
Hand-Object Interaction Detection with Fully Convolutional Networks

Matthias Schröder Helge Ritter
Neuroinformatics Group, Bielefeld University
{maschroe,helge}@techfak.uni-bielefeld.de

Abstract

Detecting hand-object interactions is a challenging
problem with many applications in the human-computer in-
teraction domain. We present a real-time method that au-
tomatically detects hand-object interactions in RGBD sen-
sor data and tracks the object’s rigid pose over time. The
detection is performed using a fully convolutional neural
network, which is purposefully trained to discern the re-
lationship between hands and objects and which predicts
pixel-wise class probabilities. This output is used in a prob-
abilistic pixel labeling strategy that explicitly accounts for
the uncertainty of the prediction. Based on the labeling of
object pixels, the object is tracked over time using model-
based registration. We evaluate the accuracy and general-
izability of our approach and make our annotated RGBD
dataset as well as our trained models publicly available.

1. Introduction
The visual detection and recognition of human actions

by technical systems is a fundamental problem with many
applications in domains such as virtual or augmented re-
ality, tangible computing, robotic teleoperation, or human-
computer interaction systems generally. Hand-object inter-
actions are a particularly important type of such actions,
since the way in which humans interact with the world is
often based around the interplay between hands and objects.
Visually detecting and processing hand-object interactions
is a challenging problem due to the high complexity of the
involved movements, and because the acquisition of such
movements is made difficult by issues like occlusions or vi-
sual ambiguities, particularly in monocular vision setups.

Existing systems that process hand-object interactions
typically use pre-specified visual markers or color informa-
tion to discriminate between hands and objects in sensor
data. We present a method that is capable of hand-object
discrimination irrespective of object color or shape, and
without the need for visual markers. To this end, we use a
data-driven approach, in which a fully convolutional neural
network is trained to discern the relationship between hands

Figure 1: Our method localizes interacting hands and ob-
jects in an input image (top left) by computing pixel-wise
probabilities. The resulting probability map (top right) dis-
criminates between background (blue), hands (green) and
objects (red). Based on this, a dense labeling of hand and
object pixels is generated (bottom right). The classified pix-
els are then used to recover the 6D pose of the manipulated
object (bottom left) in real-time.

and objects, and then used to produce dense, pixel-wise pre-
dictions for the localization of hands and objects. By com-
bining these pixel-wise predictions with the 3D information
obtained from an RGBD sensor, we track the object’s rigid
pose in real-time as it is undergoing user manipulation. Fig-
ure 1 illustrates our method with an example.

Our data-driven approach is based on a purposefully de-
signed dataset of approximately 50,000 RGBD frames con-
taining a variety of hand-object interactions. We make this
dataset as well as our trained convolutional neural network
models publicly available.1 In a thorough evaluation of our
hand-object discrimination approach, we explore different
variations of our system architecture and input data modal-
ities. We show that, despite being trained with a low varia-
tion of objects, our method can generally detect previously
unknown objects while they are manipulated by hands.

1https://ni.www.techfak.uni-bielefeld.de/node/3579

https://ni.www.techfak.uni-bielefeld.de/node/3579


2. Related work

The outstanding performance of convolutional neural
networks (CNNs) in image recognition tasks [12, 17, 19, 9]
has been leveraged in a wide range of computer vision
domains by employing transfer learning [27], where pre-
trained CNNs are adapted and fine-tuned towards new tasks.
For image segmentation tasks this typically involves us-
ing a pre-trained CNN as an encoder that generates feature
maps, which are then processed by a decoder employing
transposed convolutions to generate the segmentation map
[13, 1, 14, 26]. Such end-to-end methods differ from ap-
proaches that use CNNs in addition to pre-processing or
post-processing [7, 6, 3].

Since we aim to minimize computational overhead in our
real-time application, we adopt the end-to-end fully convo-
lutional network (FCN) approach of [13] to generate dense
predictions for hand and object pixels. Our approach differs
from theirs in the way the class labels are generated: instead
of simply maximizing the FCN’s output probabilities, we
randomly sample from the pixel-wise probabilities and take
depth information into account, which improves accuracy.
Depth information has been previously utilized for segmen-
tation with CNNs [4, 8]. In particular, [8] used the depth
map to compute a 3-channel geocentric embedding that en-
coded information w.r.t. an estimated gravity direction. In
contrast, we explore gravity-independent depth-based input
modalities in addition to color, including normal maps and
depth-based foreground masking.

