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Abstract

According to usage-based approaches to language acquisition, linguistic knowledge
is represented in the form of constructions as pairings of meaning and form at mul-
tiple levels of abstraction and complexity. The emergence of syntactic knowledge is
assumed to be a result of the gradual abstraction of lexically specific and item-based
knowledge. In this thesis, we first explore how the gradual emergence of a network
consisting of constructions at varying degrees of complexity and abstraction can be
modeled computationally by formalizing ideas proposed within usage-based theories
to language acquisition and construction grammar. Similar to a child, the model
learns language by observing natural language utterances, represented as sequences
of words, in an ambiguous context. Starting from ambiguous contexts, the model
establishes form-meaning mappings based on cross-situational statistics, a mecha-
nism also referred to as cross-situational learning. In contrast to previous mod-
els investigating cross-situational learning, which typically focused on word-referent
mappings, we explore how the same cross-situational learning mechanism can be ap-
plied consistently to establish form-meaning pairings beyond such simple mappings.
We present empirical results, showing that the model can learn a compact and pre-
cise representation of the input data which generalizes well to unseen data. In line
with findings from psycholinguistic studies with children, language learning in the
model proceeds gradually. The model’s generalization abilities are initially limited,
increase over time, and finally converge, suggesting that the employed mechanisms
allow accurate learning without (severe) deterioration of knowledge already captured
by the network during further processing of examples. In addition, we present em-
pirical results that are in line with recent findings from psycholinguistic studies with
children and that show i) how our model is able to perform cross-situational verb
learning by storing information about possible referents with verb entries and ii)
how it can establish verb entries based on syntactic information alone. The model
thus suggests learning mechanisms that may be at play during the emergence of
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verb-general constructions and the representation and refinement of verb entries.
In a further step, we explore learning from spoken utterances, instead of sequences of
words. We assume no predefined linguistic resources other than a task-independent
phoneme recognizer, and thus also address lexical acquisition. Applying a phoneme-
based speech recognizer has several advantages over applying a word-based one: It
yields low costs for training, makes it easy to adapt the system to novel tasks and
supports the acquisition of a potentially unrestricted vocabulary. While previous re-
search has addressed learning novel words from speech without word transcription,
we are not aware of other algorithms learning syntactic constructions using am-
biguous non-linguistic contexts. We present empirical results, showing that i) when
applied to a written language understanding task, our algorithm achieves state-of-
the-art performance, ii) when applied to a spoken language understanding task still
several novel utterances can be understood and, in fact, iii) performance similar
to applying a word-based in-domain speech recognizer can be expected. Further,
we show how knowledge about syntactic patterns can be utilized to improve seg-
mentation and language learning performance and how semantic speech recognition
grammars, which have typically been created manually or learned in a supervised
setting, can be induced using ambiguous contextual representations.
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Chapter 1

Introduction

During language acquisition, children accomplish several learning tasks, such as
learning a comprehensive vocabulary and mastering syntax. However, while exten-
sive knowledge concerning child language acquisition exists, the principles underly-
ing the learning process remain relatively unclear, and a theory explaining language
acquisition from birth until the age of five, which is generally accepted and verified,
does not yet exist (Räsänen, 2012). This thesis aims to shed light on the potential
learning mechanisms at play during child language acquisition by exploring how a
lexicon and an inventory of syntactic constructions can be acquired and proposing a
computational model for this. For this purpose we formalize ideas proposed within
one of the major theoretical approaches to language acquisition and explore further
representations and learning mechanisms.
The major competing theoretical approaches to language acquisition are genera-
tivist or nativist approaches (Eisenbeiß, 2009) on the one hand and usage-based or
emergentist approaches (Behrens, 2009) on the other hand. While the traditional
generative approach originally proposed by Chomsky (1965) assumes that language
ability is hard-wired/innate in form of a “universal grammar” (UG), usage-based
approaches assume that linguistic knowledge is learned through interaction with
and exposure to language in some context or environment. Specifically, usage-based
approaches typically assume linguistic knowledge to be acquired and represented
in terms of constructions as proposed within the framework of construction gram-
mar. According to Goldberg (Goldberg & Suttle, 2010; Goldberg, 2003), construc-
tion grammar assumes that linguistic knowledge is represented in the form of form-
meaning-pairings – so-called constructions – at varying degrees of complexity and
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Chapter 1. Introduction

abstraction. These constructions are assumed to be captured by an interrelated
network which comprises both item-specific information and generalized patterns,
and natural language utterances are assumed to be created based on the network by
combining comprised constructions. For instance, an utterance like “what did Mia
eat?” is, among other things, composed of single word constructions, i.e. “what”,
“Mia”, “did”, “eat”, but also of more complex ones such as a noun phrase construc-
tion, a verbal phrase construction and a question construction. It is further assumed
that the network of constructions is learned on the basis of positive input coupled
with domain-independent learning mechanisms (Goldberg & Suttle, 2010; Goldberg,
2003).
Both construction grammar and usage-based approaches to language acquisition
assume that language learning proceeds gradually from item-based and formulaic
linguistic knowledge to abstract linguistic knowledge. More specifically, tracing
back to the verb-island hypothesis proposed by Tomasello (1992), these approaches
assume that, early on, children maintain an inventory of lexically specific and item-
based constructions. These are then gradually generalized on a verb-specific basis,
i.e. patterns correspond to concrete verbs, by replacing concrete lexical items with
slots which can be filled by (a restricted group of) words or short sequences of
words (Tomasello et al., 1997), yielding verb-specific predicate structures, i.e. verb-
islands. It is not known in detail how children induce such slots, but one hypothesis
is that they observe type variation in a position of otherwise identical utterances
(Tomasello, 2000a). Moreover, new linguistic qualities are also assumed to emerge
in the sense that more complex structures can emerge from simpler ones (Behrens,
2009).
It is still under debate to what extent human language skills are indeed innate (e.g.
Eisenbeiß, 2009). Yet, several studies investigating child language acquisition pro-
vide support for an item-based nature of children’s early linguistic knowledge (e.g.
Tomasello, 2000b, 2003; Olguin & Tomasello, 1993; Lieven et al., 1997) as well as
evidence for the existence of domain-independent learning abilities in children (e.g.
Saffran et al., 1996; Saffran, 2003; Aslin et al., 1999). Furthermore, recent findings
suggest that statistical learning is implicated in the acquisition of grammar (Kidd,
2012). However, a detailed and precise description of the underlying learning mech-
anisms and representations is missing. For instance, it remains rather unclear how
statistical learning mechanisms are implicated in the acquisition of syntactic pat-
terns, i.e. how they interact with other learning mechanisms such as rule learning,
and how exactly the involved generalization processes may operate.
Further, recent studies with children provide novel insights into the emergence of
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1.1 Computational modeling of child language acquisition

verb-general constructions and the representation and refinement of early verb en-
tries. In particular, psycholinguistic findings suggest i) that children can set up
initial verb entries based on syntactic information alone (Arunachalam & Wax-
man, 2010), and ii) that they store information about possible referents and co-
occurrence statistics with verb entries and update this information incrementally
over time (Scott & Fisher, 2012). However, again a detailed and precise description
of the underlying learning mechanisms and representations is missing. For instance,
it remains relatively unclear how verb-general constructions emerge, how they are
represented, and how they can guide attention to establish verb entries based on
syntactic information alone.
In this thesis, we explore how ideas proposed within usage-based approaches to lan-
guage acquisition and construction grammar can be formalized and modeled com-
putationally. In addition, we investigate how the explored learning mechanisms can
be utilized and extended for application in a spoken language understanding task,
aiming at the design of more flexible and adaptive systems. In the following, we
will first outline work on developing a computational model for child language ac-
quisition (Section 1.1) and subsequently address computational language learning
in spoken language understanding systems (Section 1.2).

1.1. Computational modeling of child language

acquisition

Computational models are an important tool in language acquisition research since
they can be applied to test hypotheses concerning child language acquisition and
verify the plausibility of theoretical models by performing simulations with the im-
plemented model (Räsänen, 2012). More specifically, while psycholinguistic theories
can be rather vague, computational models provide a precise implementation which
can be tested in order to verify its workings and thus plausibility. For instance, a
computational model can be applied to corpora of child-directed speech to test its
language learning abilities or to simulate findings from psycholinguistic studies with
children.
In this thesis we aim to provide a usage-based computational model for the gradual
acquisition of syntactic constructions. Similar to a child, our model learns language
through exposure to language in some environment. To illustrate our learning sce-
nario, consider a child who observes an utterance “Mia eats pizza” while several
actions take place concurrently. For example, Mia might actually be eating pizza,
but moreover, further actions may take place concurrently. For instance, another
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Chapter 1. Introduction

person might also be eating pizza and a dog might be barking while the utterance is
being uttered. Similar to such natural learning situations, in this thesis we attempt
to learn language from the input of two temporarily paired channels: a language
channel and a visual channel. For the sake of simplicity and since we attempt to
model a stage in learning where syntactic constructions emerge gradually, we assume
that at the modeled stage of learning the child is already able to extract words from
the speech signal and structured representations for actions from the visual context.
Visual information is given in the form of symbolic representations of actions by
means of predicate logic formulas.
In line with natural settings, the input is ambiguous in the sense that an utter-
ance is presented together with many different actions and it is not clear if the
utterance refers to any of the actions and if so to which one. This problem is also
known as referential uncertainty (Quine, 1960). A great challenge is hence to induce
the appropriate meanings starting from a set of ambiguous contexts. In order to
establish correspondences between form and meaning, we rely on the principle of
cross-situational learning. Many researchers (e.g. Quine, 1960; Pinker, 1989; Gleit-
man, 1990; Siskind, 1996; Smith & Yu, 2008) assume that this mechanism enables
children to establish correct form-meaning mappings in the presence of referential
uncertainty. The assumption is that form – words in particular – and the meaning
they refer to co-occur frequently enough so that mappings between meaning and
form can be derived based on co-occurrence statistics. In contrast to previous mod-
els investigating cross-situational learning (e.g. Fazly et al., 2010; Frank et al., 2007;
Yu, 2005), which typically focused on word-referent mappings, we explore how the
same cross-situational learning mechanism can be applied consistently to establish
form-meaning pairings beyond such simple mappings.
Importantly, in our model language learning proceeds online, i.e. each observed
example directly causes an update of the model. This is an important aspect with
respect to modeling human language acquisition skills because the resulting mod-
els may not only account for why a certain behavior emerges, but also address the
question of how the behavior may be learned given constraints on the infant learner,
e.g. on memory (Pearl et al., 2011). In particular, just like Pearl et al. (2011) we
assume that a learner can only process one utterance at a time, in our case pre-
sented together with concurrent information derived from the visual context. This
contrasts with models storing a whole dataset in memory and processing over the
data in batch mode, often even iterating over the data several times during learning.
Due to the fact that the verb-island hypothesis assumes that generalization is (ini-
tially) performed on a verb-specific basis, in this thesis we first present a compu-
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1.2 Learning from speech without word transcriptions

tational model for the gradual acquisition of an inventory containing verb-specific
constructions. Since recent work also provides novel insights concerning the emer-
gence of verb-general constructions, afterwards we present an extension of the model
to also learn verb-general constructions.

1.2. Learning from speech without word

transcriptions

State-of-the-art Spoken Language Understanding (SLU) systems are typically based
on predefined linguistic resources, e.g. lexicons and/or grammars. Building such
resources usually requires extensive manual effort and/or large amounts of (labeled)
training data, making them costly to produce. The resulting systems are also often
out-dated rather quickly during application, since one cannot know at design time
which linguistic knowledge is needed during applications, e.g. which words a user
may utter. Moreover, natural languages simply do not have fixed vocabularies. By
contrast, children are able to learn linguistic structures by being exposed to language
in some context or environment, and they continuously adapt their knowledge to
novel input, e.g. they acquire novel lexical entries over time. Thus, computational
models for child language acquisition may also inform SLU research on the design of
self-adaptive systems. Further, exploring algorithms which i) learn language simi-
larly to children directly from examples of spoken language utterances coupled with
non-linguistic information and ii) rely on as few predefined resources as possible can
yield not only self-adaptive, but also low resource systems.
In fact, making use of ambiguous context representations has already been explored
in the context of the Natural Language Processing (NLP) field Semantic Parsing,
i.e. the task of mapping natural language utterances to their corresponding formal
meaning representations. Traditionally, data-driven approaches to semantic parser
induction have been investigated in a supervised setting, i.e. these parsers were
learned from examples consisting of utterances annotated with their correct mean-
ings (e.g. Wong & Mooney, 2006; Zettlemoyer & Collins, 2007). Because such
annotations are time-consuming and costly to produce, research has also focused
on learning parsers using ambiguous context representations instead of annotations
(e.g. Chen et al., 2010; Börschinger et al., 2011; Chen & Mooney, 2008) as a step to-
wards building machines which can learn language – analogous to children – through
exposure to language in some environment (Chen & Mooney, 2008). These parsers
were, however, trained on written text.
With respect to application in SLU, in this thesis we present an approach which
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makes the semantic parsing task based on ambiguous context information applica-
ble to speech data, instead of written text, without assuming any predefined linguis-
tic resources other than a task-independent phoneme recognizer. Thus, contrasting
with previous approaches to semantic parsing, we also address lexical acquisition.
That is, since words are not given, the learning scenario is extended in that lexical
units must be segmented out of a continuous stream of phonemes. Compared to
applying a word-based speech recognizer, applying a phoneme recognizer makes it
easy to adapt the system to novel tasks and supports the acquisition of a potentially
unrestricted vocabulary. The learned parser is represented in the form of a lexicon
and an inventory of syntactic constructions and is applicable to spoken utterances.
Learning a semantic parser in this setting is much more challenging compared to
learning from text due to recognition errors and different pronunciations of the same
written word and due to the additional segmentation task. Thus, in the case of spo-
ken utterances we do not focus on modeling child language acquisition, but explore
how learning mechanisms introduced within the framework of our computational
model can be extended and applied to tackle the increased complexity of the learn-
ing setting with respect to performance on a SLU task. In particular, we will not
explore online learning. Instead, we assume that a system has the capability to log
observed utterances, for instance, to update its linguistic knowledge at certain time
intervals by applying the proposed approach.

1.3. Contributions

In the first part of this thesis, we present a usage-based computational model for the
early acquisition of verb-specific constructions under referential uncertainty, includ-
ing a mapping between lexical units and their corresponding meanings. In doing so,
we formalize ideas proposed within usage-based approaches to language acquisition
and construction grammar and combine them with a cross-situational learning mech-
anism. In contrast to previous computational models exploring cross-situational
learning, we investigate how the same cross-situational learning mechanism can be
applied consistently to establish form-meaning pairings at different levels. While
the principles of item-based generalization and cross-situational learning have been
discussed extensively in the literature, we believe that we present the first com-
prehensive computational model that combines cross-situational learning beyond
word-referent mappings with a formalization of a generalization mechanisms based
on an item-based induction of slots in order to learn a lexicon and syntactic construc-
tions in an online fashion. In the design of the model, we particularly address the
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following research questions concerning usage-based approaches to child language
acquisition:

1. How can linguistic knowledge be represented in the form of an interrelated
network of constructions, and what mechanisms enable their retrieval?

2. How exactly do the underlying learning mechanisms operate, i.e. how can
utterances be generalized in an item-based fashion by inducing slots?

3. How exactly can rule-based learning mechanisms be combined with statistical
learning mechanisms?

4. Can the same cross-situational learning mechanism be applied beyond estab-
lishing simple word-object mappings?

5. How do more complex linguistic structures emerge from simpler ones?

In the second part of this thesis, we present an extension of our computational
model, which allows it to learn verb-general constructions by exploiting the same
learning mechanisms used for learning verb-specific constructions. We show how
the model can simulate children’s behavior observed in psycholinguistic studies on
the acquisition of verbs and verb-general constructions, thus providing one possible,
formal explanation for the observed behavior. In particular, we address the following
research questions:

1. How do verb-general constructions emerge and how are they represented?

2. How can these constructions guide attention to establish verb entries based on
syntactic information alone?

3. How can information about possible referents and co-occurrence statistics be
stored with verb entries?

4. How can this information be updated incrementally over time, thus allowing
for learning of verb meanings across situations?

In the third part of this thesis, we explore how a semantic parser can be learned
and applied to spoken utterances, rather than written text, without assuming any
predefined linguistic resources other than a task-independent phoneme recognizer.
While learning linguistic structures of rather low complexity from speech without
word transcriptions has been addressed previously, e.g. learning (novel) words (e.g.
Roy & Pentland, 2002; Taguchi et al., 2009; Yu et al., 2005) or semantically mean-
ingful sequences (e.g. Gorin et al., 1999; Levit et al., 2002; Cerisara, 2009), we are
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not aware of other approaches to learning syntactic constructions using ambiguous
non-linguistic contexts. During the design and evaluation of our system, we will
especially focus on the following research questions:

1. Does a top-down step in which knowledge of previously acquired syntactic
constructions is used to refine segmentations improve segmentation accuracy
and/or language learning performance?

2. Does the proposed method yield state-of-the-art performance when applied to
written text, as explored previously in NLP?

3. Can we expect similar performance by applying a phoneme-based speech rec-
ognizer compared to applying a word-based one?

4. Is our weakly supervised approach useful for inducing recognition grammars
applicable as a language model for a speech recognizer, which have been typi-
cally created manually or induced in supervised settings?

5. Is it possible to determine (the boundaries of) semantically meaningful se-
quences accurately, and what is the effect of using several different sequences
for the same written word for parsing instead of a single “best” one?

1.4. Outline

The remainder of this thesis is organized as follows. In the next chapter, we will
present background information concerning existing techniques relevant to this the-
sis and discuss related work. More specifically, in this thesis we investigate learning
from spoken utterances, thus yielding a spoken language understanding task. We
will hence provide an overview of automatic speech recognition and spoken language
understanding. Further, since we explore learning from (spoken) natural language
utterances coupled with ambiguous context information, several learning tasks need
to be addressed within our approach at the same time. In particular, these learning
tasks are i) segmenting a continuous stream of discrete units, ii) detecting seman-
tically meaningful sequences, iii) mapping words to meanings and iv) acquiring
(semantic-)syntactic constructions. These learning tasks have been addressed pre-
viously, though often independently of each other, and we will describe existing
approaches in the following chapter. Moreover, making use of context information
with respect to learning from text has been explored previously in NLP and we will
review relevant work in this area.
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In Chapter 3, we present our computational model for early syntactic acquisition
by focusing on the acquisition of verb-specific syntactic constructions. We will first
describe several ideas proposed within usage-based approaches to language acqui-
sition and construction grammar which are relevant for computational modeling.
Subsequently, we will present the design of the model. We will then present exper-
imental results concerning the model’s learning capabilities, and afterwards discuss
the model with respect to psycholinguistic theories and findings as well as its limi-
tations and possible extensions.
In Chapter 4, we will present an extension of our computational model, which learns
verb-general constructions. We will then present empirical results by replicating
findings from psycholinguistic studies with children, and subsequently discussing
the results’ implications for learning mechanisms which may be at play.
In Chapter 5, we will focus on learning from spoken utterances without word tran-
scriptions. We will first present our system for learning lexical units and syntactic
constructions. We will then present several experiments. For instance, we will com-
pare the performance of our system, which works with phoneme transcriptions, to
the expected performance of systems which work with word transcriptions made by
a speech recognizer. Moreover, we will investigate the role of syntactic information
in segmentation.
Finally, in Chapter 6 we will summarize the research presented in this thesis.
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Chapter 2

Background

In this chapter, we provide a brief overview of existing techniques relevant to this the-
sis and discuss related work. As we focus on speech data in Chapter 5 of this thesis,
we briefly discuss the main paradigms for Spoken Language Understanding (SLU).
Spoken language understanding systems are typically based on automatic speech
recognizers. Thus, in the following we will first present a brief overview about exist-
ing techniques in Automatic Speech Recognition (Section 2.1) and Spoken Language
Understanding (Section 2.2), focusing on aspects relevant to this thesis.
In this thesis, we address the acquisition of syntactic constructions from examples of
(spoken) natural language utterances coupled with ambiguous context information.
In general, learning language from a speech signal mainly comprises acoustic, lexi-
cal and syntactic acquisition, where lexical acquisition may comprise segmentation
of a continuous stream, detecting meaningful sequences and/or the acquisition of
word-to-meaning mappings. Further, learning may be addressed with or without
establishing meanings for learned structures. In cases where semantic acquisition
is addressed, current approaches typically explore learning using concurrent non-
linguistic context information, e.g. describing the visual context a learner observes.
Most of these learning tasks have been addressed with respect to both modeling
child language acquisition and application in (spoken) natural language processing
systems and/or robotics. For instance, with respect to automatic speech recognition,
where systems typically rely on linguistic knowledge provided by an expert, such as
transcriptions of speech, it is of interest how the required linguistic knowledge can
be learned automatically from speech. While in applied settings, the main focus
for evaluating such learning algorithms lies on performance, in case of cognitive
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modeling, the cognitive plausibility of the developed model becomes an (additional)
important criterion.
In this thesis we focus on learning from speech using a subword speech recognizer,
in particular, a phoneme recognizer. Thus, we will not address phonetic acquisition.
For a recent review of phonetic and lexical acquisition from speech with respect to
modeling child language acquisition, please see Räsänen (2012). A summary of a
recent workshop focusing on phonetic and lexical discovery from speech with respect
to application in automatic speech recognition is provided by Jansen et al. (2013).
In the following, we will first describe approaches to lexical acquisition which at-
tempt to segment a continuous stream of discrete units into word-like units with
the goal of determining all word boundaries (Section 2.3). Subsequently, we will
present approaches aiming to detect (semantically meaningful) linguistic structures
in speech transcribed by a subword speech recognizer (Section 2.4). We will then
discuss approaches to word-to-meaning mapping (Section 2.5) as well as syntactic
acquisition, focusing on unsupervised learning (Section 2.6) and on determining a
mapping from words to the corresponding semantics (Section 2.7); such approaches
learn from sequences of words, and thus exclude the learning tasks described above.
Finally, we will give an overview of approaches in NLP which attempt to make use
of non-linguistic context information for computational language learning (Section
2.8).

2.1. Automatic Speech Recognition

Automatic speech recognizers (ASR) (Schukat-Talamazzini, 1995) are applied to
transcribe input speech, i.e. an acoustic signal, into symbolic form reflecting the
signal’s content. In most cases the output corresponds to a sequence of words. A
typical ASR is based on a pronunciation lexicon, acoustic models and a language
model. The lexicon comprises the units, usually words, which the speech recognizer
can recognize. Further, one or more pronunciations are associated with each lexical
entry, e.g. represented as sequences of phonemes.
A first step for transforming an acoustic signal into symbolic form is the extraction
of feature vectors, for example Mel Frequency Cepstral Coefficients (MFCCs), from
the continuous signal. Starting from the feature vectors, the goal is then to infer
the spoken sequence of words (or other units). In statistical ASR this corresponds
to finding the most likely sequence of words given a sequence of observations:

Ŵ = arg max
W

P (W |O) = arg max
W

P (O|W )P (W )

P (O)
(2.1)
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where P (W |O) denotes the probability of the occurrence of a sequence of words
W given feature vectors O. Since W is not dependent on P (O) the formula resolves
to

Ŵ = arg max
W

P (W |O) = arg max
W

P (O|W )︸ ︷︷ ︸
acoustic modeling

∗ P (W )︸ ︷︷ ︸
language modeling

(2.2)

and thus comprises two problems: acoustic modeling and language modeling.
Model parameters can be estimated automatically from suitable (labeled) training
data. Acoustic modeling requires spoken language corpora, while language modeling
requires (often large amounts) of textual data, preferably transcriptions of speech.
P (O|W ) represents the acoustic similarity of the word sequence and the signal. A
common approach for estimating probabilities for underlying units of the word se-
quence such as (tri)phones are Hidden Markov Models (HMM) (Rabiner, 1989).
However, in this thesis we are not concerned with acoustic modeling.
With respect to language modeling, mainly n-gram models are applied (Lamel &
Gauvain, 2003). An n-gram model (Schukat-Talamazzini, 1995) estimates the oc-
currence probability for each word – or other unit – in the ASR’s vocabulary based
on the n − 1 preceding words. Hence, the probability for a sequence of words
W = w1 . . . wn is given by

P (W ) = P (w1, w2, . . . , wn) = P (w1)P (w2|w1) . . . P (wn|w1, . . . , wn−1). (2.3)

Due to insufficient data, a word wn cannot be predicted by taking an arbitrary
number of preceding words into account. Applying the Markov Assumption, a word’s
history is thus estimated based on its local context which is given by n. For instance,
with respect to a trigram model this yields

P (wn|w1 . . . wn−1) ≈ P (wn|wn−2, wn−1). (2.4)

Thus, in this case P (W ) is given by

P (W ) = P (w1, w2, . . . , wn) ≈ P (w1)P (w2|w1) . . . P (wn|wn−2, wn−1). (2.5)

N-gram models can be estimated automatically from large amounts of training data.
For instance, the probability for a trigram can be estimated based on its frequency
and the frequency of its bigram prefix as:

P (wi|wi−2, wi−1) =
freq(wi−2, wi−1, wi)

freq(wi−2, wi−1)
, (2.6)
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where freq(x) denotes the frequency of n-gram x in the training data.
However, in order to build a word-based language model (LM) that yields good
recognition performance, the data used for model training must also match the
data to be recognized with respect to topic/domain and language use, and thus the
performance of word-based n-gram models and word-based automatic speech recog-
nizers is – at least to a certain extent – topic/domain-dependent. For instance, in
order to model phone conversations, using an LM trained on two million words of
transcribed phone conversations is better suited than a language model trained on
140 million words of transcribed broadcast news (Rosenfeld, 2000). Moreover, by
only taking into account the local context, that is, the immediately preceding words,
n-gram models cannot capture long-range linguistic dependencies. More specifically,
the identity of a word is not only dependent on its directly preceding words. For
instance, with respect to a trigram model, after a sequence “a few”, basically any
noun or adjective may follow. Thus, all nouns and adjectives may only be assigned
a low probability by the model.
Even when using a large corpus for model training, not all n-grams may appear.
Based on the formula shown previously, these would receive a probability of 0 by
the language model, hence making sentences incorporating such an n-gram statisti-
cally impossible. Since in theory each word sequence may appear, n-gram models
are usually smoothed, i.e. a portion of the probability mass for observed occurrences
is reserved for n-grams not seen during training. Several smoothing methods have
been explored; for a comparison of common methods, see Chen & Goodman (1998).
Instead of applying stochastic models like n-gram models, speech recognition can
also be performed by applying a speech recognition grammar as the language model.
A speech recognition grammar may be defined, for instance, according to the W3C
standard Speech Recognition Grammar Specification (SRGS) Version 1.01 (Hunt
& McGlashan, 2004). While n-gram models are applied to estimate probabilities
of word sequences, in such a grammar one can explicitly define which words and
patterns a user may utter. Further, semantic information can be directly specified
within the rules, for instance, according to the W3C standard Semantic Interpre-
tation for Speech Recognition (SISR) Version 1.02 (Van Tichelen & Burke, 2007).
Thus, when applied with an ASR, spoken utterances can be transformed into a cor-
responding semantic representation instead of a sequence of words. Fig. 1 shows an
example for such a grammar with respect to application on a robot. The grammar
matches utterances of the form “Go, fetch me X” where X refers to one of the spec-

1http://www.w3.org/TR/speech-grammar/
2http://www.w3.org/TR/semantic-interpretation/
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ified drink or snack names, and the output is the semantic tag of the name matched
in an input utterance. For instance, given an input utterance “Go, fetch me a piece
of cake”, the grammar would return the semantic tag cake.

Figure 1.: An example for an SRGS grammar including semantic information in
SISR.

<grammar ve r s i on ="1.0" xmlns="http ://www.w3 . org /2001/06/grammar"
xml : lang="en−US" tag−format="semant ics /1.0− l i t e r a l s " root="f e t ch">

<ru l e id="f e t ch " scope="pub l i c">
go f e t ch me
<r u l e r e f u r i="#ob j e c t "/>

</ru le>
<ru l e id="ob j e c t " scope="pr i va t e">

<one−of>
<item><r u l e r e f u r i="#drink"/></item>
<item><r u l e r e f u r i="#snack"/></item>

</one−of>
</ru le>
<ru l e id="dr ink " scope="pr i va t e">

<one−of>
<item>coca cola<tag> coke </tag></item>
<item>the coke<tag> coke </tag></item>
<item>apple ju i c e <tag> j u i c e </tag></item>

</one−of>
</ru le>
<ru l e id="snack" scope="pr i va t e">

<one−of>
<item>a sandwich<tag> sandwich </tag></item>
<item>an apple<tag> apple </tag></item>
<item>a p i e c e o f cake<tag> cake </tag></item>

</one−of>
</ru le>

</grammar>

While n-gram models are typically estimated automatically from large amounts of
suitable training data, semantic speech recognition grammars are typically created
manually. Thus, even though the process of grammar creation requires no (large
amounts of) suitable training data, it does require manual effort and often extensive
knowledge of the underlying semantic domain and/or linguistic knowledge. Apply-
ing a manually created semantic grammar directly with a speech recognizer is the
main approach to SLU in commercial systems which contrasts with SLU research,
where mainly data-driven approaches are investigated (Wang et al., 2011).
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A common measure to evaluate the performance of an ASR is the word error rate
(WER), which is based on the number of words substituted, deleted and inserted
by an ASR compared to a reference transcription. It is defined as follows (Lamel &
Gauvain, 2003):

WER =
#substitutions + #deletions + # insertions

# reference words
. (2.7)

2.2. Spoken Language Understanding

Spoken Language Understanding (Tur & Mori, 2011) systems aim to extract seman-
tic information from speech utterances. In this thesis, we explore learning from and
applying a semantic parser to spoken utterance, thus also investigating a SLU task.
In general, several SLU tasks have been investigated, for instance, Spoken Ques-
tion Answering (Rosset et al., 2011) or Speech Summarization (Liu & Hakkani-Tür,
2011). In the following, we will focus on Semantic Frame-based Spoken Language
Understanding (Wang et al., 2011), since the task is similar to the one investigated
in this thesis.
Semantic Frame-based Spoken Language Understanding is typically explored with
respect to a restricted semantic domain which can be represented by means of a set
of semantic frames (Fillmore, 1976). A semantic frame is a template-based repre-
sentation which contains a number of slots where the type of slot defines the kind of
elements the slot can be filled with. In general, in this thesis we represent semantic
representations in line with approaches to semantic parsing in NLP, i.e. by means of
predicate logic formulas, and our semantics are defined in a broader sense based on
thematic relations such as AGENT or PATIENT rather via domain-specific slots.
However, because the investigated formulas are rather simple, i.e. comprising a
predicate along with a set of thematic relations or arguments each, the scenario
is somewhat similar in that the predicate logic formulas might be converted into
semantic frames where the predicate denotes the frame’s name and the predicate’s
arguments denote the slots.
Several measures have been applied for the evaluation of frame-based SLU systems.
Two commonly used measures are the Sentence Level Semantic Accuracy (SALSA)
and the Slot Error Rate (SER, also referred to as Concept Error Rate (CER)) which
are defined as follows (Wang et al., 2011):

SALSA =
# of sentences assigned the correct semantic representation

# of sentences
(2.8)
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and
SER =

# of inserted/deleted/substituted slots
# of slots in the reference semantic representation

. (2.9)

In the previous section, we have already mentioned that SLU can be performed by
creating a semantic speech recognition grammar, which can then be applied as the
language model with an ASR, where the ASR can be applied to transform spoken
utterances directly into their corresponding semantic representations. While this ap-
proach is typically chosen for building commercial applications (Wang et al., 2011),
SLU research mostly explores cascading systems (Deoras et al., 2013). In this case,
an ASR is applied – for instance, using an n-gram model as the language model – in
order to transcribe a given speech utterance into a sequence of words. Subsequently,
the resulting transcriptions are fed to an understanding component to transform
them into their corresponding semantics, for instance, to detect slots. While this
understanding task is related to the Natural Language Understanding task, which
mainly focuses on written text, it raises further challenges. More specifically, systems
need to be designed with respect to robustness concerning speech recognition errors
and phenomena of spoken language such as disfluencies and extra-grammaticality
(Wang et al., 2011).
Due to their robustness to noise, several approaches exploring probabilistic models
and machine learning techniques have been proposed in SLU research for conceptual
tagging. For instance, Conditional Random Fields (Lafferty et al., 2001) have been
applied (e.g. Wang & Acero, 2006a; Dinarelli et al., 2012), and He & Young (2005)
present an approach based on Hidden Markos Models. Such models are typically
based on rather local features, e.g. on n-grams. While these methods are somewhat
robust to noise, typically they cannot capture long-range linguistic dependencies
within an utterance. Moreover, evaluations have shown that even when applying
machine learning techniques or probabilistic models, semantic parsing of ASR tran-
scriptions yields many more errors compared to parsing of correct transcriptions
(De Mori, 2011).
Further, approaches to Spoken Language Understanding based on (semantic) gram-
mars have been proposed. In general, knowledge-based and data-driven approaches
as well as combinations thereof have been explored. In Section 2.1 we have already
mentioned that spoken language understanding in knowledge-based approaches used
for commercial systems is typically performed using manually created (semantic)
speech recognition grammars. Due to the manual effort, and often also linguis-
tic knowledge needed for grammar creation, some work in SLU research has fo-
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cused on data-driven approaches for the induction of grammars and on combining
knowledge-based with data-driven approaches. In doing so, data-driven approaches
have typically been explored in a supervised setting, e.g. based on word-level se-
mantic annotations, thus still requiring a large manual effort (e.g. Wang & Acero,
2006b, 2005, 2003). For instance, Wang & Acero (2006b) propose a supervised ap-
proach for the automatic induction of grammars which can be represented according
to the SRGS (cf. Section 2.1) and are applicable for both speech recognition and
understanding. In the training data, slots of semantic frames must be labeled. The
authors present a combination of knowledge-based and data-driven approaches in
that they also provide a tool for annotating utterances which requires little linguis-
tic knowledge. This tool is also able to suggest annotations based on its current
knowledge. These can then be modified by a user if necessary (Wang & Acero,
2006b, 2005). The tool uses a HMM/CFG Composite Model (Wang & Acero, 2003)
for automatic grammar induction starting from labeled data. In particular, their
grammar is based on template rules modeled by an HMM. States corresponding to
slots are modeled as sequences of the form preamble-filler-postamble, where fillers
are modeled by PCFGs and pre- and postambles are modeled by n-gram models.
These are learned from the labeled data.
In addition, several approaches have addressed the (semi-)automatic induction of
grammars from unlabeled corpora, particularly aiming at the automatic induction
of semantic classes (e.g. Wong & Meng, 2001; Siu & Meng, 1999; Meng & Siu,
2002). Such approaches typically explore the linguistic context to infer regularities
that imply semantic similarity. For example, Meng & Siu (2002) present an approach
based on spatial and temporal clustering, where spatial clustering is based on the
Kullback-Leibler distance (Kullback, 1959), and aims to group words having similar
left and right contexts since these typically have similar semantics. They perform
temporal clustering based on Mutual Information (Cover & Thomas, 1991), aiming
to detect phrasal structures. Resulting grammars were then manually postprocessed,
thus yielding a semi-supervised approach. For example, sets of terminals were com-
pleted and some where replaced by semantically meaningful symbols. In general,
approaches which induce syntactic structures and semantic classes automatically
from unlabeled corpora do not infer their corresponding meanings, thus needing
manual postprocessing in order to be applicable for SLU. In sum, the induction of
semantic grammars with respect to application for SLU has been investigated with
respect to both (semi-)automatic approaches and automatic approaches explored in
a supervised setting, both of which require manual effort.
In general, while data-driven approaches to SLU have been explored for showcase
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problems, including grammar-based ones, they are dependent on the availability of
large amounts of labeled training data and are hence rather impractical with respect
to real-world applications (Wang et al., 2011). To reduce annotation costs, recent
work has, for instance, focused on exploring supervised learning in combination with
active learning (Wu et al., 2010) or, as mentioned previously, on providing annota-
tion tools (Wang & Acero, 2006b, 2005). Further, gaining additional training data,
e.g. from the Web using queries generated from a (small) existing grammar (Klasi-
nas et al., 2013), has been explored. Notice though that all of these approaches still
require some manual effort.
In SLU research performances of ASR and parsing components are often optimized
independently of each other, in particular with respect to low error rates such as
WER and SER. However, research has shown that a lower error rate of an ASR
can in fact yield worse understanding performance (Wang et al., 2003; Bayer &
Riccardi, 2012). Moreover, joint approaches to recognition and understanding can
yield improved parsing performance (Wang & Acero, 2006b; Deoras et al., 2013),
even though the WER may be higher (Bayer & Riccardi, 2012; Wang & Acero,
2006b). In particular, applying a SLU model as the language model for the ASR
is beneficial in SLU – notice, however, that not all SLU models can be used with
an ASR (Wang et al., 2011). Specifically, Wang & Acero (2006b) have shown that
applying the same grammar for speech recognition and understanding can yield im-
proved understanding performance compared to applying a standard n-gram model
with the ASR, since dependencies between acoustics and semantics can be captured.
SLU systems typically apply word-based recognizers for speech recognition. How-
ever, recent research has also investigated performing SLU on phoneme sequences,
indicating that with respect to conceptual tagging, SLU performed on phoneme se-
quences can yield performance similar, or even slightly higher, compared to working
with words (Svec et al., 2013). By contrast, the focus of this thesis is not on spotting
sequences referring to concepts in speech, but on learning more complex linguistic
structures capturing long-range linguistic dependencies, i.e. syntactic constructions.
However, – in line with semantic grammar-based approaches to SLU – these can be
applied for spoken language understanding tasks as well. Further, we investigate a
weakly supervised learning setting rather than a fully supervised one.
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2.3. Segmentation of a continuous sequence of

discrete units into word-like units

Several models and algorithms have addressed the segmentation of a continuous
stream of discrete units, e.g. characters or phonemes, into word-like units with the
goal of determining a complete segmentation of the input stream, i.e. to detect all
word boundaries (e.g. Cohen & Adams, 2001; Hewlett & Cohen, 2011; Brent, 1999;
Pearl et al., 2011; Goldwater et al., 2009; Johnson & Goldwater, 2009). In doing so,
segmentation may be performed either on a single input stream or with respect to
a number of individual sentences, where the latter setting is semi-supervised in that
some information concerning boundaries is provided.
One approach to the segmentation problem is Voting Experts (VE) (Cohen &
Adams, 2001; Cohen et al., 2006). Roughly, the intuition behind the algorithm
is that word-like units are i) rather frequent, i.e. the entropy or unpredictability
of comprised elements is rather low, and ii) the following character is rather uncer-
tain, i.e. the entropy or unpredictability is rather high. In particular, in the VE
algorithm, two so-called experts vote for segmentation points: one votes for segmen-
tation points after chunks/sequences having low internal entropy and one votes for
segmentation points after sequences/chunks having high boundary entropy. Bound-
aries are then introduced at positions for which the number of votes reaches a local
maximum. The algorithm has been extended several times. One such extension
is Bootstrap Voting Experts (BVE) (Hewlett & Cohen, 2009, 2011) which refines
segmentations iteratively by reusing precise segmentations.
Particularly with respect to modeling human language acquisition, research has
mainly focused on utilizing statistics concerning syllable and phoneme regularities
(Pearl et al., 2011), e.g. by applying Bayesian methods. Further, making use of
knowledge about (linguistic) context information in statistical segmentation models
has been investigated. In particular, Goldwater et al. (2009) explore unsupervised
segmentation in a Bayesian framework. They compare computational models, as-
suming that words are either independent units or useful for predicting other units.
Thus, word sequences are assumed to be generated by a unigram or bigram language
model, respectively. They evaluate their models on grapheme-to-phoneme converted
transcriptions3 of child-directed speech, and report that the bigram model produced

3Grapheme-to-phoneme converted transcriptions/data refers to transcriptions/data where one
has transformed each word in a text automatically into a corresponding phoneme sequence.
This might be done by using a lexicon comprising words coupled with their corresponding
transcriptions or by applying a tool for automatic conversion; such tools are, for instance,
available with text-to-speech systems.
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more accurate segmentations compared to the unigram model. Further, Johnson &
Goldwater (2009) also investigate the utility of higher order features, i.e. (linguistic)
context information, by applying Adaptor Grammars (Johnson et al., 2007). In their
case, the underlying assumption is that a word sequence is generated by a sequence
of collocations; these may in turn comprise one or more words. Like Goldwater et
al. (2009), they evaluate performance on grapheme-to-phoneme converted transcrip-
tions and report an improvement in accuracy over applying a unigram model.
In general, this segmentation task has been mainly investigated in NLP and/or with
respect to cognitive modeling, and typically non-linguistic contextual information
has been neglected, though one may assume that meanings can be attached after-
wards. However, work has also shown that performing segmentation and word mean-
ing acquisition jointly can improve segmentation performance. In particular, Jones
et al. (2010) present a Bayesian model for segmentation/lexical acquisition. They
tested their model on grapheme-to-phoneme converted orthographic transcriptions
annotated with some objects and found that, by making use of contextual informa-
tion, segmentation accuracy can be improved, at least for semantically meaningful
sequences, i.e. those referring to presented objects.
To date, in NLP and/or with respect to cognitive modeling the segmentation task
has mainly been evaluated with respect to segmenting either written text or tran-
scriptions of speech for which words were converted into sequences of phonemes
by applying grapheme-to-phoneme conversion. Typically, for evaluating such algo-
rithms all word boundaries are removed for learning a segmentation. Subsequently,
it is inspected how accurately the algorithm can recreate boundaries. However, when
working with text or grapheme-to-phoneme converted transcriptions, each word is
represented by a single sequence of characters or phonemes, which does not reflect
spoken language where the same written word typically has different pronunciations.
Notably, segmentation has recently also been explored with respect to cognitive mod-
eling by taking into account phonetic variability, i.e. different pronunciations of the
same word (Elsner et al., 2013).
Generally, algorithms proposed in NLP and cognitive modeling may also be applied
to segment the output of an automatic speech recognizer, in particular, a phoneme
recognizer. However, in this case performance can degrade rapidly, since recognizers
introduce noise in the form of recognition errors, thus resulting in a large number of
different sequences for each written word (Jansen et al., 2013). Specifically, recent
work (Jansen et al., 2013) has investigated the performance of two of the algorithms
described previously, i.e. those of Johnson & Goldwater (2009) and Goldwater et
al. (2009), when applied to automatic transcriptions of speech. Besides a drop in
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segmentation accuracy, with increasing noise the models exploring a bigram model
or Adaptor Grammar presented by Goldwater et al. (2009) and Johnson & Gold-
water (2009) performed worse compared to the unigram model. This is the case
because these models are based on estimating recurring sequences, and by not tak-
ing sequence variation into account, detection of lexical units and thus the ability
to make use of them concerning contextual information degrades rapidly (Jansen et
al., 2013).
Recently, lexical segmentation and learning from continuous speech in an unsuper-
vised fashion has also gained increasing interest due to applications such as, for
instance, bootstrapping resources, e.g. (pronunciation) lexica, for under-resourced
languages; we will discuss learning from speech in the following section.
While in this thesis we are not concerned with unsupervised segmentation and focus
on determining semantically meaningful sequences rather than a complete segmen-
tation into word-like units, we apply the BVE algorithm during our experiments. In
our case, the segmentation task is semi-supervised in that utterance boundaries are
given (and only these utterances must be segmented further), while BVE has been
typically applied for segmenting a single input stream.

