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CHAPTER 1

Introduction

1.1 The Chinese hamster

The Chinese hamster (Cricetulus griseus) is a member of the genus Cricetulus,
consisting of seven species, whom tend to differ from common hamsters in a
more ratlike appearance. Native to the deserts in northern China and Mongolia,
members of this species typically reach sizes up to 12 cm, weights of up to 45
grams and their span of live covers about two to three years. While female animals
found use as pets, male hamsters were mainly used as laboratory animals until
hamsters where gradually replaced by other rodents like mouse (Mus musculus) or
rat (Rattus norvegicus), which exhibit easier breeding and keeping properties.

Figure 1.1: A Chi-
nese hamster (Cricetulus
griseus).

In the early 1920s Chinese hamsters were used for typ-
ing Streptococcus pneumoniae [Jayapal and Wlaschin,
2007]. Shortly after typing studies it came to the re-
searchers attention that Chinese hamsters were well
suited as a transmission vector for visceral leishmani-
asis, also known as “black fever” or “Dumdum fever”.
The disease is caused by protozoan parasites, infests
several internal organs like liver, spleen, or bone marrow
and accounts for 500,000 infections per year [Desjeux,
2001], while an infection is nearly always lethal when
no treatment is administered . Thus, Cricetulus griseus
became an important part of epidemiology research.
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Since 1948 the Chinese hamster found use in United States research laboratories
for breeding purposes. It was also in the mid-20th century, when Yerganian [1972,
1985] discovered a tendency for hereditary diseases during breeding experiments.
During this time, focus shifted from Cricetulus griseus as a laboratory animal
to cell lines derived from different tissues of the animal. Indeed, when shifting
from organism level down to cell level, different properties of the research subject
become more important. Mus musculus has a chromosome number of 20, Rattus
norvegicus possesses 21 chromosomes and Homo sapiens 24 chromosomes. In
contrast, the Chinese hamster only has 11 chromosomes (2n=22). This very low
complement of chromosomes makes Chinese hamster cells an ideal model for tissue
culture or radiation studies [Tjio and Puck, 1958]. The history of Chinese hamster
cell lines continues in the late 1950s when Puck et al. received a female Chinese
hamster from the Boston Cancer Research foundation and extracted ovary cells.
These cells formed the first Chinese Hamster Ovary (CHO) cell line and blazed a
trail for many derived cell lines with immense impact on modern biotechnology.

1.2 CHO cell lines

Although Cricetulus griseus was superseded by mouse and rat in its function as
laboratory animal, derived cell lines still play a key role in modern biotechnology,
emphasised by a quotation from Puck [1985], who described CHO cells as “the
mammalian equivalent of Escherichia coli”. A time line showing the development
from the ancestral Puck cell line to today’s production and research cell lines is
shown in Figure 1.2. The genetic material analysed in this work was extracted
from a culture of CHO-K1 CCL-61 cells. The genealogical tree of CHO lines
however, can only show a subset of available cultures, since most laboratories
working with CHO cells developed lines fine-tuned to specific requirements and
especially companies from within the biotechnology sector typically do not uncover
enhancements or modifications they made due to intellectual property (IP) issues.

Isolation, characterisation, and cultivation of mammalian cells always has been
a challenge, partly owed to the fact that mammalian cells are diploid in general.
Diploidity can be vital for cells, since defects in one chromosome can be corrected
by the second member of the pair. However, when introducing new genetic con-
structs, such like genes to be expressed, this fail safe mechanism is known to cause
problems. CHO cells in contrast are normally hemizygous and therefore prone to
manipulation of the genetic material. Chasin and Urlaub [1975] as well as Simon
and Taylor [1982] were able to show that this hemizygosity is mainly induced by
gene inactivation. Due to this unique property for a mammalian cell line, CHO
cells found their way in medical studies, cell biology studies, and toxicology studies.
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The diversification of CHO cell lines started with mutagenesis experiments con-
ducted with ethyl methanesulfonate (EMS) or gamma ray bombardment. Those
treatments induce genetic mutations by chance and may produce cells with new
functions or loss-of-function mutants due to altered DNA. During one of these
experiments a loss-of-function mutant with a defect in the Dihydrofolate reductase
(DHFR) gene was discovered. Since cells of this mutant need to be supplied with
glycine, hypoxanthine, and thymidine their auxotrophy can be used as a selection
marker and subsequently a new expression system was developed originating from
this mutant.

Figure 1.2: Overview of the development of CHO cell lines starting from the original
line derived by Puck in 1957. Graphics from Lewis et al. [2013]. CHO-K1 ATCC
CCL-61 (marked red) is the cell line used as source for genetic material analysed
within this manuscript.

Expression systems within the prokaryotic world have a long history and are well
established. However, in the mammalian environment proteins normally require
post translational modifications which cannot be carried out by prokaryotic host
systems. These modifications, are crucial to ensure the biological activity as well as
human compatibility in case of pharmaceutical products. Another important factor
for host systems is their scalability. Several types of cell lines are only able to grow
as monolayers in petri dishes which may be sufficient for small scale experiments
but becomes a major drawback in industrial production. The CHO cell line is
able to grow in suspension and therefore even in large bioreactors accommodating
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thousands of liters of cell culture suspension. Product safety is another crucial
point in the process of choosing the right host system, especially within the sector
of human pharmaceuticals. Contaminations of the product have to be avoided
by all means. During the last two decades purification techniques have evolved,
resulting in no more than picograms of possible CHO DNA left in the product
[Wiebe et al., 1989]. Even more important than removal of residual host DNA is
the lack of any human pathogens, specifically viruses. Indeed, it could be shown
that only a fraction of human pathogenic viruses are able to replicate within CHO
cells [Wurm, 2005].

1.2.1 Applications

Name Type Exemplary indications Sales ($ billion)

Humira mAb Rheumatoid arthritis 9,266

Enbrel Protein Rheumatoid arthritis 7,967

Rituxan mAb Rheumatoid arthritis 7,049

Herceptin mAb Breast cancer, gastric cancer 6,188

Avastin mAb Colorectal / cell lung cancer 6,059

Avonex Protein Multiple sclerosis 2,913

Rebif Protein Multiple sclerosis 2,408

Table 1.1: Selection of CHO based pharmaceuticals from the top-ten-selling biologic
drugs 2012 [Huggett, 2013]. Two types of drugs are shown: proteins and monoclonal
antibodies (mAb). Different kinds of arthritis, cancer and multiple sclerosis are
subject to treatment with CHO derived products. Total sales in 2012 sum up to
nearly 42 billion dollars.

A brief gaze on the list of top ten selling biologic drugs stresses the importance of
CHO as production host for monoclonal antibodies and proteins, since 7 out of 10
drugs (shown in Table 1.1) are produced by CHO cell lines, accumulating to a total
sales value of 41.85 billion dollar in 2012 [Huggett, 2013]. Two categories of drugs
produced by CHO cells can be distinguished: those that are produced in protein
form and monoclonal antibodies. Monoclonal antibodies have a specific binding
affinity e.g. for receptors of cancer cells. Antibodies are able to mark targeted cells
in a way that a patients immune system can recognize the signal and can attack the
malfunctioning cell. Several antibody-based cancer therapies work this way; ther-
apeutic proteins may inhibit the expression of genes responsible for specific diseases.
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1.2.2 Recent development

Figure 1.3: Total number of protein and nucleotide sequences in the NCBI (National
Center for Biotechnology Information) database assigned to Cricetulus griseus and
CHO cells or Mus musculus respectively. The y-axis is log scaled and shows the total
number of sequences in the NCBI database for the given organism. Corresponding
years are shown on the x-axis. The number of mouse related sequences per year
exceeds the number of Chinese hamster assigned sequences by one or more orders of
magnitude. This is in sharp contrast to the aforementioned industrial importance of
CHO cell lines.

Given the importance of the CHO cell line, which was highlighted in the previous
section, it would be safe to assume that there were numerous efforts to generate
large amounts of sequence data. However, most of the sequence data for Cricetulus
griseus or Chinese hamster is less than two years old. First sequences for Mus
musculus became available in 1982, for the Chinese hamster first data was added
in 1987. Despite the short delay and the slow growth rate of sequence databases in
the 1980s, the amount of newly generated sequence data originating from mouse
exceeds novel Chinese hamster related data by far. In 1996, ten years after first
data was submitted over 18,000 nucleotide sequences from mouse stand vis-à-vis to
roughly 300 sequences of Cricetulus griseus . An overview of 30 years of sequence
database development for mouse and Chinese hamster is depicted in Figure 1.3.
Additions of nucleotide sequences for the hamster occur in a linear way but also
show at least two significant impulses: the first from 2005 to 2007, the second in
2012. Screening of the NCBI database for publications that added large amounts
of sequences resulted in two patents, filed in 2005 [Melville et al., 2005] and 2006
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[Melville et al., 2006]. Both of the patents describe thousands of oligonucleotide se-
quences which can be used to monitor gene expression via microarray technologies.
However, the probably most important year by means of hamster sequence data is
2011. For the first time a draft genome of the CHO-K1 cell line with a size of 2,4 Gb
was made available to the scientific community by Xu et al. [2011], resulting in the
addition of more than 200,000 genomic and transcriptomic sequences. Later in the
same year, nearly 70,000 additional transcriptomic sequences could be contributed
by Becker et al. [2011], thus paving the way for further studies of the CHO cell
line on genetic level. After negligible updates in 2012, three publications added
another 60,000 sequences to the pool; 25,000 of them being in silico predicted
piRNAs originating from a study by Gerstl et al. [2013]. Two years after Xu et al.
[2011] presented a draft version of the CHO-K1 genome, the source organism’s
genome was sequenced and assembled using chromosome separation techniques by
Brinkrolf et al. [2013]. The Cricetulus griseus draft genome has a size of 2,33 Gb
and proved that, despite of decades in cell culture the CHO-K1 line is not missing
major parts of the Chinese hamster genome. Latest addition to the hamster data
pool is a second assembly of the Cricetulus griseus wild type by Lewis et al. [2013].
The study also highlights genetic differences between the wild type and several
different CHO cell lines like DG-54 or CHO-S.

Within the last ten years the amount of available sequence data for the Chinese
hamster has grown by three orders of magnitude, one alone during the last two
years. A broad basis of sequence data, may it be in form of protein or nucleotide
sequences is the foundation for nearly all further research topics. Cross comparisons
of cell lines are only possible with at least one reference genome and the discovery
of single nucleotide polymorphisms (SNPs) also requires a genetic reference as data
source. Biotechnological engineering of CHO cells requires detailed knowledge of
gene structures and the ordering of genes on the chromosomes. However, when
comparing the amount of available sequence data with mouse, rat, or human
several challenges still have to be overcome for the Chinese hamster.

1.3 About this work

For many eukaryotic genomes, including the Chinese hamster no sequenced
genomes were available at the start of this project. Due to the industrial relevance
of the CHO cell lines stressed in the previous Section, these cell lines are important
targets for genetic engineering. Modifications especially include promoter regions
which are key factors for the yield of arbitrary protein coding genes. In order to
increase the production capacity of these eukaryotic hosts, promoter constructs
have to be screened and assessed for their potential use as production promoters.
In a first step a bioinformatics pipeline able to extend incomplete CHO transcripts
into promoter carrying regions was developed to acquire knowledge of the yet un-
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charted CHO promoter regions. However, as sequenced genomes became available
a second, RNA sequencing-based approach was employed to locate transcription
start sites in reference genomes by read mapping techniques. The located tran-
scription start sites act as indicator for nearby promoter regions and subsequently
allow for detailed analyses of the important regulatory regions for specific elements
possibly enhancing the expression profile of the corresponding promoters.

