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Abstract

Background: Dichotomisation of continuous outcomes has been rightly criticised by statisticians because of the loss
of information incurred. However to communicate a comparison of risks, dichotomised outcomes may be necessary.
Peacock et al. developed a distributional approach to the dichotomisation of normally distributed outcomes allowing
the presentation of a comparison of proportions with a measure of precision which reflects the comparison of means.
Many common health outcomes are skewed so that the distributional method for the dichotomisation of continuous
outcomes may not apply.

Methods: We present a methodology to obtain dichotomised outcomes for skewed variables illustrated with data
from several observational studies. We also report the results of a simulation study which tests the robustness of the
method to deviation from normality and assess the validity of the newly developed method.

Results: The review showed that the pattern of dichotomisation was varying between outcomes. Birthweight, Blood
pressure and BMI can either be transformed to normal so that normal distributional estimates for a comparison of
proportions can be obtained or better, the skew-normal method can be used. For gestational age, no satisfactory
transformation is available and only the skew-normal method is reliable. The normal distributional method is reliable
also when there are small deviations from normality.

Conclusions: The distributional method with its applicability for common skewed data allows researchers to provide
both continuous and dichotomised estimates without losing information or precision. This will have the effect of
providing a practical understanding of the difference in means in terms of proportions.
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Background
Researchers and practitioners in medicine often use con-
tinuous measurements to classify subjects as either nor-
mal or abnormal according to a particular cut-off. This
dichotomisation is typically done for one of three reasons.
The first is to facilitate a treatment decision for an indi-
vidual, such as to give anti-hypertensive drugs if systolic
blood pressure is over 160 mmHg. Secondly dichotomi-
sation may be used to enable the quantification of the
proportion in a population with abnormal outcome, such
as the proportion of babies with low birthweight, i.e.
birthweight under 2500 g. Thirdly dichotomisation is used
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to provide estimates that are more clinically meaningful
for example in comparing two groups when a difference
in say, mean birthweight in two groups may be difficult
to interpret while a difference in the proportion with low
birthweight is intuitively more meaningful. Dichotomisa-
tion is thus commonly seen and used but is known to be
problematic because of the obvious loss of information
and reduced statistical power.
The distributional approach [1,2] was developed to rem-

edy this problem by providing a way to dichotomise a
continuous outcome without losing precision by consid-
ering the proportion below a cut-off as a function of the
mean and standard deviation of the distribution. In this
way researchers may present both a mean difference and
a comparison of proportions below a given cut-off with
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equivalent precision. With dual outcomes, the dichotomi-
sation of continuous data is statistically rigorous.
The distributional method requires that the data follow

a normal distribution or can be transformed to normal, for
example by using a logarithmic transform. Many common
health outcomes, e.g. blood pressure, body mass index
(BMI), are not normally distributed because of perturba-
tions due to the presence in the population of a few people
with very high blood pressures or BMIs. This process has
been described to lead to a skew-normal distribution of
outcomes [3].
A small systematic review was undertaken to illustrate

the ways in which three common outcomes, blood
pressure, body mass index, and gestational age are
analysed and presented in medical journals. To do this
the Pubmed database was searched using the terms
blood pressure, body mass index (BMI), and gestational
age OR preterm birth and all their related Mesh terms.
One hundred and ninety studies were retrieved, and
after screening the full texts, 49 eligible studies were
identified (blood pressure (BP): 23, BMI: 13, gestational
age (GA): 13). Among the BP studies, analysis used the
continuous data in 17/23 studies, dichotomous in 9/23
and both in 3/23. BMI was analysed as continuous in 9/13
studies and dichotomous in 5/13. One study included
both continuous and dichotomous outcomes. The
pattern for GA was different as most studies (12/13)
used the dichotomous form, while 3/13 used thecontin-
uous outcome and two studies use both forms. Over all
three outcomes, authors rarely (4/49) commented on the
distribution of the data. Those are typical outcome
for which the distributional method for dichotomi-
sation could be beneficial because the population at
risk are defined by a threshold. It is not known how
robust the distributional method is to small deviations
from normality. In this paper we investigate if the
distributional method remains reliable in the case
of deviations from normality and propose a gener-
alisation of the distributional method to allow for
skewness in distributions using the skew-normal
distribution.

Methods
The methods section consists of two parts. In the first
part we derive the estimates and standard error for the
skew-normal distributional method for dichotomisation,
and in the second part we provide the methods for
two studies. The first study consists in illustrating the
skew-normal method with real data and the second in
assessing the robustness of the normal method to small
deviation trom normality and to validate the skew-normal
method through simulation. The research reported does
not require any ethical approval due to its methodological
nature.