2.4. Learning linguistic structures from speech

without word transcriptions

To date, the acquisition of linguistic structures from speech without word tran-
scriptions has focused on detecting units of rather low complexity, e.g. on learning
(novel) words or semantically meaningful sequences. The task has been explored
both by making use of a subword speech recognizer (e.g. Gorin et al., 1999; Levit
et al., 2002; Cerisara, 2009; Taguchi et al., 2009; Yu et al., 2005) and by working
with feature vectors extracted from the signal, such as MFCCs (e.g. Brandl, 2009;
McInnes & Goldwater, 2011; Räsänen et al., 2009; Räsänen, 2011; Muscariello et
al., 2012). Since in this thesis we work with the output of a phoneme recognizer,
in the following we will focus our discussion on approaches working with a subword
recognizer.
As mentioned in the previous section, learning from a phoneme stream may com-
prise determining a complete segmentation into word-like units, and recent work
has addressed this segmentation task with respect to speech. Specifically, lexical
and language model acquisition starting from phoneme lattices generated by an
automatic speech recognizer have been addressed (e.g. Neubig et al., 2010, 2012;
Heymann et al., 2014). For instance, Neubig et al. (2012) present a corresponding
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Bayesian approach that simultaneously learns lexical units and an n-gram model
starting from phoneme lattices. They present results indicating that this can reduce
the phoneme error rate of an ASR.
Further work has focused on detecting semantically meaningful sequences, so-called
acoustic morphemes (Gorin et al., 1999), rather than determining all word bound-
aries. Gorin et al. (1999) and Levit et al. (2002) extract semantically meaningful
sequences from the output of a speech recognizer. A sequence is rated based on the
mutual information of its components and its salience for an understanding task.
The latter is in turn based on the maximum of the a posteriori distribution of a
semantic class given the sequence. Cerisara (2009) explores the unsupervised cre-
ation of lexica comprising acoustic morphemes by detecting sequences based on their
recurrence. The underlying assumption by the author is that sequences appearing
with a certain frequency correspond to coherent linguistic units. Due to recognition
errors and different pronunciations of the same word, he applies approximate string
matching based on an edit distance to detect recurring sequences.
In contrast to the described approaches, we are concerned with learning from speech
coupled with concurrent visual information. Making use of concurrent visual infor-
mation for learning novel words has, for instance, been explored in the field of
robotics. In particular, Taguchi et al. (2009) explore how a novel keyword can be
detected in a phonemically transcribed utterance. Learning is investigated in a
tutoring scenario where visual information is provided by showing a single object.
Since the authors assume that the robot can identify the object correctly, the setting
corresponds to providing visual information in symbolic form. Lexical learning is
based on deriving a statistical model capturing the joint probability of an object and
an utterance where the statistical model incorporates a phoneme acoustic model, a
word meaning model as well as a word-based bigram model (Taguchi et al., 2009).
Lexical acquisition from speech using a phoneme recognizer and concurrent visual
information has also been explored with respect to modeling child language acquisi-
tion. In particular, Yu et al. (2005) and Yu & Ballard (2002) present a computational
model which learns words and their meanings. Their model also shows how social
cues, in particular information concerning eye-gaze, can be used to facilitate the
establishment of correspondences between words and their corresponding visually
grounded meanings.
In contrast to the approaches to learning from speech described in this section, we
focus not only on the acquisition of lexical units or acoustic morphemes, but also
on learning syntactic constructions. While we also make use of concurrent visual
information for lexical acquisition, we additionally incorporate previously acquired
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syntactic knowledge for bootstrapping a parser.

2.5. Word-to-meaning mapping

Some previous research has addressed mapping words to their corresponding seman-
tic referents given contextual information in symbolic form, and some has exploited
cross-situational statistics for this purpose.
An early, formal model which learns word-to-meaning mappings given ambiguous
contexts has been proposed by Siskind (1996). Besides relying on cross-situational
statistics, the model also exploits several inference rules. For example, partial knowl-
edge acquired for meanings of words in a given utterance can be utilized to infer
meanings of different words in the same utterance. The author performs several
computational simulations, showing that the model can induce word meanings given
artificially generated data.
Horst et al. (2006) and McMurray et al. (2012) apply a Normalized Recurrence
Network to capture correspondences between words and referents. The network
comprises two input layers comprising a set of predefined neurons each: one for
auditory and one for visual input. In addition, Horst et al. (2006) explore possible
relations between word learning and fast mapping; fast mapping refers to children’s
ability to quickly set up an initial word-to-meaning mapping when observing a novel
word in the presence of referential uncertainty (Carey & Bartlett, 1978). The au-
thors perform experiments using a small set of words and objects. They report that
on being presented with a novel word along with a novel object and two known ones,
the model can – in line with children (Horst & Samuelson, 2008) – correctly map the
novel word onto the novel object. The authors further report that the model cannot
retain these newly established connections, suggesting that fast mapping and word
learning are related but different processes (in the proposed model) (Horst et al.,
2006).
Frank et al. (2007) present a Bayesian model for cross-situational word learning and
test their model on data extracted from child-directed speech from the CHILDES
database (MacWhinney, 2000), coupled with concurrent visual information. In par-
ticular, they annotated utterances with objects which were visible to the child.
Moreover, they annotated social cues, such as the mother’s hands. They show that
by integrating social cues into their model for cross-situational learning, word ac-
quisition performance is improved. Further, besides acquiring word meanings, their
model is also able to mimic the fast mapping ability observed in children. Similarly,
Yu & Ballard (2007) also integrate social cues, e.g. joint attention, into a model for
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cross-situational learning and report that this improves performance in establishing
correspondences between words and their meanings.
Fazly et al. (2010) introduce a probabilistic model for incremental/online word learn-
ing under referential uncertainty, also building on the idea of cross-situational learn-
ing. They test their model on child-directed utterances from the CHILDES database
(MacWhinney, 2000) coupled with corresponding scene representations, i.e. sets of
semantic features corresponding to the words in the utterance. In order to model ref-
erential uncertainty, they also add distractor semantic features, i.e. features taken
from the scene representation of the following utterance. They show that their
model is able to successfully acquire word meaning under referential uncertainty.
The model has also been tested on fast mapping experiments and has successfully
simulated referent selection (Alishahi et al., 2008). Further, the model has been
extended to include syntactic categories (Alishahi & Fazly, 2010). In particular, as-
suming that the child has already acquired a number of lexical categories grouping
sets of word forms, Alishahi & Fazly (2010) integrate a categorization function into
their existing model, which can determine the category of any given word. They
present empirical results indicating that including lexical categories can improve
word learning performance. In further work, Alishahi & Chrupala (2012) show how
these categories can be learned automatically.
Kachergis et al. (2012a) present an associative model for cross-situational learning
which incorporates competing familiarity and uncertainty biases. In further work,
they compared this model, which maintains approximately all co-occurrence statis-
tics, to a model maintaining a single “best” hypothesis for observed words (Kachergis
et al., 2012b). They fit the two models to data obtained from a cross-situational
learning task with human subjects and report that the human learning curves are
better fitted by the associative model.
In this thesis, we also explore word-to-meaning mapping, and we explore a cross-
situational learning mechanism for this purpose. However, our main focus is on
the extension to also acquire syntactic constructions, which is not addressed by the
described approaches.

2.6. Syntactic acquisition from raw text

Several algorithms (e.g. Wong & Meng, 2001; Siu & Meng, 1999; Meng & Siu, 2002;
Solan et al., 2005; Zaanen & Adriaans, 2001b,a; Elman, 1990) and computational
models for child language acquisition (e.g. Bannard et al., 2009; Waterfall et al.,
2010; Bod, 2009) have explored the unsupervised induction of syntactic structures
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from text. Since only raw text is given, syntactic patterns are typically detected
by exploring regularities for appearing words. While semantic acquisition is not
addressed, it is possible to (manually) attach semantic information to induced pat-
terns. As already described in Section 2.2, this has been explored with respect to
creating semantic grammars for spoken language understanding systems (e.g. Wong
& Meng, 2001; Siu & Meng, 1999; Meng & Siu, 2002).
Further algorithms for the automatic induction of syntactic structures from raw text
include ADIOS (Solan et al., 2005), ABL (Zaanen & Adriaans, 2001b) and EMILE
(Zaanen & Adriaans, 2001a). ADIOS (Automatic Distillation Of Structure) works
on corpora containing sentences over a lexicon L of smaller units, e.g. words. Based
on this input, it induces syntactic patterns where patterns may have different lev-
els of generalization and may contain equivalence classes or other patterns. These
patterns are represented as a directed graph. The graph’s vertices are initially all
lexicon entries, augmented by two further vertices begin and end, representing the
start and end of utterances, respectively. While training proceeds, new nodes are
inserted which may represent equivalence classes or (sub)patterns. Each (induced)
syntactic pattern is then represented as an indexed path through the graph. The
idea for establishing equivalence classes in the ADIOS algorithm is to iteratively
define a slot at all positions (except for the first and the last) j of a context window
sliding over a pattern. Subsequently, it searches for sequences which have identical
prefixes (ending at position j − 1) and identical suffixes (starting at position j + 1).
All patterns that appear between the suffix and the prefix in the resulting patterns
might constitute an equivalence class if some criterion – MEX – is satisfied. Given
the graph, induced patterns and equivalence classes, one can test whether a given
utterance is captured by the grammar induced by ADIOS by searching for a match-
ing path in the graph (Solan et al., 2005).
Aiming to model child language acquisition, Waterfall et al. (2010) present a learn-
ing strategy which, according to the authors, is much simpler than ADIOS. In their
algorithm, distributional statistics for (sequences of) words are determined based on
their local context, i.e. the surrounding words. The authors report that in their ex-
periments generative grammars could be induced in an unsupervised fashion based
on data taken from the CHILDES database (MacWhinney, 2000).
Bannard et al. (2009) present a computational model based on techniques from un-
supervised grammar induction and use it to extract probabilistic, item-based gram-
mars from transcribed speech of children. These grammars are in turn used to
parse utterances later produced by the children, and are compared to more abstract
grammars. According to the authors, the findings provide support for usage-based
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approaches to language acquisition (Bannard et al., 2009).
Bod (2009) also proposes a model for language acquisition working with raw se-
quences of words. Given such input data, the model acquires a grammar represented
in the form of phrase-structure trees. The authors present results with respect to
syntactic parsing of child-directed speech and show that their model can also cap-
ture a move from item-based to abstract linguistic knowledge.
Contrasting with the described approaches, in this thesis we explore syntactic and
semantic acquisition jointly. More specifically, in our case the induction of syntactic
constructions is driven by concurrent semantic information, and we focus not only
on syntactic acquisition but also on determining a corresponding semantic mapping.
However, an unsupervised algorithm for the induction of syntactic patterns has in-
spired the computational model proposed in this thesis, i.e. ADIOS. Moreover, we
make use of ADIOS in experiments concerning the induction of speech recognition
grammars as an unsupervised baseline.

2.7. Models for the acquisition of syntactic

constructions

Different models have been proposed concerning the acquisition of constructions
(e.g. Alishahi & Stevenson, 2008; Dominey & Boucher, 2005; Chang & Maia, 2001;
Hinaut & Dominey, 2013).
Chang & Maia (2001) explore the induction of verb-specific constructions. The
authors present an approach based on Bayesian model merging, where more com-
plex grammatical structures are induced based on previously acquired simple lexical
mappings. These mappings are given, facilitating the task of inducing verb-specific
constructions by reducing the referential uncertainty.
Further research has addressed the acquisition of verb argument structure construc-
tions (e.g. Alishahi & Stevenson, 2008; Parisien & Stevenson, 2010; Perfors et al.,
2010). These approaches typically attempt to cluster individual verb uses into ar-
gument structure constructions, for instance, based on syntactic features. How-
ever, unlike the model presented in this thesis, they usually do not address lexical
acquisition and often make further simplifying assumptions concerning what has
been learned previously (by the child). For instance, Alishahi & Stevenson (2008)
introduce an incremental/online Bayesian model exploring the representation and
acquisition of abstract verb argument structure constructions (modeled in form of
probabilistic correspondences between syntactic and semantic features) by assuming
that the relevant words have already been acquired. Parisien & Stevenson (2010)
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present a hierarchical Bayesian model which clusters specific verb uses based on
syntactic features, assuming that the child is already able to detect syntactic argu-
ments in observed utterances. In particular, the input to their model is generated
by a dependency parser; lexical acquisition is not addressed. Perfors et al. (2010)
also address the acquisition of verb argument constructions based on a hierarchical
Bayesian framework but rely on built-in knowledge about constructions.
Yu (2006) presents a model which learns both word meanings and syntax-semantics
mappings in an offline fashion to investigate the role of syntactic information on
word learning. For instance, if a word is grouped into a syntactic class referring
to object names, then it likely also refers to an object. This kind of information
is explored in the model. Specifically, in the model word-to-meaning mapping is
based on co-occurrence frequencies, and syntactic structure acquisition is performed
using the ADIOS algorithm (Solan et al., 2005, cf. Section 2.6). Results from the
two learning processes are then integrated, i.e. words are grouped based on induced
syntactic roles, and meanings for syntactic categories are inferred based on the word
learning process. The author tested the model on narrations of picture books made
by parents to their children. In case of the visual input, a list of objects was pre-
sented, i.e. the objects the parent was attending to when producing an utterance.
By comparing word learning with and without making use of syntactic cues, the
author found that the integration of syntactic cues yields improved word learning
performance (Yu, 2006). Maurits et al. (2009) also explore the utility of performing
learning tasks jointly. In particular, they investigate the acquisition of both word
meanings and word order, i.e. verb-argument structure orderings, given examples
of utterances coupled with their corresponding meaning representations. They ex-
plore learning in a very simple setting, i.e. in a simulated world, and present results
suggesting that performing both learning tasks jointly facilitates learning.
Dominey & Boucher (2005) propose a system which learns a small lexicon and an
inventory of grammatical constructions based on narrated video. The form of con-
structions is represented as a sequence of closed-class words and slots corresponding
to open-class words, which in turn map to semantic referents in the associated mean-
ing, e.g. (agent verb-ed object to recipient, verb(agent, object, recipient)). Such
pairings are derived from (sentence, meaning) pairings and directly stored in the
inventory. In more recent work (Hinaut & Dominey, 2013), they also explore the
acquisition of grammatical constructions using a Recurrent Neural Network. This
network is able to learn in an online fashion, and the authors report that their model
possesses the capability of generalizing to novel constructions (Hinaut & Dominey,
2013). Further, they also transferred their system to a robotic platform, allowing
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the robot to learn grammatical constructions through human tutoring (Hinaut et
al., 2014). They also explore learning from speech. However, in line with traditional
spoken language understanding systems, they make use of a word-based speech rec-
ognizer for this purpose. Moreover, they assume that the meaning corresponding to
an utterance is available to the learner, while our learning system is able to handle
ambiguous input, i.e. sentences coupled with several competing meanings.
Taken together, approaches to the acquisition of syntactic constructions often as-
sume that lexical mappings have been acquired previously and/or do not address
learning from ambiguous contexts. However, learning words and grammatical con-
structions starting from ambiguous contexts has also been explored (Kwiatkowski
et al., 2012; Beekhuizen et al., 2014).
Kwiatkowski et al. (2012) propose a probabilistic model for syntactic and semantic
acquisition. Specifically, they utilize the Combinatory Categorial Grammar (CCG)
framework (Steedman, 2000) to learn both a lexicon and a parsing model in an on-
line fashion. Given an input example, i.e. an utterance and an (ambiguous) scene
representation, their approach roughly works by extracting all possible parses and
updating the parsing model accordingly. Since this is somewhat memory-intense,
the authors acknowledge that it is unlikely that children indeed generate all parses
consistent with an input example, at least once they have already acquired some
of the language. They evaluate their approach on child-directed data taken from
the Eve corpus (Brown, 1973) coupled with automatically created potential mean-
ing representations (i.e. one actually corresponding to the utterance and additional
distractor meanings). They show that their model can be applied to parse unseen
utterances, and that it can mimic fast mapping. However, while the learning task is
similar, our approach contrasts with their probabilistic approach by explicitly for-
mulating ideas proposed within usage-based approaches and construction grammar.
In particular, our model is represented as a network where syntactic constructions
are learned by gradually inducing slots. This allows our model to also pose fewer
constraints on memory, as it does not create a large number of possible parses but
learns a compact model of the input data, where the number of induced rules is
much smaller than the number of observed examples (cf. Section 3.4.4).
Beekhuizen et al. (2014) explore a usage-based model which starts learning from
minimal linguistic representations. In particular, the authors propose several learn-
ing mechanisms which can be applied to incrementally acquire constructions based
on previous parses. That is, given an utterance and ambiguous scene representation,
the model attempts to determine the correct meaning along with the most probable
parse, and then uses this information to update its current inventory of construc-
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tions. Their work is similar with respect to computational modeling to the work
presented in this thesis in that they also explore a usage-based model. However, the
concrete learning mechanisms differ. In particular, while they also incorporate a sim-
ple cross-situational learning mechanism, this mechanism is not applied at different
levels of complexity, and the proposed generalization mechanisms differ. Further,
just like Kwiatkowski et al. (2012), they test their model on data artificially gen-
erated based on (distributional information obtained via) child-directed data, and,
contrasting with the work presented in this thesis, the correct meaning is always
among the competing meanings for a given utterance, which does not correspond to
natural settings.
The word-based scenario investigated in this thesis has also been investigated in
NLP with respect to inducing semantic parsers, and, in general, the utility of con-
text information for situated language learning has been explored. We will give an
overview of such approaches in the following section.

2.8. Context information in computational

language learning

In NLP, data-driven approaches to semantic parsing have traditionally been investi-
gated in a supervised setting, i.e. by learning from examples consisting of utterances
annotated with their correct meaning representations (e.g. Wong & Mooney, 2006;
Zettlemoyer & Collins, 2007). Because such annotations are time-consuming and
costly to produce, research has also focused on exploring unsupervised (e.g. Poon &
Domingos, 2009; Goldwasser et al., 2011) and weakly supervised (e.g. Chen et al.,
2010; Börschinger et al., 2011; Chen & Mooney, 2008) methods for parser induction.
One weakly supervised learning setting is the one also investigated in this thesis.
In particular, research has focused on using ambiguous context representations in-
stead of annotations as a step towards building machines which can learn language
through exposure to language in some environment (Chen & Mooney, 2008). Ad-
dressing this issue, Chen et al. (2010) explore several semantic parsing systems, and
they extend systems previously proposed with respect to supervised parser induc-
tion to handle ambiguous data. In particular, their experiments were based on the
existing approaches KRISP (Kate & Mooney, 2006), KRISPER (Kate & Mooney,
2007) and WASP (Wong & Mooney, 2006). KRISP is an approach based on Sup-
port Vector Machines (SVM) supporting supervised learning, and KRISPER is an
extension of KRISP which can handle ambiguous data by exploiting an approach
based on expectation maximization (EM) (Dempster et al., 1977), i.e. the current
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parser is applied to score potential meanings and the parser is then retrained on
disambiguated data. Using EM-like training has also been investigated by Chen
et al. (2010) to extend further parsers, in particular to extend WASP to handle
the ambiguous data; WASP is an approach based on statistical machine transla-
tion techniques which has been previously applied in a supervised setting. That is,
the task of semantic parser induction can be seen as a machine translation prob-
lem where one translates from a natural language into a formal meaning language
(Wong & Mooney, 2006). In WASP, word alignments are created first using the tool
GIZA++ (Och & Ney, 2003), yielding a lexicon comprising NL substrings coupled
with a mapping to their semantics. Complete meanings are constructed based on the
lexicon using a synchronous context-free grammar (SCFG) (Aho & Ullman, 1972).
Further, Chen et al. (2010) performed experiments in which they included a pre-
processing step, where they applied a system (Liang et al., 2009) to disambiguate
the ambiguous training data, and subsequently applied their approach to learn a
semantic parser. In addition, Börschinger et al. (2011) tackle the learning task by
inducing a Probabilistic Context Free Grammar (PCFG).
Since this learning task is similar to the one also investigated by Kwiatkowski et al.
(2012) with respect to computational modeling of child language acquisition, their
model might also be applied for semantic parser induction. Notice, however, that
unlike Kwiatkowski et al. (2012), Chen et al. (2010) do not assume that the correct
meaning is always among the competing ones given an utterance. Notice further
that the systems proposed by Chen et al. (2010) and Börschinger et al. (2011) did
not aim to model child language acquisition. In particular, their algorithms work
by iterating over the full training dataset for several times in batch mode which is
both cognitively implausible and computationally expensive.
Acquiring language by utilizing context information has also been explored in the
context of games and virtual worlds (e.g. Qu & Chai, 2010; Reckman et al., 2010;
Gorniak & Roy, 2005). For example, Qu & Chai (2010) utilized eye-gaze data, but
focused only on improving automatic acquisition of words. By contrast, Reckman
et al. (2010) attempted to derive both (sequences of) words and grammatical con-
structions from game logs obtained from the Restaurant Game (Orkin & Roy, 2007).
These logs provided concurrent information of player’s actions and chats. They first
derived expressions referring to food-items. Then, complete patterns were derived by
replacing these expressions by a slot. However, the meaning for complete construc-
tions was not determined out of an ambiguous context: all patterns were assumed
to refer to ordering a food-item. Gorniak & Roy (2005) introduced a system which
mapped utterances to actions by using data collected in a game environment. How-
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ever, they did not learn language from scratch but utilized existing parsers.
Several approaches have been proposed which attempt to learn language in the con-
text of some environment (e.g. Branavan et al., 2009; Vogel & Jurafsky, 2010; Gold-
wasser & Roth, 2011; Branavan et al., 2010), e.g. for establishing mappings from
natural language instructions to sequences of executable computer actions (Brana-
van et al., 2009, 2010) or interpreting navigation instructions (Vogel & Jurafsky,
2010). In contrast to utilizing parallel data from the visual or situational context,
these approaches learn language by directly interacting with the environment, e.g.
by exploring provided feedback in the framework of reinforcement learning.

2.9. Summary

In this chapter, we have reviewed existing techniques and related work relevant to
this thesis. To date, several computational models addressing the acquisition of
word meanings and/or syntactic acquisition have been proposed. Specifically, cross-
situational learning has been explored by many computational models. However,
these models have typically focused on learning simple mappings, particularly on
establishing mappings between words and objects. Several models have addressed
the acquisition of syntactic constructions, but often assume lexical mappings as
given and/or do not take ambiguous contexts into account. However, our word-
based learning scenario explored with respect to computational modeling of child
language acquisition has also been explored before, albeit assuming that given an
input example the correct meaning is always among the competing ones and by ex-
ploring different representations and learning mechanisms. Further, some work has
already investigated learning language using context information with respect to
computational language learning rather than cognitive modeling. In particular, the
word-based learning scenario explored in this thesis has been explored previously in
the NLP field semantic parsing.
Some work has investigated learning from speech without word transcriptions, but
mainly focused on the acquisition of linguistic structures of rather low complexity
such as words or acoustic morphemes. By contrast, in this thesis we aim at the induc-
tion of syntactic constructions under ambiguous context information. In particular,
to the best of our knowledge, the spoken language learning scenario investigated in
this thesis, which works with a phoneme recognizer, has not been explored previ-
ously.
Further, we have presented relevant techniques and research with respect to Frame-
based Spoken Language Understanding. In research, this task is typically performed
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by first applying a word-based ASR and subsequently parsing the resulting transcrip-
tions into their corresponding meaning representations. Moreover, the task can also
be performed by applying a semantic speech recognition grammar with the ASR;
in this case the ASR can be directly applied to transform spoken utterances into
their corresponding semantic representations. In general, while data-driven and
knowledge-based approaches as well as combinations of both have been proposed,
knowledge-based approaches require extensive human effort for hand-crafting the
system, while data-driven approaches typically require labeled training data. No-
tably, while SLU has typically been performed on ASR word transcriptions, recent
research has shown that performing SLU on phoneme sequences can yield compa-
rable, or even slightly improved, performance. However, in contrast with the work
presented in this thesis, previous work did not explore syntactic acquisition, but
focused on conceptual tagging of speech.
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Chapter 3

A computational model for the
acquisition of verb-specific
constructions

In this chapter, we explore how language can be learned by formalizing and imple-
menting learning mechanisms which are assumed as being implicated in early child
language acquisition by psycholinguistic theories. In particular, we investigate early
syntactic acquisition, i.e. the emergence of verb-specific constructions, including
word-to-meaning mapping.
Work presented in this chapter has been published previously in Gaspers & Cimiano
(2014a) with an early version of the model being presented in Gaspers et al. (2011);
for a version of the model working with phoneme sequences please see Gaspers &
Cimiano (2012).

3.1. Introduction

As mentioned before, there are two major competing theoretical approaches to lan-
guage acquisition: generativist or nativist approaches (see Eisenbeiß (2009) for an
overview) and usage-based or emergentist approaches (see Behrens (2009) for an
overview). While the traditional generative approach to language acquisition origi-
nally proposed by Chomsky (1965) assumes that language ability is hard-wired/innate
in form of a “universal grammar”, usage-based approaches assume that linguistic
knowledge is learned through interaction with and exposure to language in some en-
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vironment. Specifically, usage-based approaches typically assume linguistic knowl-
edge as being represented in terms of constructions as proposed within the frame-
work of construction grammar. According to Goldberg (Goldberg & Suttle, 2010;
Goldberg, 2003), construction grammar assumes linguistic knowledge to be repre-
sented in terms of constructions at varying degree of complexity and abstraction,
ranging from words over morphemes to fully generalized, productive linguistic pat-
terns. These constructions are captured by an interrelated network which comprises
both item-specific knowledge and generalized patterns. Based on the network, novel
utterances can be generated by combining existing constructions. In particular,
many constructions contain slots which can be filled by other constructions, words
for example. The network of constructions is assumed to be learned on the basis
of positive input coupled with domain-independent learning mechanisms. Further,
learning is assumed to be early on item-based in nature, and to begin with con-
crete examples, proceeding only later on to developing productive syntactic patterns
(Goldberg & Suttle, 2010; Goldberg, 2003).
In fact, the assumption that children’s representation of linguistic knowledge is early
on item-based is not specific to construction grammar, but a key concept of usage-
based approaches to language acquisition. Specifically, it is assumed that, from early
on, children, unlike adults, maintain an inventory of lexically specific and item-based
constructions which are gradually generalized by replacing concrete lexical items by
slots which can be filled by (a restricted group of) words or short sequences of words
(Tomasello et al., 1997). The resulting patterns are also referred to as slot-and-frame
patterns (Pine & Lieven, 1997). It is not known in detail how children induce such
slots, but one hypothesis is that they observe type variation in a position of oth-
erwise identical utterances (Tomasello, 2000a). In general, in usage-based theories
type frequencies are assumed to be involved in the generalization of linguistic knowl-
edge along with token frequencies. While type frequencies guide the productivity
of a construction and thus abstraction (e.g. Bybee, 1995), high token frequencies
yield entrenchment of utterances (e.g. Bybee & Scheibman, 1999), and hence learn-
ing of constructions as a whole. It is not known what amount of type variation
is required in order to achieve productivity/generalization of (a particular kind of)
constructions, and the required amount may decrease over time, that is, less type
variation in slots may be needed later on (Tomasello, 2000a). Patterns are assumed
to be (initially) induced on a verb-specific basis – i.e. patterns correspond to con-
crete verbs –, yielding verb-specific predicate structures which are also referred to as
verb-islands (Tomasello, 1992). Moreover, new linguistic qualities are also assumed
to emerge in the sense that more complex structures can emerge from simpler ones
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(Behrens, 2009).
It is still under debate to what extent human language skills are indeed innate (e.g.
Eisenbeiß, 2009). Yet, several studies investigating child language acquisition pro-
vide support for an item-based nature of children’s early linguistic knowledge (e.g.
Tomasello, 2000b, 2003; Olguin & Tomasello, 1993; Lieven et al., 1997) as well as
evidence for the existence of domain-independent learning abilities in children (e.g.
Saffran et al., 1996; Saffran, 2003; Aslin et al., 1999). In particular, several studies
suggest that children are able to detect statistical regularities within different do-
mains, and in particular at different levels within the auditory domain (e.g. Saffran
et al., 1996; Saffran, 2003; Aslin et al., 1999; Romberg & Saffran, 2010) as well as
across different domains, for example between the auditory and the visual domain
(e.g. Scott & Fisher, 2012; Smith & Yu, 2008). Further, there is empirical evidence
that children are able to utilize the output of statistical learning mechanisms in turn
as the basis for bottom-up learning mechanisms, for instance, tracking co-occurrence
statistics about syllables to find words and in turn utilize these to track word order
(e.g. Saffran & Wilson, 2003). Such statistical learning processes are assumed to
be implicated in language acquisition, and there is now growing evidence for this
assumption even in the case of syntax as, for instance, several studies suggest that
input frequency and diversity shapes syntactic knowledge (e.g. Rowland, 2007; Hut-
tenlocher et al., 2010). However, the direct relationship between statistical learning
abilities and the acquisition of syntax in children has been investigated only recently
by Kidd (2012). The author reports results suggesting that statistical learning is
indeed implicated in the acquisition of grammar.
Taken together, usage-based and emergentist approaches assume that linguistic
knowledge emerges over time where i) more complex structures can emerge from sim-
pler ones, and ii) generalization yields gradual abstraction over seen input. Further,
psycholinguistic findings support usage-based approaches to language acquisition by
providing empirical evidence for the item-based nature of children’s early linguis-
tic knowledge and for the implication of domain-independent statistical learning
mechanisms in language acquisition. However, what remains rather unclear is

1. how statistical learning mechanisms are implicated in the acquisition of syn-
tactic patterns, i.e. how they interact with other learning mechanisms such as
rule learning,

2. how exactly the involved generalization processes may operate, and

3. how more complex linguistic structures may emerge based on simpler ones.
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Addressing these questions, in this chapter we explore how statistical learning pro-
cesses can be combined with an item-based generalization method in order to learn
rudimentary syntactic structures within the framework of a computational model.
In particular, we investigate how the gradual emergence of an inventory contain-
ing verb-specific slot-and-frame patterns by an item-based induction of slots can
be modeled computationally. In doing so, our model captures linguistic knowledge
by an interrelated network of constructions at varying degree of abstraction with-
out assuming pre-coded linguistic knowledge. As we are interested in modeling the
emergence of slot-and-frame patterns, we consider two types of constructions: short
sequences of words and lexically anchored slot-and-frame patterns.
Like a child, the model learns by observing natural language utterances – sequences
of words – in a noisy and ambiguous context. As we explore different types of con-
structions, meaning must be associated with linguistic structures at different levels
of complexity and abstraction. We propose uniform mechanisms for establishing
and rating such associations at different levels of generalization. In particular, in
order to establish correspondences between form and meaning we rely on the prin-
ciple of cross-situational learning. As we attempt to model knowledge by means of
a network, in our model all correspondences between form and meaning are mod-
eled by associative networks (Rojas, 1993), where – as proposed by Hebb (1949)
– connections between neurons which are active concurrently (i.e. between neu-
rons representing form and meaning being observed concurrently) are strengthened,
capturing their co-occurrence frequencies. We thus propose a uniform approach to
learning based on the principle of cross-situational learning implemented on the basis
of Hebbian-style learning to acquire constructions at different levels of abstraction.
We explore an incremental approach to language learning in the sense that linguistic
structures of small complexity are learned first, followed later by more complex con-
structions acquired by bootstrapping on the simpler ones. In particular, the model
starts by learning the structures of low complexity, i.e. (sequences of) words and
their meanings. Once a learner is sufficiently confident in the linguistic knowledge
it has obtained about (sequences of) words, it proceeds to learning more abstract
constructions that abstract from specific words, yielding lexically anchored and par-
tially productive slot-and-frame patterns through to fully productive constructions.
This seems also cognitively plausible given the fact that children typically learn first
the meaning of (proper) nouns and afterwards of more complex syntactic construc-
tions (Bloom, 2000).
At the beginning, the model starts with an empty network. While learning pro-
ceeds, the network is continuously augmented and refined, dynamically adapting
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the model with new input. An important aspect of our model is thus given by the
fact that learning proceeds online, i.e. each example directly causes an update of
the network. This is an important aspect as the ability to learn online is a crucial
capability of humans, enabling them to dynamically adapt to changes in their envi-
ronment. Online learning is particularly important with respect to modeling human
language acquisition, because the resulting models may not only account for why
a certain behavior emerges but also address the question of how the behavior may
be learned given constraints on the infant learner, e.g. on memory (Pearl et al.,
2011). In particular, just like Pearl et al. (2011) we assume that a learner can only
process one utterance – in our case presented together with concurrent information
derived from the visual context – at a time, which contrasts with models storing
a whole dataset in memory and process over contained utterances simultaneously.
In this sense our model poses less requirements on memory and should a priori be
preferable as a model for language acquisition compared to models that do not learn
online but need to store examples explicitly.
The model we present in this chapter is composed of the following components:

1. Representation: An interrelated network for the representation of linguis-
tic knowledge in the form of constructions of different levels of abstraction and
complexity.

2. Confidence: Mechanisms for the assessment of the confidence in the
learned structures and mappings as a basis for the retrieval of knowledge
captured in the network.