1.4 Scientific work

Throughout the last years, several scientific contributions were made, starting with
parts of the Bachelor thesis [Henckel et al., 2009], followed by the publication of
SARUMAN, a short read mapping software [Blom et al., 2011] as Master thesis.
A transition to eukaryotic genome assembly and related bioinformatic problems
began simultaneously with the start as Ph.D. student [Hackl et al., 2011; Becker
et al., 2011; Hackl et al., 2012]. Since then, the aforementioned Chinese hamster
in general and the CHO-K1 cell line in special became the foundation for this
work. During an internship at Illumina Inc. based in Cambridge, UK, several
contributions to BEETL, a BWT-based sequence compression library were made
[Cox et al., 2012a,b].
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Parts of this work (Chapter 5) were submitted to the Journal of Biotechnology as:

T. Jakobi, K. Brinkrolf, A. Tauch, T. Noll, J. Stoye, A. Pühler, and A. Goes-
mann, Discovery of transcription start sites in the Chinese hamster genome by
next-generation RNA sequencing.

1.5 Manuscript structure

In Chapter 3, an overview on state of the art techniques commonly used in genome
assembly and promoter analysis is given and limitations of those approaches are
pointed out. Background knowledge about DNA sequencing, genome assembly, and
promoter analysis is mediated in Chapter 2. Within Chapter 4 the new SATYR
pipeline for targeted assembly is presented. The analysis pipeline for CHO promoter
sequences is discussed in chapter 5 and described together with the experimental
setup. Within Chapter 6 the results are summarised, the accomplishments are
reviewed, and an outlook into possible further developments is given.





CHAPTER 2

Background

2.1 DNA sequencing

Deoxyribonucleic acid, or DNA for short, is a molecule which has the ability to
store information on different levels. Every living organism, with the exception
of several viruses, uses DNA as main storage for genetic information. In general,
DNA has a double stranded appearance, consisting of two anti-parallel strands.
The direction of each strand can be derived from the position of the 3rd and 5th
carbon atom within the sugar molecule and is therefore referred to as 3’ and 5’.
The DNA can be imagined as a ladder with two phosphate-deoxyribose stiles and
treads made of two of the four nucleobases: adenine (A), thymine (T), guanine
(G), and cytosine (C) [Levene, 1921]. The two valid combinations of nucleotides
are adenine + thymine and cytosine + guanine. The base pair combinations are
implicated by the number of hydrogen bonds the nucleotides can form: two for AT
and three for CG. Classifications into pyrimidines and purines are based on their
chemical properties. This basic structure of the DNA molecule was discovered
by Watson and Crick [1953a,b] and Franklin and Gosling [1953] and eventually
resulted in a Nobel prize for Watson and Crick.

Several years later, the term “central dogma of molecular biology” was coined
by Crick [1958, 1970]. The term describes the flow of information between three
different kinds of biopolymers, namely from DNA to RNA (ribonucleic acid).
Information transfer from protein level back to DNA or RNA level is not allowed,
however, DNA and RNA may interchange information in both directions.
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Figure 2.1: Blueprint of the DNA molecule. The DNA consists of two phosphate-
deoxyribose backbones and pairs of the four nucleobases adenine (A), thymine (T),
guanine (G), and cytosine (C). Image by Madeleine Price Ball.

The creation of RNA from a DNA template is commonly referred to as tran-
scription. And indeed, a transcription takes place during the process since thymine
is replaced by uracil while the sequence of nucleotides is copied from the template
DNA strand onto a newly synthesised RNA molecule. At this point directions
of strands play a key role during transcription. While an enzyme called RNA-
polymerase slides over the template strand in 3’ to 5’ direction, a new RNA strand
is synthesised from 5’ to 3’ [Solomon, 2005]. Several kinds of RNA classes are
known in organisms: messenger RNA (mRNA) which codes for proteins or non-
coding RNA families like micro RNA (miRNA), small interfering RNA (siRNA),
transfer RNAs (tRNA), or ribosomal RNAs (rRNA) [Krebs et al., 2012].

In a second step the newly created messenger RNA (mRNA) may be converted
into a protein during the translation process. Again, the mRNA strand is processed
from 5’ to 3’, while the chain of amino acids is generated. Proteins subsequently
are folded in such a way that they can interact with different compounds in form
of biologically active enzymes. Enzymes are critical for every organism as they are
integrated in most chemical reaction in a cell [Smith, 1997].

While transcription and translation are crucial operations for each organism,
the replication process is used during each cell division when the genetic material
has to be copied, so that each cell receives exactly the same DNA sequence as the
source cell [Alberts, 2002; Albà, 2001]. This enzymatic reaction of the replication
process is also important during genome sequencing. During genome sequencing,
the order of base pairs of given sample DNA is analysed, a process which is typically
connected with the synthesis of a DNA strand (see Section 2.1.1 and following).
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Figure 2.2: Sample output of a Sanger sequencing read (bases 1-95 shown). The
sequence can be seen in coloured letters directly below the base index. Bases are
shown in different colours: A (green), C (blue), G (black), and T (red). Readout
data from the laser excitation is shown in the curve. A yellow area highlights the
start of the read which is normally removed during post processing due to low base
quality.

End product of this sequencing process is the sequence of bases encoding for all
properties of the source organism, which may vary in length from a few thousand
bases (for small viruses [Sanger et al., 1977b]) up to billions of bases (for complex
eukaryotic life forms [Pellicer et al., 2010]).

2.1.1 Sanger sequencing

The era of genome sequencing started in 1977 when the genome of the bacteriophage
phi X 174 was deciphered. The virus has a small genome of roughly 5,000 bp and
therefore was well suited for establishing the new technique developed by Sanger
et al. [1977a]. This first method later became known as “Sanger sequencing” after
his initial developer. Prerequisite is a sufficient amount of template DNA which
can be achieved by using clone libraries or by PCR (polymerase chain reaction)
amplification. Single stranded template DNA is combined with a primer needed to
start the replication process. Four different reactions are carried out, one for each
nucleotide. Each reaction is provided with DNA polymerase enzyme, unlabelled
deoxynucleotides (dNTP: dATP, dCTP, dGTP, dTTP) and one fluorescently or ra-
dioactively labelled dideoxynucleotide (ddNTP: ddATP, ddCTP, ddGTP, ddTTP).
Once started, the sequencing reaction stops when a ddNTP is encountered, causing
the polymerase to stop strand elongation. After a denaturing phase the process
is repeated several times to ensure that for each position of the template strand
one prematurely terminated new DNA molecule has been created, therefore the
method is also called chain termination sequencing. Newly synthesised strands
are separated based on their length by gel electrophoresis and scanned by a laser
(in case of fluorescent labelled ddNTPs) to extract the sequence of bases for the
template (Figure 2.2). Although Sanger sequencing was developed more than
three decades ago it still is present in today’s research. Sequencing automatons
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Phred score Probability of incorrect base call Base call accuracy

10 1 in 10 90 %

20 1 in 100 99 %

30 1 in 1000 99.9 %

40 1 in 10000 99.99 %

50 1 in 100000 99.999 %

Table 2.1: Summary of phred quality scores. These quality scores, introduced with
the phred program are used to measure the confidence of a base produced by many
sequencing machines.

like the ABI 3730 xl1 can sequence up to 384 samples in parallel, produce reads of
more than 1000 bases and have a maximal throughput of 2 million bases per day.
Today these machines are mainly used for gap closure in sequencing projects as
well as for short areas of interest which need to be sequenced. However, until next
generation sequencing hit the market even large genomes like the human genome
were analysed using classical Sanger sequencing [Lander et al., 2001].

2.1.2 Assessment of sequencing quality

The quality of single bases is usually denoted by a so called phred score, origi-
nating from the equally named base calling tool [Ewing et al., 1998]. The phred
tool was initially used to convert the fluorescence trace files produced by Sanger
sequencing machines (Figure 2.2) back into a series of bases, hence the name “base
caller”. Phred introduced quality scores to determine the quality or confidence of
a base. Whereas in times of non-automated Sanger sequencing trace files could be
verified semi-automatically, large sequencing projects, such as the Human Genome
Project demanded for fully automated base calling and quality assessment due
to the sheer amount of sequencing data. Phred came to extensive use during the
Human Genome Project and remained de-facto standard for sequencing quality
measurement since then. Higher scores indicate a high quality, whereas lower
scores suggest questionable confidence of a base (Table 2.1). These score values
become important during the assembly process (see Section 2.2.1), as the software
can recognise putative sequencing errors and consider them during the assembly.

1Life Technologies, Carlsbad, California, USA, http://www.appliedbiosystems.com
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Figure 2.3: A brief history of sequencing costs, divided into “Costs per genome” on
the first y-axis (red) and “costs per megabase” on the second y-axis (blue). Corre-
sponding time points for are shown on the x-axis. Both y-axis are log-scaled. After
the introduction of the first two commercial next generation sequencing systems in
2005 and 2006 the transition of sequencing centres from Sanger sequencing to NGS
techniques took another year. Starting from October 2007 prices per megabase and
genome dropped dramatically and are still continuously decreasing. Data taken from
[Wetterstrand, 2014].

2.1.3 Next generation sequencing

The human genome project started in 1990 and a first draft sequence was published
in 2001 [Lander et al., 2001]. While it may be experimentally possible to use
Sanger sequencing for large genomes, the investment of over $3,000,000,000 makes
it impossible to acquire a large variety of genome sequences, especially for species
with large genomes, like mammals and plants. Starting in the early 2000s several
new technologies emerged from research laboratories. The following pages will cover
systems by Roche and Illumina in more detail, since data from those systems was
used throughout the work, other systems and new developments will be introduced
in a more briefly manner. It is due to the next generation sequencing systems that
sequencing costs per megabase and per genome significantly decreased during the
last years (Figure 2.3), forming the 1000 $ human genome catchphrase which was
finally achieved with the introduction of Illumina’s HiSeq X Ten system in early
2014 [Illumina Inc.].
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2.1.3.1 Roche 454

