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Abstract

This paper continues Dietrich and List’s [2011] work on propositional-
attitude aggregation theory, which is a generalised unification of the
judgement-aggregation and probabilistic opinion-pooling literatures. We
first propose an algebraic framework for an analysis of (many-valued)
propositional-attitude aggregation problems. Then we shall show
that systematic propositional-attitude aggregators can be viewed as
homomorphisms — algebraically structure-preserving maps — in the
category of C.C. Chang’s [1958] MV-algebras. (Proof idea: Systematic
aggregators are induced by maps satisfying certain functional equations,
which in turn can be verified to entail homomorphy identities.) Since
the 2-element Boolean algebra as well as the real unit interval can be
endowed with an MV-algebra structure, we obtain as natural corollaries
two famous theorems: Arrow’s theorem for judgement aggregation as well
as McConway’s [1981] characterisation of linear opinion pools.

Conceptually, this characterisation of aggregators can be seen
as justifying a certain structuralist interpretation of social choice.
Technically and perhaps more importantly, it opens up a new methodology
to social choice theorists: the analysis of general aggregation problems by
means of universal algebra.

Key words: propositional attitude aggregation; judgement
aggregation; linear opinion pooling; Arrow’s impossibility theorem;
many-valued logic; MV-algebra; homomorphism; functional equation

2010 Mathematics Subject Classification: 91B14; 06D35.
Journal of Economic Literature classification: D71.

∗It is a pleasure to thank Professor Christian List, Professor Bernard Monjardet, Professor
Daniel Eckert as well as an anonymous referee for helpful comments on this paper and related
earlier work. The preparation of the final version of this article was supported by a Visiting
Fellowship of the Munich Center for Mathematical Philosophy funded by the Alexander von
Humboldt Foundation.
†Institut für Mathematische Wirtschaftsforschung, Universität Bielefeld, Universitätsstraße

25, D-33615 Bielefeld, Germany. E-mail address: fherzberg@uni-bielefeld.de
‡Munich Center for Mathematical Philosophy, Ludwig-Maximilians-Universität

München, Geschwister-Scholl-Platz 1, D-80539 Munich, Germany. E-mail address:
frederik.herzberg@lrz.uni-muenchen.de

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications at Bielefeld University

https://core.ac.uk/display/211843818?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1093/logcom/ext009


1 Introduction
Recently, Dietrich and List [2011] have proposed the fundamentals of a
general theory of aggregation, with the aim of creating a unified theory of
preference aggregation, judgement aggregation (cf. List and Puppe [2009]
for a survey), probabilistic opinion pooling and more general many-valued1

aggregation problems. In a very general logical framework, Dietrich and
List [2011] have proved that for sufficently complex aggregation problems, all
independent and Paretian aggregators are already systematic. (Systematicity is
a strong variant of independence of irrelevant alternatives; in the probabilistic
opinion pooling literature following McConway [1981] it is known as the
Strong Setwise Property.) In an earlier paper, Dietrich and List [2008] had
already shown that judgement aggregation can be treated as a special case
of generalised probabilistic opinion pooling and that in this setting, Arrow’s
dictatorial impossibility theorem for judgement aggregation is a special case of
a generalisation of McConway’s [1981] characterisation of linear opinion pools.

So far, however, no characterisations of general systematic many-valued
propositional-attitude aggregators are known, nor has the case of infinite
electorates been treated as yet. The present paper attempts to fill this gap: We
generalise the main idea in Herzberg [2010] and prove that systematic many-
valued propositional-attitude aggregators are homomorphisms in the category
of MV-algebras (for short: MV-homomorphisms) as defined by C.C. Chang
[1958a]. Natural corollaries of this characterisation theorem (for the special
case of a finite electorate) are both Arrow’s dictatorial impossibility theorem
for judgement aggregation and McConway’s [1981] characterisation of linear
opinion pools.

The proof idea for this characterisation theorem is the following: Any
systematic aggregator can be reduced to a map which assigns truth values to
truth-value profiles (i.e. sequences of truth values whose length is the cardinality
of the population). In addition, this map will have to satisfy some functional
equation. It turns out that this functional equation can be re-interpreted as
the defining equation of some homomorphy concept, viz. homomorphy in the
category of MV-algebras.

