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Abstract

Background: A major obstacle in single-cell sequencing is sample contamination with foreign DNA. To guarantee
clean genome assemblies and to prevent the introduction of contamination into public databases, considerable
quality control efforts are put into post-sequencing analysis. Contamination screening generally relies on reference-
based methods such as database alignment or marker gene search, which limits the set of detectable contaminants
to organisms with closely related reference species. As genomic coverage in the tree of life is highly fragmented, there
is an urgent need for a reference-free methodology for contaminant identification in sequence data.

Results: We present acdc, a tool specifically developed to aid the quality control process of genomic sequence data.
By combining supervised and unsupervised methods, it reliably detects both known and de novo contaminants. First,
16S rRNA gene prediction and the inclusion of ultrafast exact alignment techniques allow sequence classification
using existing knowledge from databases. Second, reference-free inspection is enabled by the use of state-of-the-art
machine learning techniques that include fast, non-linear dimensionality reduction of oligonucleotide signatures and
subsequent clustering algorithms that automatically estimate the number of clusters. The latter also enables the
removal of any contaminant, yielding a clean sample. Furthermore, given the data complexity and the ill-posedness of
clustering, acdc employs bootstrapping techniques to provide statistically profound confidence values. Tested on a
large number of samples from diverse sequencing projects, our software is able to quickly and accurately identify
contamination. Results are displayed in an interactive user interface. Acdc can be run from the web as well as a
dedicated command line application, which allows easy integration into large sequencing project analysis workflows.

Conclusions: Acdc can reliably detect contamination in single-cell genome data. In addition to database-driven
detection, it complements existing tools by its unsupervised techniques, which allow for the detection of de novo
contaminants. Our contribution has the potential to drastically reduce the amount of resources put into these
processes, particularly in the context of limited availability of reference species. As single-cell genome data continues
to grow rapidly, acdc adds to the toolkit of crucial quality assurance tools.
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Background
Modern sequencing technologies provide sample sub-
strate for the analysis of large amounts of genetic infor-
mation. Specifically, single-cell sequencing (SCS) is now
one of the most powerful methods in genome discov-
ery and analysis. Named Method of the Year 2013 [1], it
plays an increasingly important role in many domains.
Notable areas of research include medicine and the anal-
ysis of disease pathways [2], especially in cancer biology
[3] and the development of targeted treatments (per-
sonalized medicine) [4]. Additionally, SCS has proven a
valuable and very powerful tool in evolutionary and envi-
ronmental microbiology, for example by assessing intra-
and inter-phylum relationships of Bacteria and Archaea
[5] and providing insights into key metabolic functions of
uncultivated clades within their ecosystems [6].
A primary challenge in single-cell sequence data is the

potential presence of contamination and the detection
thereof [7]. Foreign DNA which does not belong to the
target genome of a given single cell, might be introduced
into a sample in different ways. Sources of contamination
can include unclean lysis or whole genome amplifica-
tion reagents, in addition to sample introduced non-target
DNA [8, 9].
While much effort has been invested into engineering

devices and methods for cell isolation and amplifica-
tion steps that minimize contamination caused by the
surrounding sequencing setup [7, 8, 10], careful quality
control is vital to prevent the propagation of misleading
results in public databases.
Given those obstacles, ProDeGe, an automated Proto-

col for the Decontamination of Genomes was recently
developed [11]. ProDeGe combines the BLAST algorithm
[12] as a popular choice for database sequence alignment
with reference-free PCA-reduced oligonucleotide profil-
ing to enhance classification accuracy. Another method,
CheckM [13], solely relies on the presence of multiple
single-copy marker genes as an indication for contam-
ination in a given sample, not operating reference-free.
More recent classification methods [14, 15], most notably
Kraken [16], are as accurate as BLAST but much faster,
thus can speed up supervised detection. All these tech-
niques heavily rely on references, hence they require
existing knowledge about the characteristics of possible
contaminants, making them less applicable either in the
case of contaminants not being contained in databases or
marker genes not being present in the sample (i.e. con-
tamination is small or incomplete). Since the majority of
species is unknown [5], they are difficult to detect by
such methods and unsupervised, taxonomy-free analysis
is required [17].
Complementary to reference-based methods, clustering

of oligonucleotide signatures is a promising approach that
already found early application in metagenomic binning

