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Abstract—Many studies emphasize the importance of infant-
directed speech: stronger articulated, higher-quality speech
helps infants to better distinguish different speech sounds. This
effect has been widely investigated in terms of the infant’s per-
ceptual capabilities, but few studies examined whether infant-
directed speech has an effect on articulatory learning.

In earlier studies, we developed a model that learns arti-
culatory control for a 3D vocal tract model via goal babbling.
Exploration is organized in the space of outcomes. This so called
goal space is generated from a set of ambient speech sounds.
Similarly to how speech from the environment shapes infant’s
speech perception, the data from which the goal space is learned
shapes the later learning process: it determines which sounds
the model is able to discriminate, and thus, which sounds it can
eventually learn to produce.

We investigate how speech sound quality in early learning
affects the model’s capability to learn new vowel sounds.
The model is trained either on hyperarticulated (tense) or on
hypoarticulated (lax) vowels. Then we retrain the model with
vowels from the other set.

Results show that new vowels can be acquired although they
were not included in early learning. There is, however, an effect
of learning order, showing that models first trained on the
stronger articulated tense vowels easier accommodate to new
vowel sounds later on.

I. INTRODUCTION

Babbling is a crucial phase in infant’s speech development,
in which infants explore the possibilities of their vocal tract
and learn from the articulatory-acoustic correspondences they
experience.

Almost all computational models of speech acquisition
incorporate a babbling phase where motor configurations are
explored randomly [1], [2], [3] or actively [4], [5], [6]. Instead
of exploring in the space of motor parameters, babbling
can also be organized in the space of outcomes [7], [8].
In [9] it was shown that such goal babbling can bootstrap
vowel sounds quicker than motor babbling. Goal babbling
has subsequently been successfully applied for learning F0
contours [10] or for modeling the emergence of speech-like
sounds in general [11], [12].

In [13], we presented a model for learning articulatory
control for a 3D vocal tract model by goal babbling. Our
model bootstraps a parametric model of speech production

for perceiving and producing a number of different speech
sounds: the five vowels sounds [a], [e], [i], [o] and [u] in [13].
In contrast to previous studies, speech percepts in our model
are not represented with simple features such as formants
and intensity, but with high-dimensional features as they
are also used for speech recognition purposes. This opens
up the possibility to distinguish between a large variety of
speech sounds.

For efficient goal-directed exploration, however, we need
a low-dimensional representation of speech sounds. Young
infants might face a similar problem, as they are able to
distinguish different phones very well. These high perceptual
capabilities gradually reduce during their first year of life to
those sounds that are phonemes in their mother tongue [14],
[15]. Inspired by this finding, our model derives the space in
which it explores from a set of ambient speech sounds.

It has been largely observed in a range of different lan-
guages that caregivers hyperarticulate when speaking with
their infants (e.g. [16]). This infant-directed speech (“moth-
erese”) makes the vowels more distinct from each other
which is why hyperarticulated speech is typically seen as
higher quality speech. There is evidence that higher speech
quality correlates with better speech discrimination perfor-
mance in infants [17], [18]. Computationally, this has been
confirmed in [19] by Adriaans and Swingley: they showed
that a learning model based on a Mixture of Gaussians
could better discriminate vowels when being trained with
prosodically prominent vowel sounds.

We extend this view by testing the effect of higher quality
speech sounds on articulatory learning in our model of
speech acquisition. We model hyper- and hypoarticulated
sounds with tense and lax vowel sounds, respectively. Tense
vowels are stronger articulated than lax vowels and are
acoustically better discriminable. First, we train models for
producing either tense or lax vowels or both types of vowels
simultaneously. After initial training, the models are retrained
with all vowel sounds. We investigate (1) how the quality of
vowels used as ambient speech in initial training affects the
model’s ability to learn to produce vowels from the other
vowel set and (2) how these observations may be explained
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based on the articulatory system.
We find that the model can acquire vowel sounds which

were not included in initial learning. But a clear difference
can be observed depending on the order in which the vowels
are learned: If first the stronger articulated tense vowels are
learned, a generalization to lax vowels is learned quickly.
In the opposite direction, after the system adapted to lax
vowels, tense vowels are acquired with significantly lower
competence in the same time. Comparison of the learned
articulatory configurations reveals that models first trained
with lax vowels tend to articulate less also in later learning
which might be the reason for the lower competence levels.