Distributional method for the dichotomisation of skewed
data
The skew-normal distributional method
The normal distributional method has been previously
described in detail [1] and [2]. In brief it provides a large
sample approximation for the estimation of proportions
and their standard errors assuming a normal distribution
for the underlying population with parameters obtained
from the data. The skew-normal distributional method
uses the skew-normal distribution which has been
extensively studied in [3]. This distribution is a generali-
sation of the normal distribution which works by adding a
third parameter α which defines the skewness (if α = 0,
the distribution is normal). The method of derivation of
the distributional standard error for the proportion above
or below a threshold is similar to one in [1] using the delta
method.
LetsXn be the samplemean of n independent identically

skew-normal distributed random variables Xi, i = 1 . . . n
with mean μ, variance σ 2 and skewness parameter α. Lets
x0 be a threshold of interest. The random variable p(Xn)
for the proportion of the population with outcome value
under the threshold x0 is defined as

p(Xn) =
∫ x0
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From the delta method we obtain that p(Xn) is approxi-

mately normally distributed with standard deviation
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We outline the derivation of p′(Xn) the formula for the
standard deviation in the Appendix.
Let n1, n2, μ1, μ2,α, sd, p1, and p2 be the sample

sizes, the sample means, the pooled sample skew coef-
ficient, the pooled sample standard deviation and the
skew-normal distributional estimates of the proportions
under the threshold x0 in each group for the two groups
being compared. For each i = 1, 2, α′

i = μi − wiμz.
Let d, rr and or be the skew-normal distribu-

tional estimates of the difference in proportions, risk
ratio and odds ratio. The following formulae pro-
vide the variances (se2) for these estimates or their
logarithm.



Sauzet et al. BMCMedical ResearchMethodology  (2015) 15:40 Page 3 of 11

se(d)2= w2
1√n1

(
1−μ2

z
)
⎛
⎜⎝2e

−1
2w21

(x0−(μ1+α′
1))

2

√
2πw2

1

�(α
x0 − (μ1−α′

1)

w1

⎞
⎟⎠

2

+ w2
2√n2

(
1−μ2

z
)
⎛
⎜⎝2e

−1
2w22

(x0−(μ2+α′
2))

2

√
2πw2

2

�(α
x0−(μ2−α′

2)

w2

⎞
⎟⎠

2

se(log(rr))2= 1
p21

w2
1√n1

(
1−μ2

z
) ⎛
⎜⎝2e

−1
2w21

(x0−(μ1+α′
1))

2

√
2πw2

1

�(α
x0−(μ1−α′

1)

w1

⎞
⎟⎠

2

+ 1
p22

w2
2√n2

(
1−μ2

z
)⎛⎜⎝2e

−1
2w22

(x0−(μ2+α′
2))

2

√
2πw2

2

�(α
x0−(μ2−α′

2)

w2

⎞
⎟⎠

2

se(log(or))2 = 1
(p1(1 − p1))2

w2
1√n1

(
1 − μ2

z
)

×
⎛
⎜⎝2e

−1
2w21

(x0−(μ1+α′
1))

2

√
2πw2

1

�(α
x0 − (μ1 − α′

1)

w1

⎞
⎟⎠

2

+ 1
(p2(1 − p2))2

w2
2√n2

(
1 − μ2

z
)

×
⎛
⎜⎝2e

−1
2w22

(x0−(μ2+α′
2))

2

√
2πw2

2

�(α
x0 − (μ2 − α′

2)

w2

⎞
⎟⎠

2

These standard errors use more information than the
standard errors used for proportion estimate obtained
from the data. They depend on the underlying distribution
and not just on the sample proportion and sample size.

Proportions and transformed data
Transformed data presents difficulties of interpretation
because it may not be possible to back-transform to the
natural scale and even when this can be done, themeaning
is changed. However the proportion below a cut-point is
not affected if the transformation function is continuous
and monotonic such as logarithm, square root, reciprocal
etc. The proportions of patients with a condition defined
by a threshold remain unchanged under a transformation
of the outcome. In mathematical terms:
If y is an outcome and Y a certain threshold such that

for example, if the outcome for patient i, yi is smaller than
Y then patient i is to be treated then for f a continuous
increasing function

if yi < Y then f (yi) < f (Y ).

And for g a continuous decreasing function then

if yi < Y then g(yi) > g(Y ).

Among the usual functions used for transforming data,
the logarithm, the square root and the square (all three
applied only to positive values) are increasing functions.
The inverse function (1/x) for positive outcomes or taking
the opposite value (-x) are decreasing functions therefore

a proportion in the lower tail in the original scale will be
in the upper tail in the transformed scale.