3. Learning: A language learning algorithm which starts by incorporating
item-specific knowledge into the network and proceeds to draw generalizations.

In sum, we present a computational model for early syntactic acquisition, includ-
ing the acquisition of word meanings, which – in line with usage-based approaches
and construction grammar – possesses the following properties:

1. Linguistic knowledge is represented in the form of a single network comprising
constructions at different levels of abstraction and generalization

2. Patterns are induced on a verb-specific basis, yielding verb-specific predicate
structures, i.e. verb-islands

3. Generalization is performed in an item-based manner and proceeds by grad-
ually replacing concrete lexical items by slots
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4. No pre-coded linguistic knowledge is assumed

5. Learning is performed in an unsupervised fashion in that no explicit tutoring
is provided. However, since ambiguous information describing the visual con-
text a learner observes is provided, the approach can also be seen as weakly
supervised with context information being seen as ambiguous supervision
(cf. Chen & Mooney (2008))

6. Learning proceeds incrementally in the sense that the model first learns the
meanings of linguistic structures of low complexity and then uses these to learn
the meanings of more complex constructions

Moreover, the model possesses the following important properties:

1. The model learns in the presence of referential uncertainty, i.e. by observ-
ing utterances while several actions are taking place concurrently where it is
unclear which action – if any – is expressed by the utterance

2. Cross-situational learning is explored at different levels, and in particular
beyond establishing mappings between words and objects

3. The model learns online in that it processes examples one-by-one, each di-
rectly yielding an update of the network structure

4. The model is capable of both language understanding and production,
though in this thesis we focus on language understanding

5. The fast mapping ability (Carey & Bartlett, 1978) observed in children is ex-
plicitly build into the model by modeling a disambiguation bias (Merriman
& Bowman, 1989)

While the principles of item-based generalization and cross-situational learning
have been discussed extensively in the literature, we believe that we present the first
comprehensive computational model that combines cross-situational learning be-
yond word-referent mappings with a formalization of a generalization mechanisms
based on an item-based induction of slots in order to learn a lexicon and syntactic
constructions in an online fashion.
We provide empirical results showing how the model is able to learn from positive
linguistic input only, producing a compact construction grammar the size of which
is much smaller than the number of examples observed, thus generalizing over the
examples observed. We rely on a standard cross-fold validation scenario on a refer-
ence dataset to demonstrate the generalization abilities of our model.
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The remainder of this chapter is organized as follows. In the next section, we de-
scribe the learning problem by presenting the model’s input and the desired output,
i.e. the construction grammar to be learned. Then, we present our model in more
detail, including the network structure, measures and retrieval of knowledge, and the
language learning algorithm. Afterwards, we will present empirical results obtained
on a semantic parsing task. Before concluding, we discuss our model with regard to
psycholinguistic findings and outline limitations and possible extensions.

3.2. Learning problem

In this chapter we propose a usage-based computational model of early language
acquisition which assumes that linguistic knowledge is captured by an interrelated
network of constructions that are acquired on the basis of positive input, and from
which constructions can be retrieved at any time. The network in this sense encodes
a grammar that can be used to process (unseen) utterances. As mentioned previ-
ously, the input to the model consists of two temporarily paired channels: a language
channel and a visual channel. In the following, we will describe the learning problem
in more detail by precisely defining the input and output of the model.

3.2.1. Input

Similar to a child, the model learns by observing natural language utterances (NL)
in a noisy and ambiguous context (MR, represented by formulas in predicate logic
mr). The context is ambiguous in the sense that several actions formalized as pred-
icate logic formulas might be observed, and only at most one of these actions is
expressed by the utterance. More specifically, the input to our model consists of
a list of examples comprising NL utterances, each coupled with a set of meaning
representations {NL, {MR = mr1, ...,mrn}}. For each example, NL is represented
in symbolic form in the form of a sequence of words w1, . . . , wk. Each mri ∈ MR

consists of a predicate ξ along with a list of semantic referents and their thematic
relations (which might be empty). We distinguish between an observed mr and its
corresponding semantic frame [[mr]]. The semantic frame does not contain concrete
semantic referents, but only an abstract signature of thematic relations representing
the argument slots. For instance, for an mr see(AGENT:mia,THEME:pizza) the
semantic frame is given by see(AGENT,THEME), and we also say that mr instan-
tiates the semantic frame [[mr]].
A concrete example for an (NL,MR) pair is given by:
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(3.1)

NL: Tim sees candy

mr1: see(AGENT:tim,THEME:candy)
mr2: eat(AGENT:tim,THEME:pizza)
mr3: see(AGENT:mommy,THEME:candy)
mr4: sleep(AGENT:dog)

Notice that there are no direct correspondences between NL utterances and their
corresponding mrs; these correspondences must be learned by the model instead.
Notice further that semantic referents are only arbitrary symbols to the model. We
denote them by their corresponding natural words for reasons of clarity.
We define the underlying vocabulary of theMR portion of the data VMR as containing
all predicates ξ and arguments occurring in the input data. Thus, it incorporates
all semantic entities – actions, actors, etc. – which might appear in a scene visually.
For instance, with respect to Example 5.7 VMR would contain the semantic entities
tim, candy, pizza, mommy and dog.
We define the underlying vocabulary of the NL portion of the data VNL as comprising
all observed bi- and unigrams. In the following, we also refer to them as (atomic)
lexical units. For instance, with respect to Example 5.7 VNL would contain the lexical
units “Tim”, “sees”, “candy”, “Tim sees” and “sees candy”.

3.2.2. Goal

Given a set of (possibly ambiguous) examples {NL, {mr1, ...,mrn}} as described
previously, our goal is to propose a model for the induction of a network capturing
a construction grammar. In doing so, we consider two types of constructions, both
comprising a form N̂L and a meaning m̂r :

1. Constructions at the word level CONWord where N̂L corresponds to a (short
sequence of) word(s), e.g. “Vincent” ’

2. More complex constructions at the level of slot-and-frame patterns CON S&F

where N̂L corresponds to an NL (pattern), e.g. “X sees Y ”

In case of constructions belonging to CONWord , the form N̂L constitutes a lexical
unit vnl ∈ VNL, and m̂r corresponds to exactly one semantic entity vmr ∈ VMR.
For CON S&F constructions, the form N̂L constitutes an NL (pattern). Patterns
may have different levels of generalization and may contain slots in which lexical
elements can be inserted, and we distinguish two types of such elements:

• Sets of slot-filling elements : groups of lexical units which are required by an as-
sociated predicate, i.e. these sets represent slots in NL syntactic patterns which
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correspond to argument slots in an associated semantic frame, and different
lexical elements imply different semantics (if the elements are not synonyms).
In this sense these elements represent minimal units of semantic variation. For
example, in case of two utterances “Mia eats” and “Tim eats” a set of slot-filling
elements [Mia, Tim] might be established which maps to the AGENT role in
an associated predicate eat(AGENT).

• Sets of linguistically optional elements : groups of lexical units which are op-
tional with regard to an associated predicate, i.e. the exchange of elements
contained in a set of linguistically optional elements causes no change in an
associated meaning with respect to a given domain or semantic language. For
example, a set of linguistically optional elements SL1 = [huge, large] in a
pattern “X eats a SL1 pizza” does not account for changes in an associated
meaning eat(AGENT). Notice though that these elements may not be mean-
ingless in general, but simply do not have a semantic counterpart in a given
semantic vocabulary or inspected domain.

The meaning m̂r in case of a CON S&F construction is represented by exactly one
semantic frame [[mr]]. If N̂L contains sets of slot-filling elements SEs(N̂L), the
argument slots ARGs(m̂r) in m̂r are associated with them by a one-to-one mapping
Φ : SEs(N̂L)→ ARGs(m̂r).
As a concrete example, consider the following (NL, {mr1, ...,mrn}) pair:

(3.2)

NL: Tim sees candy

mr1: see(AGENT:tim,THEME:candy)
mr2: eat(AGENT:tim,THEME:pizza)
mr3: see(AGENT:mommy,THEME:candy)
mr4: sleep(AGENT:dog)

and the (NL, {mr1, ...,mrn}) pair:

(3.3)
NL: Mia sees pizza

mr1: see(AGENT:mia,THEME:pizza)
mr2: sleep(AGENT:dog)

At CONWord our goal is to induce the constructions

(3.4)
N̂L Mia

m̂r mia

N̂L Tim

m̂r tim

N̂L pizza

m̂r pizza

N̂L cake

m̂r cake

and at CON S&F our goal is to induce the construction
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(3.5)

N̂L SE 1 sees SE 2

m̂r see(AGENT,THEME)

Φ SE 1 → AGENT
SE 2 → THEME

together with the sets of slot-filling elements below, along with their mapping to
semantic referents:

SE 1 = [Mia → mia, Tim → tim],
SE 2 = [pizza → pizza, cake → cake],

where the elements contained in the sets of slot-filling elements are in turn con-
structions contained in the lexical network CONWord .
Note that the mapping between sets of slot-filling elements and argument slots in
semantic frames – Φ – has to be learned by the model, and its acquisition process is
not dependent on the order of sets of slot-filling elements. For instance, the model is
able to establish a link between the first set of slot-filling elements in an N̂L pattern
and any arguments slot in an associated m̂r . This is an important aspect because
it enables the model to acquire both active and passive constructions in this way.

3.3. The computational model

Because our goal is to encode a construction grammar by means of a network,
induced constructions are not stored directly as pairings consisting of form and
meaning as might be suggested by the examples presented in the previous section.
Instead, we propose an approach in which linguistic knowledge is stored in a net-
work architecture and evolves over the course of time, thus continuously adapting
the network structure to novel input. Yet, at each developmental step, construc-
tions in the form as specified in Section 3.2.2 can be retrieved from the network by
applying retrieval mechanisms which rate and reassemble the linguistic knowledge
captured by the network. In the following, we will first introduce basic components
included in our model (Section 3.3.1). Then, we will discuss the representation of
constructions in the network (Section 3.3.2), and subsequently the employed gener-
alization processes (Section 3.3.3). We will then present confidence measures which
assess particular parts of the linguistic knowledge captured by the network (Sec-
tion 3.3.4). Finally, we will explain the language learning algorithm employed in
our model (Section 3.3.5), and show how constructions can be retrieved from the
network (Section 3.3.6).
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3.3.1. Basic components

In this chapter, in the process of construction grammar induction, the following
learning steps play an important role:

1. Establishing correspondences between lexical units and simple semantic refer-
ents

2. Inducing generalized syntactic patterns by generalizing over observed NL ut-
terances

3. Establishing associations between sets of slot-filling elements in syntactic pat-
terns and argument slots in semantic frames

4. Associating semantic frames with syntactic patterns

where subtasks 1, 3 and 4 all correspond to the establishment of associations be-
tween form and meaning. In order to model these three subtasks, we consistently
apply associative networks which model associations between form and meaning.
Moreover, in order to address subtask 2, we utilize a directed graph which cap-
tures the word order of observed NLs and induced patterns by representing them
as indexed paths, and the graph also provides mechanisms for the merging of paths
which is important with respect to generalization of observed NLs. In the following,
we describe these representational devices in more detail.

Associative networks

To model all correspondences between form and meaning we consistently apply asso-
ciative networks as suggested by Rojas (1993), where – as proposed by Hebb (1949)
– connections between neurons which are active concurrently are strengthened, cap-
turing co-occurrence frequencies between form and meaning. An associative network
A comprises two layers of neurons, x and y, which are fully connected by a matrix
W of learnable weights. Based on the network, associations are retrieved by

y = Wx (3.6)

and
x = W Ty. (3.7)
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To train the weights, we use the adjusted learning rule suggested by Schatten (2003)1

∆wi,j = η(xi − x′i)(yj − y′j) (3.8)

where x′i and y′j is the network’s current value of xi and yj after processing the input
y and x, respectively, and η denotes the learning rate. The change of a weight wij

is then computed as
wi,j = wi,j + ∆wi,j. (3.9)

Definition 1 (Update). We also refer to the update of all weights in A according
to equations 3.8 and 3.9 as update(A, ax, ay) where ax and ay denote the sets of
neurons which are active when observing stimuli x and y concurrently. We set their
activation to 1 and the activation of all other neurons to zero.

Example 1. For instance, imagine that we attempt to model correspondences be-
tween lexical units and simple semantic referents with an associative network AWord

where the neurons in x correspond to lexical units and the neurons in y correspond
to simple semantic referents as illustrated on the left side of the arrow in Fig. 1.
Imagine further that the word “Mia” and the semantic referent mia are observed con-

Figure 1.: Example of a network capturing associations between form and meaning
at the lexical level, and the execution of an update step changing the
contained weights.

currently. Then, the update of the associative network update(AWord, {Mia}, {mia})
(η = 0.01) yields a change in the weights contained in AWord as depicted on the right
side of the arrow in Fig. 1. As can be seen, the update step yields a strengthening
of the connection between “Mia” and mia, which were observed together, while the
weights between these two and the competing alternatives (“Mia” and tim, “Tim”
and mia) are decreased slightly.

1Hebb’s rule states that the simultaneous activation of neurons results in a strengthening of the
connections between them; it is given by ∆wij = ηxiyj (Hebb, 1949). We apply Schatten
(2003)’s rule because it prevents the continuous growing of weights (even in a fully trained
network). Further, in contrast to Hebb’s rule, weights can be decreased, i.e. (incorrectly)
acquired words can become “forgotten”/“unlearned”.
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Definition 2 (Association). We say that j ∈ y is associated with i ∈ x if it maxi-
mizes the value of the weights between neuron i and all neurons in y:

associated(i) = argmax
j∈y

wi,j (3.10)

Example 2. In the network assembling presented on the right side of the arrow in
Fig. 1, mia is associated with “Mia” and tim is associated with “Tim”.

Typically, associative networks are applied with a predefined set of neurons. How-
ever, because we explore a growing network, additional nodes and connections must
be incorporated into the network. Weights of these connections may be initialized
by zero and subsequently trained by the learning rule given in equation 3.8.2 How-
ever, in the case of the associative network which captures correspondences between
lexical units vnl ∈ VNL and referents vmr ∈ VMR, we explore a different strategy for
initialization. Our attempt here is to equip our model with the ability to quickly
set up an initial mapping when observing a novel word in the presence of referential
uncertainty, i.e. to model the fast mapping ability observed in children (Carey &
Bartlett, 1978). In particular, in order to initialize weights for novel word-object
mappings, we model a phenomenon observed in children which is also referred to
as the disambiguation effect (Merriman & Bowman, 1989): children – at least at
the age of two and older – who are presented with a novel object along with one
or more known objects and are asked for the referent of a novel word, consistently
choose the novel object (e.g. Golinkoff et al., 1992; Markman & Wachtel, 1988;
Horst & Samuelson, 2008; Bion et al., 2013). In order to equip our model with such
a disambiguation bias, we adapted a formula from a framework proposed by Vogt &
Divina (2007)3. In particular, the weight wnl,j for a connection between a new nnl

representing a vnl ∈ VNL observed for the first time and a neuron nj is initialized as

wnl,j =
(1−maxi(wi,j))η

# new nnl ∈ CONWord(NL)
, (3.12)

2This is the case in this model if not stated otherwise. Empty networks are always initialized in
this way.

3The proposed model included several artificial agents maintaining lexica which contained associ-
ation scores between words and meanings based on probabilistic cross-situational learning and
feedback. Associations scores σnj for a newly observed word wn were initialized building on
the idea of the principle of contrast (Clark, 1993) as

σnj = (1−maxi(σij))σ0 (3.11)

where i 6= n and maxi(σij) denotes the maximum score meaning mj has with other words wi,
i 6= n (Vogt & Divina, 2007).

61



Chapter 3. A computational model for the acquisition of verb-specific constructions

and the weight wi,mr for a connection between a new nmr representing a vmr ∈ VMR

observed for the first time and a neuron ni is defined analogously as

wi,mr =
(1−maxj(wi,j))η

# new nmr ∈ CONWord(MR)
, (3.13)

where η – as in Equation 3.8 – denotes the learning rate. The underlying intuition
of these formulas is that new lexical units/referents should preferably be associated
with referents/lexical units which have not yet been associated with other lexical
units/referents.

Example 3. Imagine for instance that the current state of AWord is of the form as
depicted above the arrow in Fig. 2 (η = 0.01). After observing the word-meaning

Figure 2.: Example for the incorporation of new nodes at the word level.

pair (“Vincent”, {vincent, mia, tim}) AWord is updated as illustrated below the arrow
in Fig. 2. Note that the illustration depicts the state of the network after the new
nodes have been incorporated, but before update(A,Vincent, {vincent,mia,tim}) is
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executed. As can be seen in the example, the model is biased to associate vincent
with “Vincent” because all other referents (lexical units) are already associated with
other lexical units (referents), mimicking the disambiguation ability observed in
children.

Within the scope of the generalization process employed in our model, two proce-
dures operating on associative networks are explored. We included these procedures
in order to initialize the associations between form and meaning for generalized
patterns by utilizing previously acquired information of the associations for the sub-
sumed NLs and sets of slot-filling elements. Imagine for instance that two patterns
“Mia sees SE 1” associated with see(AGENT,THEME), SE 1 → THEME and “SE 2

sees pizza” associated with see(AGENT,THEME), SE 2 → AGENT are identified by
a merging process to represent the same pattern “SE 2 sees SE 1”. Then, the oper-
ations introduced in the following will allow the model to associate the induced
pattern directly with see(AGENT,THEME), SE 1 → THEME, SE 2 → AGENT
by accumulating rows in an associative network (in case of the association with
see(AGENT,THEME)) and by combining two associative networks (in case of the
mappings SE 2 → AGENT and SE 1 → THEME ).

Definition 3 (Combining weights in an associative network). Let A be an asso-
ciative network comprising a layer x, a layer y and a matrix of weights W . Let
furthermore ~y(i) be a vector comprising the weights wi,j between neuron i ∈ x and
each neuron j ∈ y (as provided by W ). Summing up the weights4 in A for a given
set of neurons N ⊆ x results in a vector ~y(N), and is computed by adding up the
vectors ~y(n) for all neurons in N , i.e

~y(N) =
∑
n∈N

~y(n), n ∈ N. (3.14)

The resulting vector may then be used to initialize the weights between a new neuron
and all neurons in the opposite layer.

Example 4. Imagine for instance that we attempt to model correspondences be-
tween two NLs at the S&F construction level (represented as paths p1 and p2) and
mrs using an associative network AS&F , where the two layers x and y of neurons
correspond to paths and mrs, respectively, as illustrated in Fig. 3. The figure shows
two paths (sees, Tim) (p1) and (sees, Mia) (p2) encoded in the network AS&F as
nodes, together with their weights for the connections to predicates see and eat,

4In our current implementation, weights are restricted to values between 0 and 1. Greater values
are set to 1, smaller values to 0.
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Figure 3.: Example for the combination of weights in an associative network.

thus modeling the association strengths of the paths with the predicates. Merging
both paths and combining the corresponding rows in the network – i.e. summing
up the individual weights for all connections from the concerned nodes in layer x,
i.e. p1 and p2, for each node in y, i.e. see and eat – yields a path (sees, SE 1) (p3).
The initialization based on the summed up weights clearly prefers the meaning see.

Definition 4 (Combining associative networks). Two associative networks A1 and
A2 are combined by A1 ⊕ A2 into a single associative network A′ composed of a
layer x, a layer y and a matrix of weights W where neurons(A′) = neurons(A1) ∪
neurons(A2), and neurons(Az) denotes all neurons contained in network Az. The
weights for connections between neurons i ∈ x and j ∈ y in A′ are then initialized
by A′wi,j

= A1wi,j
+ A2wi,j

.

Example 5. Imagine for instance that we want to model the correspondences be-
tween sets of slot-filling elements in syntactic patterns and argument slots in seman-
tic frames – i.e. mappings – using associative networks where x and y represent sets
of slot-filling elements and argument slots, respectively. Because sets of slot-filling
elements appear at certain positions in patterns and argument slots are specific to
semantic frames, such associative networks are hence specific to both a pattern and
a semantic frame. Consider for example the first two graphs depicted in Fig. 4
showing a path p1 (p2) containing a set of slot-filling elements SE 1 (SE 2) for which
co-occurrence frequencies regarding the argument slots in the see predicate are cap-
tured by an associative network AΦ:p1,see (AΦ:p2,see). Imagine further that p1 and p2
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Figure 4.: Example for combining the information of two associative networks.

are identified by a generalization process to represent the same pattern “SE 2 sees
SE 1”. By applying AΦ:p1,see⊕AΦ:p2,see we can directly model a mapping for the new
syntactic pattern containing both sets of slot-filling elements and the semantic frame
see(AGENT,THEME), which is of the form as illustrated by the last graph in Fig.
4, associating SE 2 with the AGENT and SE 1 with the THEME argument slot in
the see predicate.

Word order graph

The second representational device we utilize is a directed graph which captures
the word order of NLs, which corresponds to the structure of the graph proposed
within the ADIOS algorithm (Solan et al., 2005, cf. Section 2.6). Specifically, we
represent the NLs of constructions at CON S&F as indexed paths. Each contained
node corresponds either to a lexical unit, a set of (linguistically optional or slot-
filling) elements, or marks the start or end of a sequence. In the following, we will
refer to this assembling as word order graph.
In our model, as a byproduct of generalization, the NLs of concrete examples at
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CON S&F are merged into generalized patterns. This is important as:

1. It keeps the network size – and therefore the corresponding grammar – small
(because specific examples subsumed by generalized patterns are removed)

2. It enables the model to use constructions in a compositional manner, yielding
generalization beyond examples seen, and thus understanding/generation of
novel sentences

Because NLs of constructions at CON S&F are represented as paths, a mechanism
for merging paths is needed.

Definition 5 (Merging paths). Merging a set of mergeable (see Section 3.3.3 for
a definition) paths P with |P | = m represented on a word order graph W yields
a single path pcom = p1 ⊕ p2 ⊕ · · · ⊕ pm with pi ∈ P representing the merge of
patterns in P . The combined path pcom is computed by iterating over the nodes
for all paths in P concurrently. If all paths are alike at a position pos, the node
at position pos in pcom is set to that node. Otherwise, it is set to a new node
nse representing a set of elements. Furthermore, for each path in P , the node at
position pos is added to the set and subsequently replaced by nse for each path
in W . Finally, all paths in P are deleted from the graph. During the merging
procedure, new sets of elements are induced. If such a newly induced set has an
element (vnl and/or in case of sets of slot-filling elements a vmr) in common with
at least one of the already existing sets, the corresponding sets are merged into a
single set ec (note that according to the definitions of slot-filling and linguistically
optional sets it is never possible to merge a linguistically optional and a slot-filling
set). The nodes corresponding to subsumed sets of elements are then replaced by the
node corresponding to ec. In the model, associations between paths and semantic
frames are modeled by an associative network AS&F with layer x corresponding
to paths and layer y corresponding to semantic frames. The weights for pcom are
initialized by combining the weights of connections between subsumed paths and
semantic frames (cf. Definition 3), i.e. by summing up the weights of the subsumed
paths in AS&F , i.e ~y(pcom) = ~y(P ) =

∑
p∈P ~y(p). If pcom contains sets of slot-filling

elements, an associative network representing the mapping AΦ:pcom,[[mr]] is included
for each [[mr]] in CON S&F which contains slots. Each AΦ:pcom,[[mr]] is initialized by
combining the mapping associative networks for subsumed paths (cf. definition
4), i.e. each mapping between pcom and an semantic frame [[mr]] is initialized as
AΦ:pcom,[[mr]] = AΦ:p1,[[mr]] ⊕ · · · ⊕ AΦ:pm,[[mr]].
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Figure 5.: Example for the induction of sets of elements by merging paths.

Example 6. For instance, merging two paths p1 and p2 as depicted in the first
graph illustrated in Fig. 5 by merge({p1, p2}) results in a path p3 as depicted in the
second graph of the figure. The procedure induces the sets of slot-filling elements

• SE 1 = [Mia → mia, Tim → tim]

• SE 2 = [pizza → pizza, candy → candy ]

and deletes p1 and p2 from the graph, leading to a reduction in the number of paths,
thus decreasing the network’s size. As can be seen, the generalization furthermore
enables the model to understand/generate two novel utterances (not observed in the
input): “Mia sees candy” and “Tim sees pizza”.

3.3.2. Network structure

The proposed network structure is depicted in Fig. 6. Recall from Section 3.2.2 that
our aim is to include both constructions at the word level CONWord as well as at the
S&F level of S&F patterns CON S&F into our network. Hence, the network is divided
into two subnets representing constructions at the word level CONWord and construc-
tions at the level of slot-and-frame patterns CON S&F , where CON S&F builds on
CONWord . Both subnets consist of a layer representing the form – CONWord(NL) and
CON S&F(NL), respectively – and a layer representing the meaning – CONWord(MR)

and CON S&F(MR), respectively. All correspondences between form and meaning are
modeled by associative networks AWord and AS&F . During learning, all observed

67



Chapter 3. A computational model for the acquisition of verb-specific constructions

Figure 6.: Network modeling three levels of association: lexical units (captured
in layer CONWord(NL)) and single semantic referents (CONWord(MR)),
patterns represented as paths (CON S&F(NL)) and semantic frames
(CON S&F(MR)), sets of slot-filling elements in patterns and slots in pred-
icates.

linguistic input is incorporated into the form layers, while the action input, which is
represented in the form of predicate logic formulas, is incorporated into the meaning
layers. In CONWord , each observed lexical unit is modeled as a single node nnl, and
semantic referents are modeled as single nodes nmr. Constructions in CON S&F are
modeled as paths through a word order graph (CON S&F(NL)). The word order graph
incorporates nodes from CONWord(NL), nodes representing the start nSTART and the
end nEND of a sequence, as well as a node nse for each induced set of elements (these
nodes group in turn sets of token nodes from CONWord(NL)). CON S&F(MR) contains
a node n[[mr]] for each semantic frame [[mr]] derived from mrs observed in the input.
In CON S&F , constructions may include a mapping which maps sets of slot-filling
elements to argument slots. These mappings are construction-specific, i.e. specific
to both a path p and a semantic frame [[mr]]. Thus, they are each modeled by an
individual associative network AΦ:p,[[mr]].
In this thesis we only attempt to establish correspondences between NL expres-

sions and observations from the visual domain. Yet, several words and expressions
do not refer to observations from the visual domain, e.g. expressions being grounded
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in the time domain or referring to inner states, e.g. emotions. Because NL expres-
sions may exist which have no semantic analogy in a particular domain, we include
a special node n⊥ in each associative network that allows to capture the fact that a
certain linguistic construction has no correspondence at a meaning layer.

3.3.3. Generalization

The generalization mechanisms in our model support the emergence of generalized
patterns beyond specific utterances observed that allow to understand and produce
novel sentences. Generalization is performed in essence by i) inducing sets of ele-
ments and ii) merging paths to yield more general and productive ones (as described
in Section 3.3.1). In order to identify paths that can be potentially merged, we in-
troduce a mergeability condition that roughly states that patterns are mergeable if
they differ in less than k positions. Recall that we distinguish between two types
of sets of elements: sets of slot-filling elements and sets of linguistically optional
elements. Sets of slot-filling elements represent sets of lexical units required by an
argument of an associated predicate, while sets of linguistically optional elements
group lexical units which do not cause a change in the meaning of an associated
predicate. In order to differentiate between these two cases, we define a notion of
slot-driven mergeability and and a notion of syntactic mergeability, leading to two
different generalization steps in our model: a slot-driven generalization step and
a syntactic generalization step which differ in the conditions specifying when the
grouping of varying elements into a set of elements is reasonable.
As mentioned before, sets of slot-filling elements group elements the exchange of
which induces a meaning difference. On this account, they are identified by search-
ing for differences in patterns which lead to corresponding differences in the corre-
sponding meanings. In particular, we assume that sets of elements in a group of
NLs represent a slot-filling set if they can account for a slot in the corresponding
predicate. In the following, we will first illustrate the intuition behind the employed
generalization mechanisms and then present the model more formally. Given for
instance the following two observed form-meaning pairings depicted first, one can
easily infer the correspondences shown on the right side of the arrow.

(3.15)
NL: Mia sees

mr : see(AGENT:mia)

NL: Tim sees

mr : see(AGENT:tim)

→
NL: X (= {Mia,Tim}) sees

mr : see(AGENT)

Φ: X → AGENT
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The inference that “Mia” and “Tim” are substitutable and that the grouping accounts
for the slot in the corresponding predicate see can be performed based on two
observations:

1. The observed NLs differ in one position/slot pos and the corresponding mrs
differ in one argument position/slot ARG , i.e. the one denoting the AGENT

2. The meanings of the observed words at position pos occur in argument slot
ARG for both examples

Note that the second condition is crucial because our goal is to develop a model
which learns from noisy input in which the meaning corresponding to an utterance
may not be observed with it. Instead, the context representations for an observed
utterance may comprise one or more distractor meanings only. Consider for example
the following two NLs.

(3.16)
NL: Mia sees a big cake

mr : sleep(AGENT:dog)

NL: Mia sees a small cake

mr : sleep(AGENT:cat)

The first condition would lead to the grouping of “big” and “small” into a slot-filling
set representing the argument slot in the sleep predicate. Yet, one can easily see that
this is incorrect because “big” and “small” do not mean dog and cat, respectively.
In order to avoid generalization errors, it is thus essential to acquire the meanings
of individual lexical units in an NL before generalizing it. In particular, we only
consider lexical units in the slot-filling generalization process the meaning of which
has been learned in the lexical associative network (see the following section for a
definition).
In our model, we compare a (possibly ambiguous) example (NL, {mr1, ...,mrn}) with
a path p in the network.

Definition 6 (Slot-driven mergeable). Given an example (NL, {mr1, ...,mrn}) and a
path p, we first retrieve a semantic frame [[mr]]p associated with p from the associative
network AS&F (which captures associations between paths and semantic frames) as
the corresponding meaning. p is slot-driven mergeable with NL if NL and p differ
in at most k positions and the element at each differing position in both NL and
p corresponds either to i) a lexical unit with a learned meaning observed in a slot
of some mri ∈ {mr1, ...,mrn} which instantiates [[mr]]p

5 or ii) a set of slot-filling
elements.

5Note that we cannot determine whether the lexical units actually map to the same slot in [[mr]]p
because we store only semantic frames in AS&F
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The condition stating that an element at a differing position may correspond to
a set of slot-filling elements models the case where a newly observed sequence is an
instance of a generalized pattern already included in the graph. According to the de-
scribed criteria a newly observed example (“Vincent sleeps”,sleep(AGENT:vincent))
is mergeable with a path corresponding to a pattern “SE 1 sleeps” associated with
the semantic frame sleep(AGENT) under the condition that vincent is the learned
meaning of “Vincent”.
In contrast to sets of slot-filling elements, sets of linguistically optional elements
group lexical units which do not lead to a change in the meaning of a construction.
Hence, the criterion in the syntactic generalization step is based on the meaning of
paths.

Definition 7 (Syntactically mergeable). A given path p1 with a learned meaning
[[mr]]p1 is syntactically mergeable with a path p2 ∈ CON S&F(NL) if it differs from p2

in at most k positions and [[mr]]p1 is associated with p2.

3.3.4. Confidence

In a learning system, it is crucial to compute how confident the learner is in its
acquired knowledge, i.e. in our case in the acquired constructions. A notion of
confidence is thus required to estimate how accurate the mappings learned at dif-
ferent levels actually are on the basis of the weights stored in the corresponding
associative network. We apply a uniform approach to confidence assessment across
levels, relying on the notion of entropy. The main idea is to measure the reduction
in entropy as an estimator of how confident a learner can be in its acquired linguistic
knowledge, in particular the mappings between meaning and form. The intuition
behind exploiting reduction in entropy as a main criterion is to regard a construc-
tion as learned if a certain amount of information is acquired about it, i.e. if the
uncertainty about its possible meanings has been sufficiently reduced. Specifically,
the reduction in uncertainty is measured by the current entropy compared to the
“maximum entropy” as follows. Given an nl ∈ x and the weights wnl,j, j ∈ y we
first normalize these weights to sum up to one (because the entropy is defined on a
probability mass function). We then compute the current entropy as

H(nl) = −
|y|∑
j=1

w′nl,j logw′nl,j (3.17)

where w′nl,j, j ∈ y denotes the normalized weights. H(nl) is then compared to
the maximum entropy where each meaning is equally probable, i.e. we have no
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information about the correct meaning, by

Hmax(nl) = −
|y|∑
j=1

1

|y|
log

1

|y|
. (3.18)

An nl is considered as learned according to the entropy criterion if the proportion
of the current entropy and the maximum entropy is below some threshold θE:

H(nl)

Hmax(nl)
< θE. (3.19)

While the reduction in entropy measures the amount of information captured by
the network concerning the meaning of a given nl, i.e. it measures whether the
number of possible alternative meanings has been reduced, it does not provide a
criterion for selecting its best meaning. In addition, we therefore incorporate a
rating for ranking all possible meanings for a given nl. In case of nls without sets
of slot-filling elements, we simply utilize the weights provided by AWord and AS&F

for that purpose. For patterns containing sets of slot-filling elements, the rating
additionally covers the quality of the learned mappings. Given an nl ∈ x without
sets of slot-filling elements, the corresponding rating for each j ∈ y is computed as

rating(nl, j) = Awnl,j
. (3.20)

Recall from Section 3.2.2 that in case of a pattern nl ∈ CON S&F(NL) containing sets
of slot-filling elements, a one-to-one mapping between those sets of slot-filling ele-
ments and the argument slots in the appropriate semantic frame j is required. That
is, a different argument slot arg ∈ ARGs(j) must be associated with each set of slot-
filling elements se, se ∈ SEs(nl) according to the associative network AΦ:nl,j which
specifies the mapping between nl and j. Given an nl ∈ x containing sets of slot-
filling elements, the corresponding rating for each j ∈ y is computed by augmenting
the weight provided by the associative network AS&Fwnl,j

with the association scores
between each se ∈ SEs(nl) and its associated argument slot associated(se) in j as

rating(nl, j) = AS&Fwnl,j
+

∑
se∈AΦ:nl,j

AΦ:nl,jwse,associated(se)
(3.21)

if a one-to-one mapping between the sets of slot-filling elements SEs(nl) and the
argument slots ARGs(j) exists. Otherwise, the rating is set to zero.

Definition 8 (Learned Meaning). Let A be an associative network comprising a
form layer x, a meaning layer y and a matrix of weights W . Let m̂r ∈ y be the only
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meaning which maximizes rating(nl, j), j ∈ y as defined by equations 3.20 or 3.21
for a given form nl ∈ x. Then, m̂r it is said to be the learned meaning of nl if the
entropy criterion provided by equation 3.19 holds and rating(nl, m̂r) > θR.

3.3.5. Language learning algorithm

Slot-driven generalization as defined in Section 3.3.3 requires learned knowledge
at the lexical level and syntactic generalization in turn requires learned knowledge
at the level of slot-and-frame patterns. Hence, our approach to language learning
is incremental in the sense that results obtained at a previous learning step are
exploited within subsequent learning steps. The language learning algorithm is
therefore roughly divided into three basic learning steps:

1. Training of the word layer CONWord , acquisition of word level constructions,
i.e. lexical units and their meaning

2. Training of the slot-and-frame pattern construction layer CON S&F , general-
ization step which searches for sets of slot-filling elements

3. Training of the slot-and-frame pattern construction layer CON S&F , general-
ization step which searches for sets of linguistically optional elements

Step 1 yields item-specific knowledge about individual lexical units, while step 2
und 3 yield generalized NL patterns which are derived from NLs or patterns based on
knowledge acquired in prior learning steps. Because we propose an online algorithm,
the three basic learning steps are in principle applied to each observed example. In
particular, for each example, it is inspected if slot-driven and/or syntactic general-
ization is possible and if so performed accordingly. Because generalization in step
2 and 3 requires learned knowledge acquired within prior learning steps, slot-driven
generalization builds on the acquisition of lexical units and in turn syntactic gen-
eralization builds on slot-driven generalization. The individual learning steps are
composed of the methods described in the previous sections and are detailed in Al-
gorithm 1.
In the first step, knowledge about lexical units is acquired, i.e. the corresponding
associative network AWord is updated. In the process, all semantic referents and
lexical units are extracted from a given example and – if not yet present in the net-
work – incorporated into the word layer CONWord . New connections are initialized
by applying the strategy described in Section 3.3.1. Subsequently, co-occurrence
frequencies at the word level are captured by executing an update of the weights in
AWord with the referents and lexical units extracted from the example.
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Algorithm 1 Language learning algorithm

Input: A list of examples E = {(NL1,MR1), . . . , (NLk,MRk)}
Output: A network N representing constructions

N = an empty network

for all examples (NLi,MRi) ∈ E do
1. update the word layer CONWord
◦ units ← extract all lexical unit types from NLi

◦ referents ← extract all semantic referent types from MRi

◦ add new lexical units and referents, incorporate and initialize connections

◦ update associations between units and referents by
update(AWord , units, referents)

2. update the S&F construction layer CON S&F , slot-driven generalization
step
◦ s = preprocess NLi

◦ Pm = {p1, . . . , p|Pm|} ← {p | p ∈ CON S&F(NL) and p is slot-driven mergeable
with s}

◦ if Pm 6= ∅
p′ = p1 ⊕ · · · ⊕ p|Pm| ⊕ s

else
p′ = new path corresponding to s

end if

◦ mrs ← extract all semantic frames from MRi

◦ incorporate each mr ∈ mrs,mr 6∈ CON S&F(MR) into CON S&F(MR)

◦ incorporate p′ into CON S&F(NL), add and initialize connections

◦ update associations between p′ and mrs by update(AS&F , p
′,mrs)

◦ update all mappings between p′ and semantic frames

◦ merge identical paths

3. update the S&F construction layer CON S&F , syntactic generalization
step
◦ Pl ← p′

⋃
{p | p ∈ CON S&F(NL) and p is syntactically mergeable with p′}

◦ while Pl contains paths p 6= p′

p′ = p1 ⊕ · · · ⊕ p|Pl|
Pl ← p′

⋃
{p | p ∈ CON S&F(NL) and p is syntactically mergeable wit p′}

end while

◦ merge identical paths

end for
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In the second step, the NL of the example is first preprocessed by replacing sequences
of tokens in a set of elements by the set identifier. Afterwards, it is checked whether
the preprocessed sequence is slot-driven mergeable with paths already contained in
the network. If this is the case, it is merged with them as described in Section
3.3.1, and the resulting path is incorporated into the network. Otherwise, the se-
quence is incorporated as a new path. In any case, a new path p′ corresponding to
the sequence is incorporated into CON S&F(NL). Then, all semantic frame types are
extracted from the example and incorporated into the meaning layer at the S&F
construction level CON S&F(MR).

