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Abstract

This doctoral thesis investigates how a robot companion can gain a certain
degree of situational awareness through observation and interaction with
its surroundings. The focus lies on the representation of the spatial knowl-
edge gathered constantly over time in an indoor environment. However,
from the background of research on an interactive service robot, methods
for deployment in inference and verbal communication tasks are presented.
The design and application of the models are guided by the requirements
of referential communication. The approach here involves the analysis of
the dynamic properties of structures in the robot’s field of view allowing it
to distinguish objects of interest from other agents and background struc-
tures. The use of multiple persistent models representing these dynamic
properties enables the robot to track changes in multiple scenes over time
to establish spatial and temporal references. This work includes building
a coherent representation considering allocentric and egocentric aspects of
spatial knowledge for these models. Spatial analysis is extended with a
semantic interpretation of objects and regions. This top-down approach
for generating additional context information enhances the grounding pro-
cess in communication. A holistic, boosting-based classification approach
using a wide range of 2D and 3D visual features anchored in the spatial
representation allows the system to identify room types. The process of
grounding referential descriptions from a human interlocutor in the spatial
representation is evaluated through referencing furniture. This method uses
a probabilistic network for handling ambiguities in the descriptions and em-
ploys a strategy for resolving conflicts. In order to approve the real-world
applicability of these approaches, this system was deployed on the mobile
robot BIRON in a realistic apartment scenario involving observation and
verbal interaction with an interlocutor.
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Chapter 1

Introduction

The development of mechanical and digital hardware is progressing rapidly,
so researchers are trying to bring robotic applications into human living
and working environments. Personal robots with a human-like situation
awareness who are able to perform seamlessly as companions in everyday
situations are the subjects of many utopian visions. Considering the rapid
aging of populations in Europe and many other countries, personal assistive
robots are considered a key technology for prolonging the independence of
elderly people. According to Schaal (2007), even more functions relevant to
our society will be fulfilled by robots, like in education, health care, rehabil-
itation, and entertainment. However, we have learned that the progression
from static and well-defined environments in laboratories or industrial set-
tings to dynamic, uncertain and very complex domains is extremely hard.
There is still a long way to go before real personal robots become mature
enough to function among us.

“One reason for this gap is that it has been much harder than
expected to enable computers and robots to sense their surround-
ing environment and to react quickly and accurately.”

(Gates, 2007)
An awareness of what the environment looks like is crucial for an artificial
agent. In recent years, advances in technologies for sensing and interpreting
the surrounding’s spatial properties enabled researchers to develop robotic
systems that were able to perform in highly complex real-world scenarios
(Thrun et al., 2006). But not only the spatial structure of the environment
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1. Introduction

is important. For a personal robot, it is at least evenly important to know
what the structure’s function is and what situation it represents. This en-
ables it not only to perform the specific tasks it is asked to do, but it is also
a prerequisite for successful Human-Robot Interaction (HRI). Especially in
terms of appropriate communication about items in the environment, a so-
phisticated situation model is essential. The term situation model is used
in psychology as means to express the multi-dimensional representation of
the situation at hand (van Dijk and Kintsch, 1983; Johnson-Laird, 1983).
Zwaan and Radvansky (1998) state that the model contains at least five
dimensions of situations: time, space, causality, intentionality, and protag-
onist (reference to the main individuals under discussion).

However, it is not enough to build up an isolated knowledge base of facts
about the physical environment. In communication, dialog turns are linked
across interlocutors, and the meaning of the conversational content depends
on the interlocutors’ implicit consensus, not on explicit definition (Sacks
et al., 1974; Brennan and Clark, 1996). This means that a model for sit-
uation awareness always depends on the context of the current situation
and the alignment in communication — in other words, the common ground
between the interaction partners. According to Branigan et al. (2000) a co-
ordination of interlocutors occurs when they share the same representation
at some level. So, Pickering and Garrod (2004) argue that the “Alignment
of situation models [. . . ] forms the basis of successful dialogue”. Whereas
the alignment is not per se necessary for successful communication, alter-
natives would be very inefficient in terms of production and comprehension
of utterances.

From a usability point of view, the components of a system not only have
to operate as the developer conceptualizes them, meaning that they fulfill
their functions and are technically stable, the system also has to be both
easy and safe to use, as well as socially acceptable (e.g. Dix et al., 2004;
Nielsen, 1993).

If robots are supposed to actually be involved in our society in the future
like Schaal suggests, they need to be accepted by children and adults. This
can only be realized if they comply with certain social behaviors and stan-
dards that we as humans find acceptable. Dautenhahn (2007) formulates a
set of social rules for robot behavior containing different paradigms regard-
ing the social relationship of robots and people. This includes a means of
communication that aligns to the communication partner and the context

2



of the interaction. This exposes a need for a representation that comprises
interlocutor-specific and context-specific semantic knowledge — the situa-
tion model.

Now the question is: Which information should be available in a situation
model, and how should this information be represented? Also, which mech-
anisms are needed in order to apply the knowledge in real-world situations?
These questions outline the work I will present in this thesis, though it is
not possible to answer them in a comprehensive way. Instead I will take
a closer look at three different aspects of building a consistent situation
model. These aspects focus on the space, time, and protagonist dimensions
of Zwaan and Radvansky (1998)’s definition. The causality and intention-
ality dimensions will only be covered marginally in the enclosing high-level
applications.

The basis for such a model is a geometric description of the surroundings.
I will explore possibilities for representing the data in a way that allows an
appropriate level of detail for the task at hand and enables inference about
the functional roles of certain structures through observation. The aspect of
learning (in terms of knowledge acquisition) is very important for successful
generation of an adaptive model. This is also true for the interpretation of
the surrounding that can not directly be inferred from observation. How-
ever, it is important for a personal robot to also have semantic knowledge
about different areas of its working environment in order to act appropri-
ately. In order to enrich the situation model with the according information,
I will present an approach for applying semantics to the enclosed areas of
an apartment. Nevertheless, a situation model should not consist purely of
visually perceived information. The communication with a human interlocu-
tor provides useful information as well. Not only about the situation itself,
but also about the way this information is represented in the interlocutor’s
mental situation model. In order to align to the partner on a communicative
level, it is important to establish methods to access the situation model in
a way that supports this alignment process. This thesis is embedded in the
research program of the collaborative research cluster called “Alignment in
Communication” at Bielefeld University. The program involves many inter-
disciplinary projects which collaborate to reach two goals: different kinds of
alignment phenomena and their implications on conversation and situation
models. Wachsmuth et al. (2013) give an overview of selected topics within
the cluster.

3



1. Introduction

1.1. Robot Companions in the Home
There were many robotic platforms developed in recent years that aim to
lead the way for future personal robot companions. Many of them focus on
technical design and appearance in order to support the research on motion
and HRI, like the adult-sized futuristic looking robot HRP-4 (Kaneko et al.,
2011), the infant-sized iCub (Metta et al., 2010), and the anthropomorphic
robot head Flobi (Lütkebohle et al., 2010).

There are a few robots that made the transition into the real-world like
the impressive robotic car Stanley, winner of the DARPA Grand Challenge
developed by Thrun et al. (2006) or the TOOMAS shopping guide (Gross
et al., 2009). However, all of these robots have a very distinct task to fulfill
and their hardware and software design is highly optimized for the task.

Figure 1.1.: Nao by Alde-
baran Robotics. Image taken
from: Bader et al. (2013).

Other obvious examples are vacuum
cleaning, floor washing, and lawn mowing
robots that have been available for purchase
for several years now. But there are also
commercial robots on the market that serve
still a very limited, but social function. The
robotic seal Paro is used in care facilities
with elderly people or other patients in or-
der to increase their social interaction, sim-
ilar to animal-assisted therapy (Wada and
Shibata, 2007). Comparable effects were
found with the toy dinosaur Pleo in chil-
dren’s play (Fernaeus et al., 2010).

Another commercially available robot is
the Nao by Aldebaran Robotics (Gouaillier
et al., 2009) (see Figure 1.1). It has been
designed for a much wider range of applica-
tions than the afore-mentioned robots. In
practice, however, it is mostly used as a toy
or a research platform because the software
still lacks essential abilities to truly understand its surroundings and its
communication partner.

Most of the basic research in robotics is done using platforms not designed
for end users, but to support the research itself. The first generation of our
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research platform, Bielefeld Robot Companion (BIRON), was introduced
by Haasch et al. (2004). It was a modified PeopleBot from ActiveMedia
equipped with a pan-tilt camera, a pair of microphones, and a laser range
finder (see Figure 1.2).

Figure 1.2.: First gen-
eration of BIRON.

At the time, it was used in a home tour sce-
nario which involved sensing of humans (Fritsch
et al., 2004), sensing the environment using the
laser range finder for obstacle avoidance, and
recognition of human speech (Wachsmuth et al.,
1998) coupled with a basic dialog management
system. Based on contemporary standards the
home tour scenario is a comparatively simple
challenge. The robot behaves purely reactively.
It passively follows a human to new locations
and is introduced to new facts about the environ-
ment, which basically consist of references from
labels to coordinates. It does not learn anything
new about its environment except when notified
by the human.

Today comparable research projects go be-
yond the home tour scenario and progress to
more complex scenarios. Those either require a
more sophisticated situation model, more pow-
erful perception, or a dialog system that han-
dles more complex interactions. Further, most
projects involve a pro-active robot behavior like in the scenario for Dora
The Explorer, first introduced by Hawes et al. (2010). Dora is driven by
a motivational system that triggers an active exploration behavior to fill
gaps in the spatial knowledge of the environment. Meanwhile, the robot
tries to do a categorical labeling of rooms by analyzing functionally impor-
tant objects, as well as considering ontology-driven inference on the results
of this uninformed search. The architecture is composed of reactive goal
generators which create new goals that pass a collection of filters for a first
selection step. A management mechanism then determines which of the
remaining goals to pursue (Sjoo et al., 2010). It contains goal generators
for frontier-based exploration, view planning, and a visual search using the
pan-tilt-zoom camera. The spatial information is stored using a framework
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for cognitive spatial mapping (Pronobis et al., 2009). The map is assembled
by so-called “places” that define the spatial relations representing the struc-
ture of the environment. A “place” is a collection of arbitrary distinctive
features that can be complex or abstract in nature. Also, there is a concept
called “scene” for segmentation of space and grouping of similar feature val-
ues. The map is only a topological representation of the environment and
does not require a maintenance of a global spatial consistency.

Meger et al. (2010) pursued a similar goal with the visual searching plat-
form Curious George. This robot won the first place in the 2007 and 2008
robot league of the Semantic Robot Vision Challenge (Helmer et al., 2009).
As the competition requires the robots to identify the objects from instantly-
learned categories using web imagery, Curious George is able to download
the required data from web services like Google Image Search. For explo-
ration, the team implemented a frontier-based strategy as proposed by Ya-
mauchi (1997). For visual search they do not use a 2D occupancy grid, but
a 3D representation of the environment, the result of a horizontal surface-
finding algorithm developed by Rusu et al. (2009d) as a package for the
Robot Operating System (ROS) (Quigley et al., 2009). As an attention sys-
tem, they implemented the saliency map approach proposed by Itti et al.
(1998).

Figure 1.3.: Cosero

One of the most advanced robot platforms
in terms of real-world applicability in house-
hold scenarios is probably Cosero (Stückler
et al., 2014) (see Figure 1.3). The team
NimbRo@Home from the University of Bonn
won the RoboCup@Home competition (Wis-
speintner et al., 2009) in 2011, 2012, and 2013 us-
ing the Cosero platform and its predecessor Dy-
namaid. It is equipped with a height-adjustable
torso on an omni-directionally moving base and
two anthropomorphic arms. The human-like ap-
pearance is meant to support HRI. To repre-
sent the environment, the deployed system uses
a global occupancy map refined through the so-
called 3D surfel grid approach (Stückler and
Behnke, 2014). This global representation is
used mainly for planning in navigation, while an egocentric 3D representa-
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tion of the current situation is used mainly for local planning and grasping.
For people awareness they augment the global environment representation
with person hypotheses (Stückler and Behnke, 2011) which in turn profits
from semantic knowledge about the surrounding structure retrieved from
this representation.

Although these robots are already quite sophisticated, they still lack a
knowledge representation that is powerful enough to handle future tasks
of a truly personal service robot. The current representations do not gen-
eralize to arbitrarily different tasks than those described in the research
publications.

Further, large parts of the gathered information is not preserved long-
term. Most of it is only kept for intermediate usage and only very high-level
representations are preserved for later reference (Dora The Explorer is an
exception here). Another shortcoming of the robotic systems described here
is that there seem to be no strategies to align the situation model to the
communication partner. This is certainly a requirement for future personal
robots. It is impractical to keep up the command-like communication pat-
tern that current artificial systems require in order to understand the inter-
locutor. HRI will be based on natural language in the future, which will
require alignment strategies in the robotic systems that are able to match
internal representations to instances of differently represented information.

That a robot like Cosero, which lacks these abilities, is so successful in the
RoboCup@Home competition shows that research must still evolve in these
areas. The tasks assigned to the robots are not designed to require such
abilities1. This is probably because research has not come far enough yet
for enabling the participating teams to perform real natural language HRI
or accessing a generalizable multi-purpose knowledge base. The “Endur-
ing General Purpose Service Robot” task goes in this direction, but from
personal experience, I can report that the last years’ commands were all
solvable using standard tools. Most tasks require pre-knowledge of allocen-
tric information like labeled locations and areas. Accordingly, the majority
— if not all — allocentric knowledge is provided beforehand and the robot
just has to build up egocentric representations to carry out commands at
specific locations.

1The 2014 rulebook for the RoboCup@Home competition can be found at http://www.
robocupathome.org/rules (visited March 1, 2015)
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It seems there is a lack of widespread, functioning solutions for an in-
tegrated approach to gathering and maintaining knowledge with varying
spatial scope. This is one of the reasons why it might be valuable to shift
the attention in research from processing robotics problems in the easily-
perceivable space in the direct vicinity of the robot to a more comprehensive
view of the wider environment.

1.2. From Vista Space to Environmental Space
In psychology, it is mutually agreed that cognitive functions differ when ap-
plied to different scales of space, as discussed by Montello (1993). He argues
that in human psychology the representation of space is scale-dependent.
Applied to actual tasks this means that comparably small scenes such as
those in manipulation tasks are represented differently than those in tasks
like navigating to another room, which requires representation of a much
wider area. Montello (1993) distinguishes four major classes of psychologi-
cal spaces. The figural space is “projectively smaller than the body and can
be directly perceived from one place without appreciable locomotion”. The
vista space is “projectively as large or larger than the body but can be visu-
ally apprehended from a single place without appreciable locomotion”. The
environmental space is “projectively larger than the body and surrounds it.
It is too large to apprehend directly without considerable locomotion”. Usu-
ally it requires the integration of information over a significant period of time
to fully perceive this space. Geographical space is “projectively much larger
than the body and cannot be apprehended directly through locomotion”.

For robotics, this means that it might also be advantageous to make a
similar distinction. In previous work, Swadzba (2011) explored ways to
model the vista space of a mobile robot. In this thesis, I will proceed to
a more comprehensive view of the spaces relevant for a personal robot in
an apartment environment. However, although I will present approaches
for integrating representations of different scopes, the focus will lie on vista
space and environmental space representations. Geographical space is out of
scope for a domestic service robot, and figural space is explicitly covered by
another project within the collaborative research cluster in which this thesis
is embedded (cf. Meier et al., 2011; Li et al., 2012).

As the representation of space should be applied in a real-world scenario,
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it must be handled as a continuous model, although the different scopes are
represented in different ways. It is impractical to model scopes of a scene in
completely isolated representations preventing a bidirectional interchange
or collaboration.

Ruetschi and Timpf (2005) argue for a similar distinction between spaces
with different scopes in the real-world scenario of wayfinding in public trans-
port. They found that humans use the network space, which is “a mediated
space, presenting itself by means of maps and schedules, but also by au-
dible announcements and tardiness. It exhibits a network structure”. In
addition, they use the scene space, which is “directly experienced but doc-
umented only implicitly and within itself. [. . . ] It exhibits a hierarchical
structure”. These spaces have a geographical scale and an environmental or
vista scale, respectively, following Montello’s definition. Further, they state
that network space and scene space are linked in many ways and interact
closely in the application domain of public transport.

So in addition to the definitions mentioned in Section 1, a situation model
should support representation of different scopes of the space surrounding
an agent in a scope-dependent, but continuous way. A robotic system that
implements such a situation model needs strategies for cooperation with
different scope-dependent representations.

1.3. Research Questions
Although we have seen many very impressive performances of robots in re-
cent years in a wide spectrum of application scenarios, when looking at an
individual system, the capabilities are very limited. Usually, complete sys-
tems are designed to function in exactly one scenario. They may represent
the optimal system for solving the task at hand, but apart from that, most
systems are completely useless. There are different reasons for this. One is
certainly that many researchers perform basic research on delimited fields,
which is good because most basic capabilities a true personal robot requires
are still far from solved. Another aspect might be the lack of applicability
of many software components to realistic circumstances, or to some extent,
the inability to adapt to situations other than the one they were optimized
for. This leads to another aspect that is typically underestimated: The
integration of context to analyses and mechanisms. An object recognition
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component could largely profit from knowing which functional role the cur-
rently perceived scene has, and a pro-active knowledge gathering behavior
might not be appropriate in the middle of the night.

With the advancements in available functionality, middleware implemen-
tations and system coordination approaches over the last years, more and
more focus is applied to system integration aspects. With the availability
of more complex (in terms of number of available functions) and more com-
patible systems, there is also a growing demand for more unary solutions
rather than multiple island solutions — especially in knowledge represen-
tation techniques. This demand leads to the following research questions
which represent the basic skeleton of this work.

Question 1: How to represent spatial knowledge?
Which frames of reference should be used (egocentric, global)? How can
structural information or instances and their relations be represented?
Which data structures should be used? How can world knowledge and
inferred knowledge be combined?

Question 2: What and when to represent?
Which level of detail should be applied and how does this depend on
the situation? How can the relevance of certain data be judged before
insertion?

Question 3: How to solve temporal integration?
How does the update process work? Which additional dimensions are
required in the situation model? How can the temporal aspect of the
representation be exploited?

Question 4: How to include context information?
How do components benefit from context knowledge? How can back-
ground knowledge be referenced on later occasion? Can the spatial lay-
out of the knowledge representation facilitate the selection of peripheral
information?

All of these questions need to be answered when trying to build a situation
model for a personal robot companion that is applicable in arbitrary situa-
tions. Certainly there are more aspects to this topic (semantic ontologies,
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logical inference, intentions, etc.), which cannot be answered in the scope of
this thesis. These questions indicate, however, that the pure representation
is not the only key to a successful situation model development, but also
that strategies for handling data processing are required.

Nevertheless, the posed questions underly the work described in this the-
sis, and in the following chapters, I will propose answers to these questions.

1.4. Scenario & System Foundation
The different aspects covered in the following chapters will be linked to
a mutual scenario in order to demonstrate the various applications of the
described solutions. I will refer to this scenario as the lost key scenario.
It is an analogy of a situation in which a person can not remember where
she/he last placed a key ring, asking someone for help finding it. In concrete
terms, the mobile service robot of a homeowner observes the actions and
utterances in its surroundings to build up a situation model. For this, it
pro-actively moves around the apartment and closely inspects presumably
relevant events or locations. At some point, when someone asks it about a
certain object, it is able to report the location or the last performed ma-
nipulation of the target object. This scenario requires the afore-mentioned
aspects investigated in this thesis. It requires a situation model implemen-
tation with long-term capabilities in representing distinct structures and
actions. To maximize the informative content and minimize the effort, the
robot must select the most relevant events to observe and represent those in
an efficient way. It must be able to link possibly ambiguous verbal references
to spatial structures by aligning descriptions to actions and to the situation
model. Further, a verbalization of the found results must be available which
supports the alignment to the communication partner. The hardware and
software components needed to enable such a scenario as a prerequisite for
the implementations done for this thesis will now be explained.

The Hardware Platform

The Bielefeld Robot Companion V2 (BIRON II) hardware platform (see
Figure 1.4) we use, based on the research platform GuiaBot™ by Adept
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MobileRobots2, is customized and equipped with sensors that allow anal-
ysis of the current situation in a human-robot interaction. The platform
used here is the second generation of the BIRON platform series, which has
been continuously developed since 2001. It comprises two piggyback lap-
tops to provide the computational power and to achieve a system running
autonomously and in real-time for HRI. The robot base is a PatrolBot™
which is 59cm in length, 48cm in width, and weighs approx. 45 kilograms
with batteries. It is maneuverable with 1.7 meters per second maximum
translation and 300+ degrees rotation per second. The drive is a two-wheel
differential drive with two passive rear casters for balance. Inside the base,
there are two laser range finders that add up to a 360° degree laser scan
with a scanning height of 30cm above the floor. To control the base and
solve navigational tasks, we rely on the ROS navigation stack3.

For room perception, gesture recognition and 3D object recognition, the
robot has two ASUS Xtion Pro Live RGB-D sensors4 for real time 3D image
data acquisition: one facing down (objects) and an additional one facing
towards the user/environment. The object recognition system is supported
though high quality 2D imagery from a Sony Alpha 5100 consumer camera.
A high-resolution webcam is used for facial recognition. The corresponding
computer vision components rely on implementations from Open Source
libraries like OpenCV5 and PCL6.

Additionally, the robot is equipped with the Katana IPR 5 degrees-of-
freedom (DOF) arm; a small and lightweight manipulator driven by 6 DC-
Motors with integrated digital position encoders. The end-effector is a
sensor-gripper with distance and touch sensors (6 inside, 4 outside) allowing
it to grasp and manipulate objects up to 400 grams throughout the arm’s
envelope of operation. The on-board microphone has a hyper-cardioid polar
pattern and is mounted on top of the upper part of the robot. For speech
recognition and synthesis, we use the Open Source toolkits CMU Sphinx7

and MARY TTS8. The upper section of the robot also houses a touch screen

2http://www.mobilerobots.com/, (visited: March 1, 2015)
3http://wiki.ros.org/navigation, (visited: March 1, 2015)
4http://www.asus.com/de/Multimedia/Xtion_PRO_LIVE/ (visited: March 1, 2015)
5http://opencv.org/ (visited: March 1, 2015)
6http://pointclouds.org/ (visited: March 1, 2015)
7http://cmusphinx.sourceforge.net/ (visited: March 1, 2015)
8http://mary.dfki.de/ (visited: March 1, 2015)

12

http://www.mobilerobots.com/
http://wiki.ros.org/navigation
http://www.asus.com/de/Multimedia/Xtion_PRO_LIVE/
http://opencv.org/
http://pointclouds.org/
http://cmusphinx.sourceforge.net/
http://mary.dfki.de/


1.4. Scenario & System Foundation

(≈ 15in) as well as the system speaker. The overall height is approximately
140cm.

Figure 1.4.: BIRON II.

For real-world applications, the robot can
be deployed in a laboratory apartment in the
new CITEC building of Bielefeld University.
This so-called Intelligent Apartment measures
60 square meters and has three rooms, includ-
ing a kitchen, a living room, a gym, and a bath-
room. It contains plenty of hidden technology,
but looks like a regular apartment.

System Architecture

To model the robot behavior in a flexible man-
ner, we use the Biron Sensor and Actuator In-
terface (BonSAI) framework. It is a domain-
specific library built on the concept of sensors
and actuators that allow the linking of per-
ception to action (Siepmann and Wachsmuth,
2011). These are organized into robot skills
that exploit certain strategies for informed de-
cision making (Lohse et al., 2013). BonSAI
supports modeling of the control-flow using
State Chart XML. The coordination engine
serves as a sequencer for the overall system by
executing BonSAI skills to construct the de-
sired robot behavior. This allows the robot to
separate the execution of the skills from the
data structures they facilitate thus increasing
the re-usability of the skills.

The robot’s architecture relies on the
lightweight and flexible middleware Robotics Service Bus (RSB) for inter-
component communication (Wienke and Wrede, 2011). RSB-enabled com-
ponents communicate using a message-oriented, event-driven pattern over a
logically unified bus that is organized through hierarchical scopes.
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1.5. Outline
The thesis is structured as follows: Chapter 2 takes a more detailed look
at the problem at hand. I will analyze the research questions, formulating
actual approaches to be further developed in subsequent chapters. Also the
main contributions of this thesis will be formulated. After this I will pro-
ceed semantically, starting with basic requirements and ending with complex
conversational aspects. Chapter 3 deals with the structural representation
of the robot’s surroundings (Research Question 1). The chapter will dis-
cuss spatial and temporal integration aspects from the research questions
(mainly Questions 2 and 3) and present a pro-active robot behavior that
utilizes the developed models. A more semantic view of the surrounding
structures is employed in Chapter 4. Here, a grounding of certain entities
and areas to general semantic categories which expose certain functional
properties is described. Further, the integration of peripheral information
into the decision making process will be explored. This mainly refers to
Research Questions 3 and 4. Chapter 5 takes a look at instances and their
relations in the situation model, suggesting how to align these to the model
of a interlocutor in a communicative situation (Research Question 1). It
also demonstrates how different cognitive functions can benefit from one
another, mainly contributing to Question 4. Finally, I will give a closing
overview in Chapter 6 including a discussion of the approached contribu-
tion and an outlook to future perspectives for implementing situation models
for personal robots.
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Chapter 2

Analysis and Statement of the
Research Problem

In the introduction I promised to explore ways of representing a situation
model in an artificial robotic system. As stated above, there are many as-
pects to this topic that cannot all be answered comprehensively. For this
thesis, I chose referential communication as a guiding theme to develop rep-
resentations and strategies to contribute to a universal situation model. In
concrete terms, the following chapters cover aspects that enable an inter-
active robot to ground references to specific objects in a scene in multiple
modalities. For that reason, it gains spatial knowledge as a persistent model
in a way that allows it to ground these references. Mainly three different
aspects of building a consistent model will be pursued: Representing the
spatial layout of the environment, applying semantics to geometric struc-
tures and areas of the environment, and deploying and aligning the model in
human-robot interaction. This chapter aims to analyze the implications of
the different available choices regarding these three aspects. It also contains
conclusions from experiences that had been made during the work with mo-
bile robots by myself and others. By dealing with these questions, a more
fine-grained statement about what the research problem is will emerge. Ulti-
mately, this analysis leads to specifically formulated goals and contributions
of this thesis.
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2.1. Functional Requirements
With the vision of a multi-purpose, generally-deployable robotic system in
mind, it becomes quite clear that, to build a coherent system, it is unre-
alistic to just combine the many island solutions that currently exist for
isolated problems. Today many researchers focus on their specific problems
and invent representations that perfectly fit their requirements. This leads
to a variety of very distinct solutions with no avenue of collaboration or
exchange, instead resulting in huge overhead to maintain all the different
representations. It would therefore be desirable to build a central, compre-
hensive representation that can be used by all components of the robotic
system. The problem is that the requirements of the solutions for the vari-
ous problems of such a general-purpose system are very divergent. It would
require a very flexible and powerful representation with many support mech-
anisms to serve all the posed requirements. A thesis like this can not claim
to find the ultimate solution for this problem, but I do propose a represen-
tation designed to function as a basis for several software components in a
robotic system. Considering the guiding theme of this thesis, components
enabling referential communication will be considered for design decisions.
Further it may be extended to other problems not considered in this thesis.

But what are the general functional requirements of such a representation
apart from the task-specific ones? First, it must grant direct access to the
data. This means a component must be able to easily receive the required
data without having to transform or remap the information in order to fit
them to the internally used format. To a certain degree, this also requires
the components to adjust their formats to those supported by the central
representation. Otherwise, the divergence in the representations on compo-
nent level would just be transferred to the central representation, yielding
no gain for the system.

Further, the representation must support the efficient analysis of the data.
The representation’s data structures must be chosen so that the components
can implement fast algorithms on them. However, if multiple data structures
are maintained, they also need to be closely linked to quickly transfer data.

The representation itself needs to be resource-efficient to guarantee low
latency when components access the data. This means that transformation
or search tasks within the descriptions must be implemented efficiently. This
calls for a sparse representation of the spatial data. The implementation
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should support the representation of every kind of data in a level of detail
appropriate for the task at hand. This reduces the memory load and thereby
the latency.

2.2. The Choice of Scope
One of the most obvious differences in the many representations used across
different components is the scope of the spatial description. In object ma-
nipulation tasks, the spatial representation has a totally different scope than
in a path-planning task for navigation. In general, they can be divided into
an allocentric scope, which defines a view on the scene from a global per-
spective, and the egocentric scope, which defines a view from the personal
perspective. The latter supports a description of the scene relative to the
point of view of the agent that generates it, usually representing the field of
view of the perceptual system. Whereas the allocentric scope may support
representations of the complete known environment from a global coordi-
nate system, or just a subspace (e.g. the intermediate surrounding of the
robot).

From participating in several RoboCup@Home1 competitions, I can re-
port that nearly all competing robotic systems use an allocentric represen-
tation for long-distance navigation and storing positions of relevant objects
and locations. Meanwhile, obstacle avoidance and manipulation tasks are
nearly exclusively done exploiting the egocentric scope. This is not surpris-
ing because localization tasks usually profit from relating entities (including
the self) to landmarks, which is particularly convenient in allocentric rep-
resentations. On the other hand, avoidance and manipulation tasks rely on
the relation of the self to structures in the immediate environment. For this,
egocentric representations are most suitable.

A general representation should cope with these different scopes. It must
enable the components to choose the scope of their spatial descriptions, but
must also maintain links and relation between allocentric and egocentric
views. The argument for a sparse representation applies here as well. Not
every part of the environment needs to be represented egocentrically, and
less so from multiple points of view. Similarly, it may not be necessary to

1http://www.robocupathome.org/
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keep the egocentric representations updated all the time. Depending on the
task at hand, they may only become relevant in certain situations.

2.3. Knowledge Representation
In order to identify a preliminary set of data structures for the general spa-
tial representation scheme, I will have a look at the software components
currently running on the BIRON II platform (see Section 1.4). One of the
most fundamental components of a mobile robot’s system is the navigation.
For localization and mapping of landmarks in the form of physical obsta-
cles, it uses a probabilistic occupancy grid representation of obstacles in the
environment (Moravec, 1988). It is an allocentric representation that de-
picts the spatial layout of the complete environment known to the robot. A
semantic mapping approach for probabilistically labeling areas in the envi-
ronment based on certain semantic properties uses a similar representation
(Ziegler, 2010). The resolution of those representations is adjustable, but
in practice, a rather coarse resolution is chosen (usually ∼ 5cm cell size)
because the associated tasks do not require more detail.

For a persistent storage of locations and objects, the system uses a plain
database containing descriptions of the entities in global coordinates that
relate to the occupancy grid representation.

The person tracking component contains an allocentric representation,
as well. Person hypotheses are also maintained on an instance level with
global coordinates. However, these hypotheses are fed with information
from detectors building upon egocentric representations. Human torsos are
detected using an egocentric point cloud representation from a depth camera.
Legs are detected from a polar representation of distance measures from a
laser scanner.

More egocentric representations are used in recognition and manipulation.
Geometric analyses for finding candidates and obstacles for grasping also use
a point cloud representation from a depth camera. However, the content of
the the point cloud has a higher resolution than that to detect torsos and is
limited to the maximum range of the robot’s arm, whereas the torso detector
needs a significantly longer sight. The visual object recognition component
cooperates closely with the 3D geometrical analysis component and works
on 2D imagery taken from the robot’s visual sensors.
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Summarizing these insights, one can identify a set of data structures that
would satisfy the demands of most components of the current BIRON II
system.

Allocentric areal representation. This could be a probabilistic grid struc-
ture or, alternatively, a hierarchical quadtree representation (Hun-
ter and Steiglitz, 1979). A three-dimensional voxel grid or octree
(Meagher, 1982) representation would be imaginable, as well.

Allocentric instance representation. In the current BIRON system this is
just a plain database of instance descriptions, but a network structure
would be possible as well.

Egocentric areal representation. An obvious data structure for this is a
point cloud or depth image.

This selection of data structures deliberately misses representations for
the 2D imagery and polar range descriptions mentioned above. There are
several reasons for this. First of all, a general representation needs to rep-
resent the lowest common denominator for all named requirements. But it
certainly cannot universally manage all types of representations that used
internally across the components of a system. A compromise must be found.
Secondly, the relevance of certain data structures in a central representation
is proportionate to the persistence in their demands. Both data structures
in negotiation require no persistence in the ways they are used in their re-
spective software components; their data is processed and directly forgotten.
Only the results of the analysis may be relevant for future reference, but
these can be represented using the identified set of data structures. The
same holds true for egocentric instance representations that may be rele-
vant in the specific execution of, for example a manipulation task, but to
persistently represent these instances, the egocentric frame is probably un-
necessary. Nevertheless, if new requirements occur that demand persistence
for these structures, an extension mechanism that allows one to link-in ar-
bitrary structures to the default representation would be imaginable.

Persistence is a central topic for a general knowledge representation of a
multi-purpose robotic system. It allows the system to use the representation
as a spatial memory. The current BIRON system only has a limited spatial
memory. As far as I can tell, this also applies for most artificial robotic
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systems that participated in the RoboCup@Home competition in the last
years. From my experience, it is sufficient for the robots to maintain the
allocentric representations for later reference. Since there is no task where
the robot has to re-visit a previously analyzed scene for a second time, there
is no need to reference previously gathered egocentric knowledge at a later
occasion. In situations when egocentric representations are required — like
when grasping objects — the scene is analyzed bottom-up, and the data is
discarded as soon as the robot finishes its task at this location. In real-world
applications that go beyond those in the RoboCup competition, this is of
greater importance. A robot needs to transfer knowledge from one location
to a different situation in the future. This is especially important for infor-
mation that cannot be re-generated in a bottom-up manner. Nonetheless,
this also reduces the cognitive effort of the system by eliminating the need
to repeatedly analyze the same scene from scratch.

For a general persistent knowledge representation, this means it needs to
maintain several egocentric representations for later reference. They need
to be linked in a way that allows the system to compare these models with
each other and with the allocentric representation (cf. Section 2.1). This
is particularly important for supporting the inference of referenced objects
in communication. Further, methods for spatial and temporal integration,
which are self-evident for allocentric representations, also need to be imple-
mented for these egocentric structures.

