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Abstract—We present an architecture for incremental online
learning in high-dimensional feature spaces and apply it on a
mobile robot. The model is based on learning vector quantization,
approaching the stability-plasticity problem of incremental learn-
ing by adaptive insertions of representative vectors. We employ a
cost-function-based learning vector quantization approach and
introduce a new insertion strategy optimizing a cost-function
based on a subset of samples. We demonstrate this model within
a real-time application for a mobile robot scenario, where we
perform interactive real-time learning of visual categories.

I. INTRODUCTION

Incremental learning methods gain a lot of attention nowa-
days [1], [2]: highly variable applications require flexible
algorithms adapting to new trends in the data as well as
learning with limited resources from endless streams. In this
situation, classical offline methods are inapplicable due to their
dependency on the full data set and necessity for a complete
retraining. The flexible adaptation of technical systems to user
habits and preferences is very important for their acceptance,
as noted for the lerning Nest thermostat [3]. Also other
fully autonomous devices such as robotic vacuum cleaners or
lawn mowers largely benefit from learning their application
environment and keeping it up-to-date [4]. Even though a few
incremental versions of offline methods have been proposed
[5], [6], [7], there is still a strong demand for improved
algorithms.
In this contribution we investigate a flexible scheme for
interactive learning, a predestined application for incremental
algorithms [8]. An online recognition architecture that is
capable of interactive learning of up to 50 objects in short time
was presented in [9]. Here we will rely on a similar architecture
but incorporate and investigate a richer online learning model.
Vision based incremental learning on a mobile robot was
also performed in [10], [11]. However, these systems perform
indoors and use different algorithms such as incremental SVM
or bag of words. We demonstrate our framework within a real-
time learning scenario which focuses on the challenging task
of outdoor object classification on a mobile robot. Specific
contributions are:

• Extension of prototype based learning to online sce-
narios with adjustable model complexity.

• Extensive evaluation of different strategies to insert
prototypes for these adjusted models.

• Integration of this framework into an easy-to-use on-
line learning system paired with a live-labeling app.

Prototype-based approaches such as neural gas [12] or learning
vector quantization (LVQ) [13] are popular options among

online learning algorithms, with applications ranging from
biomedical data analysis [14], image recognition [15], to
robotics [16]. Due to their successful application we will focus
on such models, in particular supervised LVQ.
The ability of structure adaptation according to the complexity
of a given task is helpful and becomes even more crucial with
regards to big or streaming data sets violating the assumption
of data being i. i. d. [16], [17]. Dynamic prototype insertions
and deletions enable this flexibility intuitively. Moreover, these
can be done in an efficient and incremental way since they
affect the model only locally.
Several proposals for placement strategies of prototype in-
sertion, based on heuristics, were made in [18], [19], [9].
In contrast, our proposal relies on the derivation of LVQ
as cost function optimization; it optimizes an approximation
of these costs for improved robustness. Since we confine
the optimization on a limited number of recent samples, the
resulting implementation offers the advantages of an adjustable
and strictly limited memory consumption paired with linear
complexity. Such linear time and constant memory conditions
are especially relevant for efficient mobile applications.

II. GENERALIZED LVQ

Given a classification task of C classes, the training set
X = {(xi, yi) ∈ Rn × {1, ..., C}}mi=1 is approximated by an
LVQ classifier with a set of p prototypes W = {(wj , lj) ∈
Rn × {1, ..., C}}pj=1. The Voronoi region of a prototype
(wj , lj) is defined as Vj = {x ∈ X| ‖x − wj‖ ≤ ‖x −
wk‖ ∀ j 6= k}. A given data point xi is classified according
to the label of its closest prototype using a distance measure d
such as the squared Euclidean distance d(x,w) = ‖x−w‖2.
Sato and Yamada introduced the generalized LVQ (GLVQ)
[20] which, in contrast to previous heuristic approaches, min-
imizes the cost-function

E(X,W ) =

m∑
i=1

Φ((d+i − d
−
i )/(d+i + d−i )), (1)

where Φ is a monotonically increasing function, e. g. the
logistic function. The distance of a sample xi to its closest
prototype w± of the correct / incorrect class is denoted by
d±i . By updating the prototypes for each data point as follows

w± := w± − λ∂E(X,W )

∂w±
, (2)

where λ is the learning rate, the cost function is minimized in
a stochastic gradient descent scheme.