This suggests that caregiver’s hyperarticulation not only
enhances infant’s speech discrimination ability [17], [18],
[19], but also causes stronger articulation in the infant which
might facilitate later articulatory learning.

In the following, we first introduce our model of speech
acquisition (Sec. II), then we present experimental results
from the initial training (Sec. III) and from the retraining
phase (Sec. IV). Finally we discuss the results in terms of
the articulatory system (Sec. V).

II. A MODEL FOR LEARNING ARTICULATORY CONTROL

Learning to speak in our framework means to learn which
articulatory movements are required for producing desired
outcomes. Thus, the system needs to learn the inverse map-
ping gpxq from acoustic outcomes x to motor commands q
which here encode articulatory parameters of the vocal tract.

The forward mapping fpqq captures the process of speech
production: by executing the vocal tract model with some
articulatory parameters an acoustic outcome is produced.

In kinematic learning tasks, forward model and inverse
model directly connect the motor configurations (joint angles)
with the outcomes (position coordinates). While 2D or 3D
space constitute a good low-dimensional space for goal-
directed exploration in kinematic learning, speech sounds
do not have an inherent low-dimensional representation. We
have to first generate such a space, e.g. from ambient speech,
such that babbling can take place. Outcomes x in our model,
thus, denote positions in this goal space: a low-dimensional
representation of the acoustic feature space.

An overview of our model is given in Fig. 1. Sec. II-A
describes how the goal space is learned from ambient speech
(left part of Fig. 1). This forms the goal space and initial-
izes the forward model (including speech synthesis, feature
extraction and projection into the goal space). Sec. II-B
describes babbling (right part of Fig. 1) which bootstraps
the inverse model.

A. Goal Space Formation

Choosing good features is crucial for later learning ability:
Sounds with identical feature encodings cannot be distin-
guished by the model. If we would design low-dimensional
features by hand, e.g. by using formant frequencies, we
artificially restrict the perception of our model.

A better way is to learn a low-dimensional acoustic repre-
sentation from data. This is also developmentally plausible,
as infant’s perception of speech is highly affected by early

exposure to their native language [20], [15]. By using statistic
information and semantic cues, infants might be able to
develop a representation to evaluate the speech sounds they
perceive from their environment.

In [13], we proposed to use high-dimensional acoustic
features (formants plus mel-frequency cepstral coefficients)
and then apply dimension reduction on a set of ambient
speech sounds to generate a low-dimensional space capturing
the most important variation. First, a statistical dimension re-
duction was performed using Principal Component Analysis
(PCA), reducing the dimensionality to 10 dimensions. Sub-
sequently, we applied Linear Discriminant Analysis (LDA),
taking the class information of the vowels into account. This
second dimension reduction is motivated by the semantic
information infants receive in interaction with their caregiver,
as well as by the high sensitivity of young infants to speech
contrasts [14]. The resulting 2-dimensional goal space is
normalized to r´1, 1s in each dimension. It captures the most
relevant information from the acoustic space. This process is
depicted on the left side of Fig. 1.

In this study, models trained on different vowel sets should
be compared. For this purpose, additionally to the vowel set
comprising tense vowels used in [13], we generate a second
vowel set with the lax correspondences of these vowels
(denoted with capitalized letters). Tense vowels (e.g. the [i]
sound in “leap”) generally are associated with higher muscle
tension than lax vowels (e.g. the [I] sound in “lip”), hence
the naming, but this difference does not consistently show in
experiments (e.g. [21]).

The ambient speech was generated using the articulatory
synthesizer VocalTractLab1 [22] by executing the predefined
articulatory shapes2 for a duration of 500 ms. We generated
100 acoustic variations for each vowel sound by adding
Gaussian distributed noise (σ “ 0.01) to the vocal tract
configurations defined for the default speaker (JD2) (cf. [13]).