2.4. Applying a Situation Model in Interaction
In the previous sections, I mainly discussed functional properties of a spa-
tial representation for multi-purpose service robots. However in interaction
situations, methodical aspects of such a representation become particularly
relevant. In HRI, the communication is not purely auditory, although in
many robotic systems the communication is limited to the speech modality.
Similarly, the interpretation of action should not be purely visual. A robotic
system that aims to understand humans in a way that promotes their accep-
tance in society will have to cope with multiple modalities in interactions.
Referencing objects in a dialog is a common example of this. To correctly
ground the sentence “This is the object I mean”, the system needs to either
interpret a gesture or it must know certain properties of the objects in the
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near vicinity of the interlocutor in order to narrow down a probable target
object. Similarly, to interpret the sentence, “I mean the chair in front of the
cupboard”, one requires a rough concept of which objects might be meant
by “chair” and “cupboard”, especially if the current scene contains multiple
instances with these labels. Also the spatial relation meant by “in front of”
needs to be interpreted regarding different perspectives or reference frames.
Also the context of an interaction might be important for the correct inter-
pretation. For example, the sentence, “Please bring me the book”, might
relate to the novel the interaction partner is currently reading and is located
in the bookshelf — if this conversation takes place in the living room. How-
ever, if this sentence is said in the kitchen while cooking dinner, it might
relate to the cookbook lying open on the table.

For general spatial representation, this means it must support the in-
ference about multiple aspects represented in the system. For example, a
component for gesture recognition that works on a 3D egocentric represen-
tation may also reference the allocentrically represented surrounding of the
robot in order to correctly interpret the gesture.

Especially when grounding utterances, a close collaboration of the dif-
ferent representations is crucial for the success. Although the utterance
was perceived correctly on a linguistic level, the content might still be am-
biguous. Including semantic information about the context (e.g. in which
room is the interaction and what is its function?) might improve the in-
terpretation process. In referential communication “perspective-taking” is a
key concept for enhancing the process of associating the described relations
to instances. This involves both egocentric and allocentric representations.
The same is true when using different reference frames in the descriptions.
In turn, the production of signals to the interlocutor profits from close col-
laboration of the different representations in the same way. However, not
only the representation is the key to successful resolving ambiguities. It
requires a sophisticated algorithm, that can handle multiple hypotheses in
a probabilistic way and include a variety of evidences in the process of find-
ing the most likely interpretation of the ambiguous utterance. One of the
evidences may also be a linguistic world knowledge regarding preferences of
humans in speech production in various situations.

These arguments again promote a good interconnection of the different
types of representations. It must be easy to transfer information from one
representation into the other. More importantly, it becomes obvious that
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references should play a significant role in a persistent spatial representa-
tion. Both spatial relations for interpreting speech and action, as well as
temporal references to the status of a past scene to detect change, are of
great importance. Only this allows inference about the dynamic properties
of certain structures and, therefore, communication about events that were
not directly observed.

2.5. Summary: Contribution of this Thesis
These analyses allow a more precise formulation of the topics explored in this
thesis. This, in turn, helps define the specific goals to pursue. The research
problems identified in the previous sections closely relate to the research
questions identified from the semantic analysis of the situation model in
Section 1.3.

Research Question 1 addresses the representation of spatial knowledge.
As discussed in Section 2.1, a complex robotic system for multiple purposes
should contain a central representation that handles the spatial information
for the individual software components. This storage should represent the
data sparsely to minimize computational overhead. Also, it should manage
different types of representations that are well connected and allow com-
ponents to use the type of representation that suites their algorithms best.
These types differ in the spatial scope and the data structures they use.
Specifically, three types of representations were identified: An areal- and an
instance-based representation with an allocentric scope, and an egocentric
representation for describing structures in the robot’s field of view. Chap-
ter 3 will explore the realization of such a representation.

The requirement that the representation should be sparse has implica-
tions on Research Question 2 (What and when to represent?). The exis-
tence of multiple types of representations within the central storage enables
the developer to choose an appropriate level of details for the different rep-
resentations. These can be chosen according to the application they are
used for and the resolution required by the algorithm using it. As discussed
before, there should be a set of egocentric representations in addition to
the allocentric ones. Consequently, there need to be strategies that decide
when new egocentric models need to be introduced and when they need to
be merged or deleted. These will be discussed in Chapter 3.
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As seen in the analysis of application in interaction, temporal integration
and temporal references are crucial mechanisms for spatial representation in
a robotic system. The same issue is addressed by Research Question 3. To
detect change that is not directly observable, the maintenance of a history
of certain structures or properties is important. In the detection process
references to situations in the past will be established which need to be
represented by the central spatial storage. This aspect will be discussed in
Chapter 3. In Chapters 4 and 5, the aspect of spatial and temporal integra-
tion while updating the instance based representation will be discussed.

Research Question 4 focuses on the integration aspect of multiple types
of data in the interpretation process. The analysis of the application in
interaction suggests that the different representations need to collaborate
closely to enable the interpretation process to integrate context data. A
multi-cue classification process is described in Chapter 4 that relies on this
collaboration and the interconnection aspect of the representation. This
system explores a boosting-based classification approach that uses a vari-
ety of different features to classify different room types. It gathers a vast
amount of visual cues and uses them to label different parts of the environ-
ment according to their function. Using the allocentric areal representation,
these labels are published as context information for other interpretation
processes. The system described in Chapter 5 does not focus so much on
using the central spatial representation; it rather explores an approach for
resolving ambiguities using a variety of evidences from multiple modalities.
It incorporates an allocentric probabilistic network approach for tracking
multiple hypotheses for interpretation.
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Chapter 3

Partitioning the Workspace -
Spatial and Temporal Integration
of Informative Local Observations

For building an informative situation model, the first requirement is to have
an idea of the general spatial structure surrounding the robot. This has
already been discussed in the previous chapters. It does not necessarily
mean that a complete detailed three dimensional representation of the envi-
ronment needs to be tracked through 3D Slam or similar approaches. Sev-
eral approaches for reconstructing a robot’s environment have been pre-
sented which typically build up a comprehensive allocentric representation
(cf. Wiemann, 2013). However, for specific atomic tasks like grasping an
object the representation of spatial structures is often strictly limited to the
relevant parts. Typically, only the target object and possible obstacles in
the close neighborhood are represented in an egocentric fashion (cf. Rusu
et al., 2009c). Particularly, in the field of domestic service robotics a large
set of assumptions about the setting can be applied, for example about the
size of the work space, the number of entities inside this space, structural
properties of the floor and walls, etc. However, these might not be true for
other fields of robotic research like rescue or outdoor scenarios. Depending
on the task at hand it might suffice to know the rough layout – in domestic
robotics of the apartment and a small set of more detailed areas, which are
relevant for typical tasks and interactions. The scope of such a representa-
tion would be located between those of the two extremes described above.
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On the one hand, it should support purposive vision, but for multiple tasks.
On the other hand, it should also allow to be used for tasks with a more
allocentric scope that require a minor level of detail. This chapter deals with
the question of how to realize this kind of sparse spatial representation of the
working environment of a domestic service robot. The considerations also
include ideas for updating knowledge from spatial integration of different
views and also temporal aspects of these integration measures.

Most commonly, the environment for mobile robots is represented in a
form that is highly optimized for the task at hand. Besides, in most cases
these tasks are tightly coupled with a specific robotic ability. For example,
navigational tasks are almost exclusively solved with variants of Simultane-
ous Localization and Mapping (SLAM) (e.g. Leonard and Durrant-Whyte,
1991), which have proven to be a very effective solution to localization and
navigation problems (Montemerlo et al., 2002; Grisetti et al., 2007; Kuo
et al., 2009; Ma et al., 2009). One of the most prominent variants is the
Rao-Blackwellized Particle Filters (RBPF) method (Murphy, 1999) in con-
junction with an occupancy grid representation of obstacles in the environ-
ment (Moravec, 1988). Figure 3.1 shows an example of an occupancy grid
generated by a SLAM application.

Figure 3.1.: An sample grid map generated using SLAM.

This approach works very well for compact platforms that solve – com-
pared to everyday tasks of humans – relatively simple navigation tasks.
But as platforms become more articulated and thereby more non-compact
(e.g. WillowGarage PR2, Meka M1, Fraunhofer Care-O-Bot, see Sec. 1.1)
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the existing solutions may not be suitable anymore for newly arising prob-
lems. Hornung et al. (2012) describe a complex task for the articulated
mobile robot PR2 in which it has to navigate through a highly cluttered
environment while carrying large objects. It thereby has to plan complex
trajectories through narrow passageways considering its current body con-
figuration to avoid collisions. Their approach utilizes a multi-layered 2D
grid map which represents obstacles projected to various heights that are
relevant for specific body parts of the articulated robot. These projected
layers are created from a full 3D occupancy map represented as an efficient
octree-based grid (Hornung et al., 2013). This is a pragmatic solution that
uses existing, well tested techniques for solving a new problem. However,
using this kind of allocentric representation for a task that involves locomo-
tion with extensive examination of self-to-object relations, might not be the
best choice. Collision checks are computationally more expensive and less
precise than they could be when using a egocentric representation that only
contains the direct neighborhood, but in a higher resolution. Depending on
the arm control strategy this would possibly also reduce constant coordinate
transformations.

For representing space for navigation robotics has focused on using global
coordinate systems. Apart from the just mentioned method there are several
other solutions for 2D mapping and also different approaches for modeling
compact representations of the environment in 3D. These include volumetric
representations (Thrun et al., 2000; Nguyen et al., 2007), as well as raw point
cloud representations with overlayed octree formalisms for efficient search
(Nüchter et al., 2007).

Other approaches that do not only consider navigational goals but also
higher interaction tasks that involve planning, overlay the raw structural
information about the environment with an hierarchical but allocentric se-
mantic representation. Zender et al. (2008) anchor nodes of a conceptual
graph structure in a topological map of the known environment, Philippsen
et al. (2009) define a Mobile Manipulation Database, which is a large graph
structure representing the world as objects, locations and properties con-
nected by topological and semantic links.

In robotics, the role of egocentric models as a means of universal rep-
resentation of spatial information acquired through locomotion has been
underestimated so far. Currently they are only used as task-specific repre-
sentations in domains like grasping, obstacle avoidance or attention. Most
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of the previous work that combines allocentric tasks with problems that
were classically solved with egocentric methods choose a unified allocentric
representation. There are several semantic map approaches like Nüchter
and Hertzberg (2008). They build up a complete 3D representation of the
whole environment and use it for navigation and detection of objects alike.
Vasudevan et al. (2007) describe a hierarchical solution containing an allo-
centric topological representation of places combined with local probabilistic
object graphs. Elfring et al. (2012) introduces a probabilistic world model
that anchors instances allocentrically and tracks them over time.

In this chapter I will be approaching the question of how to partition the
workspace of a mobile robot in a way that gives semantic meaning to rele-
vant structures and thereby explore a way of representing those structures in
an egocentric way to facilitate self motion. However, these egocentric mod-
els will still be a part of a more enclosing spatial representation that relates
these models to an allocentric description of the environment. Therefore I
will first discuss spatial representations in humans and machines in more
detail. Subsequently, the set of semantic roles I will focus on in this context
will be described. This also includes the first naive computational model
realizing the assignment of roles to structures. After that, these delibera-
tions will be incorporated in a more application centered system view. This
includes anchoring the egocentric models in an allocentric world model as
well as computational strategies for utilization of the sophisticated model in
real-world applications. Finally, some results from systematic evaluations
will be presented.

3.1. The Geometric Foundation
In order to find a valuable strategy for representing spatial knowledge in an
artificial system it might be useful to understand the spatial representations
in the human mind. Using this information as an inspiration, I will formulate
a proposal for an enclosing spatial representation system and analyze ways
for populating it with useful spatial knowledge.

Spatial Representation in Human Cognition

While allocentric representations play a major role in navigation and spatial
memory of humans (Burgess et al., 2004), egocentric representations have a
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special role in self-motion as well, as found by Hartley et al. (2004). They
argue that allocentric representations in human spatial memory could not be
built-up or acted upon without interaction with egocentric systems. Wang
and Simons (1999) show that visual tasks are significantly impaired if self-
motion is disturbed, e.g. by causing visual change through moving a human
subject in a wheelchair. They suggest that

“the representation [. . . ] of viewpoint changes is not environ-
ment-centered. The representation must be viewer-centered and
the difference between observer and display movements results
from a difference in the nature of the transformation. Appar-
ently, view-dependent layout representations are transformed or
updated using extra-retinal information to account for observer
movements.”

The encoding of this spatial information in the human mind has been
studied by Mou et al. (2006). They show that in persistent encoding both
egocentric and allocentric representations play an important role. Allocen-
tric representations relate objects to visual landmarks, the egocentric sub-
system computes and represents self-to-object relations, which are also used
for locomotion, especially when the allocentric information are inaccurate.

Other findings in human cognition research suggest that we as humans
consider egocentric representations of obstacles in our immediate vicinity
for interaction. Wang and Spelke (2000) argue that

“human navigation [. . . ] depends on the active transformation
of a representation of the positions of targets relative to the self.”

They conducted several pointing experiments with human subjects, testing
different conditions while the subjects were remaining oriented or were being
disoriented. From these experiments they conclude that the distance and
direction of target objects in intermediate-sized environments is represented
in an egocentric way and is updated over locomotion. However, in addition
there seems to be an enduring allocentric representation of environment
geometry which is used for (re-)orientation.

Research on human spatial working memory also suggests the existence
of allocentric and egocentric systems that collaborate in spatial tasks, re-
gardless whether these tasks are based on visual or auditory perception
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(Stark, 1996; Roskos-Ewoldsen et al., 1998; Hartley et al., 2004; Lehnert
and Zimmer, 2006). Further, it is common sense in brain research that sev-
eral regions in the brain take on different representations for the execution
of complex tasks. While the hippocampus provides an allocentric spatial
map of the environment (O’Keefe and Dostrovsky, 1971; Squire, 1992), the
parietal and prefrontal cortex are presumed to process egocentric spatial in-
formation (Stein, 1989; Colby and Goldberg, 1999; Lee and Kesner, 2003).

Enclosing Spatial Representations

These findings at least suggest that a heterogeneous representation of the
geometric structures and their properties surrounding an agent might be a
valuable approach for robotic systems as well. As seen in Chapter 2 this
also makes sense from a functional and application-oriented point of view.
There are approaches to this already being used in existing systems. But
it seems that the conjunction of the different representations is often not
modeled explicitly or even not at all. Also, egocentric representations are
mostly of a short-term nature, so that they only exist in the moments of
benefit. They are not preserved for later use.

When we go back to the PR2 system presented in Hornung et al. (2012)
(the complete system is better described in Chitta et al. (2012)) it becomes
clear that the actual grasping task is executed in an egocentric way, but
is completely decoupled from the navigation system which works allocen-
trically. The system creates an egocentric representation of the tabletop
scenario in front just when it starts executing the grasping task. The only
exchange between the two representations mentioned is the transfer of recog-
nized object models from the egocentric representation to an environment-
centered semantic representation of known entities which is based on the
navigation map. However, as already discussed, all navigational tasks are
purely allocentric, regardless whether it is a long-distance planning tasks,
or a short-distance 3D collision avoidance task.

In Ziegler (2010) an allocentric semantic map representation has been
explored, which has been used for navigation and attention tasks in a
unified hierarchical representation, also containing global object locations
which have been egocentrically detected. Regardless of the representation
paradigms that have been used in the different approaches, it could be shown
that robotic systems can benefit strongly from semantic knowledge about
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certain areas or structures in the environment. This is particularly true for
the object searching task described in the work mentioned above, but one
can think of many other applications as well (clean up tasks, inference in
planning tasks, grounding in referential communication).

In this chapter I argue for a closer integration of allocentric and egocentric
representations in an enclosing structure. This approach will be developed
further in the following sections (specifically Section 3.3).

Populating the Spatial Representation

In order to generate knowledge about the environment to facilitate these
integrated robotic strategies, much work has been done in segmenting ob-
jects from a scene based on classical tracking or classification approaches.
Many of those applications expect a detailed model (e.g. CAD) of the ob-
ject to be segmented (Albrecht and Wiemann, 2011). Algorithms pursuing
this approach make use of decomposition (Gelfand and Guibas, 2004) of
the scene, rely on local hierarchical features combined with a matching al-
gorithm (Steder et al., 2009), or combine 3D perception for detection and
2D vision for recognition (Pangercic et al., 2011). However, there has been
done research done on segmenting structures with more instance indepen-
dent, but category specific properties (Sturm et al., 2010). This approach
can apply certain movement properties to structures in the environment just
by observation. The authors thereby utilize a fixed set of template models
for observed tracks in order to classify fairly specific movement models. This
requires pre-learned knowledge of the world.

In contrast, there are other approaches targeting a bottom-up segmen-
tation of the scene, rather than a semantic interpretation of the objects.
Campbell et al. (2010) suggest a model-free approach for segmenting and
3D model creation through observation of multiple frames. Their approach
expects the object to stand still while the camera is actively moved around
the object. This might be relevant for certain scenarios in which the robot
pro-actively explores its environment, but in other scenarios it may be fea-
sible to employ passive observation to distinguish for example background
from foreground structures.

Traditional background subtraction algorithms apply the assumption that
the static background does not change over time to identify moving objects
by detecting changes in the scene. For example Sheikh et al. (2009) de-
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scribe a sophisticated background subtraction algorithm that can be applied
on freely moving systems like robots, which analyses trajectories of salient
features over time. However, these approaches only detect moving objects,
whereas for many scenarios movable objects as described by Sanders et al.
(2002) are of greater interest.

3.2. Detecting Roles in Articulated Scenes
Knowing the geometric structure of the environment is not enough for in-
teraction with and communication about objects in the scene. For human
agents and embodied artificial agents alike, the segmentation of the scenery
into meaningful parts is crucial for dealing with unknown environments.
The system described in the following applies dynamic properties to partial
structures of the scene just by observation. No world knowledge or explicit
teaching is required. For typical tasks in unknown environments a mobile
robot needs to detect and track other agents as possible interaction partners
or for the awareness that these do not represent permanent insurmountable
obstacles. Further, the robot needs to know the parts of the scene that are
relocatable because these are typical subjects of conversation and manipula-
tion. In order to extract these information from the scene, the system uses
the Articulated Scene Model (ASM) first proposed by Swadzba et al. (2010).
Instead of building a complex ontology of specific items in the environment
and equipping the robot with strong detectors to apply sets of attributes to
these items, the model learns a pixel-wise labeling of the observed structure
(see Figure 3.2). Representations of instances can be inferred from these
structures in a post-processing step. The ASM enables the system to gain
spatial awareness in a bottom-up manner through observation. It builds up
a three-layered scene representation:

Definition 1 (Articulated Scene Model)
A separation of an observed scene into three distinct layers:

Static Scene Structures of the scene that ultimately limit the view as
static scene parts and will not move and therefore not allow a
farther perception. Geometric background structures like walls and
large furniture.
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Movable Parts Parts of objects that can be relocated through manipu-
lation by other agents and allow a farther perception when moved.
This also includes smaller furniture and doors.

Dynamic Parts Agents, regardless whether human or artificial that can
move by themselves.

Figure 3.2.: Articulated Scene Model. Red: Dynamic Entities. Blue: Mov-
able Objects. Gray: Static Scene.

3.2.1. Benefits of Observed Functional Roles
In an unknown situation a mobile service robot needs at least some a-priori
knowledge about certain structures in order to find its way around the apart-
ment. Since the purpose for service robots is to assist humans in their
households, the unknown scene presumably contains a human who has to
be detected in order to be able to communicate. Further, one typical task
in an unknown environment might be the home tour scenario in which the
human tells the robot labels for certain objects in the apartment. But there
are also a lot of other tasks one can think of that involve reference of objects
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in the environment that the robot does not know yet. In these situations the
system can use the observed functional roles of the movable and dynamic
parts to infer the position of the human interlocutor and the referenced
objects.

Also pro-active behaviors of the robot can benefit from these functional
roles. These enable the system for example to actively ask about certain
structures and thereby enlarge its knowledge base (e.g. “What is the name
of the object you just put on the table?”). In exploration situations it can
put objects aside or open doors because of the known movable nature of
things. Object or category recognition tasks also become easier if a pre-
segmentation can be applied.

If several egocentric models of geometric structures with dynamic prop-
erties are combined the field of applications for inferring new knowledge be-
comes even broader. Imagine a robot detecting movable objects and agents
by observing changes in the scene from a first egocentric viewpoint. After
moving to a subsequent location the robot is able to infer a new egocentric
representation of the same scene which already includes information of the
movable parts of the scene previously observed. This is because it can access
a more precise static background model which may also include knowledge
of areas that have not yet been perceived from the current viewpoint, e.g.
because of shadows or occlusion by movable objects. So the system can gain
much more information about a scene by observing it from different views.

Furthermore, this allows the robot to use the knowledge gathered at one
viewpoint also in the more distant future when things at this location may
have changed. The system is able to extract objects in a re-visited scene
without observing any bottom-up cues in the robot’s environment from the
current viewpoint. Even objects that have never been seen before can be
detected, as long as their former absence can be proved by previous scene
models. Additionally, the system can infer additional information in the
past by back projecting the current scene model to previous viewpoints.
This allows to retrospectively detect objects that were previously assumed
to be static background. This may be useful for long-term analysis of action
and behavior patterns of agents in their home environment or for searching
and cataloging tasks.
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3.2.2. The Challenge in Segmenting a Scene
Segmentation of 3D scenes is usually solved by highly task-specific ap-
proaches using point clouds or depth images. Figure 3.3 gives an overview
of a typical processing pipeline allowing different pathways for segmenting
a 3D scene. The visualization is by far not complete but aims to pin down
where the focus of this work and related approaches lies.

Scene

2½D depth map

representation

3D pointcloud

representation

Cluster

candidates

Model

tting

Grouping of

components
Description

of entities

Semantic ltering

of pixels

Semantic ltering
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Figure 3.3.: A pipeline of typical steps in the process of segmenting a 3D
scene. Most approaches either choose a depth map or point-
cloud representation for their algorithms. A semantic filtering
step applies world knowledge to mask the relevant parts of the
scene. These are clustered or fitted to a model and optionally
grouped to describe the entity.

A large field of application for this topic is mobile manipulation. So,
many publications for segmenting tabletop scenarios can be found that gen-
erate simplified representations of the segmented objects in order to support
grasping strategies. Fitting geometric primitives to point clusters on top of
a supporting plane is a widespread strategy (Rusu et al., 2009c; Marton
et al., 2010; Goron et al., 2012). Other approaches renounce the use of pre-
defined templates, but instead incorporate self-motion in order to separate
individual objects visually over time in an fixation process while moving
a camera around objects (Björkman and Kragic, 2010; Nalpantidis et al.,
2012) or manipulate object hypotheses in order to verify connected parts
(Kuzmic and Ude, 2010).

Recent model-free approaches consider multiple cues from basic surface
properties in order to generate sensible object hypotheses. Uckermann et al.
(2013) focus on the grouping aspect and combine identification of smooth
object surfaces and the composition of these surfaces to unified objects by
using a probabilistic similarity graph considering adjacency, curvature and
co-planarity. This enables them to reliably segment highly cluttered table-
top scenarios of stacked objects.
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Another graph-based segmentation that is not limited to tabletop scenar-
ios and also includes color cues is described in Strom et al. (2010). When
moving from close-range tabletop scenarios to mid-range vista space sce-
narios the requirements and challenges change significantly. Single objects
are usually not as nicely spatially separated and their appearance is not as
compact as it is the case for many on-table objects. These are usually quite
convex while larger objects like furniture often appear in a concave shape.
Further, the background of vista space scenarios is much more complex and
the scenes contain more variety in the level of detail that must be applied
in the segmentation.

Nan et al. (2012) try to deal with these problems by fitting templates of
three-dimensional structures into the scene. Their goal is to detect known
primitives using model fitting and to gain directly an entity description. In
contrast to the fitting approaches we have seen in tabletop scenarios, these
templates are much more complex. They use a set of specific models of ob-
jects that may be found in indoor scenarios – such as chairs, tables and other
furniture – instead of geometric primitives, which has the disadvantage that
this approach is limited to segmenting the fixed set of predefined objects.
Another example of very goal directed handling of the segmentation prob-
lem is presented by Rusu et al. (2009a). They generate a dense semantic
3D object map by systematically decomposing the complete room structure
into meaningful parts while making extensive use of world knowledge about
typical indoor environments. So this approach handles basically all aspects
of the processing pipeline in a very manually crafted way. The presented im-
plementation is highly optimized for the kitchen environments described in
the paper, but does not scale to different scenarios because other room types
require different world knowledge and also vary much more than kitchens
usually do.

Apart from these geometric approaches utilizing point clouds for segmen-
tation, there is another type of algorithms that primarily rely on the depth
image. This is a two-dimensional map which codes the measured depth for
each pixel of the sensor. Silberman et al. (2014) try to realize a pixel-wise
full image labeling of semantic regions based on color and depth information.
They use hierarchical segmentation trees in combination with convolutional
network features for generating an optimal set of classified superpixels for
grouping the scene into meaningful regions.

The latter approach is the most similar one compared to the segmentation
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strategy I will describe in the following, although the methodology differs
strongly. The presented strategy focuses on labeling scene parts with dy-
namic properties rather than on distinguishing between individual uniform
instances. Assembling continuous structures or building entities out of this
information is not within scope of this work. But a combination with an
approach which exploits geometric features for identification of reasonable
entities like presented in Uckermann et al. (2013) would be imaginable.

The goal of this chapter is to generate an egocentric scene model that
supports the interaction between an domestic service robot and the human.
The basic assumption for this is that the robot can learn many relevant
structures of the environment without prior world knowledge just by ob-
servation of the interlocutor’s (or collaborative) actions and descriptions
which are linked to changes of the environment. Hence, a full segmentation
of all visible entities as seen in the tabletop approaches — especially by
fitting known templates — or even a pixel-wise full scene labeling as seen
in Silberman’s work is not required here. Whereas the depth image based
strategy seems suitable for an egocentric model dealing with scene changes.
The segmentation approach I will be using for realization of the egocentric
scene model is purely based on observation of change of the background and
foreground structures.

3.2.3. The Articulated Scene Model
A first approach to segmenting the currently observable scene into func-
tional parts was introduced by Swadzba et al. (2010). Their Articulated
Scene Model (ASM) is the basis for the further considerations that lead to
the results described in this thesis. The model is motivated by the defini-
tion of motion and change proposed by Rensink (2002). Motion is defined
as variation referenced to location and change as variation referenced to
structure. This has consequences on the perceptual processes involved. For
motion only local derivatives are needed so that motion detectors can be lo-
cated at the initial stages of visual processing where spatial representations
have minimal complexity. In contrast, change is referenced to a particular
structure that must maintain spatio-temporal continuity and needs therefore
more sophisticated processing. In the model, the assumption of a separated
processing of change and motion is realized by two layers, one responsible for
handling the articulated scene parts and one for handling moving entities.
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Concretely, the model focuses on detection of completed changes which
involves a comparison of currently visible structures with a representation in
memory. Hence, it detects movable parts and adapts the static background
model of the scene simultaneously. The detection of dynamic object parts
(like moving humans) is modeled in a separate layer and requires a tracking
mechanism. In the original implementation by Swadzba et al. (2010) this
was realized with particle filters using clusters from optical flow. The refined
implementation used in the research for this thesis utilizes the body tracking
algorithms in the NiTE Middleware in combination with the OpenNI SDK1.
It should also be said, though, that the algorithm only labels the pixels of a
2.5D representation of the scene with the respective dynamic properties, it
does not track or distinguish instance-level entities. This needs to be done
in a post-processing step.

The algorithm introduced by Swadzba et al. (2010) (see Algorithm 1)
works on depth images and assumes that the view direction remains still
while the processing of the model is active. At each time step t the algorithm
receives the depth image of the current frame

Ft =
{
f it

}
i=1...n

, f ∈ R≥0, t > 0 (3.1)

(where f it is a depth measurement for an individual pixel) and the current
dynamic regions Dt ⊂ Ft provided by the tracking module. In the default
version of the algorithm the dynamic regions are excluded from the current
frame so that F′t = Ft\Dt. Now the algorithm compares the input frame F′t
with the currently known static background St−1, where

St =
{
sit

}
i=1...n

, s ∈ R≥0, t ≥ 0, sit=0 = 0 ∀ i (3.2)

The algorithm does a pixel-wise comparison in order to determine the
dynamic property of the structure at this location. For each pixel f ′it a
decision is made whether it

1OpenNI and NiTE are software components by the PrimeSense Company providing
APIs for using RGB-D sensors like the ASUS Xtion Pro Live. After the acquisition
of PrimeSense by Apple, it was announced that they would no longer support the
software. However, Occipital and other former partners of PrimeSense are still keeping
a forked version of OpenNI 2 (OpenNI version 2) active as an open source software.
http://structure.io/openni (visited: March 1, 2015)
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• supports the background model St−1

• defines a new background observation st 6= st−1

• or represents a movable part ot ∈ Ot of the scene

These decisions incorporate an adaptive noise model which defines the
noise level θid for a pixel linearly to its depth value

θ(d) = βd, β, d ∈ R≥0 (3.3)

where β is the sensor specific noise factor (e.g. for the ASUS Xtion Pro we
choose β = 0.03 which gives an expected noise range of 3cm at 1m distance).
Additionally, for every pixel a weight value wi is saved which represents the
reliability of the background model. In detail, the decisions are made as
follows (also see Algorithm 1):

• If the distance of the observed depth f ′it to the corresponding back-
ground depth sit−1 is in the range of θ(sit−1) then it is accumulated to
an updated static background point sit with improved reliability (line
4).

• Otherwise, if the input f ′it is farther than the known background sit−1,
the background point is reset to the new measurement and the relia-
bility is reset to 1 (line 8).

• In the opposite case, when the input is nearer to the camera (distance
is smaller) than the known background, it is assumed to be part of a
foreground object and therefore added to the set of pixels representing
movable objects (line 11).

In contrast to the original implementation, in our case the static scene
model is not directly fed back into the tracking module providing Dt, because
the proprietary tracking module used here works completely independently
(see above). However, a slight alteration of the original algorithm allows a
combination of both detection mechanisms that relies more strongly on the
movable parts detection instead of the black box tracking module. Instead
of subtracting the dynamic parts from the input, it may also be subtracted
from the detected movable parts Ot. In this case, the pre-processed input
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Algorithm 1 Background adaptation and detecting movable objects
Require: Ft = {f i

t} (current frame)
Require: Dt ⊂ Ft (current dynamic clusters)
Require: St−1 = {si

t−1} (current background model)
Require: W = {wi} , wi = 1 ∀i (reliability model)

1: Ot ← ∅
2: for i = 1 to n do
3: if |si

t−1 − f
i
t | < θi

d then
4: si

t ← si
t−1 + 1

wi (f i
t − si

t−1)
5: wi ← wi + 1
6: else
7: if f i

t > si
t−1 then

8: si
t ← f i

t
9: wi ← 1

10: else
11: si

t ← si
t−1

12: Ot ← Ot ∪ f i
t

13: end if
14: end if
15: end for
16: O′t ← Ot \Dt

17: D′t ← Ot ∩Dt

18: return St = {si
t} (new background)

19: return O′t (movable parts)
20: return D′t (dynamic parts)

F′t would not be necessary anymore, instead Ft would be used as input for
the algorithm. As a consequence this gives the new movable parts model

O′t ← Ot \Dt (3.4)

and the new dynamic parts model

D′t ← Ot ∩Dt (3.5)

This altered algorithm confides more strongly in the movable object de-
tection, because only non-static parts of the scene can be dynamic objects.
This should eliminate mis-detections of the person tracking module, given
the falsely detected structure is assumed to be static by the ASM.
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3.3. Anchoring and Integrating Egocentric Models
Now, egocentric models do not exploit their full potential if they do not
persist for later reference. But most systems in recent publications build
up egocentric representations only for short term use, for generating sym-
bolic entities that are transferred to the allocentric representation so that
the egocentric model can be dismissed (e.g. Zender et al., 2008; Vasudevan
et al., 2007; Chitta et al., 2012; Nieuwenhuisen et al., 2013). This means
that information gathered egocentrically at one location might either not
be accessible when the same location is re-visited at a later occasion, or a
potentially large number of complex information must be maintained in a
global representation. Both options do not seem convenient since reuse of
previous information is essential for many tasks and the maintenance of a
global environment representation incorporating the appropriate level of de-
tail is impractical. A more detailed analysis of the functional requirements
of an enclosing spatial representation has been discussed in Section 2.1.

Especially when considering long term operation of service robots in do-
mestic environments detailed persistent knowledge about certain areas is
vital. This can be seen in the applications described in this thesis (e.g. the
lost key scenario), but also in other interaction and learning tasks going be-
yond applying dynamic properties to segments of the scene. One could argue
that the algorithms discovering the relevant visual properties just have to be
good enough to generate the same information again when re-approaching
a previously seen area. But this is not true for ”invisible” information. For
example when one of several identical objects was referenced by another
agent, this information must be conserved and cannot be regained later. Or
when going back to the work of Kuzmic and Ude (2010), the information
about connected parts of the scene discovered by manipulation would re-
quire a lot of effort in order to regain. Here, a persistent representation is
desirable. The ASM algorithm relies on observation of changes in the scene.
Since the robot cannot observe the whole apartment at once it must be
able to detect changes that happened while it was not observing them. For
this it needs a detailed representation of the background structures when
returning to a location where such a change occurred. Also in order to infer
which objects have been added, removed or relocated in a scene, it must be
able to compare segments from the movable layer of the ASM.

All these operations would require a very complex model if they were
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done allocentrically. It would have to have a very detailed structural repre-
sentation at least at those locations where the changes are expected and it
would require a sophisticated temporal management mechanism that is able
to track changes in the currently visible parts of the scene, but also infer
temporal correlation in (temporally) invisible areas at the same time in the
same representation. This leads to a high computational overhead just to
maintain the overall allocentric representation of the environment.

