
Bioinformatic methods for the
analysis and comparison of

metagenomes and
metatranscriptomes

Ph.D. Thesis
submitted to the

Faculty of Technology,
Bielefeld University, Germany

for the degree of Dr. rer. nat.

by

Christina Ander

April, 2014

Referees:
Prof. Dr. Jens Stoye
apl. Prof. Dr. Andreas Tauch



Gedruckt auf alterungsbeständigem Papier nach DIN-ISO 9706.
Printed on non-aging paper according to DIN-ISO 9706.



Summary

Microbial communities play an important role in the whole life of planet earth. The
fields metagenomics and metatranscriptomics have developed to reveal the taxo-
nomic composition and functional diversity of heterogeneous microbial communi-
ties. With the development of new sequencing methods studies in those fields are
accelerated. At the same time the new sequencing methods provide a challenge for
bioinformatics to process and store a high amount of data.
In the scope of this thesis, methods for the analysis of metagenome and metatran-
scriptome data were developed. At first, the taxonomic classifier metaBEETL was
developed and implemented. metaBEETL is based on the Burrows-Wheeler trans-
formation and analyses metagenome sequences to gain a taxonomic profile of mi-
crobial communities. Using several bias controls, it provides accurate taxonomic
profiles while being memory efficient. In this thesis the accuracy of the classifier is
shown by the analysis of an artificial metagenome dataset.
Secondly, the rich client software platform Metrans was developed for the analy-
sis and comparison of metatranscriptome datasets. Metrans consists of a pipeline
designed for the analysis of metatranscriptomes. It also includes storage and vi-
sualization of the analysis results. The software is currently used in a number of
projects. The analysis of a metatranscriptome gained from the infected ear of a man
and a time series from tidal flat are presented as analysis examples in this thesis.
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Chapter 1
Introduction

A vast majority of the biosphere of our planet is populated by microbial organisms.
The total number of prokaryotes on earth has been estimated to be 4− 6× 1030 cells
[100]. Bacteria, microeukaryotes and archea can exist in nearly any environment on
earth. In oceanic dead zones, which contain only a minimal amount of oxygen,
microbial life still strives, even though no other life forms can be found [14]. Liv-
ing microbial organisms can also be found in hot springs with a chemical mixture
which would kill any other life form [41, 42], or in nearly freezing water [94]. It
is unknown for most of those extreme habitats, how living cells can survive yet
microbial life is still striving there. Microbes are essential for higher life forms on
earth, as a source for nutrients and the primary recyclers of dead matter. In soil they
contribute to plant health and nutrition, soil structure and fertility [48]. In the open
ocean, microbes are the foremost source of nitrogen fixation [15] and are suspected
to hold a central position in the conversion of organic matter into higher trophic
levels [19]. Most of these organisms live in complex microbial communities that are
adapted to a certain habitat.

Microbial communities in soil and ocean are influenced by human life, but only
have a small immediate effect on it. Whereas communities living in direct contact
to the human body have an impact on human health and life conditions, they are
also directly influenced by human behavior. It has been estimated that the human
body carries more microbial cells (1014) than human cells (1013) [6]. In theory human
bodies are free of microbes before birth and the microbial community is assembled
shortly after birth depending on environmental exposure [7]. Even though this as-
sembly process is similar, each individual has unique microbial communities [53].
It has been suggested that over the million years of coevolution, the interaction be-
tween a healthy host and its microbial organisms has reached a Nash equilibrium
[8]. The Nash equilibrium is a concept of game theory, where all players choose a
certain strategy, based on all possible strategies of the other players. Even though
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Chapter 1. Introduction

microbial communities and the human host can live without each other, the relation-
ship between those two has mutual benefits. For humans those benefits include the
extraction of extra energy resources from food, stimulation of innate and adaptive
immune system, colonization resistance against pathogens and provision of acces-
sory growth factors [17, 85]. Microbial communities gain a livable environment with
direct nutrients. The Nash equilibrium only holds for healthy humans as hosts. Not
only pathogens infecting the host can become a health problem for humans. Shifts
in the microbiota in humans are suspected to play a role in human diseases like
diabetes, asthma or cancer [36, 1]. The major areas of human microbiota currently
investigated include: gut, skin, lungs and mucous membranes [90]. Over the last
years research found positive as well as negative effects of microbial communities
inside and on humans. Even though a high amount of research has been done in
this field, it is still unclear how the influence of humans is carried out on a molecu-
lar level.

Humans do not only share a host relationship with microbial communities. Since
the beginning of civilization, microbes were used in fermentation processes for beer,
wine or bread [51]. Fermentation is not the only process where microorganisms
can be used by the industry. Today many product components that are used daily
in our diet or in health products could not be produced without the industrial use
of microorganisms [13]. The discovery of microbial enzymes over the last years
led to a wide range of new application fields of microbial organisms. For many
years, new enzymes or enzymatic functions from microbes have been discovered
and then used in biotechnological processes [89]. Those enzymes can be used for
the industrial production of chemicals or the reduction of environmental pollution
[58]. Another aspect of biotechnological use of microbes is the renewable energy
sector. Biogas as well as bioethanol are produced by microbial communities that
degenerate plant products [32].

Because of the wide range of living environments, the interaction with humans and
the biotechnological application of microbial organisms, the research of those organ-
isms has a long history and is still ongoing. Microbial research includes different
aspects, such as:

• Species abundance in the microbial community.

• Potential metabolic functions.

• Active/non-active metabolic functions.

• Interaction between members of the microbial community.

• Interaction between microbes and their host.
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1.1. Research on microbial communities

For many years research on microbes has been exploring all those aspects. Here we
will introduce the basic background of the biology of microbes and present potential
research methods for investigating microbial communities.

1.1. Research on microbial communities

The first recorded observation of microbial life was as early as 1665-1683 by Robert
Hooke and Antoni van Leeuwenhoek using microscopes [26]. Till the discovery of
the structure of the deoxyribonucleic acid (DNA) double helix by Watson and Crick
in 1953 [97], most microbial research relied on microscopes. Since the development
of sequencing techniques in 1975, all life forms can be studied at a more detailed
level using genetic information.

1.1.1. Central biological dogma

Since the discovery of DNA, the typing of organisms can be done either at a pheno-
type or at a genotype level. Phenotypes describe all characteristics of an organism,
like physical properties, behavior and development. Most of these characteristics
are encoded in the DNA, making up the genotype of an organism. DNA is made
up of four nucleotides adenine (A), guanine (G), cytosine (C) and thymine (T), also
called bases. The nucleotides are attached to a phosphate-deoxyribose backbone.
Nucleotides form chemical bonds with each other, stabilizing the DNA in a double
helix. A schematic example of this is shown in Figure 1.1. The automatic formation
of the bonds between two compatible nucleotides (A with T and C with G) is called
annealing. This either stabilizes the double helix or is used by the enzyme DNA
polymerase to produce a complementary strand of the DNA. In eukaryotes (animals,
plants, fungi, and protists) the DNA is mostly stored in the nucleus organized in
linear chromosomal structures. In prokaryotes (bacteria and archea) DNA is mostly
stored in circular chromosomes in the cytoplasm. DNA sequence stretches are com-
posed of genes, which are transcribed into ribonucleic acid (RNA) encoding for one
or more proteins, thereby influencing the phenotype of the organism. For the tran-
scription step the RNA polymerase binds to the DNA, seperates the double helix
and produces a complementary antiparallel RNA strand, keeping the bonding pair
cytosine and guanine but replacing thymine with uracil (U). If a gene coding region
was transcribed, the produced RNA is called messenger RNA (mRNA). It remains
single stranded and therefore degenerates faster than DNA.

Since similar characteristics can be encoded by different genetic makeup, similar
phenotypes give only a small implication on the shared genotype. The genetic se-
quence of an organism is inherited by the parents of that organism, either through

1Source:http://en.wikipedia.org/wiki/DNA, Figure slightly adapted.
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Chapter 1. Introduction

Figure 1.1.: Chemical structure of DNA. Hydrogen bonds between guanine (blue) and
cytosine (red) and adenine (green) and thymine (purple) are shown as dotted lines1.

sexual reproduction, involving two parents, or through cell division with only one
parent. The genotype of a species changes gradually through mutations of single nu-
cleotides or rearrangement, separating the species over time genetically from other
species while sharing the same ancestors. Over time this builds a tree like structure
of the degree of kinship between species, which is also called the tree of life. Find-
ing the correct ancestors of two species and classifying them to the proper position
in the tree of life is called taxonomic classification. This is often done on basis of
the genotype rather than the phenotype, because phenotypes can look similar even
though the species are not closely related.

1.1.2. DNA Sequencing

DNA sequencing is a technique to determine the sequential arrangement of the nu-
cleotides in a given strand of DNA. The development of new and better sequencing
techniques since the discovery of the DNA double helix till today is still ongoing. In
1975 the first sequencing technique was published by Sanger and Coulson [81]. The
determination of the DNA code was based on incorporation of chain-terminating
nucleotides and the enzymatic function of the DNA polymerase. For this technique
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1.1. Research on microbial communities

a DNA fragment had to be cloned in a plasmid vector. Two years later Maxam and
Gilbert developed a sequencing technique based on chemical modification of spe-
cific bases and the cleavage of the DNA at those nucleotides [59]. In both methods
the length of the sequenced DNA is restricted to a maximum of 1000 nucleotides, as
a result of insufficient separation of larger DNA molecules that differ in length by
only one nucleotide. A continuous string of genetic sequence gained by sequencing
is called a read. Since the Maxam-Gilbert method is technical more complex, Sanger
sequencing was the most used sequencing method for many years.

In recent years so called “next-generation” sequencing (NGS) methods have been de-
veloped. Using those techniques a cloning step is no longer necessary and through
massive parallelization millions of reads can be produced in a short amount of time
[93]. The amount of reads gained by those sequencing techniques often masks se-
quencing errors in single reads. The accuracy of single nucleotides is dependent
on their placement in the read. Accuracy generally drops towards the 3’ end of the
read, but single oligonucleotides can also cause specific sequencing errors.

The first technique was developed by 454 Life Science, which generates 400-600
megabases in a ten hour run. This technique generates one million reads in a 24
hour run. The produced reads have an accuracy of 99.9%. At this time the most cost
efficient sequencing methods are sequencing by synthesis (Illumina) and sequencing by
ligation (SOLiD) [57]. Sequencing by synthesis can produce up to 3 billion reads
with a read length up to 250 bp in a ten day run. The accuracy of those reads is at
98%. Sequencing by ligation produces 1.2 to 1.4 billion reads with a read length up
to 80 bp in one to two weeks, the reads have an accuracy of 99.9%. To gain longer
reads Pacific Bioscience uses single-molecule real-time sequencing, gaining reads with
an average length of 5,500 bp to 8,500 bp. The single reads of this method have an
accuracy of 87%, through alignment methods they can achieve 99.99%. Removing
the cloning step is the biggest advantage of the NGS sequencing methods, since this
step was time and cost expensive. In addition direct sequencing of DNA makes it
possible to obtain genetic code from non culturable microbes.

1.1.3. History of metagenomics

Metagenomics is the research on genetic material isolated from a mixture of microor-
ganisms instead of a single organism. The term metagenomics was first defined in
1998 by Handelsmann et al. by proposing to clone environmental DNA fragments
into BAC vectors [31]. Transformation of those BAC vectors into Escherichia coli host
cells gave the opportunity to screen the cultures for interesting metabolic functions.
This technique made it possible to access certain genes and gives a rough overview
of the species present in the microbial community. It was first used in 2000 by Ron-
don et al. who cloned DNA fragments of a soil community [76]. A phylogenetic
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as well as a functional overview over the microbial community was gained. Ron-
don discovered that the cloned DNA fragments coded for antibacterial activity and
found phylogenetic marker genes similar to genes from culture dependent methods.
Such antibacterial genes are a potential thread to host microbes, causing BAC vector
transformation to be highly selective. Regardless of this disadvantage a number of
significant projects relied on this cloning method. One of the biggest was the sam-
pling of the Sargasso Sea [92]. A total of 1.045 billion base pairs were sequenced of
seawater samples from the Sargasso Sea near Bermuda, showing that the amount
of microorganisms with an unknown genome is enormous. The sequences gained
in those big projects led to a number of new discoveries even years later [70, 69, 37]
when they were screened once again for new enzymatic functions.

The development in the metagenomic field was relatively slow till next generation
sequencing techniques were developed. In 2006 the 454 sequencing technique was
used to directly sequence a metagenome, comparing physically close sites of a mine
[21]. Difference in the potential metabolic functions as well as the microbial com-
position was found. Since then, metagenomic research using NGS has accelerated.
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Figure 1.2.: Number of papers published over the years which either contain the term
’metagenomics’ or ’metagenome’ 2.