[18–20]. From the perspective of computational intelli-
gence, contamination detection as a clustering problem is
very similar to metagenomic binning. Both metagenomic
and SCS samples can be represented as a set of high-
dimensional data points. Binning and also contamination
detection then address the same challenge of reliably
detecting clusters in a high-dimensional data space. In this
context, quite a few challenges arise: To circumvent nega-
tive side effects in such high-dimensional spaces [21] and
to enable human expert inspection, it is crucial to use
appropriate subspace embeddings to transform the data
into an easily visualizable representation, i.e. two or three
dimensions. Modern, non-linear dimensionality reduc-
tion methods, in particular Barnes-Hut-SNE (BH-SNE)
[22] have proven successful [18, 19] in that context.
The automatic determination of the number of clusters

and its cluster validity, a deep and crucial question in the
context of clustering [23, 24], poses yet another challenge.
In contrast to metagenomic binning where the aim is to
accurately bin sequences in a larger number of clusters,
contamination detection in SCS requires the discrimi-
nation between one or more clusters (genomes). This
complication heavily reduces the set of applicable cluster-
ing algorithms: The majority of methods for estimating
the number of clusters rely on cluster-specific measures
such as internal validity indices [25]. Since these are not
defined for only one cluster, a distinctive null model for
unimodal data is required, i.e. the techniques are usually
not suited to distinguish one versus more than one cluster,
hence cannot reliably identify non-contaminated samples.
Last, machine learning methods such as dimensionality

reduction and clustering are based on statistics of the data
and introduce certain amounts of variance. To overcome
this limitation and to provide accurate and interpretable
results, it is useful to integrate confidence measures. For
this task, bootstrapping [26] is a popular choice.
In this contribution, we present a novel software tool

called acdc (Automated Contamination Detection and
Confidence estimation for single-cell genome data), which
seamlessly integrates reference-based with reference-free
methods. Being based on both, very fast exact database
alignments and modern techniques from unsupervised
machine learning, acdc is able to accurately identify con-
tamination in single-cell sequencing data. To our knowl-
edge, integrating entirely reference-free methodologies
is a novelty, and complements existing high performing
database-driven approaches such as ProDeGe. The use
of appropriate clustering algorithms allow the removal of
foreign sequences to yield clean single-cell genome assem-
blies. Additionally, the integration of statistically profound
confidence values support expert interpretation. As we
expect single-cell genomes to further and rapidly pop-
ulate public databases, acdc will be a resource-effective
tool in the quality assurance of single-cell draft genomes,
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especially for users who do not have the background to
use the included techniques directly.

Implementation
Acdc detects contamination in a series of steps which
are depicted in Fig. 1. Starting with contigs from a
given single-cell genome assembly, both reference-free
and reference-basedmethods are employed. In the former,
tetramer frequencies are calculated first (1), resulting in
a high-dimensional vectorial representation which makes
it possible to apply suitable machine learning algorithms.
As its high dimensionality would introduce a number of
adverse side effects in further processing, it is crucial
to reduce dimensionality (2). This enables the accurate
estimation of contamination confidences on the basis of
clustering (3). External tools are then used to both clas-
sify sequences using ultrafast exact alignment (4) and to
predict 16S rRNA genes (5). In the case of detected con-
tamination, further clustering algorithms are employed to
enable decontamination and export of clean samples (6).
Results are then interactively visualized using a flexible
web interface (7). Most of these steps include a number of
hyper-parameters crucial in machine learning, for which
acdc provides an auto-selection mode with well-tested
default values (Table 1). In the future, the integration of

results from existing tools such as ProDeGe will help to
increase detection performance.