3.3.1. A Twofold Spatial Representation
In this thesis I argue for a closer integration between allocentric and ego-
centric representations, and also for persistent egocentric representations
which interact among themselves as well. The system described in the fol-
lowing sections is supposed to take a step in this direction by exploring a
way of anchoring multiple short-range, egocentric representations in a global
map structure. The representation follows the idea described in the anal-
ysis Chapter 2 of using three different types of representations in order to
provide a unified way of representing spatial knowledge (see Sections 2.3).
The developed distinction suggests to use an instance based and a struc-
tural allocentric representation in combination with a structural egocentric
representation.

Following these deliberations, I propose a twofold representation inspired
by the findings of Mou et al. (2006) that incorporates allocentric information
as a map structure which relates objects to landmarks, as well as egocentric
subsystems anchored in the global coordinate system.

Those egocentric models are semantically annotated 3D models of the near
field of view of the robot. They are anchored through the camera position
from where the scene was captured in global coordinates. A proposal for
the decision making process triggering this can be found in Section 3.3.4; a
schematic visualization of the representation is depicted in Figure 3.4. This
solution does not require a sophisticated management strategy for maintain-
ing a complex overall model. Through the topological anchoring of these
models it is possible to update local spatial structures through locomotion
which allows simple transfer of knowledge. The available information can
easily be filtered on a spatial basis, while the spatial relations of the individ-
ual egocentric models are accessible at any time which allows the correlation
of the represented data. This way, the results from egocentric calculations
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Figure 3.4.: Schematic visualization of the twofold spatial representation.
Depicted is the allocentric map containing probabilities for ob-
stacles in the environment and egocentric models anchored in
the global representation.

can be preserved and reused when approaching the same location again. But
this also allows for extraction of new information from previously visited lo-
cations. Either because of newly gathered facts that were not available
at the time when the location was originally visited, or just because the
information was not needed but has become relevant in the meantime.

The allocentric part of the representation does not only hold anchors for
the egocentric models, but also anchors for semantic entities like objects,
agents or locations. A two-dimensional map structure holds a rough rep-
resentation for the spatial layout of the environment which allows to relate
locations to landmarks. This serves as the allocentric basis for the system
and is realized through a grid-cell based obstacle map from a SLAM system.
This map can be overlayed with additional regional semantic information,
for example for a probabilistic belief about the existence of certain proper-
ties in different regions. An application using this feature is described at
the end of this chapter in Section 3.4.2.
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3.3.2. Registering a Scene Model with the Current View
In order to utilize previously gathered information on a mobile robot, the
system must be able to integrate multiple scene models from different view-
points. In the following I will present a method to reliably fuse multiple
scene models from different locations into a new model representing the
current view. The method only transfers previously generated background
models to the new scene, because non-static parts can be calculated if the
background is known. Since the method is designed for a mobile robot,
I assume that a position estimate of the camera in global coordinates is
available, which drastically reduces the search space for the registration
process. The Iterative Closest Point (ICP) method is used in combination
with the localization information for registration of the corresponding point
clouds. One of the reasons for registration is to compensate inaccuracies in
the localization, which also argues for matching only the static parts to the
currently visible scene. Because of the movable or even dynamic nature of
the remaining parts it is likely that their location has changed since the last
observation. This would make the correct registration of point clouds very
hard, because registration algorithms usually try to find the best matching
of the complete scene. When trying to register two point clouds that origi-
nate from two very different scene configurations, the probability for making
mistakes in the matching is very high. It is much saver to try to match a
reduced representation that only contains the static parts of a scene to a
full scene with additional movable objects than trying to match two very
distinct scenes (see Figure 3.5). Of cause, the higher the confidence that
the static labeled structures are in fact static, the better are the chances to
correctly register scenes. Newly generated scene models with only few ob-
servations involve the risk of containing actually movable structures in the
static layer and therefore are endangered to suffer from major scene changes
while registering scenes.

Further, especially if the angle on the same scene is particularly different,
it is possible that previously discovered fronts of smaller objects are not fully
visible anymore and therefore occluded by the object’s back. When trying to
register those scenes risks exist that the object’s back and front are matched
onto each other, which would result in an inaccurate model. Chances for
this to happen with static parts of the scene is significantly lower, because
usually static scene parts are represented by larger structures like walls,
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Figure 3.5.: Registering a previous scene model to the current view.

floor or furniture which are rarely seen from front and back. And if so, they
are sufficiently far apart from each other for not being mismatched. The
distinction of movable and dynamic parts of the scene must therefore be
done after merging the background models using the methods explained in
Section 3.2.3.

3.3.3. Generating a Valid Model for the Current View
When initializing a scene model at a new location, a reasonable subset of
the previously generated static background models Sju are transformed into
the current position of the camera. The subset can be retrieved through
filtering on a spatial and temporal basis. Scene models that represent a
completely different location without overlap with the current field of view
are skipped (a strategy for limiting the number of scene models for a certain
location, so that the number of egocentric models does not outgrow over
time, is explained in Section 3.3.4). This way, previous information from
other viewpoints is transferred to the current situation. The transformation
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for each merged scene model is calculated from the memorized self-motion
from the models’ positions to the current one provided by the allocentric
representation which is maintained by the navigation component.

For every scene model the static background information is transferred to
a point cloud representation. The corresponding transformation is applied
to the cloud in order to represent it in the coordinate system of the current
view. Because of the possible inaccuracy of the position estimate for the
current or previous locations, the resulting point clouds are aligned to the
current view by using the ICP method (Chen and Medioni, 1991; Besl and
McKay, 1992). Afterwards, they are again rasterized as a depth image.
Thereby the smallest distance is chosen if two or more points fall in the
same cell. As a post-processing step a simple closing operation is applied
to the resulting depth image in order to close small holes in the surface
resulting from uneven distribution of the 3D points on the raster.

Beuter et al. (2011) suggest to use only the ICP registration method to
accurately reconstruct the current view from the previous model. How-
ever, they assume a subsequent combination of scene models and only small
changes in the camera position. This is problematic when the robot travels
greater distances. Also this prevents the system from considering knowledge
from older scene models. But most importantly, the background model can-
not be transformed and used unchanged from a different viewpoint, because
at the new location different environmental structures may provide the ac-
tual static background. The effects of this are analyzed in the evaluation
Section 3.5.1 and are depicted in Figure 3.19. Two examples illustrate the
problems with this naive approach (see Figure 3.6):

Example 1 (False movable parts) If the current view contains back-
ground structures that were not visible from the previous location, but do
now occlude the previously assumed background, the naive method would
mark these structures as movable.

Example 2 (False static parts) Also, the new view may contain objects
that would have been foreground in the previous location because the back-
ground was known. At the current location the object has different back-
ground structures which previously may not have been visible. So the naive
method would mark this object as background although all necessary infor-
mation is available to label it correctly.
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Table

A

B

(a) Previous viewpoint

Table

A

B

(b) Current viewpoint

Figure 3.6.: Errors in matching a scene using the naive matching strategy.

As part of this work a new merging algorithm for fusing the models with
the current camera frame has been developed which is similar to the basic
ASM algorithm but utilizes the spatial relations of the merged models. The
merging algorithm (see Algorithm 2) subsequently merges the transformed
static background models Sju into the new accumulated background model
Sv which initially contains the currently perceived depth camera frame Ft.
Note that this algorithm only merges the scene models, but does not dis-
tinguish movable or dynamic parts. This is done in a subsequent step using
Algorithm 1.

For each pixel the same tests as for the basic ASM algorithm are per-
formed. If the incoming transformed pixel sj,iu is in range of the current
accumulated background value siv the model is updated with increased re-
liability (lines 4). If it is farther than the currently believed background or
unknown, a refinement of the accumulated model may be necessary (line
6-10). As described before, a few special cases must be ruled out in or-
der to ensure a correct model. If the transformed pixel does not meet the
corresponding premises, it is ignored. The premises are:

Premise 1 (Field of View)
The corresponding 3D point of the pixel siv representing the accumulated
background must have been in the field of view at the time when the
incoming model Sju was generated.
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Otherwise it is not safe to assume that the object was moved, it just may
have not been visible. This addresses the problem stated in Example 1 on
page 46. This premise applies to the blue areas in Figure 3.7.

Premise 2 (Occlusion)
The currently assumed background point siv must not have been occluded
by any other point for the original location of the camera of the incoming
model Sju.

Otherwise the object may again have been invisible because it was hidden.
This is a variant of the situation described in Premise 1 and addresses a
similar problem. This premise applies to the green areas in Figure 3.7.

Premise 3 (Neighborhood)
The candidate point siv of the accumulated model must not have neigh-
boring points in the incoming transformed model Sju.

Because of the transformation of the scene models it is possible that small

Algorithm 2 Merging multiple scene models from different viewpoints
Require: Ft = {f i

t} (current frame)
Require: Sj

u = {sj,i
u } (transformed background models)

Require: Sv = {si
v} (accumulated background model)

Require: W = {wi} , wi = 1 ∀i (reliability model)
Require: Vj (view frustums of the models)
Require: P (x,V) (projection of a measurement x to the rear boundaries of a view frustum V)

1: Sv ← Ft

2: for j = 1 to m; i = 1 to n do
3: if |sj,i

u − si
v | < θi

d then
4: wi ← wi + 1
5: else
6: if sj,i

u > si
v and all premises apply for si

v then
7: si

v ← sj,i
u

8: wi ← 1
9: else if sj,i

u is unknown and all premises apply for si
v then

10: si
v ← P (si

v ,Vj)
11: wi ← 1
12: end if
13: end if
14: end for

15: return Sv = {si
v} (accumulated background)
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A

B

Figure 3.7.: Visualization of the area where the premises apply. Camera
position A is the former viewpoint, B is the current view. Notice
that the background of objects c and d in viewpoint B are
known from the former viewpoint. Object c will not be marked
as movable because Premise 1 applies (blue area). Object d
will not be marked as movable because Premise 2 applies (green
area). Any measurements in the red area will not be marked
as movable because of Premise 3.

holes or inaccurate borders of the objects appear when re-rasterizing the im-
age. In order to not propagate these errors into the accumulated model, the
neighborhood in the transformed model must be checked. This premise ap-
plies to the red areas in Figure 3.7. All premises are calculated using the
point clouds of the involved scenes and the corresponding camera informa-
tion including 6D pose and angles of view.

If the premises apply for siv and the candidate sj,iu is farther than the
currently believed background, the accumulated background model set to
sj,iu and the reliability are reset (line 8). If the transformed measurement
is nearer than siv it is ignored, because it is already known that the static
background is behind this pixel. However, if sj,iu is unknown (has no mea-
surement) the model is set to the rear projection P (siv,Vj) of siv on the
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view frustum of the camera corresponding to Sju (line 10). This accounts for
the problem stated in Example 2 on page 46. In this situation it is known
that siv is not a static structure because it was not there in the model Sju
at moment j. The premises ensure this fact. However, the correct static
background at this pixel is not known. It is only known that it is not inside
the field of view of the camera at moment j (because otherwise there would
be a measurement in Sju). Accordingly, the accumulated background at this
pixel is set to the border of the viewport corresponding to Sju in order to
enable the subsequent regular ASM algorithm to detect this structure as
movable (c.f. Figure 3.8).

A B

Figure 3.8.: Rear projection to view frustum of former viewpoint. Object
1 is added in between proceeding from viewpoint A to B and
therefore is known to be movable, but the background is un-
known. For this reason, the measurements are projected to the
rear boundaries of A’s view frustum for the static model, be-
cause this is the farthest known area which provably does not
contain static structures.

Figuratively speaking, the algorithm refines the currently perceived static
background using evidence from other viewpoints and thereby fills areas that
have not yet been measured, e.g. because of shadows or reflecting surfaces.
From the knowledge of the static parts of the scene at different times in the
past, the algorithm can implicitly detect if an object was manipulated. Cer-
tain parts of the current scene will be marked as movable if one of the merged
models provides evidence that the corresponding object was not present at
the time the model was built up or it was already known to be movable.
The premises prevent that an object is falsely marked as movable because it
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A

B

(a) Previous scene model

A

B

(b) Current viewpoint

A

B

(c) Merged scene

Figure 3.9.: Scene from different viewpoints. Object 1 is known to be mov-
able, Object 4 is added to the scene while changing perspective.

was simply not visible from older views, but appeared in a subsequent view.
So this algorithm allows the system to gain a much more informative ASM
without observing any change in the scene from the current viewpoint.

Figure 3.9 summarizes a few of the properties just described. In view-
point A the static background for object 1 is known (solid black), so it is
marked as movable (dashed) (3.9a). In viewpoint B before applying the
merging algorithm everything is assumed to be background (solid black)
(3.9b). This includes the new object 4 which was added in between observ-
ing the scene from the two viewpoints. After merging (3.9c) object 1 can
be marked as movable because the transformed model provides the required
background data and all premises apply. However, although the background
is known for object 2 it cannot be marked as movable because the previous
front is known to be static and the back is ignored because it does not fulfill
the occlusion premise. Object 3 is assumed to be background as well be-
cause of the premises and the missing background. Object 4 can be marked
as movable although the correct background is not known, according to
Premise 1 (Field of View). Instead of the correct background structure the
border of the viewport belonging to viewpoint A is marked as static.

3.3.4. Applications Exploiting the Model’s Potential
The developed scene model is not very complex. It does not feature a
sophisticated segmentation or tracking strategy and does not require elab-
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orate event history management. Yet, it is possible to implement powerful
applications that allow substantial statements about the scene.

Keyframes as Memory References

One of the most powerful tools for making statements about the scene
changes is the comparison of snapshots of the scene models at different
points in time. In order to detect changes that have a semantic relevance it
is important to compare the correct pairs of situations. For example, if the
system has the goal to find the car keys which have been last seen by the
home owner the day before, it needs to compare memory references from
the previous day with more recent data – either from the recent past or
from the present through renewed inspection. For this it is crucial to store
reasonable snapshots of the scene and scene model as persistent references.

This is realized through the concept of keyframes. A keyframe is de-
scribed through the raw depth image snapshot at a specific point in time
and the corresponding static background model. My suggestion is to keep
keyframes at the beginning and end of an observation (here observation
means the duration of recording a ASM at one specific location). A more
sophisticated strategy would be to detect additional keyframes in the obser-
vation marking a completed movement sequence in the scene. This could be
easily implemented by using the optical flow on the movable objects layer
of the ASM.

By saving these keyframes the system has a reference to the scene layout
at this point in time. It can even apply a more recent version of the scene
model to the raw depth image to find movable objects that were not detected
at the time the keyframe was generated.

Certainly this strategy needs some kind of forgetting mechanism so that
the number of saved keyframes and models does not outgrow over time.
For the scene models this can be done quite intuitively. When a new scene
model is established from a very similar viewpoint as an older model, this
older model can be forgotten, because its information should be merged
into the new one. Models from a significantly different view on the same
scene, however, should be maintained in order to facilitate occlusion issues in
future analyses. Selecting candidates from the keyframes mentioned above
for forgetting is not as intuitive. The goal is to only forget those keyframes
that are not relevant for future reference. A naive approach to this problem
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would be to apply an age filter, but the better solution would be to somehow
extract the semantic relevance of these specific configurations through a
high-level component.

Layered Action Models

When continuing the idea of taking snapshots for completed movements
in order to reference reasonable states of the scene model, one may also
establish a layered action model. This means that every detected keyframe
at the end of a movement is interpreted as a completed action. The detection
of these keyframes must be done by another high-level component on top of
ASM (e.g. using optical flow). A completed action triggers the generation
of a new action layer for representing the next manipulation of the scene.
This new layer takes the keyframe as a basis for creating a new scene model.
This way, the new action layer contains only changes that have been made
since the last keyframe while the older layers still track the accumulated
changes. Together with the persistence strategy from the previous section
this can even be done retrospectively.

A layered action model like this allows to overcome the shortcomings
of the raw ASM in terms of segmentation (see Sections 3.2.2, 3.2.3). As
described above, the naive ASM algorithm cannot distinguish two movable
objects that are located closely together. By using this layered action model
a distinction of the objects would be possible as long as they were manipu-
lated independently.

Further, the extracted actions can be used to analyze scene changes on a
trajectory level. Since these actions should optimally represent the change
to only one object, the start and end configuration of the now unique mov-
able object allow a rough approximation of the trajectory without using a
classic visual tracking algorithm. Among other applications, this is useful
for learning trajectories of objects that have a defined but limited move-
ment space like doors or drawers. This ability is used in the case example
described in the section below.

Case Example: Movement Strategies for a Mobile Robot

The navigation system described in Meyer Zu Borgsen et al. (2014) utilizes
the ASM component developed for this thesis. The goal of the system is
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to clear obstacles in navigation tasks through cooperation with a human.
For this it uses the functional roles provided by the ASM component. In
a first phase the robot observes the human manipulating objects in the
environment, specifically opening or closing doors. From the observations
the robot infers the movement space of the doors.

(a) Movable object detected blocking
the path.

(b) Object was moved out of the way.

Figure 3.10.: Example visualizations of the navigation system incorporat-
ing ASM for movement strategies on a mobile robot. The im-
ages illustrate the perceived point clouds including the movable
parts (blue), the planned path (green), and expected collisions
(red). The lower right corners illustrate the robot’s position
on the occupancy grid.

In a second phase the robot can utilize this information in a navigation
scenario in which the planned path is blocked by one of the doors. Through
the knowledge of their movable nature the robot triggers a behavior that
tries to clear the path (Figure 3.10a). The robot asks a nearby person to
open the door. Using the knowledge of the door’s trajectory it positions
itself in a way that the door can be opened by the human. As soon as
the analysis component utilizing ASM provides the information that the
movable object has moved out of the way the navigational task is continued
(Figure 3.10b).
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Case Example: Lost Key Scenario

For the evaluation of the work described in this thesis and other research
projects a scenario has been developed bringing together a few results from
research on situation model acquisition. The scenario involves teaching the
locations of several objects to the robot, including the homeowner’s keys.
The goal for the system is to detect additions of new objects to a scene and
also the movement of objects from one location to the other while matching
verbally assigned labels to the placed objects. ASM is used to detect events
describing the addition or removal of objects to or from the scene over
the observation period which is triggered by the human teacher through
a speech command. A controlling application infers that the removal of a
labeled object followed by an addition event without re-labeling means a
relocation of the same object. This way the location of several objects in
the apartment can be tracked over time.

Further, the robot is able to verbalize the currently believed locations
of the tracked objects. Since keys are a typical candidate for getting lost
in the household, a plausible query for the robot would be “Do you know
where I recently put my keys?”. This application of the ASM contributes
to the causality dimension of the theoretic definition of a situation model.
It exploits the assumed causal link between two observed events to make
statements about the movement of objects.

3.4. Focusing the Robot’s Attention
In order to realize a robotic system that is able to learn the ASM just from
observation in HRI it is crucial that the robot is located at a position where
it can perceive the scene changes when they occur. Hence, it is necessary
to design a behavior that incorporates a sophisticated attention and posi-
tioning strategy that is able to detect situations in which a relevant event
might occur and perform a reasonable repositioning for closer observation.
The system described in this thesis contains an attention mechanism that
consist of two stages. First, a multi-modal person tracking system is used
to keep the robot’s interlocutor in visual focus and to evaluate her viewing
direction. Further, a visual attentive region mapping system uses the al-
locentric map representation of the situation model to provide information
about potential interaction spaces in the environment, namely horizontal
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surfaces. The repositioning behavior evaluates the positions of persons and
surfaces, as well as the viewing direction in order to detect whether the in-
terlocutor approaches a possible interaction space. In this case it repositions
the robot so that it can look over the interlocutor’s shoulder.

3.4.1. The Interlocutor’s Viewing Direction
For person tracking on the mobile research platform BIRON the multi-modal
anchoring system by Fritsch et al. (2003) has proven to work well in the
past across multiple scenarios and research projects at Bielefeld University.
However, the component provides only locations of person hypotheses, not
their viewing direction. Within the context of this thesis I have extended
the system in order to being able to receive viewing directions of the tracked
persons as well.

System overview

The approach of Fritsch et al. (2003) applies perceptual anchoring of sym-
bols from multiple modalities to coherent person hypotheses. Anchoring
is defined as the process of linking abstract representations of objects in
the world (symbolic level) to physical observations of these objects (sensory
level). These links (anchors) are dynamically updated every time a new ob-
servation of the object is perceived. The symbolic description of a complex
object contains multiple anchors to different types of percepts, originating
from different perceptual systems. Different anchors cope with different
spatio-temporal properties of the individual percepts, because each anchor
defines its own component anchoring process. A signature list provides an
estimate for the values of the respective observable properties of the object.
In the implementation for this thesis torso and leg percepts have been used
to compose the complex person symbol. However, in principle the system
also supports face, sound source and shirt texture percepts. Each percept
is generated from the sensory input by individual detection components.

The additional composite anchoring process manages the composition and
connection of individual percepts to the symbolic descriptions (see Fig-
ure 3.11). This process requires three models describing the complex symbol:

• The composition model describes the spatial layout of the individ-
ual components within the composite symbol.
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Figure 3.11.: Multi-modal anchoring of persons

• The motion model describes how the complex symbol may move.
This allows a prediction of the composite symbol’s position as well
as those of the components by using the spatial relations from the
composition model.

• The fusion model defines how the percepts from the individual an-
chors combine to the composite symbol.

Since every percept is assumed to originate from exactly one object in
the real world, a supervising process is required that controls the selection
of percepts by anchors. Instead of statically selecting matching percepts,
every component anchoring process assigns scores to all percepts rating the
proximity to the predicted state of the corresponding composite object. The
supervising process then manages the optimal assignment of percepts to
anchors and decides on the establishment of new anchors or removal of not
updated anchors.
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Percept Detectors

For the system presented in this thesis two types of components are used to
compose a person symbol: legs and torso. The detector for pairs of legs uses
the radial distance scan from the laser sensors of the robot at leg-height.
This gives 720 distance measurements at ∼ 35Hz within a complete 360°
field of view. The detector groups neighboring distance points to segments.
These segments are classified for being legs based on the number of reading
points, mean distance, standard deviation, width in world coordinates and
distance to the adjacent segments. Single leg hypotheses are ultimately
grouped to pairs of legs (see Fritsch et al., 2003).

The torso detector uses the depth image from a ASUS Xtion Pro mounted
on top of the robot. The detector can run in two different modes: The static
mode (the robot stands still) and the moving mode (the robot is in motion).
In the static mode the person detector from the OpenNI NiTE framework
can be used (Shotton et al., 2011). Their algorithm performs a dense proba-
bilistic body part labeling by classifying every pixel of the depth image using
a decision forest based on specialized depth image features. The resulting
body parts are used as approximation for skeletal joints. Their 3D position
is refined by back projection to the person’s point cloud which can be re-
trieved from depth image. The output of this algorithm is either a complete
or partial body skeleton or just the person’s center of mass, depending on
the currently observable body parts and the algorithm’s performance which
is limited by outer disturbances like sun light, reflections, occlusion, etc.
However, this algorithm is designed for stationary views on the scene and
does not work very well when the sensor is in motion. This is why the mov-
ing mode of the torso detector was implemented. In this mode the 3D point
cloud of the scene is analyzed for clusters of certain size as rough person
hypotheses. Their centers of mass are returned as a result.

Extension to the existing System

In order to enable the multi-modal anchoring to track the person’s orien-
tation, a few changes have been applied. The composite symbol and it’s
anchors now host a new signature orientation with its corresponding merg-
ing instructions in the fusion model. The implementation of the torso per-
cept now supports a function to receive an orientation property on condition
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that the detector provided a skeleton (as mentioned above, this is not always
the case). The orientation is calculated from the waist joint’s orientation,
whereby we assume at this point that the person is always oriented towards
the robot, because the detector is not able to distinguish between a per-
son’s front and back. The score calculation scheme of the torso anchor and
the fusion model consider both the assumed orientation and the mirrored
counterpart as matching candidates. This enables the system to track arbi-
trary orientations – especially when the person turns away from the robot
– although only orientations towards the robot can be observed.

Additionally, the system assumes that persons in motion are always ori-
ented towards their moving direction. This can be exploited to refine the
tracked orientation through close cooperation between motion model and
fusion model. If the motion model detects a linear velocity above a certain
threshold, the direction of the corresponding vector is used by the fusion
model to update the orientation. Since this angle is unambiguous in con-
trast to the torso percept’s information, the corresponding fusion scheme
allows to switch the previously assumed orientation of the composite sym-
bol to the opposite direction.

3.4.2. Detecting Interaction Spaces for Manipulation
For the observing service robot it is inappropriate and also impractical to
closely follow the observed person around the apartment to never miss any
important event. Instead, an appropriate strategy must be applied that re-
duces the search space and enables the robot to approach the human only
in reasonable situations. A valuable subset of the locations inside an apart-
ment that are worth being observed for changes in order to segment unique
objects and their functional role are horizontal surfaces. It is very likely that
those surfaces – typically provided by tables, shelfs or cupboards – support
objects that are frequently manipulated by the homeowner. The Semantic
Annotation Mapping (SeAM) system has been developed for mapping these
kinds of task-specific semantically important areas in the robot’s environ-
ment (see Siepmann et al. (2014) for details and application in a different
scenario).

The goal of the SeAM system is to enrich the allocentric, purely spatial
map representation (Section 3.1) with low-level visual information. The po-
tentially relevant areas are detected within the robot’s visual field of view
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Figure 3.12.: Grid map layers of the SeAM system.

by using simple and computationally efficient visual features. I refer to this
kind of data as peripheral visual cues. In this case only horizontal surfaces
serve as input for the system. Those are detected through evaluation of
point clouds from the ASUS Xtion Pro depth sensor using the Point Cloud
Library (PCL) (Rusu and Cousins, 2011). The Random Sample Consensus
(RANSAC) method (Fischler and Bolles, 1981) is used to fit plane mod-
els into the 3D data considering the surface normals. The post-processing
involves clustering of the resulting points to extract planar patches and
calculation of concave hulls for a geometrical description of the patches as
polygons. Other peripheral visual cues are described in Siepmann et al.
(2014).

The data representation in SeAM is a hierarchically layered grid map
structure, based on the SLAM obstacle map which contains only physical
obstacles that can be detected by the laser range finder, such as walls and
furniture. Additional grid map layers containing a spatial representation
of the low-level visual cues are stacked on top of the base map (see Figure
3.12). Each of these semantic information layers cover the same space as the
base map in the real world. Similarly to the obstacle map, the cells of the
peripheral information layers represent a probability value for containing
the corresponding visual cue. This way, the information is directly coupled
with the spatial representation of the world surrounding the robot. Data
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from different layers can directly be combined, not only visual cues but also
their relation to the outline of the physical environment.

The actual mapping of the visual cues is done by raising or lowering the
cell’s probability values of the corresponding layer in the SeAM map. If
a cell is covered by the area containing the visual stimulus, its probability
value is raised. For cells that are in the robot’s field of view but are not
activated by the visual stimuli, the probability values are lowered. This
encoding is similar to the representation of the SLAM obstacle map.

Because of the layer structure of the grid maps representing the same
spatial area, information from multiple layers can be fused to generate more
sophisticated data. When registering visual cues in the grid map that do
not have a three-dimensional representation, the algorithm assumes that
the corresponding source of the stimulus is not behind a wall or another tall
obstacle. So, cells that correspond to obstacle cells in the SLAM layer, or
are positioned behind those cells in respect to the robot’s viewpoint, are not
altered and remain unchanged. Further, it is possible to introduce additional
grid map layers that fuse information from different sources by applying
logical operators on the detection results. Semantically these maps could
represent areas where one of the visual stimuli was detected exclusively, or
could map only areas which contain several specific stimuli at once, etc.

The grid map layer representing the horizontal surfaces is used in the
system described above to detect valuable observation targets in the envi-
ronment. By applying a threshold filter and a region growing mechanism, a
representation in global coordinates can be compiled that allows a compar-
ison with the tracked person’s viewing direction.

3.4.3. Repositioning for Observation
The implementation of the repositioning behavior for the robot was realized
using the system abstraction framework BonSAI (Lohse et al., 2013). It
makes use of the person’s locations, their viewing directions and the hor-
izontal surface information retrieved from the allocentric representation in
the situation model. The system tries to keep the present persons in focus
by tracking and turning towards them. A monitoring component analyzes
changes to the situation model. Whenever a person is standing next to a
surface and the viewing direction points towards this surface, the reposi-
tioning is triggered. The assumption behind this is that it is quite likely
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that the person approaches the surface in order to manipulate something.
Observing this manipulation may lead to new insights into the dynamic
properties of the structures on top of the observed surface and therefore to
an enlargement of the knowledge base.

In order to find a reasonable position for observing the activity, a few
requirements must be considered. The observation spot should be near to
the surface (not farther than 1 or 2 meters) but should not disturb the
person. It should be reachable from the robot’s starting position in terms of
potential obstacles blocking the path and there should not be any obstacles
blocking the view on the surface. Also, the viewing angle onto the scene
should be aligned with the person’s angle as close as possible in order to
minimize the chance of some other structures on the surface occluding the
manipulated object.

The implemented strategy begins with extracting possible viewpoints
around the surface similar to the strategy described in Siepmann et al.
(2014). The probability map from the horizontal surface layer of the SeAM
representation is received via a sensor interface (Figure 3.13a). The sys-
tem binarizes the map and applies a dilation operation with a structuring
element of roughly one meter radius. A Sobel filter operation reduces the
regions to only their boundary cells B which are assumed to have a reason-
able distance to the actual surface. Since not all of the real world locations
corresponding to the boundary cells are appropriate navigation goals, the
obstacle map is used to delete all cells which are not reachable, do not have
a minimum distance to obstacles, or are located in an unknown area. The
remaining cells are clustered using the k-means algorithm with k ∼ |B|. The
centroids of the resulting clusters are treated as viewpoints (Figure 3.13b).

For every viewpoint candidate a rating is calculated. The rating involves
the distance to travel and the position of the viewpoint relative to the per-
son. A position right next to the person is rated best, while positions in
the person’s back are rated worst. Finally, the algorithm confirms whether
a viewpoint is reachable by consulting the navigation module and then nav-
igates to the best rated reachable target for observing.
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(a) Probability map from horizontal
surface layer

(b) Remaining boundary cells with
viewpoints

Figure 3.13.: Conceptual visualization describing the calculation of view-
points.

3.5. Evaluation
The evaluation of the systems described in this chapter is split into three
parts. First, a quantitative evaluation of the merging methods for ASM
processing will be performed. Here I will test on a pixel-basis how precise
the merging works in different situations, including corner cases. The ability
to detect change events combined in a high-level interpretation component
using the ASM system will be tested in a qualitative evaluation. For this
a teaching scenario has been conducted in a real life environment. The
pro-active robot behavior for observing relevant scene changes described in
Section 3.4 is tested in a qualitative case study as well. Here the robot’s
ability to focus its attention to relevant changes made to the environment
by a human is examined.

3.5.1. Quantitative Evaluation
For the evaluation of the performance of the merging algorithm described in
Section 3.3 a large set of constructed cases in multiple settings was defined.
A quantitative performance analysis using a measure for pixel-wise accuracy
tests will be done and used for comparison with another naive matching ap-
proach. Notice that a quantitative evaluation of the original ASM algorithm
is described in Swadzba (2011).
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Goals

The goal of the evaluation is to analyze the accuracy of the simple ASM
approach and the merging algorithm in various situations. Its performance
will be compared to the naive merging strategy described in the beginning
of Section 3.3.3 — with and without registering of the 3D scenes. First,
the original ASM algorithm will be analyzed on a per-pixel basis in order to
get a baseline for the expected accuracy and a signal to noise ratio. Then,
the naive merging approach will be deployed to a small set tests that are
known to be problematic in order to show the limitations of this approach.
Finally, the accuracy of the developed merging algorithm will be analyzed
and compared with the previous tests. This allows to make statements
about the quality of the merging results.

Method

In order to regard a wide range of situations that might occur in a real-world
scenario a set of settings for the tests have been defined. The settings differ
in the types of furniture that support the manipulated objects. The chosen
settings were designed to cover the most common places in a realistic home
environment where relevant object manipulations typically take place. For
every setting two camera positions were defined that were used for recording
the scenes. Most of the actual test cases were carried out in three of the
defined settings. These are a tabletop situation (TA), a shelf with multiple
boards being used (SE) and an armchair with a small table representing
a living room situation (CA). See Figure 3.14 for a visualization of these
settings.

An additional set of another four settings (DO, SO, KI1, KI2) has been
designed to test a small subset of test cases in situations that do not conform
to the classic object manipulation scheme tested in the other settings (see
Figure 3.15). However, these settings highlight a few very interesting fields
of application for the ASM that go beyond the detection of addition or
removal of small objects.

Settings DO and KI2 target the manipulation of entities that have a
limited range in which they can be moved. But still doors and drawers are
movable objects and their function relies heavily on this fact. Since their
range for manipulation is limited an analysis of the possible trajectories is
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Figure 3.14.: Schematic visualization of settings TA, SE and CA

an interesting information to be exploited in various scenarios. As seen
in Section 3.3.4, the system has already been deployed for this reason in a
navigation scenario that contained a door as an obstacle (Meyer Zu Borgsen
et al., 2014).

Settings SO and KI1 are designed to show that the addition/removal
detection events generated by the system are not limited to table-top sce-
narios. They can be applied valuably in situations where larger objects
like furniture are displaced (KI1), or possibly dynamic entities are observed
in a non-dynamic situation — in this, case a person taking a nap on a
couch (SO).

All of the settings described above have not been cleaned from possible
distractions, on the contrary, all settings have been deliberately equipped
with additional objects that needed to be ignored by the system. The test
cases that have been used for the evaluation were defined in advance to the
execution of the tests and are similar for all settings. The definitions contain
instructions for how the objects in the scene need to be repositioned and
which manipulation should be performed in which viewpoint.

