
Mü and Nebel BMC Bioinformatics (2018) 19:321
https://doi.org/10.1186/s12859-018-2349-1

SOFTWARE Open Access

GeFaST: An improved method for OTU
assignment by generalising Swarm’s fastidious
clustering approach
Robert Müller1,2* and Markus E. Nebel1,2,3

Abstract

Background: Massive genomic data sets from high-throughput sequencing allow for new insights into complex
biological systems such as microbial communities. Analyses of their diversity and structure are typically preceded by
clustering millions of 16S rRNA gene sequences into OTUs. Swarm introduced a new clustering strategy which
addresses important conceptual and performance issues of the popular de novo clustering approach. However, some
parts of the new strategy, e.g. the fastidious option for increased clustering quality, come with their own restrictions.

Results: In this paper, we present the new exact, alignment-based de novo clustering tool GeFaST, which
implements a generalisation of Swarm’s fastidious clustering. Our tool extends the fastidious option to arbitrary
clustering thresholds and allows to adjust its greediness. GeFaST was evaluated on mock-community and natural
data and achieved higher clustering quality and performance for small to medium clustering thresholds compared to
Swarm and other de novo tools. Clustering with GeFaST was between 6 and 197 times as fast as with Swarm, while
the latter required up to 38% less memory for non-fastidious clustering but at least three times as much memory for
fastidious clustering.

Conclusions: GeFaST extends the scope of Swarm’s clustering strategy by generalising its fastidious option, thereby
allowing for gains in clustering quality, and by increasing its performance (especially in the fastidious case). Our
evaluations showed that GeFaST has the potential to leverage the use of the (fastidious) clustering strategy for higher
thresholds and on larger data sets.

Keywords: Sequence clustering, Operational taxonomic units, Microbial community analysis

Background
The advent of high-throughput sequencing (HTS) tech-
nologies revolutionised the research in the life sciences
and the resulting massive genomic data sets provide the
basis for new insights into the diversity and dynamics of
biological systems. For example, contemporary studies of
the diversity and structure ofmicrobial communities often
involve sequencing millions of 16S rRNA gene sequences
due to, e.g., its ubiquitous nature [1]. In order to facili-
tate downstream analyses of the resulting huge amplicon

*Correspondence: romueller@techfak.uni-bielefeld.de
1International Research Training Group “Computational Methods for the
Analysis of the Diversity and Dynamics of Genomes”, Bielefeld University,
Bielefeld, Germany
2Faculty of Technology, Bielefeld University, Bielefeld, Germany
Full list of author information is available at the end of the article

data sets, the amplicons are commonly grouped into oper-
ational taxonomic units (OTUs). Over the years, diverse
methods for OTU clustering have been developed, which
can employ alignment-based or alignment-free [2] sim-
ilarity measures and compute these exactly or approxi-
mately. In addition, methods differ in how they deter-
mine the clusters: (i) comparing sequences to a reference
database and grouping those sequences which are similar
to the same reference sequence (closed-reference cluster-
ing), (ii) clustering sequences based on their distances
among each other (de novo clustering), and (iii) a combina-
tion of both using de novo clustering for those sequences
that could not be assigned through closed-reference clus-
tering (open-reference clustering).
As pointed out by Westcott and Schloss [3], all three

approaches have their strengths and weaknesses, but de
novo clustering has become a favourite one – especially

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications at Bielefeld University

https://core.ac.uk/display/211846872?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2349-1&domain=pdf
http://orcid.org/0000-0002-0909-3608
mailto: romueller@techfak.uni-bielefeld.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Mü and Nebel BMC Bioinformatics (2018) 19:321 Page 2 of 14

because it does not depend on (the existence of) a refer-
ence database. However, traditional de novo methods (e.g.
[4–6]) are criticised for their sensitivity to the input order
of the amplicons and their dependence on an arbitrary
fixed global clustering threshold [7].

Swarm clustering
Swarm [8] has been devised as an exact, two-phased,
agglomerative de novo clustering algorithm that over-
comes above problems by iteratively extending a cluster
using a local clustering threshold t and starting from
the most abundant amplicons. Here, a cluster (or OTU)
can be viewed as an edge-weighted, rooted, acyclic and
undirected graph G = (V ,E, s,w) where V is the set of
vertices (amplicons), E is the set of edges (links between
amplicons), s is the root (seed amplicon), and w is the
weight function assigning to each edge the distance
between the incident amplicons. Using a scoring func-
tion δ, Swarm considers the distance dδ between two
amplicons as the number of differences in an optimal
alignment based on the given δ. Then, the set of part-
ners of an amplicon a in an amplicon pool A respective
to a distance function d and a threshold t is defined
as Pd(a,A, t) = {b ∈ A | d(a, b) ≤ t}, with Swarm
using d = dδ .
Its iterative clustering method for a poolA of amplicons

works as follows (Fig. 1a): The most abundant amplicon
in the pool is removed from it and serves as the seed
s of a new OTU. Next, all amplicons in Pdδ

(s,A, t) are
transferred from A to the OTU (forming the first genera-
tion of subseeds). For each such subseed s′, we determine
Pdδ

(
s′,A, t

)
in order to find the second generation of sub-

seeds. This process is iterated until no more amplicons
can be added to the OTU, which is then closed. Start-
ing with the most abundant amplicon in the remaining
pool as the seed of the next OTU, the overall procedure is
repeated until the pool is empty.
In order to avoid over-grouping through long chains of

consecutive links between amplicons (a common problem
of single-linkage clustering), Swarm also implements an
optional breaking mechanism to turn different centres of
abundance into separate OTUs. Originally, breaking was
realised in a separate phase using a parameterised script.
In brief, it examined the abundances along such amplicon
chains linking centres of abundance (usually star-shaped
subgraphs with an abundant amplicon in its centre, which
is surrounded by less abundant amplicons) and decided on
breaking or not based on the ratio between the minimum
and maximum observed abundance. More current ver-
sions of Swarm use a non-parameterised breaking mech-
anism, which is directly included in the growth phase
described above and allows only monotonically decreas-
ing abundances along consecutive links (outwards from
the seed). Partners of an amplicon are then defined as

P′
d(a,A, t) = {b ∈ A | d(a, b) ≤ t

∧ a.abundance ≥ b.abundance}.
Moreover, Swarm offers a so-called fastidious clustering

option for t = 1 from version 2.1.0 onwards in order to
reduce the effect of under-grouping. To this end, Swarm
distinguishes between light and heavyOTUs using a user-
definable threshold b on their total abundance (with the
sum of the abundances of the comprised amplicons being
considered as the weight of an OTU). For a collection of
OTUs C and threshold b, the light and heavy OTUs (C<b
and C≥b, respectively) are defined as follows:

C<b =
{

C ∈ C
∣∣∣∣
∣

∑

a∈C.V
a.abundance < b

}

C≥b =
{

C ∈ C
∣∣
∣∣∣

∑

a∈C.V
a.abundance ≥ b

}

Fastidious clustering grafts light OTUs onto heavier
ones by postulating the existence of a (virtual) linking
amplicon (Fig. 1b). If such a virtual amplicon bridges the
gap of size at most tf = 2 (with tf being the fastidious
threshold) between the OTUs, then all amplicons of the
light OTU (but not the virtual amplicon itself) are added
to the heavy one.
In general, Swarm identifies the partners of an amplicon

by iterating over the remaining amplicons in the pool and
computing pairwise optimal alignments to determine the
number of differences. In order to avoid a large number
of unnecessary alignment computations, two amplicons
have to pass a filtering step first, which compares their k-
mer compositions to obtain an estimate of their similarity
[9]. Furthermore, Swarm speeds up the alignment compu-
tations by parallelisation through SIMD instructions. For
t = 1, current versions of Swarm employ a dedicated algo-
rithm which scales linearly with the number of amplicons.
The partners of an amplicon are found by generating the
microvariants of the current amplicon (i.e. all amplicons
with an edit distance of 1 to it) and searching these in a
hash table of the amplicons in the pool. Microvariants are
also used in the fastidious clustering step, which is imple-
mented with the help of a Bloom filter [10], a probabilistic
dictionary, in which the microvariants of all amplicons of
light OTUs are stored. Subsequently, the microvariants of
the amplicons of heavy OTUs are cross-checked against
the dictionary in order to identify the fastidious links.

Pass-Join
As described in the previous section, determining the
partners of the current subseed is a crucial step in the
clustering strategy of Swarm. While the employed k-mer
filter helps to avoid many unnecessary alignment compu-
tations, iterating over the remaining pool for each subseed
is still time-consuming. Similarly, setting up the Bloom

Mü and Nebel BMC Bioinformatics (2018) 19:321 Page 3 of 14

a

b

Fig. 1 Schematic view of Swarm’s clustering strategy. a Starting from a seed, amplicons are added iteratively using a small local threshold t until the
OTU reaches its natural limit when no more amplicons can be connected to it. b By postulating the existence of virtual linking amplicons, light OTUs
are grafted onto heavy ones during the fastidious clustering step. Adapted from [8, Figure 1]

filter and cross-checkingmicrovariants for fastidious clus-
tering can be expensive in terms of runtime and memory
consumption. Both tasks come down to identifying sim-
ilar sequences, which can be efficiently accomplished by
adapting the segment filter introduced by Li et al. in Pass-
Join [11], a tool originally proposed for computing string
similarity joins on two sets of strings using the edit dis-
tance. It follows a filter-and-verify approach to determine
pairs of similar sequences efficiently, avoiding large pro-
portions of unnecessary sequence comparisons. Li et al.
also proved that their approach is both correct and com-
plete, i.e. it finds all pairs of similar sequences and only
those.
The filtering step is based on a pigeonhole principle. For

a given edit-distance threshold t, consider two sequences
R and S where R is divided into t + 1 (disjoint) segments.
Then, S has to contain a substring matching a segment
of R if the edit distance de between R and S is at most
t. The segments for this method are chosen using an
even-partitioning scheme, limiting the maximum length
difference of segments of R to 1.
In order to apply the pigeonhole principle efficiently,

inverted indices mapping segments onto sequence iden-
tifiers are built. Hence, for each sequence length l and
segment index (i ∈[1 : t+ 1]), the corresponding inverted
index Il,i establishes the relation between observed seg-
ments and all sequences of length l containing them as
their i-th segment.
For a given set of sequences S , we can then find (poten-

tially) similar sequences by querying a subset of the

inverted indices (chosen based on the length of the cur-
rently considered S) with a selection of substrings from
S. Pass-Join finds similar sequences in a set of sequences
using the pigeonhole principle and the inverted indices as
described in Algorithm 1.
Li et al. also propose some sophisticated methods for

the substring selection (Algorithm 1, line 6), reducing
the number of feasible substrings to only a few per seg-
ment. Their most advanced method, multimatch-aware
substring selection, makes use of the length and position of
the segment as well as of the length difference of S and the
indexed sequences in question and prunes the substring
set by some clever considerations onwhere furthermatch-
ing substrings have to exist to satisfy the edit-distance
threshold.
Furthermore, Li et al. suggest to reduce the complex-

ity of the verification step (Algorithm 1, line 13) by
computing only the bounded edit distance. They also
improve on the traditional method [12] by, e.g., con-
sidering the length difference of S and C as well as
adding an early-termination check. In the present study,
we lift some of the restrictions of Swarm by introduc-
ing our exact, alignment-based de novo clustering tool
GeFaST (Generalised Fastidious Swarming Tool), which
in particular generalises the fastidious clustering option
and makes it more broadly applicable. We assess the
extended functionality in comparison with Swarm and
other de novo tools by evaluating the clustering quality
and performance on mock-community and natural data
sets.

Mü and Nebel BMC Bioinformatics (2018) 19:321 Page 4 of 14

Algorithm 1 Segment filter of Pass-Join
Input: S = set of sequences, t = edit-distance threshold
Output:A = {{R, S} | R, S ∈ S ∧ de(R, S) ≤ t}
1: Sort S first by string length and second lexicographi-

cally;
2: for S ∈ S do
3: for |S| − t ≤ l ≤ |S| do
4: Initialise candidate set C := ∅;
5: for 1 ≤ i ≤ t + 1 do
6: Select substringsW of S for lookup in Il,i;
7: for w ∈ W do
8: Add Il,i(w) to C;
9: end for

10: end for
11: end for
12: for C ∈ C do
13: Verify sequence pair (S,C);
14: if de(S,C) ≤ t then
15: Add {S,C} toA;
16: end if
17: end for
18: Partition S and add its segments to I|S|,i, 1 ≤ i ≤

t + 1;
19: end for

Implementation
GeFaST generalises the clustering strategy of Swarm and
combines it with a refined version of the segment filter
introduced in Pass-Join in order to find the pairs of simi-
lar amplicons more efficiently during the computation of
the OTUs. Our tool mimics the key features of Swarm and
offers a similar command-line interface.
The overall workflow of GeFaST (Fig. 2) consists of

three main phases: preprocessing, swarm (or OTU) clus-
tering and generating the outputs. The preprocessing
allows to filter the input amplicons by length and alpha-
bet. It also splits the overall set of amplicons into pools
based on the clustering threshold t such that amplicons
from different pools cannot be similar. As a result, each
amplicon pool can then be handled separately in the clus-
tering phase whose details are described below. Finally,
the requested outputs are generated from the obtained
OTUs, with GeFaST offering the same five output types as
Swarm.
Currently, the memory consumption of our tool is in

O(T) words where T is the total length of all amplicons.
GeFaST’s runtime complexity is dominated by the veri-
fications (Algorithm 1, line 13) having an overall worst-
case complexity in O(N2 · L · t), with N and L being
the number of amplicons and their maximum length,
respectively.