Example 7. For instance, imagine that the following example is observed as the
first input example when starting with an empty network:

(3.22)
NL: Mia sees candy

mr1: see(AGENT:mia,THEME:candy)
mr2: sleep(AGENT:dog)

Processing this example would yield the network state depicted in Fig. 7 (for reasons
of clarity, only an excerpt of the nodes is shown in case of CONWord(NL)).

Figure 7.: Example illustrating the incorporation of nodes and connections when
starting with an empty network.

Subsequently, an update of the associative network AS&F is executed, capturing
the co-occurrence of p′ and the semantic frame types appearing in the example. If p′

contains sets of slot-filling elements, an associative network modeling the mapping
is incorporated into the network – if not present already – for all observed seman-
tic frames containing argument slots. All mappings between p′ and the semantic
frame types observed in the example containing argument slots are then updated.
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Specifically, for each semantic frame [[mr]] derived from the input example, it is de-
termined if the lexical unit’s meaning is observed in an argument slot ARG of [[mr]].
If so, the correspondence between posse and ARG is captured by an update of the
corresponding associative network by executing update(AΦ:p′,[[mr]], posse,ARG). Oth-
erwise the fact that the lexical unit’s meaning is not observed in an argument slot
is captured by update(AΦ:p′,[[mr]], posse,⊥). Due to the fact that as a result of path
merging paths may become identical by replacing nodes with newly induced sets
of slot-filling elements, as a final step identical paths are merged (as described in
Section 3.3.1). This procedure includes combining their corresponding rows in AS&F

as well as combining the mapping associative networks.

Example 8. Consider for instance the network state depicted in Fig. 8.

Figure 8.: Example of a network representing two concrete natural language utter-
ances along with semantic correspondences.

Imagine further that the following example is observed:

(3.23)
NL: Tim sees candy

mr1: see(AGENT:tim,THEME:candy)

Processing the example would yield the network state depicted in Fig. 9 because
the NL of the input example is slot-driven mergeable with both paths and is hence
merged with them into a new path p3.
Since the path contains sets of slot-filling elements and the see predicate observed

with the input NL contains argument slots, an associative network modeling the
mapping between the sets of slot-filling elements and the argument slots in see is
incorporated into the network. The associative network is then updated by strength-
ening the connections between the first and second set of slot-filling elements in p3
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Figure 9.: Example of a network representing a syntactic pattern along with seman-
tic correspondences.

and the first and second argument slot in the see predicate, respectively. This up-
date step results from the fact that the meaning of the lexical unit appearing at
the position in the input NL corresponding to that of the position of the first and
second set of slot-filling elements in p3, i.e. “Tim” and “candy”, is observed in the
first and second argument slot of the predicate, respectively, e.g. “Tim” is observed
at the position corresponding to SE 1 and its meaning tim is observed in the first
argument slot of see and thus their co-occurrence is captured by strengthening the
corresponding connection in the mapping associative network AΦ:p3,see.

In the third and final step, the model searches for paths which are syntactically
mergeable with p′. If such paths exist, they are merged with p′ yielding a new path,
and the procedure is repeated until no more syntactic merging is possible. The
whole learning procedure is then repeated for each observed input example and,
while learning proceeds, the model’s generalization capacity increases. Specifically,
observed NLs may also be generalized without the presence of mergeable paths in
the network due to the replacement of lexical units by sets of elements, and in doing
so it is possible to directly acquire the correct meaning even in the case where an
NL is presented in an ambiguous context; this will be illustrated by an example in
the following.

Example 9. Imagine for instance that at the network state depicted in Fig. 9 the
model observes the input example
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(3.24)
NL: Mia takes candy

mr1: take(AGENT:mia,THEME:candy)
mr2 see(AGENT:mia,THEME:dog)

As a result of preprocessing which mainly replaces lexical units contained in sets
of elements by the set IDs, the NL “Mia takes candy” is directly incorporated into
the network as a generalized path (START, SE 1, takes, SE 2, END). As a result
of updating the associative network representing the mapping Φ, in the case of
take both sets of slot-filling elements are associated with appropriate slots in the
predicate. In the case of see, however, only the first set of slot-filling elements is
mapped to a slot. This is the case because “candy” does not fill any argument slot of
the observed semantic frame see(AGENT:mia,THEME:dog). A one-to-one mapping
between sets of slot-filling elements and argument slots can thus only be induced for
the take predicate, making it the only valid meaning for the new pattern. By this,
the model is able to associate a unique meaning with the generalized pattern “SE 1

takes SE 2”.

3.3.6. Retrieval of constructions

The model is able both to understand and produce language. In this chapter we
focus on language understanding (since the model is composed of linear networks,
production can be performed analogously). Given nl ∈ CONWord(NL), we can easily
determine whether a (learned) meaning for nl exists as defined in Section 3.3.4. If
this is the case, we can retrieve the meaning using the confidence measures defined
there.
In order to retrieve the meaning of a complete NL utterance, we first preprocess it

as described in the previous section, i.e. the utterance is converted into a sequence of
lexical units where units contained in sets of elements are replaced by the set id. Note
that a preprocessed utterance can match at most one path in the graph CON S&F(NL)

because each lexical unit can be only contained in one set of elements according to
definition 5 and hence replacing lexical units by set IDs is non-ambiguous. Moreover,
identical paths are merged in the graph during language learning and thus the
preprocessed sequence can match at most one of the paths contained in the graph.
If the preprocessed pattern is contained in CON S&F(NL), we can determine whether
a meaning exists and if so retrieve it. If no meaning with a rating score greater
then zero exists, the meaning is set to ⊥. If the meaning of an utterance is ⊥ or
if no corresponding syntactic pattern can be found in the network, the utterance
cannot be understood (parsed) by the model. Otherwise, the meaning of each lexical
unit at a position corresponding to a set of slot-filling elements in nl is retrieved
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from CONWord and inserted into the argument slot associated with the set (via the
associative network modeling the corresponding mapping) in the retrieved semantic
frame. Whether the retrieved meaning is a learned meaning can again be measured
as defined in Section 3.3.4.

Example 10. As an example, consider the small network depicted in Fig. 10 based
on which we want to derive a meaning for the utterance “Mia sees pizza”. First, the

Figure 10.: Example of a small network.

utterance is preprocessed, replacing the concrete elements “Mia” and “pizza” by the
set IDs SE 1 and SE 2, respectively, yielding the sequence (START, SE 1, sees, SE 2,
END), which matches path p3. Subsequently, it is determined if a meaning corre-
sponding to p3 exists, and for that purpose the rating for p3 and all semantic frames is
computed. In case of sleep(AGENT), the rating is zero because a one-to-one mapping
cannot be established. By contrast, in case of see(AGENT,THEME) such a mapping
can be established because ARG1 is associated with SE 1 and ARG2 is associated
with SE 2. Thus, see(AGENT,THEME) is identified and returned as the correspond-
ing meaning. Finally, the meanings for lexical units in the utterance which have been
replaced by set IDs are retrieved from the lexical associative network AWord and in-
serted into the appropriate argument slots (according to the mapping associative
network) in the semantic frame, yielding see(AGENT:mia,THEME:pizza).
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3.4. Experimental evaluation and discussion

We evaluated the performance of our model for the slot-and-frame pattern layer
CON S&F on a reference dataset. The reference dataset was chosen because it con-
tains natural settings where natural language utterances occur in the context of sev-
eral observed actions or events with many of these being unrelated to the utterance.
More specifically, we used a semantic parsing task for evaluation. As mentioned
previously, semantic parsing is the task of mapping NL sentences to m̂rs and has
been explored by learning from examples of NL utterances coupled with ambiguous
contextual information. This setting is hence well suited to measure the system’s
language understanding abilities. In the following, we will first present informa-
tion regarding the utilized dataset (Section 3.4.1). Subsequently, we will present
the model’s performance regarding language understanding for a fixed number of
observed examples (Section 3.4.2). We will then provide a qualitative analysis of
the acquired constructions (Section 3.4.3). Afterwards, we will examine the model’s
behavior over time, with a focus on performance in language understanding as well
as its generalization abilities (Section 3.4.4). Subsequently, we will discuss the con-
tribution of parameters incorporated in order to rate acquired knowledge (Section
3.4.5). Finally, we will verify the modeled behavior concerning fast mapping (Section
3.4.6).

3.4.1. Dataset

We used the RoboCup Soccer corpus (Chen & Mooney, 2008) for evaluation, which
has been used widely for evaluating approaches to the induction of semantic parsers
with ambiguous context information. The RoboCup Soccer corpus comprises four
RoboCup games, i.e. the RoboCup finals from 2001-20046. In this corpus, game
events are represented by predicate logic formulas, constituting the meaning rep-
resentations. The games were commented by humans, yielding the NL utterances.
More specifically, in the corpus, each NL comment is coupled with a set of meaning
representations – MR – comprising a set of possible mri ∈ MR, where the NL com-
ment corresponds to at most one mri ∈ MR. For instance, pass(purple10,purple7)
represents an mr for a passing event which might be commented as “purple10 kicks
to purple7”. However, there is no direct correspondence between the NL comments
and their corresponding mrs. These correspondences must be learned by the model

6RoboCup is an international initiative that promotes research in the field of intelligent
robotics (www.robocup.org). Games were taken from the Soccer Simulation League
(www.robocup.org/robocup-soccer/simulation). In the Simulation League two simulated teams
of agents play soccer against each other.
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instead. The situation corresponds to natural settings in which an utterance occurs
in the context of several observed actions or events with many of those being un-
related to the utterance. An example for an (NL, {mr1, ...,mrn}) pairing is given
by

(3.25)

NL: purple10 kicks to purple7

mr1: ballstopped
mr2: badPass(pink1,purple10)
mr3: turnover(pink1,purple10)
mr4: playmode(play_on)
mr5: kick(purple10)
mr6: pass(purple10,purple7)

Notice that in this dataset thematic roles are inherent in the argument order for
a given predicate, and hence we will denote them as ARG1, . . . ,ARGn where n is
the number of argument slots in the predicate. For example, in pass(ARG1,ARG2),
ARG1 denotes the actor while ARG2 denotes the recipient.
While the training data is ambiguous – i.e. the mapping between utterance and cor-
responding action is not given – the corpus also contains a gold standard. The gold
standard is a subset of the training data and comprises one meaning representation
for each comment. Some statistics for the RoboCup training dataset are presented
in Table 3.1.7

Table 3.1.: Some statistics for the RoboCup training dataset
Total number of comments 1,872
Comments having correct mr 1,539
Average number of actions per comment 2.5
Maximum number of actions per comment 12
SD in number of actions per comment 1.8
Mean utterance length 5.7
Number of tokens 10,700
Vocabulary size 443

3.4.2. Semantic parsing

We evaluated our model on a semantic parsing task on the RoboCup soccer corpus
in order to estimate its language learning abilities by applying the evaluation schema

7Numbers for mean utterance length, number of tokens and vocabulary size are in contrast to
Chen et al. (2010) only computed for comments included in the training dataset because only
these are presented to the model. Regarding the total number of comments we use one more
per game than Chen et al. (2010) in line with Börschinger et al. (2011).
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explored in Chen et al. (2010). The authors evaluated their systems using 4-fold
cross-validation on the four RoboCup games. In doing so, training was done on the
ambiguous training data (always three games in our case), while the gold standard
for a fourth game was used for testing. Results are presented by means of the F1

score which is the harmonic mean of precision and recall. Precision and recall were
computed as the percentage of m̂rs produced by the system that were correct and
the percentage of m̂rs that the system produced correctly, respectively. A parse
was considered as correct only if it matched the gold standard exactly (Chen et al.,
2010). We used the same evaluation schema using η = 0.01 (learning rate) and k =
1 (maximum number of varying positions in mergeable paths).
Recall that our algorithm includes measures to determine whether a CONWord or a
CON S&F construction should be regarded as learned. These measures are in turn
based on two thresholds – ΘE concerning the reduction in entropy, ΘR concerning
the rating –, yielding four parameters altogether since both thresholds are applied
in case of CONWord constructions and in case of CON S&F constructions. In order to
optimize these parameters, for each fold we trained the model with varying sets of
parameters on the ambiguous training data. Subsequently, we measured its perfor-
mance by means of the achieved F1 score on the gold standard games corresponding
to the games used for training. Note that disambiguated data was never used during
training, and test data was used neither during training nor during parameter opti-
mization. The parameters were then optimized with respect to the F1 score. Since
we explore an online algorithm, the number of examples necessary to yield a satis-
fying result is not known in advance. During parameter optimization, for each fold
we used the incorporated training games three times since our algorithm is based on
three basic learning steps, and hence an offline algorithm performing each step one
after another may use each fold three times. The determined values found during
the optimization process averaged over the four folds are: ΘE at CONWord = 0.74
(SD: 0.02), ΘR at CONWord = 0.04 (SD: 0.01), ΘE at CON S&F = 0.44 (SD: 0.08),
ΘR at CON S&F = 0.02 (SD: 0.0). Notice that the parameters are rather consistent
across folds with the exception of the entropy criterion at the S&F construction
level.
Our goal is the induction of a construction grammar given ambiguous examples, i.e.
to generalize concrete examples to slot-and-frame patterns. Without performing
generalization, a learner may at most understand NLs which were presented during
training. However, since the data are ambiguous rote learning is not actually possi-
ble. Rather, in several cases the learner further needs to choose one out of several
competing alternative meanings. Thus, we created a simple “rote learning” strategy
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as a baseline. For this, we computed F1 by parsing an utterance in the test data –
if it had also been observed in the training data – by choosing one of the meanings
observed with it randomly.8 Thus, the baseline indicates the number of examples
which can be parsed without performing generalization. The result is presented in
Table 3.2 along with the results achieved by our model on the semantic parsing task.

Table 3.2.: F1 scores for different construction grammars using different datasets and
with varying times training data was seen.

Grammar #times training data was seen F1 (%)
Examples (“rote learning”) 1, 2 or 3 7.5
Our model 1 77.5
Our model 2 or 3 84.3
Our model without 3 81.6
syntactic generalization

As can be seen the value is quite low with 7.5%. Further, the percentage of ut-
terances appearing in the test data which also appear in the training data averaged
over all folds is 16.3%, indicating that a large proportion of the NLs contained in
the test datasets are novel.
We tested our model on the semantic parsing task using the training data for each
fold between one and three times (Table 3.2). The results reveal that even after the
first run the model is already able to perform a good deal of generalization, yielding
F1 = 77.5%. After the second run, generalization is further increased, yielding F1 =
84.3%. The value then settles at 84.3% (precision: 96.6%, recall: 75%), indicating
that (up to) two runs are already sufficient as an additional run does not further im-
prove semantic parsing results. In order to investigate the impact of the individual
generalization steps on the F1 score, we also tested the model using three training
runs without performing the syntactic generalization step. The result of 81.6% in-
dicates that the large increase in F1 achieved by our model is mainly due to the
slot-driven generalization mechanisms. While performing syntactic generalization
improves the results further, its contribution to the overall F1 score is compara-
tively little.
The comparatively small contribution of syntactic generalization may be due to the
fact that syntactic generalization requires previous establishment of meanings at the
level of S&F patterns. For example, performing slot-driven generalization in case
of two patterns “SE 1 passes to pink6” and “pink5 passes to SE 2” into a general-

8Note that the low percentage is to some extent due to varying capitalization for player names.
While player names where typed starting with a capital letter in case of two of the games, they
did not in the remaining two games. We did not lowercase input data because we neither did
so during model training.
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ized pattern “SE 1 passes to SE 2” may yield the additional understanding of all NLs
instantiating “SE 1 passes to SE 2” (assuming that its correct meaning has been es-
tablished). By this, a high increase in F1 may be achieved. In contrast, merging two
patterns “SE 1 shoots toward the goal” and “SE 1 shoots for the goal”, both already
associated with a meaning kick(ARG1) as required for syntactic generalization, into
a pattern “SE 1 shoots SL1 the goal” would not yield an increase in F1 with respect
to this pattern. This is the case because subsumed patterns could have been parsed
already before performing syntactic generalization. Yet, it yields a more compact
grammar. Further, in case of other patterns an increase may be achieved because
the concrete lexical units “toward” and “for” would be replaced in all patterns by
the induced set. For instance, in a pattern “SE 1 kicks for the goal” contained in
the graph, “for” would be replaced by SL1, yielding the additional understanding of
instantiations of the pattern “SE 1 kicks toward the goal”. However, this effect may
be moreover less efficient in case of syntactic generalization – and thus an additional
reason for its comparatively little contribution with respect to F1 – because less
grouping of elements took place in case of linguistically optional sets compared to
slot-filling sets. In particular, in case of seeing the training data three times, the
average number of elements (averaged over all folds) contained in a linguistically
optional set was 3.1. By contrast, the average number of elements contained in a
slot-filling set was 28.1 and hence about nine times higher. Thus, less productivity
in case of syntactic merging was observed.

3.4.3. Qualitative analysis of acquired constructions

The mrs contained in the RoboCup soccer corpus conform to a simple CFG. In the
following, we will present a qualitative analysis of constructions induced with respect
to this CFG. The CFG incorporates only two non-terminals referring to arguments:
∗PLAYER mapping to all players and ∗PLAYMODE mapping to different playmode
types. The grammar further incorporates nine predicates; Table 3.3 lists these
predicates along with their frequencies in the training dataset and the number of
comments annotated with them in the gold standard.
Corresponding to the *PLAYER non-terminal, our model induced sets of slot-

filling elements grouping players. More specifically, in three out of four folds players
were grouped into one set of slot-filling elements while two distinct sets of slot-filling
elements grouping different players were established in the remaining fold for the
observed NL data. In turn, these sets of slot-filling elements were typically mapped
to appropriate argument slots, i.e. to argument slots in predicates requiring an
instance of *PLAYER as an argument. In doing so, the learning algorithm was also
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Table 3.3.: Predicates in the RoboCup corpus along with their counts in the training
dataset and the number of comments annotated with them in the gold
standard, and the five most frequent verb forms present in the training
data.

Predicate #occurrences #comments
playmode(*PLAYMODE) 234 53
turnover(*PLAYER,*PLAYER) 694 121
kick(*PLAYER) 829 71
ballstopped 940 1
pass(*PLAYER,*PLAYER) 1,278 1,068
steal(*PLAYER) 101 46
block(*PLAYER) 44 9
badPass(*PLAYER,*PLAYER) 505 160
defense(*PLAYER,*PLAYER) 50 10
Verb form #occurrences
passes 603
kicks 390
makes (as in “makes a pass”) 153
picked (as in “picked up the ball”) 109
intercepts 58

able to find lexical variants for the same entity, for example grouping “Pink goalie”
and “Pink1”, both mapping to pink1 in the same set of slot-filling elements.
The second non-terminal – ∗PLAYMODE – appears only in the playmode predicate.
This predicate can not be represented correctly by slot-and-frame patterns in our
model due to the fact that instances of ∗PLAYMODE are composed of several
individual parts which in turn correspond to both the predicate and an argument.
For instance, two examples describing a playmode event taken from the gold standard
are given by

(3.26)
NL: freekick from the purple team

MR: playmode(free_kick_l)

NL: pink team scores

MR: playmode(goal_r)

As can be seen, in both cases the whole NL maps to the complex argument. There-
fore, a correct slot-and-frame pattern cannot be derived. In two out of the four folds
a set of slot-filling elements was induced (incorrectly) which mapped to the slot in
the playmode predicate. For instance, in case of the second example “pink team
scores“ a set of slot-filling elements SE = {“pink”,“Purple”} and a pattern “SE team
scores” was established along with its corresponding meaning playmode(ARG1), SE
→ ARG1.
Averaged over all folds, our model extracted 377.5 patterns. Table 3.4 shows the
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averaged number of patterns grouped by the predicates they refer to.

Table 3.4.: Number of patterns associated with the individual meanings averaged
over all folds. An example for an extracted N̂L is provided for each
meaning. In case of playmode SE refers to a set of slot-filling elements
grouping the lexical units “pink” and “Purple”. In all other N̂Ls SE refers
to a set of slot-filling elements grouping players.

Associated meaning Avg #patterns Example of an extracted N̂L
pass 77.25 (SD: 22.4) SE fires a pass to SE
kick 41 (SD: 7.4) SE dribbles the ball
badPass 40.25 (SD: 11.6) SE makes a bad pass

that was intercepted by SE
turnover 20.25 (SD: 4.0) SE turns the ball over to SE
steal 7.75 (SD:2.2) SE steals the ball
block 5.5 (SD: 2.2) SE blocked the ball
playmode 3 (SD: 1.7) SE team scores
defense 0 –
ballstopped 0 –
⊥ 182.5 (SD: 40.1) The shot was just a bit wide of the goal

Averaged over all folds, our model measured 182.5, i.e. about 50%, of the extracted
patterns as meaningless. In fact, about one fifth of the comments in the corpus actu-
ally cannot be expressed correctly by the given predicates (Chen & Mooney, 2008),
for instance, comments like “this way the game is going” which do not describe any
action. Yet, the model also regarded various patterns as meaningless for which a cor-
responding meaning could be in principle determined. For instance, playmode events
such as “free kick by the purple team” were often associated with ⊥. This seems to be
due to the fact that the model is not able to induce correct slot-and-frame patterns
for playmode, as already discussed above. Token frequency may be a further reason,
but, for instance, – relating back to Table 3.3 – playmode events were commented on
more frequently than steal and block events. Yet, fewer patterns were established.
In order to further investigate to what extent the result in case of playmode is de-
pendent on the structure of the predicate, we performed the computations again by
modifying the logical vocabulary such that, e.g. playmode(free_kick_l) would be
represented as free_kick(l). On average, using this modification 8.5 patterns were
established referring to modified playmode events. Thus, the mapping of playmode
events to ⊥ is indeed to some extent due to its predicate structure. However, mod-
ifying playmode did not result in a higher F1 score (note that an additional pattern
can only improve F1 if NL instantiations of it appear in both the training and the
test data for a fold). Furthermore, patterns containing more sets of slot-filling ele-
ments than required by the appropriate predicate were associated with ⊥ since no
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one-to-one mapping could be extracted. For example, “SE 1 tries to pass to SE 2 but
was intercepted by SE 3” was mapped to ⊥ since three sets of slot-filling elements
were established but the appropriate predicate badPass contains only two argument
slots.
As can be seen in Table 3.4, for each predicate between 0 and 77.25 patterns were
extracted averaged over all folds. This may be the case because some events in the
games were commented on more frequently than others (cf. Table 3.3). For exam-
ple, pass events were typically commented on while ballstopped events were usually
not. As indicated by the high precision of 96.6%, the derived meanings for NLs that
were parsed by our model were mostly correct. The few erroneous parses basically
included a confusion of badPass and turnover on the one hand and turnover and
steal on the other hand because these events often follow each other in the games.
The sets of linguistically optional elements induced by our model were mostly ap-
propriate with respect to the predicate logic formulas, i.e. typically the exchange of
their elements actually did not cause a change in the meaning of NL patterns. Av-
eraged over all folds, 12 sets of linguistically optional elements were induced by the
model. To illustrate the nature of induced sets of linguistically optional elements,
two constructions derived by our model and their included sets of linguistically op-
tional elements are depicted in the following

(3.27)

N̂L SE 1 SL1 SL2 to SE 2

m̂r pass(ARG1,ARG2)

Φ SE 1 → ARG1

SE 2 → ARG2

N̂L SE 1 makes a SL3 pass to SE 2

m̂r pass(ARG1,ARG2)

Φ SE 1 → ARG1

SE 2 → ARG2

where

SL1 = [passes, kicks],
SL2 = [forward, backward, off, back, up, out],
SL3 = [short, quick, dangerous, cross],

and in both cases SE 1 and SE 2 correspond to the same set of slot-filling elements
grouping players.
Altogether, our model thus accounted for the input data successfully in that it pro-
duced a compact grammar, allowing precise parsing.

3.4.4. Learning over time

In order to study the learning behavior over time, we monitored the performance of
our model at different numbers of examples seen. Fig. 11 shows F1, precision and
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recall over the number of examples observed in steps of 100. The diagram reveals
that the precision remains quite constant at levels between 90% and 100%, while
the recall steadily increases over time, showing a jump at around 1,200 examples
observed and coming to a plateau at about 1,300 examples observed. The reason
for this jump can be seen in Fig. 12, which plots the size of the grammar compared
to the number of NL types seen over the number of examples observed. While
the number of observed NL types increases steadily, the number of stored grammar
patterns increases less steadily. In fact, from 100 examples on, generalization is
occurring, leading to a much slower increase in the number of patterns compared to
the increase in the number of NL types observed. This shows that generalization
is effectively occurring, yielding more generalized patterns which in turn yield an
increased recall (see Fig. 11).
During further processing of the first 1,200 examples, the number of stored NL
patterns increases up to slightly less than 400 patterns which is only about half of
the number of observed NL types so far.

Figure 11.: Change in F1, precision and recall over the number of observed examples.

After the first 1,400 examples seen, the model already achieves a high F1 score of
approximately 77%. After 1,700 examples, the model achieves an F1 score of 80%,
while the highest result of 84.3% is first achieved after 2,900 example are observed.
While processing examples, F1 fluctuates slightly but does not drop beyond 80%,
indicating that already acquired knowledge is still refined but not lost (severely)
during further processing of examples.

Overall, generalization yielded a large reduction in the grammar size; the final
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Figure 12.: Number of observed and stored NL patterns over time.

number of NL patterns is less then 40% of the number of observed NL types. The
main effect in the reduction in grammar size is due to slot-driven generalization,
while syntactic generalization yields a comparatively small effect as can be seen in
Fig. 12. This is in line with the previously described results regarding their effect
on the F1 score: the slot-driven generalization step, which yields a larger decrease
in grammar size also leads to an important increase in F1. By contrast, syntactic
generalization, which yields only a comparatively small effect on grammar size, leads
to a comparatively small effect on the obtained F1 score.

3.4.5. Parameters and confidence

In this section we discuss the suitability of our entropy and rating criteria as indica-
tors of the confidence of the model in its acquired knowledge, and investigate how
the employed parameters influence model performance. For this, we first optimized
the parameters for the entropy and rating criteria on training data as described in
Section 3.4.2. Fig. 13 shows F1 over the number of examples observed for three
conditions used to determine whether the learner is confident about some acquired
knowledge: i) applying only the entropy threshold, ii) combining the entropy thresh-
old with the rating criterion and iii) using the rating criterion only.

The results reveal that using only the entropy as confidence criterion, the perfor-
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Figure 13.: Number of observed and stored NL patterns over time.

mance in terms of F1 is suboptimal, peaking at around 70%. By contrast, computing
confidence on the basis of the rating criterion as well as the combination of rating
and entropy criteria yields F1 scores of around 84%. Interestingly, the results show
that there seems to be no significant contribution from the entropy-based criterion
since the results of the combined measure is comparable to the condition using the
rating criterion only.
In order to investigate the influence of each parameter with respect to its impact
on the model, we study the influence of each parameter by varying it while holding
the value of the other parameters constant by using the average values obtained in
Section 3.4.2. The results for varying the rating criterion in case of both word and
S&F constructions are illustrated in Fig. 14; they show that while there is some
fluctuation, the impact of varying the rating threshold is rather low.

The results for varying the entropy threshold in case of both word and S&F
constructions are shown in Fig. 15.

In case of CONWord , using very low thresholds results in very low F1 scores.
This is the case because – due to referential uncertainty – the entropy concerning
word meanings cannot be reduced sufficiently and hence the model cannot perform
generalization. By decreasing the required reduction in entropy for a word to be
measured as learned, i.e. using a higher threshold, the F1 score increases to values
of above 80%. In case of the S&F construction level, using very low thresholds again
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Figure 14.: Change in F1 when varying a rating threshold while keeping the remain-
ing parameters constant

prevents generalization from being performed at all. However, since the threshold
at CON S&F level only guides syntactic generalization, the model is still able to
perform slot-driven generalization, such that a low threshold basically shows how
the model would perform without applying syntactic generalization at all. As in
case of word level constructions, decreasing the required reduction in entropy for
S&F constructions to be measured as learned, i.e. using a higher threshold, allows
the model to perform generalization. Then, F1 increases, reaching a top value of
84.8% by using thresholds of 0.65 and 0.7. Yet, F1 fluctuates and even drops below
the F1 score achieved without performing syntactic generalization, indicating that
existing knowledge has been deteriorated. That is, the model merged patterns which
shouldn’t have been merged. However, the highest amount of deterioration yields a
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Figure 15.: Change in F1 when varying an entropy threshold while keeping the re-
maining parameters constant

drop of about 8% absolute in F1 compared to performing no syntactic generalization,
and it only takes place by using a very high threshold. In particular, F1 drops to
about 74% only by using 0.95 as the threshold, i.e. by requiring only very little
reduction in the entropy concerning the meanings of S&F constructions in order to
perform syntactic generalization.
Taken together, while the model’s performance depends on the employed criteria,
varying one of them – at least in combination with the other parameters – did not
prevent the model from learning language. In particular, all resulting F1 scores were
at least above 74%, which is – relating back to Section 3.4.2 – a high increase in
F1 when compared to the naive rote learning strategy which yielded an F1 score of
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7.5%.

3.4.6. Fast mapping

Relating back to section 3.3.1, we incorporated a disambiguation bias into our model,
i.e. our model relies on a strategy for initializing weights in AWord which biases the
model to associate novel words with novel objects. This bias was incorporated to
model a behavior observed in psycholinguistic studies with children within the scope
of a so-called referent selection task. That is, when children – at least at the age
of two and older – are presented with a novel object along with one or more known
objects, and are asked for the referent of a novel word, they consistently choose
the novel object (e.g. Golinkoff et al., 1992; Markman & Wachtel, 1988; Horst &
Samuelson, 2008; Bion et al., 2013). However, while this disambiguation mechanism
allows children to map a novel word correctly to a novel object under referential un-
certainty, its relation to word learning is not completely understood. In contrast to
referent selection tasks, retention tasks investigate how much a child actually learns
about a novel word from a single or few exposure(s) as experienced within referent
selection tasks. In order to investigate retention, typically a number of referent se-
lection tasks are performed first. Subsequently, several of the previously introduced
novel objects – and sometimes furthermore a completely novel foil object – are put
together, and the child is then asked to select the object corresponding to a previ-
ously introduced novel word. Several studies suggest that retention occurs directly
after referent selection tasks were performed (e.g. Golinkoff et al., 1992; Dollaghan,
1985; Wilkinson & Mazzitelli, 2003). In particular, Golinkoff et al. (1992) investi-
gated retention in 30-month old children. Experiments included three blocks, each
in turn consisting of four trials. In each trial, subjects were asked for both a familiar
and a novel object. In trial 1 children were presented with four objects out of which
three were familiar and one was a novel object. The goal was to test whether chil-
dren would attach a novel name to the unnamed novel object rather than to familiar
objects. Subsequently, in trial 2 children were presented again with four objects:
two familiar objects, a novel exemplar of the new object presented in trial 1 and a
completely novel object. Children were asked to select the object the name already
presented in trial 1 refers to. The goal of trial 2 was to investigate whether children
had learned the novel name well enough to extend it to another exemplar. In trial
3 children were presented with two familiar objects along with the novel object uti-
lized in trial 1 and a completely novel object. They were then asked to select the
completely novel object by asking for a novel name. The purpose of this experiment
was to investigate whether children would attach the novel name rather to the novel
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unnamed object than to the previously named one, i.e. whether they would act as if
the previously named object already had a name. Finally, in trial 4 a novel exemplar
of the novel object from trial 3 was put together with two familiar and a novel foil
object, and children were asked to select the object named in trial 3. The question
was – as in trial 2 – whether children would make an extension to a new exemplar
of a previously named object. Children performed correctly well above chance in
all trials, suggesting that children can disambiguate the meaning of several novel
objects – six in this experiment – in a short period of time, and that name-object
links which were established by only two indirect exposures were strong enough to
block further novel names from being attached to the object (Golinkoff et al., 1992).
However, while these results may provide further insights concerning the character
of novel word-objects mappings, they did not investigate whether the established
links were stable enough to be retained after some delay. Further studies addressed
this issue by investigating retention over a longer period of time, indicating that
fast mapped words are forgotten rapidly (e.g. Horst & Samuelson, 2008; Vlach &
Sandhofer, 2012). In particular, Horst & Samuelson (2008) investigated retention
in 24-month old children with a delay of five minutes between referent selection and
retention tasks. The main focus of their work was to investigate whether retention
as found in studies without a (long) delay between referent selection and retention
tasks was simply a short-time effect or due to retrieval from long-term memory,
where according to the authors only the latter would suggest that the word-object
pairs were actually learned. While children performed well in the referent selection
tasks, they performed poor in the retention tasks (Horst & Samuelson, 2008). Yet,
it must be noted that the ages of the children tested within the Horst & Samuelson
(2008) and the Golinkoff et al. (1992) studies differed, and that children’s ability in
case of both disambiguation and retention appears to be age-related (Bion et al.,
2013). In particular, in the experiments of Bion et al. (2013) children at the age of
18 months were not able to perform either one reliably. By contrast, children at the
age of 24 months were able to perform disambiguation reliably, and children at the
age of 30 months furthermore showed fragile retention skills. The authors concluded
that children’s disambiguation skill evolves between the age of 18 and 30 months,
and that while this skill is related to word learning, word learning does not depend
on it (Bion et al., 2013).
In the following, we will present experiments aiming to verify that the modeled dis-
ambiguation bias can indeed yield the desired behavior. Addressing this issue, we
perform experiments with the word layer CONWord employed in our model regard-
ing fast mapping. Importantly, training of AWord continued during these experi-
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ments due to the fact that children do not stop learning during referent selection
or retention experiments either. Specifically, we investigated the initialization of
weights by replicating the Golinkoff et al. (1992) task described above. Since in
their experiments retention was investigated after a very short period of time, the
experiments basically give insights concerning the characteristics of newly estab-
lished word-object mappings, and we thus replicate them in order to investigate
whether our model is able to initialize mappings accurately.
In order to perform the experiments, we first needed an initial vocabulary of familiar
words and referents. For that purpose we trained CONWord using 100 dummy words
wordx along with their corresponding dummy meanings objectx, 1 ≤ x ≤ 100. In
particular, we performed 10,000 update steps of the form update(AW , nl,mrs) (η
= 0.01) where nl was a randomly selected word wx, and mrs contained the object
ox corresponding to wx along with two competing randomly selected objects other
than ox. The model was then evaluated on three blocks of referent selection and
retention trials analogous to those previously described as performed by Golinkoff
et al. (1992) (except for a slight modification: we did not use a new exemplar of
an object in trial 2 and 4 but the object again. This was done because currently
types of objects are not modeled within the underlying predicate logic). In all cases,
an update of AWord was first executed with the presented word and objects, and
in case of novel words and objects weights for newly incorporated connections were
initialized as described in Section 3.3.1. Subsequently, it was checked whether the
correct object was retrieved as the meaning of the presented word, i.e. if the weight
between the word and the object was higher than the weights between the word
and all competing objects. In doing so, we did not apply the learning criteria in-
troduced in Section 3.3.4 but simply tested whether the model showed a preference
for the correct meaning. Our model was able to select the intended referent cor-
rectly in all trials and furthermore performed all retention tasks correctly, showing
the same pattern for choosing objects as the children in the experiments. These
results indicate that by explicitly building a disambiguation bias into our model it
is able to utilize previously acquired knowledge on the word layer efficiently: very
much like the children in the study our model is able to i) determine the meaning
of several novel words in a row presented in an ambiguous context, and ii) establish
name-object links from one or two indirect exposures which are strong enough to
(temporarily) block the name from being attached to another novel object as well
as another name from being attached to the object.
However, while the results indicate that the disambiguation bias can yield the de-
sired behavior in initializing novel word-object connections, we cannot make direct
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predictions concerning relations between fast mapping and word learning. This is
the case because we do not distinguish between working memory and long-term
memory (processes). Hence, testing the model on a retention task with a delay
as explored by Horst & Samuelson (2008) would not be comparable to behavior
observed in children since waiting for some time would not yield a change in the
model’s behavior. Thus, fast mapping would again simply be tested with respect
to short-time retention. However, the model might be extended addressing these
issues, and then experiments concerning long-time retention may yield further im-
plications concerning relations between fast mapping and word learning. Notice that
in the performed experiments the results do not indicate that actual word learning
occurred. In particular, the establishment of correct correspondences between novel
words and novel objects does not mean that they were actually learned by the model
according to the employed criteria (cf. Section 3.3.4). Recall that we did not ap-
ply these in the previously described experiments but tested whether the model
showed a preference regarding the correct meanings. Compared to the weights for
associations established during the vocabulary acquisition phase, weights for newly
established associations during the referent selection trials were comparatively low,
indicating that while the model is able to map novel words correctly to novel objects,
the resulting new connections are rather weak and cannot be measured as learned
word-object pairs, which is in line with the claim of Horst & Samuelson (2008).
However, recall that the disambiguation bias is designed by initializing novel con-
nections based on weights contained in the network, and these weights can increase
over time. Thus, after longer learning periods weights for newly established connec-
tions might already by weighted such that they might be measured as learned by
the employed criteria. Yet, here it must be noted again that we do not distinguish
between short-time and long-time learning processes, i.e. even if our disambiguation
bias would yield high initial weights for newly established connections, this would
rather affect working memory and activations would likely decay rapidly, probably
yielding little word learning with respect to long-term memory. However, the fact
that weights for newly established connections can be greater at a greater number
of examples observed, i.e. the disambiguation bias may become more effective, is
somehow in line with the finding that disambiguation and retention appear to be
age-related and evolve over time (Bion et al., 2013).
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3.5. General discussion

In this chapter we have presented a formal, computational model for the gradual
emergence of slot-and-frame patterns. The model unifies learning mechanisms pro-
posed within usage-based approaches as being implicated in language acquisition and
construction grammar with the idea of cross-situational learning in order to enable
language learning in the presence of referential uncertainty. We have presented em-
pirical results showing how the model was able to acquire a simple grammar starting
from ambiguous input examples. In the following, we first relate the performance
and functionality of our model to that of other algorithms and models learning from
ambiguous context information (for a detailed overview of related computational
models please see Section 2). Afterwards, we discuss the design of our model with
respect to learning mechanisms proposed within psycholinguistic theories and cross-
situational learning. Subsequently, we discuss some possible experiments as well as
limitations of our model, possible extensions and future work.

