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Distributional regression for demand forecasting
in e-grocery

Matthias Ulrich 1, Hermann Jahnke 1, Roland Langrock 1,

Robert Pesch 2, Robin Senge 2

Abstract

E-grocery offers customers an alternative to traditional brick-and-mortar
grocery retailing. Customers select e-grocery for convenience, making use of
the home delivery at a selected time slot. In contrast to brick-and-mortar
retailing, in e-grocery on-stock information for stock keeping units (SKUs)
becomes transparent to the customer before substantial shopping effort has
been invested, thus reducing the personal cost of switching to another
supplier. As a consequence, compared to brick-and-mortar retailing, on-stock
availability of SKUs has a strong impact on the customer’s order decision,
resulting in higher strategic service level targets for the e-grocery retailer. To
account for these high service level targets, we propose a suitable model for
accurately predicting the extreme right tail of the demand distribution, rather
than providing point forecasts of its mean. Specifically, we propose the
application of distributional regression methods — so-called Generalised
Additive Models for Location, Scale and Shape (GAMLSS) — to arrive at the
cost-minimising solution according to the newsvendor model. As benchmark
models we consider linear regression, quantile regression, and some popular
methods from machine learning. The models are evaluated in a case study,
where we compare their out-of-sample predictive performance with regard to
the service level selected by the e-grocery retailer considered.
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1 Introduction

In retailing, inventory exceeding or falling short of customer demand generally

causes monetary consequences for the retailer. Stock out situations result in short-

term underage costs due to missed sales, whereas excess inventory generates short-

term overage costs due to spoilage and operational inefficiencies. However, due to

high opportunity costs in retail practice, a service level selected exclusively based

on short-term costs may not be profitable. Instead, long-run strategic objectives such

as customer loyalty and market growth based on customer satisfaction usually have

the most substantial impact on the service level decision (Anderson et al., 2006).

Within the fast-expanding electronic grocery (e-grocery) market, which provides

an alternative to traditional brick-and-mortar grocery retailing, the service level

is particularly relevant for inventory management. In e-grocery, customers order

groceries online and the retailer delivers the purchase to the household or company.

Customers use e-grocery for convenience, making use of home delivery at a selected

time so that no visit to a brick-and-mortar-store is required. However, if customers

are unsatisfied with on-stock availability, then there is a particularly high risk that

they cancel the online shopping process, and perhaps even refrain from ordering

online in the future. This results from the fact that the convenience of online

shopping is reduced once customers need to place a second order or visit a brick-

and-mortar store to buy products affected by stock-outs. For perishable SKUs such

as fruits, vegetables and meat, customers are particularly restricted with respect

to potential substitutes, which further increases the risk of an order cancellation.

On-stock availability can hence be expected to be of crucial importance regarding

the customers’ order decision. As a consequence, e-grocery retailers operate with

very high strategic service level targets, e.g. 97–99% in the case of the retailer

considered in our case study, which is in line with service level targets of other

international e-grocery retailers, such as Ocado with 98.8% (Ocado Group, 2015).

The business problem under consideration in this paper requires customer

demand forecasts for each stock keeping unit (SKU) in each local fulfilment centre

(FC) for each demand period, which is the lowest hierarchical level in retail demand

forecasting. At this level of detail, many different characteristics may affect the

underlying demand, rendering demand forecasting very challenging (Fildes et al.,
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2018). Figure 1 illustrates a small subset of the data considered in our case study,

namely customer demand for the SKU grapes in the months April to July 2017.

Here one observation equals one demand period t, i.e. one day of delivery. We find

that demand is highly variable, but with recurring peaks on Mondays. These peaks

are due to the increased proportion of business-to-business transactions in e-grocery

relative to brick-and-mortar retailing. Businesses typically make use of the grocery

delivery on Mondays to supply their employees or guests with fruits, coffee and

correlated SKUs such as milk.
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Figure 1: Realised demand for the SKU grapes in units (package of 500 gr), with
highly variable demand but recurring peaks on Monday.

In traditional brick-and-mortar retailing, information on customer demand typi-

cally results from point-of-sale data. These data often do not reveal the true demand

preferences due to stock-outs affecting the individual purchase, and are therefore

effectively censored. This distortion in customer demand for one SKU has an impact

also on demand data for correlated SKUs that are not purchased although available

(e.g. mozzarella, if tomatoes are out) and demand data of selected substitutes that

generate sales without original demand. Predicted demand of an SKU that was sub-

ject to stock-outs in the past and of corresponding SKUs affected by the correlation

effect will therefore be potentially too low, whereas predicted future demand of

selected substitutes will potentially be too high (Anupindi et al., 1998). In contrast
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to traditional retailing, the online customer order process of the e-grocery retailer

considered in our case study allows for the monitoring of customer preferences

before stock-out information becomes available to the buyer and, therefore, yields

uncensored demand data. Stock-outs do affect sales data but not the demand data re-

vealed by the customer’s online search behaviour, which precedes the final purchase

decision. Tracing the customer’s search behaviour hence yields uncensored demand

data. Moreover, in e-grocery a customer selects a future delivery time slot with up to

fourteen days in advance to make sure he or she is able to receive the order at home.