Implementation details.
Since GeFaST differs from the original versions of Swarm
and Pass-Join’s segment filter, we subsequently describe
the key aspects of our implementation.

Segment filter. In order to enhance the segment filter,
GeFaST deviates from its original version introduced by
Li et al. in some respects. First, it applies a generalised
pigeonhole principle [13], dividing amplicon sequences
into t + k, k ≥ 1, segments of which at least k have to be
matched. Second, GeFaST implements a bidirectional seg-
ment filter [14] adding a pipelined second filtering step in
order to increase the filtering capacity. Unlike in Pass-Join,
all inverted indices (per pool) are constructed at once,
because the amplicons are processed in an order based on
their abundance (and not their length).

Non-fastidious clustering. This first and mandatory
clustering step explores the amplicon space in order to
find the initial OTUs. For each amplicon pool, we start by
building the inverted indices of the segment filter using all
amplicons of this pool in order to facilitate the efficient
computation of the amplicon partners. Subsequently, we
determine the OTUs according to the iterative strategy
described in “Swarm clustering” section. Algorithm 2 pro-
vides a pseudocode description of how the amplicon space
is explored in GeFaST. The optional breaking mechanism
in our tool is identical to the non-parameterised one used
in newer Swarm versions. The resulting OTUs are then
handed over to the fastidious clustering step or directly to
the output phase.

Fastidious clustering. The second but optional cluster-
ing step tries to refine the initial OTUs as also outlined in
“Swarm clustering” section. GeFaST generalises the fastid-
ious clustering in two ways. First, it is no longer restricted
to input threshold t = 1. This is achieved by employing a
second segment filter, for which we index only the ampli-
cons from light OTUs and search grafting partners for the
ones from heavy OTUs among them. In order to preserve
the idea of a virtual linking amplicon, the segment filter is
used with a fastidious threshold tf = 2 ∗ t (as the default
setting). Second, we capitalise on the flexibility of the seg-
ment filter by making tf freely adjustable and independent
of t. This allows for more or less conservative fastidious
clustering as needed.
Subsequently, we provide a more formal description of

fastidious clustering in GeFaST. A grafting link can only be
established between an amplicon from a light OTU and
another one from a heavy OTU. Let

Lb(C) =
⋃

otu∈C<b

otu.V , Hb(C) =
⋃

otu∈C≥b

otu.V

Mü and Nebel BMC Bioinformatics (2018) 19:321 Page 5 of 14

Fig. 2Workflow of GeFaST. The amplicons from one or more input files are preprocessed and grouped into pools. Within each pool, OTUs are
formed by finding similar sequences using a segment filter. Optionally (denoted by dashed frames), OTUs can be refined by fastidious clustering.
Finally, the different kinds of output are generated from the OTUs of all amplicon pools

be the collections of amplicons from all light and heavy
OTUs, respectively. The set of potential grafting links is
then defined as

Ld(C, t, b) ={(h, l) | h ∈ Hb(C) ∧ l ∈ Lb(C)

∧ d(h, l) ≤ t}.

For an amplicon l ∈ Lb(C), there can be multiple poten-
tial grafting partners h ∈ Hb(C), but only the one with
the highest abundance is actually considered during the
grafting process. Furthermore, a light OTU is grafted at
most once, even if there are potential grafting links to sev-
eral heavy OTUs. Hereinafter, we assume that Ld(C, t, b)
is sorted such that for all (hi, li) and (hj, lj) with i < j the
following holds

hi.abundance > hj.abundance
∨ (hi.abundance = hj.abundance
∧ li.abundance > lj.abundance).

Finally, the valid grafting links, which are used in the
fastidious clustering step (Algorithm 3), are defined as

Vd(C, t, b) = {(hi, li) ∈ Ld(C, t, b) |
¬∃ (

hj, lj
) ∈ Ld (C, t, b) .

(
j < i ∧ otu (li) = otu

(
lj
))}

where otu(a) denotes the OTU containing amplicon a.

Edit-distance mode. The segment filter was originally
developed just for the edit distance de, while Swarm uses
dδ - based on some (user-specified) affine scoring func-
tion δ - as the distance between two amplicons. However,
we can use the segment filter in this case (to which we will

Mü and Nebel BMC Bioinformatics (2018) 19:321 Page 6 of 14

Algorithm 2 Non-fastidious clustering in GeFaST
Input:A = amplicon pool, t = clustering threshold, d =
distance function
Output: C = collection of OTUs
1: C := ∅;
2: whileA �= ∅ do
3: ampl := next_seed(A);
4: otu := ({ampl},∅, ampl, ∅);
5: A := A \ {ampl};
6: Q := {ampl}; // queue of subseeds to be processed
7: while Q �= ∅ do
8: ampl := next_subseed(Q);
9: Q := Q \ {ampl};

10: for p ∈ P′
d(ampl,A, t) do

11: Add amplicon p and edge {ampl, p} with
12: weight d(ampl, p) to otu;
13: end for
14: Q := Q ∪ P′

d(ampl,A, t);
15: A := A \ P′

d(ampl,A, t);
16: end while
17: C := C ∪ {otu};
18: end while

Notes:
(a) next_seed(A) obtains the amplicon with the highest
abundance inA. (b) The amplicons in the subseed queue
Q are sorted by generation and (within each generation)
in descending order by abundance. (c) Similar to Swarm,
ties between amplicons are broken through the
lexicographical order of their identifiers in both cases.

refer as scoring-function mode) as well, because it provides
a lower bound for the number of differences in an opti-
mal alignment. Moreover and in contrast to Swarm, the
user can choose whether to run GeFaST in edit-distance or
scoring-function mode.

Verification In order to verify whether two amplicons
are similar or not, we use the length-aware verification
method [11, Sec. 5.1.]. This dynamic-programming algo-
rithm improves on a method developed by Ukkonen [12]
to determine the bounded edit distance, reducing the
number of diagonals to compute, and performs an early
termination when it is guaranteed that the amplicons can-
not be similar. In order to attain similar benefits in the
scoring-function mode, we transfer the ideas of length-
aware verification to Gotoh’s algorithm [15] for affine
scoring functions.