The number of papers published with the term metagenome has risen exponentially
from 2006 to 2012 (Figure 1.2). Shortly after the invention of the new sequencing

2http://www.ncbi.nlm.nih.gov/pubmed
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1.1. Research on microbial communities

techniques, various big metagenome projects started. For example the Human Mi-
crobiome Project tries to strategically catalog all possible microbial communities
of the human body [91]. The Earth Microbiome Project analyzes microbial com-
munities across the whole globe, researching different environmental factors and
their effect on soil microbiome [27]. These projects are mostly well organized, act-
ing globally and connecting research all over the world. All metagenome projects
share research techniques. There are different techniques to investigate the composi-
tion and metabolic functions of microbial communities. In the next section we will
present a number of those research techniques.

1.1.4. Research techniques for non culturable microorganisms

In this section we cover the currently used research techniques for microbes that can
not be cultured singularly. We give a short overview of the most used techniques,
as shown in Figure 1.3. A more substantial background will be given chapter 2 and
3 of the dissertation, where bioinformatic analysis approaches for certain research
methods are presented. Each technique can be used to achieve a certain set of
research objectives as presented before.

Figure 1.3.: Research techniques for microbes, that are not culturable as a mono
culture.
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Targeted gene metagenomics is used to gain the information about species abun-
dance in a microbial community. Specific marker genes are sequenced instead of
whole DNA. Most of the published human microbiome studies focus on the se-
quencing of the 16S ribosomal ribonucleic acid (16S rRNA). The 16S rRNA is the
smaller part of the ribosome in bacteria and archea [68]. The ribosome serves as pri-
mary site for protein synthesis in biological cells and is therefore crucial for survival.
The whole DNA of the community is extracted and the targeted gene is amplified
by polymerase chain reaction before sequencing. The resulting sequences are used to
create a taxonomic profile of the microbiome. A broader background as well as
advantages and disadvantages of this technique will be given in Section 2.1.1.

Whole genome metagenomics detects genetically encoded metabolic functions
and taxonomic composition. The whole DNA of the environment is extracted, frag-
mented and sequenced using random primers without the amplification of certain
sequences. The result is a set of sequences originating from coding as well as non
coding regions of all microbial genomes in the community. The sequences are used
to obtain a taxonomic profile as well as to access the repertoire of genes. A deeper
introduction to whole genome metagenomics will be given in Section 2.1.2.

Metatranscriptomics is a relatively new research field, where expressed genes
of microbial communities are studied, by means of studying their RNA. Since the
transcription of DNA to RNA is the first step in gene expression, it can be used to
find the expression level of certain metabolic functions in the community. The total
RNA of the community is isolated, the mRNA possibly enriched, then translated
into cDNA and sequenced. The resulting sequence data is a mixture of sequences
from expressed genes and ribosomal RNA of different organisms. The extraction of
RNA instead of DNA has the advantage that only living organisms are studied since
RNA degrades faster than DNA [20]. A deeper introduction of metatranscriptomics
and the needed analysis is given in chapter 3. Like any study of transcripts, meta-
transcriptomics has the disadvantage that an expressed RNA does not automatically
lead to a metabolic product. Another disadvantage is that non-active organisms are
not accessed. The amount of RNA in a cell is constantly changing, therefore a high
amount of samples at different time points is more important in this field than in
metagenomics.

Metaproteomics has emerged as a research field to study the structure and func-
tion of the proteins in an environmental community. The proteins of the whole
environment are extracted and their mass-to-charge ratios are studied using mass
spectrometry methods [95]. The proportions of mass to charge is individual for each
protein and can be used to identify and analyze metabolic compounds. The amount
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1.2. Overview of this thesis

of analyzed probes should be similar to that in metatranscriptomics, since protein
content of cells is also in flux.

Single cell sequencing is used to obtain the whole genome of one microbial
organism. A minimum of DNA material is needed for sequencing. For unculturable
microbes it was not possible to obtain that material until the development of Multiple
Displacement Amplification (MDA) [87]. MDA makes it possible to obtain a high
amount of large size DNA molecules of high quality for sequencing. The process
starts with the single stranded DNA of a single cell, random hexamer primers are
annealed to the DNA. A highly error resistant DNA polymerase is used to amplify
the DNA sequences at constant temperature. After sequencing, the reads can be
assembled to the original genome of the microbe, facing problems like nonuniform
coverage of the genome and chimeric sequences produced by the MDA method [67].

1.1.5. Bioinformatic challenges in modern microbial research

There are several challenges for bioinformatic researchers in microbial research
based on reads gained from NGS. Since the reads are gained from a mixture of
microbes it is not possible to map them to a single organism. Therefore, the reads
must be classified functionally and taxonomically to gain functional and taxonomic
profiles of the microbial community. There are several methods to classify the reads,
a number of taxonomic classification methods will be presented in chapter 2. Many
of the functional classification methods rely on a comparison of the reads with
databases containing already classified reads. Those databases often contain se-
quences from microbes that can be grown in a mono-culture since those are easier
to sequence and research. Therefore, they are not very similar to sequences gained
from a mixed microbial community, making it hard to produce reliable functional
profiles. Analysis results in research of microbial communities are highly complex,
since they are from different organisms, adding the taxonomic source as a new level
of complexity. New visualizations are needed for the combined taxonomic and func-
tional profiles of microbial communities. The high amount of fast produced sequenc-
ing data also poses a challenge to bioinformatics. The sequences must be analyzed
and stored in a cost efficient way. At best methods should work on compressed data
or should at least compress the data when it is not analyzed. If sequence analysis
is done by non informatics, the software used should be user friendly and contain
easy to start tools for the analysis.

1.2. Overview of this thesis

In this chapter we have given an overview of research methods for microbial or-
ganisms and communities. We presented shortly the central biological dogma and
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Chapter 1. Introduction

gave an introduction to sequencing. The most commonly used research methods for
microbial communities were also presented. The data obtained by those research
methods needs to be analyzed, normalized and compared to obtain more informa-
tion about microbial communities. In this thesis we present new bioinformatic meth-
ods for data analysis of sequence data of metagenomes and metatranscriptomes. In
chapter 2 we will present the taxonomic classifier metaBEETL. It was developed
for fast taxonomic classification of whole genome metagenomic datasets and its ac-
curacy was tested on a simulated profile. In chapter 3 we will present the new
software platform Metrans for the analysis and comparison of metatranscriptome
datasets. In each of those chapters an introduction in the background of the new
methods will be given, the methods and results will be presented and discussed
and a summary and outlook for that particular method will be given. A conclusion
and outlook over the whole thesis will be presented in chapter 4.

10



Chapter 2
metaBEETL - A taxonomic classifier
for whole genome metagenome reads

The abundance of different species in an environmental microbial community is
called a taxonomic profile. Taxonomic profiles are an important part in fundamental
microbial research and are also used in medical research. Changes in the taxonomic
profile of a microbial community can indicate the health status of its host. Therefore,
the taxonomic profile of a community could help possible diagnoses, if it is reliable
and obtained fast. Here we present metaBEETL, a fast and accurate taxonomic clas-
sifier for whole genome metagenomics sequences. The classifier specializes in the
fast creation of accurate profiles of well researched environments. metaBEETL uses
new normalization steps to avoid biases like genome length and copy number vari-
ations of genes, creating accurate profiles of microbial communities.

First we introduce taxonomic classification of microbial communities in Section 2.1.
This includes the research methods targeted gene metagenomics (Section 2.1.1) and
whole genome metagenomics (Section 2.1.2). Available methods for taxonomic classi-
fication are presented in Section 2.1.3. As a sequence compression and compari-
son method we present the Burrows-Wheeler transformation, on which the classifier
metaBEETL is based in Section 2.2. The classifier and its classification methods are
shown in Section 2.3. The results of accuracy testing of metaBEETL are given in
Section 2.4. The accuracy test will be discussed in Section 2.5 and an outlook will
be given.
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Chapter 2. metaBEETL - A taxonomic classifier

2.1. Introduction to taxonomic classification of microbial
communities

Taxonomic classification is the scientific field of grouping organisms together on the
basis of their characteristics. Those groups, called taxa (singular taxon), are assigned
a name and a rank. Taxa, sharing a set of features, can be aggregated to form a super
group of higher rank. These features can either be taken from their phenotypes or
from their genotypes. Since those types differ, it can happen that one organism has
different taxonomies, depending on the classification features. Currently the most
common used taxonomy is created by the National Center for Biotechnology Infor-
mation (NCBI) [82]. This taxonomy is entirely based on genetic sequence similarity.
It arranges the taxa in a tree like structure containing six major levels, which are
from top to bottom: superkingdom, phylum, class, order, family, genus and species. For
each level exist a different number of sub-levels, for example subclass or subphylum.
Those sub-levels do not occur in all classifications. Table 2.1 shows examples for the
taxonomic classification of the gray wolf and of Staphylococcus agnetis based on the
NCBI taxonomy. The deeper a taxon is placed into the taxonomic tree, the more in-

Rank Taxon (gray wolf) Taxon (Staphylococcus agnetis)

Superkingdom Eukaryota Bacteria
Phylum Chordata Firmicutes
Class Mammalia Bacilli
Order Carnivora Bacillales
Family Canidae Staphylococcaceae
Genus Canis Staphylococcus
Species Canis lupus Staphylococcus agnetis

Table 2.1.: Taxonomic classification of the major ranks of the gray wolf (Canis lupus)
and Staphylococcus agnetis according to the NCBI taxonomy .

dividual characteristics do the organisms in it share. To classify a genetic sequence
to a low rank in the tree, it has to be either long enough to find a sufficient amount
of characteristics or contain a number of traits which are unique to a taxonomic
group at that rank.

A taxonomic profile of a microbial community is the overall abundance of all taxa
in that community. To obtain it, the reads in a metagenomic dataset have to be tax-
onomical classified. In metagenomics most sequenced reads are quite short. There-
fore, it is often possible to classify the reads only to a higher taxonomic level. Nev-
ertheless for gut microbial communities it has been shown that even changes in the
taxonomical profile at a rank as high as phylum can be related to diet and obesity

12



2.1. Introduction to taxonomic classification of microbial communities

of the host [65]. Therefore, a major research focus in metagenomics is finding the
abundance of all taxa at all ranks in a microbial community. The genetic sequences
needed for taxonomic classification can either be obtained by targeted gene metage-
nomics or by whole genome metagenomics. Both methods are based on the assumption
that species occurring in a higher abundance in the community will result in more
sequenced reads than less abundant species. Therefore, the taxonomic profile can
be obtained by classifying the reads and aggregating the counts of the classification.

2.1.1. Targeted gene metagenomics

All living organism have essential genes, which are needed for survival. Those genes
are under evolutionary pressure to remain stable over time and are often widely
spread in the taxa of one taxonomic group. For example, the ribosomal 16S rRNA
gene can be found in all microbial genomes and is mostly stable, containing nine
hypervariable regions. Because of their stability, essential genes are often used for
taxonomic classification of organisms. Over the years many single cultures were tax-
onomically classified using only the sequence information of their essential genes
without obtaining the whole genome. Therefore, there exist many more reference
sequences of essential genes than of whole genomes.

The taxonomic composition of a microbial community can also be obtained by using
the sequence of essential genetic regions [99]. For this the whole DNA is extracted,
the targeted genetic region is amplified by polymerase chain reaction (PCR) and af-
terwards sequenced [78]. During PCR the targeted single stranded DNA is used
as a template to amplify it to thousands of copies of itself. Small stretches of DNA
(primers) anneal to the template starting the elongation of the DNA, creating a dou-
ble helix. This helix is broken apart by temperature changes and the elongation
restarts on both single strands. The repetition of this cycle creates a high number
of copies of the template. Part of the targeted genetic region has to be known, to
create specific primers for the PCR. Those primers can be designed for either single
species or whole taxonomical groups, depending on how preserved the region is.

For taxonomical profiling of a microbial community, targeted gene metagenomics
has two advantages compared to whole genome metagenomics. Since the essential
part of the genetic material is amplified before sequencing, the amount of reads
required for a sound taxonomic profile is less than in whole genome metagenomics.
Additionally, the taxonomic profile includes taxonomic groups that contain organ-
isms whose essential genes, but not whole genomes, have been sequenced.

Targeting single genetic regions also has potential biases. First of all, the primers
used during PCR do not cover all parts of the taxonomic tree equally. Primer design
is not possible if the targeted genetic region of a certain species was not sequenced
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yet. Therefore, an inconsistent mixture of primers with different annealing affinity
for different branches of the taxonomic tree is used. Secondly, the elongation step
during the PCR can also lead to so called chimeric sequences. In a chimeric sequence
one part of the sequence was derived from a different organism than the other part,
making it impossible to classify the sequence correctly. The amount as well as the
composition of chimeric reads differ from sample to sample. Thirdly, essential genes
are often present at multiple places in the genome. For example one microbial ge-
nome can contain up to 15 copies of the 16S rRNA gene [49]. This creates a huge
bias if targeted to gain the taxonomic profile. This bias can be considered if the copy
number of the targeted region is known. Unfortunately, those copy numbers vary
even between closely related species. Some of those biases can be avoided using
whole genome metagenomics.