Informally speaking, our result says that systematic attitude aggregators are
essentially the same as algebraically structure-preserving maps from truth-value
profiles to truth values. In other words: The social (coalitional/power) structure
entailed by systematic social-choice mechanisms has a structural resemblance to
the set of truth values. Therefore, our result might have accomplished (using
universal algebra — the epitome of a science of abstract structure) a rigorous
justification for — what may be called — a structuralist view of social choice, viz.
the intuition that “systematic aggregation rules link the power structure within
the population with the logical structure underlying the agenda” (borrowing a
phrase from Daniel Eckert2).

Structuralist interpretations of social choice aside, we hope that our
result will be useful for yet another reason: It allows to reduce general
aggregation problems to homomorphism classification problems; and since such

1We use the term ‘many-valued’ (as in ‘many-valued logic’) in the most inclusive sense —
i.e. encompassing the binary case — unless explicitly indicated otherwise. In other words,
‘many-valued’ is in general used as a synonym for ‘pluri-valued’ in this paper.

2Personal communication.
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problems have been studied extensively by algebraists, a vast literature of pure
mathematical research might wait for discovery and straightforward application
by social choice theorists.

It should be noted that the use of algebraic — in particular, lattice-theoretic
and Boolean algebraic — methods has a long tradition in preference aggregation
theory, cf. e.g. D.J. Brown [1974], the monographs by Kim and Roush [1980]
or Aleskerov [1999] and the recent work of Daniëls and Pacuit [2009]. (A
proof of Arrow’s [1963] impossibility theorem using ultrafilters was published by
Fishburn even as early as 1970.) Some authors have also employed filters and
ultrafilters to establish impossibility theorems in judgement aggregation (e.g.
Daniëls [2006], Dietrich and Mongin [2010] and Klamler and Eckert [2009]).
Moreover, the relation between merging of opinions and certain functional
equations — which, as was already remarked above, can often be interpreted
as homomorphy relations — has long been recognised in the opinion pooling
literature (cf. e.g. Aczél, Kannapan, Ng and Wagner [1983] and Aczél [1989]).
Nevertheless, with the exception of the two aforementioned papers by Daniëls
and Pacuit [2009] and Herzberg [2010], the published literature does not contain
any systematic approaches to tackle general aggregation problems from a purely
algebraic perspective. Our approach in this paper differs from Daniëls and
Pacuit [2009] in that they start from a lattice-theoretic structure and then
impose sufficient axioms to obtain an Arrow-style impossibility result, whereas
we already assume an MV-algebra structure from the beginning and study the
more general question of (algebraic) aggregator characterisation for electorates
of arbitrary cardinality.

Hence, in this paper, we will first outline a formal framework for rather
general many-valued aggregation problems by means of the notion of an
MV-algebra (Section 2). We shall then list a number of assumptions,
mainly generalisations of standard Arrovian responsiveness axioms for the
aggregation functions (Section 3). Thereafter, we shall state a characterisation
theorem for aggregators as MV-algebra homomorphisms and derive two well-
known corollaries from judgement aggregation and probabilistic opinion pooling
(Section 4); the proofs can be found in an appendix. Possible extensions of our
methodology are discussed in the final Section 5.

2 Formal framework
In the following, we describe a formal model for the aggregation of many-valued
propositional attitudes. The electorate will be given by some (finite or infinite)
set N . In addition, a set of propositions X (agenda) in a sufficiently expressive
language will be fixed, and the electorate as well as each individual will be
supposed to display a certain attitude towards each proposition in the agenda
(thus assigning a truth value). The set of possible attitudes or truth values will
be denoted M (and will be assumed to possess some additional structure, viz.
that of an MV-algebra). Thus, each individual expresses his or her attitudes
towards the elements of the agenda through a function from X to M , called
attitude function. Then the attitudes of all individuals can be captured by an
N -sequence of attitude functions (i.e. by a map from N to MX); such an N -
sequence will be called profile. An aggregator is then simply a map from (a
suitable subset of) the set of profiles to the set of attitude functions.
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2.1 Agenda syntax
Let L be the language of many-valued propositional logic. In other words,
let L be the language whose symbols consist of countably many propositional
variables, a propositional constant 0 (falsehood), a binary operation ⊕ (strong
disjunction) and a unary operator ¬ (negation). The set of well-formed formulae
in this language shall be denoted L.

The idea behind the introduction of a strong disjunction is that in many-
valued logic has to do with the possibility of partial assent to any given
proposition in many-valued logic. Now, if someone who only gives partial assent
to both p and q is asked about her assessment of ‘p or q’, she has two options:
She may either, roughly speaking, assume that p and q hold true in disjoint
sets of worlds and thus additively combine the partial assent — or she may
adopt a more cautious stance and only assign as much assent as she would have
given to either of p and q. The first interpretation connects p and q by a strong
disjunction, the latter by a weak disjunction.

