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Abstract—Population based encodings allow to represent
probabilistic and fuzzy state estimates. Such a representation will
be introduced and applied for the case of a redundant manip-
ulator. Following the Mean of Multiple Computations principle,
a neural network model (PbMMC) is presented in which the
overall complexity is divided into multiple local relationships. This
allows to solve inverse, forward and mixed kinematic problems.
The local transformations in between the kinematic variables
can be sufficiently well learned by small single MLP layers. The
population codes of the kinematic variables are based on nested
periodic receptive fields which allow to express multiple weighted
state estimates. Therefore, the model as such is quite flexible as
it can keep track of multiple possible solutions at the same time.

I. INTRODUCTION

The notion of a schematic representation of the body is
assumed a central part of the motor system which medi-
ates interactions of an agent’s body with the environment.
Therefore, internal body models have been widely applied in
robotics [1]. Internal models are used in order to solve the
inverse kinematic problem as required in reaching tasks and
visuomotor mappings are learned that allow to produce guided
movements. In most cases these internal models are serving
one specific function or are even restricted to one specific
behavior.

In contrast, findings from behavioral and cognitive research
have pointed out that internal representations in humans are
quite flexible and modular [2]. In particular, a model of the
own body appears to be a central representation [3] which can
be recruited in different contexts, like motor control, perception
or planning ahead [4]. This presupposes that the internal model
of the body is not restricted to one specific function, but can be
exploited in service of different functions and serving different
tasks. Such models therefore have to be quite flexible and allow
to be applied in different sets of tasks, e.g. can solve inverse
kinematic problems, but at the same time should be predictive.

In this article, we introduce a neural network based model
which can serve as an internal body model subserving any
kinematic task. The model is following the Mean of Multiple
Computations (MMC) principle [5] which basically divides the
overall complexity into simple local and redundant relation-
ships that are afterwards integrated again. This method has
proven to be quite flexible as it allows to solve inverse [6],
forward or any mixed kinematic problem [7]. The principle has
been applied to different kinds of representations in the past
[8], [9], but in each case the single neurons of the networks
directly encoded the represented values as activations. In the
traditional MMC example, a segment position is encoded as

a vector in two neurons. Therefore, while an MMC network
allows to provide only a selected set of inputs (e.g. one segment
orientation and the end effector position), it can not deal with
probabilistic or undetermined inputs. An MMC network can
only assume a single configuration of the body at each point
in time. In contrast, experimental findings indicate that the
brain holds multiple active hypotheses at the same time and
that humans can switch between these [10]. Such distributed
representations are needed in order to cope with unreliable
and partial input or when multiple possible solutions shall
be tracked. As an example, consider when such a model is
applied in perception. The visual mapping onto the body model
should guide the assumed configuration, but when parts of
the observed body are occluded, the model can only rely on
vague input. For example, if the model can not observe most
of an arm, then it can not reliably decide if the arm is in
an elbow up or down configuration. It has to keep track of
both possibilities until more information is available. Here we
present the Population based Mean of Multiple Computation
(PbMMC) approach, in which local kinematic representations
are encoded in populations of neurons. This allows to represent
and compute probability balanced configurations of the body
inside the model.

The article will introduce the PbMMC approach and apply
it to the example of a three segmented arm that works in a
plane. Already this example is challenging, as the manipulator
is redundant [11]. We will briefly introduce the classical MMC
principle as such and explain how this can be transferred onto
neural populations that encode the kinematic variables. In this
case, the local relationships, which describe transformations in
between the variables, are realized as single layers of MLPs.

MLPs have been used in the past to learn internal models,
e.g. Giorelli et al. [12] learned a force based inverse model of a
redundant cable driven manipulator. There, an MLP network is
employed to overcome the problems regarding the generation
of a Jacobi matrix for a highly redundant manipulator. After
optimizing the network parameters, low positioning errors have
been achieved. A network composed of radial basis functions
(RBF) is applied in [13] for the control of planar movement
of a SCARA robot. By learning the weights of the network
and the centers as well as deviations of the RBFs, their
approach outperformed an MLP network as well as a PID
controller. Such approaches highlight the capabilities of MLPs
in connection with radial basis functions. In the approach
we suggest, periodic basis functions at multiple scales are
utilized, which further improves upon radial basis functions
as representations to encode joint angle and effector position
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information in a population based way. In contrast to other
approaches, the redundancy of the kinematic manipulator will
be resolved through the distribution of the overall complexity
onto multiple local relationships following the MMC principle.