2.1.2. Whole genome metagenomics

To counteract the biases of targeted gene metagenomics and to gain information
of potential expressed functions, the complete DNA of the microbial community
is analysed. After DNA extraction, it is sheared to an expected read size and se-
quenced. Those reads represent randomly drawn parts of all genomes of the com-
munity, excluding possible biases from the extraction, shearing and sequencing step.
A functional as well as a taxonomical profile can be computed from those reads. The
functional profile offers information about the existence and amount of potential ex-
pressed genes in the microbial community. This sheds light on the question how
microbes can survive in extreme environments and can be used to identify possible
pathogens. Classification of the reads can be improved by increasing their length. It
is possible to gain a longer sequence by assembling the short NGS reads. Unfortu-
nately the assembly process is a possible source for biases. If reads from different
species are assembled into one sequence, it is not possible to obtain a correct taxo-
nomic classification to species level.

Even though the biases from the PCR are no longer an issue, there exist other
sources of bias that should be kept in mind. First of all, the length of the different
genomes is probably the bias which has the most impact on the profile. Microbial
genomes can be between 0.2 Mbp [60] and 10 Mbp [16] base pairs long. The taxo-
nomic profile could be skewed towards microbes with larger genomes since those
produce more sequenced reads. Secondly, as in targeted gene metagenomics, copy
number variations of genes can result in a bias of the reads leaning towards a species
with a high number of certain genes. At last, another possible bias in the taxonomic
profiles are plasmids. Plasmids are small circular stretches of DNA that are often
transferred between bacteria, sometimes even crossing the species border. There-
fore, reads originating from plasmids could be classified to species different from
those they originated from. Even though these biases exist, whole genome metage-
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nomics has the advantage of having less bias than targeted gene metagenomics and
it also can show the metabolic potential of a community as well as mutations to
already sequenced genomes.

2.1.3. Taxonomic classification methods

Given a set of sequence reads of a microbial community the first step to obtain its
taxonomic profile is taxonomically classifying all reads. Existing taxonomic classi-
fiers use either composition based or comparison based methods. Composition based
methods analyze reference sequences to gain a number of distinct characteristics.
Those characteristics make up a model of the reference. The classification of a read
starts with the computation of the characteristics of that read. Afterwards only the
characteristics of the model and the read are compared, not the sequence in itself.
On the other hand homology based methods depend on the direct sequence com-
parison of the read to a reference database. In this Section we will give a short
overview of used methods and present a number of taxonomic classifiers.

Composition based methods extract sequence features (e. g. GC-content or
oligonucleotide frequency) from a set of reference sequences. Those features are
used to build a classification model. Model building often makes use of interpo-
lated Markov models (IMMs) [79], naive Bayesian classifiers [103] or k-means/k-nearest-
neighbor [46] algorithms. Since short sequences contain only limited amount of fea-
tures, the accuracy of classification highly depends on the length of the sequences
to be classified. Comparison methods do not rely on single features and can there-
fore accurately classify short sequences. Therefore, some classifiers like PhymmBL
include an additional similarity search [10]. The classification methods can be di-
vided by chosen characteristics as well as the learning model of the classifiers. Most
classifiers use oligonucleotide frequency as characteristic for different sequences,
for example the classifiers NBC [77] and the RDP Classifier [96]. In both meth-
ods a naive Bayesian classifier is trained and used for classification. NBC classifies
reads from whole genome metagenomics, while the RDPclassifier specializes
in 16S rRNA sequences. Support Vector Machines are another possible model for
oligonucleotide frequencies, they are used by PhyloPythia [61] . Some methods
try to upgrade the oligonucleotide frequency count with other characteristics of the
genome sequence. RAIphy [66] scores the oligonucleotide counts relative to their
abundance, so that oligonucleotides occurring in many genomes gain more weight
in the classification process. Another possibility to use the composition of the se-
quences is the creation of Markov Models. Those are used in PhymmBL and SCIM [47]
as Interpolated Markov Models.

The main advantage of composition based classifiers is the speed of the classifica-
tion. The main effort of those methods lies in building the model for classification,
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fortunately this is only needed if the reference changes. In contrast the classification
step is much faster and more frequently used. Unfortunately the relatively short
NGS reads have only a limited amount of characteristics that can be used for classi-
fication. Therefore, most composition based classifiers have minimal read length of
at least 250 bases in order to produce reliable taxonomic profiles.

Comparison based methods use direct comparison of the sequences to a refer-
ence instead of precomputed models. With this type of methods shorter sequences
can be classified at the cost of compute time and power. Taxonomic classifiers can
be categorized by type of comparison, classification method and reference.

Most comparison based methods use a BLAST [2] version for the comparison step
and afterward classify the reads with a certain similarity to the reference database.
BLAST (Basic Local Alignment Search Tool) is a heuristic algorithm developed by
Altschul et al. in 1990 for the comparison of sequences with large databases. For
fast comparison, BLAST uses a seeding method to find parts of the query sequences
with high similarity to the database sequences. If a seed is found, the sequence
parts of query and database sequences surrounding the seed are aligned. If this
alignment meets certain criteria, e. g. overall similarity or alignment length, the cor-
responding sequence in the database is called a hit for the query sequence. MEGAN
[39], jMOTU/Taxonerator [43], MetaPhyler [56], MG-RAST [62], MTR [28] and
MARTA [35] are using a simple BLAST or BLASTX search. Other methods like CARMA
[25] and SOrt-ITEMS [64] use a reciprocal BLASTX search to improve taxonomic
classification. Only the classifiers FACS [88] and Genometa [18] do not use BLAST.
FACS [88] uses Bloom filters to index their reference database and Genometa relies
on the alignment programs BOWTIE [50] or BWA [54]. This speeds up the compari-
son step, but restricts the size of the indexed database.

Since the comparison step of the taxonomic classification is rather time consum-
ing, there are classifiers that restrict the database size. A restricted database can be
used as reference for classification if biologically meaningful sequences are selected
for this database. jMOTU uses reference sequences from the Bar Code of Life project.
In this project, sequences unique to a taxonomic group are studied. MG-RAST re-
stricts the references to protein coding sequences. Based on the idea of targeting
gene metagenomics, MetaPhyler uses marker genes as a reference. Genometa
relies on a database consistent of one genome for each genus. The advantages of
database restriction are reduced misclassifications and a speed up of the compar-
ison step. The disadvantage is the small number of sequences classified. MEGAN
as well as CARMA have shown that the best classification can be achieved using all
available sequences from the NCBI Non Redundant Database (NCBI-NR) as reference.
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Most comparison based taxonomic classifiers use a Lowest Common Ancestor (LCA)
approach for taxonomic classification of the sequences. In this approach sequence
with more than one hit in the reference database are placed in the taxonomic tree at
the lowest common ancestor of all those hits. Of the presented classifiers only MTR
and Genometa do not use a variation of the LCA classification. MTR clusters the
hits of different sequences and classifies the clustered sequences depending on the
overlap in their hit. Genometa uses no further taxonomic classification but maps
the sequences to the corresponding genomes.

In 2012, Bazinet et al. compared the different classification methods [5]. They
used four different datasets, taken from literature, and compared the results of true
positively (TP) and false positively (FP) classified reads. Of the comparison based
classifiers CARMA, MEGAN, MetaPhyler and MG-RAST were compared, stating prob-
lems running other possible classification tools. In this study the classifiers MEGAN
and CARMA presented the best possible classification for the given datasets. There-
fore, we will present those two classifiers in more depth. Only after this study, the
classifier Genometa was published. Like metaBEETL, Genometa is based on the
Burrows Wheeler Transformation (BWT) [12] and will therefore be presented in more
detail as well. An overview of the three classifiers will be given in order of their
publishing date.

MEGAN was one of the first developed comparison based classifiers. It has an easy
to use graphical user interface, for starting the classification and displaying trees of
the resulting taxonomic profile. MEGANs taxonomic classification depends on a full
BLAST output of the metagenome reads compared to any database compatible with
the NCBI taxonomy. BLASTN, BLASTX or BLASTZ can be used for the comparison
step. The BLAST hits in a certain bit score range are mapped to the NCBI taxonomy .
The bit score in a BLAST comparison is a score to determine the significance of the
hit according to database size. MEGAN assigns the LCA to each read and stores the
results internally as read-taxon match. The aggregation of the read classifications
form a taxonomic profile, represented as a tree in the user interface. The read-
taxon matches can be exported from MEGAN in different formates including cvs.
Additional features have been added to MEGAN since the first release. In 2009 for
example statistical methods for comparison of metagenome datasets were added
[63]. Relying on a BLAST comparison is the drawback of MEGAN. First of all, the
comparison step can not be started from the graphical user interface of MEGAN.
Therefore, a minimum amount of computer skills to obtain the comparison results
are needed to use MEGAN. Secondary, the BLAST comparison is computationally
expensive.
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CARMA is a taxonomic classification tool, also relying on BLAST for the compari-
son step. CARMA3 also contains additionally a classification option for 16S rRNA se-
quences. The BLASTX comparison to the NCBI non redundant protein sequence database
proofs to result in the most true positive classified reads [24]. Instead of using all
hits in a certain range to generate the LCA of one read, CARMA refines the results
further using a reciprocal BLAST search. For each read with a hit, a new database
is constructed, consisting of all sequences of the hits and the query sequence. Then
BLASTp is used to compare the sequence of the first hit against the newly con-
structed database. All hits are ordered by decreasing homology, hits between the
first hit and the original query sequence are used for the taxonomic classification
of the query sequence. This refines the taxonomic classification and prevents false
positive assignments. CARMA uses the bit scores of the reciprocal search to further
refine the taxonomic classification to a lower level in the taxonomic tree. This recip-
rocal search results in a detailed classification but is unfortunately computationally
quite expensive.

Genometa is a tool for taxonomic classification of metagenome reads from well
studied environments. It uses either BWA or BOWTIE to compare the reads to an
integrated database. Those mapping algorithms use the BWT to index a reference
sequence. The index is used to map query reads to the reference in a time efficient
manner. Genometa uses those mappings for metagenomics analysis by showing dif-
ferences (mismatches, deletions, insertions) between the mapped reads compared to
a number of reference genomes, therefore gaining a taxonomic classification of the
reads on the level of strain and species. With this, Genometa filled a gap since no
other classifier showed single nucleotide polymorphism between metagenome reads
and reference genomes. Since the whole reference has to be contained in memory
for mapping, both BWA and BOWTIE restrict the size of the reference database. For
this reason, Genometa uses for each genus exactly one reference sequence. Unfortu-
nately this can result in a low amount of classified reads if the originating genomes
do not exist in the reference.

In summary the existing taxonomic classifiers based on sequence comparison are
either slow through the usage of BLAST, or their reference database is restricted in
size. Classifiers based on BLAST also have the disadvantage that single mutations
can not be shown. Using the BWT index for comparison of the sequences proved to
be much faster. Currently BWT based mappers restrict the database size, because a
random access to the reference index is needed for the comparison.
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2.2. Algorithmic background

In the previous section we presented several approaches for taxonomic classification
of NGS metagenomic sequences. In most methods the comparison to a biological
database presents the computational bottleneck. To speed up the comparison the
reference can be indexed using the Burrows-Wheeler transformation (BWT). The
BWT transforms a text to a more compressable state, additionally creating an index
of the text. This index can be used for a pattern search that is faster than on the
original text. BWT-based aligners such as Bowtie [50] and BWA [54] facilitate rapid
matching of a set of sequences to a reference genome by converting the genome to
a compressed index and using error-tolerant modifications of the basic ‘backward
search’ strategy to check for matches to individual query sequences. Here we will
present the Burrows-Wheeler transformation as well as the search method published
by Ferragina and Manzini in 2000 (FM-Backward Search) [22].

2.2.1. Burrows-Wheeler transformation

In 1994, Burrows and Wheeler proposed an algorithm for lossless compression of
texts, today known as the Burrows-Wheeler transformation [12]. The BWT of a
string t = t1 . . . tn, of length n containing characters of alphabet Σ, is defined by
computing all n rotations of the string and ordering those alphabetically. For exam-
ple the string t = AGTAGTCA can be rotated to the strings R(t) = {AGTAGTCA,
GTAGTCAA, TAGTCAAG, AGTCAAGT, GTCAAGTA, TCAAGTAG, CAAGTAGT,
AAGTAGTC}. If those rotations are ordered alphabetically it will result in the ma-
trix M shown in Figure 2.1. The last column of the matrix M is the BWT of the text,

Figure 2.1.: Example of the matrix M with ordered permutations of the text t =
AGTAGTCA. The first column (in blue) are the lexicographically ordered char-
acters of t, the last column is the BWT(t).

here BWT(t) = CATTAAGG. The first column contains the ordered characters of t,
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in this example: f = AAACGGTT.

The BWT in itself is not a compression algorithm but the rotation results in a text
which is more compressable than the original one. The BWT of a non random text
contains longer stretches of the same characters than the original text. On genetic
level a high compression is possible since base triplets encode for amino acids, for
example the triplet TAG encodes for the amino acid isoleucin. A gene encoding for
a protein containing a high amount of isoleucin will contain a high number of the
triplet TAG. When the rotations of the gene sequence is sorted, AG will sort together,
resulting in a long stretch of Ts in the BWT of the gene. A text with longer stretches
of one character can be compressed more efficiently using Huffman [38] or Run
Length encoding.