Depending on the delivery time slot selected by the customer, the e-grocery retailer

can include the customer demand information in the replenishment order. Thus, the

e-grocery retailer does not have to hold all inventory requested at the time of the

customer order, but may replenish the SKU before the order needs to be dispatched.

Given the wide range of demand patterns of SKUs on offer (e.g. fast-moving or

slow-moving SKUs with regular or irregular demand), it seems unlikely that a simple

statistical modelling framework such as linear regression will be suitable across the

range of SKUs. For SKUs in grocery retailing, most results reported in the literature

do indeed identify potential improvements by using nonlinear models (Ali et al.,

2009 and Lang et al., 2015). In fact, since we are interested in very high service

levels, and hence need to be able to accurately predict the extreme right tail of the

forecast distribution, any regression method that focuses on the mean would not

seem to be an intuitive choice. Quantile regression, where specific quantiles of the

response variable (here: demand) are linked to covariates, constitutes a much more

obvious alternative given the high service level targets (Manning et al., 1995 and

Kneib, 2013). However, using quantile regression to predict the extreme (right) tail

of the response distribution can be problematic, since the corresponding parameter

estimators can be highly imprecise due to data scarcity in the extreme tails (Hohberg

et al., 2018). In recent years, distributional regression methods, which allow flexible

modelling of covariate effects on any of the distributional parameters (including

mean and variance), have rapidly gained popularity as versatile statistical modelling

tools that allow to consider various aspects of the response distribution (e.g. Mayr

et al., 2012 and Klein et al., 2015). In contrast to quantile regression methods,

which are nonparametric, distributional regression methods are parametric. Sachs &

Minner (2014) compared parametric and nonparametric modelling approaches for
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estimating different censoring levels using data from a large European retail chain.

They showed that their nonparametric model copes well with highly censored data,

but also pointed out that the parametric alternatives performed best if there is little

censoring in the demand.

Considering data from a leading German omni-channel retailer, here we aim

to exploit the associated new types of data in e-grocery that are not available in

traditional brick-and-mortar retailing, i.e. uncensored customer demand and partly

known future demand data, to model the entire demand distribution. Specifically,

we propose the application of Generalized Additive Models for Location, Scale and

Shape (GAMLSS) for building flexible distributional regression models to forecast

demand in e-grocery retailing. In particular, these models consider no only the

mean of future demand, but also its variance and potentially even the shape as

functions of covariates. In addition, the GAMLSS class allows a flexible choice of

the distributional family assumed for the response variable, i.e. for demand. Thus,

GAMLSS allows us to tailor the regression model to whatever complex pattern we

find, while likely being more robust than quantile regression methods.

We compare the performance of GAMLSS with basic (parametric) linear regres-

sion and (nonparametric) quantile regression, evaluating the models by comparing

their out-of-sample forecasting error at the selected service level with the corre-

sponding cost values for underage and overage. Given the increasing popularity

of machine learning methods (see, e.g., Carbonneau et al., 2008, Ferreira et al.,

2016), we also include parametric random forests (Breiman, 2001) and nonpara-

metric quantile regression forests (Meinshausen, 2006) as benchmarks. For the

SKUs considered in our case study, we find that models from the GAMLSS class

tend to outperform the benchmark models, with the (cost-) optimal distributional

assumption to be made for the response variable varying across SKUs.

2 Problem statement and motivation

2.1 Demand forecasting and the newsvendor problem

The e-grocery retailer considered in our case study offers a significant number of

perishable SKUs in the product category fruits, vegetables and meat. Internal quality
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requirements of the retailer restrict the shelf life of these SKUs to one demand period.

In addition, SKUs with stock-outs in the demand period are not delivered to the

customer at a later demand period. We hence assume that the customer demand and

the sales period are identical for the SKUs analysed in the case study. As a result,

excess inventory cannot be sold in the following demand period and thus generates

spoilage.

To capture the asymmetric economic impact of absolute forecasting errors for

each demand period t, we introduce the total cost Ct resulting from any potential

mismatch between inventory level and realised demand. In demand period t, each

excess unit of inventory generates a cost of h, while each unit that we fall short

of customer demand generates a cost of b. Furthermore, we use Dt to denote the

stochastic customer demand. We then aim at minimising the expected total cost,

E[Ct(qt)] = hE(qt −Dt)
++bE(Dt −qt)

+, (1)

with respect to the inventory level at the beginning of the demand period, qt . The

optimal qt defines the corresponding replenishment order quantity of the retailer for

period t.