Study 1: Examples from data from several observational
studies
To illustrate the use of the distributional method for the
dichotomisation of skewed outcomes, we present the anal-
ysis of skewed data using the skew-normal distributional
method and compare the results with the normal distri-
bution method for transformed data. The data come from
two observational studies: Birthweight (BW), body-mass
index (BMI) and gestational age (GA) are outcomes taken
from the St George’s Birthweight Study [4] and systolic
blood pressure (SBP) was measured on stroke patients
included in the South London Stroke Register[5,6] which
was set up in 1995 and records all first-ever strokes in an
inner city area of South London.

Study 2: Robustness to small deviation from normality and
validation of the skew-normalmethod
We assess the robustness of the (normal) distributional
method in the presence of skewness for two reasons: to
find out if the results remain reliable even if the data
are not exactly normally distributed and to establish the
necessity of an alternative method for the case of data with
more skewness. We also validate the the skew-normal
method. Data were generated from 1. a lognormal distri-
bution with skewed upper tails and 2. using a left and right
skewed skew-normal distribution. The data were analysed
using the normal distributional method and for the skew-
normal data also using the skew-normal method. The log
standard deviation σ 2

log provides a measure of skewness
for the lognormal data via the ratio of the expected value

by the median which is equal to exp
(

σ 2
log
2

)
. Values for

the log standard deviation considered in this study range
between 0.02 and 1. The parameter α of the skew-normal
distribution was used as a measure of skewness for the
skew-normal data ranging from -20 to 20. The values -1
and 1 provide small deviation from normality.
The validity of the distributional method is assessed

through the bias of the estimate, how well the standard
error (se) is an accurate measure of the variability of the
estimate and the coverage of the 95% confidence interval
of the true value. The varying parameters used for the sim-
ulation are the cut-point, the skewness (by varying the log
standard deviation, from 0.02 to 1), the effect size (mean
difference over standard error, from 0.01 to 0.5) and the
sample size (20 to 500).
Simulations were performed using the statistical soft-

ware R . The following algorithm was followed 20 000
times for each set of parameter values. For each simulated
dataset, the mean and standard error are obtained to com-
pute the normal distributional estimates with standard
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error for the difference in proportion, risk ratio and odds
ratio.
Summaries are then obtained for the 20 000 datasets in

the following way:

• Mean values over the 20 000 datasets are obtained for
all estimates and standard errors.

• Standard deviations over the 20 000 datasets are also
obtained for difference in proportions, RR and OR in
order to be compared to the mean standard errors.

• The mean bias (defined as the relative difference
between true values and estimates) is obtained for all
estimates

• The coverage of the 95% distributional confidence
interval (DCI) is computed as the proportion of
datasets for which the true value of the parameter
was in the DCI.

Results
Study 1: Skew-normal distributional method illustrated
with data from several observational studies
Normal data
Data from the St George’s Birthweight study [4] were
used to compare the proportions of low birthweight
(LBW) babies among smoking and non-smokingmothers.
Results are given in Table 1a.

• Birthweight data for term babies is known to be
normally distributed [7] (Figure 1) and the
distributional method can be used without
transformation.

• The mean BW (SD) in the non-smoking group was
3452g (435) for 983 observations and for the smoking
group 3267g (441) for 494 observations

• The data are normally distributed (see above) and
standard deviations can be assumed to be equal.

• The difference in means (SE) between smoking and
non-smoking mothers is 184 (24) with 95% CI [137,
232]

• The normal distributional estimates for the
difference in proportions in LBW between smoking
and non-smoking mothers was 0.025 (0.004) with
95% DCI [0.017, 0.033].

• The skew- normal distributional estimates for the
difference in proportions in LBW between smoking
and non-smoking mothers was 0.024 (0.004) with
95% DCI [0.016, 0.032].

Lognormal data
A dataset from The South London Stroke Registry pro-
vided the last recorded systolic blood pressure (SBP)
before the first time stroke of 1896 patients. There are
known differences in the risk of stroke for ethnic minori-
ties in the UK[5,6] and here we look at the difference in

proportions of high blood pressure between white and
non-white patients. Results are given in Table 1b.

• SBP is a right skewed outcome (see Figure 2a.) and
the proportion of interest is in the right tail (patients
with SBP≥ 160). A logarithmic transformation
provides a normally distributed outcome. In the
transformed scale, high blood pressure patients are
those with transformed SBP above log(160)=5.075.