It is possible to use suffix arrays instead of all rotations of a given string to com-
pute the BWT. For this, a special character $, which is lexicographical smaller than
any c ∈ Σ, is appended at the end to the given text. This ensures that the alpha-
betically order of the suffixes of the text is the same as the ordered rotations of the
text. While the order of the suffixes remains the same, the BWT(t) changes through
appending $. BWT creation of a string t can be described in four simple steps.

1. The character $ is appended at the end of the string t.

2. All n + 1 suffixes of t$ are build.

3. The suffixes are ordered lexicographically.

4. The character occurring in t directly before the start of each suffix is taken to
form the BWT transformed string BWT(t).

Figure 2.2 shows an example of BWT creation of t$ based on suffixes. Using this
way to create the BWT it is easer to see that it shares useful characteristics with suffix
trees.

The original text t can be gained from the BWT(t) by exploiting certain characteris-
tics of the BWT. The ordered characters of t give the string f , for t = AGTAGTCA$
this would be f = $AAACGGTT. An array C[.], of length |Σ|+ 1 can be obtained
from the BWT, such that C[c] contains the total number of characters in t which are
lexicographically smaller than c. Therefore, C[c] is also the index of the first occur-
rence of c in f . The matrix Occ(c, q) denotes the number of occurrences of character
c in the q long prefix BWT(t)[1, q] of the BWT(t) for any c ∈ Σ and q ≤ n. An exam-
ple for C[.] and Occ(c, q) for the BWT(t) is given in Tables 2.2 and 2.3 respectively.
Using Occ(c, q) and C[.] it is possible to map the BWT(t) to the ordered characters
of t. The mapping can be used to obtain the text t from the BWT(t) using array C[.],
matrix Occ(c, q) and the ordered characters of t f , as can be seen in Algorithm 1.
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Figure 2.2.: Example how the BWT(t) of the text t = AGTAGTCA$ is created, after
appending $ . a) shows all suffixes of t, b) shows the lexicographically ordered
suffixes of t, part c) shows the BWT(t) of t.

$ A C G T
0 1 4 5 7

Table 2.2.: Array C[.] for the text BWT(t) = AC$TTAAGG, where C[c] is the number
of characters in the whole string which are lexicographically smaller than c.

Occ(c,q) 1 2 3 4 5 6 7 8 9
$ 0 0 1 1 1 1 1 1 1
A 1 1 1 1 1 1 3 3 3
C 0 1 1 1 1 1 1 1 1
G 0 0 0 0 0 0 0 1 2
T 0 0 0 1 2 2 2 2 2

Table 2.3.: Matrix Occ(c, q) for the text BWT(t) = AC$TTAAGG, where Occ(c, q)
counts all occurrences of character c in the BWT(t) before position q.

Figure 2.3 shows the single steps of gaining t = AGTAGTCA$ from BWT(t) for
BWT(t) = AC$TTAAGG using C[.] and Occ(c, q).
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Algorithm 1: Pseudo code to obtain t from the BWT(t) using the array C[.]
and the matrix Occ(c, q).

i← 1 , t← f [1], m = 0 ;1

while (i ≤ n) do2

m← C[BWT(t)[i]] + Occ[BWT(t)[i], i];3

c← f [m];4

t← ct;5

i← i + 1;6

end7

Figure 2.3.: Gaining text t through the BWT(t) using the array C[.] and the matrix
Occ(c, q).

2.2.2. Ferragina-Manzini backward search

The matrix Occ(c, q) and the array C[.] can also be used as index to search in the
compressed text t = t1 . . . tn for all occurrences of the pattern p = p1 . . . pk of length
k. The search algorithm starts at the end of the pattern and goes forward to the first
character. It was first described by Ferragina and Manzini [22] giving the index the
name FM-index. The algorithm exploits the following two properties of the matrix
M:

i) since the matrix M of the text t is sorted and contains all possible suffixes of
t, all possible occurrences of p occur in a continuous set of rows, also called a
Q-interval.

ii) this set of rows has a starting position fQ and an ending position lQ, where fQ
is the lexicographically smallest position of the pattern p in the ordered column
f .
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The interval between fQ and lQ defines a contiguous stretch in the BWT(t). Search-
ing for pattern p in text t is done by finding the positions fQ and lQ of the Q-interval
in matrix M, where Q = p. The value lQ − fQ + 1 gives the total number of occur-
rences of p in t.

To find lQ and fQ in k steps using only Occ(c, q) and C[.], the Algorithm 2 is used.
The algorithm initiates with the last character of the pattern (c = pk) and starts at
the end of the pattern going to the beginning. At the first step of the FM backward
search fQ and lQ are initiated with fQ = C[c] + 1 and lQ = C[c + 1]. c + 1 donates
the character lexicographically following c, if c is the lexicographically biggest char-
acter c + 1 then C[c + 1] = n. For example searching for the pattern p = AGT in

Algorithm 2: Pseudo code to find the number of occurrences of pattern p in
text t using the indexes of t.

i← k , c← p[k], fQ ← C[c] + 1 , lQ ← C[c + 1];1

while (( fQ ≤ lQ) and (i ≥ 1)) do2

c← p[i− 1];3

fQ ← C[c] + Occ(c, fQ − 1) + 1;4

lQ ← C[c] + Occ(c, lQ);5

i← i− 1 ;6

end7

if lQ ≤ fQ then8

no rows prefixed by p[1, k]9

else10

return 〈 fQ, lQ〉11

end12

the string t = AGTAGTCA$ with the help of the BWT(t) and the index Occ(c, q)
and C[.] would include the following steps:

1. i = 1, fQ = C[T] + 1 = 7+ 1 = 8, lQ = C[c+ 1] = 9 gives the interval Q = [8, 9]
of the matrix of suffixes starting with T.

2. Find those suffixes starting with G, where the following character is T: i = 2,
fQ = C[G] +Occ(G, 7) + 1 = 5+ 0+ 1 = 6, lQ = C[G] +Occ(G, 9) = 5+ 2 = 7,
interval Q = [6, 7] of suffixes starting with GT.

3. i = 1, fQ = C[A] +Occ(A, 5) + 1 = 1+ 1+ 1 = 3 and lQ = C[A] +Occ(A, 7) =
1 + 3 = 4, interval: Q = [3, 4] of suffixes starting with AGT.

Figure 2.4 shows the example of finding all occurrences of the pattern p = AGT
in the BWT of t = AGTAGTCA$. This small example finds pattern p = AGT in t
two times (4− 3 + 1 = 2). At each step of the search it is known at which point in
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Figure 2.4.: Example of FM-Backward search for the pattern p = AGT in the indexed
text t = AGTAGTCA$. a) shows the initial step of the algorithm, b) the first iteration
of the loop and c) the last one. Grey boxes indicate the current Q-interval in the
BWT(t).

the BWT(t) the suffixes can be found. Once the array C[.] and the matrix Occ(c, q)
are computed, the time it takes to search for a pattern p depends on the length of p
and not on the length of the searched text or the number of occurrences in of p in t.
Furthermore, this pattern search does not need the original text anymore. Therefore,
it can be done on compressed texts. During each step of the search the BWT has
to be accessed depending on the results of the preceding step, leading to a random
access of the BWT.

The FM backward search is used by mapping programs like BWA or Bowtie. They
create the BWT of a reference sequence and use the index for fast comparison of
sequence reads to the reference. Since the search needs random access to the BWT,
either the BWT or Occ(c, q) and C[.] have to be kept in memory during the com-
parison. Therefore, the size of the reference sequence is limited. In the next section
we will present an extension of the FM-Backward search, enabling the BWT to be
remain on disk without missing any patterns.

2.3. metaBEETL - Taxonomic classification of whole
genome metagenomic sequences

The BWT is often used to index reference sequences to achieve fast sequence compar-
ison. Unfortunately, the size of the reference sequence is restricted, since it has to be
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held in memory. Here we present the novel taxonomic classifier metaBEETL which
was published 2013 at RECOMB-Seq [3]. metaBEETL is based on the sequence
comparison program BEETL [4] and was created in collaboration with Illumina. It
uses the all-against-all backward search of BEETL, which will be presented in Sec-
tion 2.3.1 This method was adjusted for taxonomic classification of metagenome
shotgun reads as presented in 2.3.2.

2.3.1. Simultaneous all-against-all backward search

Since the amount of sequenced reads is rising faster than the development of compu-
tational memory space it has become important to use new methods, which do not
hold every needed information in memory, but effectively access the information on
disk [44]. Sequential access to this information is essential for the containment on
disk. Instead of the FM-Backward search, where certain patterns are searched in a
text, we can find all occurring patterns P of length k in text t by going through the
BWT(t) k times. If done so to two or more text simultaneously, this provides the pos-
sibility to test of distinct or coexistent occurring patterns in both texts. This method
was first used in the sequence comparison program BEETL and was adapted for the
taxonomic classification of the sequences for metaBEETL.

Let t be the text to be searched, containing characters of the alphabet Σ, exclud-
ing the special character $ that is included in Σ. BWT(t) is the Burrows-Wheeler
transformation of t$. If all possible patterns P = {p1 . . . p|Σ|k} of length k are tested,
it is possible to go through the index of t k times sequentially to find all occurring
patterns of length k. The index can therefore be held on disk and does not have
to be kept in memory. In difference to the original BEETL, in metaBEETL not all
occurring patterns are tested but only those occurring in the sequence dataset and
the comparison database. O(Σ) defines the lexicographically ordered characters of
Σ. The BWT can be divided into |Σ| buckets B = B1 . . . , B|Σ| because it corresponds
to the lexicographically ordered suffixes of t. The characters in bucket Bi are in t
directly followed by the character O(Σ)i. Figure 2.5 shows an example for the divi-
sion of the BWT of the string t = AGTAGTCA$ into five buckets.

To describe the all-against-all backward search for all P we use the definition of Q-
intervals, as defined in 2.2.2. To find all occurring patterns of length k, we need
k iterations to go through the BWT(t) k times. At iteration j let Qj = [ fQj , lQj) be
the interval of an occurring jth suffix of at least one searched pattern p. Let cQ be
the extension of the suffix Q with the preceding character c. To find all possible
extensions of Q with any character ci ∈ Σ we can go sequentially through BWT(t)
with the help of the following method. fciQ and lciQ of ciQ in bucket Bi can be ob-
tained by the amount of ci in range Q and the number of ci in the BWT(t) before
the start of Q. Those numbers are acquired for all c ∈ Σ while going once through
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Figure 2.5.: Division of the BWT(t) = AC$TTAAGG into the five buckets
B$, BA, BC, BG and BT, depending on the first letter of the ordered suffixes.

the BWT(t). In the array r of length |Σ| let r[ci] count all occurrences of ci in the
BWT(t) before fQ. To obtain the length of the interval ciQ, the array o[c] keeps the
number of occurrences of all c in the interval Q of the BWT(t). At iteration j those
arrays are updated with the new counts for each ci which occurs in Q. At the end of
stage j the arrays contain all Q intervals for all (j + 1)-suffixes, with fciQ = r[ci] and
lciQ = fciQ + o[ci]. The algorithm starts with the search for the extension of suffixes
of length one, which correspond respectively to one of the files. At each iteration
the arrays r[c] and o[c] are updated and the extensions of the patterns are stored on
disk in F files, where Fi contains Q-intervals of all (j + 1)-suffixes starting with the
character ci in lexicographic order. In the next iteration the files F1, . . . , F2, . . . , F|Σ|
are read sequentially to obtain the lexicographic order of the suffixes for the next
iteration. The BWT(t) is traversed sequentially and for each suffix the arrays are up-
dated again and stored in F files. An example for this for the text t = AGTAGTCA$
for all shared patterns with k = 1 can be found in Figure 2.6. Further iterations can
be found in the appendix in Figures A.1 and A.2.

A Q-interval is not extended to cQ if no extension is possible or the only possi-
ble extension is $. Using this, one can find all possible patterns of a certain length k
in a Burrows-Wheeler transformed text by making k passes through the BWT(t). To
find all shared patterns of two texts, this can be done by making sequential passes
through both BWTs simultaneously. Accessing the indexes in a sequential way is
cache-efficient if one or both of the indexes do fit in RAM. More importantly it also
makes it feasible to compare them while they are both held on disk, thus prevent-
ing available RAM from constraining the sizes of the indexes that can be compared.
Moreover, indexing the query sequences exploits redundancy within them since
each distinct pattern is compared with the reference index exactly once, even if it
has multiple occurrences among the queries.
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Figure 2.6.: First iteration of the all-against-all backward search. Grey boxes indicate
the already gone through part of the BWT(t), blue boxes are the part currently
analysed. Array r[c] contains the number of characters read in the BWT before the
current section. Array o[c] contains the numbers of character in one Q-interval. The
newly found cQ intervals are stored in F.