Algorithm 3 Fastidious clustering in GeFaST
Input: C = OTUs from non-fastidious clustering, tf =
fastidious clustering threshold, b = abundance thresh-
old, d = distance function
Output: C = collection of refined OTUs
1: Determine Vd(C, tf , b);
2: for (h, l) ∈ Vd(C, tf , b) do
3: otu(h).V = otu(h).V ∪ otu(l).V ;
4: otu(h).E = otu(h).E ∪ otu(l).E ∪ {{h, l}};
5: otu(h).w = otu(h).w∪otu(l).w∪{{h, l} → d(h, l)};
6: C := C \ otu(l);
7: end for

Results
In order to evaluate the performance of our tool as well
as the clustering quality of the new fastidious clustering
options, we conducted several comparative analyses on
the following mock-community and natural data sets:

• even: The even mock-community data set from the
original Swarm paper [7]. Genome isolates of the V4
region of the 16S rRNA gene from 49 bacterial and 10
archaeal species were dereplicated to 143,162 unique
amplicons of average length 271.2 bp (from 1,577,469
raw reads). More information on the composition of
the mock community is available in Additional file 1:
Section 1.

• uneven: The uneven mock-community data set
from the original Swarm paper [7]. Genome isolates
of the same origin as those for even were
dereplicated to 55,621 unique amplicons of average
length 263.6 bp (from 637,871 raw reads). In order to
obtain a more realistic community structure
(including a few abundant and many rare organisms),
the genome isolates were distributed according to a
log-normal distribution whose parameters were fitted
from a soil microbial community.

• eldermet: Natural data set obtained from the faecal
microbiota of 170 human subjects as part of the
ELDERMET project [16]. The 16S rRNA gene V4
region reads of all subjects were pooled and
dereplicated to 4,183,843 unique amplicons of
average length 250.8 bp (from 8,989,448 raw reads).

The dereplication of above data sets was performed
using Swarm (v2.1.13) and, in addition, all reads that
contained at least one ambiguous base (IUPAC code n
resp. N) were removed. In our evaluations, we compared
the de novo clustering tools GeFaST (v1.0.0), Swarm
(v1.2.3 and v2.1.13), USEARCH ([4], v10.0.240_i86linux32),
VSEARCH ([17], v2.7.1), CD-HIT ([6], v4.6.8), DNACLUST
([5], release 3) and Sumaclust ([18], v1.0.31). USE-
ARCH (cluster_fast, cluster_smallmem) and

Mü and Nebel BMC Bioinformatics (2018) 19:321 Page 7 of 14

VSEARCH (cluster_fast, cluster_smallmem,
cluster_size) were included with different options
and sorting criteria (abundance, length).

Evaluation of clustering quality
We assessed the clustering quality using ground truths
and three metrics analogous to Mahé et al. [7]: the recall,
measuring the proportion of amplicons from the same
species that are grouped in the same OTU, the precision,
quantifying the extent to which amplicons in an OTU are
also from the same species, and - summarising both - the
adjusted Rand index [19, 20], measuring the agreement
between the OTUs and the taxonomic assignment and
correcting for chance.

Clusteringmock-community data
First, we examined uneven and even with all the above
tools using threshold t from 1 to 10 (resp. 0.99 to 0.90).
Moreover, Swarm (v2.1.13) was executed with fastidious
clustering for t = 1, while GeFaST was also run with an
activated fastidious option for all thresholds t, once per
fastidious threshold tf ∈ {t + 1, 2 ∗ t}. The 16S refer-
ence data set for this analysis had been hand-picked from
the Greengenes database [21] by the authors of Swarm
based on the list of organisms in the mock communities as
pointed out by Mahé et al. (pers. comm., 2017). To ensure
reproducibility, the reference data set is accessible online
and a link to it is included in Additional file 1: Section 1.
For both mock communities, the ground truth was estab-
lished by matching the sequences against above reference
data set (through VSEARCH with a minimum sequence
identity of 97% and the usearch_global option) and
picking the closest hit. 83.2% of the sequences in uneven
and 68.2% of the ones in evenmatched against the refer-
ence.
The clustering quality behaved similarly on both mock-

community data sets (Fig. 3). In general, the recall
improved up to a threshold around t = 6, after which it
levelled of or decreased slightly. The precision declined
with increasing t for all tools but they differed notably in
the extent of this decline. Only GeFaST, Swarm and one
option of USEARCH could avoid larger drops for thresh-
olds close to 10. With some exceptions, e.g. USEARCH
(cluster_fast plus length sorting) on even, the over-
all clustering quality (adjusted Rand index) peaked for
medium to small thresholds. The overall clustering qual-
ity of many tools dropped off at one or even both ends of
the threshold range (e.g.DNACLUST). In constrast, GeFaST
and Swarm remained relatively stable over all examined
thresholds. Hence, they achieved a higher or similar clus-
tering quality for the majority of thresholds (especially on
uneven).
Non-fastidious clustering with GeFaST and Swarm was

almost identical in terms of clustering quality. Also, the

differences between GeFaST’s edit-distance and scoring-
function mode on both data sets were minute. However,
Swarm (v.1.2.3) exceeded Swarm (v2) andGeFaST for t ≥ 7
(uneven) resp. t ≥ 4 (even). Due to fastidious cluster-
ing, the recall rose (decreasingly) and the precision tended
to decline (increasingly) for growing t on both data sets.
As a consequence, the adjusted Rand index decreased
again for t ≥ 5 (t ≥ 4) when activating fastidious cluster-
ing with tf = t+1 (tf = 2∗t). For all t ≥ 2, we observed on
both data sets that the increase (decrease) in recall (preci-
sion) due to using tf = 2 ∗ t was larger than the one due
to tf = t + 1 (for t = 1, tf was obviously the same in both
cases).
We also tested the statistical significance of the differ-

ences in clustering quality between the evaluated tools
(see Additional files 1: Section 4, 2 and 3). The results of
the performed paired t-tests (with a significance level of
0.05) hinted at statistically significant differences between
the different modes and fastidious options of GeFaST as
well as between GeFaST and other tools. Themagnitude of
the differences compared to the metric values was, how-
ever, very small in the majority of the cases (often even
below 1%).
The results of analogous analyses based on ground

truths derived with a minimum sequence identity of 95
resp. 99% are shown in Additional file 1: Section 2.