Reference-free detection
1. Data pre-processing
In order to apply machine learning techniques, it is nec-
essary to transform contigs, represented as sequences,
into a vectorial representation. Here, it is common prac-
tice to use oligonucleotide signatures [27]. A window of
width w is fixed and subsequently shifted over the contig
sequence using step �w (Fig. 2). For each shift, the under-
lying k-mer frequencies are evaluated. This results in one
4k-dimensional data point per shift, accounting for the 4
nucleotide bases. For example, taking k = 4 (tetramers)
would result in 256 dimensions, however, by accounting
for reverse complements, it can be reduced to 136 dimen-
sions. It is worth noting that taking k = 1 corresponds
to the GC content. The choice of window parameters has
considerable influence on the resulting representation.
Here, choosing a large window width, capturing genome-
specific, rather than gene-specific information will result
in less noise [19]. However, a small number of data points
is disadvantageous for clustering, such that is has to be
taken care to choose w not too large. Acdc automatically
adjusts window parameters such that for large contigs w

Fig. 1 Acdc contamination detection pipeline: Results from both reference-free and reference-based techniques are fusioned and post-processed
to end up with a clean sample
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Table 1 Description of parameters for various techniques used in acdc

Method Parameter description

Data pre-processing Given a target of n data points (by default, n = 1000), the window width is fixed as w = ∑
i li/n, where li is the

length of contig i. Default choices of �w = w/2 and k = 4 (tetramer frequencies) are robust. For contigs with
li < w, the window width is taken as large as possible (w = li).

BH-SNE The parameter θ = 0.5 is a trade-off between speed and accuracy. We set the perplexity perp(n) = �log(n)2�.
It can be seen as an effective neighborhood size that controls the graininess of clusters. A small number of data
points n receives a small perplexity whereas with growing n the perplexity saturates.

DIP The significance level which is uncritical as it is α = 0 in the large majority of significant cases. Furthermore, the
DIP split threshold, i.e. the percentage of data points, for which multimodality was detected, can be seen as a
control of detection precision. We found a default value of tdip = 0.001 to work very well throughout all tested
data sets.

CC The number of clusters found depends on the underlying graph. In acdc, the graph is constructed by connecting
each data point to it’s kcc mutual nearest neighbors. The parameter kcc can be interpreted as the minimum
number of data points contained in a separate cluster. To be able to detect also very small contamination, we
use a default value of kcc = 9.

Bootstrapping We set the number of bootstraps B = 10. Setting B to a larger number will result in more accurate confidence
estimations at the cost of a longer runtime.

Kraken The only parameter required by Kraken is the database to be used. It can be specified as a parameter to acdc as
well.

RNAmmer 16S rRNA gene sequence prediction using RNAmmer does not require any parameters.

is homogeneous and for small contigs w is adapted to it’s
length, i.e. no contigs are discarded. Table 1 includes fur-
ther information on the setting of w. Besides using k-mers
as a characteristic genomic signature, we looked into using
coverage, too. However, due to the coverage bias in mul-
tiple displacement amplification [8], using this data for
single genomes is problematic.

2. Dimensionality reduction
Inmachine learning, the analysis of high-dimensional data
is severely limited by the so-called curse of dimensionality
[26]. To be able to accurately cluster tetramer frequen-
cies, it is crucial to reduce data dimensionality while
keeping desired properties such as cluster structure. For
this task, modern non-linear dimensionality reduction (t-
Distributed Stochastic Neighbor Embedding, t-SNE [28])

and its recent, efficient Barnes-Hut approximation (BH-
SNE [22]) is employed. It puts a particular focus on
the formation of cluster structures, which enables fur-
ther clustering algorithms to deliver accurate results. Both
qualitative and quantitative analysis [18, 19, 29] of BH-
SNE have shown it is superior to both PCA [30] and
to using raw high-dimensional vectors, when applied to
tetramer frequencies.