A number of standard abbreviations will be helpful. First, we define a new
propositional constant 1 (truth) by ¬0. Next, we define additional operations.
The operation of weak disjunction (denoted ∨) will be defined via

∀p, q ∈ L p ∨ q = ¬(¬p⊕ q)⊕ q,

and strong conjunction (denoted ⊗) as well as weak conjunction (denoted ∧)
can then be defined through De Morgan’s laws:

∀p, q ∈ L p⊗ q = ¬(¬p⊕ ¬q),
p ∧ q = ¬(¬p ∨ ¬q).

The implication operation (denoted →) can be defined as

p→ q = ¬p⊕ q.

(In their original paper, Łukasiewicz and Tarski [1930] took ¬ and → as the
primitive logical symbols of their language.) Łukasiewicz logic is then given by
the provability relation `, given by modus ponens (i.e. for all p, q ∈ L and
S ⊆ L, if S ` p and S ` (p→ q), then S ` q) and the following axiom schemes:
For all p, q ∈ L,

A1. For all p, q ∈ L, the proposition p→ (q → p) is an axiom.

A2. For all p, q ∈ L, the proposition (p → q) → ((q → r)→ (p→ r)) is an
axiom.

A3. For all p, q ∈ L, the proposition ((p→ q)→ q) → ((q → p)→ p) is an
axiom.

A4. For all p, q ∈ L, the proposition (¬p→ ¬q)→ (q → p) is an axiom.

(Cf. Rose and Rosser [1958] and Chang [1958b].)
One can define a relation ≡, called provable equivalence, on L by saying that

p is provably equivalent to q (denoted p ≡ q) if and only if both ` (p → q) as
well as ` (q → p) (wherein ` p is, for all p ∈ L, shorthand for ∅ ` p). It is not
difficult to verify that ≡ is an equivalence relation on L. The set of equivalence
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classes shall be denoted L/ ≡. Representative-wise, one can define the constant
0, the operator ¬ and the operation ⊕ on L/ ≡; again, it is not hard to prove
that these are well-defined. Therefore, the operations ⊗,∨,∧,→ can be defined
on L as well.

2.2 Agenda semantics
Recall that an MV-algebraM is a structure (M,⊕,¬, 0) such that (M,⊕, 0) is a
commutative monoid (i.e. ⊕ is a commutative and associative binary operation
on M with neutral element 0) and the following identities are satisfied for all
x, y ∈M :

• ¬¬x = x,

• x⊕ 1 = 1,

• x ∨ y = y ∨ x,

wherein 1 is shorthand for ¬0 and ∨ is defined via

∀x, y ∈M x ∨ y = ¬(¬x⊕ y)⊕ y.

It turns out that the structure (L/ ≡,⊕,¬, 0), i.e. the set of equivalence
classes of provably equivalent formulae from many-valued propositional logic
with the canonical operations, is an MV-algebra, the so-called Lindenbaum
algebra for Łukasiewicz’s many-valued logic. This observation allows us to
take an algebraic approach to the semantics of many-valued propositional logic,
essentially due to C.C. Chang [1958a, 1959]: Let us henceforth assume that the
truth values form an MV-algebra; we shall hence fix an MV-algebra M for the
rest of this paper and shall refer to it as the set of truth values. Under these
hypotheses, an M -valuation can be defined as an MV-algebra homomorphism
from L/ ≡ to M . If I is an M -valuation and p ∈ L, we shall usually simply
write I(p) instead of I([p]≡).

Important examples of MV-algebras are the following (cf. already Chang
[1958a]):

• Any Boolean algebra is an MV-algebra (with the lattice operations ∨ and
∧ playing the rôles of ⊕ and ⊗).

• If M = [0, 1], the set of all real numbers between 0 and 1, one obtains
an MV-algebra with zero element 0 by setting ¬x = 1 − x and x ⊕ y =
min{x+ y, 1} for all x, y ∈ [0, 1]. This is called the standard MV-algebra.
It is the set of truth values for the infinite-valued logic Li1

. The derived
operations are given by

x⊗ y = max{0, x+ y − 1}, x ∨ y = max{x, y}, x ∧ y = min{x, y}.