Clustering natural data
Second, we performed a quality analysis on the
eldermet data set at the genus level (Fig. 4) using
GeFaST (as the representative of the iterative approach)
as well as USEARCH, VSEARCH, CD-HIT, DNACLUST and
Sumaclust (all representing the classic de novo approach).
Swarm and some options of GeFaST, USEARCH and
VSEARCH were not included for performance reasons
or based on the results on the mock-community data.
In contrast to the mock-community analyses, we had
to preprocess the natural data in order to derive a
feasible ground truth. In brief, we started by match-
ing the sequences from eldermet against the SILVA
database ([22], release 128) with a minimum sequence
identity of 95%. Among the sequences having a match
in SILVA, we kept only those that could be assigned a
complete unambiguous taxonomic classification up to
the genus level. The reduced eldermet data set then
contained 1,315,605 unique amplicons with an average
length of 244.1 bp. We conducted this analysis at the
genus level because the species information in the ref-
erence databases is very incomplete and together with
a minimum sequence identity of 97% less than 10%
of the eldermet sequences would have passed the
preprocessing. More details on the reduction steps are
provided in Additional file 1: Section 3. For the actual
evaluation, we generated five random subsamples of the

Mü and Nebel BMC Bioinformatics (2018) 19:321 Page 8 of 14

Fig. 3 Comparison of clustering quality on uneven (top) and even (bottom) mock-community data set for ten different thresholds. Precision and
recall (summarised in the adjusted Rand index) use the amplicons’ taxonomic assignments as the ground truth

reduced eldermet data set (each covering 80% of it).
Subsequently, we computed the ground truth for each
subsample and clustered each of them with the tools
stated above for t from 1 to 10 (resp. 0.99 to 0.90).
The recall again rose with increasing threshold, but - in

contrast to the previous evaluation - it started very low
for all tools and achieved only a maximum recall of 0.68
through GeFaST for t = 9. The recall of the other tools
usually stayed below the one of GeFaST and hardly sur-
passed the level of 0.6 for t = 10. The precision, in turn,
behaved almost as for the mock communities. Starting
from high values around 0.97, it decreased gradually for
all tools. The precision values of the tools spread out more
notably beyond t = 7, with GeFaST showing the largest
drop this time. Similar to the recall, GeFaST achieved
the highest overall clustering quality with a maximum
adjusted Rand index of 0.59 and usually outperformed
the other tools. In contrast to the mock-community
analysis, fastidious clustering did not have a notable
impact on the overall clustering quality throughout this
evaluation.
We again tested the statistical significance of the qual-

ity differences (see Additional files 1: Section 4 and 4). As
for the mock-community data, the paired t-tests (with a
significance level of 0.05) showed a large proportion of
statistically significant differences. The magnitude of the
differences compared to the metric values was, as before,
very small for comparisons between different GeFaST

options, but attains double-digit percentages for those
involving the other tools.

Performance evaluation
We compared the runtime and memory consumption of
GeFaST (in scoring-function mode) and Swarm (v2.1.13)
on eldermet in two ways. First, we used the full data
set, but varied the threshold t from 1 to 10. Both tools
were run without fastidious clustering for all thresh-
olds. Again, the fastidious option was activated for all t
(with tf set to t + 1 resp. 2 ∗ t) for GeFaST and when
possible (i.e. for t = 1) for Swarm. Second, we exam-
ined different data set sizes while keeping threshold t
constant. For that purpose, we randomly subsampled
eldermet at various levels ranging from 5% to 100%
(5% steps, three subsamples per level). Each of the 60
subsamples was then clustered with both tools for t ∈
{1, 2} (the fastidious option was activated when possible
as above).
In addition, we compared the performance of iterative

swarm clustering and classic de novo clustering with a
global threshold. To this end, we evaluated the runtime
and memory consumption of GeFaST (scoring-function
mode), USEARCH, VSEARCH, CD-HIT, DNACLUST and
Sumaclust on the reduced eldermet data set described
in the previous section. As before, threshold t ranged from
1 to 10 and the fastidious option of GeFaST was activated
for all t (with tf set to t + 1 resp. 2 ∗ t).

Mü and Nebel BMC Bioinformatics (2018) 19:321 Page 9 of 14

Fig. 4 Comparison of clustering quality on the reduced eldermet data set for ten different thresholds. The average values are determined from
five random subsamples (each comprising 80% of the reduced data set). The standard deviation is indicated by the error bars

Our analyses were performed in an LXC container
under Debian GNU/Linux 8.7 (jessie) on an Intel Xeon
E5-2687W v4 (3.00GHz) system with 256 GB of RAM.
We measured the runtime and memory consumption
of a program execution via the (external) command
/usr/bin/time with the resource specifiers e and
M, respectively. More precisely, specifier e returns the
elapsed wall clock time, while M provides the maximum
resident set size.

Iterative clustering for different thresholds. The
development of the runtime and memory consump-
tion dependent on clustering threshold t is depicted in
Fig. 5. Within the time limit of 36 h, Swarm completed
the computations only for t ≤ 2. In contrast, GeFaST
computed all clusterings in time except for t = 9 and
t = 10 with fastidious clustering using tf = 2 ∗ t and

all these finished computations were still faster than
Swarm for t = 2. Additionally, GeFaST completed the
computations for t ≤ 4 (non-fastidious and fastidious
with tf = t + 1) resp. t ≤ 2 (fastidious with tf = 2 ∗ t)
in less or approximately the same time as Swarm for
t = 1 with fastidious clustering. While there was a drastic
difference between the runtime of Swarm for t = 1 and
t = 2, the runtime of GeFaST grew more gradually as t
increased.
The memory consumption of non-fastidious clustering

with GeFaST was continuously higher than the one of
Swarm, while it was notably lower for fastidious cluster-
ing. Furthermore, there was a huge difference w.r.t. the
amount of additional memory used for the latter. Fas-
tidious clustering increased the memory consumption of
Swarm more than fivefold, whereas GeFaST’s memory
footprint grew by less than 5%.

Mü and Nebel BMC Bioinformatics (2018) 19:321 Page 10 of 14

Fig. 5 Comparison of runtime and memory consumption on eldermet for 1 ≤ t ≤ 10 with and without fastidious clustering. The runtime was
capped at 36 h

Iterative clustering for different data set sizes. Figure 6
shows how runtime and memory consumption developed
with increasing data set size. GeFaST was consistently
faster than Swarm for both thresholds and all fastidious
options. For example, GeFaST performed non-fastidious
clustering almost seven times as fast as Swarm for t = 1.
While the runtime of both tools behaved linearly in the
data set size for t = 1, they showed a non-linear behaviour
for t = 2, with Swarm displaying a much steeper incline.
Hence, Swarm could only process subsets not larger than
50% of eldermet within the time limit of 10 h for t =
2. Moreover, even fastidious clustering with GeFaST was
continuously faster than non-fastidious clustering with
Swarm. GeFaST also increased the runtime considerably
less than Swarm across the different subset sizes. On the
permutations of the full eldermet data set (i.e. the 100%
subsets), for instance, the average runtime of GeFaST rose
from 93 s to 585 s by activating fastidious clustering with
tf = 2, while it increased from 632 s to 6682 s for Swarm.
Furthermore, the variation in the runtime on subsets of
the same size tended to be stronger for Swarm.
With respect to the memory consumption, the picture

is more complex. Non-fastidious clustering with Swarm
was consistently more memory-efficient, but the advan-
tage seemed to grow smaller with increasing threshold.
While the average memory advantage on subsets of up
to 50% of eldermet was approximately 34% for t = 1,
it was only slightly more than 26% for t = 2. Fastidious

clustering with GeFaST, in turn, required only between 22
and 32% of the memory occupied by Swarm. On top of
that, the additional memory consumption due to fastidi-
ous clustering was much smaller when using GeFaST (less
than 6% more memory compared to increasing fivefold
or more using Swarm). In contrast to the runtime, there
was no noticeable variation in the memory consumption
of both tools on subsets of the same size irrespective of
threshold and fastidious option.