For single and independent demand periods with stochastic customer demand,

the newsvendor problem provides the solution to the optimisation problem above.

The newsvendor problem is one of the classical applications in the literature on

inventory management for problems with characteristics as given here (Zipkin,

2000). The optimal inventory level is obtained as

q∗t = argmin
qt

E[Ct(qt)] = F−1
t

(
b/(b+h)

)
, (2)

where Ft is the (true) cumulative distribution function of the demand distribution

in period t, and b/(b+ h) is the optimal demand quantile given b and h. The

ratio b/(b+ h) can also be interpreted as the inventory service level selected by

the retailer. In practice, the optimal solution to the newsvendor problem given

in (2) is not available since the cumulative distribution function Ft describing the

stochastic demand is unknown. However, we can use data collected before time t to

statistically model realised demand as a function of features (e.g. known demand at
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the time of the replenishment order), and subsequently predict demand qt using the

estimated distribution function F̂t obtained under the model. Thus, we are looking

for a suitable distributional regression model, rather than point forecasts only, to

minimise the costs of the e-grocery retailer.

2.2 Demand forecasting in the existing literature

In the retailing context, the newsvendor problem is one of the most intensively

studied inventory management problems in literature; see Khouja (1999) and Qin et

al. (2011) for extensive literature reviews with different applications for individual

problem characteristics.

Early papers from this research area assume that the demand distribution is

completely known (Arrow et al., 1951). Scarf et al. (1959) relaxed this assumption

by assuming that only the mean and the standard deviation are known. Since

those early contributions, various parametric (e.g. Nahmias, 1994, Agrawal &

Smith, 1996) and nonparametric (e.g. Lau & Lau, 1996, Godfrey & Powell, 2001)

approaches have been proposed to identify the cost-optimal inventory level q for the

case where the demand distribution is unknown and hence needs to be estimated or

otherwise specified.

Parametric approaches to determine the expected-cost optimal order quantity q

focus on the estimation of the mean by a point prediction and derive the standard

deviation from historic demand variations. Based on the expected demand pattern,

different distributional assumptions are proposed, e.g. normal (Nahmias, 1994),

gamma (Burgin, 1975), Poisson (Conrad, 1976), and negative binomial (Agrawal &

Smith, 1996). In retail practice with b > h, the inventory level q minus the estimated

mean is often interpreted as the safety stock to cope with forecasting errors (e.g.

Baker et al., 1986).

Linear regression is the most established approach for modelling directed rela-

tionships, and as such is also a popular tool for demand point forecasting (see, e.g.,

Makridakis et al., 1998, and Weisberg, 2005). However, linear regression involves

several restrictive assumptions, namely linearity of the predictor, homoscedasticity

and, when forecast distributions are of interest, also normality of the response.

For at least some of the SKUs on offer, these will be violated, for example if the
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distribution of slow-moving SKUs is neither normal nor symmetric (Ramaekers

& Janssens, 2008). In those instances, demand forecasts obtained through linear

regression may be imprecise.

For point forecasts of the mean, machine learning techniques have rapidly

increased in popularity as an alternative to linear regression (see, e.g., Carbonneau et

al., 2008, Ferreira et al., 2016). For example, random forests have been successfully

applied in the context of load forecasting on the electricity market (Lahouar & Ben

Hadj Slama, 2015).

Quantile regression is a natural nonparametric alternative which focusses on

forecasting selected quantiles rather than the mean (Koenker & Hallock, 2001,

Maciejowska et al., 2016). In particular, within quantile regression we avoid making

any distributional assumption for the response. However, a potential problem with

using quantile regression methods for e-grocery demand forecasting is that we

often see extreme outliers in the realised demand data to which quantile methods

may react more strongly than distributional regression models. These outliers

are due to the high proportion of business-to-business transactions as discussed

above. Meinshausen (2006) proposed quantile regression forests as a competitive

alternative to quantile regressions.

2.3 E-grocery business processes

Irrespective of the particular approach taken, we aim to make use of the new types of

data in e-grocery that are not available in traditional retailing. To better understand

the corresponding data, we first introduce the business processes that generate these

new types of data. The complete process of a customer’s order is displayed in

Figure 2. Customers first enter the area code, which determines the associated FC

with a given assortment. During the shopping process, no inventory information is

provided to the customer, such that any desired SKU can simply be added to the

basket, without restrictions resulting from its availability status. This allows for the

observation of customer preferences before stock-out information is made available.

At the customer checkout, an algorithm checks the inventory availability of the

requested SKUs for the selected delivery time slot. In case of missing inventory, a

suitable substitute is offered to the customer, who can then modify the order.

7



Figure 2: Customer order process in e-grocery.