2.3.2. Taxonomic classification using the all-against-all backward
search

The all-against-all backward search was developed to compare two read sets, while
the reads could be held in compressed state on disk. Here we present a method to
use this search as a taxonomic classifier for compressed metagenome shotgun reads.
For this a collection of reference sequences has first to be indexed as a reference
database.

Database creation

To index a collection of sequences, first the concept of the BWT must be generalized
from a single string to a collection of n texts. A straightforward way to do this is to
imagine each member of the collection is terminated by a distinct member of a set of
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special characters $1, . . . , $n that satisfy $1 < · · · < $n and are lexicographically less
than any characters of Σ that the rest of the text is drawn from. A generalized BWT
is built for the sequence collection G = {g1, · · · , gn}. This is a ‘one-time’ procedure
that only needs to be repeated when sequences are added to (or removed from) the
collection, therefore simplicity is at this prioritized over efficiency: first suffix arrays
for all members of G are built (which can be done in parallel), then they are merged,
by reading the suffix arrays element-by-element from disk into a Fibonacci heap. A
Fibonacci heap (a priority queue) is a collection of trees. In those trees the key of a
child is always greater than or equal to the key of the parent [23]. Here the suffixes
pose as keys, so that the lexicographic order of all suffixes can be found fast. Using
copies of the sequences held in RAM, the relative ordering between suffixes from
different members of the collection is determined. This enables us to build not only
the generalized BWT but also to obtain the arrays A and C. Array A holds the origi-
nal position of the suffix in the sequence, C holds the information of which sequence
the suffixes originated from, such that the suffix at position A[i] of member C[i] of
G is the i-th smallest suffix in the collection. Together, A and C form a generalized
suffix array of G.

In metaBEETL G contains all genome sequences as well as their reverse comple-
ments of bacteria, archeae and viruses from the NCBI genome sequence database. The
elements of C are used as keys for an array T of 8-vectors such that T[i] = {superk-
ingdom, phylum, class, order, family, genus, species, strain} describes the classification of
the i-th member of G. Each member of the 8-vector is a taxonomic id according to
the NCBI-taxonomy.

Classification

The search for shared patterns P of length k between the set of reads R and the
genomes G is done as described in section 2.3.1. At iteration k, the Q-intervals of all
k-mers that are present in either or both of BWT(R) and BWT(G) are considered
in lexicographic order. Intervals found only in BWT(R) or only in BWT(G) are not
extended. For each k-mer Q of a minimal length that is present in both R and G,
we extract from C the subarray C[ fQ], C[ fQ + 1], . . . , C[lQ] whose elements encode
the origin of the symbols in the Q-interval [ fQ, lQ) of BWT(G). For each level,
starting with strain moving to superkingdom the corresponding taxonomic indexes
T[C[ fQ]][l] = T[C[ fQ + 1]][l] = · · · = T[C[lQ]][l] of the genomes are compared with
each other. At each level only those taxonomic indexes are considered, where more
than a 80% of the genomes C[ fQ], C[ fQ + 1], . . . , C[lQ], share that classification, this
excludes outliers in the classification. Therefore, the k-mer is classified to the deepest
taxon in the tree of life that most of the originating genomes share as classification.
Turning to BWT(R), the size f ′Q − l′Q + 1 of the Q-interval [ f ′Q, l′Q] gives the number
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of occurrences of Q in the reads. This results in a number of k-mers in the read set
R with a known taxonomic classification.

Bias control

In metaBEETL two possible sources for bias in the data are considered. First the
bias arising from the copy number variations is considered by removing k-mers that
occur more than once in one genome from the taxonomic classification. For this
the array C[ fQ], . . . , C[lQ] is checked for entries occurring more than once before
classification. Second, per-read statistics such as these must be normalized by ge-
nome size to obtain a statistic that reflects the relative abundance of microbial cells
[75]. To achieve this, the occurrences of all k-mers specific to a given taxon are ag-
gregated and then divided by the mean lengths of the genomes within that taxon.
Further biases, like different sequencing depth or amount of sequences which can
be classified should are also considered, either by division by the amount of reads
sequenced or the amount of classified k-mers. The optimal k for a given experiment
is determined empirically and depends on the accuracy and length of its reads: the
greater specificity of longer k-mers is weighed against the fact that sequencing er-
rors and genomic variations cause fewer reads to be classified as k becomes close to
the read length. K-mers as short as 10 bases are more likely to appear in so many
genomes that the only possible classification is at superkingdom level.

2.4. Accuracy tests of metaBEETL

Here we will present the results of the accuracy test of metaBEETL. An artificial
whole genome metagenome sequence dataset was generated to test accuracy. The
classification of this dataset from metaBEETL was compared to the classification
from CARMA, MEGAN and Genometa.

2.4.1. Reference database

We downloaded the set of all NCBI RefSeq microbial sequences1 and the associated
NCBI taxonomy2 on October 2nd 2012. This comprised 2097 genomes from bacteria,
viruses and archaea, from which plasmid sequences were excluded to reduce the pos-
sibility of wrong taxonomic profiles through bacterial conjugation and copy number
variation of plasmids in different microbes. The BWT and generalized suffix array
of the remaining 2020 sequences and their reverse complements were generated as
described in Section 2.3.2.

1ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/
2ftp://ftp.ncbi.nih.gov/pub/taxonomy/
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2.4.2. Accuracy test on a simulated metagenome

To test the accuracy of a taxonomic classifier, a dataset is needed consisting of reads
with known taxonomic classification. Therefore, we tested metaBEETL with a sim-
ulated metagenome dataset, comparing the classification results with three other
classifiers. We simulated a metagenome containing equal proportions of microbes
from fifteen organisms whose genomes are present in the NCBI Nucleotide database,
having genome sizes ranging from 0.2 Mbp to 11 Mbp with an average of 3.3 Mbp.
An overview of those genomes and the simulated reads can be found in Table 2.4.
MetaSim [75] was used to simulate 100,000 Illumina read pairs of length 80 bp.

Name
Taxonomic

id
Size

Fraction in
simulation

Read
count

Blattabacterium sp. str.
BPLAN

600809 0.64 Mb 6.67 % 2372

Borrelia hermsii DAH
chromosome

314723 0.92 Mb 6.67 % 3616

Candidatus Blochmannia pen.
str. BPEN

291272 0.79 Mb 6.67 % 3122

Candidatus Sulcia muelleri
DMIN

641892 0.24 Mb 6.67 % 3122

Candidatus Zinderia insecticola
CARI

871271 0.21 Mb 6.67 % 816

Catenulispora acidiphila DSM
44928

479433 10.47 Mb 6.67 % 41950

Chloroflexus aggregans DSM
9485

326427 4.68 Mb 6.67 % 18684

Clostridium sp. BNL1100 755731 4.61 Mb 6.67 % 18248
Deinococcus radiodurans R1 243230 3.06 Mb 6.67 % 12066
Escherichia coli DH1 536056 4.63 Mb 6.67 % 18400
Fluviicola taffensis DSM
16823

755732 4.63 Mb 6.67 % 18258

Frankia sp. CcI3 106370 5.43 Mb 6.67 % 21282
Geobacter bemidjiensis Bem 404380 4.61 Mb 6.67 % 18344
Mycoplasma pneumoniae M129 272634 0.82 Mb 6.67 % 3286
Yersinia enterocolitica subsp. e.
8081

150052 4.62 Mb 6.67 % 18548

Table 2.4.: Composition of simulated metagenomic dataset: An even distribution of
microbes was simulated.
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metaBEETL CARMA3 MEGAN Genometa

Memory 1 GB 13 GB 13 GB 3 GB
Time 46 min 18 h 35 m 14 h 58 m 2 min

Table 2.5.: Running time and memory requirements of the tested classifiers on the
simulated data set. CARMA3 and MEGAN were run on a compute cluster, using 100
nodes. Genometa was run on a laptop with four CPUs available. metaBEETL was
run on an SSD drive. Memory consumption was taken at peak memory usage for
one thread. All times are taken as wall clock times. For CARMA3 and MEGAN the
time for the longest running time of the 100 threads was taken, the average time for
MEGAN was 12h 15m and for CARMA 12h 30m.

While this number is only a fraction of an actual sequencing run, its size was cho-
sen to allow the BLASTX alignments needed by MEGAN and CARMA3 to finish in
reasonable time on the hardware available to us.

Comparison of computational costs

We used CARMA3 [25] and MEGAN 4.0 [40] as the most recent versions of the pro-
grams. Aligning the reads to a set of reference sequences dominates the compu-
tational cost of MEGAN and CARMA3. Of the configurations tested in [25], aligning
the reads to the NCBI NR database with BLASTX maximized the number of reads
correctly classified by both programs, so we did the same with our data. These align-
ments were calculated on a cluster of 100 nodes, each node having at least 124GB
memory available. The number of cores per node varied between 2 to 48, each hav-
ing a clock speed of 2.0GHz. Genometa and metaBEETL both ran on a single CPU
Intel Xeon machine having eight 3.0GHz cores and 64Gb of shared RAM, to which
we had sole access for our tests. metaBEETL needed only 200Mb of RAM but its
index of reference genomes and its temporary files were stored on an attached solid-
state hard drive to facililate the large amount of disk I/O that metaBEETL needs to
do.

Timings for the four methods are given in Table 2.5: The very different compu-
tational requirements of the BLAST-based and BWT-based tools make a like-for-
like comparison difficult, but the advantage of the BWT-based methods is clear:
metaBEETL finishes an order of magnitude more quickly on a single CPU than the
BLAST-based methods do on a 100 node cluster.

Genometa, whose compute time is predominantly taken up by BWA alignments,
is in turn an order of magnitude faster than metaBEETL, but our prototype imple-
mentation has considerable scope for optimization. At the moment, the reference
BWT string is stored as ASCII, whereas a compressed format would greatly reduce
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Taxonomic
Level

metaBEETL CARMA3 MEGAN Genometa

TP FP TP FP TP FP TP FP
Super-
kingdom

64.64 0.00 80.58 0.08 89.35 0.00

Phylum 64.64 0.00 79.45 0.19 88.30 0.02
Class 64.64 0.00 78.77 0.19 87.86 0.02
Order 64.64 0.00 77.81 0.11 87.37 0.02
Family 64.63 0.00 75.84 0.18 85.61 0.05 56.56 2.60
Genus 64.63 0.01 66.13 0.26 75.65 0.32 54.94 4.22
Species 64.62 0.02 25.96 0.12 55.36 0.6 54.72 4.45

Table 2.6.: Comparison of the percentage of correctly classified (true positive - TP)
and incorrectly classified (false positive - FP) reads of the simulated metagenome
between the classifiers, metaBEETL, CARMA3, MEGAN and Genometa.

the I/O that dominates metaBEETL’s runtime. Moreover, it is likely that any given
sample will contain only a small proportion of the 2020 genomes that are present in
the database. Therefore, indexing the BWT string of the reference database should
reduce I/O still further by allowing metaBEETL to jump directly to the relevant
areas of the BWT instead of reading the entire string on every pass.

Comparison of accuracy of the taxonomic profiles

CARMA3, MEGAN and Genometa were run with default parameters and metaBEETL
was run with a k-mer length of 50. Table 2.6 shows the percentage of reads cor-
rectly and incorrectly classified by the four tools at all taxonomic levels. Overall
metaBEETL classified 129,290 reads, CARMA 161,315 reads, MEGAN 178,717 reads and
Genometa 118,340 reads. The smaller number of reads classified by metaBEETL
compared with CARMA and MEGAN is likely explained by metaBEETL’s discarding
of k-mers occurring multiple times in a reference genome. Genometa requires a
curated database (only one reference per genus, for instance) and we thus used the
database provided by Genometa3. We manually checked that all the genomes used
in the simulated sample were contained in this database. Importantly, metaBEETL
is the best of the four tools in correctly classifying reads at the species level and
misclassifies the fewest reads at all taxonomic levels.

An obvious way to assess the performance of a metagenomic classifier is simply
to count the number of correctly classified reads, but we have already observed
that copy number changes and different genome sizes can prevent the relative read

3http://genomics1.mh-hannover.de/genometa/index.php?Site=Download
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Taxonomic
Level

metaBEETL CARMA3 MEGAN Genometa

Super-
kingdom

1.0 1.0 1.0 −

Phylum 7.47 22.44 22.89 −
Class 7.48 25.70 23.84 −
Order 9.45 24.26 24.23 −
Family 9.39 22.15 19.60 −
Genus 10.85 26.22 21.56 38.82
Species 10.59 19.02 22.44 38.16

Table 2.7.: Comparison of the simulated taxonomic profile of an artificial metagenome
and the predicted profiles from metaBEETL, CARMA3, MEGAN and Genometa. We
compared profiles using the Euclidean distance to the simulated profile. Results
from Genometa were only available at levels genus and species.

counts from correctly reflecting the relative abundances of the microbes they are se-
quenced from. For this reason we decided not to perform comparisons solely based
on the number of classified reads but also based on the expected taxonomic profile.
We used the Euclidean distance

√
∑n

i=1(qi − pi)2 to compute the distance between
computed and simulated taxonomic profile. Here qi is the percentage of simulated
reads in taxon i and qi the percentage of reads classified to taxon i. The distance of
the computed profiles to the simulated profile using the Euclidean distance can be
found in Table 2.7.