However, the specific objects used for the tests and their positions in the
scenes varied across the settings. As mentioned above, not all cases have
been tested in every setting. The test cases were designed in order to enable
an analysis of the performance of the simple ASM algorithm, the naive
merging of the multiple models and the performance of the refined merging
algorithm. A complete overview of the test cases used can be found in
Appendix A (page 205).
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Figure 3.15.: Schematic visualization of settings DO, SO, KI1 and KI2

For all test cases snapshots of the raw depth image and the various layers
of the scene model have been taken at the end of the performed test (Fig-
ure 3.16a, 3.16b). The depth images were used to label the movable parts of
the scene as ground truth (Figure 3.16c). The resulting movable layer masks
from the algorithm contain a significant amount of noise, due to the cam-
era’s inaccurate measurements. A simple heuristic for removing those noise
pixels from the masks has been implemented. This is a reasonable means for
enhancing the results for analysis, because any application defined on the
results of the ASM algorithm must task similar steps for generating usable
data. The noise canceling implementation removes all pixels that have not
at least 25% movable neighbors in a 15×15 neighborhood. Since the transi-
tion from the supporting structure to the actual object, or from one object
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(a) Original scene (b) Raw movable layer

(c) Ground truth (d) Transition zone

Figure 3.16.: Required information for quantitative analysis. The depicted
example is test case A0 in setting TA.

to the other is usually blurred in the depth image, an additional “transition
zone” was defined (Figure 3.16d). Another justification for this zone is the
fact that due to the sensor’s noise the algorithm applies a threshold for re-
labeling static pixels to being movable, which leads to systematic errors at
the transition between static and movable structures. Now the results from
the algorithms can be compared with the ground truth by counting pixels.
Each pixel is classified as being part of one of the following classes:
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inside GT outside GT inside TZ

movable TP FP
ignore

static FN TN

Table 3.1.: Categories for pixel-wise evaluation. The rows distinguish whe-
ther the algorithm marks the pixel as movable or not. The col-
umns represent whether the pixel falls into the labeled ground
truth area or the transition zone.

Procedure

The robot platform BIRON II has been used for the execution of the tests.
While following the instructions from the respective test cases, the robot
recorded the depth image stream from the depth sensor mounted on its
top. Additionally, the positions of the robot’s base provided by the SLAM
module has been recorded at viewpoints that have been taken during the
run-through of the tests. In a subsequent step the recorded image streams
with the respective robot positions have been applied to the raw ASM and
merging algorithms.

Analysis of Original Algorithm

The baseline evaluation of the pure ASM algorithm gives an impression of
how accurate the algorithm works without artifacts from the merging pro-
cess. It also provides a measure for the signal-to-noise ratio which originates
from the measurement inaccuracy of the sensor used. For test cases A0 (see
Appendix A, p. 205) the raw algorithm output gives an average F1 score
of 0.808 (recall: 0.896, precision: 0.735). Figure 3.17a depicts an example
of a scene with color-coded results.

When the noise canceling heuristic is applied, the precision raises to 0.975
while the recall values stays exactly the same. This indicates that the heuris-
tic works reliably, because it deletes most of the noise (precision is close to
1.0) but does not delete any relevant signal (recall value stays the same). As-
suming the heuristic models the noise correctly, the signal-to-noise ratio
can be calculated to 10.3:1.

When the transition zone is applied additionally to the analysis of the
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output, the recall value increases as well and the resulting F1 score reaches
0.973 (recall: 0.972, precision: 0.974). See Figure 3.17b for a visualization
of the clean results. Since both methods for generating more meaningful
results seem to actually enhance the evaluated statements’ quality, they
will be deployed to the remaining analyses as well.

Additionally to test case A0 which represents the default case for the
deployment of the ASM algorithm, a set of corner cases (A1–A4) has been
tested in order to indicate the limitations of the approach. Figure 3.18a
depicts a situation in which an elongated object was moved only a few
centimeters along its main axis. Since the majority of the object’s volume
overlaps with the former positions of different parts of the same object, the
algorithm can not perceive anything behind the object at these locations.
This leads to the visualized situation in which only the part which was
moved outside the original volume is marked as movable (F1 score: 0.576).

The fact that the ASM utilizes a noise threshold in order to compensate
for the inaccuracies of the measurements from the depth sensor has the effect
that thin objects which do not stretch above the noise threshold will not
be detected as movable (see Figure 3.18b). This is demonstrated with test
case A2 (F1 score: 0.092). As mentioned in Section 1, the noise threshold is
defined through a linear model depending on the depth of the evaluated pixel
and must be chosen in a way that planar surfaces do not show noise artifacts

(a) raw results (b) clean results

Figure 3.17.: Close-up on color coded results with and without enhancement
methods. Color code: Green: TP – Blue: FP – Red: FN –
Magenta: ignored. More results can be found in Appendix B.
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(a) Test case A1: object moved slightly (b) Test case A2: flat object

(c) Test case A3: Object in front un-
known background

(d) Test case A4: two close objects

Figure 3.18.: Examples of quantitative results from additional test cases.
Color code: Green: TP – Blue: FP – Red: FN – Magenta:
ignored. More results can be found in Appendix B.

in the movable layer. However, it should be chosen as low as possible, so
that the demonstrated effect of canceling thin objects (and the lower parts
of taller objects) has minimal impact.

Another shortcoming of the ASM algorithm is visible in Figure 3.18c.
If an object is placed in front of an area in which no measurement could
be observed so far (in this case because of the projection shadows from
the structured-light depth sensor behind the table) it cannot be marked as
movable (F1 score: 0.917).
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The last demonstrated problem is not accountable for wrong labeling of
pixels but has consequences for interpretation of the data (Figure 3.18d).
As already mentioned in Sections 3.2.3 and 3.2.2, the ASM algorithm does
not distinguish between entities on object-level. The algorithm itself has no
means for separating the two close objects in test case A4. A solution for
this has already been discussed in Section 3.3.4.

Actually, this solution can contribute to rectifying most of the presented
shortcomings. A combination with an approach exploiting geometric fea-
tures for identification of reasonable entities like presented in Uckermann
et al. (2013) would enable object detection and overcome inaccuracies in
the labeling process. Especially cases A1, A3, and A4 could be rectified,
resulting in correctly segmented objects. However, for case A2 this solution
would not yield any positive result. Here, a tracking approach applied to
the mechanism for distinguishing movable parts from static ones would be
imaginable.

Analysis of Merging Algorithm

For the analysis of the merging algorithm the test cases M0–M9 will be
analyzed. But in order to show the relevance of a sophisticated merging
scheme when combining two scene models from different viewpoints, the
naive approach which just matches the point clouds and continues with the
default ASM algorithm will be evaluated.

From Figure 3.19 one can read that the naive matching generates the
same errors as predicted in Section 3.3.3. In test case N0 the naive version
marks many areas of the scene as movable although nothing changed in
the scenes, neither while observing nor when transitioning from VP A to
VP B (Figure 3.14). This conforms to Example 1 (p. 46). In test case
N1 one can observe false negatives on the moved object when using the
naive method. These errors occur after transitioning to the new viewpoint
although the relevant information from the previous viewpoint is accessible.
In both cases the sophisticated merging algorithm makes almost no errors.

Expressed in numbers this means a large difference in the average F1
score for test case N1. The naive method produces a F1 score of 0.787
while the merging algorithm reaches 0.965. Since test case N0 does not
contain any change, no true positives or false negatives can be observed. But
the “fall-out” or False Positive Rate (FPR) can be compared. The results
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(a) Test case N0: naive matching (b) Test case N0: merging algorithm

(c) Test case N1: naive matching (d) Test case N1: merging algorithm

Figure 3.19.: Examples of quantitative results from comparison of naive
matching and merging algorithm. More results can be found
in Appendix B.

from the naive matching have a FPR of 0.0265 compared to 0.0013 for
the merging algorithm. When also the registration step is skipped for
the naive matching scheme, the F1 score even decreases to 0.264 and the
FPR rises to 0.0982. All numbers are calculated on the cleaned results.

For a more detailed analysis of the performance of the merging algorithm
I will first look at settings SE, TA and CA. Here an average F1 score for
test cases M0–M9 of 0.920 is measured (precision 0.897, recall: 0.945). For
comparison, the baseline value was 0.973 (precision 0.972, recall: 0.974) in
the simple case without the merging of two models from two viewpoints. It
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is striking that the F1 scores are relatively close but the precision in the
merging case is much lower than the baseline value. This difference is also
visible from the FPR values for those test cases that do not contain any
change. The tests with the merging algorithm give a FPR of 0.0013 (base-
line: 0.0005). This reveals that through the merging process few additional
areas are being falsely marked as movable but most actually movable areas
are being identified correctly. From qualitative observation while perform-
ing the tests I can report that this can mostly be attributed to an inaccurate
registration of the point clouds. The localization of the robot was not always
optimal in the iteration of the tests and the ICP registration algorithm was
not always able to fully compensate for this location inaccuracy. This is
especially true when large objects were added to the scene compared to the
static background models that are used as registration counterparts in the
merging process.

However, the results show that the goals for the merging algorithm are
reached. See Appendix A (p. 205) for descriptions of the test cases.

• Test cases M0, M2, M3, M5 and M6 demonstrate that the knowledge
about the static background can successfully be transferred from one
viewpoint to the other (F1: 0.935, precision: 0.926, recall: 0.945).

• Test cases M5–M9 show that changes which were performed in between
two observations can be detected (F1: 0.925, precision: 0.893, recall:
0.959).

• Test cases M1, M4 and M7 show that occlusion is handled correctly
(FPR: 0.0011).

• Test case M8 demonstrates that movable objects in front of unknown
background can be detected (F1: 0.947, precision: 0.934, recall: 0.960).

• Test case M9 shows that more than one viewpoint change can be
handled correctly (F1: 0.925, precision: 0.965, recall: 0.888).

• All test cases prove that the rear part of movable objects can be de-
tected correctly from a subsequent viewpoint although previously it
was not visible.
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The additional settings DO, SO, KI1 and KI2 demonstrate that the gen-
eral approach for a multi-viewpoint ASM is beneficial not only in table-top
scenarios but also in different fields of application (see Figures 3.20, 3.21).
It can be used to detect movable parts of the articulated scene that have
a limited movement space. This is true for detecting doors (setting DO,
F1 score: 0.780) and drawers (setting KI2, F1 score: 0.933). Also large
objects that are moved quite frequently can be detected (setting KI1, F1

(a) Setting DO: door was previously
open

(b) Setting KI2: drawer was previously
closed

Figure 3.20.: Evaluation results from additional settings.

(a) Setting KI1: armchair has been
moved previously

(b) Setting SO: previously, the person
was not there

Figure 3.21.: Evaluation results from additional settings.
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score: 0.986), as well as people who are observed in situations when they
are clearly not dynamic (setting SO, F1 score: 0.911).

Summarizing this quantitative analysis, one can say that the merging
algorithm works fine in various — including challenging — situations with
a reasonable amount of accuracy. Information about dynamic properties of
perceived structures can be transferred successfully from one viewpoint to
the other. Also it has become clear that this merging scheme is necessary,
since the results from the competing naive strategy indicate the need for a
more sophisticated approach.

3.5.2. Qualitative Evaluation: Event Detection with ASM
The proposals from Section 3.3.4 for applications that make use of the ASM
algorithms for detecting changes in a scene will be tested with the qualitative
evaluation described in this section. It employs a human-robot interaction
scenario in which certain addition and removal event must be detected. The
application being used is a simple implementation of the keyframe analysis
strategy proposed earlier. It saves keyframes of the raw depth image stream
at the beginning and the end of each observation and applies them to the
ASM algorithms for the detection of movable parts. By using a standard
region growing algorithm the large connected parts within the movable parts
layer are clustered and compared across the keyframes. This way, additions
and removals of objects of a size above a certain threshold can be detected
either meanwhile the observation or in between two observations of the same
scene.

Goals

The evaluation aims at analyzing whether the ASM system can be used
in a relatively simple application in order to reliably detect additions and
removals of objects to or from a scene.

Method

In the scenario for this evaluation a human had to show two different loca-
tions in an apartment to the robot. In the process the human added and
removed objects to and from the scenes. The exact sequence consisted of
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Figure 3.22.: Depiction of the various steps of the scenario for the qualitative
evaluation including the observable events.

the steps described below (see Figure 3.22 for a visualization of the various
steps):

1. Human brings object 1 to location A

2. Human goes to location B and picks up object 2

3. (In the meantime the operator places object 3 at location A)

4. Human brings object 2 to location A

For the evaluated system this means that four events can be detected
during one iteration of the test:

I. One object is added to location A

II. One object is removed from location B
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III. A new object was added in the meantime to location A

IV. One object added to location A

In order to enable the robot to perform the test, a robot behavior has
been implemented using the high-level abstraction interface BonSAI. For
approaching the locations A and B the robot has been programmed to nav-
igate to pre-defined navigation goals. Since the focus of this evaluation lies
on the detection of additions and removal events, no real following behavior
has been deployed. Through verbal commands the robot could be instructed
to proceed to the next location. The viewpoint for the second observation
of location A has been programmed to be 40 to 50 cm and 30 to 40 degrees
displaced from the initial viewpoint onto the scene. The observed events
have been announced verbally by the robot and were logged to a text file.
These have been used in the analysis for comparison with the true num-
ber of observable events. Like in the quantitative analysis (Section 3.5.1)
observable and missing events are classified as being true or false:

expected not expected

detected TP FP

not detected FN TN

Table 3.2.: Categories for event evaluation. The rows distinguish whether
the system detected an event or not. The columns represent
whether the event was indeed performed or not.

Procedure

The participant for the tests has been instructed which objects are to be
added and removed from the scenes and how to instruct the robot to proceed
to the next location. The exact positions where the added objects had to
be placed in the scenes were not fixed and varied throughout the tests.
The operator placed randomly one or two objects to varying positions at
location A while the participant showed the removal at location B to the
robot. Overall, 17 runs of this test have been performed.
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Analysis

The system proves that it is able to detect most of the changes to the scene
and thereby only rarely mis-detects additional events. Overall, the analy-
sis of the accuracy based on the numbers of correctly and falsely detected
events gives a recall value of 0.923 with a precision of 0.882. The errors
in the detection come from inaccuracies in the clustering of movable parts.
Artifacts from the matching create false positives and correctly detected ob-
jects are split into several clusters. The implementation used does a simple
region growing on the movable layer’s mask. A euclidean clustering on the
corresponding point cloud which incorporates the real 3D positions of the
measurements would probably work better.

It is striking that the detection of changes that are not directly observable
makes significantly more errors than the detection while observing. On
average, the error rate when detecting meanwhile changes is 23.5% while
it is only 4.9% for observed changes. This is not surprising because the
detection of changes in the meantime requires to merge two ASMs of the
same scene but from different points of view. The quantitative evaluation
has already revealed that the accuracy of the results when merging two
scenes is not as good as when only analyzing the current observation. The
inaccuracies in the registration of the point clouds and the resulting errors in
the merging process result in an even worse performance of the clustering.
The detection of changes during the observation phase however just requires
to compare two states of the same ASM.

Again, when using a more sophisticated euclidean clustering scheme on
the point cloud there would probably be less false detection events. Es-
pecially, when considering that the inaccuracies in the matching were not
severe and the resulting artifacts are clearly evident. A smarter heuristic
could exclude the obvious merging artifacts and prevent splitting of one ob-
ject into several clusters. Hence, the observed inaccuracies are not critical
for applications using the ASM algorithm.

In summary it can be said that the multi-viewpoint ASM can be deployed
in a scenario for detecting changes in a scene while identifying the moved
instances on object-level using a simple extension on top the original ASM
algorithm.
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3.5.3. Qualitative Case Study: Robot Behavior Performance
In order to demonstrate that the system can also be deployed to a more
complex robotic behavior than described in the previous evaluation, the
behavior described in Section 3.4 for building an attentive robot that con-
stantly learns new facts about the geometric structures in the environment
has been realized. The behavior involves a person tracking approach which
is used to trigger a sub-behavior that repositions the robot so that it can
observe the working space of the tracked person. A simple dialog implemen-
tation has been used in order to enable the robot to understand utterances
of the person describing his or her actions. The understood labels of the
manipulated objects are mapped to the observed addition or removal events.
For reasoning about the high-level trajectories which the manipulated ob-
jects have taken — in terms of bringing an object from one observation
location to the other — a very simple logic has been implemented.

The lost key scenario (see Section 1.4) has been performed several times
for demonstration of the overall system. The robot has been able to follow
the people in the room and often detect when a person stopped in front of
a planar surface. If this has been detected, it repositioned itself next to the
person facing in the same direction. After visiting a few observation spots,
the robot has been able to verbally describe where the objects were last seen
and how they were moved from one location to the other. So one can say
that the ASM method can be used to realize an attentive robot that is able
to observe actions and track objects for later reference.

3.6. Summary
In this chapter an approach to building a comprehensive scene model was
taken. The focus of considerations was the spatial and functional analysis
of the robot’s environment. Before proceeding to a semantic view on the
situation, I want to sum up the outcomes of the deliberations on spatial
analysis described here.

I argue for a twofold spatial representation for encoding the structural
environment of a mobile robot. The representation developed contains both
an allocentric view on the surrounding which allows to relate objects and
landmarks in a global manner, as well as an egocentric perspective on sub-
areas which supports tasks that require to put the self in relation to objects
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in the extended field of view. It is shown that there is evidence in litera-
ture that a similar approach can be observed in the spatial processing of
humans. The allocentric representation is realized with an occupancy grid
map approach as known from SLAM implementations. The implementa-
tion used is a multi-layered extension to this representation, first deployed
in the SeAM system as a spadework for this thesis. The ASM system first
described by Swadzba et al. (2010) is used as the egocentric counterpart to
the global map and represents dynamic properties of visible structures from
a self-centered perspective.

The main contribution described here is a method for maintaining multi-
ple individual egocentric models which allows to transfer knowledge spatially
and temporally through interplay with the enclosing allocentric representa-
tion. The challenge is here to merge multiple scene models from different
views in a semantically correct way while maintaining correct semantic roles
despite occlusion and perspective issues. Additionally, a strategy for refer-
encing specific model configurations in the past is described. Together with
the chosen scene model for representing dynamics of structures this allows
to build powerful application for analyzing scenes only through observation.
It is shown that the chosen representation is able to approximate segmen-
tation and tracking results that require sophisticated visual processing in
classical systems.

In order to realize a scene model that actually contains the relevant in-
formation for future reference, it is crucial to deploy a robotic system that
pro-actively observes the important actions. For this I described the imple-
mentation of a robotic behavior using the BonSAI framework. The behavior
utilizes a person tracking system for detecting possibly relevant situations,
as well as the SeAM framework for mapping locations that presumably serve
as a stage for relevant object manipulation actions by the human. Through
combination of this information the behavior triggers a repositioning strat-
egy that considers viewing direction of the human and the spatial layout at
the target location.
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Chapter 4

Applying Semantics - Grounding
through Visual Perception

So far the geometric properties of the robot’s environment have been inves-
tigated. But the segmentation of relevant structures in the surrounding does
not suffice to establish a situation awareness that is capable of supporting a
complex conversation. In referential communication a key requirement is to
reliably ground verbal references to objects in the perception. Segmentation
alone leaves too much complexity for successful grounding, especially when
the reference is not supported by an observable action as in the scenarios
discussed previously. Furthermore, apart from the ability to ground utter-
ances the robot needs to be able to reference objects in its vicinity that were
not explicitly introduced to it by a human. Accordingly, the system requires
a way for applying a priori semantic knowledge to objects in its situation
model. It should be able to categorize objects, furniture and also whole
rooms or functional areas within an apartment in order to being able to
reference those in an interaction. Moreover, in human cognition the visual
system was found to make extensive use of the fact that in real-world situ-
ations a strong relationship exists between the environment and the objects
within it (Palmer, 1975; Biederman et al., 1982; De Graef et al., 1990). In
humans the visual context is processed first in order to index object prop-
erties which facilitates the detection and recognition of instances. In the
context of visual recognition of objects Torralba (2003) argues that

“The structure of many real-world scenes is governed by strong
configurational rules akin to those that apply to a single ob-
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ject. In some situations, contextual information can provide
more relevant information for the recognition of an object than
the intrinsic object information.”

Further he states that the mentioned contextual priming is also beneficial
for object recognition in artificial robotic systems. This, however, requires
that the robot is aware of the current situation — in terms of domestic ser-
vice robots of the type and function of the enclosing room. The algorithms
described in this chapter should be seen as a prerequisite for the establish-
ment of a coherent situation model and the applications making use of this.
The focus of this thesis is the investigation of ways to realize a general situa-
tion awareness for a mobile service robot. Visual recognition approaches are
required, because a large part of the model relies on visually perceived in-
formation, but the accuracy is not critical here. Applications making use of
the results use probability distributions of the possibly ambiguous outcomes
and try to rectify them using other modalities (c.f. Chapter 5).

Related Work

The visual categorization of segmented objects is a fundamental problem
in robotics and has been approached in many different ways so far. In
recent years, especially classification of 3D data has gained attention in the
computer vision community. Huber et al. (2004) present early work on a
parts-based object representation for 3D object classification. Their work
is based on the idea that specific parts of an object are unique for their
category. Three dimensional scans of objects are divided into a fixed number
of parts which are grouped into part classes using a hierarchical clustering
algorithm and described using spin-images (Johnson and Hebert, 1999). The
classification of objects is realized through part-to-object mapping. More
sophisticated methods using 3D and 2D features for various recognition
tasks are presented in the following.

Furniture Recognition A particularly difficult field of 3D classification
is the recognition of furniture because of the high in-class variation. So-
manath and Kambhamettu (2011) describe an approach to this problem
that makes use of a parts-based model as well. Their approach learns a
canonical model for each class using Gaussian Mixture Models. The 3D
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training samples are represented by aligned spherical functions from which
typical parts for each furniture class are derived for generating the models.
Random Forrest classifiers are used for recognition.

More powerful features for description of local regions are presented by
Rusu et al. (2009b, 2010) and others (e.g. Tombari et al., 2010). The Fast
Point Feature Histograms are based on surface characteristics derived from
surface normals in the neighborhood of a target point. They use them for
a global description of objects in order to learn and categorize them using
probabilistic graphical methods (Conditional Random Fields).

The use of a vocabulary or codebook of local object parts is a widely used
technique for learning a sparse representation of objects based on the work
of Agarwal and Roth (2006). For categorization purposes this method is
often extended to a Bag of Words (BoW) approach in which a histogram
over the generated vocabulary is used to describe a category (Csurka et al.,
2004). Extensions to this method are described for example in Grauman
and Darrell (2005) and Lazebnik et al. (2006). The main disadvantage of
the BoW approach is that only the distribution of features is considered,
not the spatial relations between them. Therefore, this method is mainly
used in tasks in which the shape is not particularly crucial, like in the classi-
fication of manipulable household objects. However, there are publications
that describe approaches for spatially sensitive BoW implementations, for
example for shape retrieval applications of nonrigid objects using so called
“geometric word” (Lazebnik et al., 2006; Bronstein et al., 2011).

Using artificial 3D models from web databases to train a system for rec-
ognizing furniture in indoor room scenes has been addressed by Mozos et al.
(2011). They use the data to build Shape Models of furniture categories by
learning the geometric relationship of object parts. The parts are identified
by a prior segmentation step and described by a set of geometrical features.
To find representatives of typical furniture parts, a clustering is performed
to finally get a codebook of object parts. This codebook is then used to
build the Shape Models of the different categories. For testing they use a
probabilistic Hough Space Voting to find hypotheses for a location of an
object instance of the learned category.

Scene Recognition As stated above, object recognition can benefit from
knowledge about the context the target object is situated in. Fisher and

83



4. Applying Semantics

Hanrahan (2010) enhance the shape retrieval by considering context in-
formation extracted from 3D scene graphs including object shape, semantic
labels, and spatial relations between pairs of objects. Their goal is to predict
the strength of a relationship between a candidate model and its existence
in the scene to perform context-based queries. Here the context information
is not automatically perceived, but other approaches try to visually catego-
rize scenes. One application for this is to distinguish between indoor and
outdoor scenes (Serrano et al., 2002). Payne and Singh (2005) present a clas-
sification algorithm based on edge detection using a two-stage classification
scheme, while Szummer and Picard (1998) use color, texture and frequency
information from a Discrete Fourier Transformation and a Discrete Cosine
Transform of the complete image to distinguish between indoor and outdoor
scenes.

As in object recognition, the usage of local features for categorization of
scenes has been shown to be a powerful strategy as well (e.g. Vogel and
Schiele, 2004). Here again, local features are more robust to occlusion and
spatial variation than global ones. Fei-Fei and Perona (2005) present an
approach for learning natural scene categories by a collection of local regions
denoted as codewords. Using SIFT features (Lowe, 2004) they show that
local features hold a strong descriptive power for describing scenes by using
them in a Bayesian Hierarchical Model for classification.

Instead of using holistic approaches as described above, other publications
present systems that establish intermediate representations using detected
objects. This additionally allows a spatial representation of the scene, apart
from the currently visually perceived field of view. The advantage of these
approaches is that models are easily generalizable to newly perceived scenes.
This is an important aspect for indoor scene categorization because of the
high in-class variability. This is also discussed by Quattoni and Torralba
(2009). They present an approach for labeling scenes based on a combina-
tion of objects detected within them and a global description of the scene
using gist (Oliva and Torralba, 2001). An alternative approach using mix-
tures of multiscale deformable part models (DPM) to detect objects in the
environment for probabilistically inferring the corresponding place type is
presented by Viswanathan et al. (2010). Similarly, Espinace et al. (2013)
describe a probabilistic hierarchical model using objects like doors or fur-
niture as intermediate semantic representation of the room. Histogram of
Oriented Gradients, gabor and gray scale features in combination with Ran-

84



dom Forest classifiers used by an AdaBoost implementation are employed.
They apply the system to a mobile robot which enables them to increase
the detection accuracy by using 3D data for a focus of attention mechanism
based on geometrical and structural information.

The work presented in this chapter is inspired by the work of Swadzba and
Wachsmuth (2011) who argue that the semantic approaches suffer from very
constrained settings and the required extensive modeling efforts (Swadzba
and Wachsmuth, 2008). They aim at a more holistic approach to scene
classification in the spirit of the work of Torralba (2003) and Murphy et al.
(2003). Both try to improve object detection through contextual priming
and generate a model for jointly solving the detection and scene categoriza-
tion tasks using 2D imagery. Whereas Swadzba and Wachsmuth (2011) rely
on a combination of 3D surface features which reliably model the furniture’s
shape independent of the texture and 2D gist features which model the tex-
ture through wavelet image decomposition and have proven to work well
for scene classification (Torralba et al., 2003). This approach of combining
different types of features seems promising because it covers the different
properties of a room structure that are particularly descriptive for distin-
guishing room types. This was also exploited by Martinez Mozos et al.
(2012) in an approach using depth and gray scale images for creating his-
tograms of Local Binary Patterns in a Support Vector Machine and Random
Forest classification scheme.

Combination of Features and Classifiers However, one of the ap-
proaches presented in this chapter has the goal of combining different fea-
tures and different classifiers which can be dynamically adapted to the cur-
rent training set in order to find the best descriptive combination for catego-
rization. Hence, a more general approach for the combination method needs
to be found. In literature there is a large number of solutions for strate-
gies of combining a variety of features. One quite widespread approach is
to combine features at decision level using Hidden Markov Models (Oliver
et al., 2004) or Mixture of Gaussian Models (Kapoor and Picard, 2005) and
other strategies based on expert mixtures.

Another widespread approach is supervised ensemble learning which tries
to combine a set of weak learners in order to build a single strong learner.
One of the most prominent members of this family of machine learning al-
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gorithms is AdaBoost, first introduced by Freund and Schapire (1997). It
is an adaptive implementation of the classical Boosting definition in that
sense that it adapts subsequent weak learners in favor of those instances
mis-classified by previous classifiers. The famous face detection framework
by Viola and Jones (2001) uses AdaBoost with a wide range of very simple
weak learners based on Haar Features. The work mentioned before on scene
recognition by Espinace et al. (2013) makes use of AdaBoost with several
features types as well. The boosting step can easily be adapted to perform
a decision making on classifier/feature combinations with respect to gener-
alization qualities. Treptow and Zell (2004) present a strategy for choosing
between different features for face detection. They use an evolutionary al-
gorithm in the training step for AdaBoost to search for a new feature that
results in a better classifier. This is particularly relevant if a huge amount of
different classifiers is available, which is not true for the framework described
in the following sections of this chapter. Another approach for selection of
features for boosting was introduced by Opelt et al. (2006). They have de-
veloped a Weak Hypotheses Finder that uses a distance matrix of all features
to find the most descriptive one. The computation of the distance matrix
takes most of the time but can be done prior to boosting. This leads to a
linear computation time to the number of training samples for finding the
optimal weak hypothesis.

In this chapter I will present several approaches for visual interpretation
of objects and areas. First, a system for categorization of furniture will be
presented. Since only few pieces of furniture are manipulated on a regu-
lar basis the ASM cannot be used for segmentation of the candidates, so
the presented approach includes a segmentation step. The categorization
approach utilizes three-dimensional properties of the furniture for classi-
fication. Subsequently, a more general approach for visual recognition is
presented which applies an ensemble classification scheme utilizing both 2D
and 3D data. This method is used to realize a holistic approach for iden-
tification of rooms and functional areas of an apartment incorporating a
spatial anchoring of features for the inclusion of peripheral information into
the classification of the perceived scene.
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4.1. Furniture Categorization
Classification of objects in real-world situation data is still a challenging
task for computer vision. Especially categorization of furniture is difficult
because the intra-class variety of each class is as big as only in few other
categories. Using 2D data for this task is not very promising because the
textures vary strongly from instance to instance, but likewise often resem-
ble across different classes (e.g. wooden decor, matching finish of sitting
suite). Likewise the shape of the furniture is not perceived very well using
2D data. But still, even though in 3D the shape seems to be a good hint
for distinguishing different furniture categories, classical approaches often
fail because the perceived point clouds mostly do not contain many distin-
guishable features in terms of corners, edges, curvature, or other geometric
properties that are typically exploited by computer vision features. Fur-
niture objects mostly consist of many planar or almost planar regions and
hence do not differentiate much in comparison to other structures inside an
apartment like walls, floors, doors, or windows. Additionally, also in shape
some furniture categories have a high intra-class variability (e.g. chairs) and
a low inter-class variability (e.g. couches and armchairs).

Considering these difficulties, the classification approach presented in this
section makes use of the spatial layout of the different regions of a furniture
object. It incorporates the Implicit Shape Model (ISM) method for learning
the three-dimensional spatial relation between typical object regions, which
allows a certain level of occlusion in the target scenes. For categorizing
the appearance of a candidate, a probabilistic Hough Voting is performed
that matches the perceived relations to the learned ones which allows to
simultaneously recognize and localize objects of the learned categories in
the scene. Therefore, a pre-segmentation of candidates is not necessary –
concentrations of evidences in the whole scene give good hypotheses for the
locations of objects. However, statements about the orientation of the target
objects are not possible.

For the application described in Chapter 5 the localization capabilities are
not required. Here, a pre-segmentation is applied, and the Hough Voting
mechanism is slightly altered in order to only verify the category.

The work on furniture recognition presented in the following has been
done in collaboration with Jens Wittrowski (see Wittrowski et al. (2013)).
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4.1.1. Implicit Shape Model
The implemented ISM approach is based on a method first proposed by Salti
et al. (2010). They suggest to use the original 2D ISM method (Leibe et al.,
2004) in an extended form for 3D object categorization. The main benefit
of ISM classification compared to other statistically based classifiers is that
it considers the spatial relations of the object parts found in the models.
They define the Implicit Shape Model for a category C as

ISM (C) = (IC , PI,C) (4.1)

where IC is an alphabet of typical local appearances of the selected object
category (termed “codebook”) and PI,C is a spatial probability distribution
which specifies where each codebook entry may be found on an object. So
the learned models contain the frequencies and relative positions of typical
regions of the objects within the corresponding class. Specifically, the ap-
proach learns the possible geometric relations between the features and a
reference point – preferably the object’s center. This is realized by assigning
a vector to the learned features which points to the reference point. If the
same features and relations to the reference point of one model are found on
a candidate object, this object can be classified as the corresponding class.

For the furniture recognition system presented here, the original 3D ISM
algorithm of Salti et al. (2010) is adapted in two ways. First, the feature
calculation step was adapted to the special requirements in the domain of
furniture recognition. Typical indoor room scenes usually contain — be-
cause they are man-made — many planar surface structures. This includes
general structures of the room itself like walls, floors, and doors, but this is
also true for the furniture within the room, especially shelves, cupboards,
and tables. Using 3D shape descriptors should focus on non-planar features
of the furniture, because the surfaces do not contain sufficient descriptive
power to distinguish furniture from the background and to describe the
furniture’s properties that enable categorization.

Secondly, an alternative approach to the original Hough Space Voting is
presented which is used for feature position aware detection and classifica-
tion of the shape models. The new approach allows to use an unlimited
amount of training data while keeping the upper bound of computational
effort at a constant level. Further it eliminates the need to use models of a
correct real-world scale for training and classification of shape models.
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Training Procedure

For the training of the classifier a web database of artificial 3D models of
furniture is used. A successful learning scheme for furniture categorization
using this database was demonstrated by Martinez Mozos et al. (2012).
Since the features for the Shape Models are calculated from point clouds,
the artificial meshes from the database need to be preprocessed. In order
to receive realistic data that is similar to the expected real-world data in
the prediction process, virtual 3D scans of the models are created (see Fig-
ure 4.1). These emulate the use of a depth sensor for creating realistic point
clouds from 12 virtual positions around the target object. Visualizations of
the models used can be found in Appendix C.

Figure 4.1.: Left: Furniture meshes from the database. Right: virtual scans.

As stated above, it is important to focus on non-planar regions of the
objects in order to find descriptive features. This is realized by performing
a boundary estimation on the given point clouds in order to receive a set
of keypoints for feature calculation. The boundary estimation is based on
angle differences of normals in the neighborhood of a target point.

For describing the keypoints found on the object’s boundaries the Sig-
nature of Histograms of Orientations (SHOT) descriptor is used (Tombari
et al., 2010). This local descriptor aims at characterizing a keypoint by
generating a description of the neighborhood (support) of a target point.