The replenishment and fulfilment process of the e-grocery retailer is shown in

Figure 3. The national and regional distribution centres supply the FC based on

replenishment orders. Operational fulfilment processes include stowing, picking,

and the distribution to the customer. It typically takes three days from placing the

replenishment order to receiving the goods at the FC. Thus, if the customer orders

more than three days in advance to the delivery slot, then known demand can be

considered for the replenishment order.

Figure 3: Replenishment and fulfilment process in e-grocery.

2.4 Exploratory analysis of the e-grocery data

In the following, we explore the e-grocery data available in our case study in order to

motivate the choice of the class of GAMLSS. To illustrate some of the key patterns,

Figure 4 displays the relationship between selected explanatory variables (features)

and the response variable, realised demand, for the SKU grapes from September

2015 to August 2017, for one FC. We find, inter alia, the following patterns:

1. Nonlinearity

Figure 4(a) shows the relationship between known customer demand at the

8



replenishment decision time and realised demand.1 Realised demand equals

or exceeds known demand for each observation. For relatively low known

demand, i.e. below 100 units, the size of additional demand occurring during

the replenishment period is relatively high compared to situations where

known demand is already high, i.e. above 100 units. This indicates that

the functional relationship between realised demand and known demand is

nonlinear.
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Figure 4: The relationship between selected explanatory variables (features) and
the response variable, realised demand, for the SKU grapes within the months
September 2015 to August 2017 for one FC.

1Here the feature ‘known demand’ is the customer demand information for the corresponding
demand period that is already available at the replenishment decision time due the customer’s option
to order with up to fourteen days in advance. This demand information can be included as a feature
to estimate realised demand. Realised demand equals the monitored customer preferences before
stock-out information becomes known to the buyer.
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2. Heteroscedasticity

Figure 4(b) relates the realised demand to the feature ‘median demand of

the same weekday in the previous month’, showing that the variance in

demand increases with increasing values of this feature. The process of

feature engineering is detailed in Section 3.2.

3. Skewness

Figure 4(c) shows positive skewness in the distribution of the realised demand,

with the degree of skewness varying across different prices. The upper whisker

and the 0.75 quantile are farther from the median than the 0.25 quantile and

the lower whisker. This asymmetry in the distributional shape increases with

increasing price.

3 Distributional regression

3.1 GAMLSS

Given the complex patterns found in the data, we propose to use Generalised

Additive Models for Location, Scale and Shape (GAMLSS), as they allow a flexible

selection of distributions for the demand, and also a flexible modelling of covariate

effects on any of the distributional parameters (Rigby & Stasinopoulos, 2005).

The GAMLSS model is an extension of Generalised Linear Models (Nelder &

Wedderburn, 1972) and Generalised Additive Models (Hastie & Tibshirani, 1986).

In GAMLSS, a parameter vector θθθ = (θ1,θ2, ...,θp) — rather than the mean

only — of the response variable’s probability (density) function f (y
∣∣θθθ) is modelled

as a function of covariates. The p parameters being modelled determine the location,

scale and shape of the distribution, with the value of p varying across the different

types of distributions that can be assumed for the response. More specifically, it

is assumed that the observations yi, i = 1,2, . . . ,n, are independent, each with an

associated parameter vector θθθ
i = (θ1i,θ2i, ...,θpi) and probability (density) function

f (yi
∣∣θθθ i). In our case, each observation yi corresponds to the realised demand for

some SKU on a given day, and the covariates used to explain yi will be features built

from data on demand prior to the day considered (as detailed below). We adopt
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the notation from Rigby & Stasinopoulos (2005), using θθθ k = (θk1,θk2, ...,θkn) to

denote the vector of the k–th distributional parameter being modelled (one for each

daily observation of demand). For k = 1, . . . , p, a known monotonic link function

gk(·) then relates θθθ k to features and random effects through an additive model,

gk(θθθ k) = ηηηk = XXXkβk +
Jk

∑
j=1

ZZZ jkγ jk, (3)

where gk is applied componentwise, θθθ k and ηηηk are vectors of length n, XXXk is a known

design matrix of dimension n × J′k, βk = (β1k,β2k, ...,βJ′k
)T is a parameter vector of

length J′k, ZZZ jk is a fixed known n × q jk design matrix and γ jk is a q jk–dimensional

random variable. Thus, for k = 1, . . . , p, in the most general case the linear predictor

ηk includes the parametric component XXXkβk and in addition additive components

ZZZ jkγ jk. Rigby & Stasinopoulos (2005) call model (3) the GAMLSS. The first two

distributional parameters θ1 and θ2 are typically characterised as location and scale

parameter, denoted by µ and σ , respectively, whereas the remaining parameters are

generally characterised as shape parameters.