We can see that metaBEETL produces a taxonomic profile closer to the simulated
ground truth than the other classifiers. For Genometa, we could only generate the
taxonomic profiles at the genus and species levels, because Genometa does not pro-
duce higher level taxonomic classifications. The taxonomic profiles for the levels
phylum to species can be found in the appendix Figures A.3 to A.8. The difference
in the classification originates from under- as well as overestimation of different taxa
from CARMA3, MEGAN and Genometa. The more accurate classification from meta-
BEETL derived from the new bias control it is using. For CARMA3 and MEGAN the
differences in classification can not be explained by the difference in the comparison
databases, because the NCBI NR database includes the reference sequences used by
metaBEETL. On the other hand the difference in database may be the cause for the
higher distance from the true profile to the one produced by Genometa. By using
a curated database with a limited size, Genometa loses the advantage of having a
broader spectrum of references. Therefore, even though Genometa was much faster
in the analysis of the simulated metagenome, the resulting taxonomic profile shows
the greater differences to the simulated profile. metaBEETL performed much faster
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Taxonomic Level k−mer 25 k−mer 40
Superkingdom 1.0 1.0

Phylum 45.73 50.60
Class 46.56 51.56
Order 45.05 50.51
Family 11.38 29.70

Table 2.8.: Comparison of the simulated taxonomic profile of an artificial metagenome
and the predicted profiles from metaBEETL against a modified database. Results
of two k-mer sizes are shown.

than CARMA and MEGAN, while using less memory, which makes it possible to ana-
lyze large whole genome metagenome data sets. That metaBEETL is nearer to the
true taxonomic profile shows that the bias reduction through removing sequences
occurring more than once in the genome and the normalization for genome size
gives metaBEETL an advantage over other classifiers.

2.4.3. metaBEETL accuracy test on a modified database

A key challenge of metagenomic studies is the fact that the majority of microbes
cannot be grown as a single culture. This leads to the problem that reference data
used for taxonomic classification is probably lacking the genomes of the microbes
naturally occurring in the environment. To test the accuracy of the taxonomical
classification of metaBEETL in the absence of the direct reference sequences, we
masked our reference database at a certain level in the tree of life. To test how ac-
curate the classification would be if a small branch of the taxonomic tree is missing,
we masked all microbial reference sequences in the database that share the same
genus as the microbes in the simulated metagenome. In this test no classifier can
give the correct taxonomic profile on the levels of strain, species or genus, but the
taxonomic profile on higher levels still need to be as close to the correct one as pos-
sible. For comparison with the correct profile we also used the Euclidean distance.
metaBEETL produced taxonomic profiles with a distance ranging from 11.38 to 50
depending on taxonomic level and chosen k-mer size, see Table 2.8. The test on the
modified database showed that the accuracy of metaBEETL got higher the more
reads were simulated.

2.5. Discussion of metaBEETL

In this chapter we presented metaBEETL, an algorithm for the taxonomic classifi-
cation of sequencing reads from whole genome metagenomic experiments. meta-
BEETL relies on indexed representations of both the input reads and the reference
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genomes for fast comparison. We demonstrated on real and simulated data that
its performance is competitive to BLAST-based metagenomic classifiers such as
CARMA3 and MEGAN, while scaling better to the large data sets generated by next-
generation sequencing technologies. metaBEETL was presented at RECOMB-Seq
2013.

Like Genometa, metaBEETL relies on BWT-based text indexing, but there are funda-
mental differences in the two approaches. Genometa uses standard read mapping
tools to perform its alignments, meaning its overall runtime is faster. However, the
BWA and Bowtie aligners both have upper limits of around 3 Gb on the total vol-
ume of reference sequence that they can index, which will become an issue as the
number of available bacterial genome sequences increases. Moreover, this reliance
also means its ability to handle ambiguous matches is limited: a strain from each
species must be hand-chosen to be added to the index as an exemplar of that species.
In contrast, the bespoke nature of our BWT index allows us to distinguish between
different strains and to assign reads to a higher phylogenetic order when a strain-
specific match is not possible. Since the k-mer analysis of the sequence data shows
similarity to the composition based methods, a comparison with those classifiers
could also be interesting.

In many ways, our current implementation does not fully exploit the information
present in the indexes. Instead of relying on an empirically chosen k-mer size, a
future version could aggregate information from multiple values of k to continue to
extend only those sequences that are not yet long enough to be specific at the strain
level. Moreover, k-mers that are specific to a given strain can be used to identify
novel variants within that strain.
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Chapter 3
Metrans - a software platform for the
analysis of metatranscriptomes

Metagenomic research gives insight into the taxonomic composition as well as the
functional potential of microbial communities. However, it does not distinguish
between expressed and non expressed genes. In metatranscriptomics the activity lev-
els of members of a microbial community are researched by analyzing transcribed
DNA.

Here we present Metrans, a software platform for the analysis and comparison
of metatranscriptomes. The biological functions of ribonucleic acid (RNA) in micro-
bial cells and possible analysis of RNA will be presented in Section 3.1, including an
introduction to metatranscriptomics. The analysis pipeline and the software specifi-
cations of Metrans will be presented in Section 3.2. Finally we present an analysis
example in Section 3.3 and discuss the results in Section 3.4.

3.1. Transcription analysis

Transcription of DNA into RNA is an essential step to produce proteins in a living
cell, as introduced in Section 1.1.1. The stretch of DNA transcribed into RNA is
called a transcription unit and encodes for at least one gene. If the transcribed sec-
tion contains at least one gene coding for a protein, the RNA is called messenger
RNA (mRNA). Other RNAs are called non-coding RNAs. To this group belong mi-
cro RNAs, lincRNAs, ribosomal RNAs (rRNA), transfer RNAs (tRNA) and RNAs
coding for ribozymes. Most of these non-coding RNAs are folded in bigger RNA
molecules. Folded RNAs are more stable than mRNAs, since those have no base
pair bonds for stabilization [20]. Of the total RNA of an active cell, rRNA occurs in
highest amount [29].
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The isolated RNA of a cell is used to study the activity levels and the transcriptional
responses to changes in the environment. These studies are called RNA expression
profiling or Transcriptomics. The term RNA-Seq is used if NGS techniques are ex-
ploited to study the RNA expression of a single organism. In RNA-Seq the whole
RNA of a mono-culture is isolated and sequenced. In difference to RNA-seq, in
metatranscriptomics the RNA of a whole microbial community is studied. The main
goal of analyzing the RNA of environmental organisms is to detect active organisms
and to study the activity levels of specific metabolic functions in the community.

The main goal of metatranscriptomics is to research the activity levels of microor-
ganisms and track changes in gene expression compared to shifts of environmental
variables. For this the amount of specific mRNA in the microbial cells is determined.
Since the transcription of a gene is the first step in gene expression, the amount of
mRNA in the microbial cells can be used as an indicator for metabolic activities.

Commonly DNA microarrays are used for RNA expression profiling. A DNA mi-
croarray, also known as DNA chip or biochip, is a collection of DNA spots attached
to a solid surface. Each spot contains 10−12 moles of specific DNA sequence as a
probe. The nucleiacid sequences in the analysis sample are labeled with a molecular
marker. Sequences hybridizing to the probe are called targets. Their relative abun-
dance in the sample is determined by their hybridization to the probe. Typically
microarrays are used to study the transcriptional reaction of single organisms [83].
However, there are some microarrays available to study the transcription in whole
microbial communities [98, 102, 11]. Each of those arrays is designed for a specific
environment. Unfortunately microarrays can only be designed if the reference se-
quence for an organisms is known. This is the main disadvantage of microarrays
due to the fact that a large number of microorganisms are not yet sequenced. Since
the development of NGS methods, RNA expression profiles can be studied by se-
quencing the isolated RNA after transcription into complementary DNA (cDNA).

The first NGS based metatranscriptome was obtained from a soil sample and re-
vealed that archea are much more active in amino oxidation than the more studied
bacteria [52]. In the last years a growing number of metatranscriptome studies have
been published [34, 71, 55, 80]. The isolation of environmental RNA is quite chal-
lenging therefore the amount of gained RNA is often not enough for sequencing. A
solution for this is Multiple Displacement Amplification (MDA). This technique is used
to multiply small amount of genetic material in a sample the same way it is used
for single cell sequencing, as described in Section 1.1.4.

To detect expression levels of genes, a high amount of mRNA in the sample is
needed. There are protocols available to enrich the amount of mRNA in the sam-
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ple, this is called mRNA enrichment or rRNA depletion [33]. Metatranscriptomes
sequenced without prior mRNA enrichment can contain up to than 95% rRNA [86].
The rRNA sequences can not be used to study activity levels of certain metabolic
functions, however they can be used to identify active organisms. Since an active
cell has more ribosomes than an inactive one, more rRNA from active cells will be
sequenced than from inactive ones. Using this to find out active taxa is only possible
if no mRNA enrichment was done since those methods favor certain taxa.

Since metatranscriptome sequences originate from a mixture of different and often
unknown organisms, it is not possible to analyze the sequences by mapping them
to certain genomes, like it is done with RNA-Seq data. Therefore, sequence reads
must be classified functionally and taxonomically by comparison to sequences with
known classification. For this the quality of the sequences must be very high, since
sequencing errors are not as easy to detect as in the mapping. To compare different
datasets the sequencing depth also has to be considered. Since longer genes pro-
duce longer transcripts, the results of both classifications need to be normalized by
gene length. For further normalization, sequencing depth as well as the amount of
rRNA in the dataset have to be considered.

So far analysis of sequenced metatranscriptomes was either done by hand or re-
lying on the web server Metagenomic Rapid Annotations using Subsystems Technology
(MG-RAST). MG-RAST is an open source web service for functional and taxonomic
analysis of metagenomes [62]. MG-RAST is based on the SEED framework1. SEED is
a collection of genome sequences that are annotated with the RAST technology. In
MG-RAST metagenomic sequences can be uploaded in fasta or fastq format and are
automatically analyzed. Analysis tools are based on a BLAST comparison against
the NCBI-NR database. The result counts are normalized by the total number of
results. MG-RAST offers a number of different visualizations and comparison with
openly available metagenome dataset. Using MG-RAST for metatranscriptomes has
the disadvantage that result counts are not normalized by gene length, making it
harder to compare the expression of long and short genes. An additional problem
is, that MG-RAST will not analyze duplicate sequences. Therefore, only a small frac-
tion of the sequences will be analyzed if the RNA had to be multiplied by MDA.
MG-RAST also does not offer to filter non-coding RNAs.

The analysis of a metatranscriptome dataset includes quality control, test of se-
quencing depth, removal of non-coding RNA sequences, as well as the construc-
tion of taxonomic and functional profiles. Comparing the taxonomic results of a
metatranscriptome and a metagenome can differentiate between the overall activity
levels and the number of certain taxa in one community. Correlation of the results

1http://www.theseed.org/wiki/Main_Page
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of several metatranscriptomes from the same environment with changed conditions
shows the reaction of the microbial community to these changes. Comparability of
the taxonomic and functional profiles requires specific normalization steps.

3.2. Metrans - analysis pipeline and software structure

Metrans is an open source software platform for the easy analysis of metatran-
scriptomes. The software has an user interface for the start of the analysis and the
visualization of the analysis results. The analysis is done by an automated pipeline,
presented in this section. Further, an overview of the data storage, software archi-
tecture, user interface and available visualizations will also be presented here.

3.2.1. Metrans analysis pipeline

Figure 3.1 shows an overview of the single steps as well as the corresponding vi-
sualizations of intermediate results in Metrans. Each of the following paragraphs

Figure 3.1.: Overview of the pipeline steps (rectangles) and the corresponding visual-
izations (ovals) in Metrans.

will first concentrate on the conceptual description of the corresponding analysis
step and then on its implementation in Metrans. The parameters of all of the steps
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can be configured by the user before executing the program. Default parameters for
all tools have either been tested with good results or were taken from the literature.
Single steps of the pipeline can be easily adjusted for an individual analysis.

Sequence preparation

The first step in any kind of DNA sequence analysis is to ensure the quality of the
sequenced reads (Figure 3.1, step 1). Since sequence quality changes greatly de-
pending on the position within the read, a sliding window approach is often used
for quality trimming. The window slides over the read, and if the average quality
within the window drops below a certain threshold, the read is cut at the beginning
of the sliding window.

In Metrans this quality trimming is performed immediately while loading a meta-
transcriptome dataset in fastq format. The size of the sliding window, as well as the
quality threshold, based on the standard Phred-33 format, are set by the user. If the
read length is shorter than the sliding window, the average quality of the read is
used. Reads shorter than 35 bp are excluded from further analysis. The reads are
stored in binary format in order to reduce disk space by 50 percent.