III. LEARNING ARCHITECTURE

We solely focus on supervised learning from data-streams.
Every prototype wj has its own linearly decreasing learning
rate λj to approach the stability-plasticity dilemma [9]. As an
overview, the learning architecture works as follows:
The learning architecture initially does not have any prototype,
i. e. W = ∅. For each new sample (xi, yi) we test whether
yi is a new class. If yi is not yet represented in the model,
this sample is directly added as a prototype. Otherwise, we
perform the GLVQ-updates (2) and store the sample with its
distance information in a short term memory of limited size,
replacing old ones if necessary. If the sample is misclassified
we increment an error count. As soon as a predefined number
of errors occurs, the employed placement strategy provides a
new prototype which is added to the set of prototypes W .
Then, we update distances within the short term memory. The
error count is reset and we start over again. In the remainder
of the section, the single steps are described in more detail.

A. Limited Sample Memory

Apart from the prototypes, we maintain a short term
memory which is defined as a list

Ψ := [(xi, yi, d
+
i , d

−
i ) | i ∈ {1, ..., t}], (3)

containing entries for the recent t samples. Every additional
sample leads to the deletion of the oldest entry as soon as the
limit of t stored entries is reached, i. e. |Ψ| = t. Therefore,
the memory consumption of the system is limited, which is
crucial for online learning. Based upon Ψ, placement strategies
propose new prototypes.
The GLVQ-updates (2) change prototype positions and corre-
sponding sample distances. However, we neglect these changes
withinΨ for the sake of efficiency. Hence Ψ contains approxi-
mations of the actual distances and their quality depends on the
magnitude of the learning rates λj as well as on the window
size t. During our experiments, this simplification had negligi-
ble or even no consequence on the systems’ performance. We
used a window size of t = 200 for all experiments.

B. Insertion Timing

Insertion timing is based on error counting as already
proposed in [9]. Whenever the error count reaches a threshold,
a new prototype is added and the error count is reset to
zero. This simple and computationally cheap approach couples
growing speed strictly with systems’ performance on training
data. The learning architecture evolves fast in case of low
accuracy but changes only slightly when few errors are made.
Consequently, a system will grow as long as it does not classify
perfectly (i.e. infinitely in case of overlapping classes). This
could easily be avoided by a restriction of the incremental
growth to cases which significantly improve the GLVQ cost
function. However, this goes beyond the scope of this paper.

C. Insertion of Prototypes

Whenever a new prototype (w, l) is proposed by a
placement strategy and inserted into the network, i. e.

W := W ∪ (w, l), Ψ is updated in the following way:

∀ (xi, yi, d
+
i , d

−
i ) ∈ Ψ :

d+i := d(xi,w), if yi = l ∧ d+i > d(xi,w)

d−i := d(xi,w), if yi 6= l ∧ d−i > d(xi,w).

(4)

D. State of the Art Placement Strategies

Each placement strategy proposes one new prototype when-
ever a predefined number of errors is reached.
We compare our proposal with three other strategies from
the literature, which solely rely on misclassified samples. The
set of misclassifications can be easily extracted from Ψ as
Υ = {(xi, yi) | (xi, yi, d

+
i , d

−
i ) ∈ Ψ ∧ d+i > d−i }. The

strategies select one prototype based on Υ as follows:
a) Closest: In [9] Kirstein et al. propose to select those
misclassified samples as candidates that are the closest to
prototypes of another class. This choice shall lead to insertions
along class borders. Candidates are ordered ascendingly by
their distance to the nearest wrong class.
b) Cluster: Grbovic et al. cluster misclassified samples per
class and select centroids of the biggest clusters as new proto-
types [18]. Therefore, the cluster-size is the ranking criterion
for candidates. We used k-Means to cluster misclassifications.
Since k has to be predefined, the common rule of thumb
k =

√
n
2 was utilized. However, this value was multiplied

by a factor of two to achieve the best experimental results.
c) Voronoi: A similar approach was chosen by Bermejo [19].
But instead of clustering, he determines the Voronoi region
containing the most misclassified samples of one class. The
mean of these samples is chosen as a new prototype.