For ZZZ jk = IIIn, where IIIn is an n × n identity matrix, and γ jk = hhh jk = h jk(xxx jk) for

all combinations of j and k, the GAMLSS model formulation (3) is semi-parametric

given by

gk(θθθ k) = ηk = XXXkβk +
Jk

∑
j=1

h jk(xxx jk), (4)

where the xxx jk are vectors of length n, for j = 1,2, . . . ,Jk and k = 1,2, . . . , p. The

function h jk is an unknown function that is componentwise evaluated for the fea-

ture vector xxx jk. The explanatory vectors xxx jk are assumed to be known (Rigby &

Stasinopoulos, 2005). In our case study, we implement a P-spline smoother to

account for potential nonlinear relationships between features and realised demand.

GAMLSS allows fitting a variety of different continuous and discrete distri-

butions. An overview is given by Rigby & Stasinopoulos (2005). For demand

forecasting, the normal (Nahmias, 1994), gamma (Burgin, 1975), Poisson (Conrad,

1976), and negative binomial distribution (Agrawal & Smith, 1996) are the most

established distributions in literature. As a consequence, these are the distribu-

tions that we consider in our case study (with the corresponding models labeled

11



as GAMLSS NO, GAMLSS GA, GAMLSS PO and GAMLSS NB, respectively).

GAMLSS offers two negative binomial distributions that differ in the definition of

the variance. Type I defines the variance by (µ +σ µ2) and type II by (µ +σ µ),

given a mean µ and a standard deviation σ (Rigby & Stasinopoulos, 2008). For

any given distributional assumption, and assuming independence of the individual

realised demand values, the likelihood function of a GAMLSS is easily obtained.

To fit a given GAMLSS to demand data using maximum likelihood, we use the R

package gamlss by Rigby & Stasinopoulos (2008).

To fix these ideas, in Figure 5 we display a very simple GAMLSS, with normally

distributed response, fitted to the demand data collected on the SKU grapes from

September 2015 to August 2017, as shown already in Figure 4. More specifically,

the model that was fitted is specified as follows:

yi ∼ N(µi,σ
2
i )

µi = h1(xi)

log(σi) = h2(xi),

where yi is the i–th realised demand and xi is the median demand of the same

weekday in the previous month. The functions h1 and h2 were estimated nonpara-

metrically using P-splines. For notational simplicity, some indices were dropped

here compared to the general model formulation in Equation (3).

The model displayed in Figure 5, while simplistic, adequately addresses the

heteroscedasticity shown in Figure 4 by estimating the variance σ2
i to increase for

increased values of the covariate. As a consequence, under such a model formulation,

the cost-optimal inventory level at high covariate values would be farther away from

the regression line than for small covariate values, thereby accounting for the

increased uncertainty regarding customer demand. This pattern in the choice of the

inventory level is in line with the theoretical results by Song (1994), who by means

of stochastic comparison methods showed the impact of growing demand variability

on optimal inventory levels and the corresponding economic costs.
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Figure 5: Realised demand as a function of median demand of the same weekday of
the previous month, together with the fitted GAMLSS, including the distribution
implied for the residuals at selected values of the covariate.

3.2 Feature engineering

For all models, the demand distribution Ft is estimated using features (explanatory

variables). Feature engineering describes the process of generating suitable features

from data. Both the general pattern of the demand distribution as well as any

time series effects are taken into account by considering historic demand quantiles

(5%, 50% and 95%), then building corresponding features using data from a) the

previous quarter, b) the previous month, and c) the previous two weeks (Lu, 2014

and Kawamura et al., 2015). After feature engineering and feature selection the data

set contains the following 12 features, including also price (Andreyeva et al., 2010)

and known demand as extracted directly from the raw data.

1. Demand of the same weekday previous week in units

2. Demand of the same weekday second previous week in units

3. Median demand of the same weekday previous month in units

4. Median demand of the same weekday previous quarter in units

5. Median demand previous month in units
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6. Median demand previous quarter in units

7. 95%-demand-quantile previous month in units

8. 95%-demand-quantile previous quarter in units

9. 5%-demand-quantile previous month in units

10. 5%-demand-quantile previous quarter in units

11. Price

12. Known customer demand in units

These features were selected based on previous analyses in the literature as

well as business experience made within the retailer considered in our case study,

and aim at capturing, inter alia, time series effects and overall variation in demand.

The choices made are thus somewhat arbitrary, which however seems necessary

given the lack of clear guidelines on feature engineering in the context of e-grocery

demand forecasting. In any case, for our real-data analysis — the purpose of

which is to compare methods for demand forecasting — the selection of features

is not of primary importance. Feature selection using component-wise gradient

boosting, as described in Hofner et al. (2016), did not improve the out-of-sample

forecast accuracy in our case study, so that we eventually trained all models using

the complete feature set.