• With the same definitions for 0, ¬ and ⊕, the set M = [0, 1] ∩Q (the set
of all rational numbers between 0 and 1) is an MV-algebra; it is the set of
truth values for Łukasiewicz’s infinite-valued logic Lℵ0 .

• Again with the same definitions for 0, ¬ and ⊕, the set M =
{0, 1/m, . . . , (m− 1)/m, 1} is an MV-algebra for every positive integer m.
It is the set of truth values for Łukasiewicz’s (m+ 1)-valued logic Lm+1.
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Rose and Rosser [1958] and Chang [1959] have shown, each by a different
method, the completeness of Lℵ0 .

2.3 Attitude functions
Consider a set X ⊆ L, henceforth called the agenda. Attitude functions are
functions from X to M . An attitude function A is rational if and only if it can
be extended to an M -valuation, i.e. there exists an M -valuation I such that
A(p) = I([p]≡) for all p ∈ X. Therefore, any rational attitude function A is also
well-defined not only on X, but on the closure of X under ¬ and ⊕. A (rational)
profile is an N -sequence of (rational) attitude functions; our typical notion for
a profile will be A = (Ai)i∈N . An attitude aggregator is a map from a subset of
the set of profiles to the set of attitude functions. An attitude aggregator F is
a dictatorship if and only if there exists some i ∈ N such that F (A) = Ai for
all A in the domain of F .

An important observation is the extendibility of rational attitude functions:

Remark 1. Denote the closure of the agenda X under ¬ and ⊕ by Y . Any
rational attitude function can be uniquely extended to a function from Y to M .

We shall always identify the extension of any rational attitude function A
with its extension to Y . Thus, in the following, all rational attitude functions
are assumed to be defined on the whole of Y . The reason for not choosing
X to be closed under ¬ and ⊕ from the beginning is conceptual rather than
technical: It should be possible to interpret consistent subsets of the agenda
as sets of “premisses” (cf. e.g. Dietrich and Mongin [2010]). While such sets
of premisses will typically already determine the truth values of many more
(complex) propositions, only the premisses will be subject to a collective decision
mechanism.

2.4 Examples
The simplest example for this framework is the “classical” propositional
judgement aggregation, whereM is 2 = {0, 1} endowed with the Boolean algebra
structure. Another example would be probabilistic opinion pooling: Here, M
is the standard MV-algebra [0, 1], and the agenda consists of propositional
constants for each atomic event and each complement of an atomic event. In
addition, this framework encompasses aggregation problems with respect to
more general many-valued logics: All that is required is that the set of truth
values forms an MV-algebra; by that means, the framework proposed in this
paper covers aggregation of propositions in a large class of finite- and infinite-
valued logics as well. For example, voting with abstentions can easily be modeled
as an aggregation problem in a three-valued logic, e.g. Łukasiewicz’s L3.

3 Aggregator responsiveness axioms
In this section, we generalise (mostly standard) terminology from aggregation
theory, in order to be able to formulate our subsequent results on propositional-
attitude aggregators. We shall use the abbrevation

A(p) = (Ai(p))i∈N

6



for all propositions p ∈ X and all profiles A ∈
(
MX

)N .

Definition 2. An attitude aggregator F is rational if and only if for all rational
profiles A in the domain of F , F (A) is a rational attitude function.

Definition 3. An attitude aggregator F is universal if and only if its domain
comprises all rational profiles.

Independent aggregation means that the aggregate attitude towards any
proposition p does not depend on the individuals’ attitudes towards propositions
other than p:

Definition 4. An attitude aggregator F is independent if and only if there
exists a map G :MN ×X →M such that for all profiles A in the domain of F
and for all p ∈ X, F (A)(p) = G (A(p), p).

Systematic aggregation is a special case of independent aggregation, where
G is constant in the second argument, i.e. the aggregate attitude towards any
proposition p only depends on p through the individuals’ attitudes towards p:

Definition 5. An attitude aggregator F is systematic if and only if there exists
a map f : MN →M , called decision criterion of F , such that for all profiles A
in the domain of F and for all p ∈ X,

F (A)(p) = f (A(p)) . (1)

Under a mild additional assumption, the decision criterion of a systematic
aggregator is unique. Let us call a formula p ∈ L strictly contingent if and only
if there exists for all x ∈M some M -valuation I with I(p) = x.

Remark 6. If the agenda contains some strictly contingent sentence p0, then
any universal systematic attitude aggregator F has a unique decision criterion.