First efforts in the search for new sequencing techniques led to the development of
pyrosequencing by Ronaghi et al. [1996, 1998]. Licensed by 454 Life Sciences2 the
first device called GS20 was released in 2005. Roche Diagnostics3 bought 454 in
2007 but continued to operate 454 as a independent business unit. Pyrosequencing
differs fundamentally from Sanger sequencing in the way in which bases generate a
signal, which is translated into an A, C, G, or T. Additionally the time consuming
step of cloning is circumvented, since the template DNA can be sequenced directly.
However, a fragmentation step is necessary to generate smaller units of DNA by
nebulization. Those fragments are subsequently connected to capture beads by
ligation. During the next step these template DNA strands are amplified by an
emulsion PCR [Margulies et al., 2005] which works within a drop of water-oil-
emulsion that contains adapters, nucleotides, primers, and enzymes for the reaction,
thus creating beads occupied by thousands of single stranded DNA templates. The
Sequencing reaction itself takes place on a so called PicoTiterPlate which carries
millions of wells with a diameter of 29 µm, thus perfectly fitting the ∼ 20 µm
diameter of a bead with connected DNA templates. When ideally every well is
occupied by one bead a second enzyme mixture containing Luciferase and DNA-
polymerase is added to the plate and therefore each well. The actual sequencing
step is performed in cycles, each exclusively adds A, C, G, or T to the sequence and
is followed by a washing step. The method, also called “sequencing by synthesis”,
is based on the fact that during each nucleotide incorporation a weak light signal
is emitted by the Luciferase enzyme, which is detected by a very sensitive imaging
device. The complete PicoTiterPlate is monitored, resulting in millions of signals
from each well. This parallel step is another difference to Sanger sequencing where
the most advanced machines can only sequence up to 384 samples in parallel. Initial
the GS20 sequencer in 2005 was able to generate reads of 100 bp length, while
achieving a throughput of 20 Mb. When compared to an ABI 3730 xl with 2 Mb
per day 454 achieved a 10-fold higher throughput already in the first expansion
stage. The GS20 was superseded by a new sequencer, the 454 GS FLX. While
still based on the same principle, the throughput was increased to 700 Mb per
day distributed through 1 million 700 nt reads. Later the “Titanium” chemistry
increased the maximal read length to 1,000 nt. Main advantage of the 454 system
are long reads combined with a relatively fast sequencing process. But due to the
design of the method there are two drawbacks. On the one hand, reading out
consecutive identical bases causes problems in base calling, since extracting the
exact amount of bases from the cumulative signal is only precise up to 8 nt. Above
this limit it should be assumed that the actual number of consecutive bases is
underestimated or sometimes overestimated. On the other hand many organisms
do not have an equal rate of G+C and A+T pairs throughout the genome, resulting
in a higher “G+C ratio”. During the last years it has come to attention that areas

2454 Life Sciences, Branford, Connecticut, USA, http://www.my454.com
3Roche Diagnostics Corporation, Indianapolis, Indiana, USA, http://www.roche.com
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with significant higher G+C ratios (≥ 70 %) introduce problems in the sequencing
process. As remarked in Section 2.1 G+C form three hydrogen bonds which may
cause very robust secondary structures induced by folding of the DNA molecule.
Those structures cannot be read by the polymerase and yield incorrect readings
or no readings at all. A study by Schwientek et al. [2011] analysed an additive
supplied by 454 to overcome the GC-ratio induced difficulties and identified the
compound as trehalose, which reduces the number of hydrogen-bonds forming. In
spring 2010 Roche launched a second sequencer, called GS Junior, which is a size
reduced benchtop sequencing system based on the same chemistry as the GS FLX
system. The GS Junior was an attempt to overcome the pricing pressure induced
by Illumina’s different system design, but eventually was not able to stop the loss
of market share to Illumina.

2.1.3.2 Illumina

In 1998 Solexa was founded as a startup company that emerged from Cambridge
University. The company developed a novel sequencing technology based on flu-
orescently labelled, reversible terminated bases, and a technique used to generate
clusters of DNA on a solid surface [Mayer et al., 2007, 1998]. In 2006, shortly
after Roche’s 454 system hit the market Solexa launched their first sequencing
system, called “Genome Analyzer”. Solexa was subsequently bought by Illumina
Inc.4 in 2006, hence the system is now known as Illumina sequencing. In principle
a sequencing-by-synthesis approach, the whole process can be divided into three
consecutive phases. DNA libraries are prepared in a series of steps, starting with
fragmentation of the source DNA, in order to obtain sequences short enough to
be sequenced. Afterwards adapters are ligated to the fragments, which are sub-
sequently selected by size. During cluster generation the selected fragments are
bound to fitting adapters located on a flow cell. Once the sequences are fixed on
the flow cell an amplification process is repeated several times to generate a dense
forest of clonal sequences in near proximity. Reverse complementary strands are
washed away after each cycle to ensure strand specificity of sequencing. When
enough copies of each sequence are synthesised primers for the actual sequencing
reaction are hybridised to the fragments. In contrast to the 454 system, which uses
Luciferase to generate a chemiluminescent signal for all bases in different cycles,
Illumina uses four differently labelled terminator dyes for strand extension during
the sequencing process. In each cycle the suitable base is incorporated, thus also
adding specificity because the different bases compete against each other during
strand synthesis. Once a base has been attached the process stalls owed to the ter-
mination properties of the modified bases. Synthesis is followed by excitation with
a laser to trigger a fluorescence reaction which afterwards is measured by a highly
sensitive imaging device. This step differs from the 454 imaging approach, since
Illumina records four different bases at the same time while 454 only measures one

4Illumina, Inc., San Diego, California, USA, http://www.illumina.com
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signal release by the Luciferase. Image capturing concludes with a washing step
which also removes the terminator properties from the last base inserted and al-
lows for further synthesis. During image analysis the correct base for each cluster
is extracted from the colour detected at the cluster’s location. The sequencing pro-
cess is finished after a specified number of cycles has been reached and results in
millions of reads with a uniform length. Read length however, is one of the weak
spots in Illumina’s sequencing system - the last stage of expansion resulted in a
maximal read length of 300 nt per read and allows two reads to be combined to
one 600 nt read5. Like Roche, Illumina offers several different sequencing systems
from entry level (MiSeq) to genome sequencing centre level (HiSeq 2500); only the
MiSeq benchtop sequencer is able to reach 300 nt per read, all other platforms are
limited to 150 nt at maximum. Although read length cannot compete with the 454
platform - at least on very high throughput machines - the number of sequenced
bases is unmatched in sequencing business. The Genome Analyzer, introduced in
2006, on the one hand was able to produce reads of only 30 nt, but on the other
hand reached a throughput of up to 1 Gb per run - 50 × more than Roche’s GS 20.
Output was increased with each chemistry update and by introducing new systems,
the Genome Analyzer IIx started with 10 Gb and 35 nt reads and today is able to
produce up to 95 Gb with 2 × 150 nt reads. The HiSeq product line is capable
of a maximum throughput of 600 Gb in one run over 11 days, thus resulting in 3
billion reads of 100 nt. Even though the run length of up to 11 days is much longer
than one day required for a 454 setup 90 % of today’s sequencing experiments are
carried out on Illumina machines. This is primarily due to the high cost per run on
a GS FLX+ Titanium system but also founded on the massive amount of sequence
information generated by a single Illumina run.

2.1.3.3 SoLiD

The SoLiD (Sequencing by Oligonucleotide Ligation and Detection) system by Ap-
plied Biosystems was the last of the three major next generation sequencing ap-
proaches and entered commercial service in 2008. Applied Biosystems, known for
their gold standard Sanger sequencing machines (see Section 2.1.1), put a strong
emphasis on high accuracy, therefore the system today is typically used for detect-
ing variations in resequencing, targeted resequencing, and transcriptome sequenc-
ing. The technology was initially bought from Agencourt Bioscience in 2006 and
developed to a market ready state during the next two years [McKernan et al.,
2009]. As for the competitors approaches the first step is fragmentation of the
DNA source material, resulting in shorter sequences ready for sequencing prepa-
ration. Preliminarily to emulsion PCR two adapters, P1 and P2, are ligated to
the fragments which are necessary for binding to the amplification beads during
the next step. Emulsion PCR is very similar to the protocol in 454 systems, a
sequence is attached to a bead through a covalent binding to the P1 adapter and

5http://www.illumina.com/products/miseq-reagent-kit-v3.ilmn
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an water-oil-emulsion with enzymes and oligonucleotides is added. Afterwards a
selection for enriched beads is performed to minimize the number of empty beads
during sequencing and therefore maximize the efficiency. Once the beads are bound
to a flowcell, the sequencing by ligation process - in contrast to the sequencing by
synthesis approach of Illumina and Roche - can be started. A generic primer is
bound to the P1 adapter of the sequences to start the process, followed by the first
octamer for ligation. The octamers start with a nucleotide dimer at 3’ , followed by
four degenerated (N) bases and two degenerated bases carrying one of four fluores-
cent dyes, thus resulting in 16 octamers. After ligation the colour of the inserted
dye is registered and the next octamer is ligated, which is typically repeated seven
times and generates 35 nt reads. However, the whole process is repeated again five
more times with modified primers shifting the start position by one base during
each cycle. As dinucleotides are used during complementation each nucleotide of
the template is covered by two shifted dinucleotides in different cycles. Since there
are 16 different dinucleotides but only four available colours each colour represents
four different dinucleotides, which Applied Biosystems calls 2-base encoding. The
special encoding has the unique property, that it is able to distinguish between sim-
ple sequencing errors, in which case only one of the two covering dinucleotides differ
from the reference, and real SNPs (Single Nucleotide polymorphisms) in which case
both dinucleotides differ in their colourcode from the reference [Smith et al., 2008].
Another property owed to the 2-base encoding is the error profile of the SoLiD
system, which is noticeable due to the very low number of insertion or deletion er-
rors during sequencing and for the high accuracy of up to 99.99 % in general. The
queue of colour codes (referred to as “colour space”) is decoded into normal bases
during post processing for use in nucleotide based tools such as many mapping
tools. Additionally several genomics tools are available which can directly work on
colour space data and benefit from the additional data layer. The 5500xl System
from Applied Biosystems is the latest SoLiD machine and was launched in 2010.
With current chemistry (V4) a throughout of up to 20 Gb per day can be achieved
using read lengths from 35 to 75 nt.



20 Chapter 2. Background

System / Manufacturer Time Million
reads/run

Read
length

Yield

Applied Biosystems
3730xl 2h 0.000096 ∼ 650 nt 0.0006 Gb
SOLiD v4 12d > 840 50 + 35 nt 71.4 Gb
SOLiD 5500 8d > 700 75 + 35 nt 77 Gb
SOLiD 5500xl 8d > 1,410 75 + 35 nt 155 Gb
Illumina
GAIIx 14d 320 2 × 150 nt 96 Gb
MiSeq 65h 25 2 × 300 nt 15 Gb
HiSeq 1000 & 1500 8.5d 1,500 2 × 100 nt 300 Gb
HiSeq 1500 (rapid run) 40h 300 2 × 100 nt 90 Gb
HiSeq 2000 & 2500 11d 6,000 2 × 100 nt 600 Gb
HiSeq 2500 (rapid run) 40h 600 2 × 100 nt 180 Gb
Roche
GS Junior 10h 0.10 ∼ 400 nt 0.035 Gb
GS FLX Titanium XLR70 10h 1 ∼ 450 nt 0.450 Gb
GS FLX Titanium XL+ 23h 1 ∼ 700 nt 0.7 Gb
Life Technologies
Ion 314 v2 (PGM system) 2-4h 0.55 ∼ 200 nt 0.1 Gb
Ion 316 v2 (PGM system) 3-5h 3 ∼ 200 nt 1 Gb
Ion 318 v2 (PGM system) 4-7h 5.5 ∼ 200 nt 2 Gb
Ion PI v2 (Proton system) 2-4h 80 ≤ 200 nt 10 Gb
Pacific Bioscience
PacBio RS II (P4-C2 chemistry) 0.5-3h 0.05 ∼ 5,500 nt 0.275 Gb
PacBio RS II (P5-C3 chemistry) 0.5-3h 0.05 ∼ 8,500 nt 0.375 Gb
Helicos BioSciences
Helicos N/A 1,000 35 nt 35 Gb
Oxford nanopore
MiniIon Early access program launched 11/2013
GridIon Under development as of 03/2014