3.3 Benchmark models

Based on our literature review in Section 2.2, we consider linear regression (LM),

quantile regression (QR), random forests (RF), and quantile regression forests (QRF)

as performance benchmarks for the GAMLSS approach proposed here.

Linear regression models estimate the model parameters by minimising the

sum of squared residuals. Based on a fitted linear regression model, we predict

the conditional mean of the response distribution and, assuming normality of the

residuals, derive the target quantile based on the estimated constant error vari-

ance. Quantile regression methods directly predict any conditional quantile of the

response distribution (Koenker & Hallock, 2001). Random forests represent an

ensemble learning technique that combines predictions from a specified number of

tree predictors. Each tree is constructed independently by using a sub-sample of

all observations available (Breiman, 2001). The output is again a prediction of the
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conditional mean of the response variable. As a point forecast only, i.e. without

accompanying distributional assumption for the residuals (such as the normal in

case of basic linear regression), this prediction does not readily allow us to arrive

at say the 0.97 quantile. In order to be able to compare the random forest-based

prediction to the approaches that do provide us with quantiles, we thus complement

the point prediction with an additional distributional assumption for the residuals,

where for two-parameter distributions we simply use a constant standard deviation

as estimated from one year of training data. For the random forest-based predictions

we consider the same distributions as for GAMLSS (i.e. normal, gamma, Poisson,

and negative binomial). Before applying the gamma distribution, we transformed

the estimated mean and standard deviation to derive the required scale and shape pa-

rameter. Finally, quantile regression forests constitute a nonparametric alternative to

random forests that allows the estimation of any conditional quantile (Meinshausen,

2006). The R packages we use are rq (Koenker, 2012) for quantile regression,

quantregForest (Meinshausen, 2006) for the quantile regression forest, caret (Kuhn,

2008) for random forests and gamlss (Rigby & Stasinopoulos, 2008) for GAMLSS.

Thus, we apply the following benchmark models: Linear regression (LM);

random forests with normal (RF NO); gamma (RF GA); Poisson (RF PO) and

negative binomial distribution (RF NB); quantile regression (QR) and quantile

regression forests (QRF).

4 Model training, demand forecasting and performance
evaluation

4.1 Training data

Our data set covers demand periods from September 2015 to August 2017 and six

different e-grocery FC. We consider daily data, i.e. each demand period t refers to

one day of delivery. For demand forecasting and hence validation of the different

approaches considered, we use all demand observations from September 2016 to

August 2017. We test five different SKUs within the SKU-category fruits, vegetables

and meat, namely tomatoes, carrots, grapes, mushrooms and minced meat. All of

these SKUs were listed for the entire period, exhibiting price changes throughout.
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We train each model based on twelve months of data to subsequently forecast

each demand in the following month. For example, we train each model based on

data from September 2015 to August 2016 to forecast demand in September 2016.

With a corresponding sliding-window approach, we always train on the most recent

twelve months of data. In particular, the length of twelve months of the training

data set allows the incorporation of seasonal effects. For each demand period t and

each of the parametric models considered, we obtain an estimate F̂t for the demand

distribution Ft , which we apply to derive qt according to the newsvendor problem,

for any given demand quantile. For the nonparametric models that we consider

— quantile regression and quantile regression forests — we derive qt for selected

demand quantiles directly from the data, i.e. without previously having to build

an estimate F̂t . Thus, for each SKU we derive demand distributions for about 300

demand periods within the validation period, which results in > 300K predictions

of qt when considering 11 models and 99 possible service levels.

4.2 Out-of-sample prediction of demand

Figure 6 illustrates the prediction step for the SKU grapes, showing the optimal qt

given a target service level of 97%, as obtained under each model, and additionally

the realised demand, for the 23 demand periods in April 2017. We visualise

the different model classes by different symbols and the different distributional

assumptions by different colours. Since we derived the optimal inventory level

qt at the 97% service level target, qt should equal or exceed realised demand in

97% of all observations. But for our small subset of example prediction data

generated by a single FC, four models, namely GAMLSS PO, RF GA, RF NO

and RF PO, yield an inventory level qt that is below realised demand for at least

two demand periods. Two demand periods with inventory levels below realised

demand result in a service level of 91% (for this month). All other models yield

inventory levels that in April 2017 never fall short of realised demand. Among these,

considering overage costs for each excess unit of overage, we prefer inventory levels

that are equal to or only slightly above realised demand. The inventory levels qt

obtained from GAMLSS GA, GAMLSS NBI, QR and RF NB show high positive

deviations from realised demand. Thus, in this small subset of predictions, the
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models GAMLSS NBII, GAMLSS NO, LM and QRF appear to be most promising

with respect to minimising total costs for the SKU grapes.
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Figure 6: Predicted 0.97 demand quantiles as obtained with the different approaches
and realised demand for the SKU grapes in April 2017.

