
Systems biology

flowLearn: fast and precise identification and

quality checking of cell populations in flow

cytometry

Markus Lux1,*, Ryan Remy Brinkman2,3,4, Cedric Chauve5, Adam Laing6,

Anna Lorenc6, Lucie Abeler-Dörner6 and Barbara Hammer7

1Computational Methods for the Analysis of the Diversity and Dynamics of Genomes, Bielefeld University,

Bielefeld 33615, Germany, 2Terry Fox Laboratory, BC Cancer Research Centre, Vancouver BC V5Z 1L3, Canada,
3Department of Medical Genetics, University of British Columbia, Vancouver BC V6T 1Z3, Canada, 4Cytapex

Bioinformatics Inc., Vancouver BC V5Z 4X9, Canada, 5Department of Mathematics, Simon Fraser University,

Vancouver BC V5A 1S6, Canada, 6Department of Immunobiology, King’s College London, London WC2R 2LS, UK

and 7CITEC Centre of Excellence, Bielefeld 33619, Germany

*To whom correspondence should be addressed.

Associate Editor: Jonathan Wren

Received on August 15, 2017; revised on January 9, 2018; editorial decision on February 11, 2018; accepted on February 14, 2018

Abstract

Motivation: Identification of cell populations in flow cytometry is a critical part of the analysis and

lays the groundwork for many applications and research discovery. The current paradigm of

manual analysis is time consuming and subjective. A common goal of users is to replace manual

analysis with automated methods that replicate their results. Supervised tools provide the best per-

formance in such a use case, however they require fine parameterization to obtain the best results.

Hence, there is a strong need for methods that are fast to setup, accurate and interpretable.

Results: flowLearn is a semi-supervised approach for the quality-checked identification of cell

populations. Using a very small number of manually gated samples, through density alignments it

is able to predict gates on other samples with high accuracy and speed. On two state-of-the-art

datasets, our tool achieves medianðF1Þ-measures exceeding 0.99 for 31%, and 0.90 for 80% of all

analyzed populations. Furthermore, users can directly interpret and adjust automated gates on

new sample files to iteratively improve the initial training.

Availability and implementation: FlowLearn is available as an R package on https://github.com/

mlux86/flowLearn. Evaluation data is publicly available online. Details can be found in the

Supplementary Material.

Contact: mlux@techfak.uni-bielefeld.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Flow cytometry (FCM) is a technology that is commonly used for

the rapid characterization of cells of the immune system at the single

cell level based on antigens presented on the cell surface. Cells of

interest are targeted by a set of fluorochrome-conjugated antibodies

(markers) and pass through a laser beam one-by-one at over 10 000

cells per minute (Shapiro, 2005). Scattered light of different wave-

lengths for each marker is measured and recorded by sensitive de-

tectors. This subsequently creates a unique intensity profile that

allows for differentiation of cell types. FCM is widely used in re-

search, for example in immunophenotyping where it holds great

promise for assessing the immune status of patient populations.
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Within a blood or tissue sample, the most common measurement of

interest is cell frequency (i.e. the proportion of a cell population), ei-

ther absolute or relative to a parent population. Variations in cell

frequencies can give important information about the immune status

or allow association of cell types with a biological variable

(Aghaeepour et al., 2016).

The accurate determination of cell population frequencies is a key

aim in FCM analysis. Using differential expression of one or more

markers, it is possible to delineate cell populations of interest, a pro-

cess commonly known as ‘gating’. This task usually comprises the

manual inspection of bivariate density plots using marker channels

that were selected from prior biological knowledge. Subsequently, for

each sample, cell populations are identified by drawing regions of

interest or setting channel thresholds (Fig. 1). While some populations

are easy to gate, populations with very small cell proportions (rare

populations) can be challenging. Large populations can obscure rare

ones, such that they do not necessarily appear as clusters or well pro-

nounced density peaks, hence are difficult to detect. Due to the large

number of possible combinations of markers, gating is a labour inten-

sive and highly subjective process (Saeys et al., 2016). In contrast,

automated methods offer little to no bias and comparable variability

(Aghaeepour et al., 2013; Finak et al., 2016). Thus, there has been

substantial interest in developing methods that ease the process of

identifying cell populations as much as possible, and a large variety of

tools, both unsupervised and supervised, have been developed

(Aghaeepour et al., 2013; Kvistborg et al., 2015; Saeys et al., 2016).