Table 2.2: Overview of the sequencing system landscape in early 2014. Historical
data taken from Glenn [2011], for systems and updates after 2011 manufacturer’s
specifications have been used. Systems are sorted by manufacturer. One classical

Sanger sequencing machine is dyed in light red, 2nd generation systems are shown

in light blue, approaches between the 2nd and 3rd generation are labelled orange,

actual 3rd generation systems have been coloured green.
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2.1.4 Post next generation sequencing

2.1.4.1 Helicos

Helicos BioSciences6 was the first company to make a 3rd generation sequenc-
ing technology commercially available [Braslavsky et al., 2003]. In principle a
“sequence-by-synthesis” approach, the HeliScope sequencing system uses single
molecule sequencing to obtain the nucleotide sequence of the sample. As a first
step template DNA has to be prepared for sequencing by fragmentation and size
selection; only sequences below 1,000 nt (ideally 100-200 nt) are suitable for further
processing. Within the next phase, fragments are bound to a flowcell by using an
oligo(dT)50 / oligo(dA)50 pairing. Poly-A tails are ligated to the sequences prior
to fixation mediating a covalent binding. For sequencing, enzymes and one kind of
fluorescence-labelled nucleotides are added. The procedure is carried out in cycles
similar to the 454 pyrosequencing approach. Each time a base is incorporated, a
weak light signal is detected by an imaging device and leftover nucleotides from the
last cycle are washed away, thus paving the way for the next nucleotide. The pro-
cess is repeated 35 × 4 (number of bases) times to generate 35 nt reads and run for
each fixated DNA molecule on the flowcell in parallel. A main difference compared
to other sequencing solutions is the missing template amplification step, which had
the potential to significantly speed up the sequencing process. In its last version the
HeliScope system was able to produce up to 1 billion 35 nt reads, corresponding to
35 Gb of sequence data. The HeliScope machine could never generate a significant
market share, primarily due to the very limited read length and a very high price
for the instrument itself (last price: $ 999,000 in 2009). Sales of instrumentation
or reagents was ceased in 2010 after only 20 units sold7 and the company started
to offer sequencing services based on Helicos technology. However, in November
2012 Helicos BioSciences filed for Chapter 11 bankruptcy and neither sequencing
services nor reagents or systems are available any longer.

2.1.4.2 Ion Torrent

Life Technologies8 released their “Ion Torrent Personal Genome Machine”(PGM)
System in 2010 after licensing core technologies from DNA Electronics Ltd. and
improving the technology until market readiness. The cycle-wise sequencing ap-
proach has borrowings from the pyrosequencing technique, it features an unique
way of base incorporation detection, deviating from other systems. Like almost
all other systems Ion Torrent systems need fragmented template DNA as input,
furthermore a PCR step to amplify fragmented sequences has to be conducted - in
this case an emulsion-PCR very similar to the one used by 454 instruments (see
Section 2.1.3.1). Contrary to other competitors, the Ion Torrent system does not

6Helicos BioSciences, Cambridge, Massachusetts, USA, http://www.helicosbio.com (out of busi-
ness)

7http://www.cd-genomics.com/About-Bankruptcy-Helicops.html
8Life Technologies, Carlsbad, California, USA, http://www.lifetechnologies.com
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use any fluorescent or radioactive dyes nor optical detection systems, but instead
detects changes in the pH-gradient during base incorporation events. A flowcell
with wells small enough to house only one bead from the emulsion-PCR, together
with micro pH-meters fabricated in the bottom of each well is employed for the
sequencing reaction. During sequencing, all four bases are floated over the flowcell
in cycles, each cycle followed by a washing step. If a nucleotide is incorporated
into the newly synthesised DNA strand a H+ ion is released, thus changing the pH
value in the well. In case of longer stretches of consecutive bases the intensity of
the signal can be tracked back to the number of nucleotides. This technique how-
ever, does only work up to 6-8 consecutive bases and thus introduces 454 typical
homopolymer errors. Ion Torrent sells two different systems; the PGM, released
in 2010 and updated with newer sequencing chips is capable of producing up to
2 Gb of data out of 5.5 million reads, with an average read length of 200 nt (see
Table 2.2 for details). The new benchtop instrument, called Proton was recently
launched and starts with the capacity to deliver up to 10 Gb of data in 80 million
reads. Unfortunately the length of the reads does not exceed 200 nt, but this flaw
can be counterbalanced with a very short runtime (only 2-7 hours) and low costs
per run/Gb.

2.1.4.3 Single molecule real time sequencing (SMRT)

Pacific Biosciences9 was founded in 2004 shortly after an initial proof of concept
study was published by Levene et al. [2003]. So called Zero-Mode Waveguides
(ZMWs) are minuscule reaction chambers which are used to attach and observe
single DNA polymerase enzymes during processing. Only 70 nm × ∼ 100 nm in
size, the entry diameter is 6-10 times smaller than the wavelength of visible light
(420 to 680 nm [Laufer, 1996]) in order to detect only fluorescence produced during
the sequencing process. The detection sensitivity is further increased by the fact
that the barrel-formed chamber is illuminated through the glass column plate by a
laser, resulting in an illumination focused on the first 30 nm behind the glass bottom
- exactly the position of the fixated DNA polymerase. The sequencing itself follows
a classical “labelled nucleotide” approach with the exception, that the fluorescence
label is located at the phosphor site of the nucleotide compared to the sugar location
normally used. All four nucleotides are labelled in different colours and reactions
take place without the need of washing steps or other forms of cycles. Each time a
nucleotide is incorporated, the specific fluorescence signal is emitted and detected by
an optical subsystem. The DNA strand produced by the polymerase is natural and
does not possess any chemical modifications originating from the initial nucleotide
labeling. Pacific Biosciences launched its first system, the PacBio RS in 2010, while
first data was already published in 2009 Eid et al. [2009]. In 2013 the new PacBio
RS II system was introduced, followed a chemistry update (P5-C3) in late 2013.
With current SMRT-cells the PacBio RS II generates roughly 50,000 reads per

9Pacific Biosciences, Menlo Park, California, USA, http://www.pacbio.com



2.2. Promoter analysis 23

run, which is 120,000 times less than bleeding edge Illumina systems can produce.
While read count and coverage cannot compete with any 2nd generation sequencing
system the average read length and maximal read length are superior to any other
available system, including Sanger sequencing. With standard P4-C2 chemistry
5,500 bases are possible on average and up to 24,000 bases can be achieved in
terms of maximal read length. With latest improvements, the fraction of smaller
reads could be lowered significantly, allowing for an increased average 8,500 nt read
length and more than 30,000 nt at maximum. However, this comes at the cost of
a high error rate; roughly 15% errors are introduced during sequencing and signal
processing, the major fraction being insertion and deletion errors.

2.1.4.4 Oxford Nanopore Technologies

Oxford Nanopore Technologies 10 started in 2005 as spin off from Oxford University.
Nanopores, as the name suggests, are very tiny holes of only a few nanometers in
diameter and the key to the company’s new sequencing approach. Fundamental re-
search within this field started with work by Kasianowicz et al. [1996] and although
various companies licensed the new technology, more than 15 years had to pass un-
til first commercial products hit the market. The novel sequencing system employs
a protein-made nanopore (α-hemolysin) embedded within a membrane, where an
electrical current is applied. The diameter of the nanopore is hardly sufficient to
be passed by a single stranded DNA molecule and as such, only one molecule may
be present in the channel at a given time. During the passage variations in the
current can be read out and assigned to specific bases therefore resulting in the
molecule’s DNA sequence. In theory, read length is limited only by experimental
runtime, thus allowing very long reads, possibly even longer than those generated
by SMRT-sequencing (Section 2.1.4.3). The read error rate was announced to be
initially around 4% but should drop to 0.1% once the first commercial systems are
sold. The yield per day is expected to be in the order of tens of Gb, therefore
competing with smaller systems by Illumina and larger machines by Pacific Bio-
Sciences. Two different systems, the disposable “MiniIon” and a cluster-capable
“GridIon” system are planned. The MiniIon system is available through an early
access program since November 2013.

2.2 Promoter analysis

Genome sequencing has become an irreplaceable tool in today’s biotechnology and
is involved in a many fields of research, reaching from genome sequencing projects
up to transcriptome studies or expression analysis. In the following, an introduction
into the functionality of promoters will be given, as promoters are one of the key
components in the regulation of gene expression and therefore an auspicious target
for sequencing based research.

10Oxford Nanopore Technologies, Oxford, UK, http://www.nanoporetech.com
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2.2.1 The eukaryotic transcription process

In each organism, the expression of genes combined with a fine grained regulation
of this process is an integral part throughout the complete life cycle. While large
parts of this regulation machinery could be uncovered within the last decades
(reviewed by Butler and Kadonaga [2002]), there are still several gears and springs
of unknown function which remain subject of ongoing research.

The transcription process, which is performed by the RNA-polymerase en-
zyme complex and accounts for rewriting genomic DNA to messenger RNA
(mRNA) is the first stage of gene expression. In eukaryotes three slightly dif-
fering RNA-polymerase enzymes exist, each fulfilling a specialised task. While
RNA-polymerase I produces 45S pre-rRNA (ribosomal RNA) later involved in
ribosome forming [Grummt, 1998], RNA-polymerase II synthesises precursors
of mRNA, microRNAs, and snRNA (small nuclear RNA) [Lee et al., 2004].
Transfer RNA (tRNA), 5S rRNA and small RNAs (sRNA) are produced by
RNA-polymerase III [Willis, 1994]; in plants additionally RNA-polymerase IV
[Herr et al., 2005] and RNA-polymerase V [Wierzbicki et al., 2009] are known.
The perhaps best studied polymerase however, is RNA-polymerase II, since it is
responsible for the synthesis of all protein coding genes within the organism.

In order to start the transcription process, the polymerase has to be positioned
in vicinity of the transcription start site of the gene, which, in turn is located at the
5’ end of the gene. The so called promoter region includes specific DNA sequences,
which are able to bind transcription factors. These transcription factors subse-
quently provide a guidance system to exactly position the polymerase complex.
After this initiation process, the actual transcription is performed. Promoters are
heavily influenced by additional regulatory regions like enhancers or silencers and
therefore are among the most important concepts in the process of transcription
level regulation.

2.2.2 Promoters in industrial biotechnology

In order to achieve optimal efficiency in eukaryotic production cell lines, a high ex-
pression level of the specific protein is an important prerequisite. Today promoter
sequences with viral heritage are a typical choice, since they deliver very high ex-
pression levels under most conditions [Qin et al., 2010; Makrides, 1999]. Here, es-
pecially two promoters should be introduced, namely CMV and SV40. The Simian
vacuolating virus 40 (SV40) early promoter, isolated in 1960 from rhesus monkey
(Macaca mulatta) kidney cells [Eddy et al., 1961], showed very high transcription
rates when cloned in front of genes of interest [Banerji et al., 1981]. Together with
the Cytomegalovirus (CMV) immediate early promoter, originating from the Her-
pesviridae humanpathogenic virus family, which exhibited similar effects [Boshart
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et al., 1985], both SV40 and CMV became standard promoters for use in eukaryotic
expression systems. However, there are significant drawbacks linked with the usage
of viral promoters instead of native eukaryotic promoters. The list of possible inter-
ferences includes unfolded protein response (UPR) [Isler et al., 2005], endoplasmic
reticulum (ER) stress [Tirosh et al., 2005], induced apoptosis, and dependencies of
the promoter onto the cell cycle. A solution to this problem would be the use of
endogenous promoters which generally should not introduce any side effects due to
their optimisation for the host organism. First attempts with human endogenous
promoters can be dated back to 1990, when Kim et al. [1990] presented the elonga-
tion factor 1α as a well suited tool for protein expression in mammalian expression
systems. Later, this system could also be adapted to the Chinese hamster’s elon-
gation factor 1α [Deer and Allison, 2004]. Indeed, the search for suitable high yield
endogenous promoters, specifically for the Chinese hamster and the derived CHO
cell line has just begun.