E. Proposed Placement Strategy: SamplingCost

The proposed new strategy relies on an optimization of the
GLVQ-cost-function which is approximated by the sample Ψ.
Thereby, prototypes are taken from candidate positions from
a random subset Ψ̂ ⊆ Ψ of size |Ψ̂| = t̂ only. For every
candidate (xi, yi) in Ψ̂, its effect on the costs can efficiently
be approximated as follows:

1. Extend Ŵ := {W ∪ (xi, yi) }.
2. Update Ψ as described in (4) but store the result

temporarily in another list Ψ′.

3. Calculate the cost-function value E(Ψ′, Ŵ ) on the
basis of the distances stored in Ψ′.

The sample with smallest value E(Ψ′, Ŵ ) is added as a new
prototype to W , and Ψ updated accordingly. The complexity
is O(t̂ · t) and pseudo code is depicted in Figure 1.

IV. ARTIFICIAL DATA

We compare these different placement strategies by in-
tegrating each approach separately in an online learning ar-
chitecture. The resulting four online learning algorithms are
trained using identical conditions on two artificial data sets
with different characteristics. The main aim of these two-
dimensional data sets is to investigate how precisely the
strategies can represent the real class borders. The arrangement
of these problems is shown in Figure 2. We used 70% of the
data for training and the rest for testing.



function SAMPLINGCOST(Ψ, t̂)
minCost := 1
proto := null
Ψ̂ := getRandomSubset(Ψ, t̂)
for all (x, y) ∈ Ψ̂ do

Ψ′ := updateShortTermMemory(Ψ, (x, y))
cost := calculateCost(Ψ′)
if cost < minCost then

minCost := cost
proto := (x, y)

end if
end for
return proto

end function

Fig. 1. Pseudo code for the placement strategy SamplingCost

Fig. 2. Artificial data sets Border and Overlap. Different classes are coded
by different colors. The Border data set (Fig. 2, left) consists of three circular
classes. Each class consists of 1000 uniformly distributed points. The data set
Overlap (Fig. 2, right) contains uniform squared distributions which overlap
to various degrees. The upper row classes have the same densities whereas,
below, the green class is three times denser than the black.

Overlapping distributions are usually the most difficult to deal
with since a complete separation is not possible. Given an
overlap, the densest class should be preferred in the Bayesian
optimum. These challenges are incorporated in the Overlap
data set, visualized in Figure 2 on the right.
One example of a final prototype arrangement of each strategy
can be seen in Figure 3. Boundaries generated by Closest
deviate the most from actual borderlines. On the Border data
set, samples are separated very accurately at few specific spots,
which are clustered with multiple prototypes, but a significant

Fig. 3. Networks of each placement algorithm after the training of the data
sets Border (top) and Overlap (bottom). Prototypes are symbolized by triangles
and black lines represent the learned class boundaries.

TABLE I. RESULTS ON THE ARTIFICIAL DATA. THE AVERAGED
TEST-ACCURACY AND NET-SIZE OF TEN REPETITIONS ARE DEPICTED.

