 0),

atan2(gy, gx), otherwise.
(4.16)

This two-part definition ensures that ϕk ∈ [0, π) is the same for both light-dark and dark-light
edges. We also calculate the edge offset

sk = (cos(ϕk), sin(ϕk))
T (~pk − ~pc) . (4.17)

sk is the distance between ~pc and a line orthogonal to ϕk that passes through ~pk. Figure 4.8
illustrates this geometry for a single edge pixel. If we treat k as part of an infinite, straight edge, sk
would be the distance between that edge and ~pc. A similar parameterization for edge pixels was
previously suggested by Davies [30]. For edge pixels k from vertical elements, we expect sk = 0
for an untilted robot. If the robot is tilted, sk will change based on the tilt parameters (α, β).

Tilt Parameters from Vanishing Point Shifts

In Figure 4.8, a tilt has shifted the vanishing point’s location from the expected point ~pc. The
new vanishing point at ~pa is specified by the angle β′ and the distance l from ~pc. Here, β′ is the
image-space tilt direction, from which we will later calculate the tilt direction β of the robot. Due
to this shift, the blue line extended from ~pk no longer passes through ~pc. According to Figure 4.8,
the edge offset sk between the blue line and ~pc is

sk = l sin (εk) = l sin
(π

2
+ ϕk − β′

)
= l cos

(
β′ − ϕk

)
. (4.18)

Using the trigonometric theorem of addition, we can rewrite this as

sk =
[
l cos(β′)

]
cos(ϕk) +

[
l sin(β′)

]
sin(ϕk)

= A cos(ϕk) +B sin(ϕk).
(4.19)
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Figure 4.8.: The parameters associated with an edge pixel k. In this illustration, the edge pixel is
shown as a black square with position ~pk. This edge pixel has a gradient ~gk, represented by a black
arrow. From this gradient, we calculate the gradient direction angle ϕk. The blue line indicates
a hypothetical straight edge that is orthogonal to ϕk and passes through ~pk. This line also passes
through the approximated vanishing point at ~pa (white disk). A tilt has shifted ~pa from the untilted
vanishing point ~pc (gray disk). This shift is represented by a red line, and described by the angle β′

and distance l. The distance between the blue line and ~pc is the edge offset sk from Equation (4.17).
Finally, the angle between the blue and red lines is εk = π

2 + ϕk − β′. Note that we model the
effects of a tilt as a simple shift (Figure 4.6).

Each edge pixel k from a vertical element provides us with one instance of Equation (4.19). For N
such edge pixels, we then have a system with two unknowns A and B and N linear equations. We
can solve this overdetermined system for (A,B) using a linear least squares approach. This lets us
determine

l =
√
A2 +B2 and (4.20)

β′ = atan2(B,A). (4.21)

Knowing β′ and l gives us the position ~pa of the approximate vanishing point.
Using ~pa as a substitute for the true location (u′t, v

′
t)
T in Equation (4.15), we get

a0α

(
−cwy + dwx
−ewy + wx

)
+

(
x′c
y′c

)
≈ l
(

cos(β′)
sin(β′)

)
+ ~pc. (4.22)

Recall that for an untilted robot, we assume the optical axis to be orthogonal to the movement
plane. In this case, Equation (4.2) simplifies to ~pc ≈ P ((0, 0, 1)T ), and from this we can show that
~pc ≈ (x′c, y

′
c)
T using Equations (4.3), (4.4) and (4.7). With this result, we can write Equation (4.22)

as

a0αη

[
η−1

(
−cwy + dwx
−ewy + wx

)]
≈ l
[(

cos(β′)
sin(β′)

)]
(4.23)

with the magnitude η =
√

(−cwy + dwx)2 + (−ewy + wx)2. We note that the two vectors in
square brackets both have a length of 1, and can therefore write

α =
l

a0η
, (4.24)

η−1

(
−cwy + dwx
−ewy + wx

)
=

(
cos(β′)
sin(β′)

)
. (4.25)
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For a conventional camera with square pixels, we can approximate c = 1 and d = e = 0, resulting
in

α =
l

a0
, (4.26)

(wx, wy)
T =

(
sin(β′),− cos(β′)

)T
. (4.27)

Note that the tilt axis ~w is given in the camera reference frame. Since we assume that the camera
is mounted facing upwards, the z-axis of the robot and the camera should be parallel. However,
the x and y axes of the robot and the camera may be rotated relative to each other. This rotation is
described by the extrinsic calibration matrix R (Section 4.2.1.1). To estimate the tilt direction β in
the robot reference frame, we first determine the robot tilt axis

~wR =

wR,xwR,y
wR,z

 = R

wxwy
0

 =

R1,1 sin(β′)−R1,2 cos(β′)
R2,1 sin(β′)−R2,2 cos(β′)
R3,1 sin(β′)−R3,2 cos(β′)

 . (4.28)

From ~wR, we can finally calculate the tilt direction

β = atan2(wR,y, wR,x)− π

2
= atan2(−wR,x, wR,y)

= atan2
(
−R1,1 sin(β′) +R1,2 cos(β′), R2,1 sin(β′)−R2,2 cos(β′)

)
.

(4.29)

Note that Equation (4.29) includes the term −π
2 because the tilt direction is at a right angle to the

tilt axis.
We have made a number of approximations during this derivation. Most noticeably, we assume

that a tilt causes a shift in the camera image, disregarding the effects shown in Figure 4.6. During
preliminary experiments, we found that this method exhibits systematic errors in the estimated tilt
angle α. As per Equation (4.26), α should be proportional to the shift distance l with a coefficient of
a−1

0 . Since this gives poor results in practice, we replace the camera parameter a0 with a correction
factor a, so that

α̂ =
l

a
. (4.30)

a is the proportionality constant relating l and α, which we estimate from a set of training images
using

a =
1

m

m∑
i=1

li
αT,i

. (4.31)

Here, li is the shift distance l measured for the image with index i. αT,i > 0◦ is the ground truth for
α in the ith image, determined according to Section 4.2.3. Thus, a equals the mean ratio between
the shift li and true tilt angle αT,i over a training set of m tilted images. Using this heuristic, we
can improve the accuracy of our estimates while still benefiting from the numerous simplifications
made above.

4.2.1.4. Rejecting Incorrect Pixels

So far, we have assumed that all edge pixels correspond to vertical elements. This is not the case
in a real environment, as shown by the many non-vertical elements in Figure 4.4. We therefore
have to reject incorrect edge pixels caused by these non-vertical elements. Edge pixels disturbed by
image artifacts and camera noise should also be filtered out.

As a first step, we apply a prefilter that discards all pixels with a large edge offset sk: Here, we
once again assume that the tilt angle α is small, and thus α ≤ αmax. According to Equation (4.30),
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(a) Untilted, αT = βT = 0◦ (b) Tilted forward, αT = 4.15◦, βT = 0◦

Figure 4.9.: The edge pixels from the prefiltered set F , which we extracted from the Scharr-filtered
images in Figure 4.4. Valid edge pixels are shown in color, and are superimposed on the camera
image. (a) shows the untilted image from Figure 4.4, while (b) shows the same location with
a forward tilt. We reject pixels with bearings of more than 45◦ above the horizon, or with a
gradient intensity of Ik < 200. Pixels with an edge offset |sk| > smax were also rejected. In this
visualization, the pixel’s hue indicates its gradient direction angle ϕk. The saturation represents
the edge offset sk, with full saturation and desaturation corresponding to sk = 0 and |sk| = smax,
respectively. (αT , βT ) are the ground-truth tilt parameters calculated from the measured wheel
heights (Section 4.2.3).

an upper bound for α also limits l. From Equation (4.18), we see that |sk| ≤ l, and thus a limit on
l implies a limit |sk| ≤ smax. We therefore discard edge pixels k with large |sk|, as they are not
consistent with α ≤ αmax. After this prefiltering, the remaining edge pixels form the set F . In this
work, we chose smax = 40, which corresponds to αmax ≈ 10◦ for our camera; the precise value of
αmax depends on the choice of a in Equation (4.30). Figure 4.9 shows the result of this prefiltering
step.

We now estimate the tilt parameters (α, β) by fitting a cosine (Equation (4.18)) to the (ϕk, sk)
of the edge pixels in the prefiltered set F . This step is described in Section 4.2.1.3 and illustrated in
Figure 4.10. Here, incorrect edge pixels may cause large errors, as demonstrated by Figure 4.11a.
Such pixels can arise from non-vertical elements or noise, as seen in Figure 4.12. One solution uses
the popular random sample consensus (RANSAC) hypothesize-and-test scheme [44]. RANSAC
has previously been used to identify vanishing points from straight lines, for example by Aguilera,
Lahoz, and Codes [1] and Wildenauer and Vincze [155]. Under RANSAC, we generate tilt
hypotheses from randomly-chosen edge pixels in the prefiltered set F . We then select the hypothesis
(α, β) in consensus with the highest number of pixels. Alternatively, we try a reject-refit scheme
based on repeated least-squares estimation. Here, we reject edge pixels that disagree with our most
recent (α, β) estimate. (α, β) are then reestimated from the remaining pixels. This repeats until the
estimate converges, or an iteration limit is reached.

RANSAC Variant

For the RANSAC approach, we randomly select two pixels i and j 6= i from the prefiltered set F .
Solving a system of Equation (4.19) for the pixels i, j gives us the hypothesis (Ai,j , Bi,j). We use
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(a) Untilted, αT = βT = 0◦ (b) Tilted forward, αT = 4.15◦, βT = 0◦

Figure 4.10.: The gradient direction angle ϕk and edge offset sk of the edge pixels shown in
Figure 4.9. Edge pixels are shown as a 2D (ϕ, s) histogram, with darker bins containing more edge
pixels. The red, dashed line shows the (ϕ, s) cosine predicted from the ground-truth tilt according
to Section 4.2.1.3. A thin, dashed black line corresponds to s = 0. Due to noise and non-vertical
elements in the environment, some edge pixels noticeably deviate from this ideal curve.

(a) No rejection (b) After RANSAC

Figure 4.11.: The edge pixels from the image in Figure 4.12, visualized as in Figure 4.10. The
blue line represents the (ϕ, s) cosine fitted to the edge pixels using least squares. In (a), incorrect
pixels were not rejected. There is thus a large error between the estimate (blue) and ground truth
(red). Applying RANSAC with a threshold δs,max = 5 pixels gives a much better result, shown in
(b). Here, the histogram contains only the edge pixels remaining after RANSAC.

Figure 4.12.: Edge pixels after prefiltering, visualized as in Figure 4.9. This image includes
numerous incorrect edge pixels. These are caused by near-vertical elements, such as parts of the
curved chairs. If they are not rejected, these pixels cause errors in the least-squares tilt estimate.
The image was captured with a forward tilt of αT = 4.15◦, βT = 0◦.
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Equation (4.19) to identify the set of edge pixels in consensus with this hypothesis as

Ci,j =
⋃
{k|k ∈ F ∧ |(Ai,j cos(ϕk) +Bi,j sin(ϕk)− sk| < δs,max} . (4.32)

We repeat this up to NR = 1000 times, and select the edge pixels ĭ, j̆, which maximize ‖Cĭ,j̆‖.
In our experiments, we use a systematic search to select the threshold δs,max (Section 4.2.4). If
RANSAC is successful, Cĭ,j̆ contains no incorrect edge pixels. We now construct a linear system
of Equation (4.19) using the (ϕk′ , sk′) of the edge pixels k′ ∈ Cĭ,j̆ . Solving this system through

linear least-squares gives us (Ă, B̆); here, we use the QR decomposition implemented by the Eigen
library [62]. From these (Ă, B̆), we can finally estimate (α, β) according to Section 4.2.1.3.

To speed up this process, RANSAC may terminate before reaching the iteration limit NR [44]:
Let p be the fraction of correct edge pixels in the prefiltered set F , with ‖F‖ � 2. The probability
of drawing at least one pair of correct edge pixels in n attempts is q ≈ 1− (1− p2)n. Since we do
not know p, we estimate its lower bound as pn = ‖Cn‖/‖F‖; Cn is the largest set Ci,j encountered
after n iterations [147]. The probability of encountering at least one correct pixel pair after n
iterations is thus estimated as qn ≈ 1− (1− p2

n)n. We then terminate the RANSAC process once
qn > qmin, here using a value of qmin = 0.9999.

Reject-Refit-Variant

In our reject-refit scheme, we alternate between estimating (A,B) from Equation (4.19) and
rejecting incorrect pixels. We use least squares to estimate (An, Bn) from the edge pixels in Fn,
beginning with F0 = F . This estimate is affected by incorrect pixels in F , as shown in Figure 4.11a.
To reject these pixels, we calculate the residual error

δk,n = (An cos(ϕk) +Bn sin(ϕk))− sk (4.33)

for each pixel in Fn. Next, we form Fn+1 by rejecting a fraction Q of pixels in Fn that have the
largest absolute error |δk,n|. Identifying the actual set of pixels with the largest |δk,n| requires
sorting Fn. This is computationally expensive, and thus we use another heuristic: We assume that
the δk,n of the pixels in Fn are normally distributed, with mean µδ,n = 0 and standard deviation
σδ,n. In an idealized case, only a fraction 1−Q = 2Φ(z)− 1 of the edge pixels k in Fn satisfies
δk,n ∈ [−zσδ,n, zσδ,n] [64]; here, Φ is the cumulative distribution function of the standard normal
distribution. For the remaining fraction Q with δk,n outside of this interval, we therefore expect

|δk,n| > σδ,nΦ−1

(
1− Q

2

)
. (4.34)

We can thus simply construct the next, smaller set

Fn+1 =

{
k|k ∈ Fn ∧ |δk,n| ≤ σδ,nΦ−1

(
1− Q

2

)}
(4.35)

without sorting Fn.
While the δk,n in Fn are not actually normally distributed, we found that this fast heuristic

nonetheless gives good results. After these two fitting and rejection steps, we increment n and
repeat the procedure. This continues until the tilt estimate converges, or until n reaches the limit
NE = 15. We assume that the estimate has converged once |ln − ln−1| < 0.1, as calculated from
Equation (4.20). Figure 4.13 demonstrates the effect of this reject-refit heuristic.
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(a) Two iterations, Q = 0.2 (b) Eight iterations, Q = 0.2

Figure 4.13.: Using the reject-refit scheme to reject incorrect edge pixels from Figure 4.12. Edge
pixels are visualized through (ϕ, s) histograms, as in Figure 4.11. (a) shows the remaining edge
pixels after the first two iterations. The error between the ground truth (red) and the curve fitted to
the remaining pixels F2 (blue) is reduced, compared to Figure 4.11a. Once the reject-refit scheme
converges for n = 8, the error shown in (b) is even lower.

(a) Vertical elements (b) Robot camera image

Figure 4.14.: Vertical elements in the environment and their appearance in the camera image. In
(a), the orientations ~ok for some vertical elements are indicated by arrows. The robot’s movement
plane is highlighted in red, with a black arrow representing the plane’s surface normal ~n. Note that
the ~ok and ~n are parallel. (b) shows the robot’s camera view in this location. The vertical elements
from (a) appear as straight edges. Colored circles represent the edge pixels that correspond to the
vertical elements in (a). Each such pixel has a position ~pk and gradient vector ~gk; the latter are
shown as dashed lines. Since the camera image contains only two-dimensional projections of the
three-dimensional ~ok, we cannot determine these orientations directly.

4.2.2. Vector-Consensus Method

The vector-consensus method is the second tilt-estimation scheme used in this work. It operates
on the same edge pixels as the image-space method described in Section 4.2.1.2. As before, we
assume that many of these pixels correspond to vertical elements k in the environment. Since
they are vertical, their orientations ~ok are parallel to the movement-plane normal ~n. We illustrate
this relationship in Figure 4.14a. Knowing their orientation ~ok,R ‖ ~nR in robot coordinates lets
us calculate (α, β) using Equation (4.1). However, as seen in Figure 4.14b, our camera image
shows only two-dimensional projections of these three-dimensional elements. We therefore cannot
determine ~ok,R from any single edge pixel k, and instead use several pixels from different vertical
elements. To identify a set of such edge pixels, we combine a problem-specific prefilter with
RANSAC. This approach is highly similar to RANSAC-based vanishing-point detection, as for
example in [1].
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Figure 4.15.: An environment element with orientation ~o is projected onto an image plane (gray).
This produces an edge pixel with position ~p and gradient ~g. ~v = P−1(~p) is the 3D bearing vector
associated with the image position ~p, and similarly ~u = P−1(~p + ∆~g). The normal ~m specifies
the orientation of the blue plane that contains both ~v and ~o, this plane is only partially drawn
as a triangle. We cannot fully determine ~o from the projection ~p and ~g alone. Any element in
the blue plane — such as ~o′ or ~o′′ — would result in the same edge pixel. All vectors in this
illustration are relative to the camera reference frame. Note that we use a linear camera as an
approximation of the actual camera model from Figure 4.7. This is plausible because the projection
is approximately linear within a small radius ∆ around the pixel ~p: within this radius, ρ ≈ const.,
and thus Equation (4.3) is a linear projection.

4.2.2.1. Orientation Estimation

We first estimate the orientations ~oi,C ‖ ~oj,C of two separate parallel elements from the edge pixels
i, j; here, ~oi,C is ~oi in the camera reference frame. From Section 4.2.1.2, we know the image
position ~pk and gradient vector ~gk = (gk,x, gk,y)

T for both i and j. The camera’s inverse projection
function P−1 provides the bearing ~vi = P−1(~pi) from the projection center towards the edge pixel
i. As illustrated in Figure 4.15, ~oi,C and ~vi define a plane in space. This plane has the normal vector
~mi = ~oi,C × ~vi. We repeat this step for a second edge pixel j, giving us the normal ~mj for a plane
containing ~oj,C and ~vj . Since the orientations ~oi,C ‖ ~oj,C are orthogonal to both ~mi and ~mj , we
have

~oi,C ‖ ~oj,C ‖ (~mi × ~mj). (4.36)

This plane-based formalism [92] is commonly used in vanishing-point estimation, for example in
[5, 8, 83].

While we do not know ~mi, we can estimate it using the edge gradient ~gi. Shifting the pixel
position ~pi by a small distance ∆ along the gradient ~gi, we calculate ~ui = P−1(~pi + ∆~gi); in this
work we use ∆ = 0.01. As illustrated in Figure 4.15, ~gi is a projection of ~mi, and ~mi, ~vi, and ~ui
lie in the same plane. ~ui × ~vi is a normal vector of this plane, and therefore orthogonal to ~mi. By
definition, ~mi is also orthogonal to ~vi, leading us to

~mi ‖ (~vi × (~ui × ~vi)) . (4.37)

Note that we have assumed a continuous P−1 when calculating ~ui. Therefore, shifting ~p by a small
distance ∆ leads to only a small change in P−1(~p). In addition, the camera should use central
projection. The camera model used in this work [132] generally fulfills these requirements. From
Equation (4.36) and Equation (4.37), we thus estimate the orientation ~oi,C ‖ ~oj,C from the pixel
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positions ~pi, ~pj and gradients ~gi, ~gj . If ~oi,C ‖ ~oj,C are the orientations of vertical elements, we can
use them to estimate the robot’s tilt.

In practice, estimating ~oi,C from just two pixels will give poor results due to noise. We therefore
use a set E of two or more edge pixels with ~oi,C ‖ ~oj,C ∀i, j ∈ E. By applying Equation (4.37),
we determine ~mk for each pixel k ∈ E. Each ~mk is orthogonal to ~ok,C , with ~mT

k ~ok,C = 0. Since
all ~ok,C in E are parallel, we replace them with a general orientation ~oC ‖ ~ok,C ∀k ∈ E, giving us
the constraint

~mT
k ~oC = 0. (4.38)

We now construct a system of equations that contains one instance of Equation (4.38) for each pixel
k ∈ E. To avoid the trivial solution of ~oC = ~0, we add the additional equation of (1, 1, 1)T~oC = 1
to the system. Solving this overdetermined system using linear least squares gives us an estimate
for ~oC . In practice, we use the singular value decomposition (SVD) implemented in the Eigen
library [62].