2.2.3 The eukaryotic core promoter

Figure 2.4: The promoter landscape from -40 to +35 bases relative to the tran-
scription start site (TSS) is shown. All elements are colour coded, size is roughly
to scale. The first row contains the approximate location, row two to four include
name, abbreviation and consensus sequence. The red A within the INR denotes the
+1 position, Py is used for pyrimidine bases (C/T, IUPAC1 code Y). Data from
Maston et al. [2006]; Gershenzon et al. [2006].

The eukaryotic core promoter for RNA polymerase II is based on a small set of
regulatory elements, typically arranged from -40 to +35 relative to the transcrip-
tion start site (Figure 2.4) [Juven-Gershon, 2006]. Consensus sequences of these

10International Union of Pure and Applied Chemistry
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elements are generally rather small, with a size ranging from 3 to 12 nt.

The B recognition element upstream (BREu) was discovered by Lagrange et al.
[1998] and is the first element of the core promoter, typically located from -37 to
-35. As the name suggests, the motif is bound by transcription factor TFIIB and
recognised through a helix-turn-helix motif. Crystallographic structure analysis
lead to the presumption that it can either increase or decrease the transcription
rate of the corresponding gene [Lagrange et al., 1998; Littlefield et al., 1999], the
precise working mechanism however remains unresolved. The exact consensus
sequence is shown in Figure 2.4.

The TATA Box (synonymously Goldberg-Hogness box), located from -34 to -23
and partly covered by BREu is probably one of the most prominent members of
the core promoter. Initially described in Drosophila melanogaster by Goldberg
[1979], the element received its name from the concise TATAA consensus sequence,
which is also known as Pribnow box [Pribnow, 1975] from bacterial promoters.
The TATA box binding protein (TBP), its corresponding transcription factor,
becomes part of the pre-initiation complex (PIC) after binding. Promoters with
functional TATA elements are associated with developmental regulation and and
differentiation processes [Carninci et al., 2006]. While first studies assumed that
TATA box carrying promoters are the rule rather than the exception, this pictures
was relativised by later studies, reducing the estimated amount of TATA promoters
down to 25 % [Suzuki et al., 2001] and later to only 10 % [Carninci et al., 2006].

Downstream of the TATA box, from -23 to -17 a second B recognition element,
termed BREd, was confirmed by Deng and Roberts [2005]. Although BREu and
BREd share the same transcription factor (TFIIB), their consensus sequences pose
hardly any similarity (see Figure 2.4 for a comparison) which is emphasised by
the fact that BREd does not rely on the BREu typical helix-turn-helix binding
domain. Both, BREd and BREu can be understood as extensions of the TATA
box [Juven-Gershon, 2006] and may exhibit either increasing or decreasing effects
on transcription levels [Deng and Roberts, 2005; Lagrange et al., 1998].

The area surrounding the actual transcription start site from -2 to +4 is known
as the initiator region (INR) and was discovered as one of the first eukaryotic pro-
moter elements in human HeLa cells [Scherer et al., 1953] by Corden et al. [1980].
The consensus sequence of the INR motif is very pyrimidine-rich and features
typically an adenine at the +1 position. Deletion studies showed a broader range
of transcription start site locations combined with reduced transcription rates
[Grosschedl and Birnstiel, 1980]. Further work additionally revealed reciprocal,
effects ranging from synergistic influence on transcription levels in case of spacings
from 25 to 30 nt between TATA box and INR to independent functions of TATA
and INR if their spacing exceeds 30 nt [O’Shea-Greenfield and Smale, 1992]. The
corresponding transcription factor of INR is TFIID which is suggested by the fact
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that in absence of TFIID INR does not exhibit any regulatory effects [Smale, 1997].

The upstream region of the eukaryotic promoter is dominated by three different
elements, the first one being the downstream core element (DCE). The DCE itself
features three subunits (DCE SI to DCE SIII), scattered though large parts of the
core promoter upstream region and positioned from +6 to +34 (Figure 2.4) [Lewis
et al., 2000]. In contrast to other regulatory elements, the individual subunits of
the DCE are very short sequence tags of 3 to 4 bases with only minimal variations
[Lewis et al., 2000]. Common for DCE SI and DCE SII is the almost exclusive
use of pyrimidines. DCE SIII uses only one pyrimidine base and in contrast in to
SII and SIII able to function on its own [Lewis et al., 2000]. In order to influence
the transcription process, DCE elements utilise the TFIID transcription factor.
Functional characterisation of the DCE however, is still based on assumptions,
reaching from changes in promoter specificity or involvement in special regulatory
networks.

Co-localized with DCE SII, the motif ten element (MTE, +18 to +27) requires
only a functional INR and a correct spacing between both elements. The MTE is
therefore able to promote transcription in the vast majority of promoters missing
TATA boxes. However, if a TATA box is present, the combination of MTE and
TATA shows significant synergistic effects [Lim et al., 2004]. Originally discovered
in Drosophila melanogaster , the MTE motif was also detected in higher eukaryotes
up to human and mouse [Lim et al., 2004].

Currently, the farthermost located downstream motif of the eukaryotic promoter
is the the downstream processing element (DPE) [Burke and Kadonaga, 1996;
Juven-Gershon, 2006] (+28 to +32). While DPE together with INR can account
for basal transcription if spacing between elements is correct it is also found in
many TATA less promoters where it is suspected to take over the role of the TATA
box and partially in promoters with TATA boxes in place [Kutach and Kadonaga,
2000]. Like most other motifs, DPE is recognised by TFIID (subunits TAF6 and
TAF9).

2.2.4 Methods of transcription start site identification

In order to gather knowledge of promoter regions and their general architecture,
it is crucial to obtain precise location information, if possible exact on nucleotide
level. On the one hand, in silico predictions based on sophisticated models and
algorithms can be used to search DNA sequence on genome or local scale for auspi-
cious positions of transcription start sites. On the other hand, biological sequencing
experiments and subsequent data analyses may either verify in silico predictions or
add TSS positions not recognized by computational methods.
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2.2.4.1 Computational methods

First approaches for eukaryotic promoter prediction started around 1995 with
PromoterScan [Prestridge, 1995] and PromFind [Hutchinson, 1996] (Table 2.3).
During this phase different computational methods were evaluated, including
structural features like hexamer frequency differences between coding regions and
promoter areas [Hutchinson, 1996], Markov chains [Audic and Claverie, 1997],
TATA box position weight matrices (PWMs) [Prestridge, 1995], or transcription
factor binding site densities [Prestridge, 1995]. However, these tools rely in large
portions on extrinsic data sources like transcription factor databases or verified
TATA box consensus sequences to build reasonable models. Even though these first
bioinformatics approaches paved the way for more sophisticated implementations,
none of the first generation predictors achieved sensitivity values >60 %, while
most tools not do exceed 30 % [Fickett and Hatzigeorgiou, 1997].

Over the years, molecular biological knowledge of promoter structures, transcrip-
tion process and DNA sequence features increased and allowed for the development
of novel in silico approaches. Due to sequencing technology advances, the human
genome set the new gold standard for promoter and TSS prediction, effectively ren-
dering most previous software tools infeasible. Two novel approaches subsequently
appeared, the first designed for genome scale application, the second also able to
work on single gene level. With the advent of large genomes, such as the human
genome, a common approach is the screening and scoring of each nucleotide of
the underlying genome, while the scoring is mostly realised through classification
algorithms with cross-validation [Abeel et al., 2009]. Typical representatives of this
class are ARTS [Sonnenburg et al., 2006], ProSOM [Abeel et al., 2008b], and EP3
[Abeel et al., 2008a] (Table 2.3). Another possibility to detect promoter regions or
TSSs employs a much more local scope and does not accumulate scores throughout
the whole genome. Therefore only auspicious start/stop positions for promoter
regions, potentially combined with a confidence scores, are reported. This method
is used for instance in PromoterExplorer [Xie et al., 2006] and a proposed software
by Wu et al. [2007].

In order to assess performance and accuracy of this second generation promoter
and transcription start site prediction tools, a first proposed gold standard was
established by Abeel et al. [2009]. The study was able to confirm a bias for most
tools towards CpG containing promoters, commonly associated with housekeeping
genes [Carninci et al., 2006], while other promoters not exhibiting CpG islands seem
to be under-represented. Further bias is caused by over-represented promoters of
highly transcribed genes compared to promoters of relatively weak expressed genes.
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Tool Method description

PromFind Based on differences between hexamer frequencies in pro-
moter regions, coding, and non-coding regions [Hutchinson,
1996]

TSSG & TSSW Linear discriminant function combines TATA box scores and
triplet preferences around the TSS [Solovyev and Salamov,
1997]

PromoterScan Uses TATA PWMs (position weight matrices) and densities
of transcription factor binding sites [Prestridge, 1995]

Nameless tool Promoter recognition algorithm based on Markov transition
matrices [Audic and Claverie, 1997]

PromoSer Promoter and transcription start site identification, web
based, source genome data dates to 2003 [Halees, 2003]

CoreBoost HM TSS prediction based on histone modification signals, web
based, 100 Kb maximal input [Wang et al., 2009]

NNPP2.2 Neural network based, utilises difference between TSS and
translation start site (TLS) [Burden et al., 2005]

MotifLab Combines several data sources like chromatin accessibility
and epigenetic state of the cell [Klepper and Drabløs, 2013,
2010]

McPromoter Based on stochastic segment models (SSMs) and interpo-
lated Markov chains [Ohler et al., 2000; Ohler, 2006]

EP3 Uses large scale DNA structural features to predict promot-
ers [Abeel et al., 2008a]

Eponine Based on a hybrid machine-learning algorithm, developed for
mammalian genomes [Down and Hubbard, 2002]

GPMiner Meta tool, identifies TSSs and regulatory features, uses
McPromoter, Eponine, and NNPP2.2 [Lee et al., 2012]

ProSOM Facilitates unsupervised clustering by using self-organizing
maps to recognise promoter regions [Abeel et al., 2008b]

ARTS Employs Support Vector Machines (SVMs) with advanced
sequence kernels [Sonnenburg et al., 2006]

Table 2.3: Selection of TSS / promoter prediction tools. The first four tools have
been chosen exemplarily as representatives for the first generation of prediction tools
[Fickett and Hatzigeorgiou, 1997]. The second part of the table features web-based
implementations, part three is dedicated to more recent works. An extensive review
of in silico solutions for promoter and TSS discovery was conducted by Narlikar and
Ovcharenko [2009].
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Figure 2.5: Overview of transcription start site (TSS) detection methods. Left
(green): TSS can be detected by full length cDNA sequencing. After assembly of
sequencing reads, full length cDNA sequences are mapped onto a suitable reference
genome. The leftmost (5’) mapping position corresponds to the TSS (given the
cDNA assembly yielded a full length sequence). Middle (blue): Cap analysis of
gene expression is an approach more focused on 5’ mapping since several 5’ end
tags (≈ 21 nt) of different genes are fused and sequenced in one read, therefore
increasing the overall throughput of detectable TSS. After sequencing the tags have
to be mapped onto a suitable reference. Right (purple): Expressed sequence tags
(ESTs) are randomly distributed tags much longer than CAGE tags (about 500-
800 nt). Therefore not all tags can be used for TSS mapping while additionally more
sequencing is performed for non 5’ specific tags, thus lowering the overall TSS yield.
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2.2.4.2 Biotechnological methods

As shown, in many cases results obtained by in silico methods can give first insights
and a general idea about TSS positions and possible promoter regions. However, all
these methods are biased in one way or another and as such will not be able deliver
a complete and correct picture of the TSS landscape of eukaryotic organisms. Al-
though computational methods are typically more cost efficient due to the fact that
no expensive reagents are required, biological experiments can provide new results
or findings which cannot be predicted by computational methods since algorithms
will usually only report those results which are related to their programming.