Though it appears much stronger at first sight, systematicity is under mild
conditions actually equivalent to independence (cf. Dietrich and List [2011,
Theorem 2]). At least as strong is the following notion (recall that rational
attitude functions can be uniquely extended to the closure of the agenda under
¬ and ⊕):

Definition 7. A systematic attitude aggregator F is strongly systematic if and
only if Equation (1) holds even for all p in the closure of X under ¬ and ⊕ and
all profiles A in the domain of F .

If the agenda is closed under ¬ and ⊕, then systematicity and strong
systematicity trivially coincide.

The Pareto principle asserts that any proposition which is rejected
unanimously by all individuals, must be collectively rejected:

Definition 8. An attitude aggregator F is Paretian if and only if for all profiles
A in the domain of F and all p ∈ X, if Ai(p) = 0 for all i ∈ N (i.e. A(p) = 0),
then F (A)(p) = 0.

For most of the paper, we need to impose additional assumptions on the
logical expressivity or complexity of the agenda.
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Definition 9. The agenda X is called complex if and only if there exists a
strictly contingent proposition p0 in X and there also exist strictly contingent
propositions p1, p2, p3, q1, q2 in the closure of X under ¬ and ⊕ such that for
all M -valuations I, one has I(p1) ⊕ I(p2) = I(p3) and ¬I(q1) = I(q2). If
p1, p2, p3, q1, q2 are even in X, then X is said to be rich.

The point about rich (complex) is that one can generate manifold
combinations of truth values through M -valuations of elements of the agenda
(the closure of the agenda under ¬ and ⊕, respectively) only. (For
example, {p,¬p, q,¬q, r,¬r, s,¬s, t,¬t} is always a rich agenda if p, q, r, s, t are
propositional constants, but {p,¬p} is not.) This aspect of agenda complexity
or richness will be the key to the proof of our main result, via the notion of
strongly systematisable aggregators:

Definition 10. In this paper, a systematic attitude aggregator F for a complex
agenda X is called strongly systematisable if and only if F is either strongly
systematic or the agenda X is rich.

4 Results
Note that MN is — as the direct product of card(N) identical copies of M —
again an MV-algebra; the strong disjunction ⊕N and negation ¬N are defined
componentwise, the zero element 0N is just the N -sequence 0 of 0’s.

Our main theorem establishes a one-to-one correspondence between maps
from MN to M that preserve the algebraic structure and such attitude
aggregators as are rational, universal, Paretian and strongly systematisable.
Its morale is the following: Very roughly speaking, every decision criterion that
is algebraically well-behaved gives rise to a “nice” aggregator; and conversely,
any “nice” aggregator can be reduced to a decision criterion that is algebraically
well-behaved.

Theorem 11. If F is a rational, universal, Paretian and strongly systematisable
attitude aggregator, then the decision criterion of F is an MV-homomorphism.

Conversely, if f is an MV-homomorphism and F is defined by Equation (1)
for all rational profiles A and all p ∈ X, then F is a rational, universal, Paretian
and systematic attitude aggregator.

(The uniqueness of the decision criterion had already been noted in
Remark 6.)

IfM = {0, 1} with the usual Boolean structure, thenMN is again a Boolean
algebra and isomorphic to the power-set Boolean algebra of N . This allows us
to deduce, as an easy corollary to Theorem 11, the recent result in Herzberg
[2010]. Ultimately, this leads to Arrow’s impossibility theorem for judgement
aggregation (recall the previous remark about the equivalence of systematicity
and independence under mild conditions), first proved by List and Pettit [2002].

Corollary 12. Suppose F is a rational, universal, Paretian and strongly
systematisable attitude aggregator. If the algebra of truth values is Boolean,
then the decision criterion of F is a Boolean homomorphism.

If the algebra of truth values is just the Boolean algebra {0, 1} and the
electorate N is finite, then F is a dictatorship.
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If M is the standard MV-algebra, then Theorem 11 yields McConway’s
[1981] characterisation of linear opinion pools (“weighted averaging”) as a second
corollary:

Corollary 13. Let F be a rational, universal, Paretian and strongly
systematisable aggregator, let the algebra of truth values be the standard MV-
algebra [0, 1], and suppose the electorate N is finite. Then the decision criterion
of F is a linear map from [0, 1]N to [0, 1].

In less abstract terms: In the setting of Corollary 13 (well-behaved
aggregation of information encoded in fuzzy logic with a finite electorate),
profiles will be sequences of maps from the agenda to the unit interval [0, 1],
and there will be a vector of weights (αi)i∈N ∈ [0, 1]N such that

∑
i∈N αi = 1

and
F (A)(p) =

∑
i∈N

αiAi(p)

for all A and all p in the agenda.