3.5.1. Semantic parsing with ambiguous context information

In Section 3.4.2, we have shown that our model can be applied to a semantic pars-
ing task. In particular, we evaluated the language learning capability of our model
on the RoboCup soccer corpus which has been utilized by several work in order to
evaluate approaches to semantic parsing in NLP. The evaluation scenario has been
designed with respect to measuring performance, i.e. the goal is to achieve a high
value in F1. However, with respect to evaluating a computational model, cognitive
plausibility becomes an important (additional) criterion. In fact, if children are not
able to solve a certain task (at a certain age), then this should also be the case for
a computational model for this learning task. Hence, a model showing worse per-
formance on a certain learning task may in fact capture child language acquisition
more plausibly.
In contrast to our model, the parsers introduced by Börschinger et al. (2011) and
Chen et al. (2010) are induced by iterating over the full training dataset for several
times in batch mode. Specifically, our model processes each example directly, i.e.
adapts its knowledge directly and thus an incorrect decision may yield errors that
cannot be corrected during further learning steps. However, processing examples
online, our model achieved an F1 score of 84.3% by processing the training data
twice, requiring only a small portion of training data to achieve its maximum re-
sults in contrast to the system of Börschinger et al. (2011), which needed on average
76 iterations for each fold. Notice, however, that the performance of our model de-
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pends on the incorporated parameters and that unlike Börschinger et al. (2011) and
Chen et al. (2010) we used disambiguated training data to optimize the employed
parameters. Hence, direct comparisons of the achieved F1 scores are rather difficult.
Yet, the F1 scores achieved by our model show that – depending on the chosen pa-
rameters – it can be successfully applied to induce a semantic parser from ambiguous
input. The fact that our model learns in an online fashion is a relevant feature of our
model compared to systems which work by iterating over the full training dataset
for several times in batch mode as this is both cognitively implausible and compu-
tationally expensive. In particular, as we – in contrast to Börschinger et al. (2011)
and Chen et al. (2010) – attempt to model human language acquisition skills, taking
into account constraints regarding memory and processing of the infant learner is
important (Pearl et al., 2011). Furthermore, the ability to learn online is interesting
in case of several real-word applications, e.g. in the context of robotics, by aiming at
the development of adaptive systems which are able to perform “life-long” learning.
Similar to the work presented in this chapter, Kwiatkowski et al. (2012) addressed
a semantic parsing task from the perspective of cognitive plausibility. In particular,
they proposed a probabilistic model which was able to induce a semantic parser by
processing examples one by one, and the authors report that their model outper-
formed a state-of-the-art semantic parser. However, they didn’t use the RoboCup
dataset for evaluation and therefore we cannot compare the models’ performances
directly.
In Gaspers & Cimiano (2012), we introduced an adapted version of the model pre-
sented in this work, which derived syntactic patterns from unsegmented phoneme
sequences instead of sequences of words. In this work, we did not investigate learn-
ing from speech but applied grapheme-to-phoneme conversion. As we were only
interested in how the model could be augmented to handle unsegmented phoneme
sequences, we applied only the slot-filling generalization step without the weight
initialization that mimics fast mapping, and utilized only the threshold concerning
the weights. The model achieved an F1 score of 81.1% on grapheme-to-phoneme
converted RoboCup data in case of a single pass over the dataset. Thus, the mech-
anisms introduced within our model may yield a useful basis for further extensions,
e.g. extending the model to work with a speech signal instead of sequences of words
where words are not given, but have to be segmented out of the continuous speech
stream.
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3.5.2. Usage-based language acquisition

Both construction grammar and usage-based approaches assume language learning
to proceed gradually from item-based and formulaic to abstract linguistic knowledge.
Specifically, tracing back to the verb-island hypothesis proposed by Tomasello (1992)
and several supporting studies with infants (e.g. Pine & Lieven, 1997; Tomasello,
2000b; Lieven et al., 1997), such approaches assume that children early on main-
tain an inventory of lexically specific and item-based constructions. These are then
gradually generalized on a verb-specific basis by replacing concrete lexical items
with slots which can be filled by (a restricted group of) words or short sequences of
words (Tomasello et al., 1997), yielding verb-specific predicate structures, i.e. verb-
islands. It is not known in detail how children induce such slots, but one hypothesis
is that they observe type variation in a position of otherwise identical utterances
(Tomasello, 2000a). In general, in usage-based theories type frequencies are as-
sumed to be involved in the generalization of linguistic knowledge along with token
frequencies. While type frequencies guide the productivity of a construction and
thus abstraction (e.g. Bybee, 1995), high token frequencies yield entrenchment of
utterances (e.g. Bybee & Scheibman, 1999), and hence learning of constructions as a
whole. It is not known what amount of type variation is required in order to achieve
productivity/generalization of (a particular kind of) constructions, and the required
amount may decrease over time, that is, less type variation in slots may be needed
later on (Tomasello, 2000a). In this chapter, we have formalized these ideas and
presented a precise algorithm for an item-based induction of slots. Specifically, in
line with usage-based approaches, in our model NL utterances are first incorporated
into the network as a whole. Later on, already incorporated NLs and (partially)
generalized patterns as well as newly observed NLs may be merged into patterns
by inducing slots. In our model, induced slots are at first likely restricted to very
few lexical units since our model can induce a slot-filling set based on type variation
encompassing only two lexical units, thus creating highly pattern-specific slot-filling
sets. While learning proceeds, slot-filling sets are extended and merged, yielding
more general slot-filling sets and more general and more productive patterns. As
already illustrated by example 9, at later learning steps the model is able to gener-
alize over observed NLs directly without the additional observation of another NL
showing variation in the surface structure. The generalization processes employed
in our model allow for the establishment of an inventory of (partially) generalized
slot-and-frame patterns and NLs by gradually merging and generalizing NLs and
patterns with increasing productivity.
While type and token frequency are strongly involved in the employed generaliza-
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tion processes, we furthermore rely on information regarding the meaning derived
from the context based on cross-situational statistics. In particular, in our model
high token frequency coupled with (high) type variation regarding a position is not
sufficient for a group of NLs in order to be generalized. In fact, merging and gen-
eralization are rather conservative in the sense that two NLs are only merged if a
consistent meaning can be identified. In our case, a consistent meaning is identified
if either those NLs vary in one position and this position corresponds to a slot in a
corresponding predicate (slot-driven condition) or both NLs vary in one position and
both correspond to exactly the same meaning at the S&F construction layer (syn-
tactic condition). Otherwise, no generalization is performed. In particular, during
slot-driven generalization, only such slots are induced which correspond to semantic
roles required by the corresponding meaning, and this in turn depends on the ability
of extracting this meaning from an ambiguous context. Specifically, knowledge con-
cerning the meaning both of the corresponding predicate as well as the concerned
lexical units is required, and thus – in line with emergentist approaches to language
acquisition (Behrens, 2009) – more complex units, i.e. S&F patterns, emerge from
simpler ones, i.e. words. As already discussed and illustrated by Example 3.16, we
additionally utilize non-linguistic context information and require learned knowledge
in order to avoid generalization errors.
Token frequency of nls (complete NLs or lexical units) is incorporated into the gen-
eralization process in the sense that an nl has to be observed several times in order
to be estimated as learned, and token frequency coupled with the observation of
meanings yields entrenchment of the correspondences between nl and the concur-
rently observed meaning(s) and therefore learning. However, high token frequency
is not sufficient in order to derive a meaning for an nl because this requires ad-
ditionally that it must be possible to extract a corresponding meaning out of the
ambiguous context. In particular, the emergence of a meaning mr for an nl relies
on the frequency of co-occurrence of nl and mr compared to the frequency of the
concurrent observation of nl and competing meanings. That means that an nl and
its meaning must be seen multiple times together to yield entrenched pairings of
form and meaning.
While – as suggested within the framework of usage-based approaches – type varia-
tion is utilized in our model in order to determine positions in NLs which may corre-
spond to a slot, the amount of variation needed in order to induce a slot is quite low:
merging is already possible if two different types are observed at a position (under
the condition that further constrains concerning the meanings are satisfied). Higher
type frequency may yield comparatively higher productivity in resulting slots since
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more lexical units are grouped initially, but an increase in productivity of a slot may
also be achieved through merging of slot-filling sets.

3.5.3. Cross-situational learning

Because we attempted to enable our model to – like a child – learn language un-
der referential uncertainty, we combined learning mechanisms proposed within the
usage-based account to language acquisition with the idea of cross-situational learn-
ing, and we have shown how the model was able to establish correct form-meaning
pairings in the presence of referential uncertainty. To model cross-situational learn-
ing, we applied associative networks and hence – in line with supporting evidence
from psycholinguistic experiments (e.g. Yu & Smith, 2007; Smith et al., 2011)
and several previous computational models addressing cross-situational learning (cf.
Section 2.5) – our model implements the learning mechanism basically by track-
ing co-occurrence statistics between all nls and mrs in a given ambiguous scene.
Moreover, it incorporates a disambiguation bias. However, recently some research
has also reported evidence that human learners may form a single “best” hypothesis
only, i.e. they track one referent per word, which they test until it is disconfirmed,
hence indicating a “fast mapping” procedure rather than a gradual, statistical one
(Medina et al., 2011; Trueswell et al., 2013). While evidence has been found with
respect to both accounts it remains rather difficult to unify results since studies
differ along several dimensions such as methodology or stimuli. Moreover, cross-
situational learning studies are often performed with adult participants who may
apply learning mechanisms children do not (yet) have access to. In particular, at
least very early on it is almost necessary that learning is associative since there is
little lexical knowledge available which may facilitate other learning mechanisms
(McMurray et al., 2012). For instance, recall from Section 3.4.6 that children’s dis-
ambiguation skill appears to evolve between the age of 18 and 30 months (Bion et
al., 2013). Investigating the underlying learning mechanisms can also be approached
from a modeling perspective. In particular, as mentioned in Section 2.5, Kachergis
et al. (2012b) fitted two different models, i.e. an associative one maintaining approx-
imately all co-occurrences which incorporates competing familiarity and uncertainty
biases (Kachergis et al., 2012a) and one maintaining a single hypothesis only, to data
obtained from a cross-situational learning task with human subjects, and found that
the human learning curves were better fitted by the associative model.
An interesting point for future work would be a more detailed analysis of the model’s
abilities to use cross-situational statistics, in particular by comparing its behavior
to that observed for human learners in cross-situational learning tasks. While with
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respect to modeling child language acquisition applying an associative mechanism
appears to be appropriate, further cross-situational learning mechanisms could be
incorporated and compared as well as further learning mechanisms, e.g. making use
of social cues. Moreover, it would be interesting to see how the amount of referen-
tial uncertainty affects the model’s speed of learning because, for instance, evidence
exists that a higher degree of referential uncertainty amounts to a slower rate of
word learning in humans (Smith et al., 2011). However, with respect to the current
work the focus is not on comparing different cross-situational learning mechanisms.
Rather, our goal is to explore how such a mechanism can be combined with a rule
learning mechanism and on showing how the same mechanism can be applied consis-
tently at different levels. In particular, in contrast to previous computational models
(cf. Section 2.5), which formalized the idea of cross-situational learning typically
by focusing on modeling correspondences between single words and referents, we
explored how cross-situational statistics can additionally be utilized in the process
of learning syntactic patterns. Applying this mechanism beyond exploiting such
simple mappings appears to be particularly interesting since recent work (Scott &
Fisher, 2012) has shown that 2.5-year-old children are able to use cross-situational
statistics to infer verb meanings under referential uncertainty, even if this requires
abstraction across different actors and objects, and the findings thus suggest that
children attach information about possible referents to novel verb entries along with
their co-occurrence statistics and refine this information across trials. This behavior
can be reflected by our model in the sense that after observing an NL utterance
containing a novel verb, the model can set up an entry for the verb which cap-
tures some information about possible referents and co-occurrence statistics, and it
is able to refine this entry over time. Such an entry would be of the form of an NL
(pattern) with information about possible referents being stored by means of sets of
slot-filling elements. In the following chapter, we will hence explore cross-situational
verb-learning as well as the establishment and representation of early verb entries
with the model.

3.5.4. Limitations and possible extensions

In this chapter, due to focusing on modeling early language acquisition – and in
particular on the emergence of verb-specific slot-and-frame patterns –, we excluded
and simplified several aspects and learning mechanisms assumed to be involved in
language acquisition. Therefore, the model’s language abilities – like those of an
infant – are limited, and several aspects of language cannot be learned by the model
in its current version but may be addressed in extended versions of the model. For
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instance, in our model, the meaning of word and S&F constructions always corre-
sponds to actions or referents grounded in the visual domain, and therefore several
words and utterances cannot be learned by our model (recall, however, that our
model also possesses the ability to learn that a certain form does not have a mean-
ing in an examined domain), e.g. expressions being grounded in the time domain
or referring to inner states, e.g. emotions. However, the model may be extended in
order to handle language which is not grounded in the visual domain, and it would
be interesting to investigate whether similar learning mechanisms can be applied.
Furthermore, as already discussed previously, it would be interesting to transfer the
incorporated learning mechanisms to the induction of further types of constructions,
and in particular to more abstract ones. Additionally, aiming at further improve-
ment of the model’s ability to learn language under referential uncertainty, it could
be equipped with the ability to evaluate social cues such as pointing gestures.
According to the measures for rating the model’s knowledge defined in Section 3.3.4,
we consider only a single semantic referent as the learned meaning of an nl. This
reflects the RoboCup corpus which we used for evaluation. That is, in this corpus
a word’s meaning has at most one corresponding referent. While due to this fact
we did not consider homonyms, these can be captured by the associative networks
simply by not requiring a single best meaning, but taking all referents over a certain
threshold into account; the rating threshold may be utilized for this purpose. By
contrast, synonyms were taken into account during language understanding, e.g. the
model can map both “pink goalie” and “pink1” onto the the same referent pink1.
Our strategy for merging sets of slot-filling or linguistically optional elements may be
somewhat greedy because sets having just one element in common are merged. One
may argue that by applying such a greedy strategy the model may learn several erro-
neous patterns in the sense that patterns can contain slots in which elements appear
that yield semantically ill-formed utterances. Imagine for instance that the model
has learned two form-meaning pairings (“the SE 1 reads a book”, read(AGENT))
and (“the SE 1 sleeps”, sleep(AGENT)) with SE 1 = [boy, girl], and then observes a
form-meaning pairing (“the dog sleeps”, sleep(AGENT:dog)). The model may then
group “dog” into SE 1 because it appears at the position of SE 1 in pattern “the SE 1

sleeps”, thereby learning the meaning of an utterance “the dog reads a book” which is
semantically ill-formed in the sense that typically, i.e. in the real world, dogs cannot
read. Notice, however, that this is to some extent a desired behavior because we only
ask the model to parse utterances into their corresponding meaning representations
and not whether the resulting mrs are semantically well-formed (in the real world
or some domain). In particular, like a human, our model is able to derive a meaning
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read(AGENT:dog) for the presented utterance. Humans are furthermore able to de-
cide whether read(AGENT:dog) is semantically well-formed which depends on the
underlying domain, e.g. in the real world dogs cannot read but in a cartoon a dog
may be able to read. While our model currently does not incorporate such world
or domain knowledge, it would be interesting to extend the model in this direction.
For instance, instead of modeling objects by single words they may furthermore be
specified by sets of attributes such as “human”. In case of the previous example,
the model could then learn that the pattern “the SE 1 reads a book” only yields a
semantically well-formed mr in the real world in the case where SE 1 is filled with
an element possessing the attribute “human”. However, using a greedy strategy is
– at least to some extent – advantageous because it may lead to the emergence of
more abstract knowledge and in particular parts of speech. For instance, in the long
run, among others, a set grouping all nouns may be established by applying greedy
merging. An interesting aspect for future work may be the comparison of different
strategies for merging sets of elements. A promising starting point may be to utilize
a greedy strategy – because this may yield the emergence of parts of speech – and
moreover incorporate a strategy based on semantic attributes which either groups
elements having certain attributes in common that are required by a slot to yield a
semantically well-formed meaning, or which simply identifies the relevant attributes
and associates them with a slot in order to model selectional restrictions of predi-
cates.
The employed generalization processes may also be used to further induce more
abstract constructions. In particular, in the current implementation slot-and-frame
patterns are specific to individual sets of slot-filling elements, i.e. it is restricted
which lexical units can occur in a slot of a pattern. As stated previously, this lim-
itation may be overcome in the long run because parts of speech may emerge by
applying a greedy strategy for merging sets of elements. However, this may also
be achieved faster by further generalizing the learned S&F constructions to a form
where slots are not represented by sets of slot-filling elements but only by variables
mapping to the corresponding argument position in the associated predicate. These
could in turn be grouped into more abstract constructions, e.g. all constructions of
the form (“SE 1 VE 1 SE 2”,ACTION (ARG1,ARG2)), SE 1 → ARG1, SE 2 → ARG2,
VE 1 → ACTION might be grouped into an abstract verb-construction represent-
ing the SVO sentence structure. Moreover, words might be modeled as sequences
of morphemes (by a morpheme order graph) with sets of slot-filling elements rep-
resenting modifications such as the inflection of verbs. While in this chapter we
focused on verb-specific construction due to taking the verb-island hypothesis into
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account, in the following chapter we will present an extension of the model to learn
verb-general constructions.
While the focus of this thesis is on language understanding, the model was designed
to both understand and generate language. Further work may evaluate language
generation, particularly in combination with language understanding concerning
the model’s behavior in dialogues. The linear design of our model in case of es-
tablishing associations between form and meaning may allow the development of
user-adaptive dialogue systems, specifically with an additional extension of a work-
ing memory component. A working memory component may be designed by rapidly
increasing the weights for recent observations with a subsequent decay. Due to the
linear design, the model would then be biased to prefer lexical units and frames re-
cently used by the user to express meanings for which competing alternatives exist.
This may yield a user-adaptive artificial agent in the sense that the agent would
mimic alignment (Pickering & Garrod, 2004, 2006), i.e. adapt to the user’s way
of speaking in case of lexical units and frames, and thus the conversation with the
agent might be experienced as more pleasant by the user. Moreover, as already
mentioned in Section 3.4.6, exploring different memories and their interaction may
also be interesting with respect to computational investigations concerning short- vs.
long-time fast mapping effects on word learning and modeling forgetting processes.
Unlike children, our model is trained using symbolic input only (i.e. sequences of
words and formulas in predicate logic) because we attempted to model a stage in
language acquisition in infants where slot-and-frame patterns emerge gradually. As
a simplification for our model, we assumed that at this stage of learning the child is
already able to extract words from the speech signal as well as information in some
structured form, i.e. formulas in predicate logic, from the visual context. The main
direction for future work is therefore getting rid of the symbolic input in both cases.
In particular, in contrast to the current symbolic semantic representations which are
not grounded in the sense of Harnad (1990), perceptually grounded representations
of meaning, such as image or cognitive schemas, may be derived from the visual
context and utilized in the model instead. Moreover, the speech signal may be used
to acquire words, possibly by first deriving smaller units, e.g. phonemes and/or
syllables, and then using these along with the information derived from the visual
context to bootstrap words. Towards this end, addressing this issue we have already
collected a multimodel corpus designed with the main goal to allow the evaluation of
computational models addressing the acquisition of rather complex grounded linguis-
tic structures, i.e. syntactic patterns, from sub-symbolic input (Gaspers, Panzner,
et al., 2014). Further, we will address learning from speech and concurrent context
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information in symbolic form, albeit not with respect to modeling child language
acquisition, in Chapter 5 of this thesis.

3.6. Summary

In this chapter we have presented a computational and formal model for the gradual
emergence of verb-specific slot-and-frame patterns. In the model, linguistic knowl-
edge is represented in form of an interrelated network which comprises constructions
at varying degrees of complexity and abstraction. Constructions are induced based
on observing ambiguous input, i.e. natural language utterances (presented as se-
quences of words) observed in an ambiguous context represented symbolically using
first-order predicate logic formulas.
We modeled the acquisition of two types of constructions: (short sequences of) words
and their meanings and bottom-up induced verb-specific slot-and-frame-patterns.
For all levels of constructions, our model proposes uniform representational devices
and learning mechanisms to determine appropriate meanings out of the ambiguous
contexts. Specifically, all correspondences between form and meaning are modeled
by associative networks; measurement of the linguistic knowledge captured by the
model is determined based on the weights of connections contained in those net-
works. In the scope of our language learning algorithm, observed NL utterances
are first incorporated into the network as a whole. Once sufficient knowledge is
regarded as learned, the model starts to gradually induce slot-and-frame patterns.
Specifically, the model searches for NL utterances and already (partially) general-
ized patterns representing the same pattern. Roughly speaking, this is the case if
the NLs under consideration show minimal variation in the surface structure, i.e.
varying elements in one position, and these elements are represented as a set of
elements corresponding to a slot.
Our proposed model is in line with usage-based psycholinguistic theories stating that
in early language acquisition children maintain an inventory of lexically-specific and
item-based constructions which are gradually generalized by replacing concrete lex-
ical items by slots which can be filled by (a restricted group of) words or short
sequences of words. In particular, it is represented as an interrelated network of
constructions at varying degrees of complexity and abstraction without assuming
precoded linguistic knowledge. Knowledge emerges gradually from specific words
over partially productive slot-and-frame patterns through to fully productive pat-
terns.
We provided empirical results on the RoboCup dataset showing that the employed
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3.6 Summary

learning and generalization mechanisms are appropriate in order to i) generalize be-
yond specific examples seen, while ii) not overgeneralizing and iii) assess confidence
in the acquired knowledge accurately. In our experiments, the model was shown to
be highly precise, and it achieved a large reduction in the number of stored patterns
compared to the number of individual NL utterances observed in the input data.
This in turn yielded understanding of several novel utterances, i.e. utterances not
observed in the input. In our model, In line with findings from psycholinguistic
studies with infants in the framework of usage-based theories, language learning
proceeds gradually. Initially, in our experiments the model’s generalization abili-
ties – i.e. understanding of novel utterances – were limited, but increased over the
time course and finally converged, suggesting that the employed mechanisms allow
accurate learning without (severe) deterioration of knowledge already captured by
the network during further processing of examples. Taken together, our model thus
yielded a compact and precise representation of the input data which generalized
well to unseen data. The model provides an interesting framework for future research
because it can be utilized for experiments aiming at investigations concerning the
mechanisms at play during language acquisition.
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Chapter 4

From verb-specific to verb-general
constructions

In the previous chapter we have presented a computation model based on the verb-
island hypothesis for the early acquisition of verb-specific constructions. Since recent
psycholinguistic findings provided novel insights concerning the representation and
emergence of early verb entries, in this chapter we extend our computational model
to also learn verb-general constructions and investigate how psycholinguistic findings
concerning the acquisition of verbs can be captured by the model.
Work presented in this chapter has been presented previously in Gaspers, Foltz, &
Cimiano (2014).

4.1. Introduction

Unlike nouns, verbs describe actions that involve a number of participants who
play certain (thematic) roles in the event. Hence, sentence structure, i.e. syntactic
frames, may serve as a “zoom lens” to guide the child’s attention to relevant as-
pects of verb meaning, in particular to thematic relations during verb learning (e.g.
Gleitman & Fisher, 2005). In line with this assumption, Arunachalam & Waxman
(2010) showed that 27-month-old children can create an initial verb entry based on
information from the syntactic context without access to any corresponding visual
information, and retrieve this information when encountering the verb later on. For
instance, when hearing a verb in transitive syntax they can establish an initial entry
based on syntactic information, and they can retrieve this entry on encountering a
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candidate causative event. Thus, children are able to do something like fast mapping
verbs, i.e. to quickly set up an initial entry, based on syntactic information alone,
which may, however, be incomplete (Arunachalam & Waxman, 2010).
As mentioned previously, Scott & Fisher (2012) provide evidence that 2.5-year-old
children are also able to use cross-situational statistics to infer verb meanings under
referential uncertainty. In particular, the authors showed that children can abstract
across different actors and objects, suggesting that they can attach information
about possible referents to novel verb entries along with their co-occurrence statis-
tics and refine these entries over time.
However, what remains unclear is

1. how verb-general constructions emerge and how they are represented,

2. how they can guide attention to establish verb entries based on syntactic in-
formation alone,

3. how information about possible referents and co-occurrence statistics might
be stored with verb entries, and

4. how this information is updated incrementally over time, thus allowing for
learning of verb meanings across situations.

In order to shed light on the potential learning mechanisms involved in early verb
acquisition, in this chapter we extend the computational model presented in the pre-
vious chapter to also acquire verb-general constructions by exploiting the same basic
learning mechanisms as those explored earlier for the induction of verb-specific con-
structions. In particular, verb-general constructions are learned bottom-up based on
verb-specific constructions only once verb-specific knowledge has been derived with
sufficient confidence. Again, generalization occurs in an item-based fashion (albeit
with respect to more complex structures/mappings) by searching for variation at
the linguistic layer which has corresponding variation at the meaning layer.
We present empirical results replicating psycholinguistic experiments performed by
Arunachalam &Waxman (2010) and Scott & Fisher (2012) with our model. Depend-
ing on its “age”, the model behaves very similarly to the children in these studies.
Thus, the results suggest possible learning mechanisms implicated in the early ac-
quisition and representation of verbs and verb-general constructions.
The remainder of this chapter is organized as follows. Next, we will present how the
learning problem and thus the model are modified in order to induce verb-general
constructions. Subsequently, we will present empirical results, replicating findings
from psycholinguistic studies with children and discuss our results with respect to
these studies.
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4.2 Learning problem

4.2. Learning problem

In this chapter, we aim to extend the existing model, which is able to learn verb-
specific constructions, to also learn verb-general constructions. The input data re-
mains the same as for the model learning verb-specific constructions; for a detailed
description see Section 3.2.1. The goal also remains the same in that we attempt
to induce a constructions grammar which is represented in the form of an inter-
related network and this network is acquired incrementally over time. However,
we additionally address the acquisition of a further type of construction, i.e. verb-
general slot-and-frame patterns. These are learned bottom-up based on verb-specific
constructions at the level of slot-and-frame patterns, thus yielding a further gener-
alization of linguistic knowledge contained in the network. With respect to the
representation of verb-general constructions in the network, we introduce another
type of sets of elements, i.e. sets of predicate-filling elements, and we define them
as groupings of lexical units mapping to the predicate ACTION of an associated
verb-general semantic frame. Analogous to verb-specific constructions, the form N̂L
constitutes an NL (pattern), and the meaning m̂r is represented by exactly one se-
mantic frame [[mr]]. However, in case of verb-general constructions we also require
that N̂L contains a set of predicate-filling elements which maps to the ACTION
predicate in the semantic frame. Verb-general semantic frames are derived from
verb-specific ones by replacing the concrete predicate by ACTION during gener-
alization. Moreover, since verbs map to actions taking nouns, another goal is to
learn “preferred”/correct syntactic frames for given verbs and hence possible verb
argument structures.
To illustrate how verb-general constructions emerge from verb-specific ones, consider
the following example which has been presented previously when introducing the
learning problem for the model learning verb-specific constructions (Section 3.2.2):

(4.1)

N̂L SE 1 sees SE 2

m̂r see(AGENT,THEME)

Φ SE 1 → AGENT
SE 2 → THEME

where

SE 1 = [Mia → mia, Tim → tim],
SE 2 = [pizza → pizza, cake → cake].

Now consider the following input example:
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(4.2)

NL: Tim takes pizza

mr1: take(AGENT:tim,THEME:pizza)
mr2: fetch(AGENT:mia,THEME:cookie)
mr3: see(AGENT:mia,THEME:dog)

Then, we would like to induce the verb-general construction:

(4.3)

N̂L SE 1 VE 1 SE 2

m̂r ACTION (ARG1,ARG2)

Φ SE 1 → AGENT
SE 2 → THEME

along with SE1 and SE2 as listed previously and the following set of predicate-filling
elements

VE 1 = [takes → take, sees → see]

mapping to ACTION. Moreover, we would like to capture the fact that “takes” and
“sees” where observed within the syntactic pattern “SE 1 VE 1 SE 2”, i.e. to model
the fact that “takes” and “sees” can be expressed using this verb-general syntactic
pattern.
For reasons of clarity and since it is not relevant for the experiments presented in
the following, we do not explore syntactic generalization in the framework of the
extended model. However, the syntactic generalization step is implemented in the
extended model and can in principle be applied with it.

4.3. The extended computational model

In order to extend our computational model, we investigate the same basic learning
mechanisms and representations of knowledge as explored for the induction of verb-
specific constructions. In extending the model, all of its properties listed in the
previous chapter are retained.

4.3.1. Network structure

In order to address argument structure acquisition, we need to model correspon-
dences between verbs and verb-general syntactic patterns. To do this, we augment
the network structure by including an additional associative network. Specifically,
an associative network AV erb is incorporated into the network structure, where the
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form layer AV erb(NL) corresponds to all lexical units which were observed at a po-
sition of a set of predicate-filling elements – i.e. elements which were observed as
expressing a predicate; these are assumed by the model as being verbs. The meaning
layer AV erb(MR) corresponds to all verb-general syntactic patterns, modeling associ-
ations between specific verbs, i.e. lexical units, and syntactic frames. In this way,
the network captures the syntactic frames in which a verb is likely to appear.
In the network, sets of predicate-filling elements are modeled analogously to sets of
slot-filling elements as nodes which, in turn, group nodes referring to lexical units.

4.3.2. Generalization and confidence

In order to induce verb-general constructions based on verb-specific ones, a further
criterion for merging paths is needed. We address this issue in a similar manner as we
did when inducing verb-specific constructions: patterns are potentially mergeable
if they differ in at most one position and exchange of elements observed at this
position yields a corresponding change in an associated meaning. However, since
our goal is to induce verb-general constructions, we consider variation with respect
to predicates instead of variation with respect to argument slots. To illustrate the
intuition behind the proposed generalization mechanisms, consider the following two
examples:

(4.4)

N̂L SE 1 eats SE 2

m̂r eat(AGENT,THEME)

Φ SE 1 → AGENT
SE 2 → THEME

(4.5)

N̂L SE 1 takes SE 2

m̂r take(AGENT,THEME)

Φ SE 1 → AGENT
SE 2 → THEME

One can easily infer that these two verb-specific constructions can be merged into
the following verb-general construction:

(4.6)

N̂L SE 1 VE 1 SE 2

m̂r ACTION (AGENT, THEME)

Φ SE 1 → AGENT
SE 2 → THEME

assuming that “eats” and “takes” mean eat and take, respectively. We thus define a
mergeability criterion with respect to predicates as follows.
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Definition 9 (Predicate-driven mergeable). Two paths p1 and p2 are predicate-
driven mergeable if both differ in at most one position and both already have a
learned (verb-specific or verb-general) meaning including the same mapping between
slots in syntactic patterns and argument slots in semantic frames. In the case of a
position with varying elements, each of these elements must either i) correspond to
a set of predicate-filling elements or ii) have a learned meaning which, in turn, must
be the predicate of an associated semantic frame.

The condition that elements at varying positions may also correspond to sets of
predicate-filling elements allows the model to directly merge verb-specific with verb-
general paths. Hence, for instance, a path “SE 1 VE 1 SE 2” can be merged with
another path “SE1 sees SE 2”, assuming that a meaning for “sees” has previously
been learned and that the corresponding mappings are alike.
We explore the same measures of confidence in the acquired linguistic knowledge as
we did for the induction of lexical and verb-specific constructions (see Section 3.3.4).
As previously done, measures are again described based on the weights stored in the
associative networks. We do not apply the entropy criterion in the experiments
presented in this chapter because of its small contribution to performance in the
experiments presented in the previous chapter (cf. Section 3.4.5). This is again done
for reasons of clarity; the entropy criterion is implemented in the extended model
and can in principle be applied analogously to the model presented previously. With
respect to rating knowledge in AV erb, for a given verb, semantic frames are rated
just like meanings are rated for given nls without sets of slot-filling elements. That
is, we utilize the weights provided by AV erb (cf. Equation 3.20) for this purpose.
Verb-general constructions are rated just like verb-specific constructions by applying
Equation 3.21, which is based on the weights stored in AS&F and the weights in a
corresponding mapping associative network.

4.3.3. Language learning

Recall that the language learning algorithm proposed within the model presented in
the previous chapter was roughly composed of three different learning steps, where
the learning steps built onto each other, and were applied to each observed example.
In order to extend language learning towards the induction of verb-general con-
structions a further learning step is introduced, yielding the following four learning
steps:

1. Training of the word layer CONWord , acquisition of word level constructions,
i.e. lexical units and their meaning

114



4.3 The extended computational model

2. Training of the slot-and-frame pattern construction layer CON S&F , general-
ization step which searches for sets of slot-filling elements

3. Training of the slot-and-frame pattern construction layer CON S&F , general-
ization step which searches for sets of linguistically optional elements

4. Training of the slot-and-frame pattern construction layer CON S&F , general-
ization step which searches for sets of predicate-filling elements

Again, the learning steps are applied to each example. That is, whether general-
ization is possible is inspected for each case, and if so, it is performed accordingly.
Because predicate-filling generalization requires learned knowledge at the level of
verb-specific constructions, our approach to language learning remains incremental
in the sense that results obtained at a previous learning step are exploited within
subsequent learning steps. Since we do not explore syntactic generalization in this
chapter, three basic learning steps are explored in the following. They are detailed
in Algorithm 2.

Recall that the slot-driven generalization step yields a path p′ as a result which
corresponds either to i) a path representing a preprocessed input utterance (i.e. a
sequence where lexical units contained in sets of slot-filling elements are replaced
by the set IDs), or ii) a new generalized path – if slot-driven generalization has
been possible and performed accordingly. Whichever applies, the resulting path is
the input to the predicate-driven generalization step. Given p′, the model searches
for paths which are predicate-driven mergeable with it. If such paths exist, they
are merged with p′ into a novel path which is inserted into the network structure.
Elements at a varying position are replaced by a node referring to a set of predicate-
filling elements, and – if not yet present – a verb-general semantic frame is inserted
into the network where the concrete predicate is replaced by ACTION. Similar
to the other generalization steps, merging of paths includes merging of weights in
corresponding associative networks as well as merging of corresponding mapping
associative networks. For instance, imagine that the construction depicted in Fig. 1
is represented in the network corresponding to the network state already presented
in Fig 9 in Section 3.3.5 with the exception that associations with respect to the
mapping have been acquired. Imagine further that the construction presented in
Fig. 2 is also stored in the network. Merging those two verb-specific constructions
into a verb-general one should yield the network state shown in Fig. 3.

Subsequently, AV erb is updated, independently of whether verb-general merging
is possible. This procedure is similar to the one updating the mappings. An NL is
first preprocessed in that lexical units contained in sets of slot-filling elements are
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Algorithm 2 Extended language learning algorithm

Input: A list of examples E = {(NL1,MR1), . . . , (NLk,MRk)}
Output: A network N representing constructions

N = an empty network

for all examples (NLi,MRi) ∈ E do
1. update CONWord
◦ units ← extract all lexical unit types from NLi

◦ referents ← extract all semantic referent types from MRi

◦ add new lexical units and referents, incorporate and initialize connections

◦ update associations between units and referents by
update(AWord , units, referents)

2. update CON S&F , slot-driven generalization step
◦ s = preprocess NLi

◦ Pm = {p1, . . . , p|Pm|} ← {p | p ∈ CON S&F(NL) and p is slot-driven mergeable
with s}

◦ if Pm 6= ∅
p′ = p1 ⊕ · · · ⊕ p|Pm| ⊕ s

else
p′ = new path corresponding to s

end if

◦ mrs ← extract all semantic frames from MRi

◦ incorporate each mr ∈ mrs,mr 6∈ CON S&F(MR) into CON S&F(MR)

◦ incorporate p′ into CON S&F(NL), add and initialize connections

◦ update associations between p′ and mrs by update(AS&F , p
′,mrs)

◦ update all mappings between p′ and mr templates

◦ merge identical paths

3. update CON S&F , predicate-driven generalization step
◦ Pm = {p1, . . . , p|Pm|} ← {p | p ∈ CON S&F(NL) and p is predicate-driven merge-

able with p′}

◦ if Pm 6= ∅
- p′′ = p1 ⊕ · · · ⊕ p|Pm| ⊕ s
- incorporate p′′ into CON S&F(NL)
- incorporate verb-general semantic frame
- add and initialize connections, update associative networks

end if

◦ merge identical paths

◦ Update AV erb

end for
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Figure 1.: Example of a verb-specific construction referring to the predicate see
stored in the network.

replaced by the set IDs. Given the resulting sequence, the model searches for paths
with a learned verb-general meaning which differs from the observed sequence only
at the position of a set of predicate-expressing elements, for instance, a path p =

“SE 1 VE 1 SE 2” in case of a modified NL “SE 1 eats SE 2”. Then, the appearance of
the lexical unit – which is regarded as a verb because it appears at a verb position
– within the syntactic pattern represented by the path, is captured by training the
associative network AV erb using the lexical unit and the path, for instance, “eats”
with path p in case of the above example. This establishes a correspondence between
the lexical unit and the syntactic frame.

4.3.4. Retrieval of constructions and syntactic frames

A meaning for a given NL utterance corresponding to a verb-general construction
is retrieved analogous to the case of verb-specific constructions. Just like described
previously, as a first step the NL utterance is preprocessed, i.e. all lexical units
contained in sets of elements – including lexical units contained in sets of predicate-
expressing elements – are replaced by the set IDs. Afterwards, a corresponding path
can be determined in the graph and – if existent – possible meanings can be rated
based on Equation 3.21. If a corresponding semantic frame exists, the final meaning
is constructed by retrieving meanings for lexical units at positions of sets of elements
from AWord. In case of sets of predicate-expressing elements, the meaning is inserted
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Figure 2.: Example of a verb-specific construction referring to the predicate take
stored in the network.

at the predicate position ACTION of the associated verb-general semantic frame.
Given a concrete verb, i.e. a lexical unit, an associated syntactic pattern – if existent
– can be retrieved based on the weights provided by AV erb according to Equation
3.20 just like in case of finding a meaning for lexical units or NLs without sets of
slot-filling elements. A verb-general semantic frame associated with this pattern
can in turn be found as described previously by rating all possible semantic frames
according to Equation 3.21. By this, the model is able to determine corresponding
argument structures for given verbs.