As mentioned, the next section introduces the basic MMC
principle, followed by the introduction of the population based
neural fields and an explanation of the MLPs that connect the
different fields. The result section will analyze in detail the
case of a two-segmented arm in the inverse as well as the
forward kinematic case and will extend this at last to a three
segment redundant manipulator. The conclusions will briefly
relate the approach to comparable current approaches and give
an outlook on possible extensions.

II. THE PBMMC MODEL

Mean of Multiple Computations (MMC) is a principle by
which an RNN can be constructed to solve forward, inverse
and mixed kinematic problems within one single model [5],
[8], [14]. This is achieved by shaping the models attractor
space to represent valid combinations of joint-configurations
and end-effector positions. The principle is applicable to non-
redundant as well as redundant manipulators.

Let us consider as an example a serial kinematic manipu-
lator with three rotational joints and three segments s0, s1 and
s2. We denote the end-effector as l0. For the construction of an
MMC network, auxiliary variables m0 and m1 are introduced.
The kinematic chain can be decomposed into a number of
triangular relations as visualized in Fig. 1. These triangular
relations are defined in (1a - 1d).

~l0 = ~s0 + ~m1 (1a)
~l0 = ~m0 + ~s2 (1b)
~m0 = ~s0 + ~s1 (1c)
~m1 = ~s1 + ~s2 (1d)

In the classical MMC approach, each of the triangular
relations is solved for each of the contained variables. Equa-
tion (1a) is reformulated as ~s0 = ~l0− ~m1 and ~m1 = ~l0− ~s0. As
this leads to multiple equations for each variable, the individual
formulas are combined by an unweighted mean computation.
This leads to a redundant system of easily solvable equations
which can directly be interpreted as the weight matrix of
a recurrent neural network. The coefficients of the resulting
equations are interpreted as input-weights to neurons in the
network. This way, the network’s attractor space is shaped to
correctly represent kinematic constraints of the manipulator.
As one additional connection in the recurrent neural network
a form of self excitation is introduced which dampens the
dynamics of the model and prevents oscillations [8]. The
resulting network can be used to iteratively find configurations
for all of the model’s variables, if a subset of its variables is
fixed to certain target values. Forward kinematics are computed
by fixing joint-configurations and letting the network con-
verge to a state with suitable end-effector coordinates. Inverse
kinematics are computed by fixing end-effector coordinates
and reading out joint-configurations after a short period of
simulating the network’s dynamics.
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Fig. 1. Graphical representation of a planar (2D) arm consisting of three
segments: upper arm ( ~s0), lower arm ( ~s1) and hand ( ~s2). The vector ~l0 points
to the position of the end effector (tip of the hand). Variables ~m0 and ~m1

represent additional diagonal vectors.

We extended the classical MMC approach by introducing
population coded representations. Inspiration for this is drawn
from findings on biological population codings based on head-
direction cells [15], hippocampal place cells and entorhinal
cortex grid cells [16], [17]. These distributed codings allow to
represent ambiguous state estimates during computation. Not
only the computational dynamics are altered this way, but also
the network’s input and output can carry more information.
It is now possible to specify uncertainty in the input data or
detailed temporary constraints on the permitted value range of
certain variables. The chosen representations are described in
Section II-B. As the coding of variables has been changed, we
also needed to adapt the transformations between the variables.
Section II-A features a description of how transformations have
been implemented.

A. Transformations

Input-weights to neurons can be directly computed in
classical MMC networks. This is because neurons directly
correspond to individual coordinates and the vector-addition
and vector-subtraction operations can be directly translated to
the weighted input-summation as realized in neurons. Unfor-
tunately, this advantageous property is not preserved when
local representations are changed to population coding. For
this reason, transformations between local modules have to be
realized differently. We investigated two different approaches,
both based on the introduction of additional hidden layers.
These strategies differ locally in architecture and applied
learning algorithms. Nevertheless these two approaches and
classical MMC networks still share a common global structure
and working principle. The transformation scheme that’s based
on learning of prototypes is described in detail in [18]. In this
document we will focus on transformations realized by local
feedforward networks as it requires a much lower number of
mediating neurons and leads to a simpler structure.