A CNN approach for localization and recognition of
hand-object interactions in color images has been proposed
in [16]. Similar to our method, this approach uses a FCN to
generate dense probability maps to predict the location of
body parts and objects. These are then used in a complex
multi-stage classification scheme for offline action recogni-
tion, while our approach uses the FCN outputs to discrim-
inate the hand from the object and to generate pixel labels
for real-time tracking. Similar to our approach, [28] used
FCNs to discriminate between objects for 6D pose estima-
tion. While this approach produces good results for object
localization in cluttered environments, it requires a multi-
camera setup and does not achieve real-time performance,
which is crucial for dynamic hand-object interactions.

Real-time free-hand tracking using CNNs has been ac-
complished in previous works [22, 15]. Unlike our ap-
proach, these methods estimate joint positions of a freely
moving hand after first detecting the hand’s bounding box
in a separate pre-processing step. In [25] the user’s hands
are segmented in input images with a two-part CNN archi-
tecture. Rather than transposed convolutional layers, this
approach uses fully connected layers to generate the hand
segmentation. Our method uses FCNs to generate hand-
object probability maps, from which a dense pixel labeling

Dense pixel-wise
classification (FCN)

Sensor data
(pre-processing)

Pixel
labeling

Model-based
tracking

Figure 2: Overview of our method. Hand and object are
discriminated in the input sensor data using a FCN and a
probabilistic labeling strategy. The resulting labeled pixels
are used as geometric correspondences for object tracking.

is created. The resulting labels are used together with the
input point cloud to track the object in real-time.

We adapt the model-based hand tracking method of
[20, 21] towards rigid object tracking. This method is
highly efficient, as well as robust against occlusions and
noisy RGBD input data. Beyond free-hand tracking, the
state of the art in simultaneous hand-object tracking has ad-
vanced significantly [24, 23, 18], but while these methods
achieve highly accurate pose estimations, they typically still
rely on simple color-based segmentation for distinguishing
between hand and object, whereas our work represents a
step towards fully automatic hand-object discrimination.

3. Method overview
Our method detects interacting hands and objects in sen-

sor data and tracks the 6D pose of the manipulated object.
Figure 2 shows an overview of the steps involved in this
process. The input data is obtained using an RGBD sensor,
which is mounted above the tabletop interaction area and
captures the user’s hands and the objects. Each captured
frame is processed to conform with the input modalities re-
quired by the FCN (e.g. resizing to square dimensions). Us-
ing this input frame, the FCN produces a 3-channel prob-
ability map with probability values for each class (back-
ground, hand, object) at every pixel location. Based on
these pixel-wise probabilities, and combined with the depth
information of the input frame, a dense labeling of hand
and object pixels is generated. These labeled pixels are
then used to define data correspondences for model-based
tracking, which estimates the object’s 6D pose over time
by fitting a model of the object to the labeled data. In the
following sections we describe the details of each step.

4. Dense pixel classification
We follow the FCN architecture of [13] and fine-tune it

towards the hand-object interaction domain. Generally, this
architecture consists of an encoder part, which uses convo-
lutions and pooling to compute feature maps with decreas-
ing spatial resolution and increasing depth, and a decoder
part, which uses transposed convolutions and element-wise
fusion to generate class score maps with the spatial dimen-



ConvolutionI(&IReLU)
PoolingI/Iupsampling

Element-wiseIfusion
Softmax

ClassIprobabilities
InputIimage

Figure 3: Dense pixel classification using a fully convolutional network with skip connections. The FCN computes a series
of feature maps in the encoder part of the network (downsampling), which are then used to generate the class probability map
in the decoder (upsampling). By using skip connections, the network successively fuses feature maps from different layers
to obtain a high-resolution result. The classes between which our FCN distinguishes are background, hands, and objects.

sions of the input image. In the following, we describe the
FCN architecture and training in more detail.

4.1. FCN architecture

Figure 3 illustrates the FCN architecture and the prob-
ability maps generated from an input image. The encoder
part of the shown network is a fully convolutionalized ver-
sion of the VGG-16 architecture [17, 13], which stacks a
series of convolutional blocks, each consisting of several
convolution-nonlinearity layers followed by a pooling layer.
Overall, the encoder reduces spatial dimensions through
max-pooling five times, each time downsampling the input
by 50% (pool1–pool5 layers).