4.2.2.2. Vertical Edge Selection

Next, we identify a set of edge pixels that corresponds to vertical elements in the environment.
Using a prefilter, we discard any edge pixels that indicate an implausibly large tilt angle α. Note
that ~mk is given in the camera reference frame, which may be rotated relative to the robot reference
frame. We therefore transform ~mk to the robot frame by multiplying with the extrinsic calibration
matrix R. If ~ok is actually vertical, then R~mk is parallel to the robot’s movement plane, and

α̂k =

∣∣∣∣arcsin

(
~nT

R~mk

‖~mk‖

)∣∣∣∣ ≤ α. (4.39)

If α̂k > αmax, we therefore reject the edge pixel k. The remaining edge pixels form the set E. Note
that α̂k is always 0 if the tilt axis is parallel to R~mk.

Similar to Section 4.2.1.3, we apply RANSAC to identify edge pixels with vertical ~ok [44]. We
randomly select two edge pixels i, j 6= i from E, and use Equation (4.36) to generate a hypothesis
~oi,j,C . The set Ci,j of edge pixels in consensus with this hypothesis is

Ci,j =
⋃{

k|k ∈ E ∧
∣∣~mT

k ~oi,j,C
∣∣ < δo,max

}
. (4.40)

As in Section 4.2.1.3, we repeat this step until termination (NR = 1000 and qmin = 0.9999).
If RANSAC is successful, the largest consensus set Cĭ,j̆ contains only vertical edge pixels with
~n ‖ ~ok ∀k ∈ Cĭ,j̆ . Figure 4.16 gives an example for the ~mk of the pixels in Cĭ,j̆ , while Figure 4.17
shows the corresponding edge pixels in the camera image.

We now use the least-squares approach from Section 4.2.2.1 to determine the common orientation
~oC from all the pixels in Cĭ,j̆ . Since ~oC should be vertical, we estimate the movement plane normal
~nR as

~nR,est = R
~oC
‖~oC‖

. (4.41)

Finally, we calculate the tilt parameters (α, β) from ~nR,est using Equation (4.1). For some R, the
constraint (1, 1, 1)T~oC = 1 in Section 4.2.2.1 may result in a ~nR,est that is antiparallel to ~nR. Since
we know that α� 90◦, we simply flip ~nR,est for results of α > 90◦.

4.2.3. Image Database

To evaluate the methods from Sections 4.2.1 and 4.2.2, we recorded an image database using our
cleaning-robot prototype. We capture the images in our camera’s 640× 480 pixel half-resolution
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(b) After RANSAC

Figure 4.16.: The normal vectors ~mk of the edge pixels for an untilted robot. For the sake of clarity,
only 500 randomly selected edge pixels are shown. Each edge pixel k is shown as an arrow, with
the orientation representing the normal vector ~mk. The base of each arrow lies along the bearing
~vk belonging to the pixel k. (a) is based on the edge pixels extracted from the camera image in
Figure 4.17a. As in Figure 4.17, we do not include edge pixels with a gradient intensity below
Imin = 200. (b) shows the result of prefiltering (αmax = 7◦) and RANSAC (δo,max = 3.5◦). As
expected for an untilted robot, the remaining ~mk are approximately orthogonal to the vertical axis.

(a) Untilted, αT = βT = 0◦ (b) Tilted forward, αT = 4.15◦, βT = 0◦

Figure 4.17.: Edge pixels corresponding to vertical elements, as identified through RANSAC. Edge
pixels within the largest set Cĭ,j̆ are marked in red. The camera images are the same as used in
Figure 4.9, cropped to the area above the horizon. Edge pixels with a gradient intensity below
Imin = 200 were discarded and are not shown. After prefiltering with αmax = 7◦, we applied
RANSAC with δo,max = 3.5◦.
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(a) (b) (c)

Figure 4.18.: The robot at three different locations from our image database. Besides open areas
(a), we also captured images in narrow spaces (b) and underneath furniture (c).

Object h αT (Main wheel) αT (Caster)

Spacer (thin) 5.0 mm 1.38◦ 2.06◦

Spacer (thick) 10.1 mm 2.80◦ 4.15◦

Carpets (various) 4.4 mm to 7.4 mm 1.22◦ to 2.05◦ 1.81◦ to 3.04◦

Door threshold 5.3 mm 1.47◦ 2.18◦

Table 4.1.: The ground-truth tilt angle αT when raising one wheel by a distance h, as calculated
from Equation (4.42). Raising one of the main wheels results in βT = ∓137◦ for the left and right
wheel, respectively (Equation (4.43)). βT = 0◦ when raising the caster wheel, which holds up the
rear of the robot. Spacer refers to the metal spacers which we use to capture tilted images. We
also include common objects from domestic environments that may cause the robot to tilt. The
αT values in this table were calculated for a stationary robot. For a moving robot, driving-related
forces or torques may affect the true tilt angle or direction.

mode. This lower resolution speeds up image processing, and is also used by our robot when
capturing images for visual relative-pose estimation. As per Section 4.2.1.2, we mask out pixels
showing areas below the horizon. The remaining pixels form a disc-shaped area with a diameter
of 439 pixels, as seen in Figure 4.3. While capturing images, the exposure time is automatically
adjusted to maintain a set average image brightness. In other respects, the image-acquisition process
corresponds to the one we describe in Section 3.2.1. Here, we also use the same intrinsic and
extrinsic camera parameters as in Chapter 3.

We captured images in 43 different locations spread across six different environments. The six
environments consist of four different offices, as well as two lab environments. In some cases, we
positioned the robot in narrow spaces or underneath furniture, as in Figure 4.18. The resulting
restricted field of view may pose a special challenge for tilt estimation. Our image database contains
between four and eleven locations per environment. Due to this limited number, the locations do
not provide a representative sample of their environment. However, completely covering each
environment would require a large number of images. We also expect that many of these locations
would be visually similar. Instead, we focused on picking a smaller, but highly varied set of
locations.

At each location, we captured one untilted plus six tilted image, for a total of 43× (1 + 6) = 301.
We produced six distinct tilts by placing a 5 mm or 10.1 mm metal spacer under one of our robot’s
three wheels. The thickness of these spacers is similar to common sources of uneven ground: In
preliminary experiments, various types of carpet raised the robot’s wheels by 4.4 mm to 7.4 mm.
Similarly, a typical door threshold raised it by 5.3 mm. Table 4.1 lists the tilts experienced by our
robot for these wheel heights. Note that placing the spacers may cause slight changes in robot
position or heading between images.
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Figure 4.19.: The wheel layout of our cleaning-robot prototype. The panoramic camera (black
circle) is mounted at the center of a ground plate (light gray). A red X marks the ground-contact
points for each wheel, on which the robot rests. Relative to the center of the camera, the caster
wheel’s (gray circle) contact point is at (−rc, 0). The contact points of the left and right main wheel
(gray rectangles) lie at (0,±rw), respectively. Here, we assume that the contact points are fixed
and not affected by tilts.

We use a simple statics model to calculate the true tilt angle αT and direction βT from the
measured wheel heights l, r and c. Assuming that the left wheel as our reference point, we calculate
the relative heights hr = r − l and hc = c− l. From the robot geometry shown in Figure 4.19, we
find that

sin(αT ) =
1

2

√(
2hc − hr

rc

)2

+

(
hr
rw

)2

(4.42)

for the tilt angle αT . If the robot is tilted with sin(αT ) 6= 0, the tilt direction is

βT = atan2

(
hr

2rw sin(αT )
,

2hc − hr
2rc sin(αT )

)
. (4.43)

4.2.4. Experiment Design

We test the methods from Sections 4.2.1 and 4.2.2 on the images gathered in Section 4.2.3. The
estimation-error angle

ε = arccos

(
~nTR
‖~nR‖

~nR,est

‖~nR,est‖

)
(4.44)

serves as our measure of tilt-estimation accuracy. ε is the residual, uncorrected tilt angle that
remains after a tilt correction based on the estimate ~nR,est. ~nR and ~nR,est are calculated from
(αT , βT ) and (α, β), respectively, by inverting Equation (4.1).

We evaluate numerous parameter values for our methods, seeking to minimize the mean error
ε̄. For both methods, we try several gradient-intensity thresholds Imin. With the image-space
method, we also vary the rejection fractionQ or the RANSAC threshold δs,max from Section 4.2.1.4.
Similarly, we try multiple values for the RANSAC threshold δo,max from Section 4.2.2.2. Table 4.2
lists the specific values tested during our experiments.

For the image-space method, we determine the factor a from Equation (4.30) using cross-
validation: Given a location L, the set TL contains all tilted images not captured at L. Next,
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Parameter Values tested

Gradient intensity threshold Imin 100, 150, 200, 250, 300, 600
Rejection fraction Q 0.5, 0.7, 0.8, 0.9
RANSAC threshold δs,max 2.5, 5, 7.5, 10, 12.5, 15 pixels
RANSAC threshold δo,max 0.5◦, 1◦, 1.5◦, 2◦, 2.5◦, 3◦, 3.5◦, 4◦, 4.5◦, 5◦

Table 4.2.: Parameter values evaluated in our experiments. Depending on the method and variant
used, each value for Imin was tested with all other values for Q, δs,max, and δo,max. This results
in 6 × 5 = 30 combinations for (Imin, Q), 6 × 6 = 36 for (Imin, δs,max), and 6 × 10 = 60 for
(Imin, δo,max).

Method Variant Parameters Estimation error ε (◦)

ε̄ (σε) 50% 95%

Image space
RANSAC Imin = 150, δs,max = 10.0 1.17 (1.03) 0.97 3.16
reject-refit Imin = 200, Q = 0.8 0.85 (0.81) 0.61 2.27

Vector consensus
RANSAC Imin = 600, δo,max = 5.0◦ 1.63 (0.93) 1.48 3.38
”, corrected Imin = 300, δo,max = 2.0◦ 1.03 (0.72) 0.92 2.30

Table 4.3.: The mean tilt-estimation error ε̄ and standard deviation (σε) for the methods and variants
tested in our experiments. The last line lists the vector-consensus results achieved when correcting
the estimated tilt angle α using the factor a′L (Section 4.2.4). For each method, we only list the
results for the parameters given in the third column. Out of the possibilities from Table 4.2, these
values gave the lowest ε̄. We also include the median (50th percentile) and 95th percentile of ε.

we compute the factor aL by applying Equation (4.31) to the m = (43 − 1) × 6 images in
TL. For images taken at location L, we then calculate the tilt angle α by using Equation (4.30)
with a = aL. Using the parameters from Table 4.3, we find aL ∈ [298, 314] pixels per radian
when using RANSAC. Likewise, aL ∈ [234, 239] pixels per radian for the reject-refit variant. By
comparison, the coefficient determined through camera calibration is a0 = 147 pixels per radians
(Equation (4.26)).

The vector-consensus method estimates the tilt angle α without major approximations, and
should not require a correction factor. However, for the sake of fairness, we also tested this method
with an optional correction factor a′. The corrected tilt-angle estimate is then

α′ =
α

a′
. (4.45)

ε for this corrected vector-consensus variant is then calculated from α′ instead of α. We determine
the specific a′L for the location L using the same cross-validation scheme as for aL. For the
parameters in Table 4.3, we find a unitless factor a′L ∈ [1.77, 1.80].

When running on a robot’s onboard CPU, the tilt-estimation methods may be subject to strict
real-time constraints. As part of our experiments, we therefore measure execution times on two
different systems. The first system is equipped with an Intel Atom N2600 CPU, which represents
a typical embedded platform. This 1.6 GHz, dual-core processor is also used in our robot’s
onboard computer (Section 2.2). For comparison, we also include a modern desktop PC with
a quad-core Intel Core i7-4790K CPU. We measure the wall-clock execution time using each
system’s monotonic, high-resolution clock. This includes all major steps required to estimate
(α, β) from a camera image. Non-essential operations, such as loading and converting input data,
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Figure 4.20.: The fraction of images for which the tilt-estimation error is ε ≤ ε′. All curves were
generated using the parameters from Table 4.3. For the sake of clarity, this figure was truncated to
ε′ ≤ 5. We note that high errors ε can occasionally occur for all methods.

were excluded from this measurement. All experiments involving RANSAC use the same random
seed on both platforms. This ensures that the number of RANSAC iterations is identical. So far,
our implementations do not consistently support multi-core execution. We therefore use Linux’s
non-uniform memory access (NUMA) policies to restrict each experiment to a single, fixed CPU
core. These systems and procedures correspond to those used for the execution-time measurements
in Section 3.2.4.2. Thus, we can directly compare the tilt-estimation execution times to our earlier
pose-estimation results.

4.3. Results

4.3.1. Tilt Estimation Error

Table 4.3 lists the tilt-estimation error ε, while Figure 4.20 shows the cumulative distributions
of ε. The latter specifies the fraction of images for which ε remains below a given threshold ε′.
Figure 4.21 plots the error ε depending on the true tilt angle αT . We also evaluate how the methods
perform across the different environments in our database, resulting in Figure 4.22.

4.3.2. Computation Time

Table 4.4 contains the execution time taken by the methods, using the parameters from Table 4.3.
In our experiments, this time depends heavily on the parameters used. However, these parameters
also affect the quality of the results. Figures 4.23 and 4.24 therefore show the execution times in
relation to the mean error ε̄.
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Figure 4.21.: The mean tilt-estimation error ε̄, depending on the true tilt angle αT . The pale, dotted
or dash-dotted lines represent each method’s ε̄ across all images. As in Figure 4.20, we used the
parameters from Table 4.3. The ground-truth tilt angle αT was calculated using Equation (4.42).

Figure 4.22.: The mean tilt-estimation error ε̄ for each of the six environments. The methods and
parameters used were the same as in Table 4.3. The pale, dotted or dash-dotted lines represent
each method’s ε̄ across all images. Although there is some variation, each method’s tilt-estimation
results are broadly similar across the different environments.

106



4.3. Results

Method Variant Desktop (ms) Embedded (ms)

Mean (σt) 50% 95% Mean (σt) 50% 95%

Image space
RANSAC 3.8 (1.43) 3.7 6.3 26.0 (6.89) 25.2 41.8
reject-refit 2.5 (0.85) 2.5 4.1 15.7 (3.02) 15.3 20.7

Vector consensus
RANSAC 3.6 (1.22) 3.5 5.7 22.9 (4.69) 23.2 29.4
”, corrected 6.2 (1.88) 6.0 9.3 38.1 (9.72) 36.9 51.8

Table 4.4.: The time required for tilt estimation in milliseconds, as per Section 4.2.4. This table
includes the mean, standard deviation σt, median (50th percentile), and 95th percentile. Times are
given for the modern desktop CPU, as well as for the embedded CPU carried by our cleaning-robot
prototype. Each method used the parameters listed in Table 4.3, which gave the lowest mean error
ε̄. Note that the corrected vector-consensus method appears to be much slower than the uncorrected
variant. This is not due to the correction step, which consumes little time. Instead, the corrected
variant achieves its lowest ε̄ for different parameter values (Table 4.3). However, these values also
lead to longer execution times. Compared to the uncorrected variant, the corrected variant actually
attains better ε̄ in a similar amount of time (Figures 4.23 and 4.24).

Figure 4.23.: The mean tilt-estimation error ε̄, plotted against the mean execution time. The time
was measured on the modern desktop system, as described in Section 4.2.4. Each point represents
one parameter combination from Table 4.2. The points with the lowest ε̄ from Table 4.3 are
highlighted in black. As shown here, accepting a slightly higher ε̄ can sometimes notably reduce
the execution time. We limit this figure to ε̄ ≤ 3◦ and t ≤ 10 ms. This causes a few points to be
omitted, but greatly improves legibility.
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Figure 4.24.: This variant of Figure 4.23 shows the results for the embedded system described in
Section 4.2.4. Similar to Figure 4.23, we limit this figure to ε̄ ≤ 3◦ and t ≤ 100 ms.

4.4. Discussion

As shown by Table 4.3, all variants achieve at least fair results, with ε̄ < 2◦. The image-space
method with the reject-refit scheme achieves the lowest mean and median error. Combining the
image-space method with a basic RANSAC scheme gives only mediocre results. In contrast, the
vector-consensus approach led to the highest ε̄. However, its accuracy improves noticeably when
the tilt-angle estimate is corrected by the factor a′.

The practical impact of the tilt-estimation error ε depends on the application. For example,
our cleaning robot uses the planar-motion min-warping method [102] for visual relative-pose
estimation (Section 2.5.2). As we discovered in Section 3.3.3 and visualize in Figure 4.25, the
pose-estimation error increases rapidly for α over ≈1◦. Beyond ≈2◦, the error exceeds that of the
nonplanar five-point method [138] which we tested in Chapter 3. In Figure 4.20, we see that the
best candidate (image space, reject-refit) achieves ε < 1◦ for >70 % of all images. All but the worst
candidate (vector consensus, no correction) also attain ε ≤ 2◦ for at least ≈90 % of images. For tilt
correction, ε is the angle α of the remaining uncorrected tilt. We thus expect that a correction based
on these estimates should make planar-motion pose estimation more resilient to tilts. Studying
the quantitative effect of tilt correction on our robot’s cleaning behavior will require extensive
experimentation. Ideally, such experiments would measure the true tilt of a driving robot using an
additional sensor. It may also be useful to mount the camera on a motorized platform, which is then
carried by our robot. This way, we could induce arbitrary camera tilts while the robot is performing
its regular cleaning run. Since this likely requires a dedicated study, we leave these experiments to
future works.

Besides the comparatively low average errors, all methods do exhibit occasional high ε. These
errors can even exceed the highest tilt angle αT = 4.15◦ in the database. A correction with such an
erroneous estimate would likely give worse results than any uncorrected tilt. The fraction of images
for which this occurs varies by method, as shown in Figure 4.20. In our experiments, such failures
generally result from a violation of our world assumption: Both methods rely on visually-distinct

108



4.4. Discussion

Figure 4.25.: The effect of the tilt angle α on the orientation and bearing error in visual pose
estimation. For the planar-motion min-warping method [102], the pose-estimation errors (blue
lines) increase with the tilt angle. In contrast, the red lines show constant errors for the nonplanar
five-point method [138] with local visual features [129]. Gray lines mark the tilt angle beyond
which the planar-motion error exceeds the nonplanar one; this occurs at about α > 2◦. This figure
is based on Figure 3.18, which contains additional details.

vertical elements in the environment. In some locations, such elements are rare, or are drowned out
by many near-vertical elements. As an example, Figure 4.18c shows the robot surrounded by a chair
and table with angled legs. For the image-space method, this produces the worst tilt-estimation
error out of all locations: Using the parameters from Table 4.3, we find ε = 7.4◦ for the reject-refit
scheme, and ε = 7.7◦ for RANSAC. The reason for this poor estimate is illustrated in Figure 4.26:
Most of the edge pixels extracted from the camera image do not correspond to vertical elements.
The (ϕ, s) curve fitted to these incorrect edge pixels thus gives a poor tilt estimate. Conversely, the
curve for the correct tilt parameters (αT , βT ) matches few of the edge pixels.

While individual locations may produce high tilt-estimation errors, no environment causes a
general failure for any method. Figure 4.22 illustrates this by showing ε̄ for each method and
environment. Although there is some variation in ε̄, it remains below 2◦ in all cases.

In this discussion, we have frequently used the mean tilt-estimation error ε̄. This measure depends
on the composition of the image set on which it was calculated. For example, a method may give
especially high ε for images with a high αT . In this case, a set with many such images gives a
higher mean ε̄, compared to a set with few such images. We therefore calculated ε̄ for each true
tilt angle αT . In Figure 4.21, ε̄ shows only a moderate dependence on the tilt angle αT . Note that
tilt-estimation errors also occur for an untilted robot (αT = 0◦).