Several tools are based on sophisticated techniques from ma-

chine learning, i.e. dimensionality reduction, clustering and deep

learning. They aim to eliminate the traditional approach of inspect-

ing bivariate channels plots by considering all channels at once in-

stead of only two at a time. While these methods have shown very

good performance on many datasets (Amir et al., 2013; Eulenberg

et al., 2017; Hennig et al., 2017; Mair et al., 2016), they still suffer

from a few major drawbacks, especially pronounced for large sets of

highly diverse FCM samples. First, in high-dimensional spaces,

cells do not necessarily form distinct clusters that would be easily

discoverable. Exemplary, Supplementary Figure S2 shows the t-SNE

(Van Der Maaten, 2014) representation of data from Section 3.1. It

is visible that both child populations are not distinct from each

other. Consequently, for an approach solely based on this technol-

ogy, it is highly difficult to gate both complex populations. Second,

in order to describe populations of interest, the fine-tuning of a set

of hyper-parameters is crucial and common to all tools, in particular

in the context of small populations where the underlying machine

learning task is quite challenging. Hyper-parameters are values con-

trolling the result of an automated method, typically set by practi-

tioners in a way that the outcome of the method is satisfactory.

Often, hyper-parameters do not have an intuitive meaning, but re-

late to mathematical or algorithmic characteristics of the method.

Depending on the method, practitioners might not have the required

knowledge to set those optimally (Kvistborg et al., 2015). In the

presence of high sample diversity, fine-tuning such parameters is es-

sential and might take a significant amount of time. Due to the diffi-

culties in finding an optimal set of parameters, it is also complicated

to compare such tools. Third, when incorporating machine learning,

interpretability of results is limited (Lisboa, 2013), leading to a lack

of general understanding of how such methods work. Hence, it is

problematic to verify gates from a biological standpoint (Kvistborg

et al., 2015).

In FCM studies, quality checking of results is an essential step in

the accurate identification of populations, and ensures that no

wrong conclusions are drawn from the data in later steps. For that

reason, and also because of the familiarity with the traditional ap-

proach of inspecting bivariate density plots, for quality checking,

manual gating is the current standard practice.

FlowDensity (Malek et al., 2015) takes another point of view

and tries to automate the threshold selection based on density shape

features. The algorithm can work in both an unsupervised or super-

vised fashion. When customizing thresholds on a per-population

level, one or more channels are inspected, and density features such

as differences in extrema, slope changes, or the number of peaks are

examined, generally based on a pre-determined manual gating hier-

archy. Gates in the form of channel thresholds are estimated, from

which sub-populations can be extracted (Fig. 1). Provided hyper-

parameters are appropriately chosen, flowDensity offers a state-of-

the-art tool for the accurate identification of cell populations that

matches what would have been obtained through manual analysis

(Finak et al., 2016). Once the rules for each population are set,

thresholds are automatically and individually set for each new data

file, similar to the manual tweaking that operators tend to do, but in

a data-driven fashion. As a result, flowDensity results are robust, re-

producible and the approach performs better than the manual alter-

native it is designed to match. However, undertaking a supervised

setup does require a significant time component in order to obtain

the optimal results.

In this contribution, we present a novel software tool called

‘flowLearn’. Using density features, it works the same way as

flowDensity, but does not require a practitioner to manually tune

hyper-parameters for an optimized outcome. Rather, it works in a

semi-supervised mode, and requires the gating of one or few charac-

teristic samples by a human expert in the form of thresholds. These

thresholds are then transferred to all samples in an automated way

by means of so called derivative-based density alignments. In con-

trast to methods with a high-dimensional understanding of FCM

data, our method does not have to deal with the problem of noise in-

herent to such spaces. It reduces the problem complexity by relying

on traditional, prior biological knowledge. Besides this highly effi-

cient and effective mode, it also opens the way towards a quality

control of samples which have already been gated: By comparing

Fig. 1. Density plot for two channels ‘CD-3’ against ‘SSC-A’. Each dot repre-

sents a cell and corresponding one-dimensional densities are attached at the

top and left. The shown data is an example of gating T-cells from lymphocyte

singlet cells. Axis values correspond to intensity values. Knowing that T-cells

(right cluster) express CD3, they can be delineated from other lymphocytes

(left cluster). The corresponding density estimates for both channels are

shown along the left and top axis. The CD3 threshold is located in a valley be-

tween the density peaks from both populations
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optimal and predicted gates, it can identify samples that stand out,

for example due to biological variation or differences in laboratory

sample preparation and analysis. Furthermore, it can be used to spot

problems in existing gating hierarchies, offering the possibility to be

used to identify problematic gates. The absence of difficult-to-set

hyper-parameters, combined with the use of a small amount of ex-

ample gates makes our approach tractable. Results are easy to inter-

pret and verify, and offer user-interactive adjustments on the

predicted gates in specific circumstances. Using two large and di-

verse datasets for which accurately set and verified gates exist, and

by comparing to two other recent state-of-the-art methods,

DeepCyTOF (Li et al., 2017) and FlowSOM (Van Gassen et al.,

2015), we demonstrate flowLearn’s superiority for the classical and

practically very relevant setting of comparably low dimensional data

and imbalanced populations. It exhibits high to very high accuracy

in terms of predicted cell frequencies and F1-measures of identified

populations, having low computational complexity.