The decoder upsamples score maps computed from the
encoder’s feature maps to the source image resolution us-
ing transposed convolutions. Score maps are produced by
additional 1 × 1 convolution layers (without nonlinearity)
generating class scores from a given feature map. The sim-
plest decoder is one that directly upscales the score map
computed from the last encoder layer to the input image
dimension. However, after five pooling operations the en-
coder’s receptive field is too large to capture finer silhouette
details. To resolve this, [13] proposed using skip connec-
tions, which fuse score maps of higher-resolution layers by
element-wise addition. This concept is illustrated in Fig-
ure 3 for two skip connections, after the pool3 and pool4
layers. Adding more than two skip connections reaches di-
minishing returns [13], and we found that using skip con-
nections from layers that are not sufficiently deep yields
unsatisfactory results (see Section 6). We refer to FCN ar-
chitectures without skip connections as single stream nets
and ones with skip connections as skip nets.

4.2. FCN training

We trained the FCN using a dataset of approximately
50,000 images containing hand-object interactions as well
as free-hand movements. Since the purpose of our FCN is
primarily to discern the relationship between hand and ob-
ject, rather than only the appearance of specific objects, our
dataset was designed with a high variation of grasps and ma-
nipulations and a low variation of objects. Our results show
that even with low object variation in the training data, un-
known objects can still be detected (see Section 6).

We recorded several interactions with two cuboid ob-
jects, one equilateral (see Figure 2) and one flat (see Fig-
ure 1), which are two shapes that afford a high variety of
grasp and manipulation types. We followed the grasp taxon-
omy of [5] to capture as many different, distinct hand-object
manipulation types as possible. The ground truth labels for
hand, object, and background pixels were created with sim-
ple color classification, depth-based foreground masking,
and manual annotation. An example of an image with its
ground truth is shown in Figure 4a and Figure 4b.

The FCN training is based on transfer learning from a
pre-trained model [13], and we follow their recommenda-
tions for the training parameters. We performed training for
20 epochs, using batch size 16, base learning rate 1×10−10,
momentum 0.99, and weight decay 5 × 10−4. The dataset
was randomly shuffled and 90% of the frames were used as
training data, 10% as test data. To generate our particular
class score maps, we added a 1 × 1 convolution before the
softmax layer. The 320× 240 sensor images are rescaled to
be square FCN inputs. We experimented with 200×200 and
100× 100 images, and found that smaller images improved
runtime performance while not notably impacting accuracy.



(a) (b) (c) (d)

Figure 4: Computed pixel labeling compared to ground
truth. (a) Input image. (b) Ground truth labeling. (c) Result
of argmax labeling. (d) Result of fuzzy labeling. Unlike
the argmax approach, our fuzzy labeling is able to coarsely
capture the index finger that covers the object.

5. Pixel labeling and object tracking
Based on the FCN outputs, we generate a pixel-wise

hand-object labeling and use the object labels to track the
object’s 6D pose. Pixel-wise classification is is typically
done by selecting the class with the highest probability.
However, since the FCN predictions are relatively coarse
and inherently uncertain, the accuracy of the region outlines
resulting from this approach is limited.

We address this by only labeling pixels whose depth val-
ues are within a given interaction volume. While this pro-
duces accurate outlines, resolving the ambiguity in areas
where hand and object overlap is still challenging. In the
following we describe a labeling strategy that directly in-
corporates the probabilistic nature of the FCN outputs, and
we show that using this strategy improves object tracking
accuracy.

5.1. Probabilistic labeling

We seek the class label li at pixel i given the N class
probabilities {pc,i}c∈{1,...,N} at this pixel. The labeling re-
sulting from maximizing the probabilities can be written as

l̂i = argmax
c∈{1,...,N}

{pc,i}. (1)

We refer to this labeling strategy as argmax labeling. This
labeling produces clear delineations between regions, but
does not capture the uncertainty in the prediction. Instead,
we determine the class label probabilistically by randomly
sampling from the probability distribution at the current
pixel, which can be written as

li = sample
c∈{1,...,N}

{pc,i}, (2)

where sample is a function that returns a class index
c ∈ {1, . . . , N} randomly selected according to the cor-
responding probabilities {pc,i}. We refer to this labeling
strategy as fuzzy labeling.