In Section 4.2.4, we included a corrected vector-consensus variant that uses the correction factor
a′ from Equation (4.45). We first introduced a similar factor a (Equation (4.30)) to compensate
for the approximations made in the image-space method. Figure 4.27 plots the true and estimated
tilt angle with and without these corrections. We note that, on average, the uncorrected methods
overestimate α for all true tilt angles αT . However, the corrected methods merely divide α by
a finite constant. Thus, they cannot correct the difference between α and αT for αT = 0. In
future experiments, it might be worthwhile to include an additive correction with α = l/a+ b and
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(a) Camera image (b) Edge pixel histogram

Figure 4.26.: (a) shows a forward-tilted image (αT = 4.15◦, βT = 0◦) captured at the location in
Figure 4.18c. As in Figure 4.9, the prefiltered edge pixels are highlighted in color. Few of these
edge pixels correspond to vertical elements, while incorrect edge pixels are common. Similar to
Figure 4.10, we visualize the parameters (ϕk, sk) of the edge pixels in (b). Based on the ground
truth, a dashed red line shows the expected relationship between ϕ and s for edge pixels from
vertical elements. Unlike in Figure 4.10, few of the edge pixels actually lie close to this line. The
solid blue line shows the (ϕ, s) curve for the incorrect (α, β) estimated by the reject-refit scheme.
While it is a poor tilt estimate, this curve is a better fit for the (ϕk, sk) in the histogram (b). Thus,
the poor tilt estimate is likely caused by the incorrect edge pixels. The RANSAC-based estimate
suffers from a similar error, as illustrated by the dotted blue line.

α = α′/a′ + b′.
As shown in Figures 4.23 and 4.24, the tilt-estimation time noticeably depends on the parameters

being used. Choosing parameters with a somewhat higher mean error ε̄ can reduce the mean
execution time by more than half. Under such a trade-off, all methods achieve a mean execution
time below 30 ms on our robot’s embedded CPU (Figure 4.24). On the desktop system, this time is
less than 5 ms. However the time required for some images can be considerably higher, as seen in
the 95th percentile values from Table 4.4. This must be taken into account for systems with strict
real-time constraints. For our cleaning robot, one onboard relative-pose estimation process requires
≈165 ms (Table 3.10). In comparison, the reject-refit image-space method requires only ≈16 ms to
estimate the tilt (Table 4.4). Adding tilt estimation to the pose-estimation process thus increases the
total time by only ≈10 %. Overall, we deem all methods suitable for onboard use on a domestic
robot such as our own.

The utility of tilt corrections for planar-motion methods depends on the prevalence and magnitude
of the tilts encountered in a given environment. Corrections can be beneficial if the robot is
frequently tilted, or if uncorrected tilts have a large effect. In other cases, the tilt-estimation errors
may cause greater problems than the actual tilts. Such errors occur even if the robot’s motion is
perfectly planar. The use of tilt correction thus needs to be evaluated for each application.

Specifically, we consider the visual relative-pose estimation used by our cleaning robot: In
Section 3.3.3, the nonplanar five-point method [138] gave more accurate results for tilts over ≈2◦,
as shown in Figure 4.25. However for the image-space method, the residual error ε will usually
remain below this value (Figure 4.20). The combined execution time for tilt estimation and planar
pose estimation is≈ 16 ms+165 ms. This is much faster than the fastest nonplanar pose-estimation
time of ≈ 1807 ms listed in Table 3.10. Thus, tilt estimation should help preserve the advantages
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Figure 4.27.: The true and estimated tilt angle for corrected and uncorrected estimates. For each
method, we used the parameters (Table 4.3) that minimize ε̄ after correction. This figure was
generated using the factors a = aL and a′ = a′L for each image location L, which we determined
according to Section 4.2.4. For the uncorrected image-space method, we calculated α using
Equation (4.26). A black line represents a perfect match between αT and α.

of the planar-motion method if the robot is tilted. However, this is limited to small tilt angles and
requires visually distinct vertical elements—limitations not shared by the nonplanar method.

4.5. Conclusions

In this chapter, we sought to measure a robot’s tilt relative to a movement plane in an domestic
environment. All methods tested here solve this problem based on panoramic images (Table 4.3).
They do so across different environments (Figure 4.22) and tilt angles (Figure 4.21). Their fast
execution time makes them suitable for real-time use, even on our robot’s modest embedded
CPU (Table 4.4 and Figure 4.24). Although average errors are low, tilt-estimation failures can
occasionally occur (Figure 4.20). Such failures are likely if the environment lacks visually-distinct
vertical elements (Figure 4.26). Furthermore, even an untilted robot will experience some tilt-
estimation errors (Figure 4.21).

Overall, the image-space reject-refit variant had the lowest estimation error (Table 4.3) and
execution time (Table 4.4 and Figure 4.24). A variant that uses RANSAC to reject incorrect edge
pixels offered no advantage in quality or speed. The vector-consensus method was also slower, and
resulted in higher errors. However, using the correction factor in Equation (4.45) reduced these
errors. The vector-consensus method makes fewer approximations than the image-space method. It
may thus still be useful in other applications where these approximations are invalid.

4.6. Outlook

In light of these results, we note several possibilities for future improvements: In this chapter, we
exploit the visually-distinct vertical elements that appear in a typical domestic environment. If these
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elements are rare or drowned out by near-vertical ones, large errors ε may ensure (Figure 4.26).
A confidence measure would be useful to detect these incorrect results. Such a measure might be
based on the fraction of incorrect edge pixels rejected during tilt estimation.

The methods in this study use only a basic RANSAC scheme. However, the literature contains
numerous advanced RANSAC variants, which may achieve better results [148, 24, 115, 147, 124].
We currently use a very simple heuristic to correct the tilt-angle estimate α (Equations (4.30)
and (4.45)). However, as seen in Figure 4.27, this is not sufficient to fully correct the error in
α. A more sophisticated approach may instead calculate P (α̂|l). This is the probability that the
robot is tilted by α̂ given the vanishing-point shift l. We could use Bayesian techniques to evaluate
P (α̂|l) = P (l|α̂)P (α̂)P (l)−1. This also lets us incorporate the tilt-angle distribution P (α̂) for a
specific environment. However, finding the parameters for such a probabilistic model may require a
large amount of training data.

The implementations used in this chapter are not fully optimized. For example, a greater use
of single instruction multiple data (SIMD) instructions would likely improve the execution speed.
Such instructions are supported on both the desktop and embedded processors. However, we feel
the speed of our implementations is adequate, and did not attempt such improvements here.

In this work, we focused on simple methods that leverage the specific properties of the tilt-
estimation problem. As discussed in Section 4.1.1, other works present more general solutions
to estimate camera orientations. We believe that a comprehensive comparison between these two
approaches might be useful do determine their relative strengths and weaknesses.
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Domestic Environments

Our cleaning robot, and others like it, create maps of their surroundings for use in planning and
navigation. In typical domestic indoor environments, such maps contain rooms connected by
passageways. Segmenting a map into these rooms has several uses, such as hierarchical planning
of cleaning runs or the definition of cleaning plans by a user. Especially in the latter application,
the resulting room segmentation should match the human understanding of rooms. In this chapter,
we present a method that solves this problem for our robot’s topo-metric map (Section 2.3). First,
a classifier identifies those map-graph edges that cross a border between rooms. This classifier
utilizes data from multiple robot sensors, such as obstacle measurements and camera images. Next,
we attempt to segment the map at these room-border edges using graph clustering. By training
the classifier on user-annotated data, this produces a human-like room segmentation. We optimize
and test our method on numerous realistic maps generated by our cleaning-robot prototype and
its simulated version. Overall, we find that our solution produces human-like room segmentations
in complex domestic environments. These results also surpass those achieved through a mere
clustering of the map graph. However, unusual room borders that differ from the training data
remain a challenge. Note that this chapter is based on an earlier publication by the author [46].

5.1. Introduction

To enable navigation and planning, an autonomous robot may build a map of the environment.
For a domestic cleaning robot like ours, this map usually consists of rooms interconnected by
passageways. Segmenting this map into its component rooms has multiple uses, including the
following: First, the robot can refer to rooms when communicating with humans [6, 137]. A user
may give instructions that reference rooms, such as “Robot, move to the kitchen”.1 Second, room
segmentation can assist in place categorization by integrating information [107, 121]: For example,
camera images captured at many points within the same room may be combined in an attempt to
categorize the room. Third, room segmentation commonly plays a role in semantic mapping and
multi-level planning (survey: [81]); for our cleaning robot, hierarchical cleaning and user-defined
cleaning plans are of special interest. However, identifying this room structure is a nontrivial
problem, in part due to ambiguous passageway- and room-like elements within the map.

In this chapter, we present a method for human-like room segmentation using the topo-metric
map from Section 2.3.1. Specifically, we seek to label the map nodes so that each set of identically-
labeled nodes represents a single room. Ideally, the resulting rooms should reproduce the judgment
of a human observer. In brief, our method accomplishes this by performing four major steps: First,
we preprocess the topo-metric map generated by our cleaning-robot, preparing it for segmentation.
Second, we use the robot’s sensor data to calculate a feature vector for every edge in the map graph.
Features are based solely on the immediate vicinity of an edge, and thus require no global map
consistency. In a third step, a classifier uses these features to estimate whether or not a map edge
crosses a room border. Finally, we apply a graph-clustering step to segment the map graph into
rooms, taking into account the room borders identified in the previous step.

1This also requires room labeling, a step which we do not consider here.
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The rest of this chapter is structured as follows: We begin by discussing related works in
Section 5.1.1, which we then compare to our own effort in Section 5.1.2. Next, Section 5.2
describes our method in detail, elaborating on the four steps listed above. Subsequently, we test our
method across numerous environments using several experiments, as reported in Section 5.3. In
Section 5.4, we discuss the results based on numerical quality measures, as well as examples of
room-segmentation results. Finally, Section 5.5 contains our conclusions, together with an outlook
on possible future developments.

5.1.1. Related Works

In the literature, there are several works addressing the problem of room segmentation within
the context of mobile robots. For this overview, we are especially interested in solutions which
overlap with the one we propose in Section 5.2. Here, we distinguish between two different
approaches to room segmentation: Those from the first category perform place categorization,
assigning labels such as office or kitchen to areas within the map. Such methods go beyond simple
room segmentation, constructing semantic maps instead. However, the general problem of semantic
mapping lies beyond the scope of this room-segmentation study. For a broader overview of semantic
mapping for mobile robotics, we point to the survey by Kostavelis and Gasteratos [81]. Here,
we focus on those semantic mapping works for which room segmentation is a central aspect.
Conversely, members of the second category merely determine which map locations lie within the
same room. They do not perform place categorization, and thus do not require information about
potential place types.

5.1.1.1. Place Categorization

Methods from the first category commonly use a bottom-up approach: Here, a classifier determines
which type of room surrounds a given place, based on sensor data the robot recorded at that point.
For example, Mozos et al. [107] distinguish corridors, rooms, and doorways by applying a boosting
classifier to features extracted from laser-range scans. The authors apply this scheme to simulated
scans generated from an occupancy grid map to classify the map’s cells. Connected cells with the
same label are then joined together into regions, resulting in a room segmentation.

Friedman, Pasula, and Fox [54] introduce Voronoi random fields to segment occupancy grid
maps. The authors extract a Voronoi graph from the map, and then use conditional random fields
(CRF) to assign labels such as hallway, room, doorway, or junction to each node. These labels are
chosen based on the obstacles in the vicinity of each node, as well as the information encoded in
the Voronoi graph. Grouping contiguous nodes with the same label then segments the map. Shi,
Kodagoda, and Dissanayake [136] combine CRF with support vector machines (SVM) to label the
nodes of a generalized Voronoi graph based on simulated laser scans. Both the Voronoi graph and
the laser scans were generated from occupancy grid maps. Here, the place types are more specific
to the environment, for example cubicle, kitchen, or printer room.

Pronobis et al. [123] combine range scans with global [86] and local visual features [89] extracted
from camera images. The authors apply separate classifiers to these features, using one multi-class
support vector classifier (SVC) for each of the three feature types. A final SVC combines these
feature-specific results into a single place label. These labels are comparatively fine-grained, such
as meeting room, office, or corridor. The authors then accumulate results from close-by locations
to label entire areas, producing a room segmentation. In a subsequent work [122], place types are
defined by their properties. These include a place’s geometric shape and size, as well as the types
of nearby objects detected with a camera.

Ranganathan and Lim [126] utilize image sequences captured by a robot to label the cells of a
grid representation. They use the place labeling through image sequence segmentation (PLISS)
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system [125] to determine the probability that an image in a sequence depicts a certain type of
place. In a novel approach, the authors then update the probabilities of those grid-map cells visible
in the image, instead of the cell at which the image was taken. Occasional misclassifications are
smoothed out by applying conditional random fields to the map. This work also uses fairly specific
place labels, such as lab or printer room.

Some techniques use a room-segmentation heuristic as a preprocessing step for semantic mapping.
Zender et al. [159] apply the classifier from Mozos et al. [107] to a robot’s navigation graph, the
nodes of which represent locations visited by the robot. Each node is classified as corridor, room,
or doorway based on a laser scan taken at the corresponding location. Doorways are identified
by a detector, which is triggered if the robot passes through an opening with the width of a
typical door frame. The graph is then segmented into areas of connected room or corridor nodes,
separated by doorway nodes. Hawes et al. [66] extend this scheme by introducing non-monotonic
reasoning. This lets the robot incorporate previously undetected doorways while moving through
the environment. According to the authors, this also counteracts problems caused by occasional
failures of the doorway detector. Similarly, the cognitive mapping system by Vasudevan et al. [152]
uses a door-detection heuristic to segment an environment based on obstacle data. Note that it could
be argued that these works belong to the second category, since their place-categorization results do
not influence the room segmentation.

5.1.1.2. Room Segmentation

Methods from the second category perform room segmentation without place categorization.
Several of these identify rooms by applying heuristics to occupancy grid maps. A survey and
analysis by Bormann et al. [19] compares three such methods, in addition to the place-categorization
approach by Mozos et al. [107].

First, morphological segmentation [18] repeatedly applies an erosion operator to an occupancy
grid. The resulting expansion of the walls eventually separates areas from the remainder of the
map’s unoccupied space. Such an area is labeled as a room if its size lies within a certain range.
Any unlabeled grid cells are added to the nearest room through wavefront propagation.

Second, the distance-transform method [19] calculates the distance between each unoccupied
grid cell and the nearest obstacle. Disregarding all cells with a distance below a certain threshold
leads to a number of disconnected areas. A search identifies the threshold that maximizes the
number of these areas, each of which then forms a room. As in the morphological segmentation,
the remaining unlabeled cells are assigned to the nearest room.

Third, rooms can also be segmented using a Voronoi graph extracted from the occupancy grid.
This graph consists of all map cells for which the two nearest obstacles are equidistant. Thrun
[144] segments the Voronoi graph by first identifying its critical points. These are points where the
distance to the nearest obstacle reaches a local minimum. Connecting each critical point with its
two nearest obstacles gives the so-called critical lines. The occupancy grid map is then segmented
by splitting it along these critical lines of the Voronoi graph. However, the resulting segments
are usually too fine-grained, and have to be merged into actual rooms. This can be accomplished
through a size-based heuristic [19].

In contrast to these deterministic heuristics, Liu and Wichert [87] present a probabilistic approach
to room segmentation. Given an occupancy grid map M , they calculate the posterior probability
P (W |M) for a world W . The authors assume that W consists entirely of rectangular rooms
bounded by four straight walls and connected by doors. After thus limiting the space of possi-
ble worlds, a Markov chain Monte Carlo technique searches for the world W ∗ that maximizes
P (W ∗|M). The best candidate found by this search serves as the room-segmentation result.

Zivkovic, Booij, and Kröse [160] perform room segmentation without using a map, instead
requiring only unordered image sets. These images are first assembled into a graph, with each node
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representing one image. Edges are added based on the images’ local visual features [89]: Using
these features, the method estimates the relative direction and orientation between the locations
of each image pair. If this estimate is judged plausible, an edge is inserted between the two
corresponding graph nodes. Finally, spectral clustering is applied to the graph, with the nodes of
each cluster corresponding to a room.

5.1.2. Our Contribution

The room-segmentation method we propose in Section 5.2 offers three main features: First, our
method works with our robot’s dense, topo-metric map; it does not require global metric map
consistency. Second, the method utilizes a variety of edge features, derived from several different
sensors. It is not intrinsically restricted to any specific sensor or feature of the environment. Third,
we learn to detect room borders from human-annotated training data. This lets our solution produce
more human-like room segmentations. Novel types of environments or edge features can also be
integrated through re-training, without modifying the core method.

Compared to the existing methods, our approach occupies a niche between the two categories
from Section 5.1.1: Here, the members of the first category all employ place categorization.
While this is useful for building semantic maps, it is not strictly necessary for room segmentation.
Such methods have to be provided with place categories, and have to learn their characteristics
from training data. This requires a substantial effort, especially if these categories are fine-
grained. Additionally, it is assumed that the environment contains only these types of places.
Methods from the second category do not require this kind of knowledge. However, the schemes
discussed here also do not learn from human-annotated training data. Since we desire a human-like
room segmentation, such a functionality would be very useful. In contrast, our method learns
room segmentation from human-annotated maps, yet without the added complexities of a general
place-categorization scheme. We believe that this approach to room segmentation thus combines
advantages from both categories.

Based on our description in Chapter 2, we note that our cleaning robot imposes several platform-
specific requirements: Recall that our robot produces topo-metric maps without global metric
consistency (Section 2.3.1). We thus cannot use techniques that rely on globally-consistent grid
maps. As we discussed in Section 2.3.2, our robot’s obstacle data is comparatively sparse and
short-ranged. This may pose a problem for other methods that require real or simulated laser
scans. We also seek to use our robot’s panoramic camera images to aid in room segmentation. In
Section 5.4.2, we show that utilizing these images improves our own results considerably. Methods
that can incorporate image data may therefore be especially suitable for camera-equipped robots
such as ours. We have taken these factors into account while developing our method, ensuring that
it meets the requirements imposed by a robot such as our prototype.

5.2. Our Room-Segmentation Method

In this chapter, we tackle the room-segmentation problem within the context of our cleaning robot.
However, our method should also be adaptable to other, similar domestic robots. To solve the
room-segmentation problem for the topo-metric map from Section 2.3.1, we assign a room label to
each node. Nodes with the same label should be part of the same room, and each room should only
contain nodes with the same label.

Our solution follows the general procedure depicted in Figure 5.1. After preprocessing the map
(Section 5.2.1), we employ supervised machine learning to identify those map edges that cross
room borders. First, we build a feature vector for each map edge based on sensor data recorded in
its vicinity, as well as the map information (Section 5.2.2). A support vector machine (SVM) [27,
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Sensor  data

Room-Border
Edge Classifier

Graph
Clustering

Edge  weights
Room  labels

Figure 5.1.: An overview of the main components that make up our method. First, we construct a
feature vector for every edge within the preprocessed map graph (top left, Section 5.2.1). These
edge features are based on obstacle information and panoramic images (bottom left, Section 5.2.2),
as well as information from the map. From these features, a classifier determines which edges
cross a room border (center, room-border edges in green, Section 5.2.3). We then perform room
segmentation through graph clustering, taking into account the edge classification result (bottom
right, Section 5.2.4).

22] classifier then identifies room-border edges based on their feature vectors (Section 5.2.3). In
order to learn human criteria for room borders, we train the classifier on human-annotated training
data. However, simply segmenting the map at these room-border edges would make our method
vulnerable to misclassified edges.

Instead we perform graph clustering, which identifies clusters of tightly-connected map nodes
(Section 5.2.4). Each of these clusters is assigned a label, which in turn becomes the room label of
the nodes within that cluster. Here, we use a spectral clustering algorithm which minimizes the
normalized cut [91, 135]. We then encourage spectral clustering to cut the identified room-border
edges by assigning them a lower weight. This makes it more likely that minimizing the normalized
cut results in a human-like room segmentation. Since graph clustering attempts to optimize the
segmentation across the entire map graph, the result is more robust against the effects of occasional
misclassified edges. Note that we must specify the number of clusters before performing spectral
clustering. In this study, we generally assume that this room count is known, for example by
querying a human user. However, in Section 5.2.4.1 we also try to estimate this number from the
map itself.

5.2.1. Map Preprocessing

The topo-metric map generated by our robot (Section 2.3.1) is primarily used for navigation
and coverage planning. To make the map graph more suitable for room segmentation, we apply
several preprocessing steps: First, we reduce the computational cost of our method by removing
superfluous edges from the map graph. Second, we attempt to lessen the influence of the map’s
part-lane structure on the room-segmentation results.