2 Materials and methods

2.1 Pipeline
FlowLearn is based on four main steps that are depicted in Figure 2.

In the following, we will describe these steps in more detail. A more

detailed procedure on how to apply flowLearn to a set of samples

and populations is given by Algorithm 1.

1: Input FCM data

We define a dataset S ¼ fs1; s2; . . . ; sNg as a collection of N related

samples generated using the same panel of antibodies. Each sample

contains a set of cells with marker-based measurements of fluores-

cent intensities, and any subset is called a population. In the follow-

ing, we assume a population with M cells, and each cell has

measurements in the form of marker intensities. We define a marker

channel for sample si as the set Ci ¼ fc1
i ; . . . ; cM

i g of marker intensity

measurements for all M cells. The set of marker channels is

experiment-specific, and used across all samples. Furthermore, a

sample-specific channel threshold ti splits up a given channel into

two distinct sub-populations Ci1 and Ci2 , such that Ci ¼ Ci1 [ Ci2

and Ci1 \ Ci2 ¼ ;. A gate is defined by a set of thresholds for one or

more channels and can delineate sub-populations from a given par-

ent population. Last, a gating hierarchy is the consecutive extraction

of sub-populations, starting with one root population that usually

contains all cells in the FCS file. It is assumed that the gating hier-

archy for a dataset is known, meaning that for each parent popula-

tion, the set of channels to gate is given.

2: Density estimation

Given a parent cell population, from which sub-populations should

be gated, for each sample and channel to gate, flowLearn uses kernel

density estimation to generate a unique density profile over a regular

grid of 512 points (Algorithm 1, lines 4–9). It uses a Gaussian kernel

with a bandwidth determined by Silverman’s rule of thumb

(Silverman, 1986). To avoid difficulties in later alignments (step 4),

the calculated densities are smoothed by fitting a cubic spline func-

tion. In the following, a density for channel Ci is denoted as

di ¼ gðCiÞ, where g estimates and smoothes a density from a given

channel and parent population in sample si. In the resulting distribu-

tions, pronounced cell populations are visible as density peaks

(Fig. 1). All further processing is done on the N densities for each

channel only. For clustering in the next step, pairwise L1 distances

between all densities are calculated as well.

3: Example gates

The alignment (step 4) of two channel densities can be inaccurate if

they are very different from each other. In that case, thresholds

might be transferred wrongly. To prevent this, flowLearn selects

prototypes that define sample groups (Algorithm 1, line 12).

Parameterized with the number of prototypes np, it clusters all den-

sities for each channel and selects np samples that represent each set

accurately. We found that for this task, a k-medoids clustering

(Friedman et al., 2001) with k¼np worked best. In this approach,

similar densities are characterized by their absolute difference (L1

distance). Experiments using other distances for clustering, for ex-

ample the alignment distance, showed worse results. The number of

prototypes should be chosen according to the sample diversity in the

dataset, and desired gating accuracy. While often np¼1 shows very

good results (Section 4), with increasing complexity, np should be

increased accordingly. It is worth to note that, first, np can be differ-

ent for different channels, depending on the data complexity, and se-

cond, prototypes for different channels are not necessarily from the

same sample.

Next, having the prototypes identified, it is the task of an expert

analyst to set gates as accurate as possible, resulting in prototype

thresholds (Algorithm 1, line 13). A gate that delineates two popula-

tions can be given by lower and upper thresholds for at least one

channel. In Figure 1, the T-cell population (right cluster) is defined

by a lower threshold on the CD3 channel, meaning that all cells

with higher CD3 intensity belong to the target population. The CD3

threshold is located in a valley between the density peaks from both

populations. If necessary, an upper threshold can be set as well, even

though it is not necessary in this particular example. Also, here the

SSC-A channel is irrelevant for gating. A gate can be defined by

more than one channel, where two channels are usually chosen for

the ease of visualization and interpretability. A limitation is that

Fig. 2. FlowLearn pipeline to gate one population in four consecutive steps:

(1) Input to our tool is a set of related FCS files (samples). (2) On each sample,

it solves the task of extracting sub-populations from a given parent-popula-

tion. To achieve this, marker channel densities of the desired population are

calculated and a pairwise comparison of all densities is performed. (3) Based

on the resulting distances, one or more prototype(s) (red) are selected, for

which manual gating is performed. (4) Each prototype density is aligned to all

other densities which makes it possible to predict thresholds by transfer be-

tween the aligned densities (blue) (Color version of this figure is available at

Bioinformatics online.)
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prototype thresholds have to be perpendicular to the channel axes,

though current efforts are focused on addressing this.