Full length cDNA Generally, transcriptome sequencing focuses on the reconstruc-
tion of complete complementary DNAs (cDNA), in order to gain information about
the protein structure and therefore possible functions. As such, ideally the cDNA
is sequenced completely from the 5’ UTR up to the 3’ UTR and later assembled
into its prior form. In order to precisely locate the transcription start site of a
given transcript, it is mapped against a reference genome with BLAST [Altschul
et al., 1990] or similar tools. Transcription start site identification in this case is
a byproduct and not the intended use case for this strategy. Full length cDNA
sequencing was introduced in times of Sanger sequencing, hence the throughput
of this technology is very limited. Additionally the vast majority of sequencing
information is used for coding parts of the mRNA rather than to identify as many
TSSs as possible. All processing steps of this method are summarised in Figure 2.5

Expressed sequence tags - ESTs As previously mentioned, full length cDNA
methods has two significant drawbacks. First, the amount of required sequencing
data is relatively high. Second, a subsequent assembly process is mandatory to
obtain a correct transcript which can be mapped back to the reference genome.
Indeed, both disadvantages were addressed in a study by Adams et al. [1991] pre-
senting an effort to get a broad overview of transcripts in a large number of samples
by using the limited Sanger technology. In contrast to full length sequencing which
employs several reads per transcript to fully cover its sequence, so called expressed
sequence tags (ESTs) consist of one read only, yielding a typical length of 500-
800 nt. This single read starts either from the 5’ or the 3’ end of the transcript,
leaving large portions of the transcript untouched (seed Figure 2.5 for a graphical
summary). However, reads longer than 150 nt are already sufficient for similarity
searches and genome mapping on a human genome scale [Adams et al., 1991]. Al-
though ESTs were intended as a tools for expression profiling and are widely used
even today, due to their transcript end focused sequencing strategy they proofed
to be an excellent tool for TSS identification purposes.

Cap analysis of gene expression - CAGE The approach of non-complete se-
quencing was enhanced and optimised to further increase the possible yield of tran-
scription start sites. The typical tag size of EST sequencing was reduced by using



32 Chapter 2. Background

restriction enzymes and varies between 21 - 23 nt. These tags are concatenated into
a single vector where several tags can be sequenced in a serial way. Compared to
previous approaches cap analysis of gene expression (CAGE) [Kodzius et al., 2006;
Shiraki et al., 2003] was able to reduce costs while at the same time increasing
overall yield of tags. This came at the price of a negligible coverage of the original
transcript. The approach therefore results in much higher throughput, since only
concatenated tags are sequenced rather than full transcripts. Sequenced tags can
be mapped onto a suitable reference genome, which in turn reveals transcription
start sites due to the 5’ aligned location of the CAGE tags. Recent studies showed
however, that the CAGE protocol is prone to non-specific G at the tag’s 5’ end,
therefore leading to flawed mapping positions within the reference genome [Zhao
et al., 2011] and finally to bogus tag to gene mappings.

2.3 Genome sequence assembly

Genome sequencing, with its different strategies and approaches as described in
Section 2.1, is the first step towards an organisms genome. Until sequencing of
whole chromosomes in form of single molecules will become possible, the first step
during each genome project has to be a fragmentation of the source DNA. The
initial technique, called shotgun sequencing, was developed by Sanger et al. [1982]
when sequencing the 48 Kb genome of the λ-bacteriophage.

Shotgun sequencing uses BACs (Bacterial Artificial Chromosomes) to amplify
large regions of DNA in bacterial fertility plasmids (F-plasmids). Those BACs are
mapped back to the source genome to establish a so called ’tiling path’, a list of
BACs needed to cover the genome sequence. The DNA integrated into the chosen
BACs (’insert’) is fragmented further by an undirected shearing process (therefore
the shotgun metaphor) which results in many smaller fragmented DNA sequences
ready to be sequenced. Several years later, this technique could be employed
to sequence the much larger genome of Haemophilus influenzae (1.83 Mb, ≈ 38
times larger than the λ-bacteriophage, [Fleischmann et al., 1995]). BACs have the
advantage that by mapping to the organism’s genome a first impression of the order
of the cloned fragments can be estimated, which eases the subsequent assembly
process by adding positional meta information to the sequenced DNA fragments.
However, after sequencing all fragments have to be arranged in proper order
to resemble the organisms genome correctly. This process, typically envisioned
as a large jigsaw puzzle, is referred to as genome assembly. Although shotgun
sequencing paved the way for today’s genomics, there are shortcomings, such as
problems during amplification, possibly due to toxicity for the host bacteria or
other unintended side effects [Pop et al., 2002].

Over time, the initial shotgun approach evolved into whole genome shotgun se-
quencing, or WGSS. Compared to is predecessor, WGSS does employ BACs but
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Figure 2.6: Overview of clone based sequencing. A) Fragments of source DNA
are introduced into cloning vectors, which are amplified in host organisms like Es-
cherichia coli. The insert part is sequenced after amplification either from one side,
therefore producing single reads or from both sides, resulting in paired end/mate
pair reads. B) If sequencing is performed only from one end of the source DNA,
the single reads are the end product. Those reads can be assembled to form contigs,
however, assigning an order to those contigs with only single reads available is hardly
possible, since no reads are spanning gaps between contigs. C) In case of mate pair
sequencing, each read pair carries additional information in form of the insert size.
This means that for each pair, the distance between both reads is known. As this
insert size is much larger than the read length itself, a pair anchored in two different
contigs may be used as a linker, thus establishing an order among the contigs during
scaffolding. D) Many repetitive regions are longer than even the longest sequencing
reads. Repeats therefore pose a complex problem during assembly which may be
avoided by mate pair reads. A pair of two reads might span the repetitive region
completely, thus giving an estimate of its length and ease the assembly process.
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instead the DNA is fragmented into specific sizes, for example 2, 3, 8, and 10 Kb.
This fragmented DNA is sequenced after cloning into host cells and amplification.
Sequencing takes place from both ends, thus generating two reads for each clone
which usually do not overlap (due to the maximum read length of about 1 kb of the
Sanger sequencing approach). This strategy, also referred to as mate pair sequence
or paired end sequencing depending on the sequencing solution makes it possible
to span repetitive regions (Figure 2.7) and aids during later scaffolding steps (see
Figure 2.6). The genome assembly of the fruit fly Drosophila melongaster (135 Mb)
[Myers et al., 2000] was a first milestone, achieved without any information from
BAC clones, while using an assembly software specifically tailored to deal with large
genomes and therefore large amounts of sequencing data. This software, known as
WGS-assembler or Celera-assembler [Myers et al., 2000], was subsequently used
during the human genome project in 2001. It is important to mention that a cer-
tain sequence coverage is needed for a genome assembly, where coverage refers to
the degree of oversampling, i.e. how many times a specific base of the genome is
theoretically covered by a sequencing read. The required coverage varies depending
on sequencing technique and the organism which is sequenced. As a rule of thumb,
more coverage yields an easier assembly process, although at a given point more
coverage will not improve the assembly any further or may even start to generate
biases and side effects. Typical values for prokaryotic organisms are within the
range of 25 - 30× [Aury et al., 2008], for large large mammalian genomes 100× and
more are definitely reasonable [Li et al., 2010]. This fact also offers an explanation
for the high costs of sequencing projects in the late 1990s and early 2000s when
Sanger sequencing still was the only available sequencing technology. The human
genome project had an average coverage depth of 12×, resulting in 12 × 3.3 Gb11

of sequence information to be processed and overall cost for the whole project ag-
gregated over $3,000,000,000. However, even if the genome is statistically covered
above a given threshold, there will always remain regions which will not be covered
at all, may it be areas of high G+C content (see Section 2.1.3.1), highly repetitive
regions (Figure 2.7), or centromeric regions of chromosomes.

2.3.1 The sequence assembly problem

Starting with the first genome sequencing efforts a new branch of bioinformatics
software emerged that, even after over 30 years, is in very active development.
Genome assembly programs start with nothing more but a set of reads produced
by a sequencing machine and try to reconstruct the original genome as close as
possible. The assembly process, ordering, connecting, and merging reads together
back into one genome can be expressed in a more formal way - the shortest common
superstring problem (SCS) [Tarhio and Ukkonen, 1988].

11Human genome assembly GRCh37, Jun 2013, http://www.ensembl.org/Homo sapiens/Info/Annotation
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Figure 2.7: Typical assembly error induced by repetitive regions with no read pair
information. A) Several contigs and repetitive regions are covered by multiple reads.
The order shown here is the original ordering as found in the source genome. The
two repetitive regions 1.1 and 1.2 are assumed to contain the same sequence, which
is common e.g. for satellite DNA. B) If only single reads without mate information
are available, misassemblies are expected. Contig 1 is connected to Repeat 1.1 by a
few reads sharing the transition sequence between these segments. However, since
Repeat 1.1 and 1.2 share the same sequence, some reads belonging to 1.2 are clustered
together with reads from 1.1, thus creating a crossover with Contig 4 (instead of
Contig 2). Contig 2 and 3 are subsequently merged correctly, but do not have any
connection to the repetitive regions their they where supposed to separate.

Given a finite set of sequences S = {S1, S2, S3, . . . , Sn} over an alphabet
Σ = {A,C,G, T}12 , find a shortest sequence G, such that every read Si ∈ S
is contained in G. The problem may be reformulated to better match the “real”
assembly process in such a way, that errors within the sequences are allowed. This
reformulated problem is known as the reconstruction problem [Kececioglu and My-
ers, 1995]. Given all symbols introduced above while adding an error rate 0 < ε < 1,
the minimal number of insertions, deletions, or substitutions d(X, Y ) between two
strings X and Y , and the reverse complement X of a string X, find a shortest
sequence G, such that for every read Si ∈ S there is a substring Xi of G such that

min(d(Si, Xi), d(S̄i, Xi)) ≤ ε · |Xi| . (2.1)

12additional letters of the IUPAC code may also be part of Σ
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Figure 2.8: Visual representation of the shortest common superstring problem.

Both problems, however, are known to be NP-complete and therefore infeasible
to be solved exactly for an arbitrary number of sequences [Maier, 1978]. Therefore,
different heuristics have been developed in order to solve the problem in polynomial
time, each adapted to current sequencing technologies and optimised to exploit
continuously evolving computing hardware. The sacrifice for this approximation lies
in the not necessarily optimal solution - the returned superstring is not guaranteed
to be the shortest one i.e. the correct genome assembly.