5 Discussion
We have seen that one can neatly formulate an aggregation theory for general
many-valued propositional attitudes based on the theory of MV-algebras.
Aggregators satisfying common responsiveness axioms (agenda complexity
resp. richness, collective rationality, universality, systematicity resp. strong
systematicity, Pareto principle) then simply correspond to MV-homomorphisms
— algebraically structure-preserving maps — from MN to M (M being the
MV-algebra of truth values). For special cases of M , one can use classical
classification results for such homomorphisms to obtain a classification of
Paretian systematic aggregators, e.g. if M is the Boolean algebra 2 =
{0, 1} (which leads to the judgement-aggregation analogue of Arrow’s [1963]
impossibility theorem, cf. Dietrich and List [2007]) or ifM = [0, 1] (which entails
McConway’s [1981] characterisation of linear opinion pooling). More general
aggregator classifications might be derived from MV-algebra classifications (cf.
Chang [1959], Mundici [1986], Cignoli and Mundici [1997]).

Informally speaking, we have shown that systematic attitude aggregators
will always preserve a certain algebraic structure that is found both on the set
of profiles (of attitude functions) and the set of attitude functions itself: the
MV-algebra structure. Since such structure-preserving maps can be classified
in many instances, impossibility theorems and possibility theorems can be
obtained as corollaries via results from pure universal algebra. In particular,
since systematicity and independence of irrelevant alternatives are equivalent
under mild conditions in general aggregation contexts (as shown by Dietrich
and List [2011]) and since M = {0, 1/m, . . . , (m− 1)/m, 1} is an MV-algebra
for every positive integer m), our result can probably be utilised to give a
shorter, arguably more direct proof of Pauly and van Hees’ [2006] impossibility
theorems for propositional-attitude aggregation in finite-valued logic with finite
electorates. It would be enough to know that projections are the only MV-
homomorphisms from the Cartesian power MN to M in that setting (provided
N is finite). For propositional-attitude aggregation in infinite-valued logics,
there are possibility theorems even for finite electorates: For instance, if
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the underlying logic is the infinite-valued logic Li1
(i.e. the truth values

may be drawn arbitrarily from the standard MV-algebra M = [0, 1]), the
resulting aggregation problems is essentially a reformulation of probabilistic
opinion pooling, and in this setting there exist — even for finite electorates
— continuum-many structure-preserving maps from MN to M and thus
uncountably many non-dictatorial systematic aggregators (viz. all weighted-
average rules). It would be interesting to see if impossibility theorems can also
be avoided for finite electorates in Łukasiewicz’s infinite-valued logic Lℵ0 . In
light of the results in this paper, this boils down to a purely algebraic question:
Are there MV-homomorphisms other than projections from the Cartesian power
MN to M if M = [0, 1] ∩Q and N is finite?

Our algebraic approach to aggregation theory could be taken further by
allowing for Heyting algebras or BL-algebras as sets of truth values. By that
means, aggregation of intuitionistic resp. fuzzy propositional attitudes could be
studied in full generality.

A powerful alternative to algebraic aggregation theory is the model-theoretic
approach pioneered by Lauwers and Van Liedekerke [1995], as it allows to study
aggregation problems for predicate logic in a natural manner as well. (Cf. also
Herzberg, Lauwers, Van Liedekerke and Fianu [2010] for an addendum as well
as Herzberg and Eckert [2011a, 2011b] for a generalisation.) It remains to
be seen whether even many-valued aggregation problems can be studied by
model-theoretic methods; such an approach could pave the way for a systematic
analysis of aggregation problems in many-valued predicate logic. The algebraic
approach to many-valued model theory proposed by Zlatoš [1981] might be a
first starting point for such an endeavour.
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Appendix

A Proofs
Proof of Remark 1. Let A be a rational attitude function. Consider any two
M -valuations I, I ′ such that A(p) = I(p) = I ′(p) for all p ∈ X or, more
precisely, A(p) = I([p]≡) = I ′([p]≡) for all p ∈ X. In other words, I and
I ′ are homomorphisms from L/ ≡ to M which agree on the set [X]≡ of ≡-
equivalence classes of elements of X. Thus, they must agree on the closure of
[X]≡ under the operations ¬ and ⊕ in L/ ≡. Call this closure [Y ]≡. Since the
operations ¬ and ⊕ in L/ ≡ are defined representative-wise, [Y ]≡ equals the set
of equivalence classes of elements of Y (the closure of X under the operations
¬ and ⊕ in L). It follows that I([p]≡) = I ′([p]≡) for all p ∈ Y .