4: Alignment and gate transfer

Given a prototype sample with density dp, a known prototype

threshold tp, and another sample’s density di, flowLearn is a func-

tion f ðdi;dp; tpÞ ¼ t̂ i � ti, where ti is the unknown true threshold in

di. FlowLearn (Algorithm 1, lines 14–18) uses density alignment,

Derivative Dynamic Time Warping (DDTW) (Keogh and Pazzani,

2001) in particular. Illustrated in Figure 3, each point in the red-

dashed prototype density dp is matched with a point in the solid-

black test density di. This makes it possible to transfer the known

thresholds tp to predicted thresholds t̂ i. The resulting threshold pre-

diction on the right contains both ti (red) and t̂ i (blue) with a nearly

perfect match. In contrast to regular Dynamic Time Warping,

DDTW does not compare absolute density values, but uses local de-

rivatives instead. This way, DDTW puts more focus on aligning

shapes. More specifically, because of differences in the size of cell

populations, the associated density peaks can locally differ in height,

which constitutes a problem for regular DTW: because it only com-

pares absolute height values, local differences make it difficult to

align the corresponding density regions (Keogh and Pazzani, 2001).

This effect can be remedied by considering derivatives instead. In the

case of aligning FCM densities, this is the preferred way, because

thresholds are mostly characterized by density features such as ex-

trema or slope changes (Malek et al., 2015). Using flowLearn, it is

also possible to gate rare populations by the alignment of density

tails. Additional information is shown in Supplementary Figure S6.

The idea of alignment has already been proposed in the technology

dubbed per-channel basis normalization (Hahne et al., 2010). Here,

specific density landmarks are identified and aligned. By using

parameter-less shape matching for arbitrary shapes, flowLearn im-

proves on this. In particular, it can take into account rare popula-

tions, which are not easily captured by using parameterized density

models as in per-channel basis normalization.

2.2 Evaluation measures
We evaluate our method by assessing its performance per predicted

population: For that task, we use two measures. First we calculate

difference percentages in median cell frequencies df ¼ medianjfi�f̂ i j
median fi

where, for each sample i, fi and f̂ i are cell frequencies of a given

population with regard to the ground truth and predicted gates, re-

spectively. Second, we calculated F1-measures for all ground truth

and predicted populations: Given one sample and population, for

one or more channels, true and predicted thresholds, ti and t̂ i, define

a gate. Furthermore, a sub-population is defined by all cells that fall

within the gate, i.e. have larger/smaller density than the lower/upper

threshold for each involved channel. For the sub-population, the

true and predicted set of cells, S and Ŝ, are known. Then the per-

formance on this particular population and sample is defined by

F1 ¼ 2 � precision�recall
precisionþ recall, where precision and recall are calculated in

terms of S and Ŝ. While analysts are mostly interested in the accur-

acy of cell frequencies, using the F1-score for evaluation provides an

additional, more informative measure. It is worth to note, that even

though thresholds might differ significantly, the agreement of

Algorithm 1 Applying flowLearn to gate all populations in a

given set of FCS files: First, densities are calculated once for

all channels. Second, prototype densities are identified and

manually gated. Third, all other densities are aligned to the

prototypes and thresholds are transferred. This is repeated for

each population of interest, starting with all cells.

Input: set of N FCS files, gating hierarchy H

1: parentPopulation all cells

2: childPopulation next in H

3: while not all populations in H gated do

4: for all FCS files si do " Calculate densities once

5: Zi  cells matching parentPopulation in si

6: for all channels j do

7: dj
i  density on j-th channel for cells in Zi

8: end for

9: end for

10: for all considered channels j do " Predict thresholds

11: Dj  distances between all densities dj
i; 8 samples i

12: Pj  np prototype densities, w.r.t. Dj

13: let expert set reference threshold(s) on each density

in Pj

14: for all non-prototype densities m do

15: p nearest prototype w.r.t. Dj

16: a DDTW alignment between m and p

17: transfer reference threshold(s) from p to m

using a

18: end for

19: end for

20: gate childPopulation using reference and predicted

thresholds

21: parentPopulation childPopulation

22: childPopulation next in H

23: end while

Fig. 3. Example of how thresholds are transferred using DDTW alignments.

Top: The red-dashed prototype density dp is aligned to the solid-black test

density di. The transfer of threshold location is indicated by an arrow.