As explained above, the main idea of the MMC approach
is to decompose the complex kinematic structure into simpler
and easy solvable local kinematic relationships. In the example,
the overall structure consisting of multiple segments and the
end-effector position are decomposed into local chains of three
vectors. Each of these triangles, as shown in Fig. 1, defines one
equation. And each of these equations contains three variables.
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Fig. 2. Local architecture for one triangle. Orange nodes correspond to neural
fields which represent kinematic variables. White boxes represent MLPs that
transform and distribute activation.

Following the MMC principle, each equation will be solved for
each of the three variables which leads to three reformulations
for every equation. The triangle relationship (s0, s1,m0) for
example, defines the three rearranged equations m0 = s0+s1,
s0 = m0 − s1 and s1 = m0 − s0. The population encoded
representations used for variables s0, s1 and m0 does not
directly support addition and subtraction. It is therefore nec-
essary to implement comparable operations for the population
coded variables. We denote ⊕ the transformation equivalent
to addition and 	 the transformation that corresponds to
subtraction. Each specific instance of these transformations is
realized by a single MLP. See Fig. 2 for a graphical description
of the resulting local architecture. This representation of the
triangular relationship constitutes the basic building block as
needed in the MMC approach and is also a working kinematic
model for a manipulator with two segments. Concerning the
inverse kinematic case, the model can already solve the model
selection problem between elbow-up and elbow-down solu-
tions. Which solution is chosen depends on the initialization
of the activations in the neural fields. Randomized activations
as well as activations that represent a-priori information about
individual segments can both be used for initialization.

When this approach is used to model the kinematics of
a manipulator with more than two segments, multiple MLPs
project activity onto a single neural population. In the current
state, an unweighted mean is used to fuse the outputs of differ-
ent MLPs. This could be enhanced by using a weighted mean
computation to control the influence of individual variables.
This would allow to incorporate additional sensor readings.
Sensor failures could be detected and accounted for, similar
to the error-handling that’s described in [19]. Again, as an
additional influence and to stabilize the dynamics, comparable
to the classical MMC approach [8], the current activation of a
neuron is also fed back as an input to that neuron and is fused
with the outputs of the MLPs. In that particular case a damping
value is used to weight the different inputs (it describes the
fraction of the input which is given through self excitation).

B. Segment representations

In a traditional MMC network, kinematic variables are
represented as vectors and each of a vector’s coordinates is

Fig. 3. Local architecture for one triangle. Transformation m0 = ⊕(s0, s1)
realized by an MLP with one hidden layer.

represented by exactly one neuron. The following two prop-
erties result from this: First, input and output to the network
are specified by constraining the combined joint-end-effector-
space to single values in a subset of its individual dimensions.
This limits the range of applications that the network can be
used for. Second, at each time step the network can hold only
a single estimate for each local variable. Other kinds of local
representations can potentially hold more useful information.

We changed the local representation of each variable to
a distributed population coding, which allows to represent a
higher amount of information about the variable’s current state.
Each variable is represented by a population of n neurons
and each of those neurons has an associated receptive field
in the kinematic modality that it is associated with. Neurons
in the population that codes the end-effector position have
receptive fields tuned to specific regions in end-effector space,
while neurons in populations that code individual joints or
segments have receptive fields in the respective angular spaces.
Population codes empower the network to represent ambiguous
state estimates, which makes it possible to achieve particle
filter like computations.

1) One dimensional representations: Receptive fields in
one dimensional spaces, as the parameter space of a rotational
joint, can be modeled by one dimensional functions mapping
onto the neuron’s activation space. Neurobiological research
has found evidence for the existence of head-direction cells.
A population of head-direction cells jointly codes the global
direction that an animal’s head is facing and does so by
the different receptive fields associated with the population’s
individual neurons. Each head direction cell’s tuning curve
is generally triangular or Gaussian in shape and contains a
single peak [15]. In a previous study, place-field like Gaussian
radial basis functions have been used to model kinematics
using the MMC principle[18]. Fig. 3 schematically shows what
our architecture locally looked like if such unimodal receptive
fields were connected by an MLP.