Proof of Remark 6. Let p0 be as in the statement of Remark 6, let f and f ′

be decision criteria of F , and let x = (xi)i∈N ∈ MN . Then there exists for
each i ∈ N some M -valuation Ii such that Ii(p0) = xi. Now each Ii induces a
rational attitude function Ai defined by Ai(p) = Ii(p) for all p ∈ X, so that in
particular Ai(p0) = xi for all i ∈M . As F is universal, the profile A = (Ai)i∈N
is in the domain of F . Hence

f(x) = f (A(p0)) = F (A)(p0) = f ′ (A(p0)) = f ′(x).

Proof of Theorem 11. Let F be a rational, universal, Paretian and strongly
systematisable attitude aggregator, and let f be the decision criterion of F .

Consider any two elements of MN , x = (xi)i∈N and y = (yi)i∈N . Let
p1, p2, p3, q1, q2 be as in the definition of agenda complexity. Then on the one
hand, since p1, p2, p3, q1, q2 are strictly contingent by assumption, there exists
for each i ∈ N some M -valuations Ii, I ′i, I ′′i such that

• Ii(p1) = xi and Ii(p2) = yi,

• I ′i(q1) = xi,

• I ′′i (p1) = 0.

On the other hand, since p1, p2, p3, q1, q2 were assumed to be as in the definition
of agenda complexity, it follows for each i ∈ N ,

• not only Ii(p1) = xi and Ii(p2) = yi, but also Ii(p3) = xi ⊕ yi and
I(p3) = I(p1)⊕ I(p2) for every M -valuation I,

• not only I ′i(q1) = xi, but also I ′i(q2) = ¬xi and I ′(q2) = ¬I ′(q1) for every
M -valuation I ′,

• I ′′i (p1) = 0.

In other words, there exists an N -sequence I = (Ii)i∈N of M -valuations such
that

• I(p1) = x, I(p2) = y, I(p3) = x⊕N y and I(p3) = I(p1)⊕ I(p2) for every
M -valuation I,
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• I ′(q1) = x, I ′(q2) = ¬Nx and I ′(q2) = ¬I ′(q1) for every M -valuation I ′,

• I ′′(p1) = 0 = 0N .

Next note that by restricting each Ii, I ′i and I ′′i to the set of equivalence classes
of elements of X (recall that I(p) is shorthand for I([p]≡) for anyM -valuation I
and any p ∈ L), one obtains rational attitude functions Ai, A′i and A′′i . All Ai,
A′i and A′′i are rational attitude functions and thus can be uniquely extended
to Y by Remark 1. Hence, we have constructed rational profiles A = (Ai)i∈N ,
A′ = (A′i)i∈N and A′′ = (A′′i )i∈N such that

• A(p1) = x, A(p2) = y, A(p3) = x ⊕N y, and I(p3) = I(p1) ⊕ I(p2) for
every M -valuation I,

• A′(q1) = x, A′(q2) = ¬Nx, and I ′(q2) = ¬I ′(q1) for every M -valuation I ′,

• A′′(p1) = 0N .

Note that since F is universal, the profiles A,A′, A′′ must be in the domain of
F . Since F is rational, F (A), F (A′) and F (A′′) are rational attitude functions
and thus can be uniquely extended to Y by Remark 1. Moreover, there exist
M -valuations I and I ′ such that F (A)(p) = I(p) as well as F (A′)(p) = I ′(p) for
all p ∈ X and hence, by the homomorphy of I, also for all p ∈ Y . From here, it
follows that

• F (A)(p3) = F (A)(p1)⊕ F (A)(p2),

• F (A′)(q2) = ¬F (A′)(q1).

Let us next exploit the choice of p1, p2, p3, q1, q2 as in the definition of agenda
complexity and the strong systematicity of F or the richness of X. This yields
for any M -valuation I which extends F (A),

f(x⊕N y) = f (A(p3)) = I(p3)

= I(p1)⊕ I(p2) = f (A(p1))⊕ f (A(p2)) = f(x)⊕ f(y).

Similarly (this time applying the formulae in the definition of agenda complexity
to an M -valuation I which extends F (A′)),

f(¬Nx) = f
(
A′(q2)

)
= I(q2)

= ¬I(q1) = ¬f
(
A′(q1)

)
= ¬f(x).