B. Goal-directed Exploration

After the goal space has formed, the model explores
the goal space during babbling. The aim is to be able to
reproduce the sounds that are present in ambient speech.
Thus, targets for the exploration are randomly drawn from
a target distribution P pxq that is modeled by a Mixture of
Gaussians trained on ambient speech data (displayed with
small circles in the goal space in Fig. 1).

The underlying algorithm for the exploration is goal bab-
bling, a method for bootstrapping an inverse model for a
motor coordination task [7], [23], [24], [8]. Goal babbling
operates in the space of outcomes. The inverse mapping es-
timates which articulatory configurations achieve the desired
targets. By adding noise in the space of motor commands
and executing the forward mapping, new correspondences of
motor commands and outcomes are collected. These are used
to improve the inverse mapping.

1VocalTractLab 2.1 Linux API (released in September 2014), see:
http://vocaltractlab.de/index.php?page=vocaltractlab-download

2Articulatory shapes (or configurations) are defined with 18 vocal tract
parameters describing e.g. lip shape and tongue posture (see [13]).
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Fig. 1. Goal Space Formation: the goal space is generated from ambient speech. Babbling: the inverse model gpxq is trained to estimate an articulatory
configuration q for a desired target x˚ in goal space such that the forward model fpqq embeds the produced acoustics close to x˚.

In each goal babbling iteration, two steps are performed:
In the exploration step the model tries to reproduce a target
from the goal space (depicted on the right side of Fig. 1). In
the subsequent adaptation step the inverse model estimate is
updated with the new experienced correspondences of motor
command and achieved goal space position.

We use the learning algorithm from [13], which is based
on skill babbling [25], a recently proposed variant of goal
babbling that combines goal-directed exploration [23] with
episodic learning in mini-batches. This allows for a more
efficient inverse model update.

We outline the general principle of skill babbling in the
following, for further detail and formula please refer to [13].

The inverse model is initialized with the default action
q0 (that produces the neutral sound [@]) and the corre-
sponding goal space position x0 “ fpq0q. Then, in each
iteration the system explores around a new target seed xseed

(exploration step) and adapts the inverse model accordingly
(adaptation step).

1) Exploration Step: A target seed xseed is randomly
drawn from the target distribution P pxq. Noise in the goal
space σgoal is added to xseed to generate a number of K
slightly varied targets. Then the loop on the right side of
Fig. 1 is executed: The inverse model estimates actions q̂k

to approximate the targets x˚
k and exploratory noise σact in

the action space is added that drives the system towards the
discovery of new articulatory configurations (cf. Sec. II-B3).
Finally, the noisy articulatory configurations qk are executed,
and their actual positions xk “ fpqkq in goal space are
observed.

2) Adaptation Step: The inverse model gpx, θq can be
implemented with any supervised learning algorithm that
minimizes the weighted error criterion and can be updated
sequentially [25]. We use a radial basis function (RBF)
network: basis functions with radius r are added according to
data experience. This partitions the input space (goal space),
gradually leading to a more local representation.

The parameters θ of the model are the basis function
centers in goal space ci and the corresponding readout

weights ui which constitute prototypes in action space.
The output of the network is computed according to

gpx, θq “
I

ÿ

i“1

hipxq ¨ ui, (1)

where hipxq is the activation of basis function i when input
x is presented. hipxq is calculated with softmax (to ensure
well-behaving extrapolation) and scaled with the radius:

hipxq “
expp´ 1

r ¨ }x´ ci}
2q

řI
j“1 expp´

1
r ¨ }x´ cj}2q

(2)

When updating the inverse model with a new action-
outcome pair pqk,xkq, a new basis function with center
cI`1 “ xk is added if }xk ´ ci} ą r @i “ 1 . . . I .