89



4. Applying Semantics

One of the reasons for the choice of this descriptor is the fact that it is able
to define an unique local reference frame to the target point. The detected
characteristics of the surface in the surrounding are stored using the local
coordinates which makes it rotation- and viewpoint-invariant. The descrip-
tor vector is calculated by assigning the neighboring points to spatial bins
which are defined by performing 8 azimuth, 2 elevation, and 2 radial divi-
sions of a virtual sphere around the target point. For each bin a histogram
over the cosines of the angles between normals corresponding to the points
within the bin and the keypoint’s normal is calculated. The use of cosines
of the angles has the effect that — when using equally spaced bins — the
histogram is more coarse for the angles parallel to the keypoint’s normal and
more fine grained for angles orthogonal to the keypoint’s normal. As the
points with normals that have a large angular distance to the keypoint’s nor-
mal are the most informative ones, a finer binning supports the descriptive
power of the descriptor. The 32 spatial bins around the keypoint containing
11-dimensional histograms of directions result in a 352-dimensional descrip-
tor vector which is ultimately normalized so that it is independent of the
number of points in the neighborhood.

The local reference frame of the feature needs to be repeatable and un-
ambiguous in order to be able to generate the same descriptor independent
of the viewpoint. It therefore uses an adapted Principal Component Anal-
ysis of the neighboring data. The data for the calculation of the covariance
matrix is weighted by the distance to the target point:

C = 1∑
i:di≤R

(R− di)
∑

i:di≤R
(R− di)(pi − p)(pi − p)T (4.2)

where R is the the radius of the sphere and di is the euclidean distance
between pi and the keypoint p. This increases the repeatability of the local
reference frame in presence of clutter. In order to disambiguate the axes
of the found principal components the algorithm ensures that the sign of
the eigenvectors is coherent with the majority of points it represents (see
Tombari et al., 2010, for more details).

These local descriptors are now used to generate a codebook describing
typical parts of furniture. It is generated by clustering SHOT descriptors
from all training samples in the feature space using the K-Means clustering
scheme. The centroids of the corresponding clusters define the words for
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the codebook of the size K.
In order to generate a Shape Model for each class the calculated SHOT

descriptors on the training samples of that class activate codewords using
the Nearest-Neighbor search. Additionally, each codeword builds up a his-
togram of voting directions. This strategy is different from the original 3D
ISM approach. Every keypoint that actives a corresponding codeword votes
for a direction that points to the object’s center. The voting direction is
represented in the descriptor’s local reference frame. Hereby the codeword
is applied with a probabilistic belief about the direction in which the ob-
ject’s center is located. This information is later used for the Hough Space
Voting mechanism. So the Shape Model for a category of furniture consists
of a set of activated codewords with an individual vote direction histogram
assigned to it. The frequencies of codewords are implicitly represented in
the vote direction histograms.

4.1.2. Ray-Based Hough Space Voting
The concept of Hough Space Voting is based on the Generalized Hough
Transform approach for detecting shapes (Ballard, 1981). It is based on
the idea that feature points vote for the specific geometric pose of a shaped
object that is searched in the scene. Hypotheses for instances of the searched
objects are generated from concentrations of votes in the Hough Space. This
method was used for example by Tombari and Di Stefano (2010) in order to
detect object instances in 3D scenes containing occlusion and clutter. They
use vectors of specific length for voting for discrete bins in 3D Hough Space.

This method has two main disadvantages when applied to a categorization
task using ISMs. First, the models that are used for training need to be
scaled in the same way as the structures that are to be analyzed, because
the vectors for voting represent the true distance between the feature points
and the object’s center. The databases used for training do not always
fulfill this requirement, because they often use individual scales and units.
An even worse problem is that furniture exists in many different sizes. A
voting vector calculated for a small coffee table does not vote for the correct
center of a larger dinner table.

The second disadvantage relates to the computational effort that is re-
quired for the proposed voting scheme. In the approach of Tombari and
Di Stefano (2010) the number of voting vectors for every codeword can
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potentially become very high since all feature points contribute an individ-
ual vector. Accordingly, also in the prediction phase this potentially large
number of votes must be cast into the Hough Space. The mean number of
votes v that are cast for each keypoint found in the scene can formally be
estimated as v = c · vc. Whereas c denotes the number of codewords that
are activated by each feature and vc is the mean number of votes that are
assigned to each codeword. The latter depends on the number of training
samples n, the mean number of keypoints k extracted from one sample and
the codebook size C:

vc = n · k
C

(4.3)

Apparently the number of votes that need to be cast in the Hough Space
increases linearly with the number of training samples and decreases with
the size of the codebook. This is contradictory to the goal of achieving a
good generalization through a wide range of training samples and a compact
codebook.

The ray-based voting scheme described in the following, however, has
a constant upper bound of votes per codeword and is independent of the
number of training samples and the size of the codebook. Further, the pre-
viously described shortcomings regarding scale are overcome through scale-
invariant voting. This is realized by ignoring the individual lengths of the
voting vectors and instead regarding the votes as being rays with infinite
length. Additionally, the voting rays of one codeword are clustered based
on the direction they point to. To account for the frequencies of the di-
rections clustered into a single ray and therefore also the frequency of the
corresponding codeword, each ray is applied a voting weight. The clustering
of votes is realized by creating a virtual unit sphere around the correspond-
ing keypoint, aligned to the local reference frame provided by the SHOT
descriptor (see Figure 4.2). Each voting ray is transformed into the local
spherical coordinate system, represented by azimuthal angle θ and polar
angle ϕ. The sphere is divided into u · q cones, where u and q denote the
resolutions of bins on the azimuthal and polar axis respectively. Each cone
is interpreted as a histogram bin collecting corresponding votes.

In the prediction phase for each codeword only one ray per bin in the
histogram must be cast into the Hough Space instead of processing every
voting vector individually. Furthermore, the rays corresponding to empty
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4.1. Furniture Categorization

Figure 4.2.: Clustering of single vote vectors into rays by using a spher-
ical histogram. The blue arrows represent vote rays for the
red marked histogram bins, the thickness represents the vote
weight.

bins can be skipped. Here, the middle azimuthal and polar angle of each
bin in combination with the corresponding weight is used. In order to find
concentrations of rays in the Hough Space a slightly different formalization is
used. Instead of using a fixed three-dimensional grid, the ray-based Hough
Space consists of overlapping spheres represented by a 3D point and ra-
dius. The voting is realized through counting intersection between rays and
spheres (see Figure 4.3).

Assuming each ray r is represented by r = p+λv (where p is the point from
where the vote is cast and v is the voting direction) the smallest distance
between sphere center si and ray rj can be calculated by

Di,j = |(si − p)× vj |
|vj |

(4.4)

Since the vote direction is normalized, the division by |vj | can be skipped.
The dot product (si − p) · vj can be used to determine whether the ray
intersects with the sphere on the positive side of the feature point regarding
the vote direction. If the distance is smaller than the sphere’s radius and
the dot product is positive, a vote is registered respecting the vote’s weight.

The vote weight depends on the one hand on the probability of activating
codeword c given a feature vector f which accounts for the uniqueness of
the assignment of the current feature to the codeword. On the other hand
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Figure 4.3.: Intersection of Hough Space spheres and vote rays. P1 to P4
are keypoints in the scene. For demonstration every keypoint
only casts one ray and the spheres do not overlap.

it depends on the probability of a specific vote v given codeword c which ac-
counts for the codeword’s frequency in general and the direction’s frequency
in particular. The first part is calculated by

p(ci|f) = d(ci, f)∑
j
d(cj , f) (4.5)

Here, d(ci, f) is a distance function proportional to the inverse of the
euclidean distance between the vectors. The second part can be obtained
from the direction histograms:

p(v|ci) = h(v)∑
j
h(j) (4.6)

Here, h(j) is the histogram value for direction j. So the final vote weight
w is given by

w = d(ci, f)∑
j
d(cj , f)

h(v)∑
j
h(j) (4.7)
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For every sphere in the Hough Space the vote weight of the intersecting
rays are summed up. Maxima in the Hough Space give hypotheses for cen-
ters of objects in the corresponding category. The keypoints that vote for a
specific maximum sphere can then be used for segmentation. A combination
of outlier removal and clustering strategies allows to define a geometric hull
of the detected furniture.

As mentioned above, this voting strategy reduces the number of votes
that need to be cast in the prediction phase. For comparison, in the original
Hough Space Voting scheme the average number of cast votes per codeword
was specified through Equation 4.3 (page 92). In the presented approach
the mean number of cast votes corresponds simply to the mean number of
non-empty direction histogram bins. In the worst case every bin contains
votes and thus the number of cast votes per codeword is u · q. But neither
the number of training samples, nor the size of the codebook has influence
of the number of votes which allows to use large training sets and compact
codebooks. Moreover, the presented changes make the voting scheme scale-
independent.
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4.1.3. Evaluation
The evaluation of this approach to furniture recognition is split into two
parts. First, the ray-based Hough Space Voting mechanism is tested and
compared with the work of Salti et al. (2010). For this, a furniture recogni-
tion task was performed on a set of artificial 3D models to show the general
applicability of the voting scheme to furniture-related tasks. Subsequently,
the performance of the complete ISM approach is tested on real-world scenes.
Thereby the detection and categorization capabilities could be tested.

Results for Voting Scheme

For comparability the voting scheme was tested on the Aim@Shape Wa-
tertight (ASW) dataset1 which contains 19 categories with 20 artificial 3D
models each. The models were normalized by scaling them to a unit cube
to provide equal conditions for comparison with Salti et al. (2010). For each
category a Shape Model was learned with a codebook size of 1000. One
half of the models of each category was used for training and the other for
testing. For all tests a fixed number of 200 randomly chosen keypoints per
model were used for training and 1000 for testing. The SHOT descriptor
with a radius of 25cm was used for describing the keypoints. The Hough
Space contained a single sphere with a radius of 10cm in the center of the
models for measuring the sum of vote weights of the rays intersecting the
sphere. The recognition result was given by the Shape Model which provided
the highest measurement.

The results of this test are shown in the confusion matrix presented in
table 4.1. The true categories of the tested models are listed row-wise, the
recognition results are represented by columns. The average rate of correct
classifications is 82%, while Salti et al. (2010) achieved a not significantly
different value of 81%. This shows that the altered voting scheme is evenly
well suited for this kind of recognition of furniture. However, the strength of
the new approach — namely the scale-invariance and constant complexity
while voting — is not tested with this experiment. Therefore a second test
using real-world scenes was performed.

1http://shapes.aim-at-shape.net/ (visited: February 17, 2015)
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Human 0.6 0.2 0.2
Cup 1.0

Glasses 0.9 0.1
Airplane 1.0

Ant 0.9 0.1
Chair 0.8 0.2

Octopus 0.7 0.2 0.1
Table 0.1 0.9
Teddy 1.0
Hand 0.1 0.1 0.7 0.1
Plier 1.0
Fish 0.1 0.9
Bird 0.2 0.8

Armadillo 1.0
Bust 0.4 0.6
Mech 0.1 0.9

Bearing 0.2 0.2 0.6
Vase 0.2 0.7 0.1

Fourleg 0.1 0.9

Table 4.1.: Confusion matrix for the Aim@Shape Watertight dataset. The
rows show the true categories of the tested models and the
columns represent the recognition results. Results are expressed
as percentages.

Results of 3D ISM on Real-World Scenes

In order to test the detection and categorization capabilities of the custom
3D ISM approach, scenes form the New York depth dataset (V2) were used
(Silberman et al., 2012). This dataset contains indoor scenes captured with
a Microsoft Kinect depth sensor. A large amount of the data is labeled
with furniture categories which gives a well suited ground truth for testing
detection and categorization. The used scenes are depicted in appendix C.

For the tests the Shape Models were trained using the SketchUp 3D Ware-
house2 database which contains many artificial 3D models of furniture. 50
models for each of the 6 trained categories (chair, table, couch, bed, shelf,
cupboard) were used. Since 12 views for the virtual scanning of the meshes

2http://3dwarehouse.sketchup.com (visited: February 17, 2015)
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Chair 0.45 0.08 0.10 0.10 0.04 0.23
Couch 0.15 0.33 0.24 0.14 0.05 0.10
Bed 0.09 0.08 0.60 0.10 0.02 0.11

Cupboard 0.04 0.11 0.16 0.53 0.10 0.06
Shelf 0.17 0.08 0.15 0.25 0.25 0.11
Table 0.08 0.05 0.03 0.05 0.02 0.78

Table 4.2.: Results of the furniture categorization. The rows show the cat-
egories that were tested and the columns represent the catego-
rization results as percentages.

were used (see Section 4.1.1) this results in 600 samples per category. As in
the previous test a codebook size of 1000 words was used. The SHOT de-
scriptors were calculated on a 10cm radius. The voting direction histograms
were learned with an azimuthal resolution of 90 and a polar resolution of 45
bins which leads to a maximum angle error of 2° when clustering the actual
vote vectors.

For a preliminary baseline test of the categorization capabilities of the ISM
approach the dataset was split into 30 models of each category for training
and 20 for testing. Like in the ray-base Hough Space voting evaluation (see
Section 4.1.3) a single voting sphere was defined in the center of the models
accumulating the voting weights of the intersecting rays. Table 4.2 shows
the confusion matrix of correct categorization percentages. On average 49%
of all models were categorized correctly.

For the main test 30 scenes of the New York depth dataset were chosen that
contain at least one object of the trained categories. The Shape Models were
trained as described in Section 4.1.1 with all 50 models for each category.
The Hough Space was filled with overlapping spheres of 20cm radius. As
a measure for accepting detections, all spheres across all categories with
accumulated weight of at least 75% of the global maximum sphere were
chosen.

The detected hypotheses have been compared with the ground truth from
the labeled database. A hypothesis is considered correct if the corresponding
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sphere’s center point has an euclidean distance to the ground truth location
of less than half of the mean training model’s width. Hypotheses with a
larger distance are considered false positives. Neighboring spheres (based on
the same distance criterion) with identical categorization result are merged.

Category TP FP GT Precision Recall
Chair 37 42 86 0.47 0.43

Couch 29 23 50 0.56 0.58
Bed 23 34 32 0.4 0.72

Cupboard 18 31 38 0.37 0.47
Shelf 22 21 34 0.51 0.65
Table 31 22 37 0.58 0.84

Table 4.3.: Recognition results on real-world indoor scenes. For each cate-
gory the amount of true positive detections (TP), false positives
(FP), and the number of objects in the ground truth (GT) are
presented.

The results of this evaluation are reported in table 4.3. Objects with
a certain conspicuousness in the scene are found correctly in most cases.
However, as expected, heavily occluded objects or those that are located in
the background are often not found correctly (see Figure 4.4). Both phe-
nomenons can be explained by the lack of descriptive data. In the occlusion
case only few keypoints are found so that few rays vote for the correspond-
ing category which leads to low accumulated weights in the spheres. The
detection in the distant location case suffers from the increasingly low res-
olution of the point cloud the farther it is from the camera. This results in
low quality feature descriptors in addition to few voting rays.

4.1.4. Summary & Discussion
The previous sections have shown that the altered version of 3D ISM works
well for detecting and categorizing furniture in real-world scenes. The main
advantage of the ray-based Hough Space Voting is that it allows an unlim-
ited number of training data to be used while keeping the upper bound of
computational effort constant. Beyond this, it is able to deal with arbitrary
sizes, both in training and prediction. Since the calculation of rays inter-
secting spheres is computationally expensive compared to sorting points into
3D bins, the advantages of this method will outweigh when using a large
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Figure 4.4.: Images and point clouds of sample test scenes. The green
spheres represent ground truth center locations. The red and
pink spheres represent true and false positive hypotheses respec-
tively.

number of training data. Further speed up might be achievable by using
a classical 3D grid and finding intersections using the Bresenham line al-
gorithm, though this would reject the kind of linear interpolation that is
implicitly performed by using overlapping spheres. Furthermore, the per-
formance in detecting furniture in real-world scenes could possibly enhanced
through further shape verifications steps to reduce false positives. A more
sophisticated ray concentration analysis strategy might improve the number
of true positive. The evaluation of these adaptations is left for future work.

Nevertheless, ISMs are apparently an effective means for detecting static
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instances like furniture and applying semantic annotations to these objects
in a mobile robot’s environment. They exploit the shape of the geometric
structures which is suspected to be the most descriptive feature for distin-
guishing various furniture categories (see Section 4.1). This allows a robot
companion to enrich its situation model with knowledge about the identities
of the furniture in its surrounding. This is particularly important for verbal
referencing. Thus this approach is also used in Chapter 5 which describes
a system for grounding verbal descriptions of furniture. The accuracy of
the recognition is not crucial here, because ambiguities in the recognition
should be rectified using the auditory modality.

However, there are different kinds of semantic analysis mentioned in the
introduction to this chapter that require the exploitation of other features. A
more general approach to utilizing different kinds of features for recognizing
manipulable objects and whole rooms is described in the next section.
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4.2. Classification of Household Objects
In typical real-world situations future robot companions will face a wide
variety of object types that need to be recognized. Accordingly, they need
to consider many different features in order to distinguish between those
arbitrary objects. The shape is certainly one of the features that need to be
taken into account, but texture or color might also be informative for the
recognition process. Many objects like books and different kinds of boxes
have a canonical shape and are only distinguishable via their texture. Their
shape can here only serve as a preselection for certain categories, but does
not allow identification. However, in other cases the shape might be the key
feature for distinguishing objects. The example of furniture having uniform
surfaces (e.g. wooden decor, matching finish of sitting suite) but represent-
ing different types of objects has already been mention in the introduction.
Another example from the domain of manipulable objects is tableware. Only
relying on texture and color is not sufficient to distinguish textureless plates
from cups. Swadzba and Wachsmuth (2011) already pointed out that the
classification of scenes also benefits from both shape and texture.

The idea for the classification approach described in the following sections
is the combination of different features and classifiers in order to obtain a
mechanism that automatically detects an appropriate combination of these
for the current classification problem. The described system implements
a boosting technique for combination of several weak classifiers. This ap-
proach will be used for classification of manipulable objects as well as for
a room categorization scheme. Boosting is also chosen with respect to the
high variance within the room categories because of its ability to improve
training and generalization results.

The main idea of the boosting approach is to convert a set of so called
weak or base classifiers into one strong classifier. The term “weak” implies
that the individual classifiers used for boosting only have a weak descriptive
power when used in isolation. This is not true for all of the used classi-
fiers, which is why I will prefer the term base classifier in the remainder of
this chapter. One of the most commonly used base classifiers for boosting
are Decision Trees(DTrees). They are also used by Freund and Schapire
(1997) in combination with classical AdaBoost. Taking the results from
Schwenk and Bengio (1997) into account, different configurations of Multi-
layer Perceptrons(MLPs) are also promising as they achieved good results
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for boosting. To have a comparison to the behavior of a so-called strong
classifier, Support Vector Machines(SVMs) with an RBF kernel will also be
taken into account for boosting. It has been shown that strong classifiers
usually decrease the accuracy of boosting. However,Li et al. (2008) propose
that SVMs with configurations that lead to at least acceptable classifica-
tion results are, in combination with boosting, able to perform better than
boosted classical base classifiers like MLP and DTree. Additionally to these
classifiers the implemented system uses a simple k-Nearest Neighbor classi-
fier and a custom color distribution detector (described in Siepmann et al.
(2014)).

In order to account for the different features that make an object distin-
guishable from others, a variety of different types of feature descriptors are
chosen for this work. Local features for 2D and 3D data are used to describe
local regions, this increases the classifiers’ robustness against occlusion. As
a powerful descriptor for texture in 2D data the well known Scale-Invariant
Feature Transform (SIFT) (Lowe, 2004) and Speeded Up Robust Features
(SURF) (Bay et al., 2006) are used. Moreover, the quite recently intro-
duced but promising feature descriptors Oriented FAST and Rotated BRIEF
(ORB) (Rublee et al., 2011), Binary Robust Invariant Scalable Keypoints
(BRISK) (Leutenegger et al., 2011), and Fast Retina Keypoint (FREAK)
(Alahi et al., 2012) are also used.

Local 3D features like Fast Point Feature Histogram (FPFH) (Rusu et al.,
2009b) and SHOT (Tombari et al., 2010) as well as its extension to colored
point clouds COLORSHOT (Tombari et al., 2011) are used for this approach
as they reliably describe different kinds of 3D shape. Their applicability to
furniture recognition has been shown in the previous sections (4.1.1), while
Swadzba and Wachsmuth (2011) used 3D features successfully for scene cat-
egorization. They define a global 3D feature based on properties of planes
taken from a 3D scene in combination with the gist feature introduced by
Oliva and Torralba (2001). Both features are incorporated into this ap-
proach when applied to the room categorization task, whereas for recogni-
tion of manipulable objects they seem not very suitable. In order to describe
detected objects in a way that is comparable to other detected objects the
BoW approach is used. A codebook is generated for each local 2D and 3D
feature type to estimate global histogram features of a complete object or
scene. This approach does not provide any segmentation. It requires the
training samples and candidates for prediction to be pre-segmented.
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4.2.1. Boosted Classification
As already mentioned, one of the most effective and often used boosting ap-
proaches is AdaBoost by Freund and Schapire (1997). The main difference
between AdaBoost and most other boosting algorithms is the strategy of
applying adjustable weights ωi to each sample in the training set (~xi, yi, ωi)
with i = 1...n. Where ~xi belongs to some instance space X and yi de-
notes some label from the label space Y of size K. The algorithm adapts
the weights in each boosting step according to the results of the currently
trained base classifier. The original AdaBoost approach was developed as a
classifier for binary problems. Zhu et al. (2009) present a new multi-class
boosting algorithm called Stagewise Additive Modeling using a Multi-Class
Exponential Loss Function (SAMME) which extends the classical AdaBoost
to be used for multi-class problems.

Both boosting algorithms call a given base classifier h : X → Y repeatedly
in a series of rounds t = 1, . . . , T . Initially all weights are set equally, but
on each round the weights of incorrectly classified examples are increased so
that the base classifier has to focus on the previously misclassified examples
in the training set. The goodness of a base classifier’s instance ht in round
t is measured by its error:

εt =

∑
i:ht(xi)6=yi

ωi,t∑
i:1..n

ωi,t
(4.8)

Notice that the error depends on the sample weights on which the base
classifier was trained. This leads to a particularly low error and thereby to
a high rating if the previously misclassified samples are now correct. If in
practice the base classifier does not support weighted samples (which is the
case for the chosen implementations), a subset of the training examples can
be sampled according to the weights which then will be used for training.

The trained set of T base classifier will ultimately yield the additive stage-
wise model C(~x) for prediction. Each classifier in this model has a parameter
αt which measures the importance that is assigned to ht.

αt = log
(1− εt

εt

)
+ log (K − 1)︸ ︷︷ ︸

new term

. (4.9)
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Note that K denotes the total number of classes and that αt gets larger
as εt gets smaller. A classifier is accepted only if αt > 0. If this assump-
tion is not true the classifier performs worse than random guessing and is
discarded. This is because the original theory of boosting assumes that
each used classifier performs better than random guessing. In a two-class
problem this corresponds to an error of less than 0.5 which is equivalent
to αt > 0. The additional term in equation 4.9 is the main difference be-
tween classical AdaBoost and SAMME. It enables SAMME to be used for
multi-class problems which requires to accept base classifier with an error
greater than 0.5. More precisely: a classifier is accepted if εt < (K − 1)/K
(or (1 − εt) > 1/K). This ensures that a classifier performs better than
random guessing depending on the number of used classes. In the case of
K = 2 the algorithm reduces to classical AdaBoost with a probability of 0.5
for each class. For more details and theoretical justification see Zhu et al.
(2009). Figure 4.5 illustrates the correlation of the classifier weight for the
additive model and the classification error for different numbers of classes.
For K = 2 the α-curve is identical with classical boosting whereas for more
than two classes α is still positive for εt > 0.5 (and εt < (K − 1)/K).

Subsequently, the weights wi of the samples are adjusted according to the
classification error in the current round:

ωi,t+1 ← ωi,t ·
{
e−αt : ht(~xi) = yi
eαt : ht(~xi) 6= yi

, i = 1, 2, . . . , n. (4.10)

This equation increases the weight of examples misclassified by ht and
decreases the weight of correctly classified samples. Thus, the weight tends
to concentrate on ”hard” examples. Finally, after passing all rounds, the
additive stagewise model can be created which consists of T pairs of base
classifier instances ht and classifier weights αt.

For prediction one simply has to find the class k for which the additive
weight of the stagewise model is the highest. In other words, the classifica-
tion result of the resulting strong classifier H is

H(~x) = argmax
k

T∑
t=1

αt ·
{

1 : ht(~x) = k
0 : ht(~x) 6= k

(4.11)

The complete procedure is shown as pseudo code in Algorithm 3.
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Algorithm 3 SAMME pseudo code

Require: training set (~xi, yi, ωi), i = 1, . . . , n
Require: base classifier h

1: Initialize weights for all samples: wi ← 1
n , i = 1, . . . , n

2: for all t = 1, . . . , T do
3: Fit a base classifier ht(~x) to the training data using weights wi
4: Computer weighted error for ht:

εt =

∑
i:ht(xi)6=yi

ωi,t∑
i:1..n

ωi,t

5: Computer classifier weight:

αt = log
(

1−εt

εt

)
+ log(K − 1)

6: Set new sample weights:

ωi,t+1 ← ωi,t ·

{
e−αt : ht(~xi) = yi

eαt : ht(~xi) 6= yi
, i = 1, 2, . . . , n.

7: Re-normalize wi
8: end for

9: return H(~x) = argmax
k

T∑
t=1

αt ·

{
1 : ht(~x) = k

0 : ht(~x) 6= k
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Figure 4.5.: The plot shows the coherence between error and classifier weight
for 2, 3 and 5 classes. For two classes, the graph shows the
same behavior as for classical AdaBoost. For a higher number
of classes, the base classifiers are allowed to have a higher error
on the training samples.

Multiple Classifiers

The SAMME approach does support multi-class data but is not able to pro-
cess more than one classifier type. In order to achieve this the SAMME
algorithm is modified to perform an exhaustive search during steps 3 and 4
(see Algorithm 3). It therefore trains each available classifier-feature com-
bination from a set of classifier settings and features. The combination that
reaches the smallest error εt on the weighted training set is added to the ad-
ditive model in Equation 4.10. This algorithm will be denoted as Exhausive
SAMME (E-SAMME) (see Algorithm 4).

All permutations of base classifier and feature are taken into account for
each training step. Thus, the optimal classification regarding the available
set of classifier settings and features can be found for the weighted training
set in each step.

However not every type of base classifier supports training with weighted
samples. As already mentioned above, the weights are used to resample the
training set. For the described system two alternatives were implemented:
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Algorithm 4 E-SAMME pseudo code
Require: training set (~xi, yi, ωi), i = 1, . . . , n
Require: set of feature-classifier combinations hc, c = 1, . . . , C

1: Initialize weights for all samples: wi ← 1
n , i = 1, . . . , n

2: for all t = 1, . . . , T do
3: Initialize εmin,t = 1
4: for all c = 1, . . . , C do
5: Fit a base classifier hc,t(~x) to the training data using weights wi
6: Computer weighted error for hc,t:

εc,t =

∑
i:hc,t(xi)6=yi

ωi,t∑
i:1..n

ωi,t

7: Computer classifier with minimum error:
εmin,t ← min (εc,t, εmin,t)

h′t ← argmin
hc,t

(εc,t, εmin,t)

8: end for
9: Computer classifier weight:

αt = log
(

1−εmin,t

εmin,t

)
+ log(K − 1)

10: Set new sample weights:

ωi,t+1 ← ωi,t ·

{
e−αt : h′t(~xi) = yi

eαt : h′t(~xi) 6= yi
, i = 1, 2, . . . , n.

11: Re-normalize wi
12: end for

13: return H(~x) = argmax
k

T∑
t=1

αt ·

{
1 : h′t(~x) = k

0 : h′t(~x) 6= k
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Roulette Wheel Selection This method selects a subset randomly from a
set of weighted samples by randomly choosing a number nr between
0 and 1. The weights of the samples are summed up until the sum
exceeds the random number nr. The corresponding sample will be
added to the subset until a maximal number of samples Z is reached.
The samples with high weights are more likely to be chosen which has
the effect that the classifier is trained more often on samples that are
badly classified.

Maximum Selection This method chooses the first Z samples with the
highest weights as the subset for training. This has the effect that
no sample is chosen more than once. So the base classifier is trained
on more different samples which leads to better generalization. The
number Z is computed via a sample factor zf : Z = zf · n.

Since the base classifiers are trained only on the weighted subsets (step 5),
but the training error is calculated on the complete training set (step 6) this
error also serves as generalization measure for classifier hc,t.

The prediction in E-SAMME works analogous to the common AdaBoost
method. Each base classifier in the additive model of E-SAMME predicts
the identity of the given candidate. For each class k the classifier weights
αt of the base classifiers that predict class k are summed up. Finally, the
class with highest accumulative classifier weight is chosen as final prediction
result (see step 13).

In the actual implementation which is used on the robot (e.g. in Robo-
Cup@Home) the set of classes include an additional unknown category so
there are K + 1 classes instead of K. Depending on the base classifier and
the specific task the classification is used for, the unknown class implicitly
emerges through thresholding the prediction results of the base classifiers
or by explicit demonstration of negative samples.

4.2.2. Evaluation
For evaluation of the general performance of the presented E-SAMME clas-
sification approach, a typical instance recognition task was prepared. Note
that the algorithm’s applicability to categorization tasks is described in
Section 4.3 and evaluated in Section 4.3.3. For the execution of the tests a
dataset of 15 typical manipulable household objects containing on average
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Figure 4.6.: Example images of each object in the test dataset for evaluation
of E-SAMME.

∼ 53 samples for each class was assembled. The objects were selected con-
sidering a wide variety in texture and shape. Deliberately, the set contains
several box-shaped and cup-shaped objects, as well as texture-poor objects
in order to challenge the exploitation of different object features. All objects
have been pre-segmented in 3D using a simple plane extraction and a cluster-
ing algorithm based on point clouds. Each sample contains a pre-segmented
2D image of the object and a 3D point cloud. The objects were recorded us-
ing an ASUS Xtion Pro Live RGB-D sensor and a regular consumer camera.
Thereby roughly half of the samples contain a high-resolution, high-quality
2D image from the consumer camera and the other half a comparably low
resolution image from the RGB-D sensor. This increases the variety within
the dataset. The collocation of the set and choice of sensors is inspired by
the requirements in RoboCup@Home. Figure 4.6 depicts sample images of
each object class.

All tests presented in the subsequent sections were performed using the
following configurations: The number of boosting steps was set to 20. To
avoid that outlier results of the classification are analyzed, a k = 5 fold
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4.2. Classification of Household Objects

cross-validation was applied and the error for each step was averaged over
the k folds. The set of classifiers was composed of different settings of SVMs,
DTrees, MLPs, k-Nearest Neighbor classifiers, and custom color distribution
classifiers. As local visual features the deployed system used SIFT, SURF,
ORB, FREAK, FPFH, and SHOT – likewise with varying parameters. As
sampling method for weighting the training data, the maximum selection
strategy with a sample factor of zf = 0.6 was used. The classification
results have been recorded in confusion matrices. Since not all explicitly
model a rejection of candidates, an “unknown” class is not considered in
this evaluation. However, in principle E-SAMME is capable of handling
rejection.

For comparison with other state-of-the-art algorithms for instance recog-
nition the dataset was evaluated with selected classifiers typically used for
this task. For all selected classifiers parameters were optimized in order
to create equal conditions for all cases. Local features have been com-
bined by the implementation to global descriptors using the Bag of Words
(BoW) method. Figure 4.7 shows average results over three trials of a k = 5
cross-validation in form of the Correctly Classification Rate (CCR). The ab-
breviation “COLD” means the color detector described in Siepmann et al.
(2014). “E-SAMME-ALL” means the developed boosting algorithm using
all classifiers and features mentioned above. However, “E-SAMME-2D” and
“E-SAMME-3D” mean a restriction of the previous configuration to 2D and
3D features respectively. The other abbreviations are self-explanatory.

The E-SAMME algorithm reaches the highest scores. The difference be-
tween E-SAMME-ALL (CCR: 0.854) and the Support Vector Machine using
SURF features (CCR: 0.822) has a statistical significance according to an
independent two-sample t-test (p < 0.05). The E-SAMME configuration us-
ing only 2D features (CCR: 0.818) performs equally well as the SVM-SURF
configuration. Using only 3D features (CCR: 0.629), however, works signif-
icantly worse than the combination of 2D and 3D features. Additionally,
the results of the E-SAMME-ALL condition compared to the results of the
E-SAMME-3D are shown in tables 4.4 and 4.5 respectively (more results
can be found in Appendix D). In the former case the only slight systematic
confusion can be observed for class “paper cup”. The confusion with classes
“cup1” and “cup2” is not surprising because of the similar shapes. How-
ever, in the E-SAMME-3D case many confusions can be observed, mainly
for objects that have similar visual properties.
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tea 0.911 0.022 0.044 0.022
paper cup 0.686 0.086 0.029 0.029 0.029 0.086 0.029 0.029

cup1 0.017 0.033 0.867 0.017 0.050 0.017
duster 0.986 0.014

wall mount 0.060 0.020 0.900 0.020
tape 0.018 0.782 0.036 0.055 0.055 0.036 0.018
milk 0.020 0.940 0.020 0.020
coke 0.025 0.025 0.025 0.825 0.050 0.025 0.025
cup2 0.017 0.033 0.917 0.033
book 0.044 0.022 0.022 0.022 0.044 0.778 0.022 0.044

stapler 0.043 0.014 0.014 0.014 0.014 0.886
sponge 0.018 0.073 0.018 0.018 0.855 0.018
cup0 0.022 0.022 0.022 0.022 0.911

hair gel 0.020 0.040 0.020 0.040 0.040 0.040 0.020 0.020 0.700 0.060
joy pad 0.067 0.022 0.022 0.022 0.867

Table 4.4.: Confusion matrix of the E-SAMME-ALL condition. Rows: cat-
egories tested. Columns: classification results.