Within our map, all adjacent and reachable node pairs are connected by edges. As seen in
Figure 5.2, this results in a large number of edges, greatly increasing the overall processing time.
Specifically, SVM training becomes prohibitively expensive if the number of training edges grows
too large. Most of the edges are tightly-packed diagonals between nodes from neighboring lanes.
Since they are fairly similar, we expect that many of these edges are not needed to solve the
room-segmentation problem. Instead, each node should only be connected to its closest neighbor on
each adjacent lane, as determined by the estimated node distance d. We then delete the superfluous
edges using the heuristic from Algorithm 1.
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Algorithm 1 : The heuristic used to remove unnecessary edges during map-graph prepro-
cessing.

1: for each node n ∈ map nodes N do
2: L← {m|m ∈ N ∧ part(m) = part(n) ∧ lane(m) = (lane(n)− 1)}
3: k ← arg mink′∈L d(k′, n)

4: for edge e between n and L \ {k} do
5: delete edge(l, n)

6: end for
7: for each part p older than part(n) do
8: P ← {m|m ∈ N ∧ part(m) = p}
9: q ← arg minq′∈P d(q′, n)

10: for edge f between n and P \ {q} do
11: delete f

12: end for
13: end for
14: end for

Here, part(n) and lane(n) are the index of the part and lane to which the node n belongs. Thus,
each node will have at most one edge connecting it to the previous lane, and at most one edge
to each of the previously created parts. Basically, we keep those edges with the minimal spatial
distance d. However, a node can still be connected to two or more other nodes from the same lane
or part. This can occur if the node itself is the nearest neighbor of more than one node within a
subsequent lane or part. As an example, Figure 5.3 shows the graph from Figure 5.2 after deleting
the superfluous edges.

Our second preprocessing step reduces the influence of the map’s part-lane structure on the
room-segmentation result. As outlined in Section 5.1.2, we segment maps using the normalized-cut
criterion. In our case, this criterion depends on the map edges cut by a room border, as explained in
Section 5.2.4. When cutting the map graph along a line, the cost (here: the resulting increase in
the normalized-cut criterion) should not depend on the line’s orientation relative to the part-lane
structure. Such an orientation-dependence could cause incorrect room segmentations: The robot
traverses different passageways within the same map at varying orientations. If the cost of a linear
cut strongly depends on this orientation, it may change the graph-clustering result. Such behavior is
undesirable: if the underlying passageways are similar, they should be treated as such. The problem
is exacerbated whenever the edge classification is unreliable. In that case, the classification-based
edge weighting cannot reliably compensate for the orientation-based difference in cost.

Figure 5.4 demonstrates that the number of edges cut by a room border depends partly on the
orientation of the lanes. This is due to the difference in node and lane spacing: While the nodes on
each lane are placed approximately 10 cm apart, the distance between adjacent lanes is ≈ 30 cm.
Thus, a cut that runs parallel to the lanes crosses an edge every ≈ 10 cm. Conversely, edges are cut
at ≈ 30 cm intervals when cutting orthogonal to the lanes. For example, the number of cut edges
in Figure 5.4a is greater than in Figure 5.4b, depending on whether the robot drove lanes that are
parallel or orthogonal to the passageway.

We reduce this effect of the lane orientations by adjusting the edge weights. Here, we divide
each edge’s weight by the estimated distance between the two nodes. This way, the costs of parallel
and orthogonal cuts of equal length become approximately identical. Unfortunately, the cost per
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Figure 5.2.: A segment of the robot’s topo-metric map graph, as used for navigation and planning.
The red lines represent edges in the graph, each of which connects two nodes. For the sake of clarity,
we do not show the actual nodes here. As seen in this illustration, there are many overlapping edges
between the meandering lanes. The blue lines show the outlines of obstacles, such as walls and
furniture. This figure is based on Figure 2.3, which we generated from a simulated cleaning run.

Figure 5.3.: The map graph from Figure 5.2 after deleting superfluous edges using Algorithm 1.
This kind of comparatively sparse graph is used by all subsequent steps in our method. The black
dashed lines show the possible room borders drawn by a human operator.
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(a) Lanes parallel to passageway (b) Lanes orthogonal to passageway

Figure 5.4.: Two examples of the robot’s map graph at a narrow passageway, shown in the style of
Figure 5.2. Both (a) and (b) each contain a passageway between two rooms, which is marked in
gray. The hypothetical room borders within these passageways are indicated by dashed lines. Both
figures use the same scale, and both passageways are approximately identical in size. However, the
room border in (b) intersects two edges, compared to five in (a). We compensate for this difference
by adjusting the graph’s edge weights. Note that (a) corresponds to the center-right passageway in
Figure 5.3, rotated clockwise.

distance for diagonal cuts remains higher by a factor of ≈
√

2. Since this cannot easily be resolved
by preadjusting the edge weights, we choose to accept this remaining anisotropy.

5.2.2. Map-Edge Features

We now need to identify those map-graph edges which cross a border between two rooms. To
solve this classification problem, we first annotate each map edge with a feature vector. These
feature vectors consist of individual scalar edge features, which are calculated from information
acquired in the vicinity of the edge. Specifically, we use the length of an edge (Section 5.2.2.1),
local obstacle data (Section 5.2.2.2), a visual doorway detection (Section 5.2.2.3), and two image-
distance measures (Section 5.2.2.4). For this study, we select edge features based on experience
gained during preliminary experiments. However, a rating heuristic might be helpful for judging
potential edge features. In Section 5.2.2.5, we therefore evaluate two metrics for the usefulness of
edge features.

5.2.2.1. Edge Length

For our first edge feature, we use the metric edge length l. This is the Euclidean distance between
the estimated positions of the edge’s two map nodes. Since edges only connect nearby nodes, we
can reliably calculate this distance without global metric map consistency. There are two reasons
for including the edge-length feature: First, our maps contain similar numbers of short and long
edges, as shown in Table 5.1. This is a side-effect of our robot’s cleaning strategy and the map
preprocessing from Section 5.2.1. However, according to Table 5.1, the majority of room-border
edges are long. Consequently, the edge length l itself carries information which is useful for
room-border detection. Second, some of the other edge features strongly correlate with the edge
length. This is most noticeable for the image-distance features described in Section 5.2.2.4. By
knowing l, the classifier may be able to distinguish this effect from the effect of a room border.
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b = border b = border P (l′)

l′ = short (l < 0.2 m) 0.008 0.992 0.498
l′ = long (l ≥ 0.2 m) 0.043 0.957 0.502

P (b) 0.026 0.974

Table 5.1.: The conditional probability P (b|l′) that a random short or long edge crosses a room
border. We give these values for short and long edges, which have a length of l < 0.2 m and
l ≥ 0.2 m, respectively. The column labeled P (l′) lists the overall fractions of short and long edges.
Similarly, the row labeled P (b) contains the fraction of room-border (b = border) and within-room
(b = border) edges. We calculated these values from the maps described in Section 5.3.1.

5.2.2.2. Obstacle Data

For typical domestic environments, we expect that room borders coincide with narrow passageways
such as doors. These passageways are implicitly represented in the structure of the map graph:
Rooms separated by a narrow passageway tend to be connected by fewer edges. Since our method
attempts to minimize the normalized cut, it is thus more likely to create a room border at a narrow
passageway.

However, this behavior may also pose a problem: Below a certain width L (as defined below),
narrow passageways are actually less likely to correspond to room borders within our maps. Among
the edges passing through a passageway with L < 0.5 m, only 0.5% actually cross a room border.
This is much lower than the room-border fraction for all edges, which Table 5.1 lists as 2.6%.
Thus, placing a room border at such a passageway is less likely to be correct. Instead, these very
narrow passageways tend to occur between furniture or similar obstacles. We therefore include the
passageway width L as an edge feature, hoping to improve the classification of such edges.

We estimate L from the robot’s obstacle map, as illustrated in Figure 5.5: For an edge between
the nodes i and j, we first retrieve the nearby obstacle points for i and j as per Section 2.3.2. In
practice, some of these points may be the result of incorrect obstacle measurements. This problem
is uncommon, but may cause incorrect passageway-width estimates. Like in Section 2.3.2.1, we
reject such points through density-based clustering using the DBSCAN algorithm [39]. DBSCAN
identifies those obstacle points which are not part of a sufficiently large, dense cluster. Here, clusters
of less than three points within a distance of 10 cm are discarded as false measurements.

We also discard obstacles outside of a search area, which runs orthogonal to the edge direction.
As shown in Figure 5.5, this area is somewhat wider than the length of the edge. We consider this
necessary to avoid overlooking obstacles when calculating L for short edges. The width of the
search area is equal to l, plus an extension of 12 cm on either side. If the edge is short (l < 20 cm)
and connects subsequent nodes on a lane, we further extend each side by up to 5 cm. For edges that
connect nodes on the same lane, this may not extend the search area beyond that lane’s beginning
or end. We now search this area for the closest obstacle point on both sides of the edge. Finally, the
metric distance between these closest points serves as our passageway width L. Note that L is only
an approximation of the true width of the passageway. Its accuracy depends on the geometry of the
passageway, and on the position and orientation of the edge within it.

For some map edges, we may not have enough nearby obstacle points to compute the passageway
width. To allow the room-border classifier to work with these edges, we substitute a fixed value for
L instead. This value should be distinct from the L calculated from actual obstacle measurements.
The naive approach would be to use a very large value, such as L = ∞. However, such a large
value would cause problems with the edge-feature scaling discussed in Section 5.2.3. In our maps,
the highest obstacle-derived value is L ≈ 4.4 m, and we thus use a default of L = 5 m.
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L
l

Figure 5.5.: An illustration of the passageway-width estimation. The blue dots represent the two
nodes in the map graph; these nodes are connected by an edge (blue line) of length l. Nearby
obstacle points are shown as black circles. A pair of dashed gray lines delimits the obstacle search
area around the edge. Two red circles correspond to the two obstacle points which lie closest to the
edge on each side, as shown by the dotted lines. The distance L (red line) between those two points
is the approximate passageway width.

5.2.2.3. Visual Doorway Detection

In domestic environments, room borders often occur at visually distinct doorways or similar
structural openings. We exploit this property by detecting such doorways in the images recorded by
our robot’s panoramic camera. In the literature, there are numerous methods for visually detecting
doors, for example by Chen and Birchfield [23], Murillo et al. [110], and Yang and Tian [156].
These methods usually attempt to detect doors from afar, for example to guide a robot towards them.
As we have discussed in Section 2.3, our map lacks global metric consistency. After detecting a
distant door, we are thus unable to estimate its precise location within our map. Consequently, we
also cannot determine which map edges cross through such a doorway. Instead, we use a simple
heuristic to check for doorways in close proximity to each map node. To estimate whether a map
edge crosses such a doorway, we then combine the results from the edge’s two nodes.

Our method works by detecting image edges associated with doorways within the robot’s camera
image. These edges are often visually distinctive, as shown in Figure 5.6a. We note at least two
approaches: One approach is based on the vertical posts on the sides, the other on the horizontal
lintel at the top of the doorway. We found that vertical edges — such as from walls, window
frames, or furniture — are quite common in our environments. During preliminary experiments,
this frequently led to incorrect doorway detections. In comparison, non-doorway edges directly
overhead the robot were less common. Additionally, detecting these edges does not require a
panoramic camera. As demonstrated below, a ceiling-facing camera with a field-of-view as low as
38◦ could be sufficient. Although they are not immune to incorrect detections, we therefore focus
on the overhead lintels. Egido et al. [38] previously employed an upward-facing sonar to detect
these lintels with a mobile robot. Since we want to utilize our existing camera images, we instead
use an edge histogram to detect straight image edges above the robot. This histogram technique is
similar to the modification of the popular Hough transform (survey: [73]) presented by Davies [30],
although our specific formulation differs.

Since we wish to detect lintels above the robot, we only consider a limited part of each camera
image. However, we do not know the true dimensions of the doorways and lintels within a given
environment. We therefore assume that a typical domestic doorway has a width of 80 cm and a
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(a) Camera image (b) Edge detection

(c) Edge histogram (d) False positive

Figure 5.6.: An illustration of our visual doorway-detection heuristic. Doorway detection on the
camera image from (a) identifies the edges shown in the detail (b); (b) corresponds to the dashed
rectangle in (a). The solid outer ring represents the edge-search cone with an opening angle of
ϕ ≈ 38◦. Similarly, the dashed ring corresponds to the edge-offset cone with an angle of ω ≈ 18◦.
Pixels identified as part of an image edge are highlighted in color. The hue indicates the orientation
of each pixel’s edge gradient. Next, we construct a histogram of the edge orientation θ and edge
offset s from these pixels. The histogram in (c) shows a clear maximum near the center, which
corresponds to the lintel. Unfortunately, this heuristic can be vulnerable to false positives. In (d),
such a false positive is caused by a ceiling-mounted light fixture.
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(a) Robot within doorway (frontal view) (b) Robot next to doorway (side view)

Figure 5.7.: To determine the detection parameters ϕ and ω, we assume that a typical domestic
doorway is 80 cm wide and 200 cm tall. Our robot is represented by the small shape near the
bottom of each figure. The light and dark gray rectangles show the sides and lintel of the doorway,
respectively.

height of 200 cm. These dimensions are similar to those of real doorways we found in household
and office environments. We now assume that our robot is located at one side of such a doorway,
with the lintel directly above the robot’s camera. As seen in Figure 5.7a, the distance between the
camera and the furthest point of the lintel is 65 cm horizontally and 190 cm vertically. The entire
lintel thus lies within a cone with an opening angle of ϕ = 2 atan( 65 cm

190 cm) ≈ 38◦ above the camera.
Using a calibrated camera model [132], we identify the camera pixels corresponding to this search
cone. These pixels form the area represented by the solid circle in Figure 5.6b. To detect nearby
lintels within the search cone, we thus search for edges within this image area.

As we explained in Section 2.2, our robot’s camera uses a fisheye lens with an approximately
equidistant projection. Since this projection is nonlinear, a straight edge in the world may appear
curved in the camera image. However, recall that we limit our search to a small disc around the
image center. Inside this disc, the projection is approximately linear, as shown in Figure 5.6a. We
thus do not reproject the images, as we found that using the fisheye images gives adequate results.

To detect the edges, we apply a Scharr operator to the search area, which is similar to the
well-known Sobel operator. However, the Scharr operator is specifically optimized for rotational
invariance [74, 154]. This property is useful, as we wish to detect edges independent of their
orientation within the image. In our experiments, we use the implementation from the OpenCV
library [21]. We now know the horizontal and vertical edge gradients gx and gy for each pixel
within the search area. From these values, we construct each edge pixel’s gradient vector ~v. For
doorway detection, light-dark and dark-light edges should be treated equally. We therefore use a
definition of ~v that remains unchanged if the pixel intensities are inverted:

~v =

{
(−gx,−gy)T , if gy < 0 ∨ (gy = 0 ∧ gx < 0),

(gx, gy)
T , otherwise.

(5.1)

We also calculate each pixel’s gradient intensity I = ‖~v‖. For pixels with a low gradient intensity
I , the comparatively strong camera noise leads to high uncertainty in ~v. We therefore discard pixels
for which I is lower than a threshold Imin; this also reduces the overall processing time. Figure 5.6b
shows the result of this step.
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Next, we use a histogram to identify lintel edges from the individual edge pixels. The two axes
of the histogram are the edge-gradient orientation

θ = atan2(v2, v1) (5.2)

and the edge offset

s =
~vT

‖~v‖
(~p− ~c). (5.3)

Here, ~p is the edge pixel position, ~c is the image center, and atan2 is the quadrant-aware arctangent.
Note that θ ∈ [0, π) due to the definition of ~v in Equation (5.1). We assign each pixel to the
histogram bin (i, j), with

i =

⌊
θ

∆θ

⌋
; j =

⌊
s

∆s

⌋
, (5.4)

where ∆θ and ∆s are the bin widths. All pixels of a straight edge would share the same θ and s,
and thus the same histogram bin. Consequently, a bin with a high number of pixels indicates that a
straight edge is present in the image. Figure 5.6c demonstrates this through an example histogram.

The edge offset s represents the distance between an edge and the image center ~c, as shown in
Figure 5.8. Using the calibrated camera model, we use a ~c that corresponds to the camera’s viewing
direction. Since our robot’s camera faces upwards, ~c also corresponds to a point directly above the
robot. For a given map node, we want to ignore lintels that are unlikely to overlap any map edge
connected to this node. In our map graphs, few edges are longer than 30 cm. Thus, we try to exclude
edge pixels from doorways more than 30 cm away. We do this by limiting the edge-pixel histogram
to s ∈ (−smax, smax). To choose smax, we again assume a doorway that is 200 cm× 80 cm in size.
The geometry resulting from these assumptions is illustrated in Figure 5.7b: Here, the maximum
distance between the camera and the lintel is 30 cm horizontally and 190 cm vertically. A lintel
within this horizontal distance must intersect a cone above the camera with an opening angle of
ω = 2 atan( 30 cm

190 cm) ≈ 18◦. From this value of ω, we then calculate smax = 23 pixel using the
calibrated camera model. Figure 5.6b demonstrates the effect of smax: The line of colored edge
pixels clearly intersects the dotted inner circle, which corresponds to smax. Thus, the s of these
pixels is less than smax, and they are added to the histogram. We also illustrate this in Figure 5.8.

We can now detect a straight image edge from the histogram: If the histogram’s maximum value
Ĥ = maxi,j Hi,j is high, many edge pixels share a similar orientation and offset; we thus assume
that a straight edge is present. Here, Hi,j is the number of edge pixels in the histogram bin with
index (i, j). Note that this method cannot distinguish one uninterrupted edge from multiple shorter
edges with the same (θ, s). On one hand, this makes the method robust against interrupted edges.
Such interruptions could occur due to occlusion, or due to discarded pixels with a gradient intensity
I below Imin. On the other hand, a large number of very short edges might cause a false doorway
detection. For the purpose of this study, we are willing to accept this trade-off.

In practice, camera noise also causes noise in each pixel’s θ and s. As a result, pixels from a
single, straight edge might be spread across neighboring histogram bins. This could reduce the
value of Ĥ , causing a false negative detection. We therefore calculate three additional histograms,
where θ and / or s are shifted by half a bin width: Here, pixels are assigned to the bins (i′, j), (i, j′),
or (i′, j′), with

i′ =

⌊
(θ + 1

2∆θ) fmodπ

∆θ

⌋
, (5.5)

j′ =

⌊
s

∆s
+

1

2

⌋
, (5.6)

a fmod b = a−
⌊a
b

⌋
b. (5.7)
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Figure 5.8.: The geometry of the edge pixels for doorway detection. The position ~p contains an
edge pixel with gradient vector ~v and edge-gradient orientation θ. Mentally extending the edge
from ~p results in the dotted black line. If the pixel at ~p is part of a straight lintel, the lintel would
correspond to this line. The distance between the line and the image center ~c is the edge offset s.
The gray circles correspond to the search cones shown in Figure 5.6b. If ~p lies within the outer
search cone, and s is less than the radius of the inner search cone, this pixel will be added to the
histogram.

We then search for the maximum Ĥ across all four histograms. This reduces the influence of the
noise, as long as its effect on θ and s is smaller than the bin sizes.

Finally, we calculate the doorway edge feature Ek,l for the edge between the map nodes
k and l. We could simply use the minimum of the two per-node doorway-detection results
Ek,l = min(Ĥk, Ĥl). Here, Ĥk is the doorway-detection result Ĥ for the map node with index k.
However, this solution does not consider the orientation of the doorway relative to the edge. A
doorway running approximately parallel to the edge (k, l) would still lead to a high Ek,l. This is
undesirable, since Ek,l should only be sensitive to doorways that intersect the edge (k, l).