Figure 4 compares argmax labeling and fuzzy labeling
with the ground truth of an example image. The argmax

(a) (b) (c)

Figure 5: Different object tracking examples. (a) Input im-
age. (b) Fuzzy labeling result. (c) Model fitted to point
cloud.

approach produces a clear delineation between hand and
object, but does not capture the index finger pixels, whose
probability values are below the object probability. Con-
versely, the fuzzy approach is able to recover more details
of this ambiguous area.

5.2. Model-based tracking

Given the pixels labeled as the object class, we esti-
mate the object’s 6D pose by fitting a pre-specified geomet-
ric model of the object to the observed sensor point cloud
data. Rather than using standard ICP [2], we adapt the ro-
bust registration method of [20, 21] from articulated track-
ing to rigid object tracking. This method is robust w.r.t.
outliers and handles occlusions by accounting for visibility
constraints during correspondence computation. In particu-
lar, correspondences between data and model are computed
bidirectionally, which improves fitting accuracy.

Applied to our context, optimizing the rigid transforma-
tion θ of the model M to match the object-labeled point
cloud data D involves minimizing an objective function

E(D,M,θ) = ω1

∑
x∈D
‖x−ΠM(θ)(x)‖12

+ω2

∑
p∈M(θ)

‖p−ΠD(p)‖12,
(3)

where ΠG(x) denotes the closest point projection of vector
x onto geometry G. The first term in (3) measures the fit
of sensor data points x ∈ D to the model, and the second
term measures the fit of rendered model silhouette pixels
p ∈M(θ) to the sensor silhouette. For more details on the
correspondence computation and the minimization of the
objective function, we refer to [20, 21].

Figure 5 shows examples for the model-based object
tracking. Figure 6 compares results for the model-based
tracking when using the argmax labeling strategy and the



(a) (b) (c) (d)

Figure 6: Tracking results with argmax labeling and fuzzy
labeling. (a) Input image. (b) Label image. (c) Model fit-
ted to point cloud. (d) Difference image between rendered
model silhouette and object class labels (top: argmax, bot-
tom: fuzzy).

fuzzy labeling strategy. When using argmax labeling, the
fitting produces a bad overlap between the model and the
detected object pixels, causing the model to shift from the
true object position. With fuzzy labeling, there are enough
object pixels to be used as fitting correspondences in areas
where the hand covers the object, such that the fitting can
align the model well with the object pixels.

6. Results

We evaluated our method on a validation dataset with ap-
proximately 10,000 frames of hand-object interactions that
were not used during training, including both known and
unknown movements and objects. To measure the accuracy
of the pixel labeling w.r.t. ground truth, we use the mean
pixel accuracy and mean region intersection over union
(IoU) metrics as they are defined in [13, Section 5].

In the following, we evaluate the accuracy of our ap-
proach with respect to the basic CNN encoder architecture,
the use of skip connections in the decoder, and variations of
input data types. In addition to these quantitative results, we
also provide some examples for the detection of unknown
objects. All results were produced on a PC with an i7 CPU,
16 GB RAM, and a GTX 1070 GPU, using the Caffe frame-
work [11].

6.1. FCN architecture variations

In addition to the VGG [17] architecture described in
Section 4, we performed experiments with smaller CNN
architectures for the encoder part of the FCN to reduce
computational costs. In particular, we experimented with
AlexNet [12], which is approximately 44% of VGG’s size,
and SqueezeNet [10], which is less than 10% of VGG’s size.
We refer to the different fully convolutionalized architec-
tures as FCN-VGG, FCN-AlexNet, and FCN-SqueezeNet

Architecture Model Inference Pixel Mean
(two skip conn.) size time acc. IoU
FCN-VGG 513 MB 32.8 ms 72.6 67.2
FCN-AlexNet 224 MB 8.6 ms 56.7 55.2
FCN-SqueezeNet 4.9 MB 4.6 ms 56.1 54.9

Table 1: Comparison of different FCN architectures. While
using smaller models significantly reduces file size and in-
ference time, the top accuracy drops notably.