Border-DS Acc. Nodes

SamplingCost 93.51 38.2
Closest 90.17 58.2
Cluster 91.93 42.9
Voronoi 91.71 46.4

Overlap-DS Acc. Nodes

SamplingCost 78.74 21.3
Closest 65.76 29.8
Cluster 74.85 25.6
Voronoi 74.08 26.4

portion of the actual border is uncovered and causes the
majority of misclassifications. Whether a sample is promoted
to a prototype or not is solely based on its distance to
nodes of other classes. This leads to insertions along class
borders and explains why the algorithm often gets stuck. A
prototype inserted close to a border is very likely to cause
new misclassified samples which are, in turn, closely located to
this new prototype. Therefore, many unnecessary insertions are
used to represent class boundaries at specific areas in contrast
to some completely neglected parts. In case of the Overlap
data set, this problem is even more severe and entraps the
algorithm to insert prototypes in one exclusive area. Closest is
very sensitive to noise since a single sample can cause multiple
and consecutive prototype insertions.
Results of Cluster and Voronoi look quite similar. Prototypes
are spread fairly regular and approximate the actual boundaries
well. In case of ambiguous regions, unnecessary prototypes of
both classes are placed regardless whether density proportions
between classes are existing or not. Initially, classes with
higher densities are favored because big clusters are likely to
be found among them. But, as soon as they are covered, pro-
totypes for less dense classes are inserted too and deteriorate
the accuracy again. These strategies perform similarly because
both compute clusters of misclassified samples and place
prototypes in their centroids. The clustering quality is crucial
for the performance, since too fine clustering leads to more
prototypes than necessary and too coarse clustering can cause
severe misplacement because centroids of too large cluster
might be located within samples of another class. Voronoi
clusters spatially by incorporating the available Voronoi cells
which are shrinking continuously as more nodes are introduced
into the net. Therefore, clustering is coarse initially and fine
at the end. The few misplaced prototypes (Fig. 3) are caused
by the initial coarse clustering. Cluster, on the other hand,
utilizes k-Means, which requires the number of clusters as
parameter in advance. Since a rather high number is chosen,
coarse clustering is avoided and the number of samples per
cluster is still high enough to prevent too fine clustering. Both
algorithms are robust against noise because a high amount of
accumulated noisy points of the same class is necessary to
cause an insertion there.
SamplingCost reproduces the true class borders the most
accurately. It distributes nodes regularly over the samples
and balances the tradeoff between prototypes being placed as
close as possible to samples of its own class and far from
those of another class. Its cost-function optimization regards
performances of all classes which is crucial for dealing with
overlapping distributions as it can be seen by the result on
the Overlap data set. It is able to assign ambiguous and non-
ambiguous regions correctly and thereby considers also density
differences.
Table I gives an overview of the achieved accuracies as well
as the final net size. Closest is the worst strategy on both
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Fig. 4. Accuracies in the course of training for the artificial data sets.
SamplingCost leads continuously and especially performs on the Overlap data
set better than the rest.

Fig. 5. Typical scene of the interactive scenario. The robot drives randomly
on the grass area and encounters various objects. The user follows the image-
stream on the iPad and can label approached objects.

data sets, even though it uses the most prototypes. Voronoi
and Cluster perform similarly with Cluster being slightly
better. SamplingCost delivers the highest accuracies in spite
of requiring the least number of nodes. Its lead is especially
significant on the Overlap data set and outperforms the rest
in every aspect. The achieved accuracies during training are
depicted in Figure 4. Closest quickly loses touch, whereas
SamplingCost is in the lead throughout training.

V. APPLICATION SETUP

In our scenario, an autonomous robot is exploring a garden
environment (Fig. 45) in a random scheme. The user interacts
in real-time with the robot by labeling approached objects via
an iPad. Labeled objects are incrementally incorporated into
the model and learned immediately enabling a direct reaction
of the system. New objects can be introduced at any time.
Whenever an object is approached, the robot stops in front of it
within a certain distance. If the user does not provide a label,
the robot announces the recognized class. Unknown objects
as well as uncertain classifications are expressed explicitly.
Object specific actions are only executed in case of confident
classifications. Actions may include oral comments as well as
driving behaviors such as avoiding or driving over. Objects
are always avoided whenever they are classified as unknown
or uncertain. Since the garden border is treated as any other
object, but coupled strictly with avoidance, the robot stays
within the grass area.
We used the Pioneer platform of Adept MobileRobots with
a front-mounted Playstation Eye camera, which is directed on
the ground and captures the scene with a frame rate of 120 Hz.
Computation is done by a Lenovo ThinkPad, also mounted on

Fig. 6. Left: Partition of the input image. Objects are only examined as long
as they are in the region of interest. Overlaps with the vision bump region end
the examination and trigger a reaction. Information within the top marked area
is ignored completely. Right: Masked area (red) of a close tree stump. The
upper part of the image is disregarded even though it belongs to the object.

the robot. A color-based grass segmentation algorithm detects
obstacles whenever their representation deviates significantly
from an environment model. Since this model is adapted
dynamically, a high range of color variety can be handled.