3. Estimation of contamination confidences
An integral part of acdc is the confidence and decision of
whether a sample is contaminated or not. This problem
can be seen as a clustering task. Optimally, one opera-
tional taxonomic unit (OTU, the set of genomic sequences
from one single cell) is represented as one cluster, imply-
ing that the presence of more than one cluster indicates

Fig. 2 Data pre-processing that transforms a sequential data representation into vectorial data using a sliding window technique: Exemplary for
k = 4, on each shift, a 256-dimensional vector is generated by counting all permutations of the four bases



Lux et al. BMC Bioinformatics  (2016) 17:543 Page 5 of 11

contamination. Thus, the task is to estimate the number of
clusters k. This requires careful selection of methods and
parameters [31]. In contrast to other applications such as
metagenomic binning [19], one is not primarily interested
in the actual number of clusters, rather in the distinction
between k = 1 (no structure, clean sample) and k > 1
(clusters, contaminated sample). As the notion of a clus-
ter is ill-posed, this is an inherently difficult task: Most
techniques for estimating k operate on cluster-specific
characteristics, defined for k > 1 only, making them
inapplicable in our case. The case k = 1 requires an appro-
priate null model to which the data is compared to in order
to be able to detect no structure. We reviewed techniques
for this task in the context of contamination detection [32]
and found two particularly promising approaches:

1. The dip-statistic test for multimodality of pair-wise
distances (DIP), where a significant multimodal
distribution indicates k > 1 [33, 34].

2. Counting the number of strongly connected
components (clusters) in a kcc-nearest-neighbor
graph (CC). [35]

Contamination may occur in a variety of different clus-
ter shapes and sizes. Both methods have been chosen to
be employed in acdc to detect those in an antagonistic
fashion. While the former is able to detect large and pos-
sibly overlapping clusters, the latter is able to detect small
and outlier clusters (Fig. 3). Consequently, a given genome
assembly is marked as contaminated when DIP or CC
indicate more than one cluster.
Furthermore, noisy data, e.g. from very short contigs

or from the inherent structure of some species might
form separate clusters even in the presence of only one
OTU. To prevent false positive contaminant identification

fromwrongly formed clusters, acdc post-processes cluster
assignments in two steps:

1. Disregarding the possibility of chimeric contigs, a
contig is expected to appear in only one OTU. Thus,
data points that occur in different clusters, but belong
to the same contig, indicate a wrong clustering. All
points of such a contig are reassigned to the cluster
which has the most points of the contig assigned.

2. We include an aggressive threshold that determines
the minimum number of base pairs that is allowed to
form a separate cluster. Smaller clusters are
considered as outliers and are neither included into
the calculation of contamination confidences nor
into cleansing. The default threshold of 5000 bp
works well throughout all tested data sets. A lower
threshold provides more sensitive results towards
very low levels of contamination and can be adapted
by the user easily.

Last, the machine learning techniques used in acdc,
namely dimensionality reduction and clustering, depend
on data statistics and hence introduce certain amounts
of variance over different runs. In the case of clear con-
tamination, i.e. well separated and compact clusters, these
techniques agree with high probability. The same holds
true for the case of a clean sample and one well-shaped
cluster. However, in the case of an unclear contamina-
tion state such as strongly overlapping clusters, results
may vary. Hence, it is desirable to provide confidence
values gathered over different runs. For this task, acdc
employs bootstrapping [26] with which it is possible to
calculate statistically substantiated and interpretable con-
fidence measures. We generate bootstraps by randomly
sub-sampling 75 percent of the original high-dimensional

Fig. 3 Illustration of the complementary detection capabilities of DIP and CC using two different contaminated samples. Left: Using a mutual
9-nearest-neighbor graph, CC identifies two clusters (very small contamination) while DIP isn’t able to detect multimodality as seen in the
distribution of pairwise distances below. Right: Two overlapping clusters prevent CC from detecting two components while DIP detects significant
multimodality in the distribution of pairwise distances
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tetramer data B-fold. Each fold is processed by applying
dimensionality reduction with BH-SNE and subsequent
testing using DIP/CC. A contamination confidence value
is obtained by counting the percentage of folds which
detected contamination.