Sequence binning

The next analysis step is testing whether an adequate sequencing depth was reached
(Figure 3.1, step 2). If the sequencing depth is not deep enough, low expressed genes
will not be found [27]. Binning the sequences according to sequence similarity will
result in a number of bins for each expressed gene. Whether sufficient sequencing
depth is reached, can be seen by comparing the amount of singletons (bins with
only one sequence) to the amount of all sequenced reads. Due to the fact that se-
quencing errors occur only in a small amount of reads in Illumina or 454 sequencing
datasets, the binning can also be used to find those sequencing errors [101]. Using
the representative sequence of each bin in further processing, errors will have less
impact on the further analysis.

Metrans employs the binning program dnaclust, developed by Ghodsi et al. (2011).
It uses a greedy algorithm, employing a k-mer filter to avoid a high amount of com-
putationally intensive alignments. To create a multiple alignment of the sequences
in one bin, dnaclust uses the center star method with the longest sequence chosen
as the center sequence. Dnaclust has been shown to be fast and reliable. To ensure
better binning, the user can divide the sequences to be binned according to their
length into several subsets. This ensures that many short sequences binned with a
longer one will not reduce the length of the representative sequence. The bins are
stored by saving the representative sequence of each bin. Individual reads are saved
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then by storing their variations (mismatches, deletions and insertions) from the rep-
resentative sequence, see Figure 3.2 as example. Representative sequences and the
variations are stored in a binary format to reduce space further. This reduces disk

Figure 3.2.: Bin representation in Metrans. The alignment (left) of the sequences
in the bin contains three deletions (red), one mismatch (blue) and one insertion
compared to the representative sequence of that alignment. On the right the rep-
resentation of the Bin in Metrans is shown. Representative sequence as well as
mismatches, deletions and insertions according to the representative sequence are
stored.

storage notably, depending on the success of the binning step.

Filtering non-coding RNAs

One of the most important steps in metatranscriptome analysis is the removal of
sequences with no functional coding (Figure 3.1, step 3). Doing this early in the
analysis pipeline has several advantages. First of all, the comparison of the dataset
with ribosomal RNA gene databases is faster than the comparison to a database
containing protein coding genes. Firstly, protein coding databases are bigger in size
than databases containing non-coding RNAs. Secondly, they contain amino acid
sequences; therefore the reads have to be translated for the comparison. The second
advantage for an early filter step is that further analysis will be accelerated by remov-
ing ribosomal RNA sequences since they are highly abundant in metatranscriptome
datasets without prior depletion of rRNA. The third reason is the occurrence of
annotation errors in sequence databases containing protein sequences. It could be
shown that even well curated databases contain wrongly annotated sequences [84].
A wrongly annotated ribosomal RNA can have the effect that a metabolic function
is falsely predicted as highly expressed in the microbial community. On the other
hand, false positive classifications as non-coding RNAs during the filtering could
lead to missing functional classifications in the subsequent analysis. Therefore, rela-
tively relaxed parameters in the filtering step should be used, since sequences that
are not identified as rRNAs in the dataset can be detected later and removed accord-
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ingly.

The filtering of non-coding RNAs in Metrans is accomplished by the comparison
of the representative sequences of all bins to databases of known non-coding RNAs
using BLAST [2]. These databases like LSU, SSU [68] and RFAM [30] can be either
loaded as a fasta file or as a blastable database. The user also has the option to
translate the databases and use BLASTX for the comparison. This results in a higher
amount of sequences being filtered out. The user can choose BLAST thresholds like
E-value and identity as well as the minimal alignment overlap with the representa-
tive sequence. Sequences identified as non-coding RNAs will be tagged and will
not be considered in the subsequent analysis.

RDP Classifier If the mRNA of the metatranscriptome is not enriched the 16S
rRNA content of the sequence reads can be used to gain a taxonomic profile of the
active organisms in the microbial community. In Metrans this is done using the
RDP Classifier [96] (Figure 3.1, step 4). The results of the comparison against
the small subunit database are used for this purpose. Sequences similar to the 16S
rRNA sequences are taxonomically classified using a naïve Bayesian classification.
This taxonomic profile can be compared to the taxonomic profile from the functional
analysis for sanity checking.

Combined functional and taxonomical analysis

After the filtering of potential non-coding RNAs, the remaining sequences are ana-
lyzed further to create taxonomic and functional profiles of the metatranscriptome
(Figure 3.1, step 5). Both types of profiles are connected with each other for data rep-
resentation and visualization. It is important to start this step of the analysis with a
database that is highly manually curated, because of possible misannotations. Fur-
ther in the analysis, other less curated databases can be used.

For the functional classification of the representative sequences, Metrans uses BLAST-
X [2] as comparison tool with functional databases. The user can choose parameters
like E-value, minimal sequence overlap and identity as cutoff criteria of hits con-
sidered in the classification. For each sequence all hits above those cutoffs will be
considered. The descriptions of the corresponding database sequences are obtained
using the program fastacmd and are searched for certain keywords like EC-numbers,
COG-categories or SwissProt-identifications. If a description does not contain any
keywords, the whole description will be taken into account. The read is classified
with the most frequently occurring functional assignment in the result list. The re-
sult count for a function is the aggregated number of sequences in the bins where
the representative sequence was classified to this function.
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For simultaneous taxonomic classification, the BLAST results are mapped back to
the taxonomic information from the NCBI Taxonomy [82]. The description of the
sequence in the databases contains individual annotation for the organisms it origi-
nated from. Therefore, the back mapping from the encoded name of the organisms
to the NCBI Taxonomy is integrated individually for each database. In Metrans
the taxonomical classification for the following reference databases are integrated:
SwissProt [9], KEGG [45], PFAM [74] and EggNog [72]. Of all organisms found in
the taxonomic assignment of a specific function, the lowest common ancestor will be
assigned as taxonomic classification to the representative sequence. The taxonomi-
cal classifications of those reads are combined to a taxonomic profile.

Functional as well as taxonomical results are normalized by the length of the gene
from which the classification originated (Figure 3.1 step 6). This normalization is
based on the RPKM-value (reads per kilobase per million), which is used in RNA-
Seq experiments. Further normalization, by the read count of the metatranscriptome
or by the total number of results can be chosen during visualization. The classified
reads are tagged with an individual id, indicating the classifier and the classifica-
tion. For custom analysis the user can load own databases or sequence files and use
the graphical user interface to create a functional profile.

3.2.2. Data storage and operating system

Data representation in Metrans is project based. A project contains a number of
metatranscriptome datasets. Each project requires a physical folder on disk, where
metatranscriptome reads and analysis results can be stored. The representative
reads of the metatranscriptome datasets are stored in binary format in order to
reduce disk space. Metrans combines file- and database-based storage of analysis
results and read information. This enables fast access to the analysis results, while
offering the possibility to obtain reads responsible for the results. The results of the
analysis are stored either in a H22 or in a MySQL3 database. The database schema
for the storage of the results can be seen in Figure 3.3. Storing the results in a H2
database has the advantage that the whole project can easily be exported to other
machines. Although most tools used in Metrans depend on a Unix- or Linux-based
platform, Metrans runs platform independently and analysis results can be viewed
on a machine with other operating systems, once the analysis is finished. Since the
reads are tagged with the identifier of the profiles, single reads can be obtained
according to the tags of the results.

2http://www.h2database.com/html/main.html
3http://www.mysql.de

44



3.2. Metrans - analysis pipeline and software structure

Metatranscriptome

id
name
project_id
source
date
time
gc
read_count
description
comment

FuncTacCount

TaxonomicResult

MetransProject 

id
name
source
description
author
directory 

MetransTool

id 
name 
reference 
result_type 
comment 
metatrans_id 
dataset 
param 
second_param
third_param 
read_count
associate_tool_id 

id
tax_name
parent_id
rank_number
tool_id 

functional_id
taxonomical_id
count

FunctionalResult

id 
name 
result_type 
tool_id
tax_id
comment FuncTacCount

ResultCount

result_type
result_id
normalized_count

Figure 3.3.: Database schema of Metrans. Arrows indicate the association of the
different tables by the key of the tables. The underlined words are the keys.

3.2.3. Software architecture

Metrans is fully implemented in Java, which has the advantage that it is portable to
various operating systems. The visualization is based on JFreeChart4 and the prefuse
library5. Metrans is based on the NetBeans Platform6, which allows a modular soft-
ware design. New modules, like different classification tools or new visualizations,
can easily be integrated in Metrans by implementing the corresponding interfaces.
The extension to existing interfaces is loaded automatically without updating other
modules. For parallelization, tools started from the Metrans platform can either
be distributed to a Sun Grid Engine or run on a user chosen number of CPUs on a
multi core machine.

4http://www.jfree.org/jfreechart
5http://prefuse.org/
6https://netbeans.org/features/platform/
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3.2.4. Graphical user interface

Metrans was built for biologist users with a minimal background in computer sci-
ence. Thus the primary goal of the development was to provide good usability.
Figures 3.7 to 3.6 give an overview of single aspects of the user interface.

Projects, metatranscriptome datasets and available analysis results are presented
in a tree like structure in a clipboard on the left side of the window (Figure 3.4, a
and Figure 3.7 a). A double click on a node of the tree opens a new tab in the main
window. This tab will allow to select either possible analysis steps of the pipeline
(Figure 3.4 b) or a visualizations of the results (Figure 3.7 b, c and d). Tools of the
pipeline can be started either with the context menu of the metatranscriptome node
(Figure 3.4 a) or through the pipeline overview (Figure 3.4 b). For all tools, wizards

Figure 3.4.: Example how to start the pipeline through the user interface. The user
can decide either to start the single steps through the pipeline overview in the main
window (right) or using the context menu of the metatranscriptome dataset node
(left).

(Figure 3.5) guide the user through the needed options to start the program. The
wizards ensure that all required variables are set. When starting the same tool for a
different metatranscriptome, all feasible variables for program calls are stored and
presented to the user as an option. All options for references and tools in Metrans
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Figure 3.5.: Wizard for the start of the classification of sequences. The wizard guides
the user through the single steps of starting the tool.

can be adjusted permanently, using the options menu (see Figure 3.6). Selection
of results includes: dataset, classification reference and visualization. The results
will be visualized as seen in the right part of Figure 3.7. Figure 3.7 b shows the
visualization of a taxonomic tree of one dataset with heat maps for each node. The
saturation of the color in the heat map indicates the amount of normalized results
for one taxon. The visualization window of taxonomic or functional profiles is di-
vided in two parts. Adjustments like normalization or tax level can be made for
visualized data (Figure 3.7 c). Possible parameters of the visualization can be ad-
justed at the bottom of the visualization (Figure 3.7 d).
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Figure 3.6.: Options window in Metrans. Options for all tools and references are
adjustable here.
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Figure 3.7.: Result visualization in Metrans. Part a shows the project tab, where all
possible results can be seen. In the main part on the right side part b show the
overall options for a visualization, part c shows the visualization of a taxonomic
tree and part d are special options for the visualization of trees.
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Result visualizations Metrans has several visualization options for taxonomic
and functional profiles. Taxonomic results can be visualized as trees or as bar charts.
Tree visualizations are available as Linked Tree, Radial Tree and Balloon Tree, see Fig-
ures 3.8 to 3.10. The Linked Tree is the best visualization for the exploration of the
different tax levels through the taxonomic profile. Both the Balloon Tree as well as
the Radial Tree are ideal to compare different data sets or classifiers. Single results

Figure 3.8.: Linked Tree visualization of taxonomic profile. Each node shows a heat
map visualization of the amount of results. Width of edge depends on the amount
of results.

can be shown as node images either as heat maps (Figure 3.9) or as bar charts (Figure
3.10). The color schema of the heat maps are depending on the dataset. Depending
on the number of results the color for one dataset varies from strong to light, see
Figure 3.9. Strong color indicates more results than light one. A click on one of the
nodes will open the functional profile corresponding to this node, if there is one.
Functional results can be visualized as Stacked Bar Charts. The height of the bar indi-
cates the amount of classified reads, normalized at the user’s choice, see Figure 3.11.
The parts of the bar are the taxonomic classifications at a user chosen taxonomic
level. Heights of the parts indicate the amount of taxonomic classifications in the
functional result. All visualizations can be exported directly from Metrans in png
or jpeg/jpg format for further usage.
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Figure 3.9.: Radial Tree visualization of taxonomic profile. The tree shows results
of two different classifiers as heat map representation. Red as well as blue color
varies from strong to light depending on the number of results.

Figure 3.10.: Balloon Tree visualization of taxonomic profile. Amount of classification
is shown as bar charts on each taxonomic node.
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Figure 3.11.: Stacked bar chart of functional results at taxonomic level Genus. Each
bar presents one functional prediction. The parts of the bar are the taxonomic
predictions in this function.
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3.3. Application examples

The Metrans platform was used to analyze a number of projects. Here we present
the features of it on two of those projects. The analysis results of a metatranscrip-
tome gained from the ear of a 77-year-old male will be shown in depth. Furthermore,
we will show the analysis results of a metatranscriptome time series from tidal flat.