4.4. Experimental evaluation and discussion

In order to allow the evaluation with respect to psycholinguistic studies, our model
needed some initial linguistic knowledge, just like the children in the studies. Next,
we describe how input data were generated. Then, we present experiments with
respect to psycholinguistic findings.

4.4.1. Input data

Input data were generated in a similar manner as described by Alishahi & Steven-
son (2008), using the Eve corpus from the CHILDES database (Brown, 1973). The
corpus contains transcriptions of interactions with the child Eve. We considered

118



4.4 Experimental evaluation and discussion

Figure 3.: Example of a verb-general construction stored in the network.

utterances spoken by Eve’s mother. Both of the studies we will consider took into
account transitive and intransitive structures only, one including conjoined subjects.
Hence, we extracted all patterns of the form “AGENT verb” and “AGENT verb
THEME ” from the corpus. We considered the same verbs as Alishahi & Stevenson
(2008) but since two of them did not appear in the considered form, only 11 out
of the 13 verbs were included into our experiments: come, eat, fall, get, go, look,
make, put, see, sit and take. All patterns along with their occurrence frequencies
were inserted into an input generation lexicon. Moreover, with respect to each verb
(concrete) nouns appearing at the positions of AGENT and THEME along with
their occurrence frequencies were inserted into the lexicon. Two nouns conjoined
by “and” were also included; “me”, “you” and “we” were annotated/treated as “Eve”,
“Mom” and “Mom and Eve”, respectively. Based on the lexicon input data, NL
examples were created by choosing patterns and their referents probabilistically ac-
cording to the occurrence frequencies stored in the lexicon. Semantic representations
mr were created automatically, using words appearing in a generated NL to denote
the corresponding semantic referents. Notice that semantic referents are only ar-
bitrary symbols to the model; it still has to establish connections between words
and referents, for instance, learn that a word “eve” refers to the semantic referent
eve. In the case of an NL including a thematic relation consisting of two referents
conjoined by “and”, these referents were treated as separate arguments in an mr
having the same thematic relation. Such an example may be: (“mom and eve see”,
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see(AGENT1:mom,AGENT2:eve)). In the experiments presented in the following,
we do not address learning morphology. Hence, all words appear in their root form
only.
Ten different datasets containing 500 examples of the form (NL,mr) were created.
These were used for the experiments presented in the following. Presented results
are averaged over the ten datasets, simulating ten different learners. Model param-
eters were optimized on an independent dataset. In particular, a training dataset
and a test dataset were created by applying the process also used for creating the
ten datasets for the experiments. Parameters were optimized by training the model
with varying parameters on the training data and evaluating on the test data. Op-
timization was performed with respect to the F1 score, where precision and recall
were computed as specified in Chen et al. (2010) and applied previously during the
evaluation of the model learning verb-specific constructions.

4.4.2. Cross-situational verb learning

As mentioned before, Scott & Fisher (2012) investigated cross-situational verb learn-
ing and found that 2.5-year-old children can use cross-situational statistics to infer
verb meanings under referential uncertainty, even if this requires abstraction across
different actors and objects. This suggests that children attach information about
possible referents to novel verb entries along with their co-occurrence statistics and
refine this information across trials.
The study performed by Scott & Fisher (2012) investigated learning of both transi-
tive and intransitive verbs. During each of the 12 experimental trials, children heard
two transitive or intransitive sentences, each containing a different novel verb, while
watching two videos showing two different actors, each performing a novel action. In
the transitive condition, the action was performed with different objects. Transitive
and intransitive sentences had the structures “she’s pimming her toy” and “she’s pim-
ming”, respectively. Children in the intransitive condition were significantly above
chance in choosing the target actions over the distractor actions. Performance in
the transitive condition depended on children’s vocabulary size: Only children with
large vocabularies performed significantly above chance.
We tested whether our model can infer meanings for novel verbs without receiving
unambiguous label trials for any of the verbs. Thus, we tested whether the model
can set up verb entries that contain information about possible referents and up-
date co-occurrence frequencies over time. Notice that since we use symbolic input,
we cannot investigate the influence of abstraction over different actors and objects
at the visual level. We used the same verbs, i.e. “pim”, “nade”, “rivv”, and “tazz”,
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and pairings of verbs as Scott & Fisher (2012). Referents for verbs were selected
from the input generation lexicon (i.e. “mom” and “celery”). Since the model pro-
cesses one sentence at a time, each input example contained one sentence and two
possible mrs. For example, the first two intransitive input examples (which corre-
spond to one trial in the study) were NL: “mom pim”; mr1 :pim(AGENT:mom);
mr2: nade(AGENT:mom) and NL: “mom nade”; mr1 :pim(AGENT:mom); mr2:
nade(AGENT:mom). After receiving the examples, the model was asked to retrieve
the semantic representations for the novel verbs, e.g. for “mom nade”, and we counted
how often the model returned the correct representation, e.g. nade(AGENT:mom).
Results were computed for different numbers of examples observed prior to the ex-
perimental trials, corresponding to different “ages” of the model. Fig. 4 shows the
results. In both conditions, – in line with the children in the experiments – the

Figure 4.: Proportion of the model’s choice of the correct semantic representation
for the novel verbs in the transitive and intransitive sentences.

model can solve the task from a certain “age” on. In addition, it can solve the task
earlier in the intransitive condition compared to the transitive condition. Similarly,
children had more problems with the transitive condition: several of the 2.5-year-old
children failed in the transitive condition. Since typically even 12-to-14-month-old
children can master such a task when it involves mapping nouns to objects (Smith
& Yu, 2008), Scott & Fisher (2012) concluded that in cross-situational learning
the same learning mechanisms may not apply uniformly for words of different cat-
egories. However, with respect to possible learning mechanisms at play, our model
shows that a behavior similar to the observed one can be produced by applying the
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same mechanism for tracking co-occurrence statistics in case of nouns and verbs –
recall that we applied associative networks in all cases –, albeit with respect to more
complex structures.
In our model, sentence-/verb-to-action mapping lags behind word-to-object map-
ping because it involves more complex structures whose acquisition depends on the
prior acquisition of less complex structures, i.e. nouns. In particular, in order to
establish a mapping for a verb “pim” in a sentence “mom pim celery”, an NL pattern
like “SE 1 pim SE 2” must have been derived prior, and “mom” and “celery” must be
contained in the sets of slot-filling elements SE 1 and SE 2, respectively. Moreover, a
necessary condition for deriving the pattern is that meanings for “mom” and “celery”
have been learned. Hence, similar to the children, the model’s ability to solve the
task depends on vocabulary, though not on the absolute vocabulary size, but rather
on whether the meanings for the words observed at argument positions have already
been learned (though, of course, the probability that the needed lexical units have
already been learned may be higher for larger vocabularies).
The model learns faster in the intransitive compared to the transitive condition be-
cause it must have acquired only one word instead of two words for referents. In
addition, patterns containing fewer sets of slot-filling elements are in general learned
earlier because the model generalizes based on type variation observed in one posi-
tion. Notice, however, that we do not claim that children learn “mom” or “celery”
at a specific age; these words were chosen arbitrarily for our experiments because
they appear in our input data. Notice further that in contrast to the following ex-
periment, the model can solve the above task even without the proposed extension.

4.4.3. Syntax as a zooming lens into semantics

As mentioned before, experimental findings suggest that children at the age of 27
months can set up an initial verb entry based on a purely syntactic context and
retrieve this entry when encountering the verb later on (Arunachalam & Waxman,
2010). We tested the model’s ability to do so by replicating the experiment per-
formed by Arunachalam & Waxman (2010).
In the study, toddlers performed two training trials involving known verbs to get
familiar with the task and four experimental trials involving different novel verbs.
Each verb was presented in the framework of a dialogue and appeared eight times
without accompanying visual information. Experiments were performed for using
verbs in one of two conditions at a time: in transitive sentences (e.g., “the lady
mooped my brother”) or in conjoined-subject intransitive sentences (e.g., “the lady
and my brother mooped”). On each experimental trial, toddlers viewed two different
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scenes side-by-side depicting the same two participants: one synchronous scene (i.e.
two persons were performing the same action) and one causative scene. Toddlers
were then asked to find the novel verb without providing syntactic information, e.g.
they were asked to “find moop”. The results revealed that toddlers in the tran-
sitive condition were more likely to choose the causative scene than those in the
intransitive condition, and moreover they performed significantly above chance. By
contrast, those in the intransitive condition did not differ significantly from perform-
ing at chance.
We tested the model in a similar manner both in a transitive and intransitive con-
dition. Training trials were omitted, since there was no need to make the model
familiar with the task, resulting in four experimental trials. Each trial featured
a different novel verb. Just like in the study, each verb was presented to the
model eight times in either a transitive or subject-conjoined intransitive sentence
(depending on the experimental condition); referents for verbs were chosen from
the input data, and the same referents were used in both conditions. Since the
experiments did not provide children with concurrent visual information, the model
was trained using these sentences without accompanying mrs (notice that for ut-
terances presented prior to the experimental simulations, i.e. for the acquisition of
initial linguistic knowledge, accompanying mrs were provided). Subsequently, for
each trial, the model was asked to “find new-verb” in the presence of two mrs, a
causative and a synchronous one. Since toddlers do not stop learning during test
periods of experiments either, a learning step was executed with the test input, e.g.
with an example (NL: “find moop”, (mr1: moop(AGENT1:mom,AGENT2:eve),mr2:
moop(AGENT:mom,THEME:eve). Subsequently, we asked the model to retrieve the
mr associated with the syntactic frame for the novel verb. Again, we computed re-
sults for different numbers of examples observed, corresponding to different “ages”
of the model; they are presented in Fig. 5.
As can be seen, the model’s behavior corresponds to that of the children in that

from a certain “age” on, it picks the causative scene (significantly) above chance in
the transitive condition. By contrast, in the conjoined-subject intransitive condition,
the model performs at chance, which is also in line with the behavior observed for the
children in the study. In the case of our model, the ability to perform this experiment
depends on whether a suitable verb-general syntactic frame has been learned prior
to the experimental trials. If this is the case, the model behaves similarly to children
in that it can create an initial verb entry based on syntactic information alone. The
model can also retrieve this information when encountering the verb later on and
infer the verb’s concrete meaning by relying on its disambiguation bias.
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Figure 5.: Proportion of the model’s choice of the causative scene in the transitive
and conjoined-subject intransitive conditions.

In the case of the model, the explanation for performing at chance in the conjoined-
subject condition is that it has not yet derived a corresponding verb-general syntactic
pattern based on the given number of examples. In order to test whether the model
is in general able to solve the task, we ran the experiments again for the conjoined-
subject intransitive condition, albeit over a larger number of input examples. Results
are presented in Fig. 6.

The diagram reveals that with a greater number of input examples, the model
also performs above chance in the conjoined-intransitive condition, i.e. it chooses
the causative scene less often in that case. Thus, the model can solve the task in both
conditions, but associates conjoined-subject intransitive with non-causal events at
a later “age” than transitive with causal events. This is the case because the model
learns the verb-general construction corresponding to conjoined-subject intransitives
later than that corresponding to transitives. Similarly, children do not succeed in
the conjoined-subject intransitive task until the age of 3;4, even though they can
succeed in the transitive task at the age of two (Nobel et al., 2011, but see Sheline et
al. (2013)). Since the model acquires both types of verb-general constructions in the
same manner, the same proposed learning mechanisms can account for the different
results. For the model, this result is due to the input data: The model acquires the
conjoined-subject intransitive later because conjoined-subject intransitive sentences
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Figure 6.: Proportion of the model’s choice of the causative scene in the conjoined-
subject intransitive conditions.

appear in the data much less frequently than transitive sentences.

4.5. General discussion

In this chapter, we have presented a computational model for the acquisition of
verb-general constructions under referential uncertainty by extending our model for
the acquisition of verb-specific constructions. All in all, the model captures the
acquisition of different types of constructions, i.e. lexical, verb-specific and verb-
general constructions, including verb argument structure acquisition, and learning
proceeds in an online fashion in the presence of referential uncertainty. While several
models that acquire constructions have been proposed (cf. Section 2.7), including
models that address the acquisition of verb-general constructions and verb argument
structure (e.g. Alishahi & Stevenson, 2008), they often assume that words or lexical
mappings have already been learned and/or do not address learning from ambiguous
contexts. However, such learning is relevant for the simulations presented in this
chapter since they address the acquisition of verb entries, including the establish-
ment of lexical mappings under referential uncertainty. Yet, it must be noted that
our experiments only addressed the acquisition of a few different structures, i.e. tran-
sitive and (conjoined-subject) intransitive ones, whereas previous work (Alishahi &
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Stevenson, 2008) addressed argument structure acquisition through comprehensive
experimental analyses concerning different structures, including recursive ones. This
is the case because we model the early emergence of verb-general constructions and
representation of early verb entries, and attempt to model some recent psycholin-
guistic findings regarding this issue which only addressed transitive and intransitive
structures. However, in general the model may be able to acquire further structures
in the same manner. Future work may reveal whether this is indeed the case.
Several computational models can also use cross-situational learning to establish
form-meaning mappings under referential uncertainty (cf. Section 2.5). However,
these models have mainly focused on establishing mappings between words and
referents, while our model applies the same cross-situational learning mechanism
consistently to establish correspondences between form and meaning beyond simple
word-referent mappings, in particular, between NL patterns/syntactic frames and
actions, including thematic relations. Hence, our model can represent verb entries
in the framework of these NL patterns, allowing it to store information about pos-
sible referents with verb entries in addition to associations with possible meanings.
Both, information concerning possible referents and co-occurrences with different se-
mantic frames are updated incrementally over time, allowing the acquisition of verb
meanings and verb-general constructions. In the learning process, the model first
acquires verb-specific constructions, which is in line with the verb-island hypothesis.
For instance, early on a verb-specific pattern “verb SE1” might be derived where
SE1 groups possible referents for verb, and co-occurrence frequencies for possible
predicates/semantic frames such as verb1(AGENT) are captured by the associative
network AS&F . At this stage of learning, the model is already able to solve the
cross-situational verb learning task based on the study performed by Scott & Fisher
(2012). Thus, our model indicates that the behavior observed in children can oc-
cur if co-occurrence frequencies for verbs are – at least early on – represented and
updated in the framework of complete (partially) generalized structures such as NL
patterns. The patterns’ applicability for the cross-situational verb learning task
might be dependent on its productivity and on previously acquired nouns appearing
as referents with novel verbs.
While the findings from Scott & Fisher (2012) can be replicated by the model with-
out the proposed extension for learning verb-general constructions, this is not the
case for the experiments presented by Arunachalam & Waxman (2010). The model
can solve the task only once a suitable verb-general syntactic frame has been es-
tablished. Hence, in case of the Arunachalam & Waxman (2010) experiment, our
model indicates that the task can be solved if a verb-general representation has been
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learned prior to the experimental trials, thus associating the verb with a syntactic
frame, e.g. with a causative one in case of a transitive verb. If the verb is encoun-
tered later on, a word-to-meaning mapping can be directly established by applying
the disambiguation mechanism, thus yielding both a word-to-meaning mapping and
a corresponding syntactic frame for the verb. According to our model, a verb-general
construction can only be learned if suitable verb-specific constructions have already
been acquired previously and can then be merged into a verb-general one.
In both experiments, the model’s behavior is in line with usage-based approaches
in that it is dependent on the input data, where both token frequency and type
variation are taken into account. Similar to the model learning verb-specific con-
structions, it is not only absolute size of input data that matters. In addition, i)
data must provide lexical variation and ii) lexical units and patterns must appear
frequently enough to establish form-meaning mappings. To illustrate that it is not
only size of input data which matters, consider diagrams 5 and 6. Recall that the
diagrams present values averaged over ten different learners, i.e. the model trained
on ten different datasets, which have been created using the same input lexicon. The
diagrams show that, for the transitive condition, the first learner is able to solve the
task at about 110 examples observed, whereas the latest learner needs about 370
examples, which is about three times as much, even though the applied learning
mechanisms are exactly the same.
Overall, our results suggest that enough suitable input data in combination with
the model’s learning mechanisms can model the behavior observed in children, and
the model hence provides one possible formal explanation for the observed behavior.
While several models that acquire constructions and/or word-to-meaning mappings
have been proposed (cf. Section 2), we are not aware of other computational in-
vestigations that relate to the findings resulting from Arunachalam & Waxman
(2010)’s and Scott & Fisher (2012)’s studies. Experiments with children may estab-
lish whether or not children indeed apply learning mechanisms that are similar to
those implemented in the model. For instance, cross-situational verb learning can
be explored through more detailed analyses of children’s vocabularies and by testing
children with novel vs. known nouns as referents for verbs.
In this chapter, we have extended our model by exploring learning mechanisms
similar to those already investigated for inducing verb-specific constructions. In
particular, in both cases generalization is performed based on determining linguistic
variation with respect to a slot which yields corresponding variation at a meaning
layer based on previously acquired knowledge. In this thesis, we have specified the
detection of slots with respect to both inducing verb-specific and verb-general con-
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structions. However, as already mentioned in the previous chapter, similar learning
mechanisms may also be applicable to induce further types of constructions, e.g.
morphemes. An interesting point for future work would be to investigate whether it
is possible to develop a generic learning mechanism which can be applied to induce
several types of constructions, one after another. That is, instead of incorporating
explicit mechanisms into the model which detect variation with respect to a cer-
tain type of construction, a generic mechanism may detect such variation first for a
construction type of rather low complexity, generalize accordingly, detect variation
with respect to the newly induced more complex constructions, and so on.

4.6. Summary

In this chapter we have presented a computational model for the acquisition of
verb-general constructions which builds on our previously described model for the
induction of verb-specific constructions. The extended model exploits the same
basic learning mechanisms that were explored for the induction of verb-specific con-
structions. Verb-general constructions are learned bottom-up based on verb-specific
constructions only once verb-specific knowledge has been derived with sufficient
confidence. Generalization occurs in an item-based fashion (albeit with respect to
more complex structures/mappings) by searching for variation at the linguistic layer
which has corresponding variation at the meaning layer.
Our model infers form-meaning mappings under referential uncertainty by apply-
ing the same cross-situational learning mechanisms at different levels, implemented
via associative networks. In particular, in contrast to previous models exploring
cross-situational learning, we apply the same cross-situational learning mechanism
beyond simple word-referent mappings, i.e. between NL patterns/syntactic frames
and actions, including thematic relations. Hence, our model can represent verb
entries in the framework of these NL patterns, allowing it to store additional in-
formation about possible referents with verb entries. Both, information concerning
possible referents and co-occurrences with different semantic frames are updated
incrementally over time, allowing the acquisition of verb meanings and verb-general
constructions under referential uncertainty.
We have presented empirical results, showing how the model can establish verb
meanings under referential uncertainty. Moreover, we have shown how the model
can learn verb-general constructions, and how it can use this knowledge to create
initial verb entries based on syntactic information alone, thus suggesting possible
learning mechanisms at play concerning the emergence of verb-general constructions
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and the representation of early verb entries.
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Chapter 5

Learning a semantic parser from
speech without word transcriptions

In the previous two chapters we have presented and extended a computational model
for the early acquisition of syntactic constructions based on a symbolic learning set-
ting. In particular, because we attempted to model a stage where verb-specific
constructions emerge gradually, for the sake of simplicity we have assumed that
at the modeled stage of learning the child is already able to extract words from a
speech signal. Thus, we have explored learning from NL utterances in the form of
sequences of words coupled with ambiguous context information. In this chapter,
we extend this learning setting and address spoken utterances, instead of a symbolic
representation of words. We do not assume any predefined lexical knowledge, thus
extending the task towards lexical acquisition. To the best of our knowledge, this
learning setting has not yet been investigated but is of interest with respect to the
design of spoken language understanding systems. Addressing the learning prob-
lem, in this chapter we do not focus on modeling child language acquisition, but
explore how the learning mechanisms introduced within the framework of the com-
putational model can be extended and applied to tackle the increased complexity of
the learning setting with respect to application in spoken language understanding
systems. In particular, in contrast to modeling child language acquisition where
cognitive plausibility is a main criterion for evaluation, in this chapter we focus on
performance. Specifically, with respect to semantic parsing of speech we do not
explore online learning. Instead, we assume that a system has the capability to log
observed utterances, for instance, to update its linguistic knowledge at certain time
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intervals by applying the proposed approach.
Work presented in this chapter has been published previously in Gaspers & Cimiano
(2014b).

5.1. Introduction

State-of-the-art SLU systems are typically based on predefined linguistic resources,
e.g. lexicons and/or grammars. Building such resources typically requires extensive
manual effort, linguistic knowledge and/or (labeled) in-domain training data, mak-
ing them costly to produce. Further, such systems are often out-dated rather quickly
during application, since one cannot know at design time which linguistic knowledge
is needed during applications, e.g. which words a user may utter. Moreover, natural
languages simply do not have fixed vocabularies. By contrast, children are able to
learn linguistic structures by being exposed to language in some context or envi-
ronment, and they continuously adapt their knowledge, e.g. acquire novel lexical
entries over time. Exploring systems which i) learn language similarly to children
directly from examples of spoken language utterances coupled with non-linguistic
information (e.g. describing the environment) and ii) rely on as few predefined re-
sources as possible can inform SLU concerning the design of self-adaptive and low
recourse systems.
In the previous chapters, we have already explored learning language from natural
language utterances coupled with non-linguistic context information. In doing so,
we have investigated a semantic parsing task (cf. Chapter 3) which, as mentioned
previously, has been explored in NLP in order to reduce manual effort and costs for
training semantic parsers as a step towards building machines which can learn lan-
guage – analogous to children – through exposure to language in some environment
(Chen & Mooney, 2008). While several approaches have addressed this learning
setting (e.g. Chen et al., 2010; Börschinger et al., 2011; Chen & Mooney, 2008), in-
cluding our computational model presented previously, these have addressed learning
from text, not speech. In this chapter, we explore the same learning setting with re-
spect to SLU, i.e. we explore how a semantic parser applicable to spoken utterances
can be learned directly from spoken utterances coupled with ambiguous context in-
formation without assuming any predefined linguistic knowledge bases other than a
task-independent phoneme recognizer.
While a word-based ASR may be applied in order to handle spoken utterances,
just like it is typically done in spoken dialogue systems, working with a phoneme
recognizer yields several advantages; the main advantages compared to applying a
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word-based ASR are:

• There are no a-priori lexical restrictions by the ASR. This supports
the acquisition of a potentially unrestricted vocabulary by the parser. Fur-
ther, parsing can be performed at the whole-sentence level without a priori
restrictions concerning possible words and hence meanings.

• It yields low costs for training. Compared to training a word-based ASR,
training a phoneme-based one usually requires much less training data. In
particular, in case of a word-based ASR, typically large amounts of in-domain
training data are needed to train a language model in order to yield satisfy-
ing performance. This makes our approach also interesting with respect to
application for under-resourced languages for which large amounts of
suitable training data to build word-based language models may be simply
not available (at least with respect to several domains).

• Applying a task-independent phoneme recognizer makes it easy to adapt the
system to novel tasks.

Due to recognition errors and since a segmentation task must be tackled addition-
ally, learning a parser from speech data without word transcriptions is much more
challenging compared to learning from text. Our system performs segmentation
in the presence of noise, i.e. recognition errors and different pronunciations of the
same word, and semantic ambiguity by inducing alignments between NL utterances
and context representations. A parser – represented in the form of a lexicon and
an inventory comprising syntactic constructions – is then estimated based on co-
occurrence frequencies, thus building on learning mechanisms already explored in
the computational model presented previously (cf. Chapter 3). Alignments are com-
puted both bottom-up by first determining structures of rather low complexity and
top-down by including syntactic information. While learning linguistic structures of
rather low complexity from speech without word transcriptions has been addressed
previously, e.g. learning (novel) words (cf. Section 2.4), we are not aware of other
algorithms learning syntactic constructions using ambiguous non-linguistic contexts.
We present empirical results indicating that:

• When applied to textual input, using the proposed learning mechanisms a
parser achieving state-of-the-art performance can be induced straightforwardly.

• When applied to speech, in spite of noise and contextual ambiguity, a parser
can be learned which can be successfully applied to understand several unseen
spoken utterances.
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• In fact, in line with work investigating phoneme-based SLU with respect to
determining concepts in speech (Svec et al., 2013), our results suggest that ap-
plication of a phoneme recognizer can yield performance similar to the perfor-
mance which can be expected for the application of an in-domain word-based
recognizer.

• Top-down knowledge of syntactic patterns can yield useful segmentation cues,
improving both boundary detection and language learning.

• Parsing performance can be improved by taking different phoneme sequences
for syntactic patterns and lexical units into account, even if several of them
are incorrectly segmented and do not correspond to actual words.

• In cases where training data in the form of text or manual transcriptions are
available, the approach can be successfully applied to induce semantic speech
recognition grammars – which are typically created manually or learned in a
supervised setting –, allowing semantic parsing of speech with a rather low
loss in performance compared to parsing of input without recognition errors.

The remainder of this chapter is organized as follows. First, we will present the
learning problem and subsequently describe the proposed approach. Afterwards,
we will present empirical results, i.e. we will first compare our proposed learning
mechanisms to the state-of-the-art and subsequently explore learning from speech.
Finally, we will discuss our approach, implications of the results as well as future
work.

5.2. Learning problem

In this chapter, we explore learning from spoken instead of written utterances, and
we assume no predefined linguistic resources other than a task-independent phoneme
recognizer. The input to the learning system is the same as in case of the com-
putational model presented previously, with the exception that spoken utterances
are presented instead of written ones. Spoken utterances are transcribed using a
phoneme recognizer yielding natural language utterances in the form of phoneme
sequences (NL) as the input to the learning algorithm. The learning process is
illustrated in Fig. 11.

Given a set of input examples, the goal is to estimate a parser P consisting of a
lexicon VP and a set CP of syntactic constructions, both containing meanings for

1Again, we work with the RoboCup corpus and hence examples are taken from the RoboCup
domain.

134



5.2 Learning problem

Figure 1.: Overview of the learning process.

entries. We represent entries in both cases similarly as in the computational model
in the form of constructions, albeit sequences of phonemes are considered instead
of sequences of words. The parser’s lexicon consists of semantically meaningful
sequences ai ∈ VNL; following Gorin et al. (1999) we also call such sequences acoustic
morphemes. Each syntactic construction in CP consists of a syntactic pattern which
can contain syntactic slots. In this case, syntactic slots are positions where a v ∈ VP
may be inserted. The meaning is represented by a semantic frame, and a one-to-one
mapping which maps slots in the syntactic pattern to argument slots in an associated
semantic frame is required.
An example of an input pair is given by:

(5.1)

NL: p r= p l EI t k I k s t @ p r= p l s @ m @ n

mr1: playmode(play_on)

mr2: pass(purple8, purple7)

mr3: pass(purple2, purple5)

Given this example, VP should contain the following two entries:

(5.2)
N̂L p r= p l EI t

m̂r purple8

N̂L p r= p l s @ m @ n

m̂r purple7
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CP should contain the following syntactic construction:

(5.3)

N̂L X1 k I k s t @ X2

m̂r pass(ARG1, ARG2)

Φ X1 → ARG1

X2 → ARG2

Notice that both VP and CP contain different entries for different pronunciations
of the same (sequence of) word(s), which may be erroneous due to recognition er-
rors.
The definition of the underlying vocabulary of the MR portion of the data VMR

remains the same as containing all semantic entities. We define the vocabulary of
the NL portion of the data VNL as containing all potential acoustic morphemes, i.e.
all observed sequences of length 5 to 13. While this may be rather arbitrary, re-
stricting the sequence length reduces computational costs for our experiments, and
we assume that sequences of such length already cover most “good” candidates for
acoustic morphemes.
Notice that while we again represent knowledge in the form of constructions, in this
chapter it is not our goal to model claims posed within the framework of construc-
tion grammar, in particular we do not represent linguistic knowledge by means of a
network. As mentioned previously, we also do not attempt to model child language
acquisition. Thus, we will not explicitly design the system with respect to cognitive
plausibility, even though we will explore similar learning mechanisms as those ex-
plored within the computational model.
As mentioned before, learning from NL utterances coupled with ambiguous context
information has been previously investigated with respect to textual utterances, not
phonemically transcribed speech. The learning setting investigated in this chap-
ter is more challenging since a segmentation task must be tackled additionally and
because noise in the form of different pronunciations of the same word(s) and recog-
nition errors must be taken into account. To illustrate the additional challenges
of the phoneme-based learning setting consider the following two word-based input
examples which illustrate the learning problem from the system’s perspective, i.e.
words and semantic referents are replaced by arbitrary symbols:

(5.4)

NL w1 w2 w3 w4 w5

mr1 pred1(ref1, ref2)

mr2 pred2(ref2, ref3)

mr3 pred1(ref1, ref3)

mr4 pred3(ref4)
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(5.5)
NL w1 w5 w6 w7 w8

mr1 pred4(ref1, ref5)

mr2 pred5(ref6)

Learning across these two situations we may assume that w1 refers to the semantic
referent ref1 due to their co-occurrence.
Now let us consider the phoneme-based setting in which the previously presented
examples may be of the following form:

(5.6)

NL p1 p2 p1 p3 p4 p5 p6 p7 p8 p7 p9 p6 p10 p1 p2 p1 p3 p9 p10 p11 p12

mr1 pred1(ref1, ref2)

mr2 pred2(ref2, ref3)

mr3 pred1(ref1, ref3)

mr4 pred3(ref4)

(5.7)
NL p1 p13 p8 p1 p3 p4 p5 p1 p14 p7 p8 p7 p9 p6 p1 p2 p1 p3 p15 p4 p16

mr1 pred4(ref1, ref5)

mr2 pred5(ref6)

Across those two situations several candidate sequences, e.g. “p1 p2 p1 p3”, “p1

p2 p1” and “p1 p3 p4 p5”, co-occur with ref1 and none of them actually corresponds
to w1. Thus, in contrast to the word-based setting in which it may be possible to
determine lexical units and their meanings solely based on co-occurrence frequencies,
i.e. by applying cross-situational learning, this strategy is unlikely yielding satisfying
results in the phoneme-based setting.

5.3. Algorithm

Due to the increased complexity of the learning scenario we modified the learn-
ing mechanisms explored within the computational model towards enabling faster
language learning. Relating back to Example 9 in Chapter 3, we observed for the
computational model that, at later learning steps, language learning performance
increased in that utterances could be incorporated directly as generalized paths (cor-
responding to syntactic patterns) into the network, and that it was also possible to
directly infer the correct meaning out of an ambiguous context. In the approach
presented in the following, we attempt to capture this behavior. In particular, we
attempt to directly generalize utterances based on lexical units and their semantics.
Minimal variation in the surface structure of different utterances is not taken into
account. Instead, we introduce alignments between form and meaning.
The main idea of the proposed system is to compute alignments between NLs and
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ambiguous context representations for the given input examples. Given such align-
ments, a parser is then estimated by computing co-occurrence frequencies at differ-
ent levels just like it has been previously explored in the computational model. An
overview of the algorithm’s work flow is illustrated in Fig. 2.

Figure 2.: The algorithm’s work flow.

It is roughly divided into the following four steps:

1. Acquisition of an initial lexicon comprising initial knowledge about acoustic
morphemes

2. Bottom-up computation of alignments based on the initial lexicon

3. Estimation of a parser by computing co-occurrence statistics on the alignments

4. Top-down re-estimation of alignments using the learned parser.

Steps 3 and 4 are then repeated until some criterion is met.

In order to restrict possible segmentations and computational costs – notice that
the number of occurring sequences can be very high (cf. Section 5.4) –, we apply
an unsupervised algorithm, i.e. Bootstrap Voting Experts (Hewlett & Cohen, 2009,
cf. Section 2.4)2, to segment all NLs into (sub)word-like units and then utilize the

2We utilized the Java implementation available online at http://code.google.com/p/voting-
experts/ with parameter optimization via minimum description length; for each fold parameters
were optimized on the training data.
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segmented utterances for further processing.
Given a pre-segmented (NL,MR) pair, an alignment is computed by measuring pos-
sible segmentations for NL along with a hypothesized mapping to semantics for each
mri ∈ MR. For instance, consider the previously shown input example:

(5.8)

NL: p r= p l EI t k I k s t @ p r= p l s @ m @ n

mr1: playmode(play_on)

mr2: pass(purple8, purple7)

mr3: pass(purple2, purple5)

Then, the following alignment should be created:

(5.9)

NL X1 k I k s t @ X2

mr
pass(ARG1,ARG2)

φ : X1 → ARG1, X2 → ARG2

nl→ ref
p r= p l EI t → purple8

p r= p l s @ m @ n → purple7

Notice that when creating alignments we also attempt to make use of lexical
knowledge to disambiguate the data, that is, to directly rule out mrs which the
NL does not correspond to. For instance, if no sequences expressing the semantic
referent at position ARG1 in playmode(ARG1) appear in NL this semantic frame
cannot be aligned with NL and is directly ruled out, i.e. not considered during the
computation of co-occurrence frequencies (step 4).
Given a list of alignments, a parser is estimated by computing co-occurrence statis-
tics at different levels. In particular, we compute association scores at three levels:

1. Lexical L: nl → ref : between all vnl ∈ VNL (LNL, e.g. “p r= p l EI t”) and
vmr ∈ VMR (LMR, e.g. purple8) appearing in alignments.

2. Pattern P : NL → mr: between all patterns (PNL, e.g. “X1 k I k s t @ X2”)
and semantic frames (PMR, e.g. pass(ARG1,ARG2)) appearing in alignments.
The induction of such patterns will be described later on.

3. MappingM : between all variable positions (MNL, e.g. X1) and argument slots
(MMR, e.g. ARG1) for each pattern and semantic frame.

Then, nl → ref yields VP , while NL → mr , each coupled with its individual map-
ping, yields CP .
The association score is computed as follows.
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Definition 10 (Association score). Let freq(zy) be the number of observations zy
appears in (at least once). The association score assoc(znl, zmr) between a znl ∈ ZNL

and a zmr ∈ ZMR, Z ∈ {L, P,M} is given by:

assoc(znl, zmr) = P (znl|zmr)× P (zmr|znl), (5.10)

P (znl|zmr) = freq(znl,zmr)
freq(zmr)

, P (zmr|znl) = freq(znl,vmr)
freq(znl)

.

Based on the association score we determine meanings for referents and, in turn,
expressions for referents as follows.

Definition 11 (Meaning and expression). A zmr ∈ ZMR is said to be a meaning of
znl ∈ ZNL and znl expresses zmr if

P (znl|zmr) = argmax
zi∈ZMR

assoc(znl, zi). (5.11)

Thus, a meaning is computed similarly to the computation of associations in the
computational model (cf. Equation 2). However, since we do not explore online
learning in this chapter, we opted to simply compute association scores over the
whole dataset in an offline fashion.
Due to different pronunciations and recognition errors, an algorithm for approximate
matching is needed in order to map different phoneme sequences onto each other. We
compute the similarity between phoneme strings following Yu et al. (Yu & Ballard,
2002; Yu et al., 2005) by first transforming phonemes into vectors of (articulatory)
distinctive features (Ladefoged, 1993) and subsequently determining the similarity
between two strings based on the dynamic programming principle (Kruskal, 1999).
In doing so, a positive reward is given to matching phonemes and negative scores
are assigned otherwise, depending on the number of differing features. In the fol-
lowing, we call the phonetic similarity between two phoneme strings sp1 and sp2

sim(sp1, sp2), and only strings having at least a certain number of phonemes in
common are considered as (potentially) similar. In particular, we set a threshold
by multiplying the maximal sequence length with a fraction of the reward set for
matching phonemes. Detailed information concerning the computation of phonetic
similarities can be found in Appendix A.
The algorithm is detailed in Algorithm 3. In the following, the four steps of the
algorithm will be explained in more detail.
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Algorithm 3 Learning algorithm

Input: A list of examples E = {(NL1,MR1), . . . , (NLk,MRk)}
Output: A lexicon VP and an inventory of syntactic constructions CP

1. Acquisition of an initial lexicon

◦ compute association scores between all vnl ∈ VNL and all vmr ∈ VMR in E

◦ La ← select for each vmr ∈ VMR, vmr refers to an argument, sequences having highest
association score(s) with vmr along with their score

2. Bottom-up computation of alignments

◦ E ← pre-segment all NLi ∈ E using the BVE algorithm

◦ A ← an empty list

◦ for all examples (NLi,MRi) ∈ E do
- create and score initial alignments using La for all mr ∈ MRi

- max_score ← best score obtained for an alignment created for any mr ∈ MRi

- store all alignments with max_score in A

◦ end for

repeat as long as the cumulative alignment score increases

3. Estimation of a parser

◦ compute association scores at three levels (L,P,M) on A

◦ La ← select for each vmr ∈ VMR, vmr refers to an argument, sequences having highest
association score(s) with vmr along with their score

◦ Lp ← select for each vmr ∈ VMR, vmr refers to a predicate, sequences having highest
association score(s) with vmr along with their score and mapping

4. Top-down computation of alignments

◦ A ← an empty list

◦ for all examples (NLi,MRi) ∈ E do
- create and score initial alignments using La and Lp for all mr ∈ MRi

- max_score ← best score obtained for an alignment created for any mr ∈ MRi

- store all alignments with max_score in A

◦ end for

end repeat

Estimation of the final parser

◦ compute association scores at three levels (L,P,M) on A

◦ VP ← select for each vmr ∈ VMR, vmr refers to an argument, all sequences expressing vmr

◦ CP ← select for each vmr ∈ VMR, vmr refers to a predicate, all sequences expressing vmr

along with their mapping

return VP and CP
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Chapter 5. Learning a semantic parser from speech without word transcriptions

5.3.1. Acquisition of an initial lexicon

As illustrated before, due to recognition errors and different pronunciations, several
different phoneme sequences may exist for the same word. Thus, finding meanings
based on co-occurrence statistics is much more challenging compared to working
with words. In particular, several sequences referring to semantic referents typically
occur infrequently, i.e. once or twice only (cf. Section 5.4.6), and thus several expres-
sions may not be found by applying cross-situational learning. However, we assume
that at least some sequences co-occur frequently enough with their corresponding
semantic referents to bootstrap the parser, i.e. to establish initial form-meaning
mappings. Notice that these sequences are likely only subsequences of expressions
for the corresponding semantic referents but we assume that these are still useful for
bootstrapping the parser. Thus, we compute association scores between all vnl ∈ VNL

and vmr ∈ VMR. For each semantic referent vmr ∈ VMR, we then select a number
of “good” candidates, i.e. sequences having highest association score(s) with vmr, as
acoustic morphemes for the initial lexicon. These are inserted into the lexicon along
with their meanings and the corresponding association scores, and are utilized for
bootstrapping the parser.