Iterative versus classic de novo clustering. For an
increasing clustering threshold t, GeFaST exhibited a con-
trary behaviour - especially w.r.t. the runtime - compared
to the other tools in this evaluation (Fig. 7).While the run-
time of GeFaST increased for larger thresholds, it tended
to decrease for the other tools. As a consequence, GeFaST
clustered the data notably faster or similarly fast for t ≤ 4
but was also considerably slower for thresholds towards
t = 10. The largest gains in runtime of the non-iterative
tools occurred before t = 5, after which some of them (e.g.
CD-HIT and DNACLUST) got slightly slower again. Among
the non-iterative clustering approaches DNACLUST was
the fastest and also the only one that showed low runtimes
for thresholds down to t = 1.
The memory consumption behaved similarly but the

differences were not as distinct as for the runtime. Some
non-iterative tools (e.g. USEARCH) required less memory

Mü and Nebel BMC Bioinformatics (2018) 19:321 Page 11 of 14

Fig. 6 Comparison of runtime and memory consumption on differently sized subsets of eldermet for t = 1 and t = 2. The average values are
determined from three random subsamples of the respective size, while the standard deviation is indicated by the error bars. The runtime was
capped at 10 h

for higher thresholds, while the memory usage of oth-
ers such as DNACLUST was basically independent of t.
The memory consumption of GeFaST was very similar
to the one of the other tools for small thresholds but,
in contrast to them, increased slightly for higher thresh-
olds. However, the outlier in terms of memory usage was

Sumaclust, which requiredmore than three times as much
memory than the others throughout the comparison.

Discussion
GeFaST adds to the list of de novo clustering tools by
extending the iterative approach of Swarm. Therefore, we

Fig. 7 Comparison of runtime and memory consumption on the reduced eldermet data set for ten different thresholds. The average values are
determined from five random subsamples (each comprising 80% of the reduced data set). The standard deviation is indicated by the error bars

Mü and Nebel BMC Bioinformatics (2018) 19:321 Page 12 of 14

compared GeFaST to Swarm and other current de novo
tools for a range of clustering thresholds and on dif-
ferent taxonomy levels and kinds of data. Our analyses
showed that there are notable differences between the
classic approach using a global threshold and the iterative
one of Swarm and GeFaST.
We evaluated the clustering quality on natural and

mock-community data, with the latter being acknowl-
edged as a trade-off between simulated and natural data
by being of biological origin but also of known composi-
tion [23]. While the two mock-community data sets span
a number of phyla, these often comprise more than one
class and even several species per class to make the data
more representative and to not rule out effects such as
single-linkage chaining from the outset. On the mock-
community data, GeFaST showed a smaller dependence
on the clustering threshold and was often similarly good
or even slightly better than the classic de novo tools.
On the natural data, in contrast, the threshold had a
large impact on all tools, but the clustering quality was
notably higher for GeFaST. Moreover, the edit-distance
and scoring-function mode (using the default parameters
borrowed from Swarm) did only differ slightly, hinting at
the possibility to use the potentially faster edit-distance
mode without impairing the quality.
In our analyses, fastidious clustering improved the qual-

ity only on the mock-community data sets. The reasons
for the lack of effect on natural data require further anal-
ysis but potential factors are a relatively low number of
light OTUs and the restriction to the genus level. Based
on our evaluation, benefits in clustering quality from
fastidious clustering might be expected for thresholds
up to 5. Beyond that the clustering became too greedy
and aggregated supposedly different species, thus impair-
ing the clustering quality. Many of the differences were
found to be statistically significant but their relative
size were often small as well. Hence, their practical
significance is yet to be examined through, e.g., more
biologically motivated metrics such as diversity measures
or heritability [24].
In order to explore the limits of GeFaST, we also

repeated the mock-community analysis for ground truths
based on different sequence similarities. The effect of
changing the ground truth was similar for all tools in our
evaluation, suggesting that GeFaST is equally well-suited
for OTU analyses at different levels of granularity.
Our evaluations also showed large differences between

the tools in terms of their performance. Most of the clas-
sic de novo tools tended to need less time and memory
for larger clustering thresholds, most likely due to the
decreasing number of clusters they had to build andmain-
tain. On the contrary, GeFaST’s runtime and, to a lesser
extent, its memory consumption increased with a growing
threshold. The employed segment filter was a major factor

in these increases. On the one hand, the number of sub-
strings per sequence to check during the filtering grows
polynomially in the threshold. On the other hand, higher
thresholds increase the number of inverted indices to be
held in memory.
On top of that, there were also distinct differences

between GeFaST and Swarm. As described above, increas-
ing threshold t led to a relatively gradual growth in run-
time for GeFaST, whereas there was a much larger change
between t = 1 and t �= 1 for Swarm, which applies
a dedicated algorithm in the former case. Compared to
Swarm, the runtime of GeFaST benefits from the efficient
determination of potential amplicon partners due to the
segment filter and their fast verification through bounded
computations with early termination. Furthermore, the
effect of fastidious clustering on runtime and memory
consumption was largely different between the two tools.
This asymmetry stems from the use of a more memory-
intensive Bloom filter and the lengthy cross-checking
of microvariants in Swarm compared to another seg-
ment filter in GeFaST in order to facilitate the fastidious
clustering step.
Future work is going to address GeFaST’s runtime and

memory consumption as well as the achievable clus-
tering quality. On the one hand, we will work on the
performance of the segment filter for higher thresh-
olds and explore the benefits of parallelising (parts of)
GeFaST’s workflow. On the other hand, we plan to intro-
duce memory-saving succinct data structures [25] for
the key data structures of GeFaST in order to investi-
gate their applicability to sequence clustering in terms
of runtime.
With respect to the clustering quality, we will exam-

ine the effects of over- and under-grouping more closely.
This will involve the exploration of alternative breaking
mechanisms and the analysis of how strongly fastidious
clustering affects clusters obtained by them, e.g. the one
used in older versions of Swarm which produced clusters
of higher quality for high thresholds during our analy-
ses. Further evaluations of fastidious clustering will also
address the effect of its parameters, i.e. the fastidious
clustering threshold tf and the abundance boundary b
between light and heavy OTUs. The subsequent evalua-
tions will include further comparisons with Swarm and
other tools on mock and natural data sets (down to the
species level, if possible) as well as the use of a more
extensive set of metrics. As pointed out by Westcott and
Schloss [3], this is sensible in order to obtain a more
objective quality assessment since there is a wide range of
approaches all having their assets and drawbacks.
Moreover, we will continue to investigate the character-

istics and limits of GeFaST, e.g. whether there is a relation
between the clustering threshold and the expected ampli-
con length in terms of the clustering quality or whether

Mü and Nebel BMC Bioinformatics (2018) 19:321 Page 13 of 14

there is a minimum sequence length for the iterative
approach to work properly.