Reference-based detection
4. Sequence classification
We employ Kraken [16] as a fast alternative to the pop-
ular BLAST method [12]. Based on a pre-built database,
Kraken assigns taxonomic labels to each contig from a
sample. Through the use of exact alignments of l-mers,
it achieves classification accuracy comparable to BLAST
while being much faster. In acdc, Kraken classifies contigs
on a species level and assigns a taxonomy label to each
data point, depending on it’s originating contig. In case of
an unclassified species, a contig remains unknown.
Acdc primarily focuses on de novo analysis without

existing knowledge from databases and it tackles the chal-
lenge to reliably answer the question whether a given sam-
ple is contaminated or not. We restricted reference-based
cleansing to the fast Kraken method and added an exten-
sion for unsupervised detection of potentially non-linear
data clusters as performed by acdc. This distinguishes
acdc from ProDeGe which relies on both BLASTing pre-
dicted genes and a supervised linear separation of con-
taminants, primarily aiming for an aggressive cleansing
with high precision.

5. 16S rRNA gene prediction
Acdc utilizes RNAmmer [36] to predict the location of
highly conserved 16S rRNA gene sequences. Even if data
could not be classified by Kraken, this enables researchers
to identify the higher-level taxonomy of novel species
quickly. Additionally, the location of the 16S rRNA gene
sequence can be seen as a marker: It is representative
for the whole cluster it is located in, and by exporting a
clusters (cleansing), the taxonomy for a full OTU can be
obtained.

Post-processing
6. Cleansing
If contamination is detected, acdc finds a clustering which
allows the export of contigs from individual clusters, i.e.
from the OTU of interest. As this is a process of cleaning
the sequence data from unwanted contaminant data, we
refer to this as cleansing or decontamination.
For this task, an optimal clustering has to be estimated.

While CC provides an optimal assignment by itself, for
DIP the number of clusters k has to be estimated. In
contrast to detecting contamination where the task is
to determine either k = 1 or k > 1, the cleansing
step is slightly different. Similar to metagenomic bin-
ning, it is known that k > 1, which makes it possible

to apply methods that estimate the number of clusters
using cluster-specific characteristics, only defined for that
case. Many clustering and k-estimation techniques are
available for this task. In [19] it is suggested that the com-
bination of k-means++ as a clustering algorithm and the
Davies-Bouldin index [25] as a cluster validity measure
works well for binning metagenomic tetramer profiles. In
acdc, we replace the k-means++ algorithm by hierarchi-
cal clustering using Wards method [37]. We found that
it estimates the number of clusters more accurately when
there are imbalanced cluster sizes, which we found to
be the case in contaminated SCS samples. Therefore, an
optimal cluster assignment is determined by finding the
minimal (optimal) Davies-Bouldin index for a given range
of k ∈ {2, 3, 4, 5}-clusterings using Wards hierarchical
clustering.

7. Result visualization
Acdc provides contamination screening results as interac-
tive web pages. An exemplary result of twenty simulated
SCS samples is shown in Fig. 4. For each sample on the
left hand side, confidences from CC and DIP are shown.
A sample is marked clean when for both CC and DIP less
than 25 percent of all bootstrap folds found contamina-
tion. If either DIP or CC found more than 75 percent of
all folds to be contaminated, the sample is marked appro-
priately. In case of no clear result, a sample is marked with
a warning status symbol. A third column with the num-
ber of species reported by Kraken is shown. The user is
able to inspect each sample for CC, DIP and Kraken. On
the right hand side, the sample is visualized using BH-SNE
by default. In the event of a wrong cluster assignment,
the number of clusters k can be selected manually, with
the most likely k being selected by default. For Kraken,
the assignments are fixed and can be inspected by hov-
ering on each data point. Contigs from each cluster can
be exported by clicking on the corresponding color in
the panel below. Locations of predicted 16S rRNA gene
sequences as reported by RNAmmer are indicated by an
orange star. A click on it will show the corresponding
sequence.