The good results of the E-SAMME-2D case are not surprising when con-
sidering the average amount of used features in the boosting process. Fig-
ure 4.8 shows the average feature type distributions for three different cases.
It is obvious that the SURF feature describes the given dataset best, since it
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Figure 4.7.: Recognition results on household objects over k = 5 folds.
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tea 0.600 0.200 0.022 0.022 0.022 0.133
paper cup 0.029 0.314 0.143 0.029 0.057 0.029 0.257 0.029 0.086 0.029

cup1 0.017 0.617 0.017 0.167 0.167 0.017
duster 0.014 0.900 0.014 0.014 0.014 0.043

wall mount 0.120 0.040 0.020 0.480 0.060 0.020 0.040 0.040 0.140 0.040
tape 0.018 0.055 0.018 0.018 0.055 0.600 0.018 0.109 0.018 0.018 0.055 0.018
milk 0.020 0.040 0.080 0.700 0.020 0.060 0.040 0.040
coke 0.022 0.022 0.022 0.622 0.044 0.133 0.022 0.089 0.022
cup2 0.033 0.167 0.017 0.617 0.033 0.133
book 0.044 0.956

stapler 0.029 0.029 0.086 0.029 0.043 0.014 0.729 0.014 0.014 0.014
sponge 0.091 0.018 0.182 0.036 0.018 0.018 0.018 0.564 0.036 0.018
cup0 0.044 0.244 0.022 0.044 0.244 0.378 0.022

hair gel 0.060 0.040 0.080 0.060 0.020 0.040 0.020 0.620 0.060
joy pad 0.022 0.222 0.022 0.022 0.067 0.089 0.022 0.022 0.089 0.422

Table 4.5.: Confusion matrix of the E-SAMME-3D condition. Rows: cate-
gories tested. Columns: classification results.

is used in 0.663 of all boosting steps. However, the SHOT descriptor is used
in 0.195 and the ORB descriptor in 0.122 of all cases. It seems that the high
recognition rate of the E-SAMME algorithm profits from the availability of
different types of features.

In order to analyze this in more details, the dataset was split into those ob-
jects which are believed to mainly differentiate in shape (OBJ-S) and those
expected to mainly differentiate in texture (OBJ-T). The cross-validation

E-SAMME-ALL E-SAMME-OBJ-S E-SAMME-OBJ-T
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Figure 4.8.: Average amount of features used in a trained E-SAMME clas-
sifier. The default case using the complete dataset (ALL) is
compared to cases using subsets mainly differentiating in shape
(OBJ-S) and texture (OBJ-T) respectively
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was performed on both subsets (see Figure 4.8). Interestingly, in the OBJ-T
case the boosting chose a comparably high amount of 3D features, although
this subset was believed to be distinguishable mainly by 2D texture fea-
tures. Obviously, the assumptions about the most discriminating features
of the two groups have not been correct. However, this analysis shows that
the developed algorithm not generally prefers the SURF feature – there are
conditions in which other features dominate.
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Figure 4.9.: Mean test error over 5 training runs using the k fold cross valida-
tion. The test error progress over 100 boosting steps is plotted
for four combinations of feature types and extraction strategies.

Figure 4.9 reveals that the strong discriminating power of the SVM classi-
fiers lead to a quick convergence of the test error to zero. The cases “ALL”,
“3D-FEAT”, and “2D-FEAT” represent configurations containing all avail-
able classifiers. Cases “SVM-ONLY” and “DT-ONLY” mean configurations
using only SVM and DTree classifiers respectively. It can be seen that the
test error converges much slower when a weak classifier (meaning low de-
scriptive power) is used. This also means that only few base classifiers
contribute to the overall classification results of the configurations using
SVMs. However, since the final classification rates are high, this seems not
to be disadvantageous.

Summarizing the results of this evaluation, the presented approach can be
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4.2. Classification of Household Objects

considered successful in classifying the assembled dataset. It works better
than the compared approaches and the positive effect of combining 2D and
3D features can be shown. Possibly, this becomes important when applied
to even larger datasets. However, it is shown that the algorithm automati-
cally chooses the approximately best combination of classifiers and features
for describing the classification problem. For the purpose of enriching the
knowledge base represented in the robot’s situation model the developed ap-
proach seems feasible, especially, since the disambiguation system described
in Chapter 5 only requires a rough visual interpretation of the perceived
scene.

115



4. Applying Semantics

4.3. Room Categorization
Following the arguments of Torralba (2003), it is important for a mobile
robot companion to consider the context in order to ground specific objects
in a scene. One of the aspects of a situation’s context is certainly the
type of room that encloses the current situation. By considering this in the
grounding process, certain object categories can be expected to likely appear
in the situation, others can be ignored. Apart from that, this knowledge
is beneficial for referential communication. Not only furniture and other
objects are referenced in typical domestic interaction, also areas and rooms
play a central role when aiming at a general purpose domestic service robot
that is able to naturally interact with humans.

Swadzba and Wachsmuth (2011) approach the classification of room types
by analyzing the three-dimensional structure of a room using a custom Scene
Plane Descriptor (SPD) in conjunction with the 2D gist feature (Oliva and
Torralba, 2001). They thereby analyze the scene visible in the current field
of view and apply a subsequent voting scheme for merging the results from
multiple frame-by-frame analyses for receiving a coherent complete room
categorization.

The approach presented in the following sections employs a more holistic
strategy for classification. It builds up on the idea of storing egocentri-
cally perceived data in an allocentric representation in order to being able
to incorporate the information on a spatial basis in the decision making
processes. Before using a classifier for determining the type of a room, the
robot gathers the relevant information in terms of visual features. This
clearly demonstrates the progression of this thesis in comparison to the
work of Swadzba (2011) from a constrained consideration of the vista space
to a more comprehensive view on the environmental space (see Section 1.2).
Once the robot has gathered information about the whole room, it is able
to incorporate not only the currently visible features in the classification,
but also peripheral information that were perceived from a previous view.

Since the goal of the holistic classification is the general categorization
of whole unseen rooms, a large amount of data is needed in order to train
a suitable classifier. The assembling of a database containing a reasonable
amount of training data of six types of rooms will be described in the fol-
lowing section. In the subsequent section, the realization of an allocentric
representation for the egocentrically gathered features will be presented.
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4.3. Room Categorization

Therefore the feature descriptors will be anchored spatially in a global coor-
dinate system. Finally, the approach will be evaluated in comparison to the
voting based approach from Swadzba and Wachsmuth (2011). The creation
of the database, the implementation of the holistic classification approach
and the evaluation was performed by Tobias Röhlig in a supervision rela-
tionship as part of his master’s thesis (Röhlig, 2013).

4.3.1. Generation of Training Data
In order to train a classifier that is able to cope with whatever room or
apartment a robot enters, the classification system needs a representative
dataset that includes many samples of all types of rooms that should be
recognized. Since no adequate database was found in literature for public
access, and it is quite time consuming to record suitable data, the number of
categories was limited to six: bedroom, dining room, living room, bathroom,
office, and kitchen. The data was recorded in the homes of colleagues, friends
and other volunteers using a ASUS Xtion Pro sensor and a laptop.

As mentioned above, the holistic classification relies on a spatial anchoring
of the used features. On a mobile robot this is not problematic, because the
localization ability of the robotic system can be used to transform the ego-
centric information from the visually perceived data to a global coordinate
frame. When recording the room type dataset no localization of the sensor
is available and a point cloud from a 3D sensor usually comes in camera
coordinates. Hence, after having received the raw data in form of correlated
frames of depth and RGB images, the next step must be to generate a 3D
reconstruction of the scenes. For this the real-time point cloud reconstruc-
tion approach called Kinect Fusion (KinFu) developed by Izadi et al. (2011)
was used. They developed a GPU pipeline for processing the depth images
that consists of four main stages:

1. Convert depth image to 3D point clouds and normals.

2. Camera Tracking - Using a GPU implementation of the ICP algorithm,
a 6-DOF transformation of the camera position is computed.

3. Integration of the new data into the scene using a volumetric sur-
face representation (Curless and Levoy, 1996). The transformed and
oriented points are used to update a single 3D voxelgrid.
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4. The volume is ray-cast to extract a view of the implicit surface repre-
sentation for the user.

Izadi et al. (2011) do not provide a solution to the loop-closure problem.
This issue appears when having a full 360° scan. Since the reconstruction is
not perfect, there are still variations from the correct transformations. This
leads to displacements when reaching the starting point again after a 360°
scan. In practice, this problem can be overcome by simply not recording
full 360° scans. For classification the scans do not need to be complete but
should capture the essence of a room’s structure.

Due to the limited processing power of the used laptop the KinFu al-
gorithm is not applied online to the recorded data, but in a subsequent
post-processing step in order to make use of the full 30 fps scan frequency of
the sensor. This way, the algorithm works more stably and produces better
results in terms of completeness and accuracy. The intermediate camera
positions received from the tracking step are used for transformation of the
egocentrically perceived visual features to a global coordinate system. Some
of the features for the categorization process are calculated from the com-
plete point cloud of the current scene. In the frame-by-frame case this is just
the complete scanned cloud. In the holistic approach it would be ideal to use
a point cloud of the whole room. However, KinFu only provides a smoothed
mesh as representation of the fused scene. So the 6D camera positions are
used again to merge the point clouds from each frame to a coherent global
non-smoothed point cloud of the complete room. Finally, a uniform sam-
pling is applied to the resulting cloud in order to remove redundant data.
An example is depicted in Figure 4.10.

The database contains 114 scanned rooms in total. Each sample is rep-
resented by the raw sequence of RGB and depth images, the 6D camera
transformation for every frame, and the reconstructed complete point cloud
of the whole room.

4.3.2. Anchoring of Features
The spatial analysis of the scene is not only relevant for the reconstruction
in order to provide continuous data for global feature calculation. As stated
already, all egocentrically perceived visual features — local and global — are
anchored in an allocentric representation of the robot’s surrounding. The
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Figure 4.10.: A reconstruction of a living room scan using KinFu.

anchoring is relevant for eliminating redundant information which emerges
through overlap of the egocentrically perceived data from which the visual
features are extracted.

In the prediction phase the anchoring of features becomes particularly
relevant. When using the categorization approach to the classification of a
room in a real-world scenario, the robot needs to make sure that only the
features received in the room in question are fed to the algorithm. Fea-
tures from neighboring rooms need to be ignored. The anchoring approach
also allows other applications to analyze the features with respect to their
position, e.g. for the detection of objects or functional sub-areas of a room.

As discussed in the previous sections, the goal is to use various types
of features which incorporate different ways of extraction. The 2D features
need a gray scale or color image. 3D local features from point clouds can also
be computed frame-by-frame or on the reconstructed cloud. When using the
software on a mobile robot to perform online computation of features, the
per-frame option prevents from having to cope with updates to the global
reconstructed point cloud. It is usually also more accurate because small
inaccuracies in the reconstruction of the scene result in possibly severely
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altered descriptions of keypoints. Global features on the other hand, like
the custom SPD descriptor, need the reconstructed scene as foundation for
computation.

The local features are not computed for each frame because this would
produce a large amount of redundant data and unnecessary computational
load both in the detection and the training/prediction phase. In practice,
using each 50th frame turned out to be a good compromise between reducing
redundancy and capturing enough descriptive evidence. Each local feature
contains its anchor position in the allocentric 3D scene representation. In
the case of 3D features the corresponding 3D keypoint is used as an anchor.
In the case of 2D features, the keypoint is projected to the corresponding
depth image, which provides the 3D anchoring position. These pairs of
descriptors and anchors are stored in the sparse allocentric representation.
In order to again reduce redundancy in the data, each feature is assigned its
corresponding codeword from the global codebook. This is used to eliminate
duplicate data which is detected by small distances in the feature space
and the geometric space. To integrate the global SPD descriptor into the
same representation the individual detected planes from which the feature
is calculated are anchored in the allocentric feature-anchor space via their
centroid.

Eventually, this approach generates a large database of visual words rep-
resenting the analyzed scene. For each type of feature the classification
system creates a BoW which contains the distribution of visual words cor-
responding to the processed feature type for the complete room. In the case
of the evaluation described in the next section all gathered features can be
used for this because only enclosed rooms were scanned. In a real-world
situation a robot would need to establish a new feature database whenever
it enters a new room in order to replicate this strategy. Alternatively, it
can apply spatial reasoning using the anchors in order to generate a reason-
able subset of features in its surrounding for classification. This is further
discussed in Section 4.4. Finally these BoWs are used for categorizing the
represented room using the E-SAMME approach described in Section 4.2.
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4.3.3. Evaluation
In this section the applicability of the E-SAMME algorithm to room cate-
gorization tasks will be evaluated. The general capabilities of the boosting
approach will be further investigated in the context of a different task. While
the previous evaluation in Section 4.2.2 focused on instance recognition, here
the approach is deployed to a category recognition task. In this context, the
usability of the frame-by-frame computation of local and 2D features is eval-
uated, as well. Furthermore, E-SAMME will be trained and evaluated on
the IKEA dataset established by Swadzba and Wachsmuth (2011) to be able
to compare this new approach for room type classification to their approach.

Like in the previous evaluation, the test error was recorded during each
boosting step. The number of boosting steps was set to 100 to show that
the test error converges after an appropriate amount of base classifiers in
the additive model and a k = 5 fold cross-validation was applied. The set
of classifiers was composed of different settings of SVMs (×200), DTrees
(×200) and MLPs (×10). A sampling method for weighting the training
data, the maximum selection with a sample factor of zf = 0.6 was used.
The 114 samples from the training set have been distributed across the six
room categories as follows: living room (×23), office (×13), bedroom (×19),
kitchen (×25), dining room (×9), bathroom (×25).

Generalization Capabilities for Category Recognition

The most salient measurement for a classifier is the generalization error.
For categorization tasks this is particularly crucial, because the classifier
needs to deal with high in-class variation in order to correctly categorize
previously unseen rooms. This experiment aims to show that the use of
different features and classifiers for boosting leads to good generalization
abilities on the generated dataset. Simultaneously, the descriptiveness of the
local 3D features when derived from a frame-by-frame analysis compared to
the extraction from the reconstructed point cloud are tested.

First, the overall performance of different combinations of feature extrac-
tion strategies and feature types are tested. Therefore four different cases
are defined:

KF-3D
Only 3D features extracted from the KinFu reconstructed point cloud.

121



4. Applying Semantics

FBF-3D
Only 3D features extracted from frame-by-frame point clouds.

FBF-ALL
All feature types; local features being extracted frame-by-frame.

FBF-GS
SPD features from reconstructed cloud; gist feature frame-by-frame.
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Figure 4.11.: Mean test error over 5 training runs using the k fold cross
validation. The test error progress over 100 boosting steps is
plotted for four combinations of feature types and extraction
strategies.

Figure 4.11 shows the mean test error progress for the E-SAMME algo-
rithm over k = 5 training runs using the k fold cross-validation. While
the test error of frame-by-frame computed features does not improve signif-
icantly during the training, the trials with 3D features generated from com-
plete room clouds do show decreasing test errors with increasing numbers
of base classifiers in the boosting model. This improvement of the gener-
alization error can be observed in up to approximately 20 boosting steps
(error = 0.34). After 20 boosting steps, the error shows small oscillations
but does not decrease significantly any more.
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Obviously the training on frame-by-frame generated local features leads
to worse generalization than when using merged point clouds for feature
generation. The reason for this disparity does not seem to be the general
superiority of 3D features for room categorization, because using only 3D
features generated frame-by-frame does not lead to better results than the
usage of all features. A probable explanation of this observation might be
that artifacts of the feature computation and merging applied frame-by-
frame cause this inferior performance.

Two reasons explaining this issue come to mind: First, each video for
the database is recorded with different speeds of the camera movements.
Thus, the number of frames for each record differs and hence, the number of
features differs within the room categories. This leads to possible corruption
in the global BoW histogram features created for each room. This case was
thought to be avoided by spatial sampling of the feature positions.

Exactly this spatial sampling of features might be the second explanation
of this effect. The positions of features computed in two frames do not
necessarily overlap exactly. On the one hand, if the radius for sub sampling
is chosen too small or the camera transformation between the two frames
is inaccurate, there are still too many local features of one type in the
overlapping area which leads to corruption of the global histograms. On the
other hand, if the radius is chosen too large, the features do not fully cover
the structure of a room.

For a more detailed analysis of the contribution of the different individ-
ual features to these results, additional training runs using only one for the
features were performed. The plots in Figure 4.12a and 4.12b show the test
error progress for these runs, using frame-by-frame extraction and recon-
structed point cloud extraction respectively. The errors using the frame-by-
frame method show no significant improvement. Just as in the combined
case (FBF-ALL) from the previous test the oscillation amplitude of the er-
ror decreases after approximately 40 training steps, but the generalization
error improves only slightly. The test error for features generated from re-
constructed room scans shows an improvement over the first 20 boosting
steps for FPFH and SHOT features. However, the error for SPD features
does not show any improvement. The curves for SPD in Figures 4.12a and
4.12b are equal since both underlie the training on plane features computed
on the reconstructed clouds.

Despite the poor performance of 3D features in the frame-by-frame case,
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(a) Boosting of frame-by-frame computed features
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(b) Boosting of features from merged point clouds

Figure 4.12.: Mean test error over k = 5 cross-validation steps for different
features in the frame-by-frame and reconstruction condition.
Notice the different scales on the y-axes.

it can be obtained from the results that using different features combined
in a boosting algorithm enhances the classification capabilities compared to
single boosted features. Especially the results for the 3D features generated
from merged point clouds of rooms show the positive influence of different
feature types. While the individually tested features reach only an error rate
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of 0.38 minimum (FPFH, see Figure 4.11), the usage of all three features
leads to a minimal error rate of 0.32 (Figure 4.12b).

Figure 4.14 shows the average final categorization results represented in
confusion matrices. It can be seen that the overall classification rate is quite
high for most classes in many cases. Again, the poor performance when us-
ing features from frame-by-frame analysis is obvious (see Figure 4.14d). The
small amount of samples for some categories also seem to decrease the gener-
alization capabilities. Categories with a relatively small amount of samples
(dining room and office) have the worst generalization results. When omit-
ting one or both of these categories the overall results gets significantly
better (Figures 4.14e and 4.14f).

When comparing the descriptive power of each type of feature, it can be
observed that using the frame-by-frame approach, SHOT features are less
susceptible to the negative effects of frame-by-frame detection than FPFH
features (already seen in Figure 4.12). In the case of using reconstructed
point clouds, however, FPFH features are better in terms of generalization
error (minimal test error: FPFH: 0.38, SHOT: 0.49). This can also be
obtained from Figure 4.13 which displays the mean number of used feature
types per trial. The mean is again computed over the five cross-validation
steps. It can be seen that the amount of SHOT features is higher for the
frame-by-frame method, whereas for the merged point clouds, the FPFH
feature is used more often.

Usability of Base Classifiers

Another purpose of this evaluation is to show the usability of different base
classifiers in combination with boosting and different feature types. Fig-
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Figure 4.13.: Average amount of features used in a trained E-SAMME.
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(a) MLP trained on 3D features from
reconstructed clouds
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00 bedroom 17.6 58.8  0 5.88 17.6  0  0
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05 office 46.2  0 7.69 7.69  0 38.5  0

06 bathroom 12.5 4.17  0 4.17  0  0 79.2

un
kn

ow
n

00
 b

ed
ro

om

02
 d

in
in

gr
oo

m

03
 k

itc
he

n

04
 li

vi
ng

ro
om

05
 o

ffi
ce

06
 b

at
hr

oo
m

(b) DTree and MLP trained on 3D
features from reconstructed clouds
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(c) All classifiers trained on 3D fea-
tures from reconstructed clouds

unknown  0  0  0  0  0  0  0
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04 livingroom 45.5 4.55  0  0 31.8 9.09 9.09

05 office 69.2  0 7.69  0 15.4 7.69  0

06 bathroom 37.5  0  0 4.17  0  0 58.3

un
kn

ow
n

00
 b

ed
ro

om

02
 d

in
in

gr
oo

m

03
 k

itc
he

n

04
 li

vi
ng

ro
om

05
 o

ffi
ce

06
 b

at
hr

oo
m

(d) All classifiers trained on frame-by-
frame computed features
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(e) All classifiers trained on 3D fea-
tures from reconstructed clouds, 5
classes
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(f) All classifiers trained on 3D fea-
tures from reconstructed clouds, 4
classes

Figure 4.14.: Confusion matrices from the evaluation of E-SAMME. The
rows represent the true labels of the candidates, the columns
the predicted labels.
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4.3. Room Categorization

ure 4.15 depicts the number of used base classifier types and the corre-
sponding test error. For this test the 3D features SHOT, FPFH and SPD
computed on the reconstructed point clouds were used. Each type of classi-
fier appears in different settings. The SVMs with RBF kernel vary in their
parameters C and γ. MLPs are represented with one and two hidden layers.
The number of neurons per layer varies between 50 and 300. The DTrees
vary in the minimal number of sample points necessary to split a node and
in the settings for accuracy and tree building settings. The plots in Fig-
ure 4.15 show the frequency of each type of classifier as a collection of all
its settings.

Figure 4.15a shows the combination of all classifier types. Whereas the
MLPs are used most often, DTrees are only sometimes used and SVMs not
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Figure 4.15.: The usage of base classifiers and the corresponding test error.
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4. Applying Semantics

at all. This might correlate to suboptimal choices of parameters. The usage
of MLPs only shows a similar final error rate compared to the combined
trial, even though the error oscillates more and converges more slowly (Fig-
ure 4.15b). The classification error is higher for the DTrees which is not
surprising since it was also chosen less often by the boosting algorithm. But
both classifiers seem to contribute to the overall performance of the result-
ing combined classifier which confirms the assumption that the combination
of different base classifiers is beneficial.

Furthermore, the effect of differently configured classifiers might influence
the classification results. This is the other advantage of using E-SAMME
for automatic combination of classifiers. They may not only differ in the
used algorithm, but also in their choices for parameters. Figure 4.16 shows
the test error progress for boosted uniform MLP settings and their combina-
tion. In contrast to uniform boosted settings of MLPs, the combined usage
converges much faster (no relevant changes after 25 steps). However, some
of the other configurations finally reach a comparably low error value.

Although no significant superiority of the combination of different types
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Figure 4.16.: Comparison of the test error progress for a boosted set of clas-
sifier configurations and boosting of single classifier configura-
tions. Shown are the average test error progress over k = 5
cross validation steps for various MLP settings.

128



4.3. Room Categorization

of classifiers and different configurations of those can be proved (except
faster convergence), the usefulness of E-SAMME is obvious. Since it does
not perform worse than the best competitor either, it can be stated that its
capability of adapting to the current problem is conspicuous. This dispenses
the need for manual determination of the appropriate classifier, its optimal
parameters and the used visual features. It can also be obtained from the
results that a suboptimal choice of only one of these alternatives may lead
to a significantly worse categorization quality. Whereas the usage of E-
SAMME guarantees the ideal configuration of the available tools.

Comparison to a Voting Based Approach

This section analyzes the quality of E-SAMME compared to the voting
based classification approach by Swadzba and Wachsmuth (2011). For com-
parability the tests were performed on the IKEA dataset which is publicly
available. The features for this experiment were computed frame-by-frame
and have not been merged so that each frame contains one global feature
for each feature type. Since the scan of one scene was not merged and
considered as one sample, each frame of the recorded scans was used as a
single sample for training or candidate for testing respectively. A 10 fold
cross-validation was performed with one randomly chosen frame set as test
candidate per room type.

E-SAMME was trained in three different configurations: using MLPs with
all available features, using MLPs with gist and SPD features, and using
MLPs only with 3D features. Figure 4.17 shows the confusion matrices for
all three cases and the corresponding histograms of chosen features types.

One can extract from the confusion matrices in Figure 4.17a that classifi-
cation of the bathroom and kitchen works well (99.3% and 85%) when using
all feature types. However, the categorization of bedroom and office was un-
successful. The same tendencies as on the other dataset evaluated in previ-
ous sections are visible here. In general, the results are not as good as in the
voting based approach proposed by Swadzba and Wachsmuth (2011). Using
E-SAMME an overall classification rate of 60.83% (SD: 29.0%) is reached,
while the voting based approach reaches 78.0% (SD: 24.6%). When com-
paring to the case when only using gist and SPD features the generalization
quality of E-SAMME is even worse (Figure 4.17b). When using only 3D
features (see Figure 4.17c) the categorization results are acceptable.
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(a) Boosting of MLPs with all features on the IKEA dataset.
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(b) Boosting of MLPs with gist and SPD on the IKEA dataset.
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(c) Boosting of MLPs with only 3D features on the IKEA dataset.

Figure 4.17.: Confusion matrices of the training and classification on the
IKEA dataset. The rows represent the true labels, columns
the predicted results.
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4.4. Summary

It can also be seen that the SPD feature is not used very often when local
3D features are available. Thus, it becomes clear that SHOT and FPFH
features describe the 3D scene more accurately than SPD features. This is
probably due to the fact that the local features do not only describe the
planes in the scene but also edges, corners and curved surfaces.

4.4. Summary
In the previous sections solutions for furniture detection and recognition,
general object identification and room type categorization have been de-
scribed. These approaches to assigning semantic labels to the geometric
structures in the robot’s environment provide necessary information for es-
tablishing a useful situation model. As seen in the introduction to this chap-
ter, the knowledge about the identities and functional roles of the objects
and areas within an apartment is crucial in referential communication. The
information from these visual interpretation components can be included
in the allocentric representations in the robot’s situation model. Identi-
fied furniture and manipulable objects can be represented in the allocentric
instance representation described in Section 2.3. The room type is proba-
bly best represented in an allocentric areal representation. The anchoring
process for visual features described in Section 4.3.2 profits from the cen-
tral representation of situation information. The features can be included
in the allocentric representation using the previously proposed mechanism
that allows to link-in arbitrary structures to the default representation (c.f.
Section 2.3). This way, the information is available to other components
within the system.

The topics discussed in this chapter relate to various research questions
established in Section 1.3. The considerations about the relevance of se-
mantic knowledge about certain structures in the environment contribute
to Question 1. Especially the approach to room type categorization is re-
lated to Questions 3 (spatial and temporal integration) and 4 (inclusion of
context). The anchoring of features realizes an integration of visual infor-
mation spatially and over a certain period of time. Also it allows to include
the context (in terms of peripheral visual information) in the room cate-
gorization task, and also allows to apply the functional role of an area as
context information to other interpretation tasks.
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4. Applying Semantics

In general, all presented approaches to visual interpretation could success-
fully be applied to their corresponding tasks. The furniture segmentation
and recognition approach using 3D ISM shows positive results in its general-
ization capabilities. However, its applicability to detection tasks in cluttered
scenes has potential for improvement. According ideas for refinement are
discussed in the corresponding sections.

The household object classification approach reaches high success rates in
identifying objects in the assembled dataset – also in comparison to other
state-of-the-art approaches. It combines different classifiers and feature de-
scriptors in order to find the best combination for distinguishing the target
objects.

The categorization of rooms works well on the recorded dataset, albeit the
results on the IKEA dataset do not reach the level of accuracy that is re-
ported by Swadzba and Wachsmuth (2011). Here, the spatial anchoring and
the set of base classifiers and visual features should be revised. However,
the concept of spatial anchoring of visual features for a holistic interpreta-
tion of geometric structures still seems promising. For the training of the
category models this is currently not exploited explicitly, although classifiers
that make use of this information are imaginable. The 3D ISM approach
from Section 4.1 is an example for that.

The anchoring mechanism cannot only be used for recognizing the cur-
rent room a mobile robot is situated in. It is also imaginable to build
up a more comprehensive database of anchored visual features which al-
lows more sophisticated interpretations. An approach to reasoning about
the spatial distribution of features within the environment could be able to
detect functional areas in the apartment that are not limited to complete
rooms. For example when a home does not have this distinct separation of
rooms, but includes a kitchen, dining room and living room area in one large
non-separated room, the different functional areas could still be detected.
Reasonable subsets of the detected features based on their positions could
be passed to the classification component in order to identify corresponding
areas. This could also enhance search tasks by providing first hints about
the presence of target objects in certain locations.

However, this chapter shows that visual interpretation of the robot’s envi-
ronment is far from being solved — also when considering other publications.
Integration of visual context into the interpretation processes is certainly a
necessary step for improving the robot’s capabilities in this field. But we
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4.4. Summary

will not be able to avoid taking other modalities into account when aiming
for a universal situation model that is able to support a natural interac-
tion with human interlocutors. Therefore the following chapter investigates
ways for harnessing the auditory modality for grounding utterances about
spatial structures in the environment and rectifying the results from visual
interpretation.
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Chapter 5

Perception and Communication -
A Mutual Benefit

The previous chapters focused mainly on visual perception in order to build
up a representation of the environment as a basis for establishing a situa-
tion model. But the situation awareness of an agent also largely depends
on the comprehension of speech and the information that can be extracted
from the utterances of the other persons in the situation. With the goal
of building a multi-purpose service robot in mind the need for a reliable
understanding of what is being said is obvious. For the future, much more
complex scenarios such as the general purpose assistant for the home are
envisioned. However, these will depend on easy operation and a high level
of system-human integration (Engelhardt and Edwards, 1992). In order to
being accepted by humans as a social companion the robot must be able
to comprehend natural language, not only a small predefined set of com-
mands. Further, following the findings of Brennan and Clark (1996) that
the conversational content depends on the interlocutors’ implicit consensus,
it becomes clear that dialog and situation model require a proper coordi-
nation. This is true not only for human interlocutors but also for artificial
ones in order to being able to perform successful multimodal HRI. As a con-
sequence, this means that the situation model depends on the context of the
current situation including the conversation, while the correct interpretation
of the communicational situation in turn depends on a sophisticated situa-
tion model which provides background knowledge. In either case a reliable
grounding of the conversational content is required.
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5. Perception and Communication

Related Work

Coordination of speech with other modalities is a reoccurring topic in re-
search on HRI. This includes the production of multimodal cues in order
to enrich the communication and to make it more natural for the human
interaction partner (e.g. Li and Wrede, 2007). The communicative robot
HERMES (Bischoff and Graefe, 2002) serves as a guide and entertainer in
museums and fairs. It is able to act appropriately in various situations
by switching the conversation context based on the utterances of the vis-
itors. Using gestures and gaze alongside speech, the robot produces rich
communicative signals for example to explain directions to the interlocu-
tors. However, for perceiving information from the users it only relies on
the auditory modality and does not evaluate non-verbal cues. But the vi-
sual domain is in many situations an important source of information for
an interaction. There have been various attempts to design robots that in-
teract with the human using the visual domain, e.g. for “programming by
demonstration” (Erlhagen et al., 2006). One of the problems here is that the
usage of the single domain limits the possibilities of the human for teaching
the robot new behaviors apart from very simple ones. For more complex
tasks the monomodality of the process inhibits a static communication flow
and prevents a dialog between human and robot.

Breazeal (2004) argues that future HRI needs to work like human-style
social exchange. This obviously includes multimodal interaction in a nat-
ural way. It supports a more competent and enjoyable collaboration while
working together and enables the robot to engage in various forms of social
learning (“socially guided machine learning”) without any need for addi-
tional training because humans are already experts in social interaction.

Leonardo is a social humanoid robot (see Figure 5.1) that can work along-
side people as cooperative teammate (Breazeal et al., 2004). It understands
and produces communicative signals through dialog, gestures, and facial
expressions which enable it to develop natural human social skills. The
supported interactions are limited to task-oriented goals, but include the
interpretation of simple referencing of objects in the near vicinity, the com-
prehension of spatial relations and perspective change.

As already discussed, the grounding of verbally described entities and
concepts in the visual perception is important for referential communication.
There are several systems that use non-verbal cues like gestures and gaze
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Figure 5.1.: The social robot Leonardo. Image taken from Breazeal et al.
(2004).

for this grounding process (e.g. Stiefelhagen et al., 2007) or combine these
cues with bottom-up visual attention mechanisms (Schmidt et al., 2008) or
world knowledge for grounding observed events in the scene (Dominey et al.,
2004).

Rickert et al. (2007) demonstrate an integrated dialog system for human-
robot collaboration tasks. It contains a semantics module that is responsible
for selecting the most likely semantic interpretation of the user’s request
based on the knowledge about the world model as well as visual and other
multimodal input channels. This is used to identify referred to objects in a
collaborative construction task of assembling “Baufix” toys. For responding
in the performance of the dialog it uses motor abilities to produce non-verbal
behaviors like lip movement, gaze, gestures and facial expressions in order
to promote the content of the speech.

In referential communication ambiguities in the interpretation of the ref-
erent or the involved objects in a spatial reference description occur on
a regular basis. This problem is covered by several systems in literature.
Perzanowski et al. (2001) present a multimodal HRI interface that uses ges-
ture for disambiguation in the referencing of objects in a scene. In the work
of Schauerte and Fink (2010) vision and speech are combined in order to
establish a joint attention in multimodal HRI. They assume that sharing
a common point of reference with an interaction partner is fundamental
for learning, language and sophisticated social competencies (Mundy and
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5. Perception and Communication

Newell, 2007). Further they argue that the conversational domain is most
important for identifying this referent. However, especially when consider-
ing object relations, the perception influences the interpretation of referring
acts, because “listeners [. . . ] identify objects on the basis of ambiguous ref-
erences by choosing the object that was perceptually most salient” (Beun
and Cremers, 1998; Clark et al., 1983). Their system combines pointing
gestures and information about the appearance of an object from speech
in order to establish a biologically-inspired saliency model. This is used to
support the visual search for the referent in the scene.

Gorniak and Roy (2005) try to resolve ambiguities in the linguistic form
and the conversational content. Therefore they employ probabilistic repre-
sentations of multiple hypotheses for lexical and grammatical choices. Us-
ing a situation model that contains agents and objects nearby as well as
the speaker’s intentions, their system comprises a probabilistic grounding
approach using confusion networks for reference resolution.