To solve this problem, we calculate the edge orientation βk,l from the estimated node positions.
We also calculate Θi, which is the gradient orientation θ for the histogram bin (i, j). Θi is
perpendicular to the orientation of the image edge itself, as shown in Figure 5.8. Consequently, if

|βk,l −Θi| fmodπ ≤ ε, (5.8)

then the image edge from the bin (i, j) is approximately perpendicular to the map edge (k, l). For
a given edge orientation β, we therefore only consider bins (i, j) with

i ∈ I ′β =
{
î|(|β −Θî| fmodπ) ≤ ε

}
. (5.9)

In other words, we only search for lintels which are nearly orthogonal (±ε) to the given map edge.
From this, we arrive at the angle-dependent edge feature Ẽk,l with

Ĥk,β = max
j

max
i∈I′β

(Hk)i,j , (5.10)

Ẽk,l = min(Ĥk,βk,l , Ĥl,βk,l). (5.11)

Here, (Hk)i,j is the entry (i, j) from the histogram Hk of the node k.
Finally, we need to choose the parameters Imin, ∆θ, ∆s, and ε. Unlike the cone angles ϕ and ω,

we cannot easily estimate these parameters from the environment. Instead, we perform a search
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Parameter Values

Imin 100, 200, 400
Nθ, Ns (18, 17), (36, 33)
ε 50◦, 55◦, 60◦, 65◦, 70◦, 80◦, 90◦

Table 5.2.: Doorway-detection parameters tested during the search. The values with the best
area-under-curve are printed in bold, and are used throughout the rest of this chapter. Note that the
bin sizes ∆θ and ∆s are derived from the number of bins Nθ and Ns.

across a number of reasonable values, as listed in Table 5.2. Ideally, we could find the values that
give the best overall room-segmentation result for our maps. This is not practical, however, because
these results also depend on several other parameters; we elaborate on this in Section 5.2.3.3.

We instead optimize the doorway-detection parameters in isolation, using a criterion further
discussed in Section 5.2.2.5: First, we identify room-border edges by merely applying a threshold
to the edge feature Ẽ. Second, we construct the receiver operating characteristic (ROC) [42] curve
for this simple classifier. Finally, we select the Imin, ∆θ, ∆s, and ε, which maximize the area under
the resulting ROC curve. Table 5.2 lists the parameter search space and the actual values selected
by our search.

5.2.2.4. Image Distances

As described in Section 2.3.1, each map node k contains a panoramic image Ik captured at that
node’s location. Thus, a map edge (k, l) between two nodes k and l also connects the images Ik
and Il. We suspect that the image distance d(Ik, Il) will tend to be greater if the edge (k, l) crosses
a room border. This could be due to occlusion, or due to differences in the visual appearances of
adjacent rooms. We therefore use d(Ik, Il) as an image-distance edge feature.

We now select specific image distance functions d, based on several criteria: d should not depend
on specific local image structures, such as corners or edges. Relying on such specific structures
could lead to problems in environments where they are not present. Instead, the distance function d
should incorporate all pixels in the input images. This is a major difference to the visual doorway
detection from Section 5.2.2.3.

As discussed in Section 2.5.2, our robot uses the holistic min-warping method [102] for visual
relative-pose estimation. This method operates on low-resolution panoramic images, which have
been “unfolded” through reprojection (Section 3.2.2). For this reason, the images Ik stored in our
map are also of this type. Figures 5.17 and 5.19 provide example images from the maps used in our
experiments. Here, all pixels from the same image column correspond to the same azimuth in robot
coordinates. Similarly, all pixels of the same row share the same elevation angle.

In this chapter, we process and unfold the images as described in Section 3.2.2.2. Thus, the
resulting images have a resolution of 288× 48 pixels, and include elevation angles from 0◦ to 75◦.
To avoid aliasing, we blur the original camera image with a 7 × 7 pixel averaging filter before
unfolding it. Note that we deliberately calculate d from these low-resolution images to speed up
computations. As an added benefit, this makes the resulting edge feature suitable for robots with
only a low-resolution camera. This is another difference to the visual doorway detection from
Section 5.2.2.3, which operates on the higher-resolution fisheye images.

The images Ik and Il are usually recorded under different robot orientations. However, this
difference should not affect the image-distance edge features. We therefore require that the distance
function d is invariant under azimuthal rotation. In this study, we employ two different distance
functions dc and ds as edge features. dc is based on the visual compass introduced by Zeil, Hofmann,
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Edge Feature AUC J

Edge length 0.71 0.35
Obstacle data 0.78 0.56
Doorway detection 0.87 0.61
Image distance dc 0.77 0.40
Image distance ds 0.66 0.29

Table 5.3.: The area-under-curve (AUC) and Youden’s J statistic for each of the five edge features.
When used as a heuristic for edge-feature selection, high values should indicate a useful feature.

and Chahl [158]. To determine dc, we calculate the Euclidean image distance

‖Ik − Il,δ‖ =

√∑
x,y

(Ik(x, y)− Il((x+ δ) modw, y))2 (5.12)

for the relative azimuthal image-orientation offset δ. Here, Ik(x, y) refers to the intensity of the
pixel (x, y) in the image Ik, while w is the width of the unfolded images. dc is then the lowest
image distance across all possible δ, with

dc(Ik, Il) = min
δ∈[0,w)

‖Ik − Il,δ‖. (5.13)

The second distance function ds is based on the image signatures introduced by Menegatti,
Maeda, and Ishiguro [96] and extended in [58];

ds(Ik, Il) = ‖safc(Ik)− safc(Il)‖ (5.14)

is the Euclidean distance between the image signatures safc of the two images Ik and Il. To calculate
the signature safc(Ik), the 288× 48 unfolded image Ik is split into eight equally-sized horizontal
segments. A segment consists of 48/8 = 6 image rows and spans 75◦/8 = 12.5◦ of elevation. We
then average the rows of each segment, resulting in eight vectors of 288 entries. Next, we calculate
the first twelve Fourier coefficients for each of these eight vectors. Finally, safc(Ik) is a vector
containing the absolute values of all 8× 12 Fourier coefficients. By using the absolute values, we
eliminate the phase information from the Fourier coefficients. This makes the signatures invariant
to the image orientation.

5.2.2.5. Evaluation

In the previous sections, we presented a number of edge features. We now want to ensure that each
edge feature is actually useful for room-border detection. In Section 5.3.3, we test the impact of
individual edge features on the final room-segmentation results. However, this is computationally
expensive, especially when repeated for many different feature combinations. We therefore also try
to find a straightforward procedure for identifying useful edge features.

Here, we use receiver operating characteristic (ROC) [42] analysis to evaluate the edge features:
First, we classify room-border edges by comparing a single scalar edge feature to a threshold.
Varying this threshold then gives us the ROC curve for that feature, as shown in Figure 5.9. In
addition, Table 5.3 lists the area-under-curve (AUC) and Youden’s J statistic [157]. As indicated in
Figure 5.9, J is the maximum height of the ROC curve above chance level. We calculated these
results using the combined graph edges from the maps introduced in Section 5.3.1.

According to this analysis, every edge feature presented so far offers at least some use. However,
this evaluation is only an approximation, as the actual classifier discussed in Section 5.2.3 is
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Figure 5.9.: Receiver operating characteristic (ROC) curves for the five edge features used in
this chapter. (a) contains the edge features that do not utilize camera images, while (b) contains
those that do. For each edge feature, the ROC curve is indicated by a solid line. The location and
magnitude of Youden’s J statistic is indicated by a dashed line of the same color. A black, dashed
diagonal line indicates the chance level.

not linear. Furthermore, the ROC curves of the individual features cannot represent the mutual
information between these features. Finally, the map-graph clustering tends to segment the map
graph at narrow passageways, as discussed in Section 5.2.4. Correctly classifying these critical
edges may thus be more important than a high general classification accuracy. However, this ROC
analysis does not take these factors into account. Since this heuristic may be flawed, we also
perform room-segmentation experiments with limited subsets of edge features in Section 5.3.3. In
Section 5.4.2, we compare the heuristic with those actual room-segmentation results.

5.2.3. Map-Edge Classification

We now determine which map edges cross a room border based on the edge-feature vector intro-
duced in Section 5.2.2. By training a classifier with human-annotated maps, we hope to produce
more human-like room segmentations. In practice, we use a support vector machine (SVM) [27] to
classify the edges. SVMs are powerful, well-documented, and relatively easy to use. Furthermore,
at least one high-quality implementation is readily available to the public [22]. As Hsu, Chang, and
Lin [70] have pointed out, the performance of an SVM depends on well-chosen parameters. We
therefore perform a systematic search (Section 5.2.3.3) to choose the core parameters used by our
method (Section 5.2.3.4).

Since SVMs are well described in the literature, we give only a short overview here; Bishop
[13, Chapter 7] offers a more general introduction. Here, we employ a C-SVM maximum-margin
classifier [27]. This classifier varies the model parameters ~w and b to optimize

min
~w,~ξ

~wT ~w

2
+ C

∑
i

ξi (5.15)
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5. Human-Like Room Segmentation in Domestic Environments

under the constraints

yi(~w
Tφ(~xi) + b) ≥ 1− ξi, (5.16)

ξi ≥ 0 ∀i. (5.17)

~xi ∈ Rn and yi ∈ {−1, 1} are the training vectors and class indicators, andC > 0 is a regularization
parameter. Note that Equation (5.16) can always be fulfilled by increasing the slack variables ξi,
even in case of non-separable training data. However, this also increases the value of Equation (5.15)
according to the regularization parameter C. Additionally, φ is a function that maps each input
vector to a higher-dimensional space. This is necessary to solve classification problems that are not
linearly separable in the input space. After training the model, we can classify a given input vector
~x with the decision function

sgn(~wTφ(~x) + b). (5.18)

Instead of the function φ, we can also make use of a kernel function K. In this case, ~w is
written as a linear combination of the vectors φ(~xi) according to the factors αi; this results in
~w =

∑
i αiyiφ(~xi) [22]. Substituting this in ~wTφ(~x), we get

~wTφ(~x) =
∑
i

αiyiK(~xi, ~x), (5.19)

with the kernel function K(~xi, ~xj) = φ(~xi)
Tφ(~xj). Within our method, we use a radial basis

function (RBF) kernel
K(~xi, ~xj) = e−γ‖~xi−~xj‖

2
. (5.20)

We choose this kernel because it is commonly regarded as a good first choice for novel problems
[70].

In our experiments, we employ the C-SVM implementation from the libsvm library [22].
In general, we follow the usage guidelines provided by the library authors [70]. However, we
occasionally deviate from this procedure, as required by our specific classification problem. We
will discuss these changes where they occur.

5.2.3.1. Data Scaling

As recommended by Hsu, Chang, and Lin [70], we scale the individual edge features. Without
scaling, features with a very large value range would drown out those with a smaller range. The
libsvm authors recommend a linear scaling that maps each feature to a range of [−1, 1]. This
mapping depends solely on the minimum and maximum of a given feature. It is therefore very
vulnerable to outliers, which occur for some of our edge features. Instead, we use the standardized
value x′i = σ−1(xi − x̄) for the feature xi. Here, x̄ and σ are the mean and standard deviation for
the given feature in the training data. As x̄ and σ depend on all training values, we expect this
standardization to be less sensitive to outliers.

5.2.3.2. Training and Cross-Validation

We now train the C-SVM on our training data using the appropriate libsvm functionality. Our
map-edge classification problem consists of just two classes: The first class contains edges where
both nodes lie within the same room. The second class consists of room-border edges, for which
the two nodes are part of different rooms. After training, we use this model to adjust the edge
weights of new maps: For edges classified as crossing a room border, we divide the weight by the
edge-weight factor ρ. Figure 5.10 shows an example edge-classification result in a map graph.
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5.2. Our Room-Segmentation Method

Figure 5.10.: The effect of edge classification on the map graph from Figure 5.3. Edges classified
as crossing a room border are drawn as green, dashed lines. While most room-border edges are
classified correctly, we also note some false-positive results within the rooms.

In a typical environment, only a small fraction of the edges cross a room border. As a result, the
two classes in our edge-classification problem are unbalanced. For our training data, we find the
ratio between the classes to be ≈ 38. The SVM may neglect the correct classification of room-
border edges in favor of the more common within-room edges. One solution to this class-balance
problem has been presented by Osuna, Freund, and Girosi [118]: For those training data (~xi, yi)
that belong to the room-border class, we replace C with a higher value of C+ = wC; here, w is
the class weight. Thus, misclassification of the second class has a higher impact on the objective
function from Equation (5.15), which compensates for the class imbalance.

5.2.3.3. Parameter Selection

We now have to select the regularization parameter C, the kernel parameter γ, the class weight w,
and the edge-weight factor ρ. Hsu, Chang, and Lin [70] suggest choosing the SVM parameters
C and γ through an exhaustive search using cross-validation. In this case, we would first split
the training data T into equally-sized subsets t1, ..., tn. To evaluate a given parameter (C, γ), we
would then perform n-fold cross validation: For every k ∈ [1, n], we would train the SVM on the
set T \ tk and test it on the subset tk. Next, we would compute the average classification accuracy
across all test subsets tk. By repeating this cross-validation step for different parameters, we could
select the best (C, γ).

However, this parameter-selection method is not ideal for our problem. For our purposes, the
SVM classification accuracy is only a secondary concern. Instead, the primary goal is to optimize
the room-segmentation result. We thus select our parameters using a criterion based directly on that
result. This also lets us to expand the search to include all four parameters C, γ, w and ρ.

There are many possible criteria to judge a graph-clustering result [94, Chapter 16.3]. For a
systematic, large-scale search, the criterion must be easy to compute without human input. In this
study, we use a cluster impurity based on the well-known cluster-purity measure [94]: Following
the procedure from Section 5.3.1.1, each map node is assigned to a ground truth room j, forming
the node sets Rj . Thus, each set Rj corresponds to a single room j in our ground truth. Next, we
calculate the purity ψ for the node clusters found during graph clustering (Section 5.2.4). If each
cluster i is represented by a node set Ci, the purity for a graph with n nodes is

ψ =
1

n

∑
i

ψi =
1

n

∑
i

max
j′

∣∣Ci ∩Rj′∣∣ . (5.21)
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Here, ψi is the largest number of nodes in Ci that shares the same room j′.
We consider two types of potential errors within the room-segmentation result: For the first

type of error, one cluster contains nodes from multiple rooms, and thus ψi is reduced. In the
second type of error, one room is split into several clusters. If these clusters do not contain nodes
from other rooms, then the purity is not affected. This property of the purity is similar to our
room-segmentation goals: For user-robot interaction, the user will usually assign room names to
the clusters. If multiple clusters are assigned to the same room, the clusters can easily be merged.
For place recognition, clusters can also be merged if they are found to belong to the same place.
This is not true in the opposite case, where a cluster contains nodes from multiple rooms. Here, we
do not know which nodes in the cluster belong to which room. We thus consider it important that
our criterion is sensitive to the first type of error. In the case of the second type of error, one room
is split into multiple clusters. However, for our method, the number of rooms is also equal to the
number of clusters. Consequently, another cluster must then contain nodes from more than one
room. Within our experiments, the purity criterion is thus also sensitive to the second type of error.
We therefore use the purity criterion to judge the quality of a given room segmentation.

We also modify the cross-validation scheme for the parameter search. As described in Sec-
tion 5.3.1, we use the same environment to generate multiple training maps. The basic parameter-
selection method does not account for this during cross validation. Subsequently, maps from every
environment might be included in both the training and validation sets. Our method would thus
never encounter previously unseen environments during validation. As a result, the validation would
be less informative regarding our method’s performance in such novel environments. To prevent
this, we ensure that each cross-validation subset ti only contains maps from a single environment.
Maps from this specific environment will thus not occur in the training set T \ ti. This way, the
training process will have no knowledge of the validation environment from ti.

We can now evaluate a given parameter combination (C, γ, w, ρ) using this modified scheme:
First, we perform the cross-validation scheme described above. We split the training maps T into
subsets ti according to their environment of origin. For each ti, we train the SVM on the set T \ ti.
We then use this SVM to perform room segmentation on every map in ti. Next, we calculate the
purity ψ for every room-segmentation result, followed by the mean purity ψ̄. Finally, we rank the
given parameter combination based on its mean impurity ῡ = 1− ψ̄.

5.2.3.4. Parameter Selection Results

We now select the best parameters (Ĉ, γ̂, ŵ, ρ̂) for our room-segmentation method, based on the
maps from Section 5.3.1. As recommended by Hsu, Chang, and Lin [70], we begin with a coarse
search using exponential step sizes for C and γ. The search space is specified by the full entry
from Table 5.4. We found SVM convergence to be very slow for values of C & 29, occasionally
even reaching the default libsvm iteration limit. This area of the parameter space may still provide
good room-segmentation results. However, due to the computational effort required, we do not
generally extend our search in this direction.

Figure 5.11 and Table 5.5 show that comparatively low mean impurities ῡ occur across a wide
variety of parameters. Next, we perform a fine search around the parameter combination with
the lowest ῡ listed in Table 5.5. This is followed by an even finer search over an even smaller
parameter space. These searches correspond to the fine and extrafine search spaces in
Table 5.4. Figure 5.12 gives an overview of these results. As with the coarse search, we included
the parameters with the lowest ῡ in Table 5.6.

Through these searches, we have now determined the values for (Ĉ, γ̂, ŵ, ρ̂) which we will
use in Section 5.3. We also have an upper bound for the lowest mean impurity ῡ achieved by
our full method. As stated before, low mean impurities ῡ appear over a wide range of parameter
combinations. However, Figure 5.11 also shows that large areas of the parameter space are
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Experiment log2(C) log2(γ) w ρ p

full −9:2:9 −15:2:−1 20, 40, 60 20:20:120 1440
fine −9:1:5 −9:1:0 40 50:10:80 600
extrafine −6.5:0.5:0.5 −5.5:0.5:−0.5 40 50, 60, 70 495

Table 5.4.: Parameter search spaces used for our room-segmentation method. For each search, all
possible values of C, γ, w and ρ are combined, resulting in a total of p parameter combinations.
Here, n:s:m = {n+ ks|k ∈ Z ∧ (n+ ks) ∈ [n,m]}, for example 1:2:7 = {1, 3, 5, 7}.

(a) Full search, w = 40 (b) Full search, w = 60

Figure 5.11.: Plots showing the mean impurity ῡ for the full search space from Table 5.4. Values
of ῡ greater than the maximum of the color scale are shown in dark brown. Only the plots for
w ∈ {40, 60} and ρ = 60 are shown here. According to Table 5.5, these values for w and ρ result
in some of the lowest ῡ.

log2(C) log2(γ) w ρ ῡ × 100 υ̃ × 100

−3 −3 40 60 3.13 1.04
−3 −3 40 80 3.15 1.12
−3 −3 40 100 3.55 1.12
−3 −3 40 120 3.55 1.12

3 −11 60 60 3.72 1.30
9 −13 60 60 3.73 1.37
7 −13 60 60 3.74 1.30
5 −11 60 60 3.74 1.37

Table 5.5.: The results of the parameter search over the full search space from Table 5.4. We
sort the parameter combinations according to the lowest mean impurity ῡ, and list the first eight out
of all 1440 entries. The values with the lowest mean impurity are given in bold, and are used in
most of our subsequent experiments. This table also contains the median impurity υ̃. For the sake
of readability, the impurities have been multiplied by a factor of 100.
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(a) Fine search (b) Extra-fine search

Figure 5.12.: Plots showing the mean impurity ῡ for the fine and extrafine search space
listed in Table 5.4. Values of ῡ greater than the maximum of the color scale are shown in dark
brown. Only the plots for w = 40 and ρ = 60 are shown, as these contain the lowest ῡ according
to Table 5.6.

log2(C) log2(γ) w ρ ῡ × 100 υ̃ × 100

−3.0 −3.0 40 60 3.13 1.04
−3.0 −3.0 40 70 3.13 1.04
−3.0 −3.0 40 50 3.19 1.37
−2.0 −3.5 40 50 3.35 1.65
−2.5 −3.5 40 60 3.50 1.04

Table 5.6.: The results of the parameter search over the extrafine search space from Table 5.4.
We sort the parameter combinations according to the lowest mean impurity ῡ, and list the first five
entries. All other details are as in Table 5.5.
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unsuitable, due to their high ῡ. This cross-validation parameter search is thus an important step
in achieving good room-segmentation results. Unfortunately, the finer searches (Figure 5.12 and
Table 5.6) failed to find better parameters than the initial coarse search.

5.2.4. Map-Graph Clustering

After preprocessing the map graph and classifying its edges, we now segment the map into rooms.
In a naive approach, we could simply delete those edges identified as crossing a room border. For a
perfect edge-classification result, each of the resulting disconnected map segments would represent
one room. Since our edge classification is imperfect, this simple procedure will fail in practice.