A. Filtering

The distance between near objects and the robot is used
for the situation recognition. Far distanced objects should be
ignored because an approach of these is uncertain. If an object
is too close, a reaction, for example an avoiding maneuver,
should be performed. Hence, only objects within a certain
distance-window are relevant for learning. We mapped this
window on image regions, as it can be seen in Figure 6. The
upper part is ignored for processing, based on the assumption
that far objects are located there. Close objects can be found
on the bottom part of the image. Therefore, the robot stops as
soon as the object contours overlap this lower part. However,
the first assumption fails sometimes, for example concerning
nearby tall objects as depicted in Figure 6 on the right. In this
case available object information is thrown away.
Whenever multiple objects are segmented, only the dominant
object is regarded. Dominance exists if one object is pixel-wise
at least two times larger than the rest. In case of similar sized
objects the learning is deactivated, but the collision avoidance
is still performed. As long as an object is within the region
of interest, object information is collected. Information is
processed further only if the so-called vision bump region gets
overlapped by the object. Therefore, only directly approached
objects are considered, and the ones which are just passed by
are ignored. Depending on whether a user-label was provided,
either learning or classification follows the vision bump.

B. Apps

All data, for example trained images, classes and class-
actions, are stored on the laptop. Apps act as clients and access
data temporarily using a WIFI connection. The Labeling-
app allows the user to manage previously recorded images.
Object classes can be edited as well as corresponding actions.
The robot pauses whenever this app is executed preventing
any inconsistency between app and laptop on one hand and
unsupervised robot actions on the other.
The Streaming-App provides insight into the current robot state
during execution. Images as well as segmentation contours are
streamed and can be accessed here. Whenever an object is
approached, the user has the opportunity to label it for a certain
time. Thereby the current classification result as well as its



confidence are displayed to facilitate the decision whether to
label the current sequence or not. Labeling leads to an imme-
diate, incremental learning process using the actual sequence
as training data. Otherwise the sequence gets classified and
possibly related actions are performed.

C. Data Representation

Fig. 7. Histogram binning
of the rg-chromaticity space.

Since visual objects in our
application scenario are mostly
non-textured, we chose a rg-
chromaticity color histogram as
feature representation instead of
local features such as SIFT [21].
Especially for outdoor scenarios, it
is important to encode the color
of an object independently from
prevalent illumination. One step in
this direction is to use an intensity
invariant color space such as rg-
chromaticity [22] which represents
one color by the normalized proportions of red, green and
blue instead of using their intensities (as done in the RGB
space). The normalization removes intensity information and
enables a two dimensional representation. Figure 7 visualizes
the employed binning for six intervals resulting in a 21-
dimensional feature vector. In addition, we normalize the
feature vector to a total sum of 1 to achieve size invariance.

D. Sequence Confidence

We employ a confidence estimation to identify unknown
objects and perform object specific action only for highly con-
fident classifications. Fischer et al. analyzed recently various
geometric certainty measures for LVQ [23]. Their accuracy vs.
rejection results were comparable to those of statistical models.
One of them, called Relative Similarity is particularly attractive
since it is already normalized. However, this measure defines
a measure for one input sample whereas we are interested in
the estimation of whole sequences. Therefore we extended the
measure in the following way. Let Γ = {xi}si=1 be the set
of features belonging to one sequence with the length s. The
confidence that this sequence belongs to class β is defined as

C(Γ)β =
1

s

s∑
i=1

c(xi)β ,

where c(xi)β is the confidence that feature xi belongs to
β. The classification of a sequence can be inhomogeneous.
Since the Relative Similarity provides only a confidence for
the nearest class, we use the following definition if β is not
the nearest class:

c(x, β) =
d1(x)− d2(x, β)

d1(x) + d2(x, β)

d1(x) denotes the distance to the closest prototype, while
d2(x, β) is the distance to the closest prototype of class β.
The sequence-confidence C(Γ)β varies between [−1...1].
Two thresholds θu and θc assign a certainty category Ω to a
given sequence confidence C

Ω(C) =


C < θu unknown object
C >= θu and C < θc uncertain classification
else confident classification

Fig. 8. Objects approached in different lighting conditions. Each row shows
the first, fifth and tenth image of one approach. The upper row of each object
was recorded in cloudy and the bottom row in sunny conditions.