Computational performance
Acdc has low computational requirements. Input data
sizes are in the order of a few megabytes, as we work
on assembled contigs, not on the raw data. Given that,
using a quad-core consumer laptop, runtimes ranged from
a few seconds to ten minutes per sample, depending on
the actual size and contamination status. The computa-
tionally most expensive step is the calculation of the Dip
statistic which has quadratic runtime in it’s worst case and
has to be run for all bootstrap folds. This is sped up by
parallelization. Memory usage scales linearly with input
size.
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Fig. 4 Acdc result interface. For each sample shown in the left-hand side table, visualizations are shown on the right-hand side. Individual clusters
can be exported in fasta format by clicking on the respective cluster color on the bottom right

Results
The evaluation of our tool can be divided into supervised
(database-driven) and unsupervised detection analysis.
While the former is restricted to only the method to clas-
sify sequences and the size of the underlying database, the
latter requires more careful assessment. In order to obtain
accurate results, it is necessary to use data with correct
ground truth. As the manual assignment of contamina-
tion is biased, the simulation of single-cell samples or the
analysis of existing samples with references are vital.
To cover a broad range of contaminant varieties, we

tested acdc on several simulated and real single-cell
sequence data sets:

• simulated: We simulated 20 single-cell genomes
with varying amounts of contamination and
contaminant relatedness. By manually selecting
complete genomes from the NCBI database [38],
clean and contaminated data sets, each containing up
to 3 genomes were generated. Species were chosen
such that they are related on different phylogenetic
levels, expecting that distantly related species can be
better separated than very similar species. For each
level, 3 samples were generated, containing 1 – 3
species. The simulation of reads was done using ART
[39] followed by subsequent assembly using SPAdes
[40].

• mix: 9 samples containing 6 draft genomes and 3
single chromosomes were obtained from various
sequencing projects (Table 2). All samples are known
to be contaminated, however, an exact quantification
of contaminated sequences is missing due to the
novelty of the data. A detailed description of these
data can be found in the Additional file 1.

• benchmark: Sequence data from 30 single-cell
genomes with low levels of contamination were
obtained [41, 42]. Containing cross-contamination
between 3 species (Escherichia coli, Meiothermus
ruber, Pedobacter heparinus), the median per-sample
contaminant proportion of 3% is very small
(min = 1%,max = 30%).

• mdm: Furthermore, 201 single-cell samples from the
microbial dark matter (MDM) project [5] were taken
to test the capability of our tool on non-contaminated
data. These data were manually curated.

We compared acdc to the state-of-the-art contamina-
tion detection tool ProDeGe [11] both in terms of super-
vised and unsupervised detection capabilities. ProDeGe
has been optimized to obtain a high precision in the con-
text of a known taxonomic level and database support.
It integrates a linear classification model to extend pre-
dicted genes to all k-mers, displaying excellent behavior
in aggressively curating according samples. Unsupervised
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Table 2 Description and availability of the mix data set. A detailed description of these data can be found in the Additional file 1.
Non-available references are denoted by ’NA’

Species name Ref. Strain availability

Herbinix luporum SD1DT [43] Prof. Dr. W. Schwarz, Prof. Dr. W. Liebel, Dr. V. Zverlov, Dr. D. Koeck,
Technische Universität München, Institute for Microbiology, Munich,
GermanyClostridium sp. hoe 37/3 NA

Propionispora sp. 2/2-37 [43]