Bottom: Test density di with predicted (blue) and true (red) thresholds, bt i and

ti, respectively. Both thresholds match up well (Color version of this figure is

available at Bioinformatics online.)
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population memberships as measured by the F1-score can still be

high. This is the case when thresholds differ in regions with only a

low number of cells.

2.3 Quality checking cell population thresholds
Thresholds might be predicted wrongly either because of sample di-

versity (i.e. failed alignments with too different prototypes), or be-

cause of gates that were set wrongly in the first place. The

prediction capabilities and evaluation measures of flowLearn can al-

ternatively be used as a tool for detecting such irregularities in a

given set of samples and already existing gates. Samples with deviant

F1-scores can be an indication of unexpected biological variation,

differences in reagent preparation and analysis, or wrongly set

thresholds. Our method give clues to an expert to further analyze

identified, possibly problematic samples or gates. Given an input

dataset with existing gates in the form of channel thresholds, quality

checking is performed as follows. Similar to Algorithm 1, for each

analyzed population:

1. Use flowLearn to identify np prototype densities.

2. Let flowLearn gate all other non-prototype samples.

3. Compare predicted populations with ones defined by existing

gates.

4. Samples with significant deviation from the average F1-score

suggest problems or give hint to unexpected biological variation.

FlowLearn provides the functionality to identify such outlier sam-

ples. Considering the distribution of F1-scores in a given population, it

uses the rule of thumb (Upton and Cook, 1996) that outliers are given

by samples with F1 < Q1 � 1:5 � IQR, where Q1 is the 25%-quantile

and IQR is the inter-quartile-range of the distribution of F1-values.

2.4 Implementation and computational complexity
FlowLearn is available as an R-package. By default, using the dens-

ity function, flowLearn uses a smoothed Gaussian kernel density

estimate with a granularity of G¼512 points. This setting is a good

compromise between speed and accuracy: For coarse densities, the

alignment is fast, however prediction accuracy will suffer. The sub-

sequent spline fitting is performed using R’s smooth.spline func-

tion. For prototype selection, the function pam of the package

cluster is used. Furthermore, we use the dtw package for align-

ment and a robust estimate (Keogh and Pazzani, 2001) of derivative

dderiv
i ¼ di�di�1ð Þ þ diþ1�di�1ð Þ=2

2 . FlowLearn provides separate methods

to identify prototype densities and to predict other samples from

there. This way, it can be integrated into existing analysis pipelines.

Computational time complexity of the gating of one population

can be broken down into multiple steps. First, density calculation and

spline fitting (Algorithm 1, lines 4–9) is performed in OðN � ðMþG

log GÞÞ and OðN �GÞ, respectively. The distance matrix calculation

and subsequent prototype selection (Algorithm 1, lines 11–12) is done

in OðN2Þ. By using warping window constraints, DDTW takes place

inOðN �GÞ. Consequently, flowLearn has quadratic time and memory

complexity, however practical requirements are very low (Section 4.3).

3 Study design and evaluation datasets

To demonstrate flowLearn’s capabilities to accurately identify popu-

lations on a large number of samples, we evaluated it on two distinct

datasets (Mice, FlowCAP). Both datasets were used in real-world

applications, contain diverse samples, and were augmented with

carefully set gates in the form of channel thresholds. For each sam-

ple and cell population in both datasets, flowLearn identified np

prototypes, and predicted gates on the remaining test samples using

only the prototypes as a reference. For each population, median cell

frequencies and F1-scores are reported to assess flowLearn’s per-

formance on these data. Furthermore, we compared our results on

the Mice dataset with two recent state-of-the-art gating tools for

identifying cell populations, DeepCyTOF (Li et al., 2017) and

FlowSOM (Van Gassen et al., 2015).

3.1 Mice data
As part of a large study to identify gene-immunophenotype associ-

ations in mice (Brown and Moore, 2012), 2665 FCS files from mice

bone marrow samples (experiment details given in Supplementary

Table S1) were gated, first manually and then using flowDensity, and

independently verified. By looking at the variability of resulting cell

proportions, the flowDensity gates were found to be superior to man-

ual gates. Hence, flowDensity gates were used as the gold standard

for this study. In the following experiments, we refer to these curated

thresholds as true gates. The mean cell frequencies of 16 cell popula-

tions (relative to the parent population) range from 0.2 to 50%, cov-

ering a wide biological diversity, including very rare populations.