Iwahashi (2003) describe a probabilistic framework that is able to ac-
quire language by grounding speech to visual and behavioral information
observed by a perceptual system. Their approach utilizes a consistent sta-
tistical optimization scheme in order to learn the linguistic knowledge in an
unsupervised way. First, the lexical items for the concepts regarding single
objects and concepts regarding motion are learned by presenting comprising
images in which a person presents or moves an object with according utter-
ances describing the object or motion respectively. After that, the system
learns the grammar from more complex scenes and descriptions to establish
relations.

Moratz et al. (2003) demonstrate how to use spatial knowledge in a com-
municative task between a mobile robot and a human. They focus on the
fact that both interaction partners have different reference and perceptual
systems. Using a semantic network formalism that represents the system’s
spatial knowledge, they try to disambiguate projective relations in move-
ment commands for the robot. They found in their experiments that hu-
mans mostly take the robot’s perspective. Therefore, they have equipped
their robot with an egocentered reference frame by partitioning the envi-
ronment along a reference direction into left-right and front-back. This
reference direction is defined through a vector from the robot’s center of
mass to a relatum. A relatum could be the centroid of all perceived objects
or a salient object.
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Similarly to these systems, this chapter will focus on the disambiguation
problem of grounding speech in the perception. Therefore, a probabilis-
tic network model will be presented that handles multiple hypotheses for
grounding a certain description. Over time this enables the system to iden-
tify the correct choice of hypotheses which contributes to Research Ques-
tion 3 (see Section 1.3). Here the problem of temporal integration of consec-
utive information into a consistent knowledge representation is addressed.
The model’s topology is based on the geometric layout that is represented
in the situation model. In this sense it makes use of the references deployed
in the model and establishes new spatial relations for future reference, e.g.
for speech production. This inclusion of spatial context information into the
grounding process and vice versa contributes to Research Question 4 (see
Section 1.3). The previously gathered semantic knowledge about entities in
the environment is used in the interpretation of speech and this information
from the auditory modality is in turn used to enhance the situation model.
This improves the conversational skills of our robot BIRON because the
situation model can now profitably be deployed in a dialog in HRI.

As seen in the previous chapter, the reliable automatic visual recogni-
tion of indoor scenes with complex object constellations using only sensor
data is a nontrivial problem. In order to improve the construction of an
accurate semantic 3D model of an indoor scene, it is desirable to exploit
human-produced verbal descriptions of the relative location of pairs of ob-
jects. This enables the system to coordinate the conversational content with
the situation model. The grounding of these descriptions requires the abil-
ity to deal with different spatial Reference Frames(RFs) that humans use
interchangeably. In German, both the intrinsic and relative RF are used
frequently which often leads to ambiguities in referential communication
(e.g. “The plant is in front of the chair”). I assume that there are certain
regularities that help in specific contexts. These include the actual spatial
arrangement of the objects involved and the perspective on the scene. Also
the results of visual interpretation – which might also be ambiguous – are
assumed to be helpful in the interpretation of the descriptions regarding
RFs.
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5.1. Benefits of Combining Perception and
Communication

In HRI a large part of the interaction that involves a situation model is ref-
erential communication. On the one hand, this requires a reliable grounding
of the uttered references to the visually perceived geometric and semantic
structures surrounding the interlocutors. On the other hand, when pro-
actively shaping the conversation, the speech production requires to transfer
the internal representation of the referenced objects into a pronounceable
description that is appropriate to the current situation. This involves tak-
ing into account which implicit rules and habits apply in the current dialog,
depending on the interaction partner, the function of the conversation and
the established common ground.

Today, in most multi-purpose robotic systems the grounding process han-
dles speech recognition and visual perception separately. Most systems
match spotted labels from the speech recognition to results of the object
recognition module. This approach assumes that the robot can identify all
relevant objects in the environment reliably and that the trained labels of
the objects are the same ones that are used by any interlocutor. But as
seen in the previous chapter, object recognition solutions are not yet good
enough to satisfy these assumptions. And even if they were better already, a
huge amount of training data for all possibly existing objects in a household
would be needed.

In referential communication descriptions of the referenced objects or spa-
tial relations can be ambiguous. This is often the case when the scene
contains multiple instances of one mentioned category or when the speaker
assumes the presence of context information. Especially when using spa-
tial relations the different possibilities of selecting Reference Frames for the
descriptions constitute ambiguity. Humans are often primed for using cer-
tain frames in specific situations, or through the implicit negotiation of a
common ground. A canonical approach for resolving these ambiguities is
often to apply certain heuristics considering perspective, the conversational
context, or conversational repair mechanisms.

In robotics a closer cooperation between the dialog module and the per-
ception module can generate benefit for both parties. In order to resolve
ambiguities in the descriptions that need to be processed the grounding
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5.2. Reference Frame Selection in Human Communication

mechanism should consider the visually perceived information. Even if the
robot’s perception is fragile, it might give a decisive hint for the correct in-
terpretation. Multiple interpretations of a description can be tested against
the visual information in order to verify or disprove hypotheses. This can
also improve the alignment process to the individual preferences of an agent
in the dialog context. By keeping multiple possibilities for describing a cer-
tain constellation, an according implementation can capture the preferred
description as well as alternatives that might be used in different situations.

Accordingly, once a description is grounded in the perception, the re-
sults from the visual interpretation module can be improved by employing
the labels that were used in the description for the corresponding entities.
Thinking one step further, these new insights could be used to refine the
object recognition models by adding images of the newly grounded object to
the training set and rerun the training. This way the robot would constantly
enhance its own abilities through implicit learning.

5.2. Reference Frame Selection in Human
Communication

In ambiguous or uncertain situations, humans often communicate about
entities in their immediate surroundings using spatial descriptions and —
more precisely — use projective spatial relations like “A is in front of B”
or “C is to the left of D.” Although the interpretation of such spatial ex-
pressions seems to be straight forward to humans, artificial systems like
robot companions suffer from a fragile perception of the visual scene and
an inherent uncertainty in spatial descriptions. The former results from
the robot’s constrained sensory data and comparably limited object cate-
gorization capabilities as seen in the previous chapter. The latter is caused
by the necessary discretization of space and the selection of the appropri-
ate Reference Frame (RF). While there have been several computational
models offering different solutions to the discretization problem (Cohn and
Renz, 2007; Mukerjee, 1998), computational models employing a processing
strategy considering selection of different RFs are still rare. Carlson (1999)
defines spatial Reference Frames as coordinate systems that parse space and
impose an orientation on the environment, people, or objects. According to
Logan and Sadler (1996) and Miller and Johnson-Laird (1976) respectively,
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RFs have a direction as well as an origin. Levinson (2003) distinguishes
the relative, the intrinsic, and the absolute reference frame. The relative
reference frame depends on an egocentric coordinate system, whereas the
intrinsic reference frame is oriented according to the inherent axes of an
object. The absolute reference frame is based on environmental features
and corresponds to the allocentric representations described in the previous
chapters. This frame will not be considered in this analysis. Figure 5.2 de-
picts an example for a scene that can be described in ambiguous ways using
the relative and intrinsic RFs. For describing the plant in relation to the
armchair using the relative RF one would say “the plant is located to the
right of the chair”. While the intrinsic RF considers the inherent orientation
of the reference object and dictates a description like “the plant is behind
the chair”.

Figure 5.2.: Reference object (chair) with located object (plant): “to the
right of” (relative RF) or “behind” (intrinsic RF).

Human Reference Frame selection and processing has been investigated
intensively (e.g. Carlson-Radvansky and Irwin, 1993; Carlson, 1999). The
objects’ geometric and functional features are decisive for the assignment
and orientation of the intrinsic RF. However, the influence of these fea-
tures on the selection process has been neglected so far. Object features are
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attributed to objects conceptually and comprise criteria such as canonical
orientation and use (Levinson, 2003). The goal pursued in this chapter is to
construct a computational model that uses verbal descriptions by humans
and the knowledge about human use of reference systems to improve the
semantic representation of a scanned scene containing a furniture arrange-
ment. Therefore, the artificial system needs to have accurate empirical
information about how humans use reference systems to describe different
arrangements. In cooperation with Katrin Johannsen (Ziegler et al., 2012)
objects from a domestic domain were used to elicit the frequency of occur-
rence of the relative and intrinsic RF for different pieces of furniture. The
analysis distinguishes between vehicle objects (e.g., chair, see Figure 5.3a)
and opposite objects (e.g., shelf, see Figure 5.3b) that reveal differences in
the assignment of the intrinsic left/right axis according to their predominant
use (Graf and Herrmann, 1989). While the intrinsic left/right axis of vehi-
cle objects is primarily assigned in a way that corresponds to sitting in the
object, for opposite objects it is assigned like standing in front of the object,
facing it. However, there are objects that have no inherent orientation (e.g.
plant, see Figure 5.3) and therefore cannot be categorized for being a vehicle
object or opposite object. Others may be assigned an inherent orientation by
the way they are used (e.g. dinner table vs. desk).

(a) A vehicle object (b) An opposite object

Figure 5.3.: Example for assignment of different left/right axes in intrinsic
reference frames. Vehicle object (“left of the chair”) and oppo-
site object (“on the right of the shelf”).
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5.2.1. Conducting an Online Study
Spatial verbal descriptions were elicited in an online experiment conducted
by Katrin Johannsen (Ziegler et al., 2012). 244 participants were shown
pictures of object configurations and were instructed to define the spatial
relations by inserting spatial terms in gapped sentences in the format

located object [to be filled in] reference object

For example, “The plant is ........ the chair”. Pictures were created that
consisted of a reference object and a located object. Different orientations of
the reference object were obtained by rotating it clockwise by 90° angles on
its vertical axis. Where 0° means that the inherent front of the object faces
towards the observer, while 180° means that the observer sees the object’s
back. The located object (a plant or a stool) was placed at four different
positions: relatively in front, to the left/right of, or behind the reference
object. This procedure dissociated the relative and the intrinsic RF (Fig-
ure 5.2). Configurations in which both RFs resulted in the same description
were excluded. The located objects were chosen deliberately from categories
that have no inherent orientation so that an effect of this property on the
selection could be excluded. Out of the 66 pictures, 36 contained vehicle
objects (chair, armchair, and sofa) in four different rotations as reference
object. 30 pictures showed opposite objects (shelf, wardrobe, and chest of
drawers) in three different rotations. The 180° rotation was omitted be-
cause opposite objects are usually located at walls, so that they are never
seen from behind.

The resulting descriptions of the participants were coded as using “relative
RF”, “intrinsic RF”, “ambiguous” (using both reference frames at the same
time) or “other” (using an illegal or wrong description). Taking into account
rotation and position of the located object, frequencies of the use of each RF
were tabulated (Figure 5.4).

5.2.2. Empirical Results
Two rotations (90° and 270°) were used for statistical analysis to ensure
a constant dissociation of RFs. The descriptions of the participants were
coded as using either the intrinsic or the relative RF. Descriptions that did
not use either were excluded (1.37% of the data).
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Figure 5.4.: Percentage use for each reference frame for a sample vehicle
object.

Fitting a logistic mixed-effects model with full random slopes and in-
tercepts and RF selection as dependent variable, model comparison re-
veals significant main effects of rotation and position of located object (both
p < 0.001) but no main effect of object category. This means that the
position of the located object and the rotation of the reference object obvi-
ously influence the selection of RFs, while it could not be proven that the
categories of the involved objects have any effect on the selection process.

These results reveal that there are regularities in human choice of RFs. It
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should be possible to exploit these in an artificial system for disambiguation
of spatial descriptions for grounding in the system’s perception.

5.3. A Probabilistic Model
The developed method for resolving ambiguities in referential communica-
tion uses the empirical results about the usage of Reference Frames and
applies them profitably when interpreting a scene using visual and verbal
information. This allows the system to ground possibly ambiguous utter-
ances to the known structures in the environment. In turn it also enables
it to adapt to the communication patterns used by the interlocutor. In
the following, the data structures and algorithms will be described as part
of a complete processing sequence including the perceptual interpretation.
This includes a segmentation stage for identifying pieces of furniture and an
initial classification stage. The component that represents the third stage
converts the absolute representation from the visual analysis into a relative
spatial-relation-based graph structure. It then matches verbal descriptions
of pairs of items with entities in the graph.

5.3.1. Visual Analysis
For the visual analysis of the scene, the Point Cloud Library (Rusu and
Cousins, 2011) is used in conjunction with a ASUS Xtion Pro depth cam-
era. The previously described segmentation strategy from the ASM system
(c.f. Section 3.2.3) cannot be applied here, because furniture usually does
not move within the household. Therefore, their movable nature cannot
be observed, which is the only evidence the ASM system exploits for seg-
mentation. However, this approach can be used in order to concentrate on
the static structures of a scene while ignoring movable and dynamic struc-
tures, which in most cases do not represent furniture items (chairs are an
exception). Thus, the segmentation algorithms need to apply a heuristic
for bottom-up segmentation or employ world knowledge about the indoor
setting which the robot is deployed to. Usually the static structures in an
apartment are either furniture or parts of the building’s structure, namely
floor, ceiling, and walls. So, in order to segment the furniture, the first step
in the segmentation phase is to extract those bounding structures from the
scene.
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Figure 5.5.: Examples for result from the segmentation and classification of
the furniture arrangement inside an apartment.

In order to do this, plane models are fitted into the point cloud using the
RANSAC algorithm (Fischler and Bolles, 1981). The algorithm assumes
that a found plane can be removed if no points were perceived behind (walls),
below (floor), or above it (ceiling), because in these cases, the plane is most
likely a bounding structure of the room. Admittedly this assumption does
not hold for walls containing open doors or other passages. In this case the
camera may perceive objects behind the wall, so here the algorithm needs
to rely on a minimum size of the plane structure for classifying it as a wall.

Subsequently, the remaining points are clustered into coherent clouds.
Clusters with a size above a certain threshold are assumed to be furniture.
In a following verification step the clusters are checked for having contact
with the floor or a wall. Occlusion may cause that one furniture item is
decomposed into several parts in the point cloud. In order to reassemble
those structures, the “flying” clusters (which have no contact to the floor or
a wall) are merged with the nearest cluster below.

For the estimation of the identity of a found furniture cluster a modified
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version of the ISM method described in Section 4.1 was used. In contrast
to the default behavior described above, in our case it does not combine
segmentation and classification in one step. It rather takes the individual
already segmented clusters and checks for every class how many correspond-
ing features vote into the center of the cluster. This corresponds to the
implementation used in the evaluation of the voting scheme (Section 4.1.3).
The Hough Space only contains one sphere in the center if the pre-segmented
object, and the votes intersecting this sphere enable the categorization. Ulti-
mately, it generates a probability distribution p(f) over all known furniture
classes for each cluster.

5.3.2. Maintaining and Updating the Spatial Network
This section describes the algorithm for matching the descriptions to a spa-
tial representation of the scene while this representation, in turn, is also
updated according to the descriptions. For this, the visually perceived repre-
sentation of the scene is transfered to a probabilistic network structure with
vertices describing furniture and edges describing spatial relations. The se-
quentially processed descriptions are then matched to edges and are scored
according to the expected probability that the description actually means
the currently processed spatial relation represented by the edge. The best
match is chosen based on the calculated scores and is used to update the
probabilities in the network structure. A history of multiple hypothesis for
the matching of each description is stored in order to be able to revert a
previous decision.

The Probabilistic Network Structure In order to match the verbal
descriptions to the visual results, the 3D representation of the scene from
the visual analysis is converted into a probabilistic network structure. This
enables the approach to represent entities and their relations. See Figure 5.6
for a sample network graph corresponding to the scene in Figure 5.5. Each
vertex v ∈ V of graph G = (V,E) represents a piece of furniture in the
scene. It contains a probability distribution p(f) for the furniture category,
which initially corresponds to the classification results. Further, it contains
a probability distribution p(o) for the orientation of the object as discrete
values for the location of the item’s intrinsic front O = { left, right,
front, back } relative to the observer’s viewing direction. For example, the
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label back means, that the intrinsic front of the furniture is at the end facing
away from the observer. Through interpolation a rough assumption for a
more fine-grained orientation can be obtained. Since the visual analysis
does not provide any orientation, in the beginning these probabilities are
uniformly distributed. For every category a few properties are defined as
additional world knowledge. These contain information about the opposite
or vehicle nature of the objects of this category and whether these have
a distinct intrinsic front or not. Note that from the way a furniture item
without obvious intrinsic front is deployed in a scene, a temporal intrinsic
front may be assigned in the communication. This is why the probability
distribution for this is present for all vertices.

The edges e ∈ E in the network represent spatial relations of the vertices
in the relative RF. Each edge contains a discrete probability distribution p(r)
for four possible spatial relations R = { left of, right of, in front of,
behind }. Each edge is bidirectional, but has a distinct probability dis-
tribution for both directions. Using these discrete values, the distribution
can describe variance in the usage of certain descriptions of one spatial re-

Armchair

0.76

Armchair

0.85

Armchair

0.76

Table

0.41

Sofa

0.49

Cupboard

0.61

Figure 5.6.: An example for a furniture graph corresponding to the scene
in Figure 5.5. Notice that the false classification of the shelf is
transferred to the model.
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Figure 5.7.: Visualization of the information contained within the proba-
bilistic model.

lation. It enables the system to represent if someone uses two descriptions
interchangeably for the same spatial relation, maybe because the objects are
located diagonal to each other. Another reason may be a great difference in
size. If a small table is located in front, but at one end of a large couch, the
description might also (depending on the purpose of the description) be re-
lated to the couch’s center which results in a “next to” relation. The initial
distribution of the believed spatial relation is calculated from the absolute
coordinates of the point clusters, which are represented by the involved ver-
tices. All location representations are defined to use the relative RF from a
fixed viewpoint. An edge is established if the distance of two objects in the
real world does not exceed a certain threshold.

Interpretation of Descriptions Now, verbal utterances containing spa-
tial relations of two objects can be matched to this graph. Incoming de-
scriptions are expected to contain a located object, a spatial relation, and
a reference object. For example, the sentence “The table is in front of the
shelf” can be matched, where “table” is the located object, “in front of” is the
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spatial relation, and “shelf” is the reference object. The matching process
requires that this description is converted into a partial graph as well. This
description graph contains two vertices for the located and reference objects
and a directed edge for the corresponding spatial relation. The description
graph can now be matched to one of the edges in the furniture graph. For
each possible edge e, a score value is calculated that represents the accuracy
of its match to the incoming utterance using different interpretations.

Since the used Reference Frame γ is not known at this point, the descrip-
tion is interpreted as relative and intrinsic. The accuracy is calculated for
both interpretations. For the latter, the system distinguishes between the
opposite and vehicle nature and creates four interpretations for the four pos-
sible orientations of the reference object. This gives a total of five different
scores for the matching of an description to one edge. See algorithm 5 for
details.

Algorithm 5 Calculation of the Matching Score for all Edges
Require: floc (furniture category of the located object)
Require: fref (furniture category of the referenced object)
Require: r (spatial relation from the description)
Require: I(r|γ[, oref ]) (interpretation of a spatial relation)
Require: S(floc, fref, ρ, e) (score value calculation function)
Require: O = {oi} (orientations)
Require: G = (V,E) (the graph containing furniture and spatial relations)

1: s← 0
2: for all e ∈ G do
3: s← max(s, S(floc, fref , I(r|relative), e))
4: for all oi ∈ O do
5: if fref has opposite nature then
6: s← max(s, S(floc, fref , I(r|intrinsico, oi), e))
7: else
8: s← max(s, S(floc, fref , I(r|intrinsicv, oi), e))
9: end if

10: end for
11: end for

12: return s (best matching score)

The interpretation of the spatial relation given a RF and (in the case of
the intrinsic frame) a intrinsic orientation oref of the reference object will be
called ρ.

ρ← I(r|γ[, oref ]) (5.1)
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The score value for one interpretation of the spatial relation is calculated
from the mean value of the probabilities of the three components of the de-
scription given the current edge. The probabilities of the objects’ categories
given the corresponding vertices are defined by P (floc|e) for the located ob-
ject and by P (fref|e) for the reference object accordingly. Both can be read
from the current graph. The third component of the score value is P (ρ|e),
the probability for the spatial relation’s interpretation given the edge in the
graph. The complete score value calculation function is then defined as:

S(floc, fref, ρ, e) = P (floc|e) + P (fref|e) + P (ρ|e)
3 (5.2)

with

P (ρ|e) = max
i,o

(
P (r′|e)× P (γ|fref, oref, r

′)× P (oref|e)
)

(5.3)

The probability for the spatial relation’s interpretation P (ρ|e) uses the
probability P (r′|e) of the relation r′ in the current edge, which can again
be received from the current graph. The relation r′ is received from the
interpretation of the description given by the RF and the orientation of
the reference object. Additionally, the calculation considers the probability
P (γ|fref, oref, r

′) of the RF interpretation, which depends on the reference
object’s category (including the corresponding opposite/vehicle nature), its
assumed orientation, and on the evaluated relative spatial relation. The
probability distribution for this is a priori knowledge from the empirical
study described above. Finally, the calculation also includes the probability
P (oref|e) of the chosen orientation given the previous evidences.

Finding the Best Match In order to find the best overall match of a
interpretation of the description in the current knowledge base, algorithm 5
is applied to all edges of the graph. The calculated ratings provide a raking of
pairs of interpretations and matched edges. This way the best interpretation
of the description can be found given the current knowledge about the scene
and knowledge about the human usage of RFs.

Update the Knowledge Base With this new information the knowledge
base can be updated. For this, the probability distributions for the relation
of the matching directed edge and the categories of the connected vertices
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are adjusted. Optionally, if the interpretation uses an intrinsic RF, the
orientation distribution of the target vertex is also adjusted. The update
functions for the probabilities of the vertices and edges of the updated graph
are defined as follows:

pt+1(x) = pt(x) + pverbal(x)− pt(x)
σ

(5.4)

Subsequently the distribution needs to be normalized again. Here pverbal(x)
is the probabilistic representation of the interpretation of the incoming ver-
bal description. pt(x) is the probability distribution of the entity to be up-
dated at step t. The equation pushes pt(x) toward pverbal(x) with a damping
factor represented by σ. The function is applied to all vertices and edges
involved in the match, namely to p(f) of the located object, p(f) of the ref-
erence object, and p(r) of the spatial relation. In these cases, pverbal(x) has
a probability of 1.0 for the described category or spatial relation, 0.0 for all
others.

In the case of an intrinsic interpretation, the function is also used to
update the orientation of the reference object represented by the distribution
p(o). In this case the update target term pverbal(x) of the previous update
function is

pverbal(x) = P (o = x|rverbal, rvisual, γ). (5.5)

This is the probability distribution of the front direction which underlie
the interpretation γ of the actual intrinsic RF that is expected to be in
use. This can be calculated from the uttered spatial relation rverbal and
the visually perceived absolute relation rvisual between located and reference
object.

By updating this representation with more and more utterances by the
human interlocutor, the knowledge about the furniture in the environment
becomes more precise over time. Errors in the perception will eventually
be overwritten by updates to the corresponding probability distributions.
In principle this information could be fed back to the visual interpretation
component in order to improve the classification. Further, a new knowledge
about the intrinsic orientations of objects will emerge, just from the interpre-
tation of descriptions using the intrinsic RF. Preferences of the interlocutor
regarding the labeling of certain relations and objects can be captured with

153



5. Perception and Communication

this model. This is enabled through the discrete nature of the probability
distributions which allows to represent that an interlocutor uses different
labels for relations or furniture items. For example, the distribution can
capture that the human calls the cupboard most of the time “cupboard”,
sometimes also “shelf”, but never “bed”.

5.3.3. Resolving Conflicts
Not all descriptions by the interlocutor can be matched to the existing
graph with a high score. Especially in the beginning when the graph does
not contain many observations it is likely that false assumptions lead to
wrong matches. Once the graph contains a few updates that originate from
wrong matches it becomes even more likely that the matching process makes
mistakes. Over time this behavior escalates and results in a useless model.
In order to prevent this behavior the system needs a strategy which allows
backtracking of multiple hypotheses and the possibility of reverting several
matching decisions in favor of different matches.

The approach described here realizes this solution by keeping the n best
rated matches including the corresponding updated graphs. This means, for
each incoming description the algorithm identifies a set of matches corre-
sponding to the n highest scores. These matches are assigned to respective
copies of the current graph. These updated graphs are stored as a basis
for the matching process of the next incoming description. Now the system
matches the new description not only with the edges of the single current
graph configuration, but with those of all n graphs from the previous step.
The matching results now also contain a link to the predecessor’s graph
configuration. As a consequence, the calculated scores represent always the
accumulated scores of all predecessors. This means that the best match for
one description is also the best match considering the sequence of all stored
graph configurations from the previous steps. This procedure leads to a fi-
nal resulting graph which is the approximate global optimum of all possible
interpretation sequences of the given descriptions.

Figure 5.8 displays an example for a sequence of description matching
processes with corresponding graph configurations. In this example every
description matching process stores the n = 4 best matches with their corre-
sponding updated graphs. When matching description 1, the initial visually
perceived graph G0 is the base for calculating the matching scores for the
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Figure 5.8.: A sequence of graph configurations for backtracking. Every
node represents a different graph configuration. Configuration
G0 is the initial graph from the visual analysis. In this ex-
ample every description matching process stores the n = 4
best matches with their corresponding updated graphs. Ev-
ery graph configuration has exactly one predecessor from the
previous step, represented by a link.

possible edges and interpretations. In this case, the new graph G1 results
from the highest rated match and G4 results from the fourth best match.
When the system receives description 2 the approach tries to match the de-
scribed spatial relation in all possible interpretations to all edges of graphs
G1, G2, G3, and G4. In this case the highest score is calculated for match-
ing an interpretation of the description to an edge of graph G1. The fourth
best score, however, is calculated for an edge of graph G2. The most prob-
able configuration at this point, based on the knowledge of the two already
matched descriptions, is G5.

After matching description 3 to the currently believed graph configura-
tionsG5 toG8 the first backtracking and reversion takes place. This happens
implicitly when the best match is found on a graph that was previously not
considered optimal. Now the best rated match involves an edge that belongs
to graph G6 which was the second best rated configuration in the previous
step. So at this point the approach implicitly reverted the previous decision
of choosing the match corresponding to G5 in favor of selecting configura-
tion G6. By performing the backtracking one can conclude that the most
probable sequence of matches after matching description 3 is now:
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G0

G1

Figure 5.9.: Selected graph configurations after matching three descriptions.

In the last depicted step the approach again reverts previous decisions.
Again the best rated match does not align with the previously assumed
best match. Instead, the previously second best rated graph G10 is selected,
which in turn has predecessors which were rated only as third option for their
respective descriptions. This means that the approach reverts all previous
decisions and assumes a completely different sequence of matches now:

G0

Figure 5.10.: Selected graph configurations after matching four descriptions.

The advantage of this approach is that previous hypotheses can be re-
claimed when new evidences occur. In the example the sequence G0 → G1
→ G6 → G9 which was preferred after description 3 is not discontinued
because the approach still found matches based on this sequence that seem
quite likely. It is possible that in a future step this sequence will be reac-
tivated as the most probable one. The parameter n depends on how many
hypotheses should be tracked in every step. The smaller this value, the less
possibilities for backtracking and reversion remain for the processing. Also
the chance of a hypothesis for being discontinued rises with a lower n. In
the example this is the case e.g. for the sequence G0 → G2 → G8. Choosing
an appropriate value for n means a trade-off between the possibilities for
reversion and computational load.

5.3.4. Adaptation to Personal Preferences
The results of a preliminary study (see Section 5.4.1) reveal the need for
adaptation mechanism to the personal preferences of interlocutors. Not ev-
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erybody behaves according to the statistics about RF selection. Temporary
priming effects or other causes lead to a preference to one RF throughout
a conversation for some people. In these cases the usage of the statistics in
the rating of interpretations of a description is counterproductive.

In order to realize an adaptation mechanism that respects this personal
preference the set of possible interpretations of a description is extended.
For now, when matching a description to the furniture graph, the described
spatial relation is interpreted as relative and intrinsic and rated accordingly,
respecting the opposite or vehicle nature and the four different possible ori-
entations of the reference object. This gives five different scores, all including
the probability P (γ|fref, oref, r

′) of the chosen RF given the assumed furni-
ture pair and their relation which is based on the statistics from Section 5.2
(see Equation 5.3). The new mechanism calculates the scores for these five
cases in three different versions. First, every score is calculated using the
probability Ps(γ| . . . ) which is based on the statistics about selection of RFs
just like before. But additionally, the scores are calculated with the alterna-
tive probabilities Pr(γ| . . . ) and Pi(γ| . . . ) which were defined manually and
represent a preference either for the relative RF or the intrinsic RF. So, now
the algorithm considers 15 possibilities to match a described spatial relation
to one edge in the graph: The five interpretations of the description times
three possible assessments of the RF.

However, the algorithm now has the liability to make sure that consecu-
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Figure 5.11.: Sequences of graph configurations assuming different prefer-
ences of RF selection. Statistical distribution (S), relative RF
preferring distribution (R), intrinsic RF preferring distribution
(I).
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tive choices for interpretations of spatial descriptions are based on the same
assessment scheme of RFs. Each considered sequence of matches to the
graph (see Section 5.3.3) must be based on the same assumptions about
the selection of RFs because otherwise this would not represent a temporal
preference, but a spontaneous switch of assumptions for every description,
which is not desired. In order to realize this, each match and the corre-
sponding updated graph is labeled with the assumed assessment scheme its
rating was based on. Each subsequent match can only be based on the pre-
vious graph configuration that was generated using the same scheme as the
currently assumed assessment of RFs (see Figure 5.11). This way the algo-
rithm assures that each matching sequence considers the same assumptions
about preference in the selection of RFs.

5.3.5. Application in Human-Robot Interaction
For enabling the robotic system BIRON to use this approach for grounding
descriptions of spatial relations a few prerequisites must be fulfilled. The
robot needs advanced perception in order to pre-process the signals from
two modalities so that they can be provided as input for the described
approach. The visual analysis which supplies the initial configuration of
the furniture graph was already described in Section 5.3.1. It analyzes the
3D information from a ASUS Xtion Pro depth sensor mounted on top of
the robot in order to find furniture items in the field of view. It is also
possible to register multiple scans that are obtained by turning the robot in
place in order to get a wider view on the scene before starting the analysis.
Just like already described in Section 3.3.2 the registration profits from the
localization abilities of the robotic system which provides an initial guess
for the correct matching. The ICP algorithm just needs to perform the fine
adjustment of the point clouds.

The robot is also equipped with a directional microphone which allows to
perceive utterances containing the spatial descriptions. For interpretation
of the auditory signal the system uses the the SPHINX-4 speech recognition
toolkit (Lamere et al., 2003). It is supplied with multiple task-specific gram-
mars which are defined manually for the situations the robot is expected to
face. For every recognized utterance a grammar tree containing the matched
non-terminal and terminal symbols is created. As seen above, the grounding
approach expects descriptions in the form located object → spatial relation
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→ reference object. These can easily be created from the matched gram-
mar trees using a few simple rules. Thereby it is not only possible to use
canonical utterances that describe the relation. The descriptions can also
be obtained from complex constructions like “please bring the chair which
you put in front of the shelf yesterday” or from utterances using a different
order than expected like “in front of the shelf you can see the chair”.

However, the approach currently assumes that the perspectives of the
agent generating the model and the agent describing the scene are the same.
This means that the model is only valid if the person describing the furni-
ture layout is located in the same spot where the initial furniture graph
was perceived by the robot. The current state of the approach is not de-
signed to handle perspective change. This is partly based on the findings
of Moratz et al. (2003) who have found in their experiments that humans
mostly take the robot’s perspective, thus a future extension of this feature
is desirable. But it is possible to use the perceived furniture instances with
their respective locations and classification results for establishing new mod-
els from different perspectives. The initial graph just has to be initialized
with different initial assumption about spatial relations.

A similar approach as with the egocentric models in the ASM system
would be imaginable here as well (see Section 3.3.1). Once the robot iden-
tified a small set of typical interaction locations within the apartment, it
can establish a set of disambiguation models for grounding descriptions ac-
cordingly. The same set of identified furniture in the environment could be
used for initialization of all of the models. Even the probability distribu-
tions for the furniture’s categories can be shared across the several models,
because they are independent from the perspective. The furniture locations
and viewpoint for each model are anchored in the allocentric representation,
while the models themselves represent independent egocentric representa-
tions of the scenes. When descriptions of spatial relations occur, they can
be matched using the model corresponding to the person’s location.

In the interaction with a human interlocutor the robot should not only
understand the human’s utterances, it should also be able to answer or pro-
actively formulate requests. The model for disambiguation can also be used
for speech production. Obviously the verified labels of the furniture ensure
the correct naming of the objects, but also the correct choice of spatial
relations in the formulation supports the alignment with the interlocutor
and therefore also the successful communication. From the information
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about the relations in the graph the system can choose the most frequently
used spatial relation for describing two objects. From the statistics about
the usage of relative or intrinsic Reference Frames the formulation can be
influenced additionally.
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5.4. Evaluation
The algorithm for grounding spatial descriptions was evaluated by perform-
ing two different studies. Johannsen and De Ruiter (2013) found that the
scene type has significant influence on the choice of Reference Frames when
humans describe spatial relations. Conforming with this finding Levinson
(1996) claims that “relative systems of spatial description build in a view-
point”, which implies that using the relative RF demands an embodied
viewer in order to establish this viewpoint. Accordingly it might also have
an effect on the RF selection whether the describing person sees a picture
of the scene to describe or is actually situated in the scene. Furthermore,
describing the scene to a virtual, not specifically named entity or an actual
robot might influence the selection process as well. So in a preliminary
study, an online survey was conducted in which the participants had to
describe a depicted scene using gapped sentences. In a second study the
participants were invited to a real apartment to describe the furniture to a
real robot.

5.4.1. Online Evaluation
This preliminary online study has the goal to evaluate the performance
of the grounding algorithm. The statistics about usage of RFs in various
situations described in Section 5.2.1 was generated from results of an online
study in which participants had to describe different visualizations of specific
furniture constellations using gapped sentences. It seems reasonable to use
the same technique for generating a first set of descriptions in order to
evaluate the algorithm.