Instead, we perform room segmentation by clustering the map graph. As discussed previously,
we specifically aim to minimize the normalized cut. To calculate the normalized cut, we adapt the
definition from [91]: We begin by constructing the matrices W and D from the n-node map graph.
W = (wk,l) is the n× n symmetric weighted adjacency matrix. If the map nodes with index k and
l are connected by an edge, the entries wk,l = wl,k are equal to the weight of that edge. If no edge
(k, l) exists, then wk,l = wl,k = 0. The degree of a node is the sum of the weights from all edges
connected to it. This leads to the diagonal degree matrix D = (dk,k), with dk,k =

∑
l wk,l. For a

graph that is split into the m disjoint subsets Si, the normalized cut is then

Ncut(S1, ..., Sm) =
m∑
i=1

cut(Si, S̄i)

vol(Si)
, (5.22)

cut(Si, S̄i) =
∑

k∈Si,l /∈Si

wk,l, (5.23)

vol(Si) =
∑
k∈Si

dk,k. (5.24)

We expect that normalized-cut graph clustering is a good approximation for the room-segmentation
problem. In general, minimizing the normalized cut results in compact clusters with relatively
weak connections between each other [91]. Similarly, rooms in our maps are usually compact areas
connected through narrow passageways. Minimizing the normalized cut also penalizes clusters
with a low vol(Si). This precludes overly small clusters, even if they would have a low cut(Si, S̄i).
Since rooms also typically have a certain minimum size, we consider this to be a useful attribute.
Unfortunately, normalized-cut graph clustering is an NP-complete problem [135]. However, several
approximate but fast solutions exist [135, 114, 34]. Here, we employ spectral clustering, which was
previously used for room segmentation by Zivkovic, Booij, and Kröse [160]. As recommended in
[91], we use the variant first presented by Shi and Malik [135].

Since spectral clustering is well-described in the literature, we only give a short summary of the
method. First, we calculate the graph Laplacian L = D −W for our map graph. We then solve
the generalized eigenproblem L~v = λD~v [135]. This is equivalent to solving the eigenproblem
Lrw~v = λ~v for the normalized graph Laplacian Lrw = D−1L [91]. In our implementation, we use
Matlab’s (version 2016b) eig function to solve the eigenproblem. We thus know the resulting
eigenvalues λi and eigenvectors ~vi. To split the graph into m clusters, we use the eigenvectors
~v1, ..., ~vm associated with the m smallest eigenvalues λ1, ..., λm. These eigenvectors form the
columns of the matrix V = (~v1, ..., ~vm). V contains n rows, each corresponding to one of the n
map nodes.

Each row vector in V now represents one graph node, and we cluster the nodes according to these
row vectors. To identify the clusters, we perform k-means clustering in m dimensions [13, Chapter
9]. Here, we use the kmeans implementation provided by Matlab (version 2016b), with default
parameters. However, the solution found by k-means depends on the randomly chosen initial cluster

135



5. Human-Like Room Segmentation in Domestic Environments

0 1000 2000 3000

Node count n

0

2

4

6

8

10

R
o
o
m

 c
o
u
n
t 

m

Figure 5.13.: The relationship between the number of nodes n and room count m. Each mark
corresponds to one of our maps. Marks of different color represent different environments.

centers. It is possible that badly-chosen initial centers will negatively affect the final clustering
result. We therefore repeat the k-means clustering 100 times, each time using different initial
centers. From these repetitions, we then select the clustering with the lowest summed distance

dsum =

n∑
j=1

‖ ~Vj − ~c(j)‖. (5.25)

~Vj is the j-th row vector of V , while ~c(j) is the centroid of the cluster that contains the node j.
Finally, we form the node sets C1, ..., Cm from the chosen clustering. Each set Ci contains all the
map nodes within the cluster i, and thus represents one of the m rooms.

The normalized-cut criterion does not require that the nodes within the resulting clusters are
connected. As a result, spectral clustering could potentially create clusters that consist of several
disconnected segments. However, we assume that the floor space within our rooms is connected.
These disconnected clusters thus do not fit our room-segmentation goal. An additional step can be
added to correct this problem [160]. Since this problem did not occur in our experiments, we did
not implement the correction step.

5.2.4.1. Room Count Estimation

Spectral clustering requires the number of clusters, here the number of rooms m, as a parameter.
An incorrect value for m would cause an incorrect room-segmentation result. In this chapter, we
generally assume that the true room count is known. However, estimating m from the map graph
may still be useful for some applications. We therefore test two simple heuristics for room-count
estimation.

Node Count Regression

As seen in Figure 5.13, the room count m is related to the number of map nodes n. Our first method
exploits this connection to find the room-count estimate m̃1. Using linear least-squares regression
[13, Chapter 3] on our training set, we fit the parameters a, b, c for the model

m = f(n) = a
√
n+ bn+ c. (5.26)

This lets us predict the room count m̃1 = f(n′) for a new map with n′ nodes.
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Method |e| pe=0 p|e|≤1

Map-node regression 0.68 0.42 0.90
Eigenvalue gap 0.77 0.45 0.81

Table 5.7.: The room-count estimation results achieved during cross-validation. |e| is the average
absolute estimation error across all maps. The fraction of maps for which each method gives the
correct result is pe=0. Similarly, p|e|≤1 is the fraction for which the error is one or less.

Eigenvalue-Gap Heuristic

The second method for estimating the room count is specific to spectral clustering. This heuristic
is based on the eigenvalue gap gi = |λi+1 − λi|. Here, λi is the i-th smallest eigenvalue of the
normalized graph Laplacian Lrw from Section 5.2.4. According to the eigenvalue-gap heuristic [25,
91], for a graph with m easily separable clusters, we find that

gm = |λm+1 − λm| � gl ∀l < m. (5.27)

As per Section 5.2.4, we assume that rooms correspond to such easily separable clusters. If there
are m rooms, we should therefore find m easily separable clusters in the map graph. Consequently,
we can estimate the room count m̃2 from the eigenvalue gaps.

To find m̃2, we use a classifier to detect the eigenvalue gap that corresponds to the room count.
For each training map with a ground truth room count m, we gather the m first eigenvalue gaps
gi. These are assigned a class label of yi = 0 for the first m− 1 gaps, and yi = 1 for the mth gap.
We repeat this process for every map in our training set, gathering the resulting (gi, yi). Next, we
train a logistic-regression classifier ([13], chapter 4) on this training data. With the resulting model
parameters a, b, the predicted class label ŷ ∈ {0, 1} for a gap g is

ŷ = h(g) =

⌊
1

1 + e−(ag+b)
+

1

2

⌋
. (5.28)

For a new map with n′ nodes, we then calculate the eigenvalues λ′i and eigenvalue gaps g′i. From
this, we estimate the room count m̃2 as

m̃2 = min
{
i|i ∈

[
1, n′

)
∧ h(g′i) = 1

}
. (5.29)

In our implementation, we fitted the model parameters a, b to the training data using Matlab’s
(version 2016b) mnrfit function. We also employed Matlab’s mnrval function to calculate the
eigenvalue-gap class labels h(g′i).

To evaluate these two room-count estimation methods, we employ a cross-validation scheme
similar to Section 5.2.3.3. For each of the eight environments in Section 5.3.1, we first train both
methods using all maps from the other seven. We then estimate the room count for each map from
the current validation environment. Finally, we calculate the estimation error e for each map and
method. Here, e is the difference between the estimated and ground truth room count.

In this experiment, the two room-count estimation methods gave mixed results. Table 5.7 shows
that both methods determine the correct room count for fewer than half of the maps. However, the
mean absolute error was small, with |e| < 1. In most cases, the estimate was off by ±1 or less, as
shown by the values for p|e|≤1. Unfortunately, even a small room count error will prevent a correct
room segmentation. We thus consider these methods to be of limited practical use, at least in their
present form.
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5.3. Experiments and Results

In this section, we evaluate the room-segmentation method from Section 5.2 using several experi-
ments. These experiments require training and test data, as well as a ground truth. We generate
such data from both real and simulated environments in Section 5.3.1. Next, we present some of
the room-segmentation results achieved by our method under cross-validation in Section 5.3.2.
Here, we place a special emphasis on those results that deviate from the human-derived ground
truth. The experiments in Section 5.3.3 evaluate our method while using different subsets of edge
features. This includes clustering map graphs without the SVM classifier, instead using uniform
edge weights. Finally, we test our method on previously unused data in Section 5.3.4.

5.3.1. Training and Test Data

To evaluate our method, we need a sufficiently large number of maps. These maps consist of a
map graph, obstacle information, and camera images captured at each map node. Here, we use
maps acquired by our robot during cleaning runs. These maps were captured in an office space, a
private apartment, and an apartment-like test environment. However, we were not satisfied with
the number and variety of these environments. Using a robot simulator, we therefore generated
additional maps from five simulated apartments.

Our simulator executes the cleaning-robot control framework from Chapter 2 in a virtual envi-
ronment. Since the same framework controls both the real and simulated robot, they show a similar
behavior. For this study, we built simulated environments from the floor plans of real-world apart-
ments. Additionally, we created detailed 3D models of these environments. These models allow
us to generate plausible, panoramic camera images using a raytracing renderer. Our experiments
do not differentiate between maps from real and simulated environments. Instead, we always use
real-world and simulated maps simultaneously; thus, our method must be able to operate on such a
combination.

Our experiments thus make use of eight different indoor environments, three physical and five
simulated. For a quick overview, we depict these environments in Figures 5.14 and 5.15. In this
study, we attempt to use environments that differ according to several factors, as seen in Table 5.8.
For example, they can consist of two to nine rooms; the amount of floor space also varies to a
similar degree. We also altered numerous attributes while constructing the 3D models for our
simulator experiments. Here, we used a variety of materials for the walls, ceilings, door frames,
and other objects. Additionally, some environments are lit mostly by interior lamps, while others
are predominantly lit through windows. To simplify robot movement in the simulator, all doors are
considered to be fully opened. We therefore modeled only the door frames, but not the movable
doors themselves.

Our physical robot is equipped with the panoramic camera described in Section 2.2. Using this
camera, the robot captures a 640×512 pixel fisheye image at the location of every map node. As per
Section 3.2.1, a controller adjust the camera’s exposure time to maintain a constant average image
brightness. Example images from each of the three real environments are shown in Figure 5.16.
These are the images used by the doorway detection from Section 5.2.2.3. Figure 5.17 contains the
corresponding low-resolution, unfolded images described in Section 5.2.2.4.

Our simulator experiments generate images that are similar to those captured by our robot.
Here, we created the 3D models of the environments using the Blender 3D software suite (version
2.78a) [14]. Using Blender’s built-in Cycles raytracer, we then render a camera image for each
node within the simulated maps. The 3D scene files for the environments are available on our
website [45]. These scene files also include the render settings used to generate the images. As
with the real camera, the rendered panoramic images use an equidistant fisheye lens. The field of
view and angular resolutions of the real and simulated images are also approximately equal. Due
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(a) Real1 (b) Real2 (c) Real3

Figure 5.14.: The three real environments included in this study, visualized using our robot’s
obstacle maps. Each obstacle point is represented by a small circle. Since our robot’s obstacle
map lacks global metric consistency, some walls appear to be slightly curved. Each environment is
shown with a checkered scale bar indicating a length of 5 m.

(a) Sim1 (b) Sim2 (c) Sim3

(d) Sim4 (e) Sim5

Figure 5.15.: The unoccupied floor space in each of the five simulated environments. Note that
some of the floor space may be inaccessible to the robot due to nearby obstacles. Each environment
is shown with a checkered scale bar indicating a length of 5 m.
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Name # Area [m2] Map nodes Rooms Passageway contrast Lighting

Sim1 3 125 2806 9 High Interior
Sim2 3 101 1988 9 Low Mixed
Sim3 3 51 787 5 Low Exterior
Sim4 3 46 783 5 Medium Exterior
Sim5 3 79 1688 7 High Interior
Real1 5 - 656 3 Low Exterior
Real2 8 - 760 4 Low Exterior
Real3 3 - 649 2 High Exterior

Table 5.8.: The properties of our test and training environments. The second column lists the
number of different maps included in our training set. The area is the total floor-space, as
calculated from the 3D model. This includes space that is covered by furniture, or otherwise
inaccessible to the robot. Unfortunately, this value is not available for the real environments.
We also list the average number of map nodes; this is approximately proportional to the area
covered while cleaning. The rooms column gives the nominal room count derived from the ground
truth. The passageway contrast describes the visual distinctiveness of the majority of room-border
passageways. This qualitative judgment is based on a visual inspection of the camera images. High-
contrast passageways are visually distinct relative to the surrounding walls and ceiling. Conversely,
a low-contrast passageway may appear similar to the surrounding structure. Finally, the lighting
attribute indicates whether an environment is lit predominately by interior or exterior light sources.

(a) Real1 (b) Real2 (c) Real3

Figure 5.16.: Panoramic images acquired by our robot in three different real environments. These
images were captured using our robot’s upward-facing panoramic camera. Only the exposed, inner
disc is used by our method.

(a) Real1 (b) Real2 (c) Real3

Figure 5.17.: Low-resolution, unfolded panoramic images acquired by our robot. These images
are created by reprojecting, blurring and histogram-equalizing the images in Figure 5.16. In this
study, we use such images to calculate the image distances from Section 5.2.2.4.
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(a) Sim1 (b) Sim2 (c) Sim3

(d) Sim4 (e) Sim5

Figure 5.18.: Rendered camera images, created from the 3D models of our simulated environments.
Here, we show one image for each environment. These images are analogous to the real images
shown in Figure 5.16. The overall image dimensions are somewhat different from the real camera
images. However, subsequent steps use the same image area and field of view from both image
types.

to these similarities, our method processes both simulated and real images in the same manner.
Figure 5.18 shows rendered example images for each simulated environment. We also include the
corresponding unfolded low-resolution images in Figure 5.19.

We also use a simulated exposure control to approximate the behavior of our real camera: The
raytracer renders images with a linear color space and unlimited dynamic range. Thus, the value i
of a pixel is proportional to the intensity of the light it receives. Assuming a camera with a linear
response and limited dynamic range, we calculate each pixel’s resulting value i′ = min {ai, imax}.
Since we use monochrome images with eight bits per pixel, imax = 255. For each image, we choose
a so that the average pixel value ī′ in the unfolded image is≈ 50% of imax. Starting from a = 1, we
accomplish this by repeatedly updating a← 1

2a(imax/ī′) until ī′ ≈ 1
2 imax. This behavior is similar

to our robot’s exposure-time controller, which also tries to maintain an average pixel value of 50%.

5.3.1.1. Ground Truth

To train and evaluate our method, we also require a ground truth for each map. This includes ground
truth room labels for the map nodes, as well as room-border labels for the edges. Since we aim for
a human-like room segmentation, we use a ground truth created by a human operator.

First, the operator is presented with a visualization of the map graph. This visualization is based
on the robot’s node-position estimates and obstacle map. Second, the operator marks room borders
by drawing lines across them. For doors and similar deep openings, several lines can be drawn
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(a) Sim1 (b) Sim2 (c) Sim3

(d) Sim4 (e) Sim5

Figure 5.19.: Unfolded low-resolution images, based on the simulated camera images from Fig-
ure 5.18. These images were created in the same manner as those shown in Figure 5.17.

to cover the passageway. The lines should be drawn so that they only intersect those map edges
that cross the room border. These intersected edges are then marked as room-border edges in the
ground truth. Third, the operator also provides the correct number of rooms.

We then use spectral clustering to segment the map graph into ground truth rooms. Here, the
room-border edges marked by the operator are assigned a weight of 10−4; all other weights are set
to 1. This high weight ratio ensures that spectral clustering will cut the designated room-border
edges. After visually confirming the correctness of the resulting room labels, we use them as our
ground truth.

5.3.2. Room-Segmentation Experiments

As a basic experiment, we test our room-segmentation method on the maps from Section 5.3.1.
Here, we employ a cross-validation scheme, as described in Section 5.2.3.3. When segmenting a
map from the environment i, we thus use a classifier trained on all maps not from that environment.
For these experiments, the parameters (Ĉ, γ̂, ŵ, ρ̂) are equal to the boldfaced values in Table 5.6.
Under these circumstances, we achieve a mean impurity of ῡ×100 = 3.13 and a median impurity of
υ̃×100 = 1.04 across all environments. However, these numbers offer little intuitive understanding
of the actual room-segmentation results. We therefore include some of the results to serve as specific
examples. For the majority of these maps, the segmentations from our method are very close to the
ground truth. In this section, we thus focus on those maps for which this is not the case.

Figure 5.20 gives an example of a successful room-segmentation result. Here, the segmentation
found by our method is nearly identical to the ground truth. Our method achieves such results for
all maps from the Sim2, Sim3, Sim5, Real1 and Real3 environments. This is not the case for
the Sim1, Sim4, and Real2 environments, where our method may deviate from the ground truth.
We illustrate this in Figure 5.21, Figure 5.22, and Figure 5.23, respectively. We will further analyze
and discuss these deviations in Section 5.4.1.

5.3.3. Edge-Feature Experiments

We also perform room-segmentation experiments that do not use the edge classifier. This lets
us evaluate its effects on the quality of the results. Here, no edge features are computed and no
SVM is trained, and thus the edge weights are not adjusted. The resulting room segmentation is
based purely on the map graph, without additional information. Naturally, no parameter search or
cross-validation is necessary. Before applying spectral clustering, these uniform edge weights are
nevertheless adjusted to correct for map anisotropy, as per Section 5.2.1.

Additionally, we study the importance of individual edge features for our room-segmentation
method. We accomplish this by removing specific edge features from the feature vector described in
Section 5.2.2. For the no-camera experiments, we assume that the robot was not equipped with
a camera. We therefore disable the two image-distance features and the visual doorway detection.
If the robot was equipped with a narrow-angle ceiling camera, doorway detection would still be
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(a) Ground truth (b) Result (υ × 100 = 0.56)

Figure 5.20.: An example room-segmentation result for the Sim2 simulated environment. (a)
shows the ground truth according to Section 5.3.1.1. Similarly, (b) displays the result of our room-
segmentation method, using the best parameters from Table 5.6. Comparing the two subfigures,
we see that our result closely matches the ground truth. Map nodes are represented by circles, and
are shown at their true location. Nodes of the same color share the same room label, and therefore
belong to the same room. We manually assigned colors to room labels, attempting to associate
each color with the same room in both subfigures. Blue lines represent obstacles such as walls or
furniture.

(a) Ground truth (b) Result (υ × 100 = 4.03)

Figure 5.21.: This figure shows a room-segmentation result from the Sim1 environment. Its style
is identical to that of Figure 5.20. In this example, our method failed to correctly segment the small
hallway in the upper-right quadrant. As our method uses a fixed room count, the lower-left room is
incorrectly split in return.
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(a) Ground truth (b) Result (υ × 100 = 7.77)

Figure 5.22.: A room-segmentation example from the Sim4 environment, in the style of Fig-
ure 5.20. Here, our method fails to segment the small room near the top. Instead, the larger
lower-left room is split at a narrow opening between a wall and a chair.

(a) Ground truth (b) Result (υ × 100 = 21.34)

Figure 5.23.: A room-segmentation result for the Real2 environment. This plot is similar to
Figure 5.20, but based on a real-world robot experiment. Consequently, map nodes are plotted
according to the robot’s internal position estimate. Small black rings represent points from the
robot’s obstacle map. As we discuss in Section 5.4.1, some room borders in this environment are
relatively indistinctive. This causes incorrect room segmentations.
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Experiment log2(C) log2(γ) w ρ p

basic −9:2:9 −15:2:−1 40 20:20:120 480
no-camera −9:2:11 −15:2:1 40 2.5, 5, 10, 20 316
no-pano same as basic 0
no-ceiling −9:2:15 −19:2:−1 40 20:20:120 300
no-obst same as basic 0

Table 5.9.: Parameter search spaces for experiments with partial edge features, using the notation
from Table 5.4. All no-* experiments also include the basic search space. For these experiments,
p is the number of parameter combinations not already included in the basic search space.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Mean impurity

Default

Uniform

no-camera

no-pano

no-ceil

no-obst

Figure 5.24.: An overview of the mean impurity ῡ for experiments with different edge features.
Values are taken from Table 5.10.

possible. However, we would be unable to compute the panoramic-image distances. We thus
deactivate these two image-distance features in the no-pano experiments. Similarly, the robot
might be equipped with a panoramic camera that does not cover the ceiling. We evaluate this case
by excluding the visual doorway detection in the no-ceiling experiments. Finally, we switch
off the passageway-width feature in the no-obst experiments. This lets us test the importance of
the robot’s obstacle map.