The readout weights of each basis function i are updated
with gradient descent (learning rate λ “ 0.9):

unew
i “ ui ` λ ¨ wk ¨ hipxkq ¨ pqk ´ gpxk, θqq (3)

wk P r0, 1s are weights that reflect how valuable the
new experience pqk,xkq is. Three weighting schemes are
combined which rate the acquired training pairs according to:

‚ Accuracy: How close is the actual outcome to the
desired target in the goal space?

‚ Relevance: Is the discovered goal space position in the
range of the ambient speech?

‚ Sound quality: Is the speech sound articulated, i.e. above
a given intensity threshold?

For details, see [13]. The product wk of these three weights
is incorporated into the gradient descent update (Eq. 3) in
order to promote learning of “good” solutions.

3) Adaptive Articulatory Noise: The amplitude of action
space noise σact is crucial for learning: A too low noise
amplitude hinders the system from discovering new speech
sounds. With a too high noise amplitude the system’s perfor-
mance is unstable.

In [13], we showed that learning with adaptive noise yields
better and more stable results compared to learning with



a fixed noise amplitude. The adaptive noise amplitude is
calculated from the distance of the desired target to the
already discovered region of the goal space. We use this
adaptive articulatory noise here, as well, but improve the
metric to tackle a problem we discovered in [13]. The
proximity of [o] and [u] in the generated goal space led to
frequent confusion of these two vowels, especially in the
adaptive noise condition. The reason is that the adaptive
noise level reduces for both vowels as soon as one of the
vowels is discovered. In this work, we overcome this issue
by scaling the distance between desired target and discovered
region with the distance between the two closest ambient
speech clusters.

III. EXPERIMENT 1: TRAINING WITH DIFFERENT SETS
OF AMBIENT SPEECH SOUNDS

We generate goal spaces for three different sets of ambient
speech as described in Sec. II-A:
(A) With tense vowels only: [a], [e], [i], [o], [u], [@]
(B) With lax vowels only: [A], [E], [I], [O], [U], [@]
(C) With tense and lax vowels: [a], [e], [i], [o], [u], [A], [E],

[I], [O], [U], [@]
[@] is the “schwa” sound. It is included in all conditions

and is produced by the vocal tract in its neutral configuration.
Fig. 2 depicts the goal spaces into which the ambient

speech sounds were projected. We denote the resulting goal
space from experiment 1A with XT , from 1B with XL and
from 1C with XTL in the following. In XT , [o] and [u]
are close to each other, in XL, [E] and [@] are the most
similar ones. In the plot of XTL lax vowels seem to constitute
intermediate clusters that lie in between tense vowel clusters.

Goal-directed exploration is executed for each condition
(cf. Sec. II-B). Targets in this babbling phase are drawn from
the ambient speech sounds from which the goal space was
generated, i.e. the model’s perception is specifically adapted
to these vowel sounds. In each of the three experiments, we
independently train 10 models. The parameters for learning
were chosen like in [13]. That is, we train each model for a
maximum of 500 iterations, or until the errors for reproducing
all targets in goal space fall beyond a threshold (0.1). In
each iteration, K “ 10 targets are explored, generated with
Gaussian distributed noise with σgoal “ 0.05 (« 2.5% of
the goal space) around the target seed xseed. The radius of
the inverse model basis functions it set to r “ 0.15 which
roughly fits the average expansion of the vowel clusters in
goal space. Only the calculation of adaptive noise differs from
[13] by a factor as described in Sec. II-B3.

The competence of the models is evaluated in each iter-
ation by letting it imitate the cluster centers of the target
distribution. In accordance with e.g. [11], we calculate the
competence for a reproduction x of a target x˚ as:

comppx,x˚q “ expp´}x´ x˚}q (4)

Higher competence, thus, correspond to smaller euclidean
distance in goal space.

Fig. 3 presents the results of experiments 1A and 1B. The
graphs illustrate that all vowels are learned with high com-
petence. Lax vowels generally are learned more accurately

than tense vowels. The models learned in 1B also converge
more quickly (in average after 174 iterations, opposed to
265 iterations in experiment 1A).