• The mean (SD) SBP for the white ethnicity group was
144 mmHg (24) (transformed scale: 4.96 (0.17)) for
1235 observations and for the non-white group is 149
mmHg (26) (transformed scale: 4.99 (1.7)) for 661
observations.

• The transformed variable log(SBP) can be assumed to
be normally distributed (see Figure 2b.) and the
standard deviations to be equal.

• The mean difference in SBP is 5.11 (1.2) with 95% CI
[2.74, 7.49] (original scale)

• The normal distributional method reflecting the
difference means on the transformed scale provided
estimates for the difference in proportions (SE) of
high blood pressure between non-white and white
patients of 0.068 (0.016) with 95% DCI [0.036, 0.100].

• The skew-normal distributional method reflecting
the difference in means on the original scale provided
estimates for the difference in proportions (SE) of
high blood pressure between non-white and white
patients of 0.061 (0.017) with 95% DCI [0.028, 0.093].

Inverse transformation
Data from the St George’s Birthweight study [4] were used
to obtain the BMI from the height and weight of pregnant
women at the beginning of pregnancy. The usual thresh-
old of 30 kg/m2 to compute the proportion of mothers
with obesity was used. Results are given in Table 1c.

• The histogram of BMIs (Figure 3a.) showed a right
skewed distribution. Taking the inverse of BMI
provides a distribution which is approximately
normal (Figure 3b.). We estimate the proportions of
pregnant women with inverse BMI under
1/30=0.033.

• The mean (SD) BMI in the multipari group was 23.8
(4.0) (transformed scale: 0.0430 (0.0062)) for 890
observations and for the primipari group was 23.0
(3.4) (transformed scale: 0.0444 (0.0059)) for 891
observations.

• The two groups can be assumed to have the same
standard deviation.

• The mean difference in BMI between multipari and
primipari was of 0.88 (0.16) with 95% CI [0.53, 1.22]
(original scale).

• The normal distributional method reflecting the
difference in means on the transformed scale
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Table 1 Application of the skew-normal method to some common outcomes and comparison with the normal method
applied to transformed data

a. Proportions of low birthweight babies

N Mean (SD) Difference

Non-smoker Smoker Non-smoker Smoker in means (SE) 95% conf. int. p-value

983 494 3452g (435) 3267g (441) 184 (24) [137, 232] < 0.001

Difference proportions Risk ratio Odds ratio

Normal distributional estimates (no transformation)

0.025 (0.004) [0.017, 0.033] 2.68 (0.13) [2.09, 3.43] 2.74 (0.13) [2.13,3.54]

Skew-normal distributional estimates

0.024 (0.004) [0.016,0.032] 2.87 (0.16) [2.09,3.92] 2.94 (0.16) [2.13,4.05]

b. Proportions of patients with high blood pressure

N Mean (SD) Difference

Non-whites Whites Non-whites Whites in means (SE) 95% conf. int. p-value

661 1235 149.2 (25.7) 144.1 (24.8) 5.11 (1.21) [2.74, 7.49] < 0.001

Difference proportions Risk ratio Odds ratio

Normal distributional estimates on the transformed scale

0.068 (0.016) [0.036,0.100] 1.28 (0.06) [1.14,1.43] 1.40 (0.08) [1.19,1.64]

Skew-normal distributional estimates

0.061 (0.017) [0.028,0.093] 1.25 (0.06) [1.11,1.40] 1.36 (0.08) [1.15,1.60]

c. Proportions of obesity

N Mean (SD) Difference

Primipari Multipari Primipari Multipari in means (SE) 95% conf. int. p-value

891 890 22.96 (3.40) 23.84 (4.01) 0.88 (0.18) [0.53,1.22] < 0.001

Difference proportions Risk ratio Odds ratio

Normal distributional estimates on the transformed scale

0.022 (0.005) [0.013, 0.031] 1.66 (0.10) [1.36, 2.02] 1.70 (0.11) [1.38,2.09]

Skew-normal distributional estimates

0.020 (0.004) [0.012,0.028] 1.40 (0.07) [1.23,1.60] 1.44 (0.07) [1.25,1.66]

d. Proportions of premature births

N Mean (SD) Difference

Primipari Multipari Primipari Multipari in means (SE) 95% conf. int. p-value

856 874 39.40 (1.96) 39.52 (2.12) 0.12 (0.10) [-0.08, 0.31] 0.23

Difference proportions Risk ratio Odds ratio

Normal distributional estimates on the transformed scale

-0.019 (0.009) [-0.037,-0.003] 0.82 (0.08) [0.70,0.98] 0.81 (0.09) [0.67,0.97]

Skew-normal distributional estimates

-0.010 (0.007) [-0.024,0.006] 0.99 (0.06) [0.97,1.01] 0.92 (0.07) [0.80,1.05]

DCI: distributional confidence interval.

provided estimates for the difference in proportions
of 0.022 (0.005) with 95% DCI [0.013, 0.031].