These experiments follow the previous procedure from Section 5.3.2. However, the optimal
parameters (C, γ, w, ρ) depend on the composition of the edge-feature vector. For this reason, we
have to perform a new parameter search for each of these experiments, as per Section 5.2.3.3. The
basic row in Table 5.9 lists the default search space for these experiments. We selected this based
on the most promising results from our initial search. Note that we have fixed the class-weight
parameterw = 40, close to the actual class ratio of approximately 38. In the initial parameter search
from Section 5.2.3.3, other values of w offered no improvement. As explained in Section 5.2.3.4,
the fine-grained parameter searches also had little effect. We therefore omit such a search for
these experiments. These limitations were added to keep the computational effort feasible. For the
no-camera and no-ceiling experiments, the lowest mean impurities ῡ occur at the fringe
of the basic search space. In these cases, we extend the search space to include at least a local
minimum for ῡ; these extensions are listed in Table 5.9.

Table 5.10 and Figure 5.24 contain the results of these edge-feature experiments. Removing
all camera-based features or disabling the SVM classifier greatly reduces the room-segmentation
quality, as indicated by the increased mean impurity. As an example, we also demonstrate the
difference between the methods with the highest and lowest ῡ: In Figure 5.25, our regular method
closely matches the ground truth. The uniform variant, which does not use an edge classifier,
gives a markedly inferior result. We will discuss this outcome in Section 5.4.2.
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Experiment log2(C) log2(γ) w ρ ῡ × 100 υ̃ × 100

Default −3 −3 40 60 3.13 1.04
uniform - - - - 12.91 15.46
no-camera −1 −3 40 5 10.87 9.67
no-pano 5 −13 40 100 3.76 1.07
no-ceiling 15 −13 40 60 3.89 1.37
no-obst −5 −3 40 80 3.69 1.21

Table 5.10.: The results of the experiments with partial edge features. For each variant, we give the
parameters with the lowest mean impurity ῡ. We also include the median impurities υ̃. Default
refers to the results achieved with all edge features, as in Table 5.5. For the uniform results, we
did not use an edge classifier. Instead, all edges in the map graph had a uniform weight of 1. For
this reason, the corresponding row also contains no parameters.

(a) With classifier (υ × 100 = 0.36) (b) No classifier (υ × 100 = 9.38)

Figure 5.25.: These plots show results from the Sim5 environment, with and without using the
edge classifier. Our regular method gave the result seen in (a), which is nearly identical to the
ground truth (not shown). For (b), we performed room segmentation with uniform edge weights.
This results in several incorrect room borders. The style of this plot is based on Figure 5.20.
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Figure 5.26.: The unoccupied floor space of the additional simulated environment, shown in the
style of Figure 5.15. This environment includes a wide passageway connecting the top-left room,
very small rooms (top right), and furniture subdividing larger rooms (left).

5.3.4. Additional Tests

Finally, we test our method on previously unseen data by conducting two additional experiments.
For the first experiment, we use five new maps, one from each of the simulated environments Sim1–
Sim5. While these environments are not new, the robot will start with a different location and
initial heading. The resulting maps are therefore somewhat dissimilar from the existing maps of the
same environment. Testing new maps of existing environments is important to our cleaning-robot
application: Here, a floor-cleaning robot may clean the same apartment repeatedly from different
starting locations, each time resulting in a different map.

These tests use the bold-faced parameters (Ĉ, γ̂, ŵ, ρ̂) from Table 5.6, as selected in Sec-
tion 5.2.3.3. By using new maps, we ensure that they did not influence the selection of these
parameters. As before, maps from the test environment are excluded from each experiment’s
training set. Although the new maps were not used during the parameter search, the outcome was
still very similar to the results in Section 5.3.2: Again, the results from the Sim2, Sim3, and
Sim5 environments were nearly identical to the ground truth. The Sim1 result exhibited the same
problem already shown in Figure 5.21. Similarly, in the Sim4 results, one of the environment’s
four room borders was placed incorrectly.

For the second experiment, we test our method on five maps from a completely new environment.
This simulated apartment shown in Figure 5.26 is not based on a real-world floor plan. Instead, it
was specifically designed to encompass a number of room-segmentation challenges. These include
a wide, non-standard passageway, tightly-connected small rooms, and furniture which subdivides
large rooms into smaller areas. Since this environment differs from the other environments, we do
not perform cross-validation. Instead, we train our classifier with the existing maps from Table 5.8,
using the bold-faced parameters from Table 5.6.

Testing on the five maps from the novel simulated environment gave mixed results. In two cases,
our room segmentation was nearly identical to the ground truth. For the remaining three maps,
our method failed to correctly identify one of the room borders; Figure 5.27 shows such a result.
Nevertheless, the other rooms within the environment were segmented correctly.

5.4. Discussion

In this section, we discuss the results from the three types of experiments in Section 5.3. Sec-
tions 5.4.1 to 5.4.3 each deal with the results from Sections 5.3.2 to 5.3.4, respectively.
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(a) Ground truth (b) Result (υ × 100 = 11.27)

Figure 5.27.: A room-segmentation result for the additional simulated environment from Fig-
ure 5.26, visualized as in Figure 5.20. As seen in (b), our method failed to identify the wide
passageway separating the upper-left room. However, all other rooms were segmented correctly.

5.4.1. Room Segmentation

Overall, our method gives good results for most environments, as demonstrated in Section 5.3.2.
Here, most of the maps are segmented very similarly to the human-derived ground truth, as for
example in Figure 5.20. However, our method produces flawed results in the Sim1, Sim4, and
Real2 environments, as seen in Figures 5.21 to 5.23. These flaws are usually limited to a single
misplaced room border. Due to the predetermined room count, such a misplaced border usually
affects two rooms: One room is not segmented from a neighboring one, while another room is
incorrectly split in two. These failures do not seem to be purely random, but tend to involve specific
locations in the environments. We inspected these locations to identify a possible cause for these
failures. Subsequently, we found that our method occasionally struggles with room borders that
coincide with passageways dissimilar from those found in the training data. This is most noticeable
for the failures in the Sim1 and Real2 environments.

All our room-segmentation results for the Sim1 environment contain the same error. Here, our
method fails to segment a small hallway from a neighboring room. Figure 5.21 shows this location
near the top-right of the map. The passageway between these two rooms is quite unusual, as seen
in Figure 5.28a. Unlike most passageways, the highlighted passageway is wider, has no door frame,
and lacks an overhead lintel. For comparison, Figure 5.28a also contains more distinctive, regular
doorways to the left and right. Figure 5.28b shows the corresponding robot-camera image. In this
image, the problematic passageway appears visually indistinct.

For the Real2 environment, we find partial failures for four out of eight maps. Figure 5.23 gives
one example of such a failure. The Real2 environment also contains several unusual passageways,
two of which are highlighted in Figure 5.29a. Our method sometimes fails to detect the room
borders at these passageways. We suspect this is because they differ from ordinary passageways,
which are much more common in the training data. As before, Figure 5.29b shows the image
taken by the robot camera. Compared to the two doorways seen near the bottom of this image, the
passageway at the robot’s location is less distinctive. The ceiling in the Real2 environment is also
unusual. For example, its height changes in places that do not correspond to room borders. The
resulting image edges may cause problems for the visual doorway detection from Section 5.2.2.3.

It would be interesting to view these results in comparison to those achieved in other works
(Section 5.1.1). However, like ours, these methods make specific assumptions regarding the robot,
map structure, and sensor data. For example, the methods presented in the survey by Bormann
et al. [19] operate on occupancy grids with global metric consistency. Our robot does not generate

148



5.4. Discussion

(a) Passageway overview (b) Robot camera image

Figure 5.28.: Our method fails to detect this unusual room border in the Sim1 environment. (a)
shows a rendered image of the location. The light red coloration highlights the location of the
undetected room border. (b) contains a robot-camera image taken at the room border; here, the
passageway appears visually indistinctive.

(a) Passageway overview (b) Robot camera image

Figure 5.29.: The Real2 environment also contains unusual room borders. In (a), we highlight
two such room borders in red and blue. (b) shows the image captured by our robot at the location
of the red room border.
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such a map, and we thus cannot directly compare these approaches to our own. Consequently,
a meaningful comparison would require modifying and optimizing a number of methods for a
common experimental framework. This is a significant undertaking, which we leave for future
studies.

5.4.2. Edge Features

The results in Section 5.3.3 demonstrate the advantages of using a classifier to adjust the map-edge
weights. In comparison to our full method, spectral clustering with uniform edge weights leads to a
much higher mean impurity ῡ. This is shown in Figure 5.24 and Table 5.10. In our experiments,
spectral clustering without a classifier will rarely reproduce the human-derived ground truth. The
results shown in Figure 5.25b serves as an example for this problem.

Figure 5.24 shows that camera images are useful for our room-segmentation method: ῡ re-
mains low if the image distance (Section 5.2.2.4) or visual doorway-detection (Section 5.2.2.3)
features are available to the classifier. One or both of these features are present for the no-pano,
no-ceiling, and no-obst experiments. In comparison, the passageway width derived from the
obstacle data (Section 5.2.2.2) is less useful: Without this edge feature, ῡ increases only slightly, as
shown in the no-obst experiment. Conversely, using only the passageway-width and edge-length
features results in a high ῡ; we demonstrate this in the no-camera experiment.

Table 5.10 shows a very high Ĉ = 215 for the no-ceiling experiment. As explained in
Section 5.2.3.4, we wish to avoid such high values of C, since they greatly slow the training of the
classifier. Initially, we used the basic search space listed in Table 5.4, for which C ≤ 29. With
this search space, we achieved a lowest mean impurity of ῡ × 100 = 9.43. However, the ῡ plots
from this search showed that ῡ decreases further as C increases. Due to the high mean impurity,
we decided to extend the search space accordingly. The resulting no-ceiling search space is
included in Table 5.4. This extended search does indeed result in the lower ῡ shown in Figure 5.24.
Nevertheless, we decided not to extend the search space towards C > 29 for the other edge-feature
experiments. While lower ῡ might be achieved this way, the computational cost is very high. Even
when distributed across 40 modern CPU cores, covering this extended search space takes several
days. The ῡ plots of the other experiments also do not hint at improvements in ῡ for these very
large values of C.

In Section 5.2.2.5, we tried to predict the usefulness of the edge features from the ROC curves
shown in Figure 5.9. We already noted that this is merely a coarse heuristic. Some limitations
of this approach become clear when comparing it to the edge-feature experiments: In Table 5.3,
there are notable differences in the area-under-curve and Youden’s J of the various edge features.
However, removing only one type of edge feature causes merely a small increase in the mean
impurity ῡ. This is shown in the no-ceiling, no-pano or no-obst experiments in Table 5.10.
In contrast, removing both the doorway-detection and image-distance features greatly increases
ῡ. We failed to predict this behavior based on the ROC analysis alone. In Section 5.2.2.3, we
also used ROC analysis to optimize the parameters for visual doorway detection. Due to the
limitations of the ROC-based evaluation, it is possible that other parameters would actually lead
to better room-segmentation results. However, a joint optimization of the passageway-detection
and room-segmentation parameters would be extremely computationally intensive, and is thus not
attempted here.

5.4.3. Additional Tests

Based on Section 5.3.4, our tests with previously unseen maps offered only limited further insights.
For the new maps from the Sim1–Sim5 environments, results were similar to those discussed in
Section 5.4.1. Most rooms within the new simulated environment were also segmented correctly.
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Overall, two out of five maps from the new environment were segmented similar to the ground
truth. The other three maps each contained one missed room-border, as for example in Figure 5.27.
This is similar to the results from some of the preexisting environments, such as in Figure 5.21.

5.5. Conclusions

The method presented in this work attempts to reproduce a human-like room segmentation from
the topo-metric maps generated by our cleaning-robot framework. As discussed in Section 5.4.1, it
does so across a variety of real and simulated environments. However, occasional failures do occur,
usually when the method fails to identify a room border. These problems often involve unusual
passageways, which are unlike those in the training data.

Using a classifier to adjust the map-edge weights is a key component of our method. This
way, the result produced by spectral clustering is closer to a human-derived room segmentation.
Specifically, these results are better than those achieved using uniform edge weights. According to
Section 5.2.3.4, our method’s performance strongly depends on the parameters (C, γ, w, ρ). An
extensive parameter search is therefore required to make good use of our method. In Section 5.4.2,
we investigated the effect of using just a subset of our edge features. Here, the edge features derived
from camera images proved to be especially important. Without them, much of the beneficial effect
of the classifier was lost. Although not strictly required, a camera is therefore a useful tool for room
segmentation using our method.

Since our method uses spectral clustering, the room count must be known in advance. In
Section 5.2.4.1, we tested two heuristics for determining this number from the map graph. Unfortu-
nately, both methods gave only mixed results in their current state. If possible, a human operator
should therefore provide the room count instead.

5.6. Outlook

In this chapter, we presented an initial version of our room-segmentation method. Due to the
number of components, there are many avenues for future improvements. Furthermore, our solution
could also be tested in additional environments, or using different sensors or robots.

According to Section 5.4.2, the room-segmentation results strongly depend on the available edge
features. Finding more suitable edge features may therefore improve our method. In Section 5.4.1,
we noticed that misplaced room-borders tend to involve challenging passageways. Edge features
that lead to the correct classification of such passageways would thus be especially beneficial.
Unfortunately, we have not yet found a simple measure to accurately predict the usefulness of edge
features for room segmentation. For this reason, selecting good edge features currently requires
computationally intensive experiments.

Improving the classifier itself should also result in a more accurate room segmentation. Extending
the parameter search spaces beyond those listed in Table 5.4 would be a simple first step. Since we
already performed extensive searches, we are uncertain whether this would offer meaningful im-
provements. Using different SVM variants or kernel functions might also improve the classification
result [22]. Finally, completely different types of classifiers could be evaluated. Due to the large
number of classifiers described in the literature, this would be a considerable task.

Currently, the classifier is trained with all map edges from all training maps. However, this does
not take into account the subsequent graph-clustering step: Most of the map edges exist within
open spaces, where room borders are unlikely to occur. In contrast, edges in narrow openings and
passageways might be more relevant for room segmentation. We therefore suggest a modified
training scheme to emphasize these edges while also shrinking the training set: Initially, the training
set would consist of all room-border edges, plus a small fraction of the within-room edges. Using
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this set, we perform the usual parameter search for the lowest mean impurity ῡ. Those map edges
that were incorrectly cut by misplaced room borders are now added to the training set. By repeating
the process, we attempt to grow a training set of edges critical to room segmentation. We hope that
this could improve the our results, while keeping the size of the training set manageable.

At the moment, we set the map-edge weights according to the edge-classification result. However,
this binary decision does not consider the confidence of the classification. Using the approach
proposed by Platt [119], we may estimate the probability pb that a given map edge crosses a room
border. Its edge weight would then be multiplied by 1+(ρ−1−1)pb, instead of just the fixed values
of 1 or ρ−1. We hope that this might reduce the impact of false classifications on the resulting room
segmentation.

We also wish to further evaluate our method with regard to different aspects: So far, our maps
mostly contain conventional, western-style domestic spaces. First, we are interested in how well our
method performs when faced with a greater variety of environments. It is also possible that a larger
amount of training data might improve the quality of the results. Second, we wish to compare our
method against existing room-segmentation schemes. As mentioned before, these methods usually
operate on different types of input data. Thus, the different candidates will have to be modified to
operate on common test data. Third, we may try to extend our method to different types of robots.
This may require adjustments that account for maps with different structures, as well as different
sensors and thus edge features. At the moment, we cannot directly compare our approach to those
of others, as discussed in Section 5.4.1. However, it may be possible to adapt a number of existing
techniques to work within a shared experimental framework. This would allow for a systematic and
meaningful comparison between the results from several methods.

Finally, we would like to incorporate room segmentation into our robot’s cleaning strategy.
During preliminary simulator experiments, we examined the use of room segmentation for human-
robot interaction. Here, a human operator was shown the room-segmentation result on a laptop,
visualized as in Figure 5.23b. After labeling the rooms, the operator could issue a series of cleaning
commands, such as “Clean the bath, clean the kitchen, then return home”. The robot would then
execute these tasks using information from the existing map. However, this application still requires
extensive testing and development, especially under real-world conditions.
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In this final chapter, we first review and summarize the content of this dissertation in Section 6.1. In
Section 6.2, we then present the overall conclusions drawn from this work. Finally, we consider the
general possibilities for future research in Section 6.3. For these last two sections, we emphasize
points that were not already covered in the individual chapters.

6.1. Overall Summary

As we have discussed in Chapter 1, floor cleaning in domestic environments is a popular application
for autonomous robots. Our group has developed a cleaning-robot framework that solves this task
by covering an unknown floor in a systematic manner. Throughout this project, we encountered
several unsolved problems which are also relevant to domestic robots in general. Consequently, the
objective of this dissertation is to study and resolve some of these questions in the context of our
cleaning robot. After describing our framework in Chapter 2, we thus focus on three core problems
in Chapter 3, Chapter 4, and Chapter 5. As we shall see, the limited resources available to a typical
domestic cleaning robot often lead to unconventional and novel solutions. We now summarize
these chapters, briefly discussing the objective, methods, results, and conclusions for each one.

6.1.1. Chapter 2: An Introduction to our Autonomous Cleaning Robot
Framework

In Chapter 2, we introduce both the cleaning-robot framework and the physical robot prototype
developed by our group. This cleaning robot should systematically traverse the entire floor in an
unknown domestic environment. To reduce energy consumption, noise, and component wear, it
should do so in the shortest possible distance and time. Limited onboard computing power and
sensors add to the challenge of performing this task in real time. To our knowledge, ours is the first
academic project that presents a complete framework capable of systematically covering complex,
multi-room environments. We limit the project’s complexity by emphasizing solutions which are
comparatively easy to design and implement: In general, our robot extends the cleaned area by
driving a series of straight, parallel lanes. These non-overlapping, meandering lanes form larger
parts which are free of gaps; complex floor shapes can then be covered using multiple parts. This
systematic approach simplifies the planning problem, and also ensures that the robot does not get
lost.

To implement this cleaning strategy, our framework employs three main components: A map
stores information about the environment, which is then used by the planners to determine the
robot’s actions. The resulting plans are executed by the control component, which in turn extends
the map based on sensor data. Within this group project, the author made improvements to the
planners and the control automatons (Section 2.1.3). These changes enhanced the robot’s cleaning
performance, especially in narrow spaces. The author also contributed to the robot’s collision
handling, and improved the mapping, detection, and avoidance of obstacles. Next, we briefly
summarize the physical robot and the three framework components introduced in Chapter 2.

Our physical robot resembles commercial domestic models, and is propelled by two powered
wheels with differential drive (Section 2.2). As its main sensor, our robot carries a panoramic
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fisheye camera which captures the entire hemisphere above the chassis. We use the camera’s images
to perform numerous tasks, including localization, mapping, navigation, and obstacle detection. All
computations are handled by an onboard Intel Atom N2600 dual-core CPU running at 1.6 GHz;
this low-power processor is typical for embedded applications.

Throughout its cleaning run, our robot constructs a topo-metric map of the covered area (Sec-
tion 2.3.1). This map consists of a graph, in which each node represents a location visited by the
robot. Map edges indicate whether direct travel between adjacent nodes is possible. Each node
is annotated with a metric position estimate and a camera image captured at the corresponding
location. This map is used for localization, navigation, and to detect uncleaned space during
planning. It does not, however, contain any landmarks extracted from the environment, which
reduces the map’s complexity. Our robot also builds a map of the obstacle points recorded by the
range and collision-detection sensors (Section 2.3.2). This map is only needed to detect free space
and to avoid obstacles, and is not used for self-localization. Note that neither the topo-metric nor the
obstacle map enforce global metric consistency. Thus, all metric position estimates are only valid
relative to those of nearby locations. This greatly simplifies map construction and maintenance.