0

10

20

30

40

50

60

70

FCN-VGG FCN-AlexNet FCN-SqueezeNet

Mean IoU w.r.t. architecture types

Single stream One skip connection Two skip connections

Figure 7: Mean IoU for all FCN variants. Adding skip con-
nections improves the accuracy of FCN-VGG, but has no
significant impact on FCN-AlexNet and FCN-SqueezeNet.

in the following. In the single stream versions of FCN-
AlexNet and FCN-SqueezeNet the final layers generating
class scores were substituted with upsampling layers to gen-
erate the class probability maps. For the skip net versions,
we added skip connections after the pool5 and norm2 layers
in FCN-AlexNet and before the pool5 and pool3 layers for
FCN-SqueezeNet. We used transfer learning as described
in Section 4 to train our FCNs, adding gradient accumula-
tion and a higher learning rate for FCN-AlexNet and FCN-
SqueezeNet.

Table 1 shows the model parameter file size, the infer-
ence time for one image, the mean pixel accuracy, and the
mean IoU for each FCN variant using two skip connections.
Architectures with less parameters greatly reduce memory
requirements and inference time, but this comes at the cost
of accuracy. Figure 7 shows the mean IoU for all single
stream and skip net variants. While the skip connections no-
ticeably improve the performance of FCN-VGG, they have
no significant impact on the other two smaller alternatives,
which remain around the same accuracy level as the single
stream net. In order to learn features to delineate regions
in an image, the corresponding layers must be sufficiently
deep, or have large convolution kernels. The skip connec-
tion layers in the smaller FCNs do not fulfill these crite-
ria and therefore these architectures do not benefit from the
skip net design.



(a) (b) (c) (d)

Figure 8: Comparison of probability map outputs for dif-
ferent FCN-VGG variants. (a) Input image. (b) Output for
single stream net. (c) Output for net with one skip connec-
tion. (d) Output for net with two skip connections.

(a) (b)

(c) (d) (e)

Figure 9: Comparison between ground truth and argmax
labeling results for different FCN variants. (a) Input image.
(b) Ground truth. (c) Single stream net result. (d) One-skip
net result. (e) Two-skip net result.

Figure 8 compares the probability map outputs of the sin-
gle stream, one-skip, and two-skip nets for the hand class
using FCN-VGG. The resolution of the skip nets is higher
and therefore better able to capture details in the outline of
the hand. Figure 9 shows the segmentations resulting from
argmax labeling for single stream and skip nets in compari-
son with the ground truth. The boundary between hand and
object is better approximated by the skip nets due to their
higher resolution. Overall, while using small single stream
nets is highly efficient and can yield acceptable results, the
improved detail and accuracy in the results of the skip nets
outweigh the performance gain. As the inference time of
FCN-VGG still allows for real-time operation (32.8 ms), we
use this architecture in our system.

6.2. Input data modalities

We explored different possibilities of incorporating
depth information in addition to color as the input to our
system, in order to exploit the additional geometric informa-
tion this provides. Since our method is based upon transfer
learning from models pre-trained on color data, we consid-
ered ways to incorporate such geometric information with
as little changes to the base architecture as possible. The

(a) (b) (c) (d)

Figure 10: Evaluated input data modalities. (a) Full color
image. (b) Color image with depth-based foreground mask-
ing. (c) Full normal map. (d) Normal map with depth-based
foreground masking.

Input data Mean pixel acc. Mean IoU
Color, full 72.6 67.2
Color, masked 72.1 67.8
Normals, full 63.6 57.6
Normals, masked 67.2 61.0

Table 2: Mean pixel accuracy and mean IoU of FCN-VGG
using different input data modalities.

depth-based scene descriptor of [8] is not directly applicable
to our setup, as we do not estimate or presuppose a geocen-
tric coordinate frame. Instead, we experimented with fore-
ground masking using a depth threshold to eliminate any
possible background clutter, and using normal maps as in-
put instead of color. We found that using raw depth maps
did not yield acceptable results.

Figure 10 shows an example for the different input
data modalities. Normal maps trade discriminative features
found in color images for additional geometric features and
invariance to lighting, distance and scale. We generated
training data for all four modalities from the same ground
truth data and performed training as described in Section 4.
In order to transfer weights learned on 8-bit, 3-channel color
data to normal data, we transformed the normal map values
from [−1, 1]3 to [0, 255]3. Transfer learning with untrans-
formed normal data did not converge in our experiments.