• The skew-normal distributional method reflecting a
difference in means on the original scale provided
estimates for the difference in proportions of 0.020
(0.004) with 95% DCI [0.012, 0.029].

Other types of transformations
A newborn is considered preterm if its gestational age
(GA) is under 37 completed weeks. Due to the natu-
ral termination and to medical intervention the duration
of gestation does not normally go much over 43 weeks
while there are a small number of very early birth, the



Sauzet et al. BMCMedical ResearchMethodology  (2015) 15:40 Page 6 of 11

Histogram of birthweights for term babies

Weight (g)

D
en

si
ty

1500 2000 2500 3000 3500 4000 4500 5000

0e
+

00
4e

−
04

8e
−

04

Figure 1 Histograms of birthweights for term babies with normal curve.

distribution of GA is therefore left skewed.While we tried
to perform a transformation, this one remains imperfect
and the results show that using the skew-normal distribu-
tional method is the best alternative to reflect the differ-
ence means on the original scale. Results are presented in
Table 1d.

• The first transformation is to take 45-GA which
provides a right skewed positive outcome. Then a log
transformation provides a fit close to normal (see
Figure 4b.). We want to estimate the proportion of
live births such that log(45-GA)>log(45-37)02.07 and

• There were 856 primipari mothers with mean GA of
38.34 weeks (1.96) (transformed scale: 1.64 (0.36))
and 874 multipari mothers with mean GA 39.52
weeks (2.12) (transformed scale: 1.67 (0.31)).

• The transformed data can be assumed to have a
normal distribution and the standard deviations to be
the same in both groups.

• The difference in means (SE) is 0.12 (0.10) with 95%
CI [-0.08, 0.31] (original scale)

• The normal distributional estimate obtained on the
transformed scale for the difference in proportions
(SE) of pre-term live births between primipari and

multipari mothers was 0.020 (0.009) with 95% DCI of
[0.003, 0.037] (marginally significant reflecting a
small significance for the mean difference in the
transformed scale).

• The skew-normal distributional estimate obtained on
the original scale for the difference in proportions
(SE) of pre-term live births between primipari and
multipari mothers reflecting the difference in means
was 0.010 (0.007) with 95% DCI of [-0.024, 0.006].

Study 2: Robustness of the distributional method and
validation of the skew-normal method
Results of the simulations are summarised in Table 2
for the log-normal data and in Table 3 or the skew-
normal data. Bias of estimates are summarised with the
3rd quantile of the absolute value. This shows that the
bias for all sample size and skewness under 0.1 (log nor-
mal) remains small but then increases to level which may
not be acceptable. For skew normal data, the normal
method provides satisfactory results for small coefficients
of skewness (±1 in these simulations). For RR and OR,
the estimates are biased for small sample sized as seen
in [2] but for sample size of 50 (100 for OR) per group
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Figure 2 Histograms of systolic blood pressure (original and transformed scale).
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Histogram of BMI

a  BMI (kg m2), obese in the right tail
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Figure 3 Histograms of BMI (original and transformed scales) with normal curve.

or more the estimates are more robust to skewness that
the difference in proportions. With increasing skewness
the normal method is no more reliable but then the
skew-normal method provides acceptable results for the
skew-normal data. For small skewness parameter the skew
normal method is unreliable and the normal methodmuss
be used.
Bias of standard error defined as the difference between

the mean standard error and the standard deviation
relative to the standard deviation are summarised in
Tables 2 and 3 with the 3rd quantile of the absolute
value. This shows that the standard error reflects well
the true variability of the parameter estimates unless the
skewness is very large (log normal data) or if the sam-
ple size is small (20 per group) for the skew normal
method.
The results for bias of estimates and of standard error

are reflected in the coverage of the 95% (normal) distri-
butional confidence interval also shown in Tables 2 and 3
with the interquartile range.