Receptive fields with multiple peaks at different scales,
such as grid-cells or stripe-cells, offer greater precision [20].
Biological evidence shows that such cells play a major role for
spatial navigation in the mammalian brain [16]. As kinematics
and navigation are related spatial reasoning domains, it seems
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Fig. 4. Periodic receptive fields at multiple scales and shifted for different
distances. The three-dimensional plot to the left indicates the spatial arrange-
ment of the receptive fields. The basis functions virtually lie on this band
around the rotational segment’s axis.

sensible to examine usability of such receptive fields in the
kinematics domain.

We use a set of shifted sine-functions on multiple scales as
receptive fields in one-dimensional domains. These receptive
field are defined by

r(θ)α,δ = sin(α(θ + δ
2π

α
)), (2)

where α is a scaling factor and δ specifies the receptive field’s
displacement. It is possible to randomly sample values for α
and δ to generate a set of receptive fields. We turned to a
non-random uniform sampling of this parameter space

{(α = i, δ =
j

Ns
)|i < Nl, i ∈ N, j < Ns, j ∈ N}, (3)

where Nl is the number of levels in the hierarchy and Ns is
the number of receptive fields on each level of the hierarchy.
A population for Nl = 2 and Ns = 3 is depicted in Fig. 4.

2) Two dimensional representations: The working range of
the manipulator’s end-effector as well as the motion range of
intermediate kinematic variables as m0 and m1 for an arm
with three segments have the shape of a two-dimensional disc
or an annulus. Receptive fields similar to those of place-cells,
grid-cells or stripe-cells [17] can be used to encode spatial
information in such a two-dimensional domain.

The receptive fields of stripe-cells are modeled as one-
dimensional sine-functions in the two-dimensional plane. As
in the one-dimensional representations described above, the
functions occur at different scaling levels and with different
offsets. The receptive field can be expressed as

r(x, y)α,δ,φ = sin(α(x cos(φ) + y sin(φ) + δ
2π

α
)), (4)

where α and δ specify the functions frequency and displace-
ment as above. The rotation of the sine-function is defined by
parameter φ. See Fig. 5 for a plot of three stripe-functions at
different rotations.

We decided to construct populations by using a non-
random uniform sampling of the parameter space. When the
number of levels (Nl), number of rotations on each level
(Nr) and number of displacements for each rotation (Ns) are

Fig. 5. Stripe-cell receptive fields can be modeled as rotated sine-functions
in the two-dimensional plane [21].

specified, the used populations are uniquely defined by the
parameter set

{(α = i, δ =
j

Ns
, φ = k

π

Nr
)|i < Nl, i ∈ N,

j < Ns, j ∈ N, k < Nr, k ∈ N}
(5)

C. Stimulation and Estimation

As sensory data often comes in rate-coding and motor-
commands equally often need to be issued in a rate-coded
fashion, it is important to be able to convert between rate and
population codings.

The conversion from rate to population coding can be
interpreted as the presentation of a rate-coded stimulus to the
population. The neurons’ activations are then computed by
evaluating their receptive fields at the position of the presented
stimulus. This general recipe works no matter which kind of
receptive fields are present in the population.

We interpreted the estimation of a population’s coded value
as maximization of the population’s joint activity. We used
grid-search with a high resolution as a maximization technique.
This is computationally expensive and may be replaced with
more sophisticated optimization techniques in future work.

D. Training

Training of the network is done individually for each of
the local triangular sub-networks. The structure of such a local
subnetwork has been explained above (Fig 2). While the rep-
resentation fields’ basis functions remain fixed, the network-
weights into and out of the MLPs’ hidden-layers are subject
to learning. We describe the training process exemplarily for
the triangle m0 = s0 + s1.

In the triangle m0 = s0+s1, there are three transformations
that are realized using MLPs and we need to distinguish for-
ward and inverse transformations. We call the transformation
m0 = ⊕(s0, s1) a forward transformation, as it is being
used to compute forward kinematics and the transformations
s0 = 	(m0, s1) and s1 = 	(m0, s0) are respectively called
inverse transformations. We will first describe the training of
forward transformations and afterwards the training of inverse
transformations, as their training requires certain adaptations.

To train an MLP we need to generate training data and in
the case of transformation m0 = ⊕(s0, s1), this training data is
generated by random sampling of example poses. We randomly
sample joint values for s0 and s1 and use direct application of
forward kinematics to compute the end-effector position for
m0. For each example pose, the suitable activation patterns
in each representational population are being computed by



evaluating the population’s receptive fields. When a set of
activation patterns for s0, s1 and m0 has been computed,
these activations are used to train the ⊕-MLP by standard
backpropagation.