Table 2 compares the accuracy of FCN-VGG using the
different input data types. For color input, using the full im-
ages yields the best results and foreground masking does not
significantly impact accuracy, which may be due to the fact
that in our setup the background is fairly homogeneous and
uncluttered, so the discrimination between foreground and
background is not very problematic. Using normal maps
as input yields lower overall accuracies due to the loss of
discriminative color features, but when combined with fore-
ground masking, the accuracy is improved. The accuracy of
skip net architectures using normals still surpasses those of
single stream nets using color, which suggests that normal
maps may be a viable alternative when color data is unavail-
able, or when geometric information should be exploited in
addition to color.



Figure 11: Examples of our hand-object discrimination with unknown objects. First row: input images. Second row: FCN
class probability outputs. Third row: fuzzy labeling results. Our method is capable of detecting objects of different shapes,
sizes, colors and textures, although these objects were not contained in the training database.

6.3. Detecting unknown objects

To test the generalizability of our approach, we used it
to detect hand-object interactions with objects that were not
part of the FCN’s training data. Figure 11 shows several
such examples, along with the FCN class probability out-
puts and fuzzy labeling results. Despite the objects exhibit-
ing variations in shape, size, color and texture, our method
is capable of successfully detecting them and discriminating
between hands and objects. This indicates that our trained
model detects the relationship between hands and objects,
rather than only their appearance. Notably, in the class
probability map of the first example (Figure 11, leftmost
column), the right hand is anticipated to be connected with
the object despite being separated, which is resolved during
the pixel labeling. Conversely, in the third example (Fig-
ure 11, third column), the left hand and object are correctly
predicted to be separated. We also found that hands and
objects can be detected in isolation, which reaffirms similar
observations made in previous works [7, 28].

Our real-time system runs at 28 fps, with the majority of
the computation time per frame being spent on FCN infer-
ence (32.8 ms). The labeling and model-based tracking do
not impact runtime performance significantly (3 ms).

7. Discussion

We have presented a method for detecting hand-object
interactions by densely classifying an input image obtained
from an RGBD sensor into hand, object, and background

categories and generating a labeling of hand and object pix-
els to facilitate real-time object tracking. The dense pixel
classification is computed using a fully convolutional net-
work, which extracts features from the input image and pro-
duces a class probability map of the same resolution as the
input. Based on this output, a probabilistic pixel-wise la-
beling is performed, in which the uncertainties of the FCN
classification are explicitly accounted for. Using the result-
ing object pixels, the 6D pose of the object is accurately
tracked by continuously fitting a geometric model of the ob-
ject to the sensor point cloud using robust registration.

In several experimental evaluations, we explored the ef-
fects of different variations of the FCN architecture as well
as different input data modalities. There is a trade-off be-
tween the computational complexity of a FCN model and
the accuracy of its results, and in order to benefit from skip
connections added for higher resolution outputs the corre-
sponding CNN layers must strike a balance between depth
and receptive field size. CNN models pre-trained on color
data can be fine-tuned to normal data, which trades discrim-
inative color information for geometric information, at the
expense of accuracy. We showed that our dense pixel clas-
sification and labeling method generalizes to interactions
with objects that were not part of the training data.

The FCN employed for localization of hands and objects
was fine-tuned towards hand-object discrimination by train-
ing on a new dataset of approximately 50,000 densely an-
notated RGBD frames containing various hand-object inter-
actions. The dataset was designed in a principled manner in



order to effectively cover all the different ways in which
hands and objects can interact. Making our dataset and
trained models publicly available opens up new possibili-
ties to study and develop methods for detection, tracking,
or recognition of hand-object interactions. Future avenues
of research involve the development of new FCN architec-
tures optimized for efficiency, simultaneous hand and multi-
object tracking, and recognition of gestures and actions.

References
[1] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A

deep convolutional encoder-decoder architecture for image
segmentation. CoRR, abs/1511.00561, 2015.

[2] P. J. Besl and N. D. McKay. A method for registration of 3-d
shapes. Trans. Pattern Anal. Mach. Intell., 14(2):239–256,
1992.

[3] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille. Deeplab: Semantic image segmentation with deep
convolutional nets, atrous convolution, and fully connected
crfs. CoRR, abs/1606.00915, 2016.

[4] C. Couprie, C. Farabet, L. Najman, and Y. LeCun. In-
door semantic segmentation using depth information. CoRR,
abs/1301.3572, 2013.