(a) (b)

(c) (d)

(e)

(f)

Fig. 9. Challenges of the Outdoor data set. Objects covered in various degrees
by shadows cast by environmental obstacles such as trees or buildings (a)
or by the robot itself (b). Sunlight and auto-exposure cause a darker object
representation (c). Specular highlights (d). Occlusions by the image border
(e). Various object poses (f).

VI. INTERACTIVE SCENARIO EVALUATION

We recorded a data set consisting of 40 Objects during the
interactive scenario in an outdoor garden environment. Green
colors were avoided to simplify the task for the color-based
grass segmentation. Objects were approached five times in
sunny and five times in cloudy conditions. The approaches
were conducted from different directions. Each of them
contains the last ten images before the vision bump was
triggered. Altogether 4000 images were recorded.
Figure 8 depicts examples for sequences containing objects
with similar pose in different weather conditions. Usually,
objects are only increasing in size and therefore the variance
within one sequence is small. Figure 9 illustrates additional
challenges comprised by this data set. Objects were completely
or partly covered by hard or soft shadows (Fig. 9a). When
the sun was in the back of the robot, a self-shadow was cast
in driving direction and covered objects nearby (Fig. 9b).



Fig. 10. Impacts of various challenges on the results of relevant processing
steps. Each row depicts from left to right the recorded picture, the segmented
object, the appearance in rg-chromaticity space and the color histogram.
Illustrated are the effects of shadows (blue ball), occlusions (shovel), direct
sunlight (stump) and wrong segmentations (basketball).

In the case of approaching the sun, objects were especially
dark because of self-shadowing and auto exposure control
(Fig. 9c). Direct spotlighting caused various sized specular
highlights (Fig. 9d). Occlusions were mainly caused by the
image border (Fig. 9e) and some tall objects always exceeded
the image height when being approached. Arbitrary pose
variations (Fig. 9f) were generated by throwing objects from a
low height on the ground. Unfortunately, the mentioned cases
do have a certain impact on the feature vector. Figure 10
illustrates this by visualizing outputs of all relevant processing
steps - namely segmentation, color space transformation
and histogram binning. The blue ball example depicts the
influence of robot-cast shadows. Both pictures are taken
from the same approach. Note that the shadowed region is
still visible in the rg-chromaticity space even though it is
slightly less distinct. This leads to a shift towards the dark
blue bin and changes the representation. The shovel below
illustrates the effect of occlusion. Its front part exceeds the
image border in the course of an approach and removes a
chunk of yellow portion from the representation. The stump
shows another influence caused by lighting conditions. Its
self-shaded appearance is clearly more brown than the yellow
illuminated version below. All colors are shifted towards
yellow due to the sunlight. Particularly grayscales such as
the silver shovel or its black handle are mapped to the same

TABLE II. RESULTS FOR THE OUTDOOR DATA SET WITH SEQUENCED
AND RANDOM ORDERED TRAINING.

Sequence-order Test acc. Train acc. Nodes

SamplingCost 61.38 91.04 232.0
Closest 59.58 88.04 245.8
Cluster 59.18 88.96 235.6
Voronoi 58.81 89.22 231.3

Random-order Test acc. Train acc. Nodes

SamplingCost 81.58 85.94 234.8
Closest 78.03 83.23 253.4
Cluster 78.55 83.06 247.0
Voronoi 81.18 85.62 236.6

yellow bin. Therefore, this dimension is the most prominent
within the data set. The histogram difference for the basketball
example is caused by improper segmentation, which occurred
in a few cases. Since a bigger region is segmented, the brown
bins for the real object color are proportionately smaller due
to normalization. The opposite case, in which not the entire
object is segmented, also happened, but is similar to the
occlusion example.