Metatranscriptome gained from a middle ear infection

The sample for the metatranscriptome was gained from a man suffering from mid-
dle ear infection (otitis media). Total RNA was extracted from the sample, cDNA
was synthesized and amplified isothermally. A cDNA library was constructed for
sequencing on an Illumina HiSeq 2000. Sequencing yielded 143,923,092 reads of
100 bases in length. For quality control, the window size was set to 100 bp and the
average Q-value cut-off to 35. The size of the window was set equal to the read
length, since there was a clear drop in quality at base 39 to Q-value 22. After quality
control, 64,804,207 reads remained in the analysis pipeline. Reads were binned at
a 98% identity threshold, resulting in 5,000,434 bins, reducing the sequences to be
analyzed to 7.71% of the reads. A total number of 2.995.125 bins contained only one
sequence, indicating either a high amount of sequencing errors or an insufficient se-
quencing depth. Filtering removed 55.89% of the reads, corresponding to 1,203,818
bins, using the databases RFAM (version 10.1), LSU and SSU (version 111) based on
BLASTN with a minimal overlap of 80% and a minimal identity threshold of 80%.

During the functional classification using SwissProt, Metrans indicated a false pos-
itive assignment. The functional entry Uncharacterized protein ORF91 in the uniprot
database is likely a wrongly annotated 16S rRNA gene, not included in the current
version of the SSU and too dissimilar from the included genes to be filtered out. To
remove these sequences, the filter step was repeated using not only BLASTN against
the DNA sequences, but also BLASTX against the translated amino acid sequences
of the filter databases. This step highly reduced the amount of sequences classi-
fied as false positives in the functional analysis. Using the updated filter, 84.29%
of all reads were removed. All newly removed sequences were checked by compar-
ing them by BLAST against the NCBI-NT and the NCBI-NR databases [73]. The
comparison against the amino acid sequences in the NCBI-NR database resulted
mostly in hypothetical or uncharacterized proteins, as well as in one enzyme of the
primary metabolism. Comparison of the newly filtered sequences against the NCBI-
NT database showed only 16S rRNA as well as mitochondrial sequences. Since the
amount of incorrectly classified sequences was highly reduced, it was decided to
keep the updated filter step with BLASTX for this dataset. For the taxonomic classi-
fication of the sequences the RDP Classifier, as well as the LCA approach with
the databases SwissProt, KEGG and COG/EGGNOG were used.
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The comparison of the taxonomic profiles from these three databases shows great
diversity in the assigned taxa. All possible taxonomic profiles show Staphylococcus
as one of the most active genera of the microbial community (Figure 3.12). The

Figure 3.12.: The three most abundant taxa on tax level Genus, classification based
on the databases SwissProt (red bar), COG/EGGNOG (blue bar) and KEGG (green
bar). The amount of classified reads is normalized by reference length and the total
amount of reads classified by the corresponding classifier.

difference in the taxonomic profiles can be attributed to the different amounts of
reference sequences from certain organisms in the databases. Different strains of

Figure 3.13.: RPKM-value of the virulence factors clumping factor A, clumping factor
B and the gene of the primary metabolism 6-phosphofructokinase. The different
colored parts of the bars indicate the amount of sequences classified to a certain
taxon. The classification is based on the SwissProt database.

Staphylococcus are a known source of infections in the human body. A number of
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virulence factors like clumping factors A and B were found at an expression level
comparable to that of genes of the primary metabolism like 6-phosphofructokinase
(Figure 3.13). The classification of the virulence factors to the taxon Staphylococcus
indicates a possible infection by a bacterial strain of this genus. Unfortunately no
classification to a specific strain was possible.

Metatranscriptomes time series from tidal flat

In another project Metrans was used for the analysis of six metatranscriptomes
taken from a tidal flat surface. Samples were taken at two-hour intervals from
06:50 in the morning to 16:50 in the afternoon. Total RNA was isolated, mRNA en-
riched and translated into cDNA. The cDNA was sequenced on an Illumina MiSeq
sequencer as paired end sequences. To gain paired end sequences, the DNA is se-
quenced from both sides. If the DNA strand is smaller than the sequencing length,
the sequences overlap and can be used to gain longer reads. Table 3.1 shows an
overview of the sequences gained from the tidal flat. In this example the removal of
rRNA was only done with BLASTN. An overview of all binning and rRNA removal
results can be seen in Table 3.2. The analysis with Metrans showed a shift in the
amount of sequences classified to enzymes of the photosynthesis cycle during the

Sample time Tide level Number of reads

06:50 low tide 404,183
08:50 late low tide 573,364
10:50 rising tide 648,488
12:50 high tide 562,189
14:50 falling tide 529,437
16:50 early low tide 534,292

Table 3.1.: Sample data of tidal flat metatranscriptome probes

Sample Number of bins Single read bins non coding RNA

06:50 low tide 318,485 73.92% 25.05%
08:50 late low tide 167,898 22.85% 82.26%
10:50 rising tide 164,353 19.30% 84.03%
12:50 high tide 123,425 16.50% 88.14%
14:50 falling tide 272,793 45.60% 55.79%
16:50 early low tide 338,498 57.42% 40.47%

Table 3.2.: Results of binning at 99% sequence similarity and filtering of non coding
RNA
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day. Only a few of those sequences could be classified at least at phylum level.
There were mostly Cyanobacteria present (see Figure 3.14).

Figure 3.14.: Taxonomic classification at level phylum of the most abundant Ko-
Number (K02703) that mapped to the Photosynthesis cycle based on the KEGG
database. This Ko-Number has the definition photosystem II P680 reaction center
D1 protein.

3.4. Conclusion

Metrans is a freely available software platform for the analysis of metatranscrip-
tome datasets. It is easy to use and wizards guide the user through all steps of the
pipeline. Metrans can analyze large datasets to generate both taxonomic as well
as functional profiles. Especially the binning step makes it possible to analyze big
data sets, while at the same time masks sequencing errors. The combined visualiza-
tion of the taxonomical and functional profiles provide the opportunity to find out
if certain metabolic functions are shared between taxa. It can also show the func-
tional metabolism of certain taxa. Those profiles can be used to gain an overview of
the active organisms, as well as of the expressed metabolic functions in the micro-
bial environment. To perform further analysis, all sequences corresponding to any
functional or taxonomic result can be downloaded from Metrans. All results are
normalized according to gene length as well as with a user chosen normalization
feature, such as the overall number of results or the overall number of reads in the
metatranscriptome. Since the amount of non-coding RNA in the sample influences
the amount of reads that are classified in a functional category, the normalization
by the number of reads is not adequate. Therefore, the normalization by number of
results is included.

Since there are some steps in the pipeline that are problematic for certain kind
of data sets, it is possible to skip certain steps of the pipeline. For example, bin-
ning data sets with shallow sequencing depth may shorten the representative reads
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unduly and does not remove sequencing errors, since the size of the bins is then
quite small. Furthermore, certain mRNA enrichment methods deplete the rRNA un-
evenly, making a comparison of the taxonomic profile from the RDP Classifier
and the functional classification nonsensical.

The modular structure of Metrans makes the skipping of pipeline steps and the
integration of new ones easier. For the integration of new modules existing inter-
faces can be implemented. Some of those modules could be statistical modules to
make comparison of different datasets easier. Furthermore a module for direct com-
parison of the metatranscriptome and metagenome sequences would provide the
user with the possibility not only to compare analysis results but also to compare
directly the sequenced reads.
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Chapter 4
Conclusion and outlook

Microbial communities play an important role in the life cycle of planet earth. Re-
search on microbial communities concentrates on understanding the species abun-
dance in those communities, the potential and expressed metabolic functions as well
as the interaction between the microbes within the community or their host. Since
the development of next generation sequencing methods research on those commu-
nities has accelerated. The NGS methods simultaneously provide the opportunity
to find out more about microbial communities and pose a challenge for analysis and
storage. The work of this thesis contributes to the field metagenomics and metatran-
scriptomics with the development of new bioinformatic methods.

For fast taxonomic analysis of whole shotgun metagenome sequence data the soft-
ware metaBEETL was developed. It relies on Burrows-Wheeler transformed se-
quences, so that compressed sequence data can be classified without decompres-
sion. metaBEETL is based on the software BEETL that uses the all-against-all back-
ward search to analyze sequence data while the compressed data is held on disk.
With new bias control methods metaBEETL generates reliable taxonomic profiles
for whole shotgun metagenome reads. Since metaBEETL is based on exact k-mer
counts it only provides reliable taxonomic profiles for already well researched com-
munities. Even though with each year more microbial communities are researched,
further development of the software should concentrate on this challenge. One pos-
sibility would be the translation of the sequences in amino acids before classification
since amino acid sequences are often more preserved than nucleotide acids.

For the analysis and comparison of metatranscriptome sequence data the Rich Client
software platform Metrans was developed. Metranscombines different analysis
tools to a pipeline to gain combined taxonomic and functional profiles for meta-
transcriptome sequence data. The pipeline includes binning of the reads, filtering
of non-coding RNA, taxonomic classification of the 16S rRNA sequences and tax-
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onomic and functional classification through the comparison of the sequences to
databases containing already annotated sequences. Including wizards for easy em-
ployment of the pipeline tools and the different visualizations of the analysis re-
sults, Metrans offers an user friendly way to analyze metatranscriptome data. To
projects analyzed with Metrans were shown. For the metatranscriptome from the
infected ear of a 77-year-old male confirmed the diagnosis of a Staphiilococcus in-
fection. Even thoug the metatranscriptome time series from tidal flat surface was
done with a low amunt of sequences, the analysis showed increasing expression in
the photosyntehsis pathway during the day. For further development more analysis
tools and visualizations could be included More importantly, would be statistical
analysis tools to compare different metatranscriptome datasets.

Further development of bioinformatic tools for metatranscriptome and metagenome
datasets would be the comparison of those datasets. To compare metagenome and
metatranscriptome datasets two methods are currently used. The first method is the
assembly of the metagenome reads according to sequence similarity, gaining longer
sequences (contigs). Afterwards, genes are predicted on the contigs. The metatran-
scriptome reads are mapped on the contigs and the further analysis is similar to
established RNA-Seq analysis methods. While this method is fast, it has several
bias sources. First of all, if the microbial community is highly heterogeneous, reads
from different species are assembled in one heterogeneous contig. In those contigs
sequence variations that are only present in a small amount of the species are hid-
den. If sequence variations are high enough, transcripts of species occurring in a
small amount will not be mapped. Secondly, it can happen that reads from low
occurring species are not assembled in a contig, therefore the transcripts can not be
mapped, losing transcript and genome information. An other method is to compare
the results of a functional and taxonomical analysis of both datasets. This takes a
long time and does not give information for sequences that were not observed before
and therefore have no classification. However, a direct comparison of metagenome
and metatranscriptome reads would give an insight about difference in the amount
of expression and the existence of genes without the biases of the currently used
methods.

To directly compare metatranscriptome and metagenome reads, the method used
in metaBEETL can be modified as follows: The list of k-mers shared between the
metagenome and the metatranscriptome reads can be utilized to find levels of oc-
currences of sequences in the datasets without classification. Normalized with the
read counts of the respective datasets, those levels can be used to analyze a number
of metatranscriptomes from microbial communities in different environmental con-
ditions compared to their respective metagenomes. Therefore, it would be possible
to find differences in expression levels without the biases introduced by classifica-
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tion of the reads or the assembly. Integrating this method in the Metrans pipeline
offers the opportunity for further analysis steps and the comparison of metatran-
scriptomes with their respective metagenomes.
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Appendix A
metaBEETL
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A.1. All-against-all backward search

Figure A.1.: Second iteration of the all against all backward search. Grey boxes indi-
cate the read part of the BWT(t). Array r[c] contains the number of characters read
in the BWT before the current section. Array o[c] contains the number of character
in one Q-interval.
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Figure A.2.: Third iteration of the all against all backward search. Grey boxes indicate
the read part of the BWT(t). Array r[c] contains the number of characters read in
the BWT before the current section. Array o[c] contains the number of character in
one Q-interval.
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A.2. Taxonomic profiles of simulated data with classifiers
metaBEETL, CARMA3, MEGAN and Genometa

Figure A.3.: Phylum-level composition of simulated data compared with classifications
produced by metaBEETL, CARMA3 and MEGAN.

Figure A.4.: Class-level composition of simulated data compared with classifications
produced by metaBEETL, CARMA3 and MEGAN.
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Figure A.5.: Order-level composition of simulated data compared with classifications
produced by metaBEETL, CARMA3 and MEGAN.

Figure A.6.: Family-level composition of simulated data compared with classifications
produced by metaBEETL, CARMA3 and MEGAN.
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Figure A.7.: Genus-level composition of simulated data compared with classifications
produced by metaBEETL, CARMA3 and MEGAN.
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Figure A.8.: Species-level composition of simulated data compared with classifica-
tions produced by metaBEETL, CARMA3, MEGAN and Genometa.
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