[5] M. R. Cutkosky. On grasp choice, grasp models, and the
design of hands for manufacturing tasks. Trans. Robotics
and Automation, 5(3):269–279, 1989.

[6] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning
hierarchical features for scene labeling. Trans. Pattern Anal.
Mach. Intell., 35(8):1915–1929, 2013.

[7] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich
feature hierarchies for accurate object detection and seman-
tic segmentation. In Conference on Computer Vision and
Pattern Recognition, pages 580–587, 2014.

[8] S. Gupta, R. B. Girshick, P. A. Arbeláez, and J. Malik. Learn-
ing rich features from RGB-D images for object detection
and segmentation. In European Conference on Computer Vi-
sion, pages 345–360, 2014.

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In Conference on Computer Vision
and Pattern Recognition, pages 770–778, 2016.

[10] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J.
Dally, and K. Keutzer. Squeezenet: Alexnet-level accuracy
with 50x fewer parameters and <1mb model size. CoRR,
abs/1602.07360, 2016.

[11] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. B. Girshick, S. Guadarrama, and T. Darrell. Caffe: Con-
volutional architecture for fast feature embedding. CoRR,
abs/1408.5093, 2014.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet clas-
sification with deep convolutional neural networks. In Con-
ference on Neural Information Processing Systems, pages
1106–1114, 2012.

[13] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In Conference on Com-
puter Vision and Pattern Recognition, pages 3431–3440,
2015.

[14] H. Noh, S. Hong, and B. Han. Learning deconvolution net-
work for semantic segmentation. In International Confer-
ence on Computer Vision, pages 1520–1528, 2015.

[15] M. Oberweger, P. Wohlhart, and V. Lepetit. Training a feed-
back loop for hand pose estimation. In International Confer-
ence on Computer Vision, pages 3316–3324, 2015.

[16] A. Rosenfeld and S. Ullman. Hand-object interaction and
precise localization in transitive action recognition. In Con-
ference on Computer and Robot Vision, pages 148–155,
2016.

[17] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

[18] S. Sridhar, F. Mueller, M. Zollhöfer, D. Casas, A. Oulasvirta,
and C. Theobalt. Real-time joint tracking of a hand manipu-
lating an object from RGB-D input. In European Conference
on Computer Vision, pages 294–310, 2016.

[19] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
Rethinking the inception architecture for computer vision.
In Conference on Computer Vision and Pattern Recognition,
pages 2818–2826, 2016.

[20] A. Tagliasacchi, M. Schröder, A. Tkach, S. Bouaziz,
M. Botsch, and M. Pauly. Robust articulated-icp for real-
time hand tracking. Comput. Graph. Forum, 34(5):101–114,
2015.

[21] A. Tkach, M. Pauly, and A. Tagliasacchi. Sphere-meshes
for real-time hand modeling and tracking. Trans. Graph.,
35(6):222:1–222:11, 2016.

[22] J. Tompson, M. Stein, Y. LeCun, and K. Perlin. Real-time
continuous pose recovery of human hands using convolu-
tional networks. Trans. Graph., 33(5):169:1–169:10, 2014.

[23] D. Tzionas, L. Ballan, A. Srikantha, P. Aponte, M. Pollefeys,
and J. Gall. Capturing hands in action using discriminative
salient points and physics simulation. International Journal
of Computer Vision, 118(2):172–193, 2016.

[24] D. Tzionas and J. Gall. 3d object reconstruction from hand-
object interactions. In International Conference on Com-
puter Vision, pages 729–737, 2015.

[25] T. Vodopivec, V. Lepetit, and P. Peer. Fine hand seg-
mentation using convolutional neural networks. CoRR,
abs/1608.07454, 2016.

[26] J. Wang, Z. Wang, D. Tao, S. See, and G. Wang. Learning
common and specific features for RGB-D semantic segmen-
tation with deconvolutional networks. In European Confer-
ence on Computer Vision, pages 664–679, 2016.

[27] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How trans-
ferable are features in deep neural networks? In Con-
ference on Neural Information Processing Systems, pages
3320–3328, 2014.

[28] A. Zeng, K. Yu, S. Song, D. Suo, E. W. Jr., A. Rodriguez,
and J. Xiao. Multi-view self-supervised deep learning for
6d pose estimation in the amazon picking challenge. CoRR,
abs/1609.09475, 2016.