The results from experiment 1C, where tense and lax vow-
els are learned together, are presented in Fig. 4. Performances
for tense and lax vowels are presented in separate graphs for
the sake of clarity and to make it better comparable to Fig. 3.

We can observe that although all vowels increase to
good competence levels, learning takes longer: on average
372 iterations were performed. Especially learning of the
tense vowels [o] and [u] is slightly delayed. The presence of
intermediate targets does not accelerate the overall learning
process. Rather, learning progresses more slowly, because
more possible targets are available, so each individual target
is probed less often.

IV. EXPERIMENT 2: RETRAINING WITH NEW VOWEL
SOUNDS

Learning all vowels at once is more difficult for our model
compared to learning only tense or only lax vowels. But the
models trained in 1A and 1B are specialized: The goal space
is organized to either represent tense vowels or lax vowels. In
this second experiment we examine whether models trained
on only tense or only lax vowels are still able to acquire new
speech sounds that were not present in the set of ambient
speech sounds.

Two experiments, 2A and 2B, are performed:
(A) Models trained on tense vowels (experiment 1A) babble

additionally lax vowels.
(B) Models trained on lax vowels (experiment 1B) babble

additionally tense vowels.
An important prerequisite for learning new sounds is that

the models are able to discriminate the new sounds in terms
of their goal space. So we first examined how the goal spaces
XT and XL perceive vowels that were not included in the
goal space formation. As Fig. 5 shows, there is more variance
in the perception of new vowels (colored clusters) than in the
perception of speech sounds from which the goal space has
been derived (black clusters).
XT perceives the lax vowels similarly to how lax vowels

are perceived by XTL. This suggests that the relationship in
the acoustics learned from tense vowels captures important
structures of lax vowels as well. Tense vowels perceived by
XL lie generally more outside of the original goal space. The
inverse model has to extrapolate, thus, a higher reproduction
error can be expected in experiment 2B.

Babbling proceeds similarly to the first babbling phase.
Before babbling continues, the new vowels are perceived,
i.e. projected to the goal space as depicted in Fig. 5, and the
target distribution is extended to incorporate the new vowels
in addition to the old ones. Then, 500 babbling iterations are
performed, babbling old and new vowels randomly, and com-
petence progress is computed analogously to experiment 1.

Fig. 6 shows the results for experiment 2A. The upper
graph demonstrates that learning new sounds slightly affects
the competence of the already acquired tense vowel sounds.
In the graph at the bottom the competence growth of the
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Fig. 3. Competence per vowel during exploration (averaged over 10 trials)
for learning tense vowels with XT (top) and for learning lax vowels with
XL (bottom).

new lax vowels is plotted. Some of the lax vowels can
already be imitated quite well by the models in the beginning.
This is possible because the inverse model is parametric:
although exploration during experiment 1 mainly focused on
regions of the goal space where ambient speech resides, the
regions in between clusters might also be covered with basis
functions while the model tries to achieve the desired speech
sounds. Apparently, the linear interpolation between the tense
vowels fits the lax vowel perception in most cases. Only
[O] is reproduced inaccurately in the beginning, but during
babbling its competence quickly increases.

In Fig. 7, we observe that for models trained on lax vowels
only it is much harder to acquire tense vowels. The compe-
tence increases for all vowel sounds, but is significantly lower
for [o] and [u].
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Fig. 4. Competences for tense (top) and lax (bottom) vowels during
exploration (averaged over 10 trials) for learning tense and lax vowels with
a combined goal space (XTL).

A perceptual evaluation3 of the results reveals that despite
a higher reproduction error, vowels in both experiments are
produced well enough for a human listener to recognize
them. But while all sounds can be perfectly distinguished
in experiment 2A, [o] and [u] as reproduced in experiment
2B can only be distinguished in 30% of the cases. However,
the ongoing competence increase in Fig. 7 suggests that this
might improve when babbling continues.

These results show that training our model on a set with
higher articulatory variance first is beneficial for later learning
of new vowel sounds.