Proteiniborus sp. DW1 NA

Prof. Dr. H. König, Dr. K.G. Cibis, Johannes Gutenberg-University, Institute
for Microbiology and Wine Research, Mainz, Germany

Peptoniphilaceae sp. SG1.4B [44]

Methanobacterium formicicumMFT [45]

Methanobacterium formicicumMb9 NA

Sporanaerobacter sp. PP17-6a NA Dr. M. Klocke and Dr. S. Hahnke, Leibniz-Institut für Agrartechnik Potsdam-
Bornim e.V. (ATB), Department of Bioengineering, Potsdam, Germany

Methanobacterium bourgensis HAW NA
Prof. Dr. Scherer, Dr. S. Off, Dr. Y.S. Kim, University of Applied Sci-
ences Hamburg (HAW), Faculty Life Sciences/Research Center ’Biomass
Utilization Hamburg’, Hamburg, Germany

inspection is restricted to linear PCA only. In contrast,
acdc has been optimized to provide good F-measures (i.e.
precision and recall) in curating, and it addresses database
independent de novo detection of contamination, thus
providing a tool highly complementary to ProDeGe.

Supervised analysis
Both ProDeGe using the BLAST algorithm and acdc using
Kraken with the “MiniKraken DB” were tested on the
simulated and benchmark data sets. These are the
only two data sets for which entries for known contami-
nants existed in both used databases. Both tools showed
nearly identical high performance (F1 > 0.95) in identify-
ing contaminant sequences and didn’t require any further
evaluation.

Unsupervised analysis
The evaluation of unsupervised detection performance
was carried out a) by testing the ability to detect the
correct contamination state of a given sample, and b)
by measuring the ability to correctly identify clean and
contaminant contigs.
a) Acdc correctly identified the majority of both con-

taminated and clean genome assemblies throughout all
data sets (Table 3). This result demonstrates the abil-
ity of acdc to single out contaminated versus clean
genome assemblies, specifically without any reference
to a database in de novo settings. For this part of the
evaluation, we could not compare to existing methods
because they either do not have the functionality to dis-
tinguish clean and contaminated samples (ProDeGe), or

operate reference-based only (CheckM). Warnings are
sometimes issued for assemblies with unclear contami-
nation state. Here, further inspection often revealed the
presence of small outlier clusters throughout a small num-
ber of bootstraps. In the rare case of strongly unbalanced
and additionally overlapping clusters, acdc is not able
to detect contamination because of missing structure in
the data. Further, if the contaminant is too related to
the target (e.g. different strains from the same species),
genomic signatures differ only by a very small percent-
age of all basepairs, making it impossible for acdc to
detect them. Interestingly, mdm samples that have been
identified as contaminated display a quite distinct clus-
ter structure. Further manual investigation on a small
subset of these samples revealed the presence of true
contamination which was not identified during man-
ual curation. Furthermore, the sequence of a bacterio-
phage was identified. Horizontally transferred genetic
material such as from bacteriophages or plasmids often
have significantly different genomic signatures. Hence,
the found structures highlight biologically interesting
phenomena.
b) We compared1 acdc to ProDeGe in terms of pre-

cision/recall performance with respect to the number
of correctly identified clean basepairs in each sample.
For this task, the functionality to export clean sequences
common in both tools was used. Since the evaluation
is performed for the setting of limited prior biologi-
cal information, no taxonomy is provided for ProDeGe,
restricting the use of reference sequences from databases.
Results in Table 4 were averaged over different samples
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Table 3 Acdc evaluation of contamination detection performance. Entries depict the number of correctly identified clean and
contaminated samples with additional information about false predictions in parentheses