To obtain a more comprehensive picture, Figure 7 illustrates the overall deviation

between the service level target and the realised service level for each model and

each service level target between 1% and 99%. If a model would meet each service

level target exactly, then the corresponding line would follow the 45◦ line. The

figure demonstrates that the models GAMLSS PO, RF GA, RF NO and RF PO

lead to substantial deviations for any service level target distinct from 50%, i.e.

whenever costs are asymmetric. More specifically, below the 50% service level

target, the inventory levels as obtained by these models are too high, whereas they

are too low for all service level targets above 50%.

In practice, only the service level target of the e-grocery retailer is pertinent for

model evaluation. Figure 8 shows the percentage deviation between the realised

service level and the 97% service level target. For this particular service level,

we observe that only the the model QRF obtains a service level target above 97%.

Overall, we identify that the nonparametric models, QR and QRF, are closer to the

service level targets than the parametric models, which would seem to corroborate

the results of Sachs & Minner (2014). The models GAMLSS PO, RF GA, RF NO
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Figure 7: Service level target vs. realised service level for the SKU grapes in the
validation period August 2016 to July 2017.

and RF PO show deviations of up to 17%. All other models show promising

results in achieving the service level target with deviations below 6%, and hence

are candidates for cost minimisation after considering asymmetric underage and

overage costs.

4.3 Performance evaluation

Typical point forecast measures as applied in the existing literature, such as the

mean average error (MAE) and the mean average percentage error (MAPE), assume

a symmetric evaluation of the forecasting error (see, e.g., Makridakis & Winkler,

1983, Carbonneau et al., 2008). They are therefore inadequate to evaluate the

model performance for very high target service levels and hence asymmetric costs.

Moreover, the MAPE is undefined for demand realisations of zero, which may occur

for SKUs with intermittent demand in grocery retailing; see Kolassa (2016).

Since underage and overage costs are asymmetric in our business problem —

and we thus have to evaluate the two directions of error asymmetrically — we aim
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Figure 8: Model deviation from 97% service level target for the SKU grapes in the
months August 2016 to July 2017.

to compare the out-of-sample forecasting error at the empirical service level target

elicited from the retailer in our application. While specifying the numerical value

of the overage cost parameter h is relatively straightforward given corresponding

information from the retailer’s accounting department, this is not the case for the

underage cost parameter b. Especially for relatively novel business models such

as the one under consideration (e-grocery), the cost parameter b must reflect the

strategic objectives of the retailer and the financial consequences of medium and

long term reactions of customers to stock-outs. The precise value of the parameter b

hence cannot be stated. Instead, we apply an indirect specification of the underage

cost parameter b via the relation α = b/(b+ h) from the newsvendor problem,

where α is the service level. Given the empirical value of the service level and

an estimation of the overage cost parameter h based on the retailer’s margin and

operational costs, we derive b as

b =
hα

1−α
.

Given the resulting cost values for b and h, we then calculate the total costs

that occur under the qt obtained from F̂t for each demand period t in the validation
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period September 2016 to August 2017:

Ct(qt) = h(qt −dt)
++b(dt −qt)

+.

For each model, we sum up the costs for all demand periods t.

The asymmetric cost values of b and h have a strong impact on the evaluation of

the relative model performance. Assuming, as an example, overage costs of 1 EURO

and a service level target of 97%, we obtain underage costs of 32,30 EUR for each

unit of underage. Thus, a method that overestimates demand by 32 units generates

(slightly) lower costs than an alternative method that underestimates demand by one

unit.

5 Results

Figure 9 shows the percentage difference in total costs, according to (1), as obtained

under the different approaches, in each case compared to the benchmark linear

regression:

perc. diff. in total costs = 100
(

Ct(q∗t )
Ct(qLM

t )
−1

)
,

where qLM
t and q∗t are the optimal inventory levels according to linear regression

modelling and the alternative method under consideration, respectively.

For all SKUs considered, we find that models from the GAMLSS class outper-

form the benchmark models, with different distributions across the different SKUs

yielding the lowest out-of-sample costs. Compared to linear regression, we find

potential cost reductions of up to 25%. The results indicate that at least one of

the assumptions made within basic linear regression, such as homoscedasticity or

normality, will typically be violated in this kind of data. GAMLSS allows us to

tailor the regression model to whatever pattern we find for a given SKU, such that, as

expected, in most cases it leads to improved demand forecasts. An exception is the

model GAMLSS PO, which in terms of its single-parameter response distribution

is actually less flexible than a basic, possibly non-linear regression model — the im-

plied mean-variance relation of the Poisson here drastically limits the model’s ability

to capture the empirical patterns. Overall, the results demonstrate the strengths of
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Figure 9: Relative total costs as obtained under the different approaches, compared
to the benchmark linear regression, for five different SKUs.