Discussion
Our small review of the literature mentioned in the
introduction showed that in 49 studies, only 4 authors
described the distribution of their data. Skewed data

were often analysed and presented as means, perhaps
because they are easier to interpret on the original scale.
Relatively few authors present both the continuous and
dichotomous form of their outcome, when in fact the
dual presentation provides a richer summary of the data.
The distributional method provides a way to remedy this
by providing dichomomised estimates that sits alongside
its continuous outcome comparison but which does not
lose power. However, the distributional method requires
the data to follow a normal distribution and so we have
sought to generalise the normal distributional method
by adding a parameter and using the skew-normal dis-
tribution. We have performed two studies to comple-
ment the skew-normal method. In Study 2, we have
seen using simulations that small deviation from nor-
mality did not affect the reliability of the normal dis-
tributional method, but for larger skewness a correction
was required. We also saw that for larger skewness, the
skew-normal method was reliable even for smaller sam-
ple sizes (50 per group or more, less so for 20 per group).
In Study 1, we illustrated the skew-normal method with
real data. We have shown with the gestational age exam-
ple that a good transformation is not always available and
the skew-normal distributional method is a better alterna-
tive. Butmore generally, the distributional method applied

Histogram of gestational age
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Figure 4 Histograms of gestational age (original scale and transformed) for term babies with normal curve.
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Table 2 Summary of the simulation results per sample size per group and skewness (measured by the log-standard
deviation)

Bias of estimates* Summary statistic: 3rd quartile of the absolute value

Log standard deviation 0.02 0.05 0.08 0.1 0.2 0.4 0.6 1

Sample size

Diff. in prop. 20 0.03 0.03 0.05 0.06 0.08 0.38 0.94 2.20

50 0.02 0.03 0.04 0.04 0.12 0.39 1.03 2.38

100 0.01 0.03 0.03 0.05 0.11 0.41 1.04 2.46

500 0.01 0.03 0.03 0.03 0.12 0.40 1.07 2.50

Risk ratio 20 0.09 0.09 0.09 0.09 0.07 0.05 0.07 0.10

50 0.03 0.03 0.03 0.03 0.02 0.04 0.06 0.11

100 0.02 0.01 0.01 0.01 0.02 0.03 0.06 0.10

500 <0.01 <0.01 0.01 0.01 0.01 0.03 0.06 0.10

Odds ratio 20 0.24 0.25 0.25 0.25 0.25 0.22 0.23 0.32

50 0.09 0.09 0.09 0.09 0.08 0.09 0.13 0.23

100 0.04 0.04 0.04 0.04 0.04 0.06 0.11 0.21

500 0.01 0.01 0.01 0.01 0.01 0.04 0.11 0.23

Bias of Standard errors** Summary statistic: 3rd quartile of the absolute value

Log standard deviation 0.02 0.05 0.08 0.1 0.2 0.4 0.6 1

Sample size

Diff. in prop. 20 0.02 0.02 0.03 0.03 0.03 0.03 0.04 0.06

50 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.09

100 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.10

500 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.12

Risk ratio 20 0.04 0.05 0.05 0.05 0.04 0.04 0.04 0.07

50 0.02 0.02 0.02 0.03 0.02 0.02 0.03 0.11

100 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.11

500 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.13

Odds ratio 20 0.04 0.05 0.05 0.05 0.05 0.04 0.03 0.04

50 0.02 0.03 0.03 0.03 0.03 0.02 0.01 0.08

100 0.02 0.02 0.02 0.02 0.03 0.02 0.01 0.08

500 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.11

Coverage of the 95% DCI Summary statistic: Inter-quartile range

Log standard deviation 0.02 0.05 0.08 0.1 0.2 0.4 0.6 1

Sample size

Diff. in prop. 20 0.936 0.937 0.936 0.936 0.936 0.938 0.940 0.947

0.946 0.944 0.945 0.947 0.948 0.950 0.951 0.956

50 0.943 0.944 0.944 0.944 0.943 0.943 0.940 0.928

0.950 0.948 0.949 0.949 0.949 0.950 0.949 0.955

100 0.946 0.947 0.946 0.947 0.945 0.942 0.932 0.881

0.950 0.950 0.950 0.950 0.950 0.948 0.947 0.944

500 0.948 0.948 0.947 0.947 0.943 0.931 0.840 0.483

0.951 0.950 0.950 0.950 0.950 0.945 0.935 0.834

Risk ratio 20 0.945 0.944 0.944 0.944 0.945 0.947 0.950 0.956

0.957 0.956 0.955 0.956 0.959 0.962 0.965 0.972
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Table 2 Summary of the simulation results per sample size per group and skewness (measured by the log-standard
deviation) (Continued)