3.2 FlowCAP data
We evaluated flowLearn on a second dataset from the FlowCAP

(Flow Cytometry: Critical Assessment of Population Identification

Methods) consortium (Finak et al., 2016). FlowCAP provides the

means to objectively test methods for the identification of cell popu-

lations, and puts out state-of-the-art datasets with which it is pos-

sible to compare tools to manual analysis by experts. In the context

of the FlowCAP-III competition, seven participating centers were

given the task to analyze three samples. For each sample, three repli-

cates were analyzed, and for each replicate, sub-populations in four

datasets [B cells, T cells, Regulatory T cells (T-reg), Dendritic Cells

(DC)] were identified independently from each center. Manual gat-

ing was performed by a central site. For each dataset, a total of 63

FCS files were available for evaluation. Since flowLearn currently

uses channel thresholds, we used only populations with rectangular

gates, 54 in total. Mean cell frequencies (relative to the parent popu-

lation) range from 0.4 to 70%. Even though, all centers were

advised to follow reagent and analysis standardization, technical

variation between centers was still large (Finak et al., 2016), leading

to a greater sample diversity in this dataset. This effect is also pro-

nounced in the densities estimated by flowLearn, i.e. the sample di-

versity is captured in the densities as well. For illustration, we used

t-SNE (Van Der Maaten, 2014) to project densities to two dimen-

sions. In Supplementary Figure S1 it is visible that within-center den-

sities are more similar to each other than to other centers, indicating

between-center variability.

4 Results

4.1 Mice data
For each population of the Mice dataset (2665 samples of clean

CD45 bone marrow cells), we gated a small number of np 2 f1;2;5;
10; 50g prototypes (using flowDensity and manual curation). These

thresholds were transferred to all samples by the described

flowLearn protocol. We refer to those thresholds as the predicted

ones. Figure 4 shows the result of np¼1, where results on all 2664

test samples per population are represented by boxplots.

Distributions of true and predicted cell frequencies match up well,

with mean df ¼ 0:05 (min df ¼ 0:0001, max df ¼ 0:22), taken over

all populations. Additionally, in Supplementary Figures S33 and
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S34, it is visible that errors of both predicted thresholds and cell fre-

quencies are concentrated near zero for all datasets. Also, predicted

gates are accurate with respect to extracted cell populations, specif-

ically we have medianðF1Þ > 0:99 for the majority (9/16) of popula-

tions and medianðF1Þ > 0:90 for the large majority (15/16). Rare

populations such as T cells (4% of parent) and Plasma cells (0.2%

of parent) show high performance. The CD43 population’s low vari-

ability could not be matched (Supplementary Section S5). For some

populations, a minority of samples with lower F1-scores exist,

including outliers (represented as dots) with poor F1-score.

Choosing the number of prototypes np > 1 increases performance

significantly, especially for populations with initially low perform-

ance (Supplementary Figs S8–S12). For the HFC population, choos-

ing np¼10 increases the result to medianðF1Þ ¼ 0:94.

4.2 FlowCAP data
On the FlowCAP data, we ran flowLearn using np 2 f1;4;7; 11; 20g
prototype(s). As the dataset contained only 63 samples, we chose

np¼7 prototypes (i.e. one prototype per center). Table 1 shows a stat-

istic for difference percentages in cell frequencies for all datasets. The

average differences were low, ranging from 5 to 14 percent. While for

some populations, differences were negligible, for other populations,

differences were large. Furthermore, a summary of F1-scores is shown

in Figure 5, where the minimum and average population medianðF1Þ-
scores, depending on np is displayed for each dataset. Performance de-

pended on both the population and more strongly on the chosen num-

ber of prototypes. Considering all datasets, for np¼7 (number of

centers), 20/64 populations achieve medianðF1Þ > 0:99 and medianð
F1Þ > 0:90 for 51/64 populations. Results on other populations are

not as good when only few prototypes (np < 7) are chosen, and are

generally not as good as on the Mice dataset. In general, choosing

more prototypes yields higher F1 values. Especially for populations

that perform poorly, increasing np significantly increases perform-

ance. Results for all datasets can be found in the Supplementary

Material (Supplementary Figs S13–S32).

4.3 Runtime
For the Mice data (16 populations), gating and evaluating all 2665

samples using one prototype took one hour (1.3 s per sample).

By exploiting parallelism, practical runtimes are low. When using np

Fig. 4. Results on the Mice dataset using one prototype. Left: True and predicted cell frequencies for each population. Right: F1-scores for each population (2665

samples). Outliers are shown as single dots. Populations HFA to HFF stand for Hardy-Fraction A to F (explained in Supplementary Table S3). Populations denoted

with an asterisk are non-biological (technical) populations

Fig. 5. Results on the FlowCAP dataset, with minimum (circle) and mean (tri-

angle) population performances for all four datasets, depending on the

chosen number of prototypes

Table 1. For each dataset, minimum, average and maximum differ-

ence percentages in cell frequencies

Mice DC T-cells T-reg B-cells

np 1 7 7 7 7

min df 0.0001 0.01 0.001 0.001 0.002

mean df 0.05 0.11 0.13 0.14 0.08

max df 0.22 0.62 0.13 0.14 0.22
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prototypes, flowLearn will perform np alignments per sample per

population. Increasing np also linearly increases runtime. Again, for

the Mice data, using np¼2 took 62 min (np¼10: 66 min, np¼50:

111 min). In all experiments, using a Dell M3800 laptop (IntelV
R

CoreTM i7-4712HQ processor), resident memory usage never ex-

ceeded 5 GB of RAM. These results indicate that flowLearn can be

run on recent consumer laptops without problems.