During training of the inverse transformations two such
hidden layers have to be trained at the same time. As there is
recurrency in their combined graph structure, training of these
	-MLPs demands a different approach. Only the training of
the MLP that realizes s0 = 	(m0, s1) is used to simplify
the following explanations, but the other 	-transformation is
learned in the same fashion.

First, of course the training data should consist of possible
solutions to a given inverse problem. A naive approach to
learning, based on activation patterns directly derived from ex-
ample poses as in training of the ⊕-MLPs is not sufficient. The
reason is that the input-data generated this way does not match
the inputs that the MLP encounters during later simulations.
When applied in a real scenario, the combination of activation
patterns in m0 and s1, being inputs to s0 = 	(m0, s1), can
differ dramatically from ideal pairs of input activation patterns.
While m0 is set to a certain target activation pattern that
defines the inverse kinematic target, s1 could still represent a
joint-configuration from a previous kinematic computation and
would most likely not coincide with one of the partial possible
solutions. Such a combination of inputs differs drastically from
the inputs observed during training.

More importantly, the fields s0, s1 and m0 store complete
activation patterns that are usually quite broadly distributed
and noisy, especially after initialization and in the beginning of
the simulation process when the network has not yet converged
towards an attractor state. When the network is only trained
with activation patterns that correspond to ideal solutions, a
large part of the network’s attractor space is not learned and the
network will behave in a quasi chaotic way in the unexplored
regions.

For these reasons, we have to extend the training and
generate training data which fits the activation patterns that
can be observed while applying both 	-transformations and
running the model. The general idea is to alternate between
simulating the network’s dynamics and training the MLPs on
basis of activation patterns collected during simulation. The
activation patterns collecting in the beginning of the training
process are quite chaotic and broadly sample the network’s
state space as we start from untrained MLPs 	(m0, s0) and
	(m0, s1) that do not yet shape the network’s dynamics in a
goal-directed way.

Given the initially chaotic input patterns from s1 and
those from m0, we have to generate sensible target activation
patterns for s0 in order to train the MLP 	(m0, s1). In order
to come up with such an activation, first, a joint-configuration
for segment s1 is estimated from s1’s activation pattern (even
though the activation can be quite broad and fuzzy). This
estimate can then be used to search for a joint configuration
for s0, which minimizes the distance in the end-effector space.
We used the following calculation rule:

~s0 =


( ~m0 − ~s1)

rmin(s0)
| ~m0− ~s1| , if | ~m0 − ~s1| ≥ rmin(s0)

( ~m0 − ~s1)
rmax(s0)
| ~m0− ~s1| , if | ~m0 − ~s1| ≤ rmax(s0)

~m0 − ~s1, otherwise
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Fig. 6. Activation patterns in an unconverged state. Plots in the top row show
representations for segments attached to rotational joints. These activation
patterns are only dependent on the angular component of a stimulus. The
bottom three plots show representations for m0, m1 and l0.

The best estimate in the configuration space of s0 then has
to be translated to an activation pattern for s0. This activation
pattern can now be used as a target for training 	(m0, s1) on
the input activation patterns in the neural fields s1 and m0.

The described procedure has shown to be sufficient to
explore the attractor space during learning. Starting from a
random exploration of the global activation space, the model is
robustly steered towards the attractor subspace that represents
solutions for the inverse kinematic problem.

III. SIMULATION RESULTS

We generated simulation results for a kinematic model with
both, two and three rotational joints. The model with two rota-
tional degrees of freedom (DoF) is at the same time PbMMC’s
basic triangular building block for longer kinematic chains, but
also a simple kinematic model for a non-redundant manipulator
(we are only interested in the two dimensional end-effector
position, not its directional component). The model with three
rotational DoFs is being used as a minimal example of a
redundant manipulator. We will give a quantitative analysis of
the models’ capabilities to solve forward and inverse kinematic
problems and also a qualitative analysis with an outlook on
usability and theoretical advantages of the PbMMC model will
be given.