50 0.947 0.947 0.946 0.946 0.945 0.939 0.931 0.931

0.954 0.953 0.952 0.952 0.954 0.954 0.954 0.962

100 0.947 0.947 0.946 0.947 0.944 0.930 0.909 0.861

0.951 0.951 0.951 0.952 0.951 0.951 0.953 0.950

500 0.947 0.948 0.945 0.944 0.933 0.875 0.722 0.376

0.951 0.950 0.950 0.951 0.950 0.948 0.925 0.850

Odds ratio 20 0.942 0.942 0.941 0.941 0.941 0.942 0.946 0.952

0.945 0.945 0.945 0.945 0.946 0.946 0.950 0.960

50 0.945 0.944 0.943 0.943 0.944 0.944 0.943 0.931

0.949 0.948 0.948 0.948 0.948 0.949 0.951 0.958

100 0.945 0.946 0.946 0.946 0.944 0.942 0.932 0.884

0.949 0.949 0.949 0.949 0.949 0.949 0.950 0.945

500 0.946 0.947 0.946 0.946 0.945 0.929 0.848 0.490

0.950 0.950 0.950 0.950 0.949 0.948 0.932 0.833

*Mean of the relative difference between estimates and true parameter to the true paramter.
**Relative difference between the mean standard error and the standard deviation to the standard deviation.
Varying parameter include effect size (difference in mean) and cut-point.

to transformed data will reflect the difference in means
on the transformed scale (leading to potentially different
conclusions) while both the skew-normal and normal dis-
tributional methods will reflect the difference in means
in the original scale and the most appropriate should be
preferred.
In study 1, in the birthweight example we saw that for

data almost normal the skew-normal and normal meth-
ods provided similar results. However the sample size in
this dataset was large. Study 2 showed that for data almost
normal the skew normal method did not perform well
unless the sample size was large enough. The reason for
this remains unclear but if the data looks normal and the
sample size is nor large, the normal method should be
preferred.
In this paper we presented only unadjusted estimates

of comparison of proportions. But the method can be
applied after a linear regression (also mixed models).
Software are available [8] for Stata and R.

Conclusion
This study has dealt with the two following issues: we
have shown that the normal distributional method con-
tinued to perform well even if the actual distribution was
slightly skewed showing that the method could be used
with confidence with real data which will only be approx-
imately normal. We have also generalised the method to
include skewed data. The distributional method with its
applicability for skewed data allows researchers to pro-
vide both continuous and dichotomised estimates without

losing information or precision. This will have the effect
of providing a practical understanding of the difference in
means in terms of proportions.

Appendix
We outline the derivation of p′(Xn) of the skew-normal
distributional proportion under the threshold x0. For-
mula 1 can be writen as the product of two functions:

p(Xn) = A(Xn) × B(Xn)

such that

d
dXn

p(Xn) = A(Xn)× d
dXn

B(Xn)+ d
dXn

A(Xn)×B(Xn)

which gives

d
dXn

p(Xn) =
∫ x0

−∞
(2/w2)(t − (Xn + α′))e

−1
2w2

(t−(Xn+α′))2

√
2πw2

×
(∫ α(t−(Xn+α′))/w

−∞
e

−1
2 r2

√
2π

dr
)
dt−

2α√
2πw2

∫ x0

−∞
e

−(α2+1)
2w2

(t−(Xn+α′))2

√
2πw2

dt
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Table 3 Summary of the simulation results comparing skew normal and normal methods of dochotomisation per sample
size per group and skewness of the skew-normal data