Thus, f preserves the operators ¬ and ⊕ and maps the zero element 0N of MN

to 0 ∈M ; hence, f is an MV-homomorphism.
Conversely, let f be an MV-homomorphism. Clearly, the F defined by

Equation (1) for all rational profiles A and all p ∈ X is both systematic and
universal. Moreover, since f is a homomorphism, any composition of f with an
N -sequence of MV homomorphisms from L toM will again be a homomorphism
from L to M . In other words, the composition of f with an N -sequence of
valuations is again a valuation. This shows that the composition of f with a
rational profile is a rational attitude function. Hence, the F defined by Equation
(1) is rational. Since f(0N ) = f(0) = 0, it is clear that F is Paretian.
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Proof of Corollary 12. If M is even a Boolean algebra, then so is MN . By
Theorem 11, the decision criterion f is an MV-homomorphism. Since any
MV-homomorphism between two Boolean algebras is a Boolean homomorphism
(because the Boolean operations ∨ and ∧ as well as the constant 1 can be defined
through ¬ and ⊕: x ∨ y = ¬(¬x ⊕ y) ⊕ y and x ∧ y = ¬(¬x ∨ ¬y) for all x, y
and 1 = ¬0), it follows that f is actually a Boolean homomorphism. Boolean
algebra teaches that the shell of f , i.e. f−1{1} = f−1{¬0}, is a filter in 2N

(which is isomorphic to the power-set Boolean algebra of N), and ifM = {0, 1},
then the shell of f is even an ultrafilter on N . Now if N is finite, this means
— as all ultrafilters on finite sets are principal — that there exists some i0 ∈ N
such that f−1{1} = {C ⊆ N : i0 ∈ C}. This, however, implies that F is a
dictatorship, the dictator being i0.

Proof of Corollary 13. Without loss of generality, we may assume N =
{1, . . . , n} for some positive integer n. By Theorem 11, the decision criterion
f : [0, 1]N → [0, 1] is an MV-homomorphism. This implies, if M is the standard
MV-algebra [0, 1], that

f (x1, . . . , xn)⊕ f (y1, . . . , yn) = f (x1 ⊕ y1, . . . , xn ⊕ yn)

for all x1, y1, . . . , xn, yn ∈ [0, 1]. Hence (by the definition of ⊕ in the Łukasiewicz
algebra, i.e. x ⊕ y = min{x + y, 1} for all x, y ∈ [0, 1] and the componentwise
definition of⊕ in the direct power [0, 1]N ) one has for all x1, y1, . . . , xn, yn ∈ [0, 1]
with xi + yi ≤ 1 for all i ∈ N ,

f (x1, . . . , xn) + f (y1, . . . , yn) = f (x1 + y1, . . . , xn + yn) . (2)

One can now emulate McConway’s [1981] original argument: An iterated
application of the preceding equation yields for all z1, . . . , zn ∈ [0, 1],

f (z1, . . . , zn) = f (z1, 0, . . . , 0) + f (0, z2, . . . , zn)

= f (z1, 0, . . . , 0) + f (0, z2, 0, . . . , 0) + f (0, 0, z3, . . . , zn)

=

n∑
i=1

f

0, . . . , 0︸ ︷︷ ︸
i−1

, zi, 0, . . . , 0︸ ︷︷ ︸
n−i

 .

Hence, definining fi by

fi(z) = f

0, . . . , 0︸ ︷︷ ︸
i−1

, z, 0, . . . , 0︸ ︷︷ ︸
n−i


for every z ∈ [0, 1] and each i ∈ N , we obtain

f (z1, . . . , zn) =

n∑
i=1

fi (zi)

for all z1, . . . , zn ∈ [0, 1]. Moreover, Equation (2) also implies fi(x + y) =
fi(x) + fi(y) for all x, y ∈ [0, 1] with x + y ≤ 1 and each i ∈ N . Therefore,
every fi satisfies Cauchy’s functional equation. Also, the range of every fi is
by definition contained in the range of f and thus in [0, 1], whence fi(x) is
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nonnegative for all x ∈ [0, 1] and every i ∈ N . Therefore, there exists for
every i ∈ N some αi such that fi(x) = αix for all x ∈ [0, 1] (cf. Aczél [1961,
1966, Section 2.1.1, Theorem 1]), and this αi must be nonnegative. Thus,
f (z1, . . . , zn) =

∑n
i=1 αizi for all z1, . . . , zn ∈ [0, 1].
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