A. Results

When it comes to online learning, the assumption of
data being i.i.d. [16] often does not apply. In our interactive
scenario, various consecutive images of the same object are
recorded in constant pose and more or less constant lighting
conditions. If the user decides to label this object sequence, all
belonging samples are trained in the recorded order. In case of
classification, the whole sequence is unknown for the classifier.
Therefore, it is important to analyze the generalization to
new object sequences, since this is the practically relevant
case. It is particularly interesting considering the given small
variance within one sequence compared to the high variance
across different sequences. Hence, we trained the learning
architecture sequence-wise in chunks of ten images. However,
the order of the sequences was random. Table II shows the
results for seven training sequences per object, achieved by
each placement strategy. Also depicted is the outcome for
training in random order with 70% of the data. The heavy
performance decline on the test set for the sequence-wise
order is striking. This allows the conclusion that generalization
to completely unseen sequences is more challenging. Conse-
quently, the chosen feature representation is not robust enough
against the different variations contained in the data set. A lot
of directly illuminated objects share a similar representation
with a big concentration on the yellow bin and the variance
of the representation across different objects is often smaller
than those of the same object across different approaches.
Nevertheless, a high accuracy is achieved when images are
shuffled randomly. Even though a high variance is given for
the data set, the difference of images within one sequence
is usually small. As soon as one image of each sequence is
contained in the training set, the major part of variance is
covered and high rates are possible.
The nets are also larger for the sequence-wise order, which
means that more errors occurred during training. One cause is
the dependence of the GLVQ-updates on a random order since
the cost-function has to be minimized in a stochastic gradient
descent scheme. But the main reason is that, during training,
the generalization from sequence to sequence is limited too.
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Fig. 12. Prototype distributions for the Outdoor data set.
.

Therefore, whenever a new sequence is trained, the classifier
makes more mistakes until prototypes are added.
SamplingCost achieves the best results, but compared to the
artificial data sets, the performance difference between place-
ment strategies is rather small. The image data set contains
many times more classes but less samples per class. Therefore,
the choice among these samples is more limited per class,
which leaves little leeway to choose good or bad candidates.
Furthermore, the data in the high dimensional space is not
broadly distributed but rather strongly clustered. Hence, the
already limited choice makes additionally not a big difference.
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Fig. 11. Test-accuracies for
sequence-wise training on the
Outdoor data set.

Figure 11 illustrates
accuracies during training.
All placing strategies
perform similar but
SamplingCost leads
continuously throughout
the training. Figure 12
depicts the prototype
distributions among all
classes. The fact that
Closest shows an irregular
distribution with several
difficult objects claiming
more than ten prototypes,
suggests that it provides
too many prototypes for certain classes. SamplingCost
distributes nodes very evenly since the cost-function
optimization encourages regular spreading as already seen in
the experiments with artificial data.
Table III ranks the top four objects claiming most prototypes
and therefore being hardest to discriminate by SamplingCost.
Most confusions are reasonable but the cause for mistaking
the red pliers for the brown-black plush toy or the brown
stump seems to be unclear because of their actual different
color representation. However, a closer examination reveals
that the major part of the actual red pliers, especially the front
metal part, is yellow or orange in sunny conditions. This is
also true for the two other objects as illustrated in Figure 13.

Objects claiming the fewest prototypes by all placement
algorithms are shown in Figure 14. The wool requires
exclusively a single node since it is the only purple object.
The remaining easy objects were covered by 3-5 prototypes
depending on the placement strategy. A rare color distribution

TABLE III. THE FOUR OBJECTS RECEIVING THE MOST PROTOTYPES
BY SamplingCost. THE COLUMN ON THE RIGHT SHOWS THE CLASSES

WHICH WERE THE MOST OFTEN CONFUSED WITH THE OBJECT.