Bias of estimates* Summary statistic: 3rd quartile of the absolute value

Skewness (α) ±1 ±5 ±10 ±20 ±1 ±5 ±10 ±20

Sample size Normal method Skew normal method

Diff. in prop. 20 0.05 0.28 0.32 0.34 0.40 0.08 0.06 0.03

50 0.05 0.31 0.34 0.34 0.37 0.02 0.02 0.02

100 0.05 0.33 0.38 0.39 0.27 0.02 0.03 0.02

500 0.04 0.33 0.38 0.40 0.09 0.01 0.01 0.01

Risk ratio 20 0.12 0.10 0.12 0.13 0.09 0.04 0.05 0.06

50 0.02 0.11 0.13 0.12 0.10 0.03 0.03 0.03

100 0.03 0.18 0.23 0.24 0.08 0.02 0.02 0.02

500 0.03 0.20 0.23 0.24 0.02 0.01 0.01 0.01

Odds ratio 20 0.20 0.23 0.24 0.23 0.18 0.10 0.10 –

50 0.09 0.07 0.20 0.25 0.25 0.05 0.0.05 0.05

100 0.04 0.31 0.35 0.35 0.05 0.09 0.09 0.07

500 0.01 0.32 0.35 0.34 0.01 0.01 0.02 0.01

Bias of Standard errors** Summary statistic: 3rd quartile of the absolute value

Skewness (α) ±1 ±5 ±10 ±20 ±1 ±5 ±10 ±20

Sample size Normal method Skew normal method

Diff. in prop. 20 0.02 0.04 0.04 0.04 0.27 0.07 0.07 0.04

50 0.01 0.03 0.03 0.03 0.34 0.02 0.02 0.02

100 0.01 0.02 0.02 0.02 0.42 0.02 0.01 0.02

500 0.01 0.01 0.02 0.02 0.45 0.01 0.02 0.02

Risk ratio 20 0.06 0.06 0.07 0.07 0.29 0.45 0.67 0.85

50 0.03 0.05 0.05 0.05 0.36 0.05 0.04 0.05

100 0.02 0.03 0.04 0.04 0.37 0.04 0.04 0.05

500 0.02 0.02 0.03 0.02 0.38 0.03 0.02 0.03

Odds ratio 20 0.04 0.05 0.05 0.05 0.08 0.27 0.36 0.50

50 0.02 0.03 0.03 0.03 0.03 0.02 0.01 0.08

100 0.02 0.02 0.02 0.02 0.03 0.02 0.01 0.08

500 0.02 0.01 0.02 0.01 0.10 0.03 0.02 0.03

Coverage of the 95% DCI Summary statistic: Inter-quartile range

Skewness (α) ±1 ±5 ±10 ±20 ±1 ±5 ±10 ±20

Sample size Normal method Skew normal method

Diff. in prop. 20 0.935 0.918 0.915 0.914 0.917 0.916 0.917

0.951 0.946 0.945 0.943 0.925 0.947 0.948 0.946

50 0.943 0.918 0.912 0.907 0.711 0.942 0.937 0.939

0.950 0.947 0.945 0.945 0.922 0.951 0.952 0.950

100 0.944 0.889 0.873 0.869 0.720 0.944 0.942 0.942

0.950 0.945 0.942 0.942 0.911 0.941 0.951 0.951

500 0.943 0.617 0.571 0.535 0.842 0.948 0.947 0.945

0.948 0.934 0.936 0.931 0.919 0.951 0.950 0.951

Risk ratio 20 0.942 0.922 0.918 0.918 0.819 0.932 0.934 0.934

0.952 0.951 0.952 0.951 0.936 0.961 0.963 0.958
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Table 3 Summary of the simulation results comparing skew normal and normal methods of dochotomisation per sample
size per group and skewness of the skew-normal data (Continued)

50 0.945 0.900 0.893 0.888 0.778 0.942 0.942 0.940

0.951 0.947 0.949 0.945 0.929 0.954 0.956 0.954

100 0.941 0.763 0.709 0.706 0.759 0.943 0.944 0.941

0.950 0.943 0.942 0.943 0.927 0.952 0.953 0.953

500 0.947 0.948 0.945 0.944 0.867 0.945 0.945 0.943

0.947 0.919 0.909 0.907 0.930 0.951 0.951 0.951

Odds ratio 20 0.944 0.931 0.925 0.926 0.938 0.941 0.939 0.939

0.950 0.946 0.949 0.947 0.944 0.952 0.956 0.959

50 0.944 0.890 0.888 0.884 0.938 0.944 0.945 0.944

0.949 0.947 0.945 0.945 0.946 0.950 0.953 0.951

100 0.942 0.787 0.759 0.768 0.931 0.944 0.945 0.944

0.949 0.943 0.943 0.942 0.948 0.950 0.952 0.951

500 0.933 0.293 0.216 0.222 0.932 0.944 0.945 0.944

0.948 0.922 0.920 0.920 0.948 0.950 0.951 0.951

*Mean of the relative difference between estimates and true parameter to the true paramter.
**Relative difference between the mean standard error and the standard deviation to the standard deviation.
Varying parameter include effect size (difference in mean) and cut-point.

The first part can be simplified using an integration by
parts giving

d
dXn

p(Xn) = −2
e

−1
2w2

(x0−(Xn+α′))2

√
2πw2

�(α(x0 − (Xn − α′)/w)

+ 2
α√
2πw2

∫ x0

−∞
e

−(1+α2)

2w2
(t−(Xn+α′))2

√
2πw2

−

2α√
2πw2

∫ x0

−∞
e

−(α2+1)
2w2

(t−(Xn+α′))2

√
2πw2

dt

The last two members of the equation simplifying, it
remains that

p′(Xn) = −2
e

−1
2w2

(x0−(Xn+α′))2

√
2πw2

�(α(x0 − (Xn − α′))/w)

The value above is the building block to compute the
standard error for the skew-normal distributional esti-
mates of differences in proportions, risk ratios and odds
ratios in a similar way as in [2] under the assumption of
equal variance and equal skewness.
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