Goals

This initial evaluation has the goal to investigate whether the algorithm can
disambiguate the received information which is highly inaccurate. Both the
initially perceived identities of the furniture and the spatial descriptions are
ambiguous. It is interesting to see whether the algorithm can extract the
relevant information and make the correct interpretations in order to gener-
ate a valid scene model. Further, the evaluation shall expose the relevance
of the knowledge about usage of RFs in various situations or if this has no
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effect on the quality of the matching process. It may also be that humans
are primed to one RF when describing different relations of the same scene.
In this case the deployment of the statistic may be counterproductive for
the correct interpretation.

Method and Procedure

The scene which the participants had to describe was captured in a real
apartment outside the university’s campus. The furniture in the living room
of this apartment was relocated a little in order to being able to perceive
the arrangement easily from one viewpoint. Also it was considered that the
furniture is aligned parallel or orthogonal to the line of view to conform
with the assumptions of the RF selection analysis from Section 5.2. The
scene was captured with an ASUS Xtion Pro depth sensor and a consumer
camera, both being located at the same viewpoint. The 3D information
was used to segment and classify the pieces of furniture from the scene (see
Figure 5.5) using the approach described in Section 5.3.1. The pictures
from the consumer camera served as a visualization of the scene for the
participants in the online study (see Figure 5.12).

Figure 5.12.: Picture of the room that needed to be described in the online
study. The labels were translated for this figure.

The participants were asked to take an online survey which was accessible
over the internet so that they could participate from everywhere. At the
beginning of the survey they were instructed for the task ahead. They were
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asked to confirm that German is their first language. After that they had
to fill in gapped sentences in order to describe the spatial relations of the
form

located object [to be filled in] reference object

For example, “The table is ........ the armchair”. The sentences were all
German as well as the labels on the images which were visible to the partici-
pants throughout the whole survey. Only one sentence was shown at a time
and the order of the sentences was shuffled by the operator regularly so that
priming effects from the specific sequence of descriptions could be excluded.
Using these gapped sentences it could be controlled that all possible relation
were described.

For analysis the algorithm was fed with the visual results and the descrip-
tions from one participant. For comparison the descriptions were labeled
with a ground truth interpretation. The final decisions of the algorithm
for grounding each description were compared to the ground truth and the
resulting furniture graph was compared to the real furniture arrangement.

Analysis

The survey was taken by 52 participants (mainly students, average age: 28,
SD: 3.6, male: 72%) who had to fill in 20 gapped sentences. As described
above, the resulting descriptions were fed to the grounding algorithm, to-
gether with the results from the visual interpretation. Figure 5.13 depicts
the resulting probability distributions from the visual interpretation used
for the analysis. Notice that the shelf (SHELF 01) is misclassified by the
computer vision component as armchair.

Finally 90.87% of all descriptions are matched to the correct edge in
the graph, which means that the algorithm matched for every participant
on average 1.83 descriptions to wrong edges. Accordingly 36.54% of the
entire description sequences uttered by one participant can be grounded
correctly by the algorithm (see Figures 5.14b and 5.14a for visualization of
the data). For comparison, if instead of the statistic from the RF selection
experiment a uniform distribution of expected RFs is used, even 96.83% of
all descriptions are matched correctly and 61.54% complete sequences
are grounded correctly. So here the uniform distribution seems to work
better than the recorded statistics about human usage of RFs.
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Figure 5.13.: Probability distributions from visual analysis for the categories
of the six segmented furniture objects in the scene for the on-
line study.

However, one can observe that many participants never or only very rarely
used the intrinsic RF. In fact, the rate of participants that used the intrin-
sic RF in at least 10% of the descriptions is 55.77%. Accordingly, nearly
half of the participants almost exclusively used the relative RF. This ob-
servation suggests the assumption that some precondition of the test leads
to an alternative RF selection preference compared to the observed choices
described in Section 5.2. This may be due to the fact that in this study
a photography of the complete scene was used instead of rendered images
without background as in the selection evaluation study. For a more de-
tailed analysis of the implications of this circumstance the participants are
divided into two groups: group R contains the description sequences that
use less than 10% intrinsic RFs and therefore show a clear preference of the
relative RF. The remaining sequences form group N which does not show
any obvious preference.

When only looking at group R, the rate of overall correctly matched de-
scriptions is 86.30% and only 4.35% correctly matched complete se-
quences are observed. For group N 94.48% of all descriptions are matched
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(a) Correctly grounded descriptions
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(b) Correctly grounded sequences

Figure 5.14.: Average amount of correctly grounded descriptions per se-
quence and total amount of correctly grounded complete se-
quences. Statistical and uniform distribution refer to different
models for rating of RF selection.

correctly and even 62.07% of the complete sequences are grounded cor-
rectly. So here a large difference in the performance can be observed when
the participants are obviously primed to one Reference Frame compared to
the other group that showed no general preference and therefore acted more
as predicted by the statistics.

The resulting furniture graphs are correct for 84.62% of all sequences.
This splits up to 82.61% for group R and 86.21% for group N. This means
that in most cases the algorithm can fix the false categorization of the visual
interpretation component. In the remaining cases two vertices are confused.
Of all vertices 38.78% are assigned the correct inherent orientation through
the algorithm’s evaluation of intrinsic RFs. However, 21.15% are provided
with wrong inherent orientations. Nevertheless, it can be seen that the
visual perception can benefit from the grounding of verbal descriptions.

In summary, the algorithm is able to ground most of the descriptions
correctly and to generate correct beliefs about the identities of objects in
the environment. This works particularly well for description sequences
that conform with the expectations about usage of Reference Frames. When
participants behave differently than expected by preferring a certain RF the
algorithm makes many mistakes. These results lead to the improvements
of the algorithm described in Section 5.3.4. The implemented adaptation
mechanism to personal temporal preferences in the selection process will be
tested in the real-world evaluation (see Section 5.4.2).
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5.4.2. Real-World Evaluation
As stated previously, there are concerns about the validity of the online
evaluation with respect to the applicability of the system in real-world sit-
uations. The participants of the online study were not embodied in the
situation and they described the scene not in a dialog but essentially to no-
body but the computer screen. This might have influence on the choices they
make regarding the selection of the appropriate reference frame. Further the
preliminary study revealed a few shortcomings of the approach which were
incorporated in a revised strategy for adapting to individual preferences or
temporary priming of RFs (see Section 5.3.4).

So I conducted a second experiment in which the participants were ac-
tually present in the apartment looking at the furniture which had been to
describe. Also a real, embodied interlocutor has been present in the form of
our robot companion BIRON. This enabled the participants to describe the
scene in a real-world situation in an unrestricted dialog to an actual robot.

Goals

Again, the main goal of this evaluation is to find out how well the grounding
algorithm works for interpreting spatial descriptions correctly. In contrast
to the previous test, the descriptions originate from a real-world situation
and might be chosen differently. Also, since there was no guideline for which
pairs of furniture had to be described, the set of available information varies
from test to test. So more specifically, a goal is to see whether the selection
of RFs differs from the previous test and whether the system performs dif-
ferently regarding the quality of the matching decisions. The focus of this
evaluation lies on the assessment of the system’s performance under differ-
ent preconditions. How does the condition under which the descriptions
were generated, the quality of the visually perceived information and the
strategy for adapting to selection preferences influence the performance of
the algorithm?

Method

As setting for the tests the “intelligent apartment” laboratory was chosen
(see Figure 5.15). This is a realistically furnished research apartment inside
the university building, equipped with multiple sensors and actuators.
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Figure 5.15.: Scene from the evaluation while a participant is describing
spatial relations in a real-world apartment.

The tests took place in the living room. A viewpoint was defined from
which the participants should describe the scene. Just like for the online
study, the furniture was arranged in a way that it could all be perceived
from this viewpoint (see Figure 5.16). The robot companion BIRON was
placed at the viewpoint facing towards the furniture arrangement. The
participants were asked to stand right next to the robot and describe the
furniture arrangement inside the apartment’s living room.

The German descriptions were recorded and annotated afterwards. I re-
nounced on using a speech recognition system for automatic transformation
of speech to a machine-readable format because the focus of this evaluation
lies on the analysis of the grounding algorithm and not a complete system.
Errors in the recognition would distort the performance of the algorithm
which is not desirable at this point. Again, the scene was captured with an
ASUS Xtion Pro depth sensor mounted on top of the robot in order to seg-
ment and classify the pieces of furniture from the scene using the approach
described in Section 5.3.1. Like in the online study the algorithm was fed
with the visual results and the descriptions from one participant. Thereby

167



5. Perception and Communication

Sofa

Table

S
h
e
lf

Cupboard

Chair Chair

Figure 5.16.: Furniture layout for evaluation including the robot and a par-
ticipant

different preconditions were tested regarding the quality of the visual per-
ception, as well as different adaptation strategies. The final decisions of
the algorithm for grounding each description were again compared to the
ground truth and the resulting furniture graph was compared to the real
furniture arrangement.

Procedure

The participants were introduced to the setting and the robot. They were
asked to describe as many reasonable pairs of furniture as they can think
of until the robot signals that it heard enough. Thereby they were explic-
itly made aware that both objects of one pair can be the located objects
of a description. Further, they were asked not to proceed in a systematic
way when choosing the pairs, but to describe the arrangement in a ran-
dom order. In order to keep up the awareness that the descriptions should
be addressed to the robot which had the same perspective on the scene,
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it interacted with the participant throughout the test. This behavior was
controlled in a “wizard of oz” manner by the operator from a remote com-
puter. The behavior contained a short introduction, the invitation to start
the descriptions, short feedback prompts in between the descriptions to sig-
nal attention, and the closing of the tests. The operator decided to quit the
test when at least 12 descriptions were made covering all reasonable spatial
relations. Finally, the participants were asked to complete a questionnaire
about their experience with robotic systems and to fill in a data privacy
statement (see Appendix E).

Analysis

The study was performed with 30 participants (mainly students and univer-
sity staff, average age: 27.3, SD: 6.1, male: 55.2%) who produced on average
16.80 (SD: 2.78) descriptions of the furniture layout. It is interesting that
in this experiment the rate of intrinsic RFs used for the descriptions is even
lower than in the online study. While the rate of description sequences us-
ing the intrinsic RF in at least 10% of the descriptions (group N ) was
55.77% in the online study, it is now even just 16.67%. So in this experi-
ment group R (sequences using less than 10% intrinsic RFs) is much larger
than group N. I can only speculate about the reasons for this effect, be-
cause the prerequisites for this test are different in many ways to the online
experiment, but it might be that the actual embodiment in the scene and
the presence of an interlocutor influenced the choice of Reference Frames.
It is therefore even more crucial to apply the adaptation mechanism (Sec-
tion 5.3.4), because the participants behave differently than expected by the
statistics from the RF selection study.

The algorithm was run with and without adaptation mechanism, with
only uniformly distributed RF probabilities and with different outcomes of
the visual interpretation of the scene. The parameters of the ISM approach
for classification of furniture were manipulated in a way that different out-
comes in terms of recognition quality could be produced. Hereby a set of
three different visual interpretation results with descending quality could
be produced: Result A arises from optimized parameters and represents a
correct interpretation with quite clear preference of the correct class (avg.
entropy: 1.815). Result B contains a mistake for one item and the prob-
abilities are distributed a little more evenly (avg. entropy: 1.867). Result
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Figure 5.17.: Probability distributions of the visual interpretation of furni-
ture in the real-world study in three different qualities.

C contains a mistake with a quite strong belief and significantly more bal-
anced probability distributions (avg. entropy: 2.199). See Figure 5.17 for a
visualization of the three different results.

The results of the grounding algorithm under different preconditions are
displayed in Figure 5.18. In principle, in the case with activated adaptation
mechanism, more descriptions are grounded correctly than without. For
example, in the case of visual recognition result A, 40% of all sequences
are grounded completely correct without adaptation, while the rate rises to
66.7% when the adaptation mechanism is applied (Figure 5.18b). It is sur-
prising that the version with uniform probability distribution almost never
grounds a complete sequence correctly. These differences in sample means
between the non-adaptation and adaptation case, as well as between adap-
tation and uniform case have a statistical significance (p < 0.05) according
to the McNemar’s test for paired nominal data with dichotomous traits
(McNemar, 1947). The same tendency holds for the absolute numbers of
matched descriptions. In total 66.7% of all descriptions are matched cor-
rectly without adaptations. Compared to this, the case with activated
adaptation reaches a success rate of 91.9% (Figure 5.18a). The value
for the uniform case lies between the non-adaptation and adaptation case.
The large difference between the performance on complete sequences and
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(b) Correctly grounded sequences

Figure 5.18.: Amount of correctly grounded complete overall descriptions
and sequences. Qualities A, B and C refer to the different
results from the initial visual analysis.
* significant difference (p < 0.05)

overall descriptions of the uniform case can be explained by analyzing the
logs. Apparently, the algorithm using uniform probability distribution has
problems grounding descriptions of the two armchairs and the table cor-
rectly. Here, the RFs are chosen very poorly, which leads to many false
matches that, however, do not influence the overall rating of the complete
furniture graph so much. Here, the algorithm always makes a few mistakes
in the matching of these particular descriptions, but performs very well
for all others. This explains why only few complete sequences are correct,
but the overall amount of correctly matched descriptions is high. Using
the Wilcoxon signed-rank test for paired data that cannot assumed to be
normally distributed (Wilcoxon, 1946), these differences are as well found
statistically significant (p < 0.05). These effects can be observed for all
visual interpretation qualities.

However, it is obvious that the amounts of correct matches diminish with
lower quality of the visual interpretation results. Thereby the adaptation
mechanism seems to help rectifying some of the misinterpretations that come
from false a priori information, but at least in quality case C the success
rates diminish as well. Interestingly the algorithm using uniform probability
distribution seems to be less sensitive to the initial graph’s quality.

The difference between group R and N is very large in the non-adaptation
case. On average over all visual interpretation qualities, the absolute match-

171



5. Perception and Communication

without adaptation with adaptation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Group R

Group N

*

a
m

o
u
n
t 

o
f 

c
o
rr

e
c
t 

m
a
tc

h
e
s

Figure 5.19.: The overall amount of correct matches by groups R and N.
* significant difference (p < 0.05)

ing rate for the former sums up to 47.9% and for the latter to 74.7%. It
is clear that here, as well, the description sequences with a clear preference
for the relative RF make the difference. In the adaptation case the rate
for group R rises to 80.7% while the rate for group N stays with 74.7%
unchanged (see Figure 5.19). The difference in sample means in group R
is again found statistically significant using the Wilcoxon signed-rank test
(p < 0.05). This proves that the adaptation algorithm correctly assigns a
different expectation of RF usage to the correct description sequences.

The quality of the resulting furniture graphs varies as well. In the non-
adaptation case the amount of misclassified vertices is on average 13.89% for
visual interpretation quality A and continuously rises to 38.22% of quality
C. Whereas, when using adaptation the error rate is at under 3% for visual
results A and B, and goes up to 24.44% for result C (see Figure 5.20). It
is interesting to note, though, that the results for group N are again much
better than those for group R. For results A and B in both cases (with and
without adaptation) the algorithm does not make a single mistake in terms
of correct grounding of furniture. Since only few intrinsic RFs were used
for the descriptions, accordingly few furniture objects are assigned a correct
orientation. Averaging all trials, the amount of vertices that are assigned a
correct orientation is 17.78%. No effects from the different conditions can
be observed.

Additionally, the information gain by the grounding algorithm is analyzed.
As stated before, the entropy values of the probability distributions from
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Figure 5.20.: Overall amount of vertices that were assigned a wrong label.
* significant difference (p < 0.05)

the visual interpretation component range from 1.815 to 2.199. The average
entropy value of all graphs from all trials is 0.335. A low entropy means a
strong uneven distribution of probabilities, in other words few classes have
a high probability and many others have a very low probability. This means
that the model is more sure about the identity of the objects because the
probability of the correct class is very high in comparison to the probabilities
of the other classes. Since the entropy value rises significantly after applying
the grounding algorithm, one can say that this generated a large information
gain.

Discussion Summarizing these insights, one can say that a robotic system
should be able to adapt to an interlocutor in terms of expected usage of Ref-
erence Frames because these vary strongly between humans. The presented
system proved to be able to perform this adaptation successfully. The im-
plemented adaptation algorithm performs in most cases significantly better
than the versions without adaptation and uniform probability distributions.
Furthermore, it generates a valid symbolic representation of the furniture in
its surrounding and is able to improve the results from the visual analysis
through grounding of the verbal descriptions. The quality of the grounding
process and the resulting furniture graph depends, however, strongly on the
initial quality of the probability distributions. The system is able to rectify
minor mistakes in the visual perception, but since the algorithm represents
a probabilistic approach, larger errors lead to an establishment of wrong
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maxima in the probabilistic model.
The hypothesis maintaining strategy of resolving conflicts proved to be

very useful for the given task. When looking at the actual final sequences of
chosen matching hypotheses, it is striking that previous hypotheses are often
reverted in favor of others that were previously rated much worse. Reverting
to hypotheses there were originally rated only 60th or 70th in applicability
is not uncommon. This is certainly one key feature of the algorithm that
enables these good results.

5.5. Summary
We have seen that the robot’s abilities in perceiving a situation improves
through the usage of the newly gathered instance and referential informa-
tion. The dialog component of the robot is now able to establish a common
ground with the human interlocutor. The speech production considers the
probability distributions of the object’s labels and those of the spatial rela-
tions used to describe the locations of furniture as described in Section 5.3.5.
Also preferences in the usage of certain reference frames can be adjusted ac-
cording to the human’s habits. This represents an implicit agreement on
the usage of those linguistic properties between robot and human. Consid-
ering these preconditions in speech production, the produced formulations
can be adjusted to the way the interlocutor formulates his or her requests.
This increases the chances for successful communication and is a further
step towards a more natural communication scheme for artificial systems
and social behavior.

Similarly, the previous sections revealed that the collaboration between
components from the auditory and visual domain can enhance the interpre-
tation of the communicative signals from a human interlocutor. The visually
perceived layout of the scene is used in the proposed system to disambiguate
verbally uttered descriptions of spatial relations. Using the isolated speech
recognition results, this disambiguation would not be possible and the in-
teraction between human and robot would become very inefficient.

The proposed disambiguation method establishes a probabilistic network
structure representing the entities in the environment which are relevant
for the interpretation of the descriptions. The initial topology of the net-
work arises from the visual, three-dimensional analysis of the scene. Now
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consecutively emerging descriptions of pairs of objects in the robot’s (ex-
tended) field of view are matched and merged with the probabilistic network.
While preserving a number of hypotheses for each match, the proposed al-
gorithm finds the optimal sub-tree of the graph for matching the incoming
descriptions. The process considers the located and referenced object of
the descriptions, as well as the spatial relation between them. Especially
for the disambiguation of the spatial relations, the system uses empirical
results from an analysis about common usage of different Reference Frames
in human speech under certain preconditions regarding the entities to be
described. These results are used to improve the interpretation process. In
a temporal integration process the system evaluates approximately optimal
choices considering multiple preserved hypotheses for all previous interpre-
tation decisions.

Apart from the improved skills in HRI, this raises mutual benefits for
the robot’s visual and auditory subsystems alike. The semantic interpreta-
tion of the speech signal improves through the matching with the results
from the visual perception component. In turn, the semantic interpretation
of the visually perceived objects profits from the correct interpretation of
speech, because labels can be refined through the understood references in
the utterances. Further, it would be imaginable to re-run the training of the
models that facilitate the object recognition capabilities of the robot with
additional imagery from the referenced and labeled objects. In the long run
one could also refine the statistical model for selection of Reference Frames
or even establish personal models for individual human interaction partners
from the results of the grounding and interpretation process.

A further extension of the proposed approach to more complex scenes and
scenarios is imaginable. When applied to a scene containing more furniture,
the complexity does not rise exponentially, because the effort for calculation
of the hypotheses depends on the number of evaluated edges in the graph.
The spatial relations are only established with the furniture in the direct
surrounding. Therefore, the number of edges rises linearly with the number
of furniture objects.

Furthermore, an extension for employing different perspectives of the in-
volved agents is possible. The relative RF could be split into one for the
perspective of agent A and one for agent B’s perspective. The matching
process would just need to consider these additional interpretations of the
uttered descriptions. This would, however, require justification from a psy-
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chological point of view.
Another possible extension is imaginable for proceeding from furniture to

other entities within the apartment. For example, processing of descriptions
of manipulable household objects in respect to each other or their support-
ing structures would be interesting. Swadzba et al. (2009) already present
previous work on this topic.
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Chapter 6

Discussion & Conclusion

In this thesis, I investigate aspects of how a situation model should be con-
stituted for a general-purpose service robot that can interact naturally with
humans. The considerations include finding a way to digitally represent
the information the robot has gathered over time, a selection of types of
information required for such a model, and mechanisms that allow the de-
ployment of the aggregated knowledge in real-world interaction. In order
to recap the contributions of this work I will review the five dimensions of
situations defined by Zwaan and Radvansky (1998) — time, space, causal-
ity, intentionality, and protagonist. All five dimensions are treated in this
thesis, though they are not evenly weighted. Clearly, the main focus is on
the space dimension, namely, the perception of the geometric structure and
semantics of the space surrounding the robot. The time dimension is ap-
proached primarily through temporal integration of gathered information,
like utterances, visual features and dynamic properties in egocentric models.
Causality is covered only marginally in high-level components that try to
relate changes in egocentric models to the actions of the interlocutor and
the assumptions about human usage of reference frames. The same applies
for intentionality, which is considered in the high-level robot behavior for
altering the attention to situations in which a human shows the intention
to manipulate objects. The protagonist dimension, however, reoccurs on a
regular basis when interpreting actions to extract dynamic properties and
when grounding utterances in interaction.

As a first approach towards a general situation model for a mobile service
robot, one must consider the analysis and representation of the geometric
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structure in the robot’s environment. Thereby, the focus is on partitioning
the workspace in a way that allows the robot to distinguish between indi-
vidual entities. Through observation, the system is able to apply dynamic
properties to certain structures in its field of view, allowing it to detect en-
closed movable structures. Based on this capability, one can make a proposal
for a unified spatial representation incorporating different spatial scopes and
data structures. This relates mainly to the first of four posed research ques-
tions that outline the work described in this thesis (see Section 1.3). This
question is probably the most fundamental one and addresses deliberations
about the representation of spatial knowledge. Chapter 3 contributes to this
question by presenting a representation based on an areal geometric view of
the environment. Additionally, distinct egocentric models are anchored in
this view, enabling components to store information in a self-centered way.
To complete the set of requirements identified for persistent representations
on a typical mobile robot, the unified spatial representation includes a layer
representing instance-based information allocentrically.

The relevance of relations between those parts of the comprehensive rep-
resentation is particularly addressed. Transforming information between
several models and between points in time is considered eminently crucial.
Therefore, I present an algorithm for transferring knowledge from an ego-
centric model to other viewpoints at different times. It allows a robot to
apply previously-gathered knowledge in new situations. This contribution
relates to Research Question 3.

Furthermore, Chapter 3 grapples with how to decide which information
might be relevant in future tasks and when a robot should pro-actively claim
new facts (Research Question 2). Therefore, a robot behavior is presented
that makes use of generalized spatial representation to identify situations in
which a human is about to perform a possibly informative action. It enables
the robot to position itself accordingly to be able to perceive the action.

The same question is addressed in Chapter 4. Specifically, the relevance
of different types of semantic knowledge about the object identities and
areas in the robot’s surroundings is analyzed. I particularly focus on the
importance of the functional roles of regions or complete rooms within an
apartment. Obviously for referential communication, a large part of HRI,
the knowledge about the identities of objects is also very important. Chap-
ter 4 presents respective tools for detection and recognition of furniture
using a 3D ISM approach (section 4.1), a more general object classification
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mechanism based on AdaBoost, incorporating a vast amount of arbitrary
visual features (Section 4.2), and a categorization approach for room type
recognition (Section 4.3).

With the solutions described so far, the robot is able to visually perceive
many aspects of its environment. It can perceive geometric layout, including
dynamic properties, it is able to identify semantic labels of objects and areas,
and it has strategies to transfer information between several representations
and points in time. However, rich and natural HRI can only be achieved
when also considering the auditory modality (Li and Wrede, 2007; Breazeal,
2004). To establish a usable situation model, the human interaction part-
ner’s verbal utterances must be grounded in perception in order to further
improve the knowledge about the relevant entities. This includes gathering
facts about objects, but also aligning to the habits of the interlocutor and
establishing a common ground. This problem is approached in Chapter 5.

Here, I present a system for combining verbal and non-verbal cues. It
uses the possibly inaccurate results from the visual perception of a scene to
ground spatial descriptions of humans by considering generally observed hu-
man conventions, personal habits and alignment in a common ground. This
approach has been shown to interpret even ambiguous descriptions correctly
and can rectify mistakes from the visual perception. This contributes to
Research Question 3 through temporal integration to establish a common
ground, as well as Question 4 by integrating information of different modal-
ities into the interpretation process. The system uses a custom instance-
bases egocentric network representation, but solutions for integrating it into
the central spatial representation and in multi-perspective applications are
discussed in Section 5.5.

To demonstrate most of the aspects described in this thesis, an integrated
robot behavior was implemented realizing the lost key scenario. The robot
is able to analyze an indoor scene visually (using tools from Chapter 4).
Uttered spatial descriptions of the furniture are used to refine the spatial
model of furniture’s location. The resulting information is stored allocen-
trically for later reference. The robot then constantly observes the actions
of the humans in the room and repositions itself when it expects a manip-
ulation action. Performed actions can be described by the human leading
the robot to assign of a label to the manipulated object. The high-level
reasoning strategies described in Section 3.3.4 are used to update the loca-
tions of the reference objects. At any time, the robot can describe where
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tracked objects are in relation to the furniture in their immediate vicinity by
using the rules from the common ground established through the grounding
system in Chapter 5. This behavior was successfully demonstrated during
the on-site inspection of the collaborative research cluster “Alignment in
Communication” at Bielefeld University.

For future development, proceeding the focus from referential communica-
tion to collaboration between robot and human is imaginable. This requires
further developing the grounding process to more sophisticated mechanisms
to gather perspective. The interpretation of action must also be enhanced so
we may infer intention and predict goals. From a complex scenario involving
cooperative problem solving, additional interesting research questions arise.
What are the requirements for planning actions? How can the interlocu-
tor be included in the closed-loop control of the actions? Which additional
information must be maintained by a corresponding situation model?

In conclusion, this thesis contributes to better understanding what a do-
mestic service robot companion requires in terms of representation and ap-
plication of spatial knowledge in real-world situations. The general topic
has large potential for further investigation in future research.
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Appendix A

Situation cases for ASM evaluation

Performance analysis ASM
• CASE-A0 (Setting: SE, TA, CA, KI1, KI2, DO, SO)

– Object is being moved
• CASE-A1 (Setting: SE, TA, CA)

– Object is moved only slightly
• CASE-A2 (Setting: SE, TA, CA)

– Very small object is moved
• CASE-A3 (Setting: TA)

– Tall object is placed in front of unknown area
• CASE-A4 (Setting: SE, TA, CA)

– Two movable objects close together

Naiive matching analysis NM-ASM
• CASE-N0 (Setting: SE)

1. one object is being moved (visible)
2. object is at same place

• CASE-N1 (Setting: TA)
1. raw scene (no change)
2. previously hidden object is in front known background

Performance analysis MV-ASM
• CASE-M0 (Setting: SE, TA, CA)

1. multiple objects are moved (visible)
2. objects are at same place
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A. Situation cases for ASM evaluation

• CASE-M1 (Setting: SE, TA, CA)
1. raw scene (no change)
2. previously hidden object is in front known background

• CASE-M2 (Setting: SE, TA, CA)
1. one object is beeing moved and stacked
2. object is at same place

• CASE-M3 (Setting: SE, TA, CA)
1. two objects are moved and stacked
2. objects are at same place

• CASE-M4 (Setting: SE, TA, CA)
1. one object is moved to occlusion
2. object is at same place (visible)

• CASE-M5 (Setting: SE, TA, CA)
1. raw scene (no change)
2. object was added in meantime

• CASE-M6 (Setting: SE, TA, CA)
1. raw scene (no change)
2. object was removed in meantime

• CASE-M7 (Setting: SE, TA, CA)
1. raw scene (no change)
2. object was added in meantime at a place that was occluded before

• CASE-M8 (Setting: TA)
1. raw scene (no change)
2. tall object was added in meantime at a place with unknown background

• CASE-M9 (Setting: TA)
1. raw scene (no change)
2. object moved to occlusion (was visible before)
3. object is at same place (visible)
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Results from Multi-View ASM
Evaluation
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B. Results from Multi-View ASM Evaluation

B.1. Evaluation of simple ASM
raw algorithm output clean results raw algorithm output clean results
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B.2. Evaluation of naive matching ASM

B.2. Evaluation of naive matching ASM
raw algorithm output clean results raw algorithm output clean results
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B. Results from Multi-View ASM Evaluation

B.3. Evaluation of multi-view ASM
raw algorithm output clean results raw algorithm output clean results
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B.3. Evaluation of multi-view ASM
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B. Results from Multi-View ASM Evaluation
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Models for 3D ISM Training

213



C. Models for 3D ISM Training

The following models from Princeton Shape Database were used for training the ISMs:
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D. Results from Evaluation of Household Object Classification
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tea 0.889 0.044 0.022 0.022 0.022
paper cup 0.771 0.057 0.029 0.086 0.029 0.029

cup1 0.017 0.833 0.033 0.100 0.017
duster 0.986 0.014

wall mount 0.060 0.840 0.020 0.020 0.040 0.020
tape 0.018 0.018 0.782 0.018 0.018 0.018 0.036 0.055 0.018 0.018
milk 0.020 0.900 0.020 0.040 0.020
coke 0.022 0.022 0.111 0.778 0.022 0.022 0.022
cup2 0.033 0.033 0.917 0.017
book 0.022 0.022 0.022 0.022 0.022 0.044 0.778 0.044 0.022

stapler 0.014 0.014 0.014 0.014 0.014 0.029 0.886 0.014
sponge 0.018 0.018 0.073 0.873 0.018
cup0 0.022 0.044 0.022 0.911

hair gel 0.040 0.040 0.020 0.020 0.020 0.060 0.080 0.020 0.660 0.040
joy pad 0.022 0.022 0.022 0.933

Table D.1.: Confusion matrix of the E-SAMME-2D configuration. Rows:
categories tested. Columns: classification results.
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tea 0.889 0.022 0.044 0.022 0.022
paper cup 0.800 0.029 0.057 0.086 0.029

cup1 0.050 0.900 0.017 0.017 0.017
wall mount 0.040 0.020 0.900 0.020 0.020

milk 0.920 0.040 0.040
coke 0.025 0.025 0.025 0.100 0.750 0.075
cup2 0.083 0.017 0.867 0.033
book 0.022 0.044 0.067 0.022 0.022 0.022 0.800

hair gel 0.080 0.120 0.040 0.020 0.740

Table D.2.: Confusion matrix of the E-SAMME-OBJ-T configuration.
Rows: categories tested. Columns: classification results.
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duster 0.986 0.014
tape 0.036 0.727 0.036 0.055 0.091 0.055

stapler 0.029 0.800 0.114 0.043 0.014
sponge 0.036 0.091 0.091 0.745 0.036
cup0 0.022 0.022 0.889 0.067

joy pad 0.133 0.867

Table D.3.: Confusion matrix of the E-SAMME-OBJ-S configuration.
Rows: categories tested. Columns: classification results.
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tea 0.889 0.022 0.022 0.067
paper cup 0.743 0.057 0.029 0.029 0.029 0.057 0.029 0.029

cup1 0.033 0.850 0.017 0.050 0.033 0.017
duster 0.043 0.957

wall mount 0.020 0.020 0.920 0.020 0.020
tape 0.018 0.018 0.764 0.018 0.018 0.055 0.018 0.055 0.036
milk 0.040 0.020 0.020 0.020 0.860 0.020 0.020
coke 0.044 0.044 0.111 0.756 0.022 0.022
cup2 0.017 0.033 0.050 0.033 0.850 0.017
book 0.022 0.044 0.022 0.022 0.044 0.067 0.733 0.022 0.022

stapler 0.014 0.029 0.014 0.029 0.029 0.029 0.843 0.014
sponge 0.018 0.055 0.036 0.055 0.018 0.018 0.055 0.745
cup0 0.022 0.022 0.022 0.022 0.911

hair gel 0.040 0.020 0.020 0.020 0.060 0.020 0.040 0.100 0.040 0.020 0.580 0.040
joy pad 0.022 0.089 0.044 0.022 0.067 0.022 0.733

Table D.4.: Confusion matrix of the SVM-SURF configuration. Rows: cat-
egories tested. Columns: classification results.
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Appendix E

Questionnaire for RSM evaluation

see next page
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Fragebogen
Evaluationsstudie „Room Structure Model“

Leon Ziegler / SFB 673 Teilprojekt A4

Dieser Fragebogen dient zusammen mit den aufgezeichneten Daten zur Auswertung der
Studie. Es gelten die Richtlinien, die in der Einwilligungserklärung für Video- und Ton-
aufnahmen – Evaluationsstudie „Room Structure Model“ festgehalten wurden.

Identitätsnummer:

Alter:

Geschlecht:

Wie gut schätzen Sie ihre Kenntnis über Computer ein?

geringe Kenntnis 2 2 2 2 2 große Kenntnis

Wie gut schätzen Sie ihre Kenntnis über Softwareentwicklung ein?

geringe Kenntnis 2 2 2 2 2 große Kenntnis

Wie gut schätzen Sie ihre Kenntnis über Roboter ein?

geringe Kenntnis 2 2 2 2 2 große Kenntnis

Wie gut schätzen Sie ihre Kenntnis über räumliche Kognition von Menschen ein?

geringe Kenntnis 2 2 2 2 2 große Kenntnis

Wie gut schätzen Sie ihre Kenntnis über Softwaresysteme ein, die versuchen räumliche
Kognition von Menschen zu analysieren oder nachzubilden?

geringe Kenntnis 2 2 2 2 2 große Kenntnis

1
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