5.3.2. Bottom-up creation of alignments

Given an example (NL,MR), an alignment is created and scored for each mri ∈
MR. The parser is then only trained on alignments with maximal score. Given an
(NL,mr) pair, possible alignments are created by segmenting NL such that segments
express semantic referents observed in mr according to the initial lexicon.

Definition 12 (Alignment). An alignment is a hypothesized mapping between form
and meaning given a phoneme string NL and a meaning mr. It includes i) a seg-
mentation of NL such that all referents appearing in mr are expressed by individual
sequences, i.e. a potential syntactic pattern, ii) a hypothesized mapping for each
of the segments to their corresponding semantics, and iii) a hypothesized mapping
between syntactic slots in the NL pattern and argument slots in the mr.

Example 11. An example of an alignment between a phoneme string “p I n k @ p A
r p { s I s t @ t EI k @ t EI t” and an mr pass(pink4,pink8) is illustrated in Fig. 3. In
the alignment, “p I n k @ p A r ” and “t EI k @ t EI t” are aligned with the referents
pink4 and pink8 using the entries “p I N k f O r” and “p I N k EI t” in the initial
lexicon, respectively. The pattern “X1 p { s I s t @ X2” is hypothesized to express
the pass predicate, and the first and second slot are hypothesized to express the first
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Figure 3.: Example of an alignment between form and meaning

and second argument slot in the predicate, respectively. In sum, the alignment is
composed of the following hypothesized correspondences:

(5.12)

NL X1 p { s I s t @ X2

mr
pass(ARG1,ARG2)

φ : X1 → ARG1, X2 → ARG2

nl→ ref
p I n k @ p A r → pink4

t EI k @ t EI t → pink8

As mentioned before, alignments are created using the initial lexicon. More specif-
ically, the meaning of a segment s is computed as the meaningmrs of an entry having
maximal similarity score with s (if existent) eLi

s in the initial lexicon Li. The simi-
larity score is computed by applying the procedure for approximate string matching
as described previously and detailed in Appendix A.
The alignment score between s and mrs is then computed as

alignLi(s,mrs) =
sim(s, eLi

s )

MAXSIMmrs

∗ assoc(eLi
s ,mrs), (5.13)

where MAXSIMmrs is the maximal similarity which has been obtained for any seg-
ment si with meaningmrs and lexicon entry eLi

si
in one of the segmentations inspected

for (NL,mr). Thus, an alignment is measured by inspecting whether i) a sequence
likely corresponds to a lexicon entry, and ii) whether this entry is a good expression
for an observed argument. For instance, in Fig. 3 this corresponds to inspecting i)
whether “p I k @ p A r” likely corresponds to “p I n k f O r”, and in turn ii) whether
“p I n k f O r” actually means pink4. The alignment score for a complete alignment
align(NL,mr) is then computed as the sum of the alignment scores for segments
expressing the arguments, i.e.

alignLi
arg(NL,mr) =

∑
arg∈ARGs(mr)

alignLi(s, arg). (5.14)

143



Chapter 5. Learning a semantic parser from speech without word transcriptions

We use the accumulated score over arguments because it prefers alignments in which
more arguments are expressed in the segmentation. Notice that according to the
definition of alignments only segmentations are considered in which all arguments
in mr are indeed expressed by individual segments.

5.3.3. Creating a parser

As described previously, given a list of alignments, association scores are computed
at the three levels (Lexical, Pattern, Mapping) as defined by equation 5.10.

5.3.4. Top-down creation of alignments

If a sequence co-occurs with a referent n-times, then all of its subsequences do so
at least n-times and may thus yield better candidates for acoustic morphemes and
subsequent segmentation errors. For instance, a sequence “p I N k I l @ v a n k
I k s” might be incorrectly segmented as “p I N k X1 k I k s” because “I l @ v
a n” is a “better” expression for pink11 than “p I N k I l @ v a n”. Due to such
potential errors we apply a top-down step to refine alignments based on previously
learned knowledge of syntactic patterns. For instance, once the system has learned
that “X1 k I k s” is a likely expression for kick(ARG1) while “p I N k X1 k I k s”
is not, it can utilize this information to correct the error described previously. In
general, in the top-down step alignments are computed as in step 2, but in addition
a score for segments expressing the predicate is added. In particular, in addition to
a lexicon containing acoustic morphemes, a lexicon containing patterns is utilized;
both are extracted from the parser. As in case of creating the initial lexicon, they
are created by taking a number of “good” candidates according to the association
score. Specifically, a number of acoustic morphemes and patterns are selected for
all semantic referents referring to arguments and predicates/semantic frames and
stored in lexicon La and Lp, respectively. Given an (NL,mr) pair, the alignment
score is computed as defined in Equation 5.14 as alignLa

arg(NL,mr). The score for
segments sp instantiating the pattern alignLp(sp,mr) is computed as defined in
Equation 5.13 if the meaning of the lexicon entry for sp matches the observed mr
and summed up with alignLa

arg(NL,mr). Based on the re-estimated alignments, the
parser is then induced again (step 3). This procedure is then repeated (steps 3 and
4) as long as the cumulative alignment score increases. Taking only a number of
“good candidates” into account for refining alignments is again mainly done in order
to reduce computational costs for our experiments since the number of occurring
sequences can be very high (cf Section 5.4). Notice, however, that “good candidates”
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are chosen for re-estimation of alignments only; the final parser comprises all acoustic
morphemes and syntactic constructions learned in the last run.

5.3.5. Parsing

Parsing is performed in a similar manner as in case of the computational model, al-
beit taking approximate matching into account. Given an NL, the system inspects
whether this utterance is an instantiation of one (or more) of the stored syntactic
constructions, i.e. it searches for a matching pattern p ∈ CP . All matches are rated
by summing up the similarity scores for p and the acoustic morphemes observed in
its slots with the corresponding segments in NL, and – if existent and a meaning has
been determined – one having maximal score is selected. The meaning mr is the se-
mantic frame associated with p in which meanings of acoustic morphemes appearing
in syntactic slots are inserted into the corresponding argument slots according to the
mapping. In contrast to parsing with the computational model (cf. Section 3.3.6),
parsing can be ambiguous, i.e. different matches with maximal score may be found,
especially due to applying approximate matching. For instance, given an NL “t I n k
I l @ v a n k i k s” two matching derivations having maximal score may be returned:
“X1 k I k s” with X1 = “p I N k I l @ v a” and “X1 k I k s” with X1 = “p I N k I @
v a n”. However, assuming that meanings have been obtained correctly, both would
yield the same semantics, i.e. kick(pink11), and hence the choice of the resulting
derivation does not affect the final parsing result. In general, it may be rather often
the case that if different matches exist, these correspond to different phoneme se-
quences or segmentations actually referring to the same (sequences of) word(s) and
hence semantics. Thus, assuming that different matching derivations often yield
the same semantics, we simply choose one in cases where different derivations with
maximal score exist.

5.4. Experimental evaluation and discussion

The task of learning language from examples comprising natural language utter-
ances coupled with ambiguous perceptual context information has been previously
addressed with respect to learning from written text, not speech. Previous algo-
rithms have been mainly evaluated on the RoboCup soccer corpus. In order to
compare the learning mechanisms proposed in this chapter to the state-of-the-start,
we evaluate our system on textual RoboCup data in addition to an evaluation on
speech data. In the following, we first provide information about the input data.
We then investigate the system’s performance when applied to the typical learning
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scenario, i.e. written text. Further, we compare the system’s performance when
applied to phonemic transcriptions of speech to the expected performance when
applied to ASR word transcriptions, investigate the role of syntactic information
on segmentation, and explore effects of phonemic variation on parsing and learn-
ing. Afterwards, we show how the system can be applied to induce semantic speech
recognition grammars. We compare the performance of applying such grammars as
a language model with an ASR to the performance of applying a standard n-gram
model and to the performance of applying purely syntactically motivated grammars.

5.4.1. Datasets

For evaluation we use the RoboCup soccer corpus which has been used previously for
evaluating the cognitive model for the induction of verb-specific constructions. This
corpus contains written NLs. Because we explore learning from spoken utterances,
all NL utterances in the RoboCup training data were read by a native American
speaker. Out of them, 23 were excluded due to an error made by the speaker, yield-
ing 1849 spoken input examples. All spoken utterances were then transcribed using
a phoneme recognizer. In particular, we applied Sphinx-3 (Placeway et al., 1997)
with the configuration and resources available online3. The applied acoustic models
were trained on the HUB4 dataset (Fiscus et al., 1998) which contains broadcast
news speech which matches our spoken RoboCup data with respect to acoustics in
that in both cases read speech is addressed. Silence was removed from the transcrip-
tions, and transcriptions were converted from ARPABET into X-SAMPA, allowing
comparison to MaryTTS output. No effort was made in order to improve recogni-
tion performance.
Furthermore, for evaluating the system without recognition errors and different pro-
nunciations of the same word, we applied grapheme-to-phoneme conversion to the
written RoboCup comments using MaryTTS (Schröder & Trouvain, 2003). All
markers of syllable and word boundaries were removed. By comparing the ASR
transcribed data to the grapheme-to-phoneme converted data, a phoneme error rate
(PER) of 34.2% averaged over all four games was obtained.4

Some statistics for the RoboCup soccer corpus as well as the grapheme-to-phoneme
converted data and the spoken utterances transcribed by the phoneme recognizer are
shown in Table 5.1; the statistics for the written data have been presented previously

3http://cmusphinx.sourceforge.net/wiki/phonemerecognition
4Notice that the determined PER can only provide a rough approximation of the actual PER
because reference datasets were created automatically. Automatically transforming words into
a sequences of phonemes may not yield the sequences actually spoken in several cases and, in
addition, automatic transformations may be erroneous.
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but are shown again for direct comparison.

Table 5.1.: Some statistics for the RoboCup training dataset, the grapheme-to-
phoneme converted data, and the speech data transcribed by a phoneme
recognizer.

RoboCup dataset, written text
Total number of comments 1,872
Comments having correct mr 1,539
Average number of events per comment 2.5
Maximum number of events per comment 12
SD in number of events per comment 1.8
Mean utterance length 5.7 words
Number of tokens 10,700
Vocabulary size 443
Speech data, ASR transcribed phonemes
Total number of comments 1,849
Mean utterance length 25.67 phonemes
Number of tokens (sequence length 5–13) 294,390
Vocabulary size (sequence length 5–13) 186,708
Grapheme-to-phoneme converted data
Mean utterance length 27.03 phonemes
Number of tokens (sequence length 5–13) 321,088
Vocabulary size (sequence length 5–13) 68,781

In this chapter, we apply the same evaluation schema as introduced by Chen et
al. (2010) and already described in Section 3.4.2. In the following, we apply it with
respect to the different datasets, i.e. the written dataset, the grapheme-to-phoneme
converted dataset and the speech dataset.

5.4.2. Application to written text

In order to compare the employed learning mechanisms to the state-of-the-art, we
evaluate our system on the written RoboCup data. As mentioned previously, to the
best of our knowledge the best performing system on this dataset so far has been
proposed by Börschinger et al. (2011).
When applied to text, using our proposed learning mechanisms a parser can be
induced straightforwardly. In particular, we computed an initial lexicon by taking
all uni- and bigrams as the vocabulary VNL and computed alignments only once by
applying a single bottom-up step. Approximate matching, while not needed when
computing alignments, was applied during parsing of NLs for which no pattern
could be found otherwise. Specifically, we explored three strategies for approximate
matching: i) matching with a Levenshtein distance of 1 (LD, e.g. “Pink1 makes a
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cross pass” can be matched with “X1 makes a pass”), ii) matching partially (partial,
e.g. “Pink1 passes to Pink2 near midfield” can be matched with “X1 passes to ”X2”),
and iii) matching with both of them (LD+partial). Notice that similarly to parsing
phoneme sequences, parsing textual utterances can be ambiguous in that different
matching derivations may be found. While, in general, in this case we simply choose
one of them, in case of parsing sequences of words we always choose a derivation
yielding a maximum number of semantic referents. This is done because we apply
partial matching and attempt to determine a matching subsequence containing as
much semantic information as possible.5

Table 5.2.: Semantic parsing results for written text
Our system
Parsing strategy F1 Precision Recall
Complete 83.54 95.97 74.19
LD 86.82 93.62 81.14
Partial 86.46 94.53 79.71
LD+partial 89.09 93.38 85.23
Börschinger et al (2011)

F1 Precision Recall
86.0 86.0 86.0

Results are presented in Table 5.2. As can be seen, our system outperforms
Börschinger et al. (2011) with respect to F1 when approximate matching is applied,
yielding its best result of 89.09% when both matching with a Levenshtein distance of
1 and partial matching are applied. By contrast, (expectedly) the highest precision
is achieved when approximate matching is not applied, yielding a result of 95.97%.
Still, when approximate matching is applied the system’s precision remains rather
high with values of above 93%. With respect to recall, our system achieves values
of up to 85.23% which is only slightly below the 86% achieved in Börschinger et
al. (2011)’s case. The results show that when applied to written text, using the
proposed learning mechanisms a parser yielding state-of-the-art performance can be
induced straightforwardly.

5.4.3. Application to simulated ASR word transcriptions

In this section we evaluate the system’s performance with respect to the typical sce-
nario in SLU, i.e. application of a word-based ASR to transcribe speech into words

5Due to this fact the results presented in the following differ slightly from those presented in
Gaspers & Cimiano (2014b) where we did not prefer derivations yielding as many semantic
referents as possible during parsing.
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and subsequent semantic parsing. In this scenario, parsing performance depends
heavily on the performance of the applied ASR. SLU systems typically include an
ASR with an in-domain language model in order to yield good performance. An
in-domain language model was not available for our experiments since no suitable
in-domain data were available. Yet, one can be built if we assume the availability
of in-domain data by using data from the written RoboCup soccer corpus. The
experiments presented in the following are twofold: i) we explore recognition per-
formance on the spoken RoboCup data when assuming the availability of in-domain
training data, and ii) from these experiments we determine statistics concerning
recognition errors to simulate data containing different amounts of errors made by
an in-domain ASR for investigating parsing performance with respect to different
word error rates. Recall, however, that a lower WER does not necessarily yield
better parsing performance which is rather dependent on the type of errors made
(Bayer & Riccardi, 2012; Wang et al., 2003, cf. Section 2.2). With respect to the
dataset at hand, for instance, a spoken utterance “pink two passes backward to pink
seven” in which “seven” is incorrectly recognized as “eleven” likely yields a parsing
error while a recognition error which substitutes “backward” by “forward” may not
prevent correct parsing. This is the case because “forward” and “backward” do not
carry any semantics in the dataset at hand while correct identification of numbers
is in most cases essential for detecting the correct semantic referents. However, the
results presented in the following will serve as a rough estimate towards what WER
may yield reasonable results, and as a basis for a rough comparison between appli-
cation using a phoneme- and a word-based speech recognizer. In these experiments,
we assume that the ASR is applied with a standard n-gram language model.
In order to investigate speech recognition performance when assuming the avail-
ability of in-domain training data we performed 4-fold cross-validation on the four
RoboCup games. For each fold, written training data for three games were used to
train a trigram language model; trigram models were created using SRILM (Stol-
cke, 2002)6. For application with the ASR, data were normalized beforehand which
mainly comprised lowercasing and replacing numbers in player names, e.g. “pink4”
→ “pink four”. The trigram language model was then applied with a speech recog-
nizer to transcribe the spoken training data for the remaining game. Specifically,
we applied Sphinx-4 (Walker et al., 2004) using lexicon and acoustic models trained
on the HUB4 dataset (Fiscus et al., 1998). As already mentioned with respect to
phoneme recognition, this dataset contains broadcast news speech which matches

6Notice that n-gram models are typically build using large amounts of data. Because the vo-
cabulary size of the RoboCup dataset is small, the training data of three games appear to be
already sufficient as indicated by the resulting recognition results.
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our spoken RoboCup data with respect to acoustics in that in both cases read speech
is addressed. The applied resources are available online. We added transcriptions
for out of vocabulary (OOV) words to the lexicon. Only two words were OOV along
with some typos. Averaged over the four folds a WER of 9.4% on the spoken training
data and 7.1% on the spoken gold standard data, which is a subset of the training
data, was obtained.
Starting from the written, normalized data, ASR errors were simulated roughly fol-
lowing Jung et al. (2009). The authors presented a system for user simulation which
can be utilized to evaluate spoken dialogue systems; the system also includes ASR
channel simulation. In order to simulate an erroneous utterance, a correct input
sequence is transformed by applying the following four steps:

1. Error positions are determined randomly.

2. For each error position the error type – substitution, deletion or insertion – is
determined based on some error distribution.

3. The corresponding errors are generated.

4. Steps 1–3 are repeated several times, and all simulated utterances are ranked
using a language model. Finally, one of the top-ranked utterances is chosen
randomly as the resulting erroneous utterance (Jung et al., 2009).

We used the recognition results from the previous experiment for simulation. In
particular, the error distribution found averaged over all folds was used in case of
step 2. Insertion and substitution errors were generated probabilistically according
to the errors made by the ASR. In step 4, we applied a trigram model trained on
the complete written RoboCup training data. We repeated steps 1–3 20 times for
each utterance and chose on of the top 5 ranked candidate sequences randomly. We
created datasets representing error rates of 5%, 10% and 15% and used these to
train and test semantic parsers. Results are presented in Table 5.3.

The results reveal that, expectedly, performance degrades when the system is
applied to data containing recognition errors. Even with a rather low WER of 5%,
performance already degrades about more than 15% absolute with respect to F1.
Here it must be noted that due to the evaluation schema a single recognition error
can yield a completely incorrect parse. Recall that evaluation is performed on the
basis of completely correctly determined mrs, that is, all referents and the predicate
must be determined correctly in order to yield a correct parse. For instance, if any
of the words “purple”, “pink”, “two” or “five” is deleted or substituted in an utterance
“purple two passes to pink five”, this might prevent the correct identification of one
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Table 5.3.: Semantic parsing results for learning from and testing on data containing
different amounts of simulated recognition errors.

Simulated WER of 5%
Parsing strategy F1 Precision Recall
Complete 69.29 85.98 58.33
LD 71.8 80.67 65.01
Partial 63.04 64.28 61.85
Partial-LD 68.47 69.40 67.58
Simulated WER of 10%
Parsing strategy F1 Precision Recall
Complete 57.05 74.91 46.74
LD 61.29 70.83 54.57
Partial 51.59 52.5 50.72
Partial-LD 58.02 58.86 57.21
Simulated WER of 15%
Parsing strategy F1 Precision Recall
Complete 48.15 66.46 38.22
LD 49.13 58.94 42.44
Partial 41.90 42.99 40.87
Partial-LD 45.15 46.06 44.3

of the referents. Similarly, deleting or substituting “passes” may yield an incorrect
predicate or no parse at all. Moreover, since the training data contain errors as well,
compared to working with textual input, less (correct) training data are available
for parser induction and the system may learn (more) erroneous patterns, lexical
units and semantics, yielding subsequent parsing errors.

5.4.4. Application to ASR phoneme transcriptions

To the best of our knowledge, the task of learning language from examples of natural
language utterances coupled with ambiguous context information has to date been
evaluated with respect to written text, not speech. Hence, we cannot compare the
performance of our system to that of other systems. Therefore, in order to evaluate
the amount of language learned by our system we computed a simple “rote learning”
baseline. In particular, as in case of evaluating the cognitive model, we computed
the F1 score that would have been achieved if the system would have performed “rote
learning” of input examples. In the baseline, an NL in the test data was parsed – if
it had also been observed in the training data – by choosing one of the mrs observed
with it randomly. Results for both, applying the system to ASR transcriptions of
speech and grapheme-to-phoneme converted data, along with their corresponding
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baseline values are presented in Table 5.4. Notice that for ASR output the baseline
is very low as due to recognition errors it is the case that only a single NL appears
in both the training and the test data for two folds, in one case together with 8 and
in the other case together with 3 possible mrs. By applying approximate matching
as described in Appendix A the baseline can be increased to F1 = 19.6%.
In case of unsegmented phoneme sequences without recognition errors (grapheme-to-
phoneme) still a high F1 of 82.8% is obtained, indicating that the proposed segmen-
tation mechanisms are appropriate. However, notice that in this case expressions
for referents can also be found by coupling co-occurrence frequencies with a length
bias (Gaspers & Cimiano, 2012).

Table 5.4.: Results for the application to ASR transcribed phoneme sequences.
Input Parser F1 Precision Recall
Grapheme-to-phoneme Baseline 18.9 43.6 12.2
Grapheme-to-phoneme System 82.8 84.1 81.4
ASR phoneme Baseline 0.3 50.0 0.2
ASR phoneme System 64.2 66.0 62.6

Expectedly, when applied to ASR output, performance degrades. Yet, the results
are promising, showing that in spite of recognition errors and ambiguity at the
semantics level, it is still possible to learn a semantic parser which can be successfully
applied to understand several unseen utterances as indicated by the large increase
in F1 compared to the baseline. In fact, relating back to the previous section,
the resulting F1 of 64.2% is even higher than the best value achieved in case of
a simulated WER of 10% for word transcriptions. Thus, the results indicate that
in the SLU task at hand, a speech recognizer yielding a WER of less than 10% is
needed in order to yield results in the word-based setting which are comparable to
those obtained in the phoneme-based setting. Recall from the previous section that
a WER of 9.4% averaged over all folds can be achieved when applying a word-based
in-domain ASR. Hence, results for the phoneme-based setting are comparable to
those which can be expected when applying an in-domain word-based ASR which,
however, in contrast to the phoneme recognizer, was built using in-domain training
data. A main reason for this result may be the fact that in case of phonemes no
restrictions concerning possible words – and thus meanings – are given by the ASR.
Instead, a meaning can be determined at the whole-sentence level. In particular,
while when working with words – as described in the previous section – a single
recognition error may yield an incorrect parse for a given utterance, when working
with phonemes a given utterance containing several errors (the PER is much higher
than 10%) might still be parsed correctly due to the fact that often subsequences
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and sequences containing errors are still sufficient for determining a correct meaning
(cf. Section 5.4.6). This finding is also in line with recent research showing that SLU
(with respect to determining concepts in speech) performed on phoneme lattices can
indeed yield comparable or even slightly better results than on word lattices (Svec
et al., 2013, cf. Section 2.2).

5.4.5. On the role of knowledge about syntactic patterns in

segmentation

Our system determines alignments and segmentations given a list of utterances both
bottom-up based on knowledge about acoustic morphemes and top-down by includ-
ing information of previously learned syntactic patterns. In this section we inves-
tigate the influence of top-down information of syntactic patterns on segmentation
performance and language learning.
Recall that the number of runs for re-estimating alignments using top-down informa-
tion and subsequently inducing the parser again is determined by the system based
on the accumulative alignment score (cf. Section 5.3). In the previous experiments,
for three folds the number of re-estimation steps determined and performed by the
learning algorithm was four, while three were performed in case of the forth fold.
Fig. 4 illustrates the change in F1 over the number of re-estimation steps; Step 0
corresponds to performing the bottom-up learning step only.

Figure 4.: F1 over the number of top-down re-estimations.

The diagram reveals that utilizing syntactic knowledge for re-estimating align-
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ments yields improved parsing performance, indicating that knowledge of syntactic
patterns can indeed yield useful segmentation cues and improve language learning
performance. With a value of 64.2% applying the top-down step (repeatedly) yields
an improvement of about 6% absolute over 58.0% which are achieved when applying
the bottom-up step only.
However, while the improvement in F1 indicates that information of syntactic pat-
terns can yield improved segmentation performance, it does not directly imply that
more boundaries were detected (completely) precisely. For instance, segmenting a
sequence “p r= p @ l @ l @ v a n k I k s” as “p r= – p @ l @ l @ v a n – k I k
s” instead of “p r= p @ l – @ l @ v a n – k I k s” might allow correct parsing even
though in both cases “p r= p @ l @ l @ v a n” has not been segmented correctly
out of the utterance. Therefore, we also computed the percentage of correctly seg-
mented sequences referring to players (see Section 5.4.6 for the computations) over
the number of re-estimation steps. Results are presented in Fig. 5.

Figure 5.: Percentage of correctly segmented players over the number of top-down
re-estimations.

As can be seen, repeated re-estimation of alignments using top-down information
improves not only F1 but also yields the detection of a larger percentage of sequences
referring to players precisely.
Taken together, our results thus suggest that knowledge of previously learned syntac-
tic patterns at the whole-utterance level, which is typically not utilized in algorithms
for segmentation, can indeed provide useful segmentation cues, enabling improved
segmentation and language learning performance.
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5.4.6. Phonemic variation and its effects on parsing and

learning

In contrast to working with written text, several sequences exist which express the
same word or sequence of words when working with phonemes due to recognition
errors and different pronunciations. In the following, we will investigate phonemic
variation and its effects on parsing and learning. In particular, we performed ex-
periments with respect to a subset of the semantic referents, i.e. the players, with
the exception of pink1 and purple1. We focused on these referents because in case
of textual input they are always referred to by concatenating their team color with
their number and thus correspond to the same spoken words, allowing us to explore
how many different phoneme sequences exist in the data for the same spoken word(s)
in their case.
In order to extract which phoneme sequences referring to players appear in the ASR
transcribed data, start and end times for words referring to player names were anno-
tated manually in the spoken RoboCup data using ELAN (Sloetjes & Wittenburg,
2008). By time-aligning the ASR transcriptions and the ELAN annotations we then
extracted the ASR transcriptions for each of the referents and counted their frequen-
cies (the first and the last phoneme for each sequence correspond to those phonemes
having an overlap with the annotated start or end point in cases where annotation
boundaries do not correspond to phoneme boundaries). The resulting number of
different phoneme sequences for the same spoken words is quite high with an av-
erage of 84.5 different phoneme sequences for each player, ranging from 33 (pink3 )
to 161 (purple11 ) sequences for a single player with several sequences appearing
only infrequently, i.e. once or twice. The most frequent phoneme sequence for each
player is given in Table 5.5.

The high number of different phoneme sequences referring to the same player
highlights the challenge when working with ASR transcribed phonemes compared
to written text for which the same player is always expressed by the same word(s)
in case of the inspected referents. The high amount of variation is especially an is-
sue when estimating co-occurrence frequencies for establishing initial form-meaning
mappings. When applied to textual input, the system directly associates the words
referring to players correctly with their corresponding semantic referents. By con-
trast, when applied to phonemic input, the system typically associates several se-
quences with each referent, with boundaries often not corresponding to actual word
boundaries. To illustrate this behavior, we computed association scores on the com-
plete training dataset and present a sequence having maximal association score for
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Table 5.5.: Sequences appearing most frequently in the data for a number of semantic
referents, along with the top entry in the initial lexicon and the sequence
extracted for the referent most frequently by the system.

Semantic Sequence most frequently Initial top Sequence most frequently
Referent annotated manually lexical entry aligned by the system
pink2 p I N k @ t u u p { s I p I k j u
pink3 p I N k T r i N k T r i p I N k T r i
pink4 p I N k f A r I N k f A r p I N k f A r
pink5 p I N k f AI v N k f AI v p I N k f AI v
pink6 p I N k s I k s k s I k s p I k s I k s
pink7 p I N k s E v @ n k s E v @ p I N k s E v @ n
pink8 p I N k EI t I N k EI t p I N k EI t
pink9 p I k s n AI n d n AI n d k p I k s n AI n d
pink10 p I N k s t E n k s t E n p I N k s t E n
pink11 p I N k @ l E v @ n k @ l E v p I k @ l E v @ n
purple2 p r= p @ l t u p @ l t u p r= p @ l t u
purple3 p r= p @ l T r i p @ l T r i p r= p @ l T r i
purple4 p r= p @ l f A r p @ l f A r p r= p @ l f A r
purple5 p r= p @ l f AI v p @ l f AI p r= p @ l f AI v
purple6 p r= p l s I k s l s I k s p r= p l s I k s
purple7 p r= p l s E v @ n l s E v @ p r= p l s E v @ n
purple8 p r= p l EI t p r= p l EI p r= p l EI t
purple9 p r= p U l AI n r= p @ l AI p r= p @ l AI n
purple10 p r= p @ l t E n p @ l t E p r= p @ l t E n
purple11 p r= p @ l E v @ n p @ l E v p r= p @ l E v @ n

each of the referents in Table 5.5. As can be seen, these sequences do not corre-
spond to actual words or sequences of words. However, they typically correspond
to subsequences of bigrams actually referring to the corresponding player and are
hence useful for bootstrapping the parser because the correct mr can be found and
aligned.
Recall that entries in the initial lexicon are not directly inserted into the parser’s
lexicon. The initial lexicon is only used along with BVE to compute a segmenta-
tion for a given utterance by aligning subsequences and their potential meanings at
the whole-sentence level. Then, subsequences aligned with semantic referents are
taken as entries for the parser’s lexicon. In order to investigate what sequences were
aligned with the players most frequently by the system, we computed the frequency
of sequences expressing players in alignments summed up over all folds. The most
frequent sequence for each player is presented in Table 5.5, showing that there is
an impressive match between the sequences referring to players which appear most
frequently in the data and the sequences which were most frequently aligned with
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the players by the system. Further, as an example concerning the alignment of
different sequences for the same player, Table 5.6 lists the top five most frequent
sequences for player purple10 in the data and as aligned by the system, showing that
the system can determine several sequences for a player matching those sequences
actually appearing frequently in the data.

Table 5.6.: Top five most frequent sequences in the data and aligned by the system
exemplary for purple10.

System Data
1 p r= p @ l t E n p r= p @ l t E n
2 p r= p @ l t E m p r= p @ l t E n t
3 p r= p @ l t E n t p r= p @ l t AI m
4 p r= p @ l t AI m p r= p @ l t E n d
5 p @ l t E n p r= p @ l t E m

On average, the system aligned 121.6 sequences with each referent which is more
than the number of sequences actually expressing players in the data. Moreover,
only about 31% of the sequences appearing in the data are also found by the system.
This is the case because especially sequences appearing only infrequently are not al-
ways detected or detected only partially. In particular, – especially with respect to
infrequent sequences – the system often does not determine the word boundaries
exactly. In order to investigate boundary detection performance in more detail, we
computed the percentage of correctly segmented sequences referring to players (of
the number of all sequences that the system segmented as mapping to players). Be-
cause annotation boundaries in the ELAN-files often do not correspond to actual
phoneme sequences we allowed a differing phoneme at the start and end of sequences
for matches for these computations. The resulting value of 54.9% averaged over all
folds indicates that boundaries are indeed often not detected completely precisely.
For instance, “t @” is often added in front of player names. This may, at least to
some extent, be an artifact of the dataset. Since all player names start with a “p”
and they are often preceded by the word “to”, BVE frequently pre-segments phoneme
sequences expressing “to p” and hence “t @” might be detected as belonging to a
sequence referring to a player or “p” might be omitted. However, not determining
boundaries exactly is in general no problem with respect to parsing because such
errors may not prevent correct parsing as long as both, pattern and referents, can
still be identified correctly which is often the case given only subsequences. In fact,
even if sequences are not segmented (exactly) correctly they may still provide an
additional benefit in parsing compared to parsing with a number of top entries only.
Notice that by parsing with a number of top entries only, still different sequences
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can be found due to applying approximate matching, but approximate matching
may also yield incorrect results (cf. Section 5.4.4). In order to investigate the po-
tential benefit of taking all sequences into account during parsing (as we do), we run
parsing using different numbers of sequences for semantic referents. In particular,
we performed parsing by choosing 1, 10, 20, and 30 top sequences (according to
the association score) for each referent only; all further sequences expressing these
referents were omitted. For predicates all sequences were used for parsing, because
in their case even the written data often includes a large number of different pat-
terns referring to them. Thus, omitting sequences would not just leave out different
sequences expressing the same words but different sequences of words. Notice that
this experiment includes all semantic referents, not just the players. Results are
presented in Table 5.7.

Table 5.7.: F1, precision and recall when taking a different number of top sequences
into account for each semantic referent during parsing.

Number of sequences F1 Precision Recall
1 48.4 53.0 44.7
10 58.9 61.0 57.0
20 62.1 64.1 60.3
30 62.8 64.6 61.0
all 64.2 66.0 62.6

As can be seen, by using the single “best” sequences only, F1 decreases about 16%
absolute compared to including all sequences. By including more different sequences
for parsing, F1 increases but even when taking the 30 top sequences into account,
performance is still slightly lower compared to taking all sequences into account,
even though the additional sequences are typically infrequent and incorrectly seg-
mented. Thus, while the system can determine the best/most frequent sequences
(cf. Table 5.5 and Table 5.6), parsing performance benefits from taking further
sequences into account. This may be the case because the system may learn how
the speaker actually pronounces words and what errors are added by the ASR. This
may be especially an advantage with respect to phonetically similar bigrams such
as “purple eleven” and “purple seven”, i.e. knowing the different sequences referring
to each of them may prevent mapping them incorrectly onto each other by applying
approximate matching. Thus, even if several incorrectly segmented sequences are
learned, these may still help in determining the correct meanings.
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5.4.7. Application for the induction of semantic speech

recognition grammars

In Section 5.4.3 we have explored word-based speech recognition of the spoken
RoboCup data under the assumption that written data for training a standard
trigram model were available. For each fold, we used written training data for
that purpose and performed speech recognition on the spoken test data for the
remaining game. However, – relating back to Section 2.2 – an ASR can also be ap-
plied by using a grammar as the language model, and Wang & Acero (2006b) have
shown that applying the same grammar for speech recognition and understanding
can yield improved understanding performance compared to applying a standard n-
gram model with the ASR, since dependencies between acoustics and semantics can
be captured. Yet, their grammars were learned in a supervised fashion. In general,
semantic speech recognition grammars are typically created manually or induced
automatically in a supervised learning setting (cf. Section 2.2). Grammar creation
in the former case requires human effort and often extensive domain and/or linguis-
tic knowledge, while in the latter case typically large amounts of labeled training
data are needed, making this approach rather impractical for several (real-world)
applications.
Addressing this issue, in this section we explore the utility of weak supervision in the
form of perceptual context information for the induction of speech recognition gram-
mars. Assuming the availability of training data in the form of textual utterances
or manual transcriptions of speech coupled with ambiguous context information, we
transform grammars learned by our system into a grammar format applicable with
a speech recognizer, and we explore recognition and subsequent semantic parsing for
applying these grammars compared to applying standard n-gram models and purely
syntactically motivated grammars as the language model. We compare performance
of our semantically motivated grammars to that of purely syntactically motivated
ones to explore whether contextual information can be beneficial for the induction
of rules, i.e. whether it is useful to ground grammars for speech understanding. It
must be noted that while applying n-gram models as LMs is common, this is not the
case for grammars learned in an unsupervised fashion. Relating back to Section 2.2,
for application in SLU, i.e. with respect to semantic parsing, automatically induced
grammars are typically postprocessed manually which we refrain from doing.
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Figure 6.: A subset of weighted speech recognition grammar rules.

public <utt> = /6/ <ref> again passes to <ref> | /199/ <ref> kicks to <ref> | ...
<ref> = /15/ pink goalie | /132/ pink nine | /10/ pink one | ...

Creation of speech recognition grammars

Semantic speech recognition grammars were built given a semantic parser by trans-
forming all rules with an occurrence > 1 into JSpeech Grammar Format (JSGF)7.
Resulting grammars consisted of rules representing the parser’s inventory of syntac-
tic constructions as well as its lexicon. In case of the inventory of syntactic con-
structions, alternative expansions of learned syntactic patterns were defined, and
in case of the lexicon alternative expansions of learned lexical units were defined.
In particular, with respect to the lexicon we defined a rule <ref> which comprised
the learned lexical units. With respect to syntactic constructions we defined a rule
<utt> which comprised the patterns. Slots in syntactic patterns were replaced by
<ref>, allowing lexical units to appear at those positions. In grammar creation, we
also investigated the influence of occurrence frequencies of syntactic patterns and
lexical units to enhance grammatical rules with weights. To examine the influence of
weights, we created both weighted and unweighted grammars. When using weights,
rules were weighted by using occurrence frequencies, i.e. the frequency which was
observed for a pattern or lexical unit in the alignments created by the system. Hence,
weights for patterns and lexical units observed less frequently in alignments were
smaller, indicating that they were less likely to be spoken. These weights were used
by the speech recognizer during recognition; using an unweighted rule corresponds
to using a weight of 1.
An example illustrating a subset of two weighted rules is provided by Fig. 6.

Notice that resulting JSGF grammars did not explicitly contain semantic infor-
mation but their induction was driven by semantic information. This is the case
because a mapping to semantics was not needed during recognition since we ex-
plore a two-stage approach where parsing is performed after recognition, allowing
the inclusion of further LMs during recognition. However, because both parsing and
understanding are performed using the same grammar – where semantic information
is ignored by the LM – it is also conceivable to induce a semantic grammar that di-
rectly maps ASR output into semantic representations. In that case we would define

7http://www.w3.org/TR/jsgf/
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Figure 7.: A subset of a purely syntactic speech recognition grammar rules obtained
via ADIOS

public <utt> = ( <P36> | <P37> shoots | pink <P2> three | pink <P22> |...
<E0> = eleven | goalie | four | ten | five | nine | two | eight | one | ...
<E1> = ten | six | three | seven | eleven | five | four | nine;
<E2> = backward | back | out | laterally | forward;
...
<P0> = <E0> kicks to pink;
<P1> = <E1> passes <E2> to purple;
...

individual rules for different predicates comprising patterns learned as referring to
them and define semantic tags corresponding to the predicates. Similarly, semantic
tags would be defined for lexical units, and the mapping would be incorporated by
defining positions. For instance, “<ref> again passes to <ref>” would be defined as
“<ref1> again passes to <ref2>” with both <ref1> and <ref2> referring to a rule
grouping players.
To induce syntactically motivated grammars in an unsupervised fashion we applied
the ADIOS algorithm (Solan et al., 2005, cf. Section 2.6) to the raw training data,
i.e. we did not make use of perceptual context information. Recall that ADIOS is
an unsupervised algorithm which induces syntactic patterns which are represented
in the form of a graph, patterns and equivalence classes. We transformed the output
by ADIOS into JSGF. Resulting grammars contained rules comprising paths which
were generalized by ADIOS. Further, for each induced equivalence class and pattern
a rule was added to the grammar. An example illustrating a subset of a grammar
induced using ADIOS is presented in Fig. 7.