Based on these maps, our robot uses a planning component to choose its next action (Section 2.4).
To simplify this process, we do not plan multiple steps ahead, and select only one action at a time.
The part-lane planner determines the next lane by which the robot should extend the cleaned area.
Besides the regular meandering lanes, this planner can also generate piercing lanes to clean through
narrow openings. A second planner then determines a path through the map graph which leads the
robot to the planned lane’s starting point.

The plans are translated into motor commands by lane-driving and path-following automatons
(Section 2.5). These automatons may make minor adjustments to the plan, such as driving around
an unexpected obstacle. This allows for flexible reactions to unforeseen situations, while also
keeping the underlying plans simple. Our automatons run inside a main loop, which processes
sensor data and handles common housekeeping tasks. By separating these tasks into the main loop,
we can simplify the design of the individual automatons. This loop also maintains a probabilistic
estimate of the robot’s pose, which is updated by integrating the wheel odometry [104]. We correct
this estimate by determining the relative pose between the robot and nearby map nodes. For this
purpose, we apply a holistic visual pose-estimation method [102] to low-resolution (≈ 0.015
megapixels) panoramic images. The control automatons then use this pose estimate to drive the
robot along the desired trajectory.

To test our framework, we conducted experiments in a variety of real and simulated environments
(Section 2.6). We found that our robot successfully covers the floor in complex multi-room
apartments, offices, and laboratories (Section 2.7). However, covering narrow, tangled spaces
with straight lanes can be challenging. A lack of map consistency and limited look-ahead during
planning may also reduce our framework’s efficiency. We consider these to be minor trade-offs,
made necessary by the limited resources available to our robot.

6.1.2. Chapter 3: Comparing Holistic and Feature-Based Methods for
Visual Relative-Pose Estimation

Visual relative-pose estimation has many applications in mobile robotics, including in our cleaning-
robot framework. To solve this problem, a method determines the relative orientation and bearing
between the capture poses of two images. The literature contains many holistic (Section 3.1.2)
and feature-based (Section 3.1.1) solutions for this task. Holistic methods incorporate all image
pixels into their pose estimate. In contrast, feature methods extract only a limited set of local visual
features. They then determine the relative pose from the image positions of matching feature pairs.
However, a lack of comparative evaluations makes it difficult to choose an appropriate method for a
given application.
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We therefore evaluate a selection of pose-estimation methods for their quality, speed, and
robustness. Since domestic robots often travel on even floors, we include methods that assume such
a planar motion. To our knowledge, this is the first such in-depth comparison made available to the
public. Our experiments are based on novel panoramic-image databases, which we recorded using
our cleaning robot. These databases include a laboratory and office environment during both day-
and nighttime (Section 3.2.1). All images and metadata are available for download [47], enabling
others to replicate and extend our results.

To study the accuracy and precision of our candidates, we compare their pose estimates to a
ground truth (Sections 3.3.1 and 3.4.1). Besides the average pose-estimation error, we also look
for outliers which may have adverse effects in some applications. Note that the typical distance
between the image-capture positions depends on the application in which visual pose-estimation
is used. We therefore also study how the estimation error is affected by this distance. Here, we
observe noticeable differences between the methods, especially at very short or long distances. We
also notice that the planar-motion methods usually outperform their nonplanar alternatives.

A high pose-estimation speed is essential to meet the real-time constraints of a domestic mobile
robot. We thus measure each candidate’s execution time on a desktop computer and on the
embedded system carried by our prototype (Section 3.3.2). Some of the candidates also show
a marked variance in their execution time. This uncertainty makes it more difficult to use these
methods under real-time constraints. For this reason, we also look for outliers in each candidate’s
execution time. We found that the mean and variance of the execution times can vary widely
between the competitors. Furthermore, several candidates are too slow for real-time use on a typical
domestic cleaning robot (Section 3.4.2). We also note that the fastest methods are those which
make use of the planar-motion assumption.

Next, we evaluate the robustness of our candidates to strong changes in illumination (Sec-
tion 3.3.3). Such changes are likely to occur in real-world environments, where lighting conditions
are not controlled. To this end, we test the candidates using mixed day-night image pairs. The
impact on the quality and speed varies widely depending on the method (Section 3.4.3); for some,
the mean bearing-estimation error even exceeds 60◦ under this day-night contrast.

Recall that the planar-motion methods assume that the images are captured by a camera moving in
a two-dimensional plane. This reduces the relative pose’s degrees of freedom, and leads to fast and
accurate pose estimates. However, this assumption is violated if our robot tilts, which commonly
occurs on rough floors. We discovered that such a tilt markedly increases the pose-estimation error
of the planar-motion methods. For tilt angles greater than ≈2◦, the error surpasses that of some
non-planar candidates; as expected, the latter remain unaffected by tilts.

Based on these results, we found that no candidate is clearly superior in all respects. While all
candidates are at least reasonably accurate under constant illumination, their execution time and
robustness varies markedly. We thus provide practical advice for selecting an appropriate method
for a given application (Section 3.5). The holistic min-warping method [102] used in our framework
produces good pose estimates, which are fairly robust to day-night changes. It is also one of the
fastest candidates and provides a near-constant execution time. Consequently, min-warping remains
the method of choice for our cleaning-robot project. However, its accuracy remains below that
achieved by some of the feature methods. As a planar-motion method, min-warping’s estimation
errors also increase markedly if the robot is tilted. Methods based on the scale-invariant feature
transform (SIFT) [89] are highly accurate and robust to strong illumination changes. Unfortunately,
they are currently too slow for real-time use within our cleaning-robot framework. In comparison,
feature methods based on binary robust invariant scalable keypoints (BRISK) [84] are much faster,
but less robust to illumination changes. The literature contains additional methods and variants not
considered in this study; these may be evaluated in future experiments.

155



6. Summary, Conclusion and Outlook

6.1.3. Chapter 4: Visually Estimating Camera Tilts from Panoramic Images
in Domestic Environments

Mobile domestic robots commonly move across an even floor, and rotate around an axis orthogonal
to this plane. Under these circumstances, the degrees of freedom in the robot’s pose are reduced
from six to three. This planar-motion assumption simplifies many problems in mobile robotics;
it is also widely used in our cleaning-robot framework. As demonstrated in Chapter 3, this can
also improve the accuracy and speed of visual methods. However, tilting the robot violates the
assumption, which quickly degrades the results of such planar-motion methods. We therefore
propose two new schemes for visually estimating the robot’s tilt relative to the floor plane. Since our
robot’s camera cannot see the floor, we exploit the vertical elements commonly found in domestic
indoor environments. By estimating merely the tilt instead of a full camera orientation, our methods
remain simple compared to those in the literature (Section 4.1.1). The tilt-estimation process should
be accurate and fast enough to be suitable for real-time tilt correction. Such a correction should
make planar-motion visual methods more robust under real-world conditions. We use our previous
results from Chapter 3 to define meaningful criteria for the necessary accuracy and speed.

Both our solutions operate on edge pixels extracted from our robot’s panoramic images. The
image-space method estimates the tilt from the apparent vanishing point of the vertical elements
(Section 4.2.1). Here, we make several approximation to compensate for the nonlinear projection
of our camera’s fisheye lens. We then estimate the tilt directly from the vanishing point’s position
in the image space. Under the approximations made above, we can easily find this point from the
positions and gradients of the edge pixels. To reject edge pixels from non-vertical elements, we
introduce an efficient reject-refit scheme; we also evaluate random sample consensus (RANSAC)
[44] as a comparison. While this image-space approach is very fast, the approximations also
introduce a systematic error in the tilt estimate. We therefore add a final correction step, which
multiplies the tilt angle with a correction factor learned from training data.

The vector-consensus method estimates the tilt through conventional linear algebra (Section 4.2.2).
Given a calibrated camera model, each edge pixel provides a partial constraint for the tilt in 3D
space. After applying RANSAC to reject edge pixels from non-vertical elements, we use a least-
squares approach to estimate the tilt from these constraints. This solution is more computationally
intensive, but makes fewer approximations than our image-space approach. For the sake of fairness,
we also test the machine-learning correction step with this method.

To test our solutions, we record a database of tilted images using our cleaning robot (Sec-
tion 4.2.3). Based on preliminary experiments, we first predict the tilts our robot is likely to
encounter in domestic environments. We then capture images with similar tilts in several different
surroundings. This includes locations for which we expect tilt estimation to be difficult, such as
underneath furniture. After applying our two methods to these images, we compare the result to a
ground truth derived from a statics model. In these experiments, we employ cross-validation to
choose appropriate parameter values for our methods.

We find that our solutions achieve good tilt estimates across a range of environments and tilt
angles. For the best variants, the average estimation error remains below 1◦ (Section 4.3.1). Overall,
the image-space method with the reject-refit scheme gives the most accurate and fastest results.
In comparison, the vector-consensus method is usually slower and less accurate. This method
might however be suitable for applications where the approximations made by the image-space
method are invalid. Since the methods require little computing time, they are suitable for real-time
use on our robot (Section 4.3.2). However, images that contain few vertical elements or many
near-vertical elements remain a challenge. Note that some error is always present in these estimates,
even if the robot is untilted (Section 4.4). In environments where the robot rarely tilts, a subsequent
tilt-correction step may thus be detrimental. In conclusion, we believe that our tilt-estimation
methods are suitable for use in tilt correction; this should make planar-motion visual methods
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more robust (Section 4.5). However, the actual benefit likely varies depending on the specific
environment and application. For future experiments, adding a confidence measure to our methods
may assist in rejecting incorrect tilt estimates. We might also correct our estimates using prior
knowledge about the magnitude of the tilts in a given environment.

6.1.4. Chapter 5: Human-Like Room Segmentation in Domestic
Environments

Domestic robots such as ours commonly operate in indoor environments which consist of rooms
connected by passageways. Identifying these rooms within the robot’s map has several uses,
including in planning and human-robot interaction. In Chapter 5, we thus try to segment our
topo-metric maps in a way that matches the room layout identified by a human. To achieve this goal,
we propose a novel scheme that learns room segmentation from human-annotated training maps.
Unlike existing methods (Section 5.1.1), we achieve this capability without full-scale semantic
mapping (Section 5.1.2). Thus, our method does not require preexisting knowledge about the types
of rooms which are present in the environment. To take full advantage of our robot’s sensors, our
approach combines different sources of information. These include the map topology and geometry,
obstacle data, and panoramic images recorded by the robot.

Our approach combines three main steps to segment the topo-metric map (Section 5.2): First,
we calculate a set of features for each edge in the map graph. We use these features to determine
which map edges cross the border between two rooms (Section 5.2.2). Here, we include the length
of the edge, a passageway detection based on the obstacle map, a visual doorway detection, and
two image-distance measures. We also investigate heuristics for selecting suitable edge features
using receiver operating characteristic (ROC) analysis (Section 5.2.2.5). A support vector machine
(SVM) classifier [27, 22] then identifies the room-border edges based on their feature vectors
(Section 5.2.3). This SVM is trained on manually segmented maps and then used to select the edge
weights, which leads to a human-like room segmentation. Finally, we employ spectral clustering
[91, 135] to segment the map graph into rooms (Section 5.2.4). This step identifies compact clusters
which are weakly connected by the identified room-border edges. Applying spectral clustering also
makes our method more robust to incorrectly-classified map edges. In this study, we assume that
the correct number of rooms is known. However, we also test two heuristics which estimate this
number from the map graph.

We evaluate our solution using numerous maps from both real-world and simulated apartments
and offices (Section 5.3.1). These include complex spaces with up to nine differently-shaped rooms
and 125 m2 of floor area. To generate plausible camera images for the simulated environments,
we apply a physically-based renderer to detailed 3D models. To judge our results, we select an
appropriate metric which compares our room segmentations with a human-derived ground truth.
Using this metric, we can then optimize our method’s parameters through cross-validation; here,
we found that well-chosen parameters are vital to achieve good results. Finally, we conduct a series
of room-segmentation experiments, presenting both individual results and a quantitative evaluation
(Section 5.3.2). Besides our full method, we also tested variants that exclude some or all of the
edge features (Section 5.3.3).

We find that our method successfully reproduces human-like segmentations in both real and
simulated environments (Section 5.4.1). By employing machine learning to identify room-border
edges, we achieve markedly better results than graph clustering alone (Section 5.3.3). However,
unusual room borders which do not occur in the training data may occasionally lead to incorrectly-
segmented rooms. We also discovered that our vision-based edge features are especially useful for
room segmentation with our method. They offer a greater benefit than the features derived from
the map geometry or obstacle data. For this application, we thus recommend equipping domestic
robots with panoramic cameras. Our attempts to predict the relative performance of these edge
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features through ROC analysis offered only limited insights. Evaluating possible new edge features
thus currently requires full-scale testing, as performed in this work. Unfortunately, our room-count
estimation heuristics were only partially successful. At the moment, manually specifying the room
number thus still gives the best results. In future experiments, we seek to train and test our solution
in additional environments, especially in those with unusual room borders. It may also be beneficial
to incorporate a measure for the edge classifier’s confidence into our method.

6.2. Overall Conclusions

While working on this dissertation, we arrived at some conclusions that are not specific to any
chapter. First among these is a strong preference for simple methods which solve specific problems.
More complex methods may be manageable in isolation, for example during stand-alone experi-
ments. However, integration into a complete system often causes troublesome interactions. These
may increase the complexities of the system to a degree that is nearly impossible to manage. We
thus recommend that the components of a domestic robot should be kept as simple as possible,
even if some performance must be sacrificed. This issue has also been raised by the developers
of the Roomba cleaning robot, who explicitly proclaim that “Complexity kills.” [75] Like these
authors, we also found that “it is sometimes better to implement a needed feature by inventing a
simple, new system than to add two or more familiar systems to the robot” [75].

We believe that real-world testing is essential when developing a domestic robot. Only tests of the
entire system can reveal some of the problematic interactions between its components. Experiments
under real-world conditions also expose flaws which may only occur in a specific environment. In
fact, we are not the first to discover that each new test environment can also highlight a new type
of problem [75]. Consequently, even fairly simple robots are bound to require extensive testing
throughout the development process [113]. Unfortunately, full-scale real-world experiments also
demand a lot of time and resources. Isolating problems discovered during such tests can also
be challenging, making it difficult to analyze them. Thus, limited tests in simulations and under
controlled conditions can be useful to guide the robot’s development. Results from generalized
experiments not specific to a particular application may also be more useful to other practitioners.
For these reasons, we make frequent use of such experiments throughout this dissertation. When
building a complete framework, these results should nevertheless be verified through full-scale
testing whenever possible.

Throughout this dissertation, we repeatedly found visual methods to be highly useful. Appli-
cations include the control of our robot (Chapter 2), relative-pose estimation (Chapter 3), and tilt
measurements (Chapter 4). Such methods also proved highly useful in reproducing human-like
room segmentations (Chapter 5). Furthermore, cameras are highly versatile sensors which can
provide detailed information across a large field of view. They require little power and are cost-
effective, lightweight, and compact. Because cameras are passive sensors, their images are however
sensitive to changes in illumination, as for example in Chapter 2. Processing high-resolution images
can also be computationally intensive, making it more difficult to meet real-time constraints. This
can be especially challenging when working with a low-performance embedded computer, as in our
cleaning robot. We found that this problem can be alleviated by using only a fraction of each image.
For example, the holistic pose-estimation method in Chapter 3 uses a very low image resolution of
≈ 0.015 megapixels. Similarly, our tilt-estimation schemes from Chapter 4 work on just a small set
of edge pixels. In both cases, this results in methods suitable for real-time use on our cleaning robot.
Since images are highly regular data structures, visual methods can also make good use of parallel
processing. Overall, we therefore consider cameras our sensor of choice for domestic robots like
our own.
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6.3. Overall Outlook

In this final section, we speculate on possible directions for our cleaning-robot research. These are
large-scale future developments, which extend beyond the specific advancements proposed at the
end of each chapter.

It may be useful to integrate the results from this work into our cleaning-robot framework: By
implementing a tilt correction based on Chapter 4, the visual methods should become more robust
to uneven ground. While we have previously added such a correction, we still need to study its
effects through full-scale, real-world testing. The room-segmentation method from Chapter 5 opens
up new avenues for hierarchical planning and user interaction. As per Section 5.6, we performed
initial experiments in which an operator orders the robot to clean specific rooms. In this case,
the robot needs to maintain two different maps: On one hand, we use a persistent map of the
whole environment for room segmentation and user interaction. This persistent map also guides
the robot to the target rooms. On the other hand, we must construct a new map to record the areas
covered in the current cleaning run. This is a major modification of our framework, which still
requires additional development and testing. Finally, some of the pose-estimation candidates from
Chapter 3 were more accurate or robust than our current method. However, these alternatives
are also significantly slower, and would thus require a much more powerful onboard computer.
Integrating these improvements into a complete prototype will likely require a dedicated research
project.

Lawn-mowing robots have recently grown more popular in the consumer market. Their coverage
task is similar to that of cleaning robots, but must be performed outdoors. It may thus be possible
to derive a lawn-mowing framework from our cleaning-robot research. However, the planar-motion
assumption used in our framework is usually not valid in outdoor spaces. We must therefore
redesign the map, planning, and control components for such nonplanar environments. Additionally,
the framework must be able to deal with different seasonal and weather conditions. Unlike the
floor in an indoor space, a lawn is not necessarily enclosed by obstacles. We thus have to detect
the boundaries of the grass, possibly through visual methods. Members of our group have already
worked on some of these problems, such as visual localization in nonplanar environments [139, 35]
or robustness to weather-induced changes [36, 68]. However, a complete lawn-mowing framework
has not yet been developed.

An entirely new cleaning-robot framework may tackle some of the basic flaws in our current
approach. For example, it might be worthwhile to abandon the straight lanes and rigid part-lane
structure from Chapter 2. Instead, the robot would perform a curved trajectory that works well even
in tight spaces. However, this additional freedom may complicate the planning problem. Finally,
we may use multiple robots that cooperate with each other to solve the cleaning task. Acting as a
networked group, they could combine their sensor data to build a single map. Since this lies far
beyond our current framework, it would require a new, dedicated research project.
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A. Software and Settings for Visual
Pose-Estimation Experiments

This appendix contains the software versions and algorithm settings used for our visual relative-pose
estimation experiments in Chapter 3.

Component Version
Linux kernel 3.13.0
GNU C/C++ compilers 4.8.4
OpenCV library 2.4.9
OpenGV library 2015-11-18
WarpingSIMD Release Code6

Table A.1.: A list of major components used in this work, together with their version numbers. For
the OpenGV library, the date at which the library was checked out from its official repository is
given.

Parameter Value

Unfolded image size 288× 48
Unfolding rect. avg. filter 7× 7
Elevation range 0◦ to 75◦

nψ, nα 96
nψ search fraction 0.3
Pixel scale 2310.72
Post scale 227.552
ρ range 0 – 100 (= off)
Scale planes 9
Scale-plane precision 8 bit
Search precision 16 bit
Fine search Off
Interpolation Off
Max. scale factor 2.0
Max. threshold 2.5

Table A.2.: Settings for min-warping. Details on these parameters can be found in [98]. We reused
values that gave good results during previous robot experiments. The pixel scale and post scale
were determined for the databases used in our experiments.
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Parameter Value

Number of features 500 or 1500
Pyramid scale factor 1.2
Pyramid levels 8
Edge threshold 31
Feature scoring Harris
BRIEF patch size 31

(a) ORB settings

Parameter Value

Detection threshold 30
Number of octaves 3
Sampling pattern scale 1

(b) BRISK settings

Parameter Value

Number of features Unlimited
Layers per octave 3
Contrast threshold 0.04
Edge threshold 10
Initial Gaussian filter σ = 1.6

(c) SIFT settings

Parameter Value

Hessian threshold 350
Number of octaves 4
Layers per octave 2
Descriptor size 128
Rotation invariance Enabled

(d) SURF settings

Table A.3.: Settings for ORB, BRISK, SIFT and SURF features, as passed to the OpenCV library.
All values except for the number of ORB features and the SURF threshold are library defaults.
Here, we adjusted the SURF threshold to detect an average of 1500 features per image.
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[97] R. Möller. “A model of ant navigation based on visual prediction.” In: Journal of Theoretical
Biology 305, 2012, pp. 118–130. DOI: 10.1016/j.jtbi.2012.04.022.
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