2.3.2 Greedy algorithm based methods

First specialised tools for sequence assembly were developed in the late 1980s and
early 1990s and their lineage goes back to sequence alignment programs developed
even earlier. This is owed to the general paradigm of sequence assembly, i.e. find
two overlapping reads and merge those reads together to a larger fragment if the
overlap score is above a given threshold. During early days of genome assembly
and sequencing, the number of reads produced rarely exceeded several thousands
or tens of thousands of reads. The greedy algorithm first computes and scores all
possible overlaps between the reads. In a second step reads are merged based on
their overlap scores until no more reads are unconnected. Obviously this strategy
works best for a limited number of more or less unresembling reads, as too many
very similar reads introduce a high level of ambiguity during overlap computation.
Examples for tools based on the greedy algorithm are phrap [Green, 1994], gap4
[Bonfield et al., 1995], TIGR [Sutton et al., 1995], and CAP3 [Huang and Madan,
1999].

These programs became standard tools for genome assembly workflows during
the next years, as Sanger sequencing was not superseded until NGS technologies
emerged. An advantage of greedy assemblers is the relatively low implementation
complexity compared to other contemporary approaches. However, due to their
simple base scheme, problems arise if repetitive regions occur as these may intro-
duce false positive overlaps which eventually lead to misassemblies. Normally, no
mate pair information is processed during the assembly, thus introducing addi-
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tional difficulties regarding contig orientation and placement. Another drawback
of greedy implementations is the high demand for memory - one gigabyte of RAM
for each megabase of genome [Pop et al., 2002] - which rendered these tools useless
for larger genomes back in the late 1990s when even high end server systems rarely
were equipped with more than 32GB of RAM (≈ 32 Mb maximal genome size).

With the advent of NGS sequencing, several tools were revived and improved
the greedy algorithm for use with Illumina and 454 data. The first explicit short
read assembler was SSAKE [Warren et al., 2007]; SHARCGS [Dohm et al., 2007]
added several preprocessing and postprocessing steps to SSAKE, while VCAKE
[Jeck et al., 2007] is able to work with non-perfect overlaps, thus accounting for
sequencing errors and possible SNPs (single nucleotide polymorphism) in polyploid
organisms. Some of these assemblers later found their way into hybrid assembly
pipelines, which allow for a combination of different sequencing technologies within
one genome project.

2.3.3 Overlap graph based methods

As sequencing projects began to grow from small bacterial genomes to larger
eukaryotic organisms like yeasts and plants, hitherto assembly strategies had to be
adapted for larger amounts of longer reads produced by the now automated Sanger
procedure. Greedy assemblers were phased out stepwise by a new approach called
overlap-layout-consensus (OLC) [Kececioglu and Myers, 1995].

As the name suggests, the new assembler generation works in a three-tier pro-
cess starting with the computation of pairwise overlaps between the reads (overlap
phase), equivalent to the previous greedy implementation. Reads are segmented
into k-mers prior to the alignment step in order to obtain a list of promising
candidates (seed-and-extend technique). A k-mer is a substring of length k of
the original sequence, where the next consecutive k-mer starts exactly 1 position
shifted to the right. That way, not all pairwise alignments have to be computed
and thus the overall runtime and memory footprint is streamlined. The choice of a
suitable k-mer value, i.e. the k-mer length is crucial for further processing as both
to large and to small values have negative impact on the final assembly.

The second step differs from the greedy algorithm in such a way, that OLC-
based assemblers use an abstract graph-based data structure during the layout
phase in contrast to the at most implicit graph concept of greedy tools (Figure
2.9 D and E). The overlap graph consists of nodes representing reads and directed
edges representing an alignment between these two reads. During layout phase the
overlap graph is simplified and errors are removed. The overlap graph itself does
not have to include all information for each read, therefore the graph structure can
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be implemented more memory efficient. The algorithm has to visit each vertex of
the graph once during consensus generation, thus forming an Hamiltonian cycle.

During the last phase a consensus sequence is computed out of multiple sequence
alignments (MSA) of overlapping reads. As MSAs are computational expensive
operations (NP-complete, [Wang and Jiang, 1994]), it is important to simplify
the graph in the previous step as far as possible to keep the complexity of the
consensus step on a reasonable level. The MSA can also be divided into multiple
pairwise alignments, thus reducing the problem complexity.

Several implementations of this OLC blueprint have been published and improved
throughout the 2000s, starting with the Celera-assembler (also WGS assembler)
[Myers et al., 2000; Istrail et al., 2004; Busam et al., 2006; Miller et al., 2008].
Other well known and widely used OLC-based tools are Arachne [Swan et al.,
2002], PCAP [Huang et al., 2003], and Edena [Hernandez et al., 2008]. Indeed,
one of the probably most used assemblers, Newbler [Margulies et al., 2005] is also
based on the OLC concept. Newbler is part of the software suite that is delivered
with sequencing machines sold by Roche and therefore heavily optimised on 454
based input data. The OLC concept, however, has not been abandoned, as still
new methods such as clever string indexing and compression are combined with the
classical OLC technique, for example in form of the SGA assembler [Simpson and
Durbin, 2012].

2.3.4 de Bruijn graph based methods

Although de Bruijn graphs were not specifically designed in a bioinformatics
context, a novel usage scenario [Pevzner, 1989] was found within the then new
technique of sequencing by hybridisation (SBH) [Lysov et al., 1988; Southern,
1988]. This microarray-related technique works by hybridisation of sequences
against an array of all possible k-mers of a given length. Even if this approach was
not able to become another competitive sequencing technology, it paved the way
for a k-mer/sequencing relation in bioinformatics. When constructing a de Bruijn
graph, the k-mer length has to be chosen. This variable has a dramatic impact
on assembly performance and normally has to be evaluated for each new assembly
project to achieve optimal results. Reads are segmented into k-mers (Figure 2.9 B
and C) and subsequently inserted into the graph. In detail, a de Bruijn graph in
sequence assembly context has an edge for every k-mer of the input reads and each
edge corresponds to a k-1 overlap between two nodes (Figure 2.9 F). Therefore,
the two nodes, which each edge is connected to represent the (k − 1) prefix and
suffix of the edge.

In contrast to overlap graphs, de Bruijn graph (DBG) [de Bruijn and Erdos,
1946] assemblers generally represent sequencing reads as edges. However, mixed
forms, combining labeled vertices with the k-mer approach of a classical de Bruijn
graph have also be implemented [Compeau et al., 2011]. The difference between
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Figure 2.9: Examples for graph structures of different assembly approaches. A)
List of reads used in further examples. Differences indicating new branches are color-
coded. B) Segmentation of the first read into three k-mers for K = 6. C) Another
representation of the k-mer segmentation process, showing the three different frames.
D) Typical graph of an OLC-based assembler. Nodes represent complete reads,
directed edges between nodes imply an alignment of these two reads. E) A mixed
k-mer/overlap approach. Each node contains one k-mer. As previous, edges here
only indicate a pairwise alignment. To find a consensus sequence, each vertex has
to be visited once, therefore we face an Hamiltonian cycle. F) A de Bruijn graph
representation, used by modern short read assemblers. Nodes are (k−1)-mers, edges
are labeled with k-mers. Each edge needs to be visited once to generate a consensus
sequence, resulting in an Eulerian cycle.
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both approaches lies within the consensus generation, which involves finding the
Eulerian cycle [Euler, 1741] for genuine de Bruijn graphs and the search for the
Hamiltonian cycle for mixed approaches. The applicability of de Bruijn graphs
for genome assembly purposes was first proposed in form of the EULER software
[Pevzner et al., 2001], the first DBG-based assembly approach.

The DBG representation is well suited to seize large amounts of short and heavily
redundant reads produced by Illumina sequencers, even if the memory consumption
can become critical for very large projects [Miller et al., 2010]. Since the market
share of Illumina sequencers became dominating, the current focus for assembler
development is clearly ’short’ read assembly. Following EULER, several competing
assemblers have been published, including Velvet [Zerbino et al., 2009], ABySS
[Simpson et al., 2009], ALLPATH-LG [Butler et al., 2008], SOAPdenovo [Li and
Homer, 2010] and an improved EULER version, EULER-SR [Chaisson et al., 2009].

Even if today’s Illumina protocols nearly compete with 454 Titanium in terms
of read length, the challenge of handling gigabases of data currently favours de
Bruijn based assemblers. This might change when extremely long reads of 10 kb
or more are available in larger quantities as long reads are a domain of OLC-based
tools.

2.4 Prerequisites for nucleotide-level promoter
analysis

Within the chapter several core techniques were introduced, all of them in one
way or another prerequisites for promoter analyses on nucleotide level. Mature
sequencing techniques such as state of the art protocols are required to generate
sequencing data of either genomic or transcriptomic origin. The raw data however
requires assembly software which turns the vast amount of short reads back into
a genome or transcriptome. While a genome is essential for the promoter analy-
sis pipeline described in Chapter 5, the transcriptome can be used to improve the
in silico gene prediction of gene starts. The promoter analysis is able to suggest
a range of potential endogenous promoters with suitable expression profiles for a
given product together with the set of known regulatory elements present in each
promoter. Due to negative effects of viral promoters commonly used for overex-
pression in eukaryotic systems, these high-yield endogenous promoters are of great
interest for the biotechnological community.
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Motivation and thesis aims

The CHO cell line has become a valuable source for many different bio-
pharmaceuticals and is of crucial interest for industrial biotechnology. Given
this context, it seems only logical to collect relevant data from all possible sources.
Indeed, the amount of sequence information available for Chinese hamster related
cells has increased over the past years, but additional important fields have not yet
been established within the CHO community. One of these fields is the promoter
landscape of the Chinese hamster, which is, in contrast to the mouse or human
promoter structure, a relatively blank spot on the map. This becomes even more
unintelligible given the rise of 2nd and 3rd generation sequencing techniques and
advanced lab protocols. Suitable promoters are a fundamental step in cell line
engineering due to their contribution to a preferable high transcription level.
Additionally, viral promoters in eukaryotic production hosts are more and more
superseded by endogenous promoters, thus increasing the demand for endogenous
Chinese hamster high yield promoters.

The main goal of this thesis is therefore a first in-depth analysis of the CHO
promoter landscape and a list of auspicious promoter candidates which may be
used later as basis for high level expression experiments or production systems.
Since the last extensive study of promoter architecture in mammalians, several
generations of sequencing systems were developed, thus an up-to-date sequencing
protocol which exploits recent high throughput techniques is required. Therefore,
a specialised dual-library RNA sequencing approach was chosen as data source.

In a next step, a specialised bioinformatics pipeline has to be developed. This
pipeline needs to be able to analyse NGS data within the magnitude of human
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genome scaled experiments and will be implemented as a single workflow, leading
from preprocessing through data analysis to graphical summaries and data output
in an easy accessible format. Several analyses, such as transcription start site
identification, TSS annotation, promoter analysis on a per gene level and on a
genome-wide scale as well as mapping tools for pathway reconstructions have to
be featured in the software.