4.4 Comparison to DeepCyTOF and FlowSOM
We compared flowLearn to two recent state-of-the-art methods for

population identification, DeepCyTOF (Li et al., 2017) and

FlowSOM (Van Gassen et al., 2015). DeepCyTOF exhibited very

high F1-scores on multiple datasets, being better than all best-

performing methods on data from the FlowCAP-I competition

(Aghaeepour et al., 2013). In a recent study (Weber and Robinson,

2016), FlowSOM outperformed 18 competing tools. We ran both

methods on the Mice dataset and compared results to the ones ob-

tained by flowLearn (Supplementary Fig. S7). Details on the exact

evaluation procedure can be found in Supplementary Table S2.

Since these methods return disjoint clusters (only one cluster ID

per cell), suitable populations are given by all leaf populations in

the gating hierarchy. We evaluated F1-scores in the same manner

as for flowLearn. DeepCyTOF predicted seven out of ten popula-

tions with median F1 > 0:75, with mean F1 ¼ 0:79. FlowSOM was

able to achieve median F1 > 0:75 for four out of ten considered

populations. Other populations were subpar. The FlowSOM aver-

age performance over all considered populations and samples,

mean F1 ¼ 0:53, is similar to results obtained previously (Weber

and Robinson, 2016). Using the same populations, and using

np¼1 only, flowLearn achieved mean F1 ¼ 0:94, demonstrating

flowLearn’s superiority on this data.

Furthermore, we compared runtimes of DeepCyTOF, FlowSOM

and flowLearn. On the Mice data, using ten populations, not includ-

ing the one-time investment for training the deep network,

DeepCyTOF was able to classify each sample in an average of one

second. Using the same populations, FlowSOM was able to gate one

sample in an average of 11 s which is in accordance with results re-

ported in (Van Gassen et al., 2015). On the same data, flowLearn

predicted 2664 samples for one population in 1.37 min. For compar-

ability, predicting ten populations with flowLearn takes 13.7 min,

0.31 s per sample. This does not include the time spent for providing

manual gates to flowLearn.

5 Discussion

On two state-of-the-art datasets, flowLearn achieves medianðF1Þ-
measures exceeding F1 > 0:99 for 20/64 (31%), and F1 > 0:90 for

51/64 (80%) of all analyzed populations. It predicts populations

with low bias and variance, using only few examples (Mice: np¼1,

FlowCAP: np¼7). Hence, it is possible to gate very few training files

to obtain excellent results for most cell populations for thousands of

additional files. However, there are populations, for which it is diffi-

cult to predict gates (F1 < 0:9). We identified possible causes: First,

we found that flowLearn can identify possible sample-based irregu-

larities, in particular samples with densities that are significantly dif-

ferent from all other densities in a given dataset. Such differences

might exist due to either biological diversity or anomalous sample

reagent preparation and analysis. For example, the HFC population

of the Mice dataset has many wrongly predicted samples with low

F1-score (Fig. 4). Here, flowLearn identified all samples with

F1 < 0:56 as outliers. In all included box plots, these are shown as

individual dots. By visualizing sample densities from that popula-

tion, and coloring each sample by F1-score in Figure 6, it is visible

that samples with F1-score below the identified threshold form a dis-

tinct region, but not necessarily a separate cluster. Supplementary

Figure S3 shows that this observation can be made for only one

channel, giving more specific information about the source.

Furthermore, a closer look at wrongly predicted HFC samples

(Supplementary Fig. S4) explains their poor performance. While in

the large majority of samples, the HFC population is very well pro-

nounced, in samples with low F1-score, it is either completely miss-

ing or pronounced only very weakly. This leads to wrongly set

thresholds in the training data, or failed DTW alignments. Detecting

such irregularities confirms flowLearn’s capabilities of being used as

an appropriate tool for quality checking.

Next, we analyzed the sub-optimal performance of some popu-

lations in the FlowCAP dataset. Here, all datasets exhibit a wide

diversity in terms of samples, centers and gates (Finak et al., 2016).