Object Mostly confused with

Fig. 13. Similarity due to the sunlight. Actually different colored objects are
shifted to the same representation by direct sunlight.

paired with view angle independence are the key properties
for effortless discrimination.

a) Comparison with Incremental SVM: To get a better
picture of the performance of the online learning system
in combination with the proposed SamplingCost insertion
strategy, a comparison with the incremental support vector
machine (iSVM), discussed in [7], [24] and [25], was done.
We used the iSVM implementation provided by Diehl1 [24]
with Gaussian kernel (C = 1024, σ = 0.05). The iSVM stores
the support vectors, and additionally a set of reserve vectors
which are the points that can be seen at one time. Since this
is the counterpart to our window of recent samples Φ, we
limited its size to 200 entries. The iSVM was trained in a
one-vs-all scheme. We increased considerably the prototype
insertion frequency to achieve maximum performance. So far
we coupled the insertion strategy with GLVQ. Here we also
analyze the performance in combination with the generalized
matrix LVQ (GMLVQ) [26]. This classifier is more powerful
since it incorporates metric learning of the input space.
Apart from our Outdoor data set we also evaluated the well-
known benchmark COIL-100 [27] with the same feature rep-

1Code at https://github.com/diehl/Incremental-SVM-Learning-in-MATLAB

Fig. 14. Easiest classes within the Outdoor data set. The wool was the only
object requiring just one prototype across all algorithms.



TABLE IV. COMPARISON TO THE INCREMENTAL SVM ON THE
OUTDOOR AND COIL DATA SET. SamplingCost-GMLVQ LEARNS

ADDITIONALLY THE METRIC OF THE INPUT SPACE. PAIRS OF
TEST-ACCURACY AND NODES WHICH ARE NOT PARETO DOMINATED ARE

MARKED IN BOLD.

(a) Outdoor-Sequenced
Acc. / Nodes
500 samples

Acc. / Nodes
1500 samples

Acc. / Nodes
2800 samples

SamplingCost-GLVQ 42.9 / 116.4 58.6 / 446.2 64.3 / 948.8
SamplingCost-GMLVQ 44.1 / 100.4 59.3 / 376.6 67.1 / 773.5

iSVM 40.6 / 363.3 57.5 / 777.0 65.2 / 1347

(b) COIL-100
Acc. / Nodes
500 samples

Acc. / Nodes
1000 samples

Acc. / Nodes
1700 samples

SamplingCost-GLVQ 83.5 / 337.8 90.4 / 560.0 93.6 / 810.0
SamplingCost-GMLVQ 85.0 / 330.6 91.9 / 539.5 94.7 / 760.0

iSVM 85.6 / 1834 92.7 / 2139 95.6 / 2501

resentation. This RGB-image data set consists of 72 views for
100 objects each. These are placed in the coordinate origin
and rotated around the Z axis in steps of 5 ◦. Image size is
128 × 128 pixel. As in [28] a subset of 17 views per object,
resulting in views every 20 ◦, are used for training.
Table IV shows the accuracy as well as the stored number
of prototypes / support vectors after an increasing number of
training examples. Our algorithm performs better than iSVM
on the Outdoor data set and uses thereby a less complex
model. The combination with the GMLVQ has always a
higher accuracy and less nodes compared to the GLVQ one.
Regarding the COIL data set, iSVM has a slightly higher
accuracy but requires a considerably more complex model.
Additionally the complexity, i.e. number of support vectors
generated by iSVM, cannot be limited unlike for incremental
LVQ variants.

VII. CONCLUSION

Our incremental learning architecture combines GLVQ
with a placement strategy optimizing the cost-function on
the basis of a limited sample history. The comparison on
artificial and image based data sets showed the superiority of
the proposed placement strategy over current heuristic-based
strategies. The optimization can be done efficiently with linear
complexity and enables the handling of overlapping distribu-
tions. Paired with the GMLVQ, our architecture achieves better
results than the incremental SVM in most cases and requires
thereby a clearly less complex model.
We demonstrated the architecture within an interactive online
learning scenario on a mobile robot. Objects, lying outdoor on
the lawn, are trained in real-time and are instantly incorporated
into the model representation, enabling a direct reaction of the
system. The used rg-chromaticity color histogram turned out
to be insufficiently robust to deal with changes due to various
lighting conditions. Generalization to completely unseen image
sequences, as necessary for the scenario, is therefore only
partially possible. However, the representation is not coupled
to our learning architecture and can be easily exchanged.
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