The data presented in this section has been generated using
MLPs with one hidden layer. Tanh activation functions were
chosen for both, hidden and output neurons. These were used
because of good convergence properties during training and
because the value range of [−1.0, 1.0] is identical to that of
the sine-functions used to model the stripe-cell receptive-
fields. All errors numerically specified in this Section are
computed as euclidean distances between target and estimation
~xtarget − ~xestimate in the end-effector space. To increase
comparability, these errors have additionally been normalized
by the maximum radius of the end-effector working-space (i.e.
e = 1.0

6.0 (~xtarget − ~xestimate) for the 3DoF arm).

Each of the manipulators’ segments was set to a length
of 2.0, so the maximum radius of the manipulators’ working
ranges is 4.0 for two segments and 6.0 for three segments,
respectively. The circular neural representations for segments
(s0,s1,s2) and discoidal representations for intermediate and
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Fig. 7. Forward and inverse kinematics mean estimation error for the 2
DoF model plotted over number of hidden neurons per MLP. The error
displayed on the y-axis consists of the mean euclidean error in end-effector
space, normalized by the maximum radius rmax(l0) = 4.0 of the end-
effector variable. The plot has been generated by sampling 5000 random poses
(θ(s0), θ(s1)) from pose-space and computing mean euclidean error in end-
effector space. The plots are averaged over three different MLPs for each
parameter set (number of neurons). Standard deviations of errors are plotted
as shaded areas.

end-effector variables (m0,m1,l0) have been constructed with
the parameters specified in Table I. See Fig 6 for a plot of the
activations of the neural fields when the network has not yet
converged to an attractor state. It becomes obvious that even
with a low number of neurons, the representations can hold
rich information about a variables state.

A. Simulation results for the two-segmented case

Fig. 7 shows mean forward and inverse estimation errors
of the two-segment model over the number of neurons per
hidden layer. A larger number of neurons increases the model’s
performance for both, forward and inverse kinematics, but
starts to hit a plateau at around 27(128) hidden neurons in both
cases. Forward kinematic problems are solved with a low error.
Inverse kinematics are solved with a somewhat greater error,
yet still showing acceptable performance. When comparing the
inverse kinematics error to the performance of other systems,
it is important to note that our model not only optimizes a
certain pose but solves the problem to decide which class of
solutions shall be used. In the two-segment case the network
decides between elbow-up and elbow-down solutions.

A more detailed look on the model’s estimate in an inverse
kinematics problem is given in Figs. 8, 9, 10 (128 hidden
neurons per MLP). Fig. 8 shows the network’s activation
patterns and estimates after 10 iterations. As the model has
been trained using both, elbow-up and elbow-down solutions,
it converges to one of these classes of solutions and correctly
solves the model-selection problem. But a specific solution can
also be enforced by partially specifying the pose. The plots in
Figure 9 show that the network correctly completes the sub-

nl ns nr neurons
circle-field 5 3 - 15
disk-field 3 3 3 27

TABLE I. PARAMETERS OF THE NEURAL FIELDS
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Fig. 8. The model has successfully solved an inverse kinematics problem.
The dashed red line in the estimation plot in Subfigure b) indicates the end-
effector target. The activation patterns from which the plotted estimations of
segment-configuration have been computed can be seen in Subfigure a). The
normalized euclidean error for this configuration is 0.037.

pose for s1 for the same end-effector target, if s0 is artificially
set to its local part of the elbow-up solution.

Because training data has been shaped accordingly, the arm
even finds the best possible solution if an exact solution is
not possible. Figure 10 shows the network’s solution for the
same end-effector target with s0 set to a configuration where
a perfect solution is not possible. s1 settles into a local pose
that solves the problem as good as possible.

The training data used here has been generated in order
to form the attractor space in a specific way. In this set of
simulations, we want the network’s state to converge in the
end towards a single solution to the kinematic problem. By
adapting the training data, it would also be possible not to
reduce but further distribute uncertainty in the input data. In
forward kinematics, for example, uncertainty about a certain
segment’s configuration could be transferred into uncertainty
about the end-effector position. The model’s behavior can be
shaped in many different ways, subject to the choice of training
data depending on the purpose of the application.