We observed that this variability impacts on the ability of

flowLearn to correctly predict gates. An example is shown in

Supplementary Figure S5, which shows the same T-cell/CD4

Effector population from two different FCS files and that densities

and gates for the displayed channel are very different from each

other. Despite the difference in both densities, the alignment looks

correct. However, because of the difference in threshold locations,

a threshold transfer will incorrectly predict the resulting gate. We

observed similar effects on most other low-performing populations

from the FlowCAP dataset. Reasons for wrongly predicted gates

include differences in thresholds, failed alignments due to large dif-

ferences in samples, and also few failed alignments even though

samples were similar.

To prevent wrong alignments due to large sample differences,

flowLearn’s clustering approach is essential and picks prototypes

that are representative for all other samples. In some cases (espe-

cially in the presence of high sample diversity) it can happen, that a

prototype is wrongly aligned to all other samples, resulting in

reduced prediction performance. The number of prototypes is im-

portant as well. We showed that flowLearn can accurately predict

gates using only one prototype, but again, when there is high sample

diversity, performance can be improved significantly by using more.

The data might come from experiments in which samples can be

Fig. 6. t-SNE projection of Mice densities (HFC population) from one channel,

colored by F1-score according to predictions using np¼ 1. Samples with low

performance cluster together
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categorized, for example into healthy/diseased or wild type/knock-

out, or samples were analyzed in different centers. In such cases

where there is prior knowledge about the data, the number of proto-

types should be chosen accordingly. Generally, performance de-

pends on the heterogeneity of the observed densities. At present, the

number of prototypes is set manually within the pipeline, but this

choice could be automated in order to guarantee a sufficient sample

homogeneity within every single prototype cluster.

Last, when compared to two recent state-of-the-art methods,

DeepCyTOF and FlowSOM, our method showed superior perform-

ance in terms of F1-scores. While all methods aim to solve the same

problem of identifying cell populations, it is worth to highlight that

depending on the application, one might be better suited than an-

other. FlowSOM has the advantage that it does not require any prior

knowledge about the data at hand, in particular no manual gating is

needed. Being completely unsupervised, however it is expected that it

cannot perform as well as its supervised counterparts. Both

DeepCyTOF and FlowSOM can be used for high-dimensional data

such as from mass cytometry. In the case of DeepCyTOF, if address-

ing the difficult problem of automatically finding good hyper-

parameters and network architectures (Klein et al., 2016), it may be

used for end-to-end machine learning, i.e. directly inferring biological

variables from a given set of cells, without gating (Mair et al., 2016).

In contrast, flowLearn automates the prevalent paradigm of gating

using channel thresholds for lower-dimensional data. This condition

gives our tool an advantage over other tools that have to search a

much larger function space. At the same time, being based on channel

thresholds makes our results interpretable and adjustable, an advan-

tage that is not directly given for other tools. Furthermore,

DeepCyTOF and FlowSOM return assignments of disjoint cell popu-

lations. In a gating hierarchy, cells can have multiple labels, and as-

signment with such methods is difficult. Last, it is worth to note that

in the right hands, by carefully choosing method parameters, both

DeepCyTOF and FlowSOM may yield better results. In contrast,

flowLearn’s parameters are robust and tuning is not necessary.

6 Conclusion

We have shown that flowLearn is able to accurately identify FCM cell

populations. In a quality checking setting, flowLearn can also be used

to identify both anomalous samples and aberrant thresholds from

existing gatings. Using simple density alignments, on two diverse data-

sets it demonstrated good to excellent performance on a wide variety

of populations, including very rare ones. This can be achieved using

as few as only one gated sample, keeping invested resources for gating

at a minimum level. Furthermore, on a large set of bone marrow sam-

ples, we have shown that flowLearn is superior to DeepCyTOF and

FlowSOM, two top-performing methods according to recent com-

parisons. On highly diverse FCM samples such as from different data-

sets or centers, flowLearn shows its limitations, although in general,

choosing more prototypes can increase performance significantly. The

correct choice of reference densities is essential for prediction. In the

future we will investigate more options to choose better prototypes,

for example by including alignment properties or using averaged den-

sities instead of the current prototype-based approach. It would also

be beneficial to include confidence measures for the suitability of a

given prototype, for example based on alignment distances. With

that, one could judge the number of needed prototypes as well.

Furthermore, we are interested in using alignments of two-

dimensional densities, which would enable the usage of arbitrarily

shaped gates. We are also working with third-party commercial tool

vendors (e.g. FlowJo, FCSExpress) to extract the rotation required to

bring thresholds orthogonal to the axis as required for our current im-

plementation. Being based on the R ecosystem, flowLearn is ready to

be included into existing FCM analysis pipelines, and offers improve-

ments thereof in terms of gating quality and resource investment.
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