Conclusions
We introduced GeFaST, an exact, alignment-based de
novo clustering tool which generalises the fastidious clus-
tering approach of Swarm to arbitrary thresholds in order
to reduce under-grouping in a broader range of settings.
Comparisons with Swarm and other current de novo
clustering tools on mock-community and natural data
showed a competitive or even better clustering quality
with GeFaST in a variety of settings. Some results also
indicated at improvements due to fastidious clustering
for small and medium thresholds up to 5 that might be
beneficial to downstream analyses. In addition, our tool
outperformed Swarm in terms of runtime throughout
our analyses and was also faster than the other tools for
thresholds up to 4. Depending on the clustering threshold
and the fastidious option, GeFaST was between 6 and 197
times as fast as Swarm. However, Swarm used up to 38%
less memory for non-fastidious clustering, but required at
least three times as much memory as GeFaST for fastid-
ious clustering. Furthermore, our tool scaled better with
increasing data set size (especially for t > 1) at the
cost of a moderately increased memory footprint. It could
also complete computations for higher thresholds and /
or with fastidious clustering faster than Swarm with less
demanding parameters.

Availability and requirements
Project name: GeFaST
Project home page: https://github.com/romueller/gefast
Operating system(s): Linux
Programming language: C++11 (developed with GCC
4.9.2)
Other requirements:make
License: GNU Affero General Public License v3.0
Any restrictions to use by non-academics: None

Additional file

Additional file 1: Supplement containing information on the
mock-community data, the analyses and additional results. (PDF 336 KB)

Additional file 2: Tabular data showing results on the statistical
significance of differences in clustering quality on the uneven data set.
(CSV 220 KB)

Additional file 3: Tabular data showing results on the statistical
significance of differences in clustering quality on the even data set.
(CSV 219 KB)

Additional file 4: Tabular data showing results on the statistical
significance of differences in clustering quality on the eldermet data set.
(CSV 86 KB)

Abbreviations
bp: Base pair; GeFaST: Generalised fastidious swarming tool; HTS:
High-throughput sequencing; IUPAC: International union of pure and applied

chemistry; OTU: Operational taxonomic unit; rRNA: Ribosomal ribonucleic acid;
SIMD: Single instruction, multiple data

Acknowledgements
We thank the anonymous reviewers for their helpful remarks and suggestions
on a previous version of this article.

Funding
This work is funded by the International DFG Research Training Group GRK
1906/1. We also acknowledge the support of the publication fee by Deutsche
Forschungsgemeinschaft and the Open Access Publication Funds of Bielefeld
University.

Availability of data andmaterial
GeFaST and the workflow to reproduce the analysis (including all scripts)
freely available at https://github.com/romueller/gefast and https://github.
com/romueller/gefast-paper-analysis, respectively. The data and results of the
analyses are available from Bielefeld University (http://doi.org/10.4119/unibi/
2918928).

Authors’ contributions
RM designed, implemented and evaluated the software. MN supervised all
aspects of the GeFaST project. RM wrote the paper with contributions from
MN. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1International Research Training Group “Computational Methods for the
Analysis of the Diversity and Dynamics of Genomes”, Bielefeld University,
Bielefeld, Germany . 2Faculty of Technology, Bielefeld University, Bielefeld,
Germany . 3IMADA, Southern Denmark University, Odense, Denmark .

Received: 13 December 2017 Accepted: 29 August 2018

References
1. Janda JM, Abbott SL. 16S rRNA Gene Sequencing for Bacterial

Identification in the Diagnostic Laboratory: Pluses, Perils, and Pitfalls. J Clin
Microbiol. 2007;45(9):2761–4. https://doi.org/10.1128/JCM.01228-07.

2. Bonham-Carter O, Steele J, Bastola D. Alignment-free genetic sequence
comparisons: a review of recent approaches by word analysis. Brief
Bioinform. 2014;15(6):890–905. https://doi.org/10.1093/bib/bbt052.

3. Westcott SL, Schloss PD. De novo clustering methods outperform
reference-based methods for assigning 16S rRNA gene sequences to
operational taxonomic units. PeerJ. 2015;3:1487. https://doi.org/10.7717/
peerj.1487.

4. Edgar RC. Search and clustering orders of magnitude faster than BLAST.
Bioinformatics. 2010;26(19):2460. https://doi.org/10.1093/bioinformatics/
btq461.

5. Ghodsi M, Liu B, Pop M. DNACLUST: accurate and efficient clustering of
phylogenetic marker genes. BMC Bioinformatics. 2011;12(1):271. https://
doi.org/10.1186/1471-2105-12-271.

6. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the
next-generation sequencing data. Bioinformatics. 2012;28(23):3150.
https://doi.org/10.1093/bioinformatics/bts565.

7. Mahé F, Rognes T, Quince C, de Vargas C, Dunthorn M. Swarm: robust
and fast clustering method for amplicon-based studies. PeerJ. 2014;2:593.
https://doi.org/10.7717/peerj.593.

https://github.com/romueller/gefast
https://doi.org/10.1186/s12859-018-2349-1
https://doi.org/10.1186/s12859-018-2349-1
https://doi.org/10.1186/s12859-018-2349-1
https://doi.org/10.1186/s12859-018-2349-1
https://github.com/romueller/gefast
https://github.com/romueller/gefast-paper-analysis
https://github.com/romueller/gefast-paper-analysis
http://doi.org/10.4119/unibi/2918928
http://doi.org/10.4119/unibi/2918928
https://doi.org/10.1128/JCM.01228-07
https://doi.org/10.1093/bib/bbt052
https://doi.org/10.7717/peerj.1487
https://doi.org/10.7717/peerj.1487
https://doi.org/10.1093/bioinformatics/btq461
https://doi.org/10.1093/bioinformatics/btq461
https://doi.org/10.1186/1471-2105-12-271
https://doi.org/10.1186/1471-2105-12-271
https://doi.org/10.1093/bioinformatics/bts565
https://doi.org/10.7717/peerj.593

Mü and Nebel BMC Bioinformatics (2018) 19:321 Page 14 of 14

8. Mahé F, Rognes T, Quince C, de Vargas C, Dunthorn M. Swarm v2:
highly-scalable and high-resolution amplicon clustering. PeerJ. 2015;3:
593. https://doi.org/10.7717/peerj.1420.