B. Simulation results for the three-segment manipulator

Mean forward and inverse kinematic errors of the model
with three segments are displayed in Fig. 11. Errors are
plotted over the number of neurons in each of the MLPs. The
prediction error falls with an increased neuron count. As in the
case of the model consisting of two segments, the error for the
inverse and forward kinematic case is quite small. It shows that
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Fig. 9. The model can also find a solution if the same end-effector target
as in Fig 8 is defined and an additional activation pattern is enforced for s0
(indicated by the solid red line). Field s1 is correctly set to the suitable other
part of the elbow-up solution. Normalized euclidean error: 0.037

b) Configuration of the two-segmented arm

a) Activation of the Neural Fields
s
1

s
0

m
0

s
1

s
0

m
0

Fig. 10. As in Fig 9, s0 has artificially been set to a certain configuration.
But in contrast to the previous case, the new constraint does not permit a
perfect solution. Field s1 is set to a local solution that solves the problem as
good as possible given the constraints. Normalized euclidean error: 0.314.
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Fig. 11. Forward and inverse kinematics mean estimation error for the
3 DoF model plotted over number of hidden neurons per MLP. The error
displayed on the y-axis consists of the mean euclidean error in end-effector
space, normalized by the maximum radius rmax(l0) = 6.0 of the end-effector
variable. Each error plot has been generated using 2000 random targets and is
averaged over three different MLPs for each different parameter set (number
of neurons). Standard deviations of errors are plotted as shaded areas.

the model is able to solve the inverse and forward kinematic
problem sufficiently well for a redundant manipulator.

A single solution to an inverse kinematics computation is
presented in Figure 12. Activations alongside estimations are
plotted after the network has already converged. The network
has successfully decided for a certain class of poses and refined
the pose to a solution of decent precision. The normalized
euclidean error 0.059 for this solution lies between the model’s
mean inverse errors of 0.064 for n = 128 hidden neurons and
0.042 for n = 256 hidden neurons per MLP hidden layer.

As highlighted for the model with two segments, the model
for the redundant three-segment manipulator also supports the
solution of mixed kinematic problems. It manages to find
solutions for partially defined poses, even when no perfect
solution is possible given the constraints. This feature lends the
model great flexibility in future applications, such as grasping
while avoiding obstacles.

IV. CONCLUSION

The PbMMC model presented in this work extends the
MMC model [5] by means of population coding, which
allows a more fine-grained representation of segments’ states.
Additionally, the neural representation of segment relations
creates building blocks which can be combined to create
models for more complex manipulators, going beyond the
ones used in this work to evaluate the PbMMC model.
After evaluating the required dimensionality of the hidden
layers of the employed MLPs, the model shows low error
rates for forward and inverse kinematic queries with two
and three segments. It is noteworthy, that in mixed queries
with one segment set to a fixed position which prohibits
an exact solution, the PbMMC achieves good results with
the remaining DoFs. Future extension to three-dimensional
spaces will demand introduction of three-dimensional basis-
functions and slightly altered generation of training-data. We
expect these to be only minor obstacles. Compared to similar
approaches which exploit the combination of simple, local



b) Configuration of the three-segmented arm

a) Activation of the Neural Fields
s
2

s
1

s
0

s
2

s
0

l
0

s
1

m
1

m
o

l
0

Fig. 12. The model with three segments has successfully solved an inverse
kinematics problem. The end-effector target is indicated by the dashed red
line. Subfigure a) shows the activation patterns in fields s2,s1 and s0 in the
top row. Activations for m1,m0 and l0 are displayed in the bottom row. The
estimations that have been computed from these activation patterns, plotted
in Subfigure b) show that the network has indeed computed a valid solution.
Normalized euclidean error: 0.059

equations in conjunction with population codes, for example
the SURE REACH model [22], the PbMMC approach does
not require to explicitly learn prototypic postures but only
local relations among segments. The explicit representation
of prototypic postures also imposes a problem regarding the
scalability of the model with respect to the complexity of
the manipulator. To overcome these drawbacks, the authors
presented the neural Modular Modality Frame (nMMF) in
[19]. The nMMF model relies only on local representations
and is in this respect comparable to the MMC approach as it
follows in principle a similar idea. But it still needs a distinct
model for the forward and inverse case. An advantage of the
nMMF model is the possibility to fuse different kinds of sensor
modalities, like orientation and locations frames, together. This
possibility is also given by the underlying MMC model, so
utilizing the PbMMC in multi-modal tasks should be also
possible. For example, during body tracking tasks using mainly
visual input, the possibility of mixed queries can augment
episodes in which occlusion occurs by utilizing the kinematic
body model.
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