3The auditory results from all experiments are available at
https://techfak.uni-bielefeld.de/%7Eaphilipp/ijcnn17-results/
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Fig. 6. Competences for tense (top) and lax (bottom) vowels (averaged over
10 trials) during retraining with models trained only on tense vowels.

V. ARTICULATORY EFFORT OF ACQUIRED VOCAL TRACT
CONFIGURATIONS

Why do models from experiment 2A learn faster and
achieve a higher competence level than models from ex-
periment 2B? A possible explanation is that different artic-
ulatory configurations are discovered in both experiments.
Exploratory noise is added to the actions estimated by the
inverse model, thus, the basis functions that the inverse model
establishes during babbling in experiments 1A or 1B play a
crucial role: Which articulatory configurations the system can
reach depends on which articulatory configurations it already
“knows” in terms of its inverse model.

To shed light on the articulatory configurations that the
inverse model has learned, we measure the articulatory effort
of the obtained articulatory configurations. We do this by
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Fig. 7. Competences for tense (top) and lax (bottom) vowels (averaged over
10 trials) during retraining with models trained only on lax vowels.

computing their deviation from the neutral shape (which pro-
duces [@]) as the mean euclidean distance in the articulatory
space of VocalTractLab. The neutral shape was used as home
posture q0 for babbling in all experiments.

The results are presented in Tab. I. A difference between
tense and lax vowels can already be found in the original ar-
ticulatory configurations as defined in VocalTractLab: Tense
vowels deviate from the neutral shape by approx. 3.6 cm, lax
vowels by 2.3 cm, i.e. for tense vowels around 59% more
articulatory movement is required. The babbled articulatory
shapes from experiments 1A and 1B reflect this proportions.

When both vowels are included in a single goal space
(1C), the articulators generally move more to produce the
same vowels. Specifically, models trained on both vowel sets
tend to over-articulate the lax vowels, perhaps to sharpen the
contrast that the model is sensitive to due to the variability of



ambient speech in the goal space formation phase. Assuming
that less movement in the articulators is favorable due to
lower effort, the specialized models in this respect have an
advantage over the models trained on both vowel sets: they
achieve higher competence with less articulatory effort in
their domain.

In experiment 2A, models trained on tense vowels were
retrained with tense and lax vowels. There is no change for
tense vowels, while the effort for producing lax vowels is
higher than in 1B, but comparable to the effort of lax vowels
in the original articulatory configurations.

Significantly lower articulatory effort for producing the
vowels can be observed in experiment 2B. The lower compe-
tence that models trained on lax vowels exhibit for learning
tense vowels might, thus, be caused by not enough articula-
tory movement.

Apparently, which vowel sounds the model learns in its
early stage is important. It influences not only the model’s
capability to acquire new vowel sounds, but also affects how
much effort the model puts into articulation later on.

Tab. I
MEAN DEVIATION (IN CM) OF ARTICULATORY SHAPES ACQUIRED IN

EXPERIMENTS 1 AND 2 FROM THE NEUTRAL SHAPE.

tense vowels lax vowels
original shapes 3.6 2.3

1A 3.2 -
1B - 1.8

1C 3.4 2.7
2A 3.2 2.4

2B 2.6 2.1

VI. CONCLUSION

We investigated the effect of hyperarticulation on articula-
tory learning in a developmentally inspired model of speech
acquisition. In particular, we evaluated whether models
trained only on tense or lax vowels are able to acquire sounds
from the other vowel set. Results show that this generalization
is possible. Although learning succeeds in both conditions,
a significantly higher competence is achieved when tense
vowels are learned first. Higher articulatory variance in early
vowel learning in our model, thus, is beneficial for later
accommodating additional vowel sounds.

We also observed that depending on the quality of early
learned speech sounds (hyper- or hypoarticulated), the model
acquires different articulatory configurations in the later
learning phase, i.e. early language learning influences later
articulatory learning. This supports findings related to infant-
directed speech and might even have analogies to the ap-
pearance of an accent as observed in adult’s foreign lan-
guage learning.
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