9. Ukkonen E. Approximate string-matching with q-grams and maximal
matches. Theoretical Computer Science. 1992;92(1):191–211. https://doi.
org/10.1016/0304-3975(92)90143-4.

10. Bloom BH. Space/time trade-offs in hash coding with allowable errors.
Commun ACM. 1970;13(7):422–6. https://doi.org/10.1145/362686.362692.

11. Li G, Deng D, Feng J. A Partition-Based Method for String Similarity Joins
with Edit-Distance Constraints. ACM Trans Database Syst. 2013;38(2):
9:1–9:33. https://doi.org/10.1145/2487259.2487261.

12. Ukkonen E. Algorithms for approximate string matching. Information and
Control. 1985;64(1):100–18. https://doi.org/10.1016/S0019-
9958(85)80046-2.

13. Lin C, Yu H, Weng W, He X. Large-Scale Similarity Join with Edit-Distance
Constraints. In: Bhowmick SS, Dyreson CE, Jensen CS, Lee ML,
Muliantara A, Thalheim B, editors. Database Systems for Advanced
Applications. DASFAA 2014. Lecture Notes in Computer Science vol. 8422.
Cham: Springer International Publishing; 2014. p. 328–42. https://doi.org/
10.1007/978-3-319-05813-9_22.

14. Huang Y, Niu B, Song C. Web-Age Information Management: 16th
International Conference. WAIM 2015. Lecture Notes in Computer
Science vol. 9098. In: Dong XL, Yu X, Li J, Sun Y, editors.; 2015. p.
400–12. https://doi.org/10.1007/978-3-319-21042-1_32.

15. Gotoh O. An improved algorithm for matching biological sequences. J
Mol Biol. 1982;162(3):705–8. https://doi.org/10.1016/0022-
2836(82)90398-9.

16. Claesson MJ, Cusack S, O’Sullivan O, Greene-Diniz R, de Weerd H,
Flannery E, Marchesi JR, Falush D, Dinan T, Fitzgerald G, Stanton C,
van Sinderen D, O’Connor M, Harnedy N, O’Connor K, Henry C,
O’Mahony D, Fitzgerald AP, Shanahan F, Twomey C, Hill C, Ross RP,
O’Toole PW. Composition, variability, and temporal stability of the
intestinal microbiota of the elderly. Proc Natl Acad Sci.
2011;108(Supplement 1):4586–91. https://doi.org/10.1073/pnas.
1000097107.

17. Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile
open source tool for metagenomics. PeerJ. 2016;4:2584. https://doi.org/
10.7717/peerj.2584.

18. Mercier C, Boyer F, Bonin A, Coissac É. SUMATRA and SUMACLUST: fast
and exact comparison and clustering of sequences. Programs Abstr
SeqBio Workshop. 2013;14:27–28.

19. Rand WM. Objective Criteria for the Evaluation of Clustering Methods. J
Am Stat Assoc. 1971;66(336):846–50. https://doi.org/10.2307/2284239.

20. Hubert L, Arabie P. Comparing partitions. J Classif. 1985;2(1):193–218.
https://doi.org/10.1007/BF01908075.

21. DeSantis T. Z, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber
T, Dalevi D, Hu P, Andersen GL. Greengenes, a Chimera-Checked 16S
rRNA Gene Database and Workbench Compatible with ARB. Appl Environ
Microbiol. 2006;72(7):5069–72. https://doi.org/10.1128/AEM.03006-05.

22. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J,
Glöckner FO. The SILVA ribosomal RNA gene database project: improved
data processing and web-based tools. Nucleic Acids Res. 2013;41(D1):
590–6. https://doi.org/10.1093/nar/gks1219.

23. Bokulich NA, Rideout JR, Mercurio WG, Shiffer A, Wolfe B, Maurice CF,
Dutton RJ, Turnbaugh PJ, Knight R, Caporaso JG. mockrobiota: a Public
Resource for Microbiome Bioinformatics Benchmarking. mSystems.
2016;1(5):. https://doi.org/10.1128/mSystems.00062-16.

24. Jackson MA, Bell JT, Spector TD, Steves CJ. A heritability-based
comparison of methods used to cluster 16s rRNA gene sequences into
operational taxonomic units. PeerJ. 2016;4:2341. https://doi.org/10.7717/
peerj.2341.

25. Jacobson GJ. Succinct static data structures. Pittsburgh, PA, USA: PhD
thesis, School of Computer Science; 1988.

https://doi.org/10.7717/peerj.1420
https://doi.org/10.1016/0304-3975(92)90143-4
https://doi.org/10.1016/0304-3975(92)90143-4
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/2487259.2487261
https://doi.org/10.1016/S0019-9958(85)80046-2
https://doi.org/10.1016/S0019-9958(85)80046-2
https://doi.org/10.1007/978-3-319-05813-9_22
https://doi.org/10.1007/978-3-319-05813-9_22
https://doi.org/10.1007/978-3-319-21042-1_32
https://doi.org/10.1016/0022-2836(82)90398-9
https://doi.org/10.1016/0022-2836(82)90398-9
https://doi.org/10.1073/pnas.1000097107
https://doi.org/10.1073/pnas.1000097107
https://doi.org/10.7717/peerj.2584
https://doi.org/10.7717/peerj.2584
https://doi.org/10.2307/2284239
https://doi.org/10.1007/BF01908075
https://doi.org/10.1128/AEM.03006-05
https://doi.org/10.1093/nar/gks1219
https://doi.org/10.1128/mSystems.00062-16
https://doi.org/10.7717/peerj.2341
https://doi.org/10.7717/peerj.2341

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Swarm clustering
	Pass-Join

	Implementation
	Implementation details.
	Segment filter.
	Non-fastidious clustering.
	Fastidious clustering.
	Edit-distance mode.
	Verification

	Results
	Evaluation of clustering quality
	Clustering mock-community data
	Clustering natural data

	Performance evaluation
	Iterative clustering for different thresholds.
	Iterative clustering for different data set sizes.
	Iterative versus classic de novo clustering.

	Discussion
	Conclusions
	Availability and requirements
	Additional file
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4

	Abbreviations
	Acknowledgements
	Funding
	Availability of data and material
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