Data set Identified clean samples Identified contaminated samples

simulated 4/7 (3 warnings) 10/11 (1 warning)

mix 0/0 8/9 (1 warning)

benchmark 0/0 22/30 (6 warnings, 2 clean)

mdm 150/201 (39 warnings, 12 contaminated) 0/0

from the simulated and benchmark data sets. Both
ProDeGe and acdc correctly identified clean contigs in
the benchmark data set with high precision. However,
on average acdc was able to recall 22% more clean
sequences on the data set, due to the more aggressive
design of ProDeGe. Next, ProDeGe was not able to iden-
tify the majority of clean sequences in the simulated
data set without taxonomic information. In those cases,
mostly all contigs were marked as contaminants, result-
ing in an empty clean sequences file. This fact can be
attributed both to ProDeGes behavior of selecting con-
taminants with high specificity [11] and to it’s missing
ability to distinguish between clean and contaminated
samples. Results of 4 samples could not be obtained,
because computation didn’t provide any output. On
the same data, acdc was able to correctly identify the
majority of clean sequences with high precision and
recall. For samples that contain closely related species,
it is difficult to split clean and contaminated sequences.
For example, in our simulated data, samples from the
same genus contain species with an average nucleotide
identity (ANI) of 73%. This fact led to a slight drop
in performance. Sequences containing strains from the
same species (ANI in our simulated samples: 95%) didn’t

contain enough distinct information to be correctly iden-
tified, showing the limits of acdc’s reference-free detection
capabilities.

Conclusions
Operating both in the presence and absence of references
from databases, acdc was able to predict the contami-
nation state in the large majority of samples from four
unrelated data sets, containing a total of 258 single-cell
genome assemblies. Additionally, clean and contaminant
sequences were correctly identified with high recall and
precision. In the absence of a given target taxonomy
which is required by similar methods (i.e. ProDeGe),
acdc was still able to correctly predict contamination
based on state-of-the-art techniques from unsupervised
machine learning. Complementary to other tools, our
software does neither require the prediction of (marker)
genes nor existing knowledge from databases to detect
contaminants and to separate contaminant from clean
sequences. Although, supplemental database informa-
tion will aid identification, for example of closely related
species. These findings make acdc an ideal tool to comple-
ment state-of-the-art contaminant detection and cleans-
ing methods such as ProDeGe or CheckM in the context

Table 4 Precision, recall and F1-scores of predicted clean base pairs for both ProDeGe and acdc on the simulated and
benchmark data sets

Data set Precision Recall F1 Precision Recall F1
ProDeGe ProDeGe ProDeGe acdc acdc acdc

simulated (kingdom) No result No result No result 1.00 1.00 1.00

simulated (phylum) No result No result No result 0.99 0.98 0.99

simulated (class) No result No result No result 1.00 0.99 0.99

simulated (order) No result No result No result 0.99 0.98 0.99

simulated (family) No result No result No result 1.00 1.00 1.00

simulated (genus) 0.22 0.32 0.22 0.95 0.97 0.96

simulated (species) 0.50 0.33 0.36 0.38 0.77 0.46

benchmark (E.coli) 1.00 0.88 0.93 0.97 0.99 0.98

benchmark (M.ruber) 1.00 0.73 0.83 0.99 0.99 0.99

benchmark (P.heparinus) 1.00 0.70 0.81 1.00 1.00 1.00

Each row contains average values of the given sub data set. Bold values depict the best performing entry. Entries marked as “no result” either produced an empty clean fasta
file or did not finish computation
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of de novo analysis with limited taxonomic information
or limited availability of reference sequence information.
Last, as contamination detection and metagenomic bin-
ning are closely related, we look forward to applying a
modified version of our pipeline to this type of data in the
near future.

Availability and requirements
Project name: acdc
Project home page: https://github.com/mlux86/
acdc
Operating system: Linux
Programming language: C++11
Other requirements: None
Licence:MIT

Endnote
1 For the comparison the ProDeGe online version at

https://prodege.jgi.doe.gov/ was used.

Additional file

Additional file 1: A detailed description of the mix data set.
(DOCX 12.8 kb)
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