GAMLSS by allowing a flexible selection of distributions for the demand, and also

a flexible modelling of covariate effects on any of the distributional parameters.

However, it is worth noting that there is no distributional assumption within the

class of GAMLSS that performs best across all SKUs in our case study. This is

perhaps not surprising given the wide range of demand patterns of SKUs on offer

(e.g. fast-moving or slow-moving SKUs with regular or irregular demand).

Competing model classes such as random forests also allow a flexible selection
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of distributions. However, with our somewhat ad hoc approach to complement

the point forecast by a distributional assumption for the residuals, the estimated

standard deviation from historic data is constant over time. As a consequence, this

type of approach cannot accommodate heteroscedasticity, which however is crucially

important when trying to capture the extreme (right) tail of the demand distribution.

Random forests do indeed yield much higher costs across all distributions considered.

In contrast to random forests, the quantile regression-based approaches performed

very well in our case study. However, due to their sensitivity especially for extreme

quantiles (e.g. 0.99), they still do bear the risk of occasionally producing demand

forecasts that are way off. In addition, it can be disadvantageous that these models

need to be fitted separately for any target quantile considered. In other words, as

distribution-free methods, they do not allow practitioners to select the inventory

level based on eyeballing a demand forecast distribution.

In our view, interpretability in retailing practice is in fact an important benefit

of the GAMLSS class. In retail practice, the interpretation of demand forecasts, and

how they were obtained, is a relevant requirement of the operational management

since it allows the inclusion of expert knowledge for forecast adjustments in the case

of exceptional circumstances (cf. Fildes et al., 2009, Davydenko & Fildes, 2013).

In particular, machine learning techniques are often restricted in their possibilities

of interpretation. In contrast, practitioners familiar with basic regression can be

expected to relatively easily grasp the concepts of distributional regression — after

all, in most of the corresponding models the main difference to linear regression

is simply that we model not only the mean but also the variance. In any case,

the resulting cost-optimal qt can directly be “read” from the forecast distribution

as implied by the fitted GAMLSS. To illustrate this point, Figure 10 presents the

GAMLSS with normally distributed response fitted to the data collected on the SKU

grapes, here showing the associated forecast distributions for each weekday in the

demand period 24-07-2017 to 29-07-2017. The model captures the fact that demand

peaks at the beginning of a week, but also accounts for the associated increased

variance in demand. The latter information would not readily be available when

using quantile regression methods, as these target only at specific points of the

forecast distribution, namely the quantiles of interest. Thus, the GAMLSS approach

provides a more comprehensive picture of the demand to be expected.
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Figure 10: Demand forecast distribution for the SKU grapes under the model
GAMLSS NO in the week 24-07-2017 to 29-07-2017; the 97% quantiles under
each daily forecast distribution are highlighted in blue.

6 Conclusion and future research

In this paper, we present a case study for distributional demand forecasting in

e-grocery. For highly perishable SKU with complex demand patterns, we find that

models from the GAMLSS class tend to outperform the benchmark models, which

is due to their increased flexibility in accommdating complex demand patterns.

While our work was motivated by the new types of data found in e-grocery retailing,

in particular uncensored demand and known demand at replenishment order time,

all methods considered are, in principle, also applicable to traditional retail practice.

While the performance of the GAMLSS class in our case study is promising, we
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also found that no individual model consistently outperformed the other candidate

models. This is clearly due to the diverse demand patterns found across SKUs,

e.g. for SKUs with limited or without heteroscedasticity. Overall, there are very

many possible combinations of the mean demand, its standard deviation and the

level of asymmetry in the costs that together determine the total costs for a given

demand period. Our empirical results, whereby no model class outperforms other

model classes across all demand attributes, is in line with the no-free-lunch theorem

(Wolpert & Macready, 1997), which establish that an improved performance of

any algorithm in a given class of problems is offset by a decreased performance in

another class of problems.

For data sets showing a high diversity of demand patterns as in our empirical

case, future research should, therefore, focus on methods for automated model

selection and/or automated model combination (also known as model averaging).

The various candidate models for demand forecasting have different strengths and

weaknesses in capturing particular demand patterns. Thus, we believe that there

is considerable potential to reduce economic costs by developing algorithms that

automate the model selection and possibly also a model averaging process.

An additional direction of research may relax the assumption of demand inde-

pendence between SKUs. In this paper we estimated the expected-cost optimal q

separately for each SKU at a selected service level. However, if SKUs are subject

to significant substitution or correlation effects this approach may not lead to the

estimated cost optimal stock levels. One simple way to tackle this situation may

be to artificially increase the service level targets. Alternatively, the estimation of

a joint distribution function could be considered, which however also requires the

estimation of individual customer baskets.
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