Results

We explored recognition i) using grammars, ii) using standard trigram models, and
iii) using both jointly. In the latter case a trigram model was applied in case of
out of grammar (OOG) utterances, as these might still be parsed subsequently by
applying approximate matching; in these experiments we always apply matching
with a Levenshtein distance of 1. Notice, however, that for our experiments we did
not apply both LMs at a time but combined the output of two recognizers for further
processing. Notice further that most speech recognizers can only be applied using
either a recognition grammar or an n-gram model at a time, but one can assume that
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two recognizers might be configured to run in parallel. Specifically, we explored seven
different (combinations of) LMs for speech recognition, and investigated semantic
parsing performance on their resulting transcriptions, in particular:

1. Trigram

2. Rule-based semantic speech recognition grammar without weights

3. Rule-based semantic speech recognition grammar without weights and back
off to trigram for OOG utterancess

4. Rule-based semantic speech recognition grammar including weights

5. Rule-based semantic speech recognition grammar including weights and back
off to trigram for OOG utterances

6. Rule-based syntactic speech recognition grammar

7. Rule-based syntactic speech recognition grammar and back off to trigram for
OOG utterances

As in Section 5.4.3, we performed 4-fold cross-validation on the four RoboCup games.
For each fold, learning semantic parsers and creation of language models was per-
formed using the ambiguous written training data for three games and the spoken
gold standard for the forth game for testing.
Speech recognition was performed using each of the seven (combinations of) LMs
listed before individually; lexicon and acoustic models were always the same, i.e.
the ones already applied in Section 5.4.3. Speech recognition results (on the test
data) with respect to the WER averaged over all folds are presented in Table 5.8.
As can be seen, with a rather low error rate of 7.1% applying trigram language

Table 5.8.: Speech recognition results using different language models.
Applied language model(s) WER
Trigram 7.1
Semantic grammar w/o weights 15.55
Semantic grammar w/o weights 12.63+ trigram back off
Semantic grammar inc. weights 17.15
Semantic grammar inc. weights 10.88+ trigram back off
Syntactic grammar 18.98
Syntactic grammar + trigram back off 13.98
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models yields the best results. In case of applying semantically motivated recog-
nition grammars the WER increases. It must be noted that in cases in which no
back off models were applied, this is to some extent due to OOG utterances (as
these yield several deletions compared to the reference data). Yet, the OOG-rate is
rather low, i.e. averaged over all folds 8.6% and 4.1% when using grammars with
and without weights, respectively. However, even in cases where OOG utterances
are recognized by applying trigram language models the WER is higher compared to
applying trigram language models only. Notably, these results were not consistent
across folds. In case of two folds – i.e. one half of the folds – the WER actually
decreased when combing a semantically motivated grammar including weights with
a trigram language model compared to applying the trigram language model only,
thus indicating that combining semantically motivated grammars learned with weak
supervision with trigram models can also yield improved recognition performance
over applying trigram models only in some cases. In these experiments, applying
syntactically motivated grammars yields the worst results with a WER of 13.98%
when combined with a trigram model.
For each fold, ASR transcriptions were parsed using the semantic parser learned
on the training data for that fold. For comparison, parsing performance was also
determined on normalized gold standard data. Results are presented in Table 5.9.

Table 5.9.: Semantic parsing results on written text and on speech transcribed using
different language models

Written text (reference)
F1 Prec. Recall

Normalized text 87.26 94.28 81.42
Speech
Applied language model(s) F1 Prec. Recall
Trigram 78.36 90.34 69.4
Semantic grammar inc. weights 84.18 88.7 80.18
Semantic grammar inc. weights 84.46 87.53 81.64+ trigram back off
Semantic grammar w/o weights 82.24 84.83 79.84
Semantic grammar w/o weights 82.37 84.67 80.21+ trigram back off
Syntactic grammar 70.86 76.09 66.35
Syntactic grammar 71.27 75.37 67.65+ trigram back off

As can be seen, when applying trigram language models F1 degrades about 9%
absolute compared to parsing written text (reference), yielding 78.36%, even though
the WER is rather low with a value of 7.1%. By contrast, when applying a semanti-
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cally motivated recognition grammar including weights, performance degrades only
about 3% absolute, even though the WER is higher in this case. Moreover, includ-
ing occurrence frequencies as weights in the recognition grammars yields improved
performance compared to using unweighted grammars.
Notably, the decrease in performance when applying a weighted semantically moti-
vated recognition grammar (+ trigram back off) compared to performance on the
reference data is mainly due to a decrease in precision. Here it must be noted
that the high values in F1 were achieved without performing any optimization of
(recognition) parameters. In the performed experiments, the probability for OOG
utterances was rather low, and thus utterances were matched incorrectly by the ASR
which were actually not covered by the grammar, yielding both recognition and sub-
sequent parsing errors. However, these parameters can be tuned, likely increasing
precision and F1 even further (and probably also speech recognition performance,
i.e. WER). Again, in these experiments performance is worst when syntactically mo-
tivated grammars are applied for recognition, yielding at most 71.27% in F1 when
applied together with a trigram model.
In case of both types of grammars, applying a back off trigram model yields only
little improvement in parsing performance, though this may be also – at least to
some extent – due to not tuning recognition parameters. If the ASR would be tuned
to reject more OOG utterances correctly, these utterances might instead be recog-
nized by a trigram model and probably parsed correctly by applying approximate
matching.
The results show that, in line with previous research (Wang et al., 2003; Bayer & Ric-
cardi, 2012), a lower WER does not necessarily yield better understanding results,
i.e. in our experiments parsing performance is not directly dependent on the WER
but rather on the type of errors made. In particular, as mentioned previously, for
semantic parsing it is important that words carrying semantics are recognized cor-
rectly. Applying the semantically motivated grammars may have been beneficial in
recognizing the semantic referents correctly because the system can explicitly learn
them and their appearances in certain patterns in contrast to the trigram model. In
particular, if an utterance “pink nine passes the ball to pink seven” appears during
recognition and “pink seven” has not been observed in the context of the preceding
words during training, then the n-gram would assign a low probability, probably
yielding a recognition error such as “pink eleven”. By contrast, in case of semantic
grammars the system can learn that the utterance is an instantiation of a pattern
“player passes the ball to player ” and that all players can appear in the contained
slots, thus making the appearance of the example utterance more likely. In order
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to detect and generalize over semantic referents correctly, using weak supervision
in the form of perceptual context information appears to be beneficial. In partic-
ular, the purely syntactically motivated grammars induced by ADIOS did not, for
instance, induce semantic classes grouping players but rather induced several equiv-
alence classes grouping numbers and team colors. While a different algorithm for
the unsupervised induction of syntactic patterns may be explored as well, we assume
that the results would be similar.
We have also investigated weighting rules for semantically meaningful lexical units,
i.e. the probability for the occurrence of player names can be increased according to
their occurrence frequencies in alignments, thus making their recognition more likely.
Our results indicate that by weighting semantically meaningful sequences, perfor-
mance is improved, possibly because more words carrying semantics are recognized
correctly, even though words carrying no semantics like “forward” or “backward”
might be confused which, however, may not prevent correct parsing.
In general, while in SLU research data-driven approaches typically explore cascad-
ing systems (Deoras et al., 2013), in line with previous work (Wang et al., 2003;
Bayer & Riccardi, 2012), our results indicate that joint models yield improved pars-
ing performance, even though word recognition performance may decrease. Yet, our
results also indicate that combination of a semantic grammar with a standard tri-
gram model during speech recognition can reduce the word error rate in some cases
compared to applying the trigram model only. Further, in line with Wang et al.
(2003) and Bayer & Riccardi (2012) the results emphasize that capturing semantic
information in a language model applied during speech recognition is beneficial for
subsequent semantic parsing, since by this the ASR can be tuned towards recog-
nizing words carrying semantics more precisely which is important with respect to
parsing performance.

5.5. General discussion

In this chapter, we have presented an approach which learns lexical units and syntac-
tic constructions using ambiguous non-linguistic context information directly from
speech without word transcriptions. Relating back to Section 2.8, while several ap-
proaches have addressed learning with ambiguous context information (e.g. Chen
et al., 2010; Börschinger et al., 2011; Kwiatkowski et al., 2012), and learning from
speech without word transcriptions has been explored as well (e.g. Roy & Pentland,
2002; Taguchi et al., 2009; Yu et al., 2005; Cerisara, 2009), in the former case utter-
ances have been represented by sequences of words and in the latter case learning has
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focused on linguistic units of rather low complexity. To the best of our knowledge,
the learning scenario addressed in this chapter has not been investigated before but
is of great interest with respect to the development of adaptive systems which are
able to perform “life-long” learning and developing low-cost language understanding
capabilities directly from speech. The latter is, for instance, of interest with respect
to building spoken language understanding systems (and/or (pronunciation) lexica)
for under-resourced languages, since much less training data – and in particular no
in-domain data – are needed for building an ASR. Here it must be noted that while
in this chapter we have utilized perceptual context information for parser estimation,
a spoken language understanding component can of course also be built by applying
the system to examples of spoken utterances which are manually annotated with
their correct meaning representations (i.e. by investigating a supervised learning
scenario as traditionally investigated for data-driven semantic parser induction, al-
beit with respect to speech).
The ability to learn language from spoken utterances coupled with ambiguous con-
text information appears to be particularly interesting with respect to developing
language understanding components for artificial agents which ideally should be
grounded in the real world, such as robots. Assuming that an artificial agent is
equipped with the ability to extract structured representations from its environ-
ment, it could log the utterances it hears along with the actions and objects it
observes. Based on these data, lexical units and syntactic constructions could then
be extracted by applying an approach as the one presented in this chapter, adapting
the robot’s vocabulary and syntactic constructions over time, also covering unseen
items. Especially with respect to this application scenario, exploring online learning
appears to be an interesting point for future work.
Due to the increased complexity in the learning scenario, in this chapter we did not
attempt to explicitly model child language acquisition but focused on solving the
learning task with respect to maximizing performance (with respect to F1 which is
the main measure for evaluating algorithms on the RoboCup corpus). Cognitive
plausibility and modeling ideas from psycholinguistic theories was not explicitly ad-
dressed. However, we investigated a learning task also faced by children who learn
language by being exposed to spoken language in some environment, and besides
exploring offline learning, the proposed learning mechanisms may also be regarded
as cognitively plausible. In fact, with respect to application to words, the learning
mechanisms explored for the system are similar to those investigated in the cognitive
model presented in Chapter 3. In particular, in both cases we applied the same cross-
situational learning mechanism at different levels (though different mechanisms are
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explored in the model and the system) and in both cases generalization is performed
based on previously acquired lexical knowledge. However, the generalization mech-
anisms differ: while in the cognitive model the induction of slots (initially) requires
utterances showing minimal variation with respect to the corresponding position,
this is not the case in the system presented in this chapter. Further, in the sys-
tem we do not consider sets of elements but simply store all lexical units and allow
their appearance in all syntactic slots. This was done because for the computational
model it was observed that at later learning steps language learning performance of
the model increased in that utterances could be incorporated directly as generalized
paths, and it was also possible to directly infer the correct meaning (cf. example 9).
Due to the increased complexity in the learning scenario we enabled fast language
learning and hence captured the model’s behavior observed later on by directly gen-
eralizing utterances based on lexical units and their semantics without requiring
utterances showing variation. Instead, we introduced alignments between form and
meaning.
Further, in the phoneme-based system explored in this chapter we applied an unsu-
pervised algorithm, i.e. BVE, to pre-segment utterances into (sub)word-like units.
Relating back to Section 2.4, the algorithm is based on two so-called experts which
vote for segmentation points: one votes for segmentation points after chunks having
low internal entropy and one votes for segmentation points after chunks having high
boundary entropy. With respect to modeling child language acquisition, applying
such an algorithm would not be implausible since research suggests that infants are
able to utilize predictability statistics to determine word-like units, at least from arti-
ficial languages (Saffran et al., 1996) and modeling the use of predictability statistics
based on the entropy for learning lexical segmentation has also been addressed pre-
viously (Çöltekin & Nerbonne, 2014). In fact, it appears to be beneficial to take
further cues into account for segmentation since combining the information of dis-
tributional cues to word boundaries can improve predictions (Jarosz & Johnson,
2013). With respect to child language acquisition, research has shown that children
are sensitive to a number of different cues to word boundaries such as phonotactics
(Mattys et al., 1999), coarticulation (Johnson & Jusczy, 2001) or prosodic stress
patterns (Gladfelter & Goffman, 2013). Such cues may also be beneficial in order
to increase the segmentation accuracy of our system further. As a first step, we will
focus on the integration of prosodic cues.
However, while when applied to text the system yields improved language learning
capabilities compared to the cognitive model, precision decreases. In case of the
computational model values for F1 of up to 84.3% with 96.6% in precision were
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obtained, while in case of the system values of up to 89.09% in F1 with 93.38% in
precision were obtained. However, values of up to 95.97% in precision were achieved
for lower values of F1.
When working with ASR phoneme transcriptions precision is even lower compared
to working with words, yielding a value of only 66%. Here it must be noted that the
RoboCup corpus may be complicated in that several sequences expressing referents
have subsequences in common. That is, most expressions for players start with either
the prefix “purple” or “pink” followed by a number. Thus, what mainly distinguishes
referents are the numbers. Due to recognition errors sometimes only subsequences
expressing numbers were associated, yielding segmentation and parsing errors be-
cause the prefix is needed for determining the correct referent. Furthermore, ASR
errors yielded sequences which were phonetically most similar to lexicon entries ex-
pressing different referents. For instance, if “I” is deleted and “l” substituted in “p r=
p @ l I l E v @ n”, then “p r= p @ l s E v @ n” may be returned as lexical entry. Yet,
because we explore learning by utilizing perceptual context information, one may
assume that perceptual context information is also available during application and
utilized to correct such errors, e.g. by increasing probabilities for referents observed
during parsing. Moreover, further types of contextual information might be utilized.
For instance, relating back to Section 2.8 systems have been explored which learn
language by directly interacting with the environment, e.g. by exploring provided
feedback in the framework of reinforcement learning. This kind of learning appears
to be particularly interesting with respect to embodied systems which are able to
interact with their environment. In general, with respect to possible application on
an embodied system, increasing precision appears to be a relevant aspect for future
work since in that case it is important that the system can assess its confidence
in the acquired knowledge and its interpretation of an utterance accurately. This
might, for instance, be also approached by incorporating measures similar to those
explored within the computational model presented in Chapter 3.
In this chapter we evaluated induced grammars on read speech, and hence spo-
ken utterances mainly corresponded to well-formed sentences containing only few
disfluencies such as hesitations. Thus, our input does not reflect spoken language
faithfully. In particular, spoken language is in general not as well-formed as written
language since people may follow syntactic constraints less strictly (Wang et al.,
2011). However, with respect to a potential application on a robot as described
previously, this may not be an issue. In that case we would expect an operator to
use instructions in the form of (typically) well-formed sentences, thus corresponding
to the spoken utterances investigated in this chapter. Further, it has been shown
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that in robot-directed speech higher pitch, hyper-articulation and more loudness
can be identified, indicating that its acoustic characteristics are also more similar
to read speech than to spontaneous speech, as the latter clearly has a tendency
towards hypo-articulation (Kriz et al., 2010). However, future work may also focus
on making the induced grammars more robust to noise, in particular to unexpected
input. For example, fillers modeling garbage words can be incorporated (automati-
cally) into an existing grammar (Yu et al., 2006). Moreover, semantic parsing might
be improved. In particular, in this chapter we have only taken the best result of
the speech recognizer into account. However, automatic speech recognizers can also
output an n-best list of recognition results. Parsing performance might be improved
by applying the parser to further results in this list, at least in cases where the
best result cannot be parsed by the system (notice that making use of n-best lists
or lattices of ASR hypotheses in order to improve spoken language understanding
performance has been explored before (De Mori, 2011)). In doing so, further parsing
strategies could be explored, in particular more sophisticated ones. For instance,
with respect to the word-based setting, phonetic similarity could be taken into ac-
count. Specifically, the entries in the word-based learned parser and words contained
in the alternatives in the n-best list returned by the ASR could be transformed into
sequences of phonemes by applying grapheme-to-phoneme conversion. Subsequently,
a phonetically (most) similar match, i.e. a syntactic pattern instantiated by one of
the ASR transcribed alternative utterances, can be determined and returned as the
result, at least in cases where the phonetic similarity is high.
With respect to Sections 5.4.3 and 5.4.4, our results indicate that the proposed
method, which works with a task-independent phoneme recognizer, can yield results
comparable to the application of an in-domain word-based speech recognizer. How-
ever, – as mentioned previously – it has several advantages. In particular, besides
low costs for training, it supports the development of systems which are adaptive in
that they can acquire novel lexical units and syntactic patterns during application.
This would not be the case for the application of a word-based speech recognizer
working with a predefined lexicon. Since ASRs can only recognize units stored in
their lexicon, in that case the parser would be restricted to acquire meanings of words
stored in the lexicon. However, if suitable training data in the form of textual in-
put or manual transcriptions of speech coupled with concurrent context information
are available, better parsing performance of spoken utterances might by achieved
by applying our system to this input (cf. Section 5.4.7). In fact, our experiments
suggest that this even enables parsing of spoken utterances with a rather low loss
in performance compared to parsing of text or manual transcriptions. Thus, ini-
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tially building a system in this manner would be reasonable if suitable training data
are available. The resulting system could then be combined with a phoneme-based
component which could acquire lexical units and patterns not covered by the initial
word-based grammar. This would yield both high parsing performance with respect
to understanding utterances captured by the initial knowledge and also adaptation
to novel input. Further, the word-based induced patterns may also be applied to de-
termine novel words. For instance, assume that a word-based pattern is recognized
by the ASR with the recognized words having high confidence but the confidence
for a recognized lexical item appearing at the position of a slot is low. Then, one
might assume that at this position actually a new word has been spoken which is
not contained in the ASR’s lexicon, at least if a novel semantic referent is observed
concurrently. One might then resort to phoneme recognition and extract the se-
quence corresponding to the lexical unit based on timestamps and hypothesize it to
be a new lexical item. Moreover, one might directly fast map this sequence onto a
novel referent.
In addition, parsing performance might be improved further by investigating gram-
mars based on different units, in particular phonologically motivated ones. Vale &
Mast (2012) found that using phonologically motivated units, in particular the foot
and the syllable, speech recognition grammars can yield improved parsing perfor-
mance compared to applying word-based grammars. They concluded that applying
a foot-syllable CFG appears to be a good choice for application in Ambient As-
sisted Living environments, i.e. an intelligent wheel chair based in an apartment
in their case. However, these grammars were created manually. Aiming to reduce
manual effort needed for grammar creation and to improve parsing performance of
the grammars induced by our system, one of the main directions for future work
will be to explore the data-driven induction of foot-syllable grammars by applying
and extending learning methods presented in this thesis.
Our results have implications concerning further possible computational investi-
gations of child language acquisition. In particular, while to date several models
addressing language acquisition have been proposed, these models typically focus
on a subset or certain aspects of language acquisition learning tasks. In doing so,
they often assume other learning tasks, e.g. those of lower complexity, as already
solved by the learner. For instance, models addressing the acquisition of grammat-
ical constructions and their meaning (e.g. Kwiatkowski et al., 2012; Alishahi &
Stevenson, 2008; Chang & Maia, 2001) typically learn from symbolic input. As-
suming that the child is already able to segment a speech signal into a stream of
words and to extract structured representations from the visual context, such mod-
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els typically explore learning from sequences of words and symbolic descriptions
of the non-linguistic context. By contrast, models addressing the acquisition of
word-like units directly from a speech signal (e.g. Räsänen, 2011; Räsänen et al.,
2009) have also been explored. Those, however, typically do not address learning of
more complex linguistic structures. Taken together, lexical acquisition from speech
and syntactic acquisition have been mainly studied independently of each other, of-
ten assuming that syntactic knowledge follows from knowledge of words. However,
learning processes might actually be interleaved, and top-down learning processes
may play an important role in language acquisition. In this chapter we have shown
how top-down information of syntactic patterns can be utilized in order to improve
boundary detection and language learning. Children may apply similar learning
mechanisms. Their potential role along with the possible role of several top-down
learning processes and their interaction with bottom-up learning mechanisms may
be investigated in the framework of computational models addressing the learning
task presented in this chapter since children also learn language by observing spoken
utterances in some environment. However, – in contrast to the work presented in
this chapter – it appears to be important to explicitly take cognitive plausibility into
account, in particular constraints on the infant learner regarding memory. More-
over, it appears to be important to address phonetic acquisition instead of applying
a phoneme recognizer, and in doing so the potential interaction between bottom-up
and top-down learning processes could also be addressed. In fact, with respect to
lexical and phonetic acquisition – which have traditionally also been studied inde-
pendently of each other –, recent work (Martin et al., 2012; Feldman et al., 2009)
has already shown how lexical information – even in rather rudimentary form –
can support/boost phonetic acquisition. Thus, capturing several learning tasks in
a unified model and studying the potential interaction of bottom-up and top-down
learning mechanisms rather than focusing on sequential models for language acquisi-
tion appears to be important for future work concerning cognitive modeling of child
language acquisition.
Addressing this issue, as mentioned previously, one of our main goals for future work
is to explore how grounded syntactic patterns can be learned from sub-symbolic in-
put, and we have already collected a dataset for this purpose (Gaspers, Panzner,
et al., 2014). In the framework of the developed models we will then investigate
the role of several top-down learning processes and their interaction with bottom-up
learning processes.
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5.6. Summary

In this chapter, we have presented an approach which learns a semantic parser
in the form of a lexicon and an inventory containing syntactic constructions from
speech. In particular, the parser is learned from spoken utterances transcribed by a
phoneme recognizer, i.e. without making use of word transcriptions, coupled with
ambiguous context information. Due to the additional segmentation task and noise
in the form of recognition errors which must be tackled, this learning scenario is far
more challenging compared to the word-based one explored in the previous chap-
ters. We have therefore proposed a different method for generalization which is
based on alignments between form and meaning in order to allow faster language
learning, and we have taken further learning methods into account. For instance,
we have introduced a top-down step in which alignments/segmentations are refined
using top-down information of previously induced syntactic patterns. However, the
system presented in this chapter is similar to the computational model presented
previously in that in both cases we applied a cross-situational learning mechanism
at different levels and in both cases lexical knowledge was used to bootstrap gener-
alization.
We have presented empirical results showing that when applied to text, i.e. the
RoboCup dataset also used for evaluating the computational model, a parser achiev-
ing state-of-the-art performance can be induced straightforwardly. Further, we have
shown that when applied to spoken utterances, a parser can be induced which can
be successfully applied to parse several unseen spoken utterances. In fact, our re-
sults even indicate that the results are comparable to those which can be expected
when applying an in-domain word-based ASR, while not making a-priori restrictions
concerning the vocabulary the parser can posses. Furthermore, our results indicate
that while the system can correctly detect and segment the phoneme sequence ap-
pearing most frequently in the data for several referents, parsing performance can
be improved by taking different phoneme sequences into account, even if several of
them are incorrectly segmented and do not correspond to actual words.
Moreover, we have shown that in cases where training data in the form of text or
manual transcriptions are available, the system can be applied successfully to induce
semantic speech recognition grammars which enable semantic parsing of speech with
a rather low loss in performance compared to parsing of correct transcriptions. Since
semantic speech recognition grammars are typically created manually or learned in a
supervised setting, making use of weak supervision provides a relaxation of manual
effort needed for grammar creation.
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We have also shown that top-down knowledge of syntactic patterns can yield useful
segmentation cues, improving both boundary detection and language learning. Chil-
dren may also make use of such cues during language acquisition and thus our results
indicate that computational investigations exploring the potential role of syntactic
information in segmentation with respect to child language acquisition might be an
interesting point for future research.
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Summary

In this thesis, we have explored how language can be learned by observing nat-
ural language utterances coupled with concurrent ambiguous context information.
Semantic information was represented symbolically using first-order logic formulas.
We have considered two different learning settings, one with respect to utterances
in the form of sequences of words and one with respect to spoken utterances. In the
latter case, we applied a phoneme recognizer and thus – in contrast to the word-
based setting – addressed learning without predefined lexical knowledge. Given the
input, we attempted to acquire a lexicon and an inventory of rudimentary syntactic
patterns; in both cases entries were acquired along with a mapping to their corre-
sponding semantics.
In Chapter 3, we have addressed the word-based learning task by formalizing and
modeling ideas from usage-based theories to language acquisition. In particular, we
presented a computational and formal model for the gradual emergence of verb-
specific slot-and-frame patterns. In the model, linguistic knowledge is represented
in the form of an interrelated network comprising constructions at varying levels of
complexity and abstraction.
The model is able to learn two types of constructions: (short sequences of) words and
their meanings as well as bottom-up induced verb-specific slot-and-frame-patterns.
In doing so, our model proposes uniform representational devices and learning mech-
anisms for all levels of constructions in order to determine an appropriate meaning
out of ambiguous contexts. More specifically, all correspondences between form and
meaning are modeled by associative networks, and linguistic knowledge captured
by the model is measured based on the weights of connections contained in those
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networks. Within the scope of our language learning algorithm, observed natu-
ral language utterances are first incorporated into the network as a whole. Once
sufficient knowledge is regarded as learned, the model starts to gradually induce
slot-and-frame patterns. That is, the model searches for natural language utter-
ances and already (partially) generalized patterns representing the same pattern.
Roughly speaking, this is the case if the utterances under consideration show min-
imal variation in the surface structure, i.e. varying elements in one position, and
these elements represent a set of elements corresponding to an argument slot in an
associated predicate. Further, we explicitly built the fast mapping ability observed
in children into the model by incorporating a disambiguation bias.
Our proposed model is in line with usage-based psycholinguistic theories stating that
in early language acquisition children maintain an inventory of lexically-specific and
item-based constructions which are gradually generalized by replacing concrete lex-
ical items by slots which can be filled by (a restricted group of) words or short
sequences of words. More specifically, it is represented in the form of an interrelated
network of constructions at varying degrees of complexity and abstraction without
assuming precoded linguistic knowledge. Knowledge emerges gradually from specific
words to partially productive slot-and-frame patterns to fully productive patterns.
We provided empirical results on the RoboCup dataset showing that the employed
learning and generalization mechanisms are appropriate in order to i) generalize
beyond specific examples seen, while ii) not overgeneralizing, and to iii) assess confi-
dence in the acquired knowledge accurately. In our experiments, the model’s perfor-
mance was highly precise and it achieved a large reduction in the number of stored
patterns compared to the number of individual utterances observed in the input
data. This in turn yielded understanding of several novel utterances, i.e. utterances
not observed in the input. In line with findings from psycholinguistic studies with
infants in the framework of usage-based theories, our model learns language gradu-
ally. Initially, in our experiments the model’s generalization abilities were limited,
but increased over the time course and finally converged, suggesting that during
further processing of examples the employed mechanisms allow accurate learning
without (severe) deterioration of the knowledge already captured by the network.
Taken together, our model thus yields a compact and precise model of the input
data generalizing well to unseen data. The model provides an interesting framework
for future research in language acquisition research since it can be utilized for exper-
iments aiming to shed light on the mechanisms at play during language acquisition.
In Chapter 4, we have presented an extension of the computational model to also
capture the emergence of verb-general constructions. The induction of verb-general
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constructions builds on the induction of verb-specific constructions and similar learn-
ing mechanisms as those used for inducing verb-specific constructions are explored.
In particular, verb-general constructions are learned in a bottom-up fashion based
on verb-specific constructions only once verb-specific knowledge has been derived
with sufficient confidence. Further, generalization occurs in an item-based fashion
– albeit with respect to more complex structures – by searching for variation at a
linguistic layer which has corresponding variation at a meaning layer.
Our model infers form-meaning mappings under referential uncertainty by applying
the same cross-situational learning mechanism at different levels, implemented via
associative networks. More specifically, in contrast to previous models exploring
cross-situational learning, we apply the same cross-situational learning mechanism
beyond simple word-referent mappings, i.e. between NL patterns/syntactic frames
and actions, including thematic relations. Hence, our model can represent verb en-
tries in the framework of these NL patterns, and – in line with children – store
additional information about possible referents with verb entries. Both, informa-
tion concerning possible referents and co-occurrences with different semantic frames
are updated incrementally over time, enabling the acquisition of verb meanings and
verb-general constructions starting from ambiguous contexts.
We have presented empirical results replicating findings from psycholinguistic stud-
ies with children with the model, showing how it can establish verb meanings under
referential uncertainty. Moreover, we have shown how the model can learn verb-
general constructions and how it can use this knowledge to create initial verb entries
based on syntactic information alone. Thus, the model suggests possible learning
mechanisms at play concerning the emergence of verb-general constructions and the
representation of early verb entries by providing one formal explanation for the ob-
served behavior. Future psycholinguistic studies may reveal whether children indeed
apply learning mechanisms similar to those implemented in the model by testing its
predictions.
In Chapter 5, we have presented an approach which learns a semantic parser in the
form of a lexicon and an inventory containing syntactic constructions from speech
input. In particular, the parser is learned with non-linguistic ambiguous context in-
formation directly from spoken utterances transcribed by a phoneme recognizer, i.e.
without word transcriptions. Due to the additional segmentation task and noise in
the form of recognition errors which must be tackled, this learning scenario is more
challenging than the word-based one explored in the previous chapters. We have
hence adapted and extended learning mechanisms explored within the framework of
the computational model. More specifically, generalization is based on alignments
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between form and meaning in order to enable faster language learning. Further,
we have introduced a top-down step in which alignments/segmentations are refined
based on top-down information of previously induced syntactic patterns. However,
the presented system is inspired by the cognitive model presented previously in that
in both cases we applied cross-situational learning at different levels and in both
cases initial lexical knowledge is used to bootstrap generalization.
We have presented empirical results showing that when applied to text, a parser
achieving state-of-the-art performance can be induced straightforwardly. Further,
we have shown that when applied to spoken utterances, a parser can be induced
which can be successfully applied to parse several unseen spoken utterances. In
fact, our results even indicate that the results are comparable to those which can
be expected when applying an in-domain word-based speech recognizer, without
making a-priori restrictions concerning the vocabulary the parser can process. Fur-
thermore, our results indicate that the system can correctly detect and segment the
phoneme sequences appearing most frequently in the data for several referents. Yet,
they also indicate that parsing performance can be improved by taking different
phoneme sequences into account, even if several of them might be incorrectly seg-
mented and do not correspond to actual words.
Moreover, we have shown that in cases where training data in the form of text or
manual transcriptions are available, the system can be successfully applied to induce
semantic speech recognition grammars, allowing semantic parsing of speech with a
rather low loss in performance compared to parsing of correct transcriptions. Since
semantic speech recognition grammars are typically created manually or learned in a
supervised setting, making use of weak supervision provides a relaxation of manual
effort needed for grammar creation.
Our experiments have also revealed that making use of top-down knowledge of syn-
tactic patterns can yield useful segmentation cues, improving both boundary detec-
tion and language learning. Children may also make use of such cues during language
acquisition and our results hence indicate that computational investigations explor-
ing the potential role of syntactic information in segmentation with respect to child
language acquisition might be an interesting point for future research.
We have further discussed several possible extensions and relevant points for fu-
ture work, and there are two major points for future research which we will begin
with. First, we have addressed language learning with contextual information in
symbolic form, i.e. with actions represented by means of predicate logic formulas,
and hence our cognitive model and system are not grounded in the sense of Harnad
(1990). In future work we will address an extension towards working with percep-
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tually grounded representations of meaning, such as image or cognitive schemas,
which may be derived from the visual context and utilized in the model and sys-
tem instead of predicate logic formulas. Moreover, we will address learning from
a speech signal without applying a speech recognizer. To address this issue, we
have already collected a multimodel corpus designed with the main goal of allowing
the evaluation of computational models that address the acquisition of rather com-
plex grounded linguistic structures, i.e. syntactic patterns, from sub-symbolic input
(Gaspers, Panzner, et al., 2014). In on-going work we use this dataset to explore
how the model can be grounded. In the framework of the models developed to learn
syntactic patterns from sub-symbolic input, we will investigate the role of several
top-down processes and their interaction with bottom-up processes. In particular,
we will investigate the potential role of knowledge about syntactic patterns on seg-
mentation.
The second main direction for future research concerns prosody and phonologically
motivated units. In particular, we will explore how prosodic cues can be utilized to
improve segmentation and language learning and how grammars based on phonolog-
ically motivated units, in particular foot-syllable grammars which have been shown
to yield improved parsing performance over word-based grammars in situated lan-
guage understanding (Vale & Mast, 2012), can be acquired.
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Appendix A

Similarity computation between
phoneme strings

We compute the phonetic similarity between two phoneme string roughly following
Yu et al. (Yu & Ballard, 2002; Yu et al., 2005). In order to compare two phoneme
strings, the authors first convert phonemes into vectors of articulatory features, such
as e.g. “voicing”, called distinctive features (Ladefoged, 1993). The vectors are bi-
nary where 0 and 1 denote the absence and presence of a feature, respectively. We
utilize the same 12 distinctive features as Yu et al. (2005). They are presented in
Table A.1; they are taken from Yu & Ballard (2002) and converted from ARPABET
into X-SAMPA.
Yu et al. (Yu & Ballard, 2002; Yu et al., 2005) compute the similarity between
two such vectors as the Hamming distance between the two of them. The intuition
is that sounds which differ in fewer features are more likely to be similar/related.
Subsequently, a similarity matrix is computed which contains scores for the similar-
ity for each pair of phonemes. This score is set to the negative hamming distance
in case of comparing different phonemes. Additionally, a positive reward is set for
two matching phonemes in two strings. Following Yu & Ballard (2002) we set the
reward to be half of the dimension of distinctive features, i.e. 6 in our case.
Yu et al. (Yu & Ballard, 2002; Yu et al., 2005) compute the similarity between
two phoneme strings using the similarity scores based on the dynamic programming
principle (Kruskal, 1999). In our case we applied the procedure presented in Algo-
rithm 4 which is similar to the one applied by Yu et al. (2005).
The phonetic similarity sim(s1, s2) between two phonetic strings s1 and s2 is com-
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puted as described previously. The algorithm returns a value for each pair of se-
quences, even if no phoneme appears in both of them. However, we only consider
two sequences as potentially phonetically similar if at least some phoneme(s) appear
in both sequences. Thus, we set a threshold by multiplying the maximal sequence
lengthmax(|s1|, |s2|) with a fraction, i.e. 1

3
, of the reward set for matching phonemes,

i.e. max(|s1|, |s2|)∗2. We consider only sequences with a value above this threshold
as similar.

Algorithm 4 Comparing phoneme strings

Input: Two phoneme strings s1 and s2

Output: The similarity score

l1 = length(s1)
l2 = length(s2)
M = array[0..l1, 0..l2]

for i = 1 to l1 do
M [i, 0] = 0

end for

for j = 1 to l2 do
M [0, j] = 0

end for

for i = 1 to l1 do
for j = 1 to l2 do
M [i, j] = max(M [i− 1, j − 1] + hamDist(s1i , s2j ),

M [i, j − 1] + hamDist(s1i , s2j ),
M [i− 1, j] + hamDist(s1i , s2j ),
M [i− 1, j] +min(hamDist(s1i , s1i−1), hamDist(s1i , s1i+1))
M [i, j − 1] +min(hamDist(s1j , s1j−1), hamDist(s1j , s1j+1)))

end for
end for

return M [l1, l2]
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Table A.1.: Overview of distinctive features utilized in this thesis based on Yu &
Ballard (2002).

conso- voca- conti- nasal ante- coro- high low back voi- stri- sono-
nantal lic nuant rior nal cing dent rant

p 1 0 0 0 1 0 0 0 0 0 0 0
b 1 0 0 0 1 0 0 0 0 1 0 0
t 1 0 0 0 1 1 0 0 0 0 0 0
d 1 0 0 0 1 1 0 0 0 1 0 0
tS 1 0 0 0 0 1 1 0 0 0 1 0
dZ 1 0 0 0 0 1 1 0 0 1 1 0
k 1 0 0 0 0 0 1 0 1 0 0 0
g 1 0 0 0 0 0 1 0 1 1 0 0
f 1 0 1 0 0 0 0 0 0 0 1 0
v 1 0 1 0 1 0 0 0 0 1 1 0
T 1 0 1 0 1 1 0 0 0 0 0 0
D 1 0 1 0 1 1 0 0 0 1 0 0
s 1 0 1 0 1 1 0 0 0 0 1 0
z 1 0 1 0 1 1 0 0 0 1 1 0
S 1 0 1 0 0 1 1 0 0 0 1 0
Z 1 0 1 0 0 1 1 0 0 1 1 0
m 1 0 0 1 1 0 0 0 0 1 0 1
n 1 0 0 1 1 1 0 0 0 1 0 1
N 1 0 0 1 0 0 1 0 1 1 0 1
l 1 1 1 0 1 1 0 0 0 1 0 1
w 0 0 1 0 0 0 1 0 1 1 0 1
j 0 0 1 0 0 0 1 0 0 1 0 1
r 1 1 1 0 0 1 0 0 0 1 0 1
h 0 0 1 0 0 0 0 1 0 0 0 0
E 0 1 1 0 0 0 0 0 0 1 0 1
u 0 1 1 0 0 0 1 0 1 1 0 1
i 0 1 1 0 0 0 1 0 0 1 0 1
I 0 1 1 0 0 0 1 0 0 1 0 1
A 0 1 1 0 0 0 0 1 1 1 0 1
@ 0 1 1 0 0 0 0 0 1 1 0 1
V 0 1 1 0 0 0 0 0 1 1 0 1
U 0 1 1 0 0 0 1 0 1 1 0 1
O 0 1 1 0 0 0 0 1 1 1 0 1
{ 0 1 1 0 0 0 0 1 0 1 0 1
@U 0 1 1 0 0 0 0 0 1 1 0 1
EI 0 1 1 0 0 0 0 0 0 1 0 1
aU 0 1 1 0 0 0 0 0 0 0 0 0
AI 0 1 1 0 0 0 0 0 0 0 0 0
OI 0 1 1 0 0 0 0 0 0 0 0 0
r= 0 1 1 0 0 0 0 0 0 0 0 0
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