In addition to the new RNA-seq sequencing project a CHO cDNA dataset
from an earlier study was available. On the one hand, many of these assembled
cDNA sequences did not reach the full length of the original transcript. One the
other hand however, genomic sequence data originating from a CHO-K1 cell line
is also available. Therefore, a decision to combine both datasets was made in
order to obtain new knowledge of possibly non-full length transcripts in terms of
transcription start site positions. The process of combining those two datasets
is known as targeted assembly, although this niche of bioinformatics software is
not yet well developed. Therefore, as a second goal for this thesis, a software,
able to perform targeted assembly for large data sets of several gigabases needs to
be developed from scratch. In an iterative fashion, cDNAs will be used as seeds,
whereas genomic reads act as an extensions of the seed in 5’ and 3’ direction.

In the following, a summary of the main goals of this is thesis presented:

Chinese hamster promoter analysis pipeline

1. Selection of a sequencing strategy suitable for transcription start site
identification in eukaryotic organisms

2. Design and implementation of a bioinformatics pipeline capable of NGS
data processing and TSS analyses

3. Assignment of transcription start sites to corresponding genes

4. Promoter analysis performed genome-wide and on a per gene basis

The final goal is to construct a list of promoters exhibiting very high
transcription rates as well as a detailed analysis of known regulatory
elements within the promoter region

cDNA extension pipeline

1. Pipeline design must only rely on intrinsic data, since it should be able
to work without prior knowledge of the genome

2. The software is not designed as a de novo assembly replacement but
specifically as a targeted assembly tool

3. Incomplete cDNA sequences acting as seeds need to be extended in 5’ and
3’ direction Main goal is a set of extended sequences possibly reaching
into the 5’ and 3’ untranslated regions



CHAPTER 4

Targeted assembly with SATYR

4.1 Introduction

In section 2.3 state of the art de novo assembly strategies were introduced in
depth. However, certain use cases for sequencing data do not require typical de
novo assemblies, as only specific information is of interest. Examples for this use
case include tumour specific DNA changes in cancer cells, detection of common
repetitive elements, or observation of gene fusion events [Chen et al., 2012; Peter-
longo and Chikhi, 2012].

Due to advances in sequencing techniques (Chapter 2.1) on the one hand and
the development of versatile and robust assembly algorithms on the other hand,
in many cases sequencing and assembly are just one step in a larger experimental
setup. This is especially the case for organisms with relatively small and simple
genomes, originating, for example from bacterial lifeforms. Given a reasonable
data quality and a decent sequencing setup, assembly of those genomes today is a
straightforward task. However, exceptions to this statement exist for instance in
form of organisms with unusual high genomic G+C content.

Starting with larger and more complex genomes from yeast & fungi, mam-
malians, or plants, sequencing and especially the assembly process still require
significant time and expertise in order to generate satisfying results. Of course,
these tasks may be outsourced to commercial sequencing centres, which in turn
puts pressure onto the project budget. Therefore, methods which enable scientists
to perform genome assemblies in a more targeted way, thus avoiding the need
for resource-intensive de novo assemblies of whole genomes may pave the way for
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genetic analysis of organisms without the need for large scale sequencing efforts
linked with high experimental costs.

Figure 4.1: Comparison of de novo assembly and a targeted assembly approach. A)
Overlap graph-based de novo assembly, where reads (green) with similar ends (5’ and
3’) are joined into larger contig structures. B) In the targeted approach, overlaps
are also computed, however, a set of starting points, called seeds (blue) exists in
this implementation. Each seed is extended during the assembly process, normally
until no further suitable overlaps are found within the read set. C) A variant of the
targeted assembly approach where only the seed sequences are reconstructed from
sequencing reads. This variant has analogies to the read mapping problem.

Targeted approaches are applicable in cases when no reference genome exists,
only a fraction of the sequence coverage required for de novo assemblies is available,
or only specific regions, e.g., several kilobases surrounding a gene, are of interest.
In contrast to whole genome shotgun setups, where assembly starts with a set of
reads without any reference points, targeted assembly usually uses seed sequences
as a starting point for locally limited assemblies (Figure 4.1 A). Both 5’ and 3’ end
of the seeds are compared to the set of sequencing reads in order to find possible
overlaps, which is comparable to a localised version of overlap layout consensus
assemblers (OLC-based, Figure 4.1 B).

Initially, a collection of 29,184 cDNA sequences originating from the CHO-K1
cell line [Becker et al., 2011] formed the starting point for the development of the
targeted assembly software SATYR (Seed Assisted Targeted assembly of Yield
increasing Regions). Aim of the tool is the targeted assembly of the mostly missing
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5’ regions of the cDNA sequences, due to their relevance for transcription regulation.
Upstream of the protein coding genes corresponding promoter region may be found.
Knowledge of this region may therefore lead to insights into each genes expression,
which in turn is of great interest in biotechnological applications, where specific
proteins are overexpressed (see Section 2.2.1). Work on this software started in
2010, when no CHO or Chinese hamster reference was publicly available, thus
an iterated assembly with genomic sequence reads was conceived. A first Perl-
based prototype acted as blueprint for the subsequently developed SATYR software.
Sequence data for this new pipeline was provided in form of an Illumina sequencing
run on an GAIIx system which was used for whole genome shotgun sequencing of
the CHO-K1 genome (see Section 4.4.2.1).

4.1.1 Previous work

The niche of this relatively narrow field has not yet spawned as many software solu-
tions as de novo assembly software, which still is a field of very active development,
not at least stimulated by continuously evolving sequencing technologies.

SHORTY The SHORTY assembler [Hossain et al., 2009] was a first approach to
seed-based assembly. SHORTY uses a small number (5-10) of relatively short seeds
(300-500 nt) as a skeleton to guide a de novo assembly of ultrashort 35 nt reads,
produced by the SOLiD (see Section 2.1.3.3) sequencing system. The software
especially exploits paired-end information of reads to accurately estimate inter-
contig distances in subsequent assembly steps. Although SHORTY is seed-based,
the ultimate goal is a complete de novo assembly, which “crystallises” around the
given seed sequences. In a first step, reads are stored within a trie data structure
[Fredkin, 1960]. A trie is special kind of tree structure for string storage, in which
each node stores a certain prefix, starting with one character and increasing in
length with each additional level (Figure 4.2 A). This trie is used as central search
construct for reads based on kmers to find related mates and their corresponding
kmers.

After read storage, reads are anchored onto a seed sequence by read mapping
(Figure 4.2 B). Due to the mate information extracted from the trie, the read’s
mate sequence and approximate distance is known. The mate set obtained by trie
lookups is afterwards converted into a contig by overlapping the reads. If these
contigs exceed a given threshold, they are used as seed sequences on their own in
the next assembly iteration. Using this strategy, a whole de novo assembly can
be performed. In intermediate steps contigs are screened for repeats, palindromes,
and other sequence anomalies which are removed.

SHORTY may be seen as the first approach using seeds to start an assembly
process. However, the tool aims for complete de novo assemblies of bacterial and
viral genomes and the software is not suited for today’s sequencing technologies
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Figure 4.2: Read storage and seed processing within the SHORTY software. A)
A trie data structure, in this case used for storage of the words “A, to, ted, tea,
ten, in, and inn. Strings are stored starting with the first character, whereas each
additional layer in the trie structure adds another letter to the node. Therefore,
for strings consisting of three letters, three layers of nodes are needed. Graphic
modified from [Wikipedia, 2014]. B) Overview of seed processing in SHORTY. Reads
(blue) mapping to the initial seed (thick black line) have a mate associated, whereas
the distance between both mates is known. Overlaps between the red mates are
computed, resulting in a new contig. Graphic from [Hossain et al., 2009].

with their increasing read length and throughput. Although targeted assembly
with SHORTY is possible with some constraints, namely sequencing technology
and read length, it is not the intended use case of the tool, especially when dealing
with eukaryotic genomes.

TASR Two years later, TASR [Warren and Holt, 2011], a Perl-based offspring
of the well known SSAKE assembler [Warren et al., 2007] was published. The
tool is optimised for Illumina data and abandoned the initial aim to reconstruct
the whole genome in favour of relatively short areas of interest. TASR receives
a list of seed sequences which may be either biologically verified or artificially
constructed. The target sequences should be relatively short in order to obtain
optimal results. TASR has a fixed parameter of 15 nt long kmers used during
the assembly process. While the targets are divided into all possible 15-mers,
each occurring kmer is stored with a hash table. In a second step all input reads
are screened for these kmers and only reads containing corresponding kmers are
retained for the subsequent assembly process.

Compared to SHORTY, TASR pursuits a slightly different approach in focussing
on a high quality reconstruction of the supplied target sequences, in other words
a locally very limited, targeted de novo assembly. The use cases described within
the TASR publication therefore focus on detailed analysis of the reconstructed seed
sequences to discover fusion transcripts (Figure 4.3) or single nucleotide polymor-
phisms/variants (SNPs, SNVs) which would potentially be missed during a stan-
dard de novo assembly. Due to the fixed kmer size of 15 nt, the maximal extension
size not covered by seed sequences is limited to (read length - 15) bases. While this
limitation does not interfere with the projected use case of the software, which is
targeted reconstruction of seed sequences, it significantly limits the possibility to
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discover sequence features several hundreds or thousands of nucleotides upstream
or downstream of the initial target sequence.

PRICE The PRICE software [Ruby et al., 2013], published in 2013 and imple-
mented in C++, is the latest addition to the group of targeted assembly software
solutions. Again, the tool was developed with a set of specific use cases in mind
which deviate from classical de novo assembly and therefore require for new soft-
ware solutions.

While TASR is strictly focused on reconstruction of the supplied seed sequences
with reads from the input set, PRICE aims for an extension approach, meaning
that the seed sequences should be extended in both directions as far as possible.
Traditional de novo assembly software generally is optimised on two hypotheses,
first, sequencing coverage throughout the genome is assumed to be equally dis-
tributed and second, all sequencing data originates from a single genome. This
is true for most classical assembly use cases, but not for metagenomic sequencing
projects, where DNA originates from a pool of organisms. Here, neither a single
genome is sequenced nor is the sequence coverage equally distributed. Generally,
the coverage is also not equally distributed throughout the group of organisms
which were sequenced. Due to these restrictions, classical de novo assemblers
are not well suited for metagenomic assemblies [Peng et al., 2011] and specialised
versions of established tools like Velvet [Zerbino and Birney, 2008] and IBDA
[Peng et al., 2010] were developed in form of Meta-Velvet [Namiki et al., 2012] and
Meta-IBDA [Peng et al., 2011].

The paired-read iterative contig extension (PRICE) software is tailored to deliver
assemblies of specific, underrepresented organisms within the DNA mixture of a
metagenomic sequencing setup, for example viruses or pathogens. As the name
suggests, it is especially developed to exploit paired end data, as overlapping paired
end reads can be combined into a longer single reads, thus reducing the number of
required overlap computations by up to 50% (assuming all paired end pairs exhibit
sequence overlaps).

The general workflow of PRICE starts with the mapping of reads to seeds or
existing contigs (Figure 4.4 A, Step 1), followed by a localised assembly of 5’ and
3’ extensions of the seed sequences (Figure 4.4 A, Step 2). The last step involves
the construction of scaffolds from potential overlaps of extended contigs (Figure
4.4 A, Step 3) and closes with a removal of spurious extensions from the assembly.
These steps are iterated as many times as desired until the genome is assembled
or no further extending reads are found. Paired end reads are of special meaning
during the assembly process, as the they may be able to extend the seed sequence
for short insert values (Figure 4.4 B, green arrows) or may be employed to establish
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Figure 4.3: Two contigs reconstructed by TASR. Bases of the assembled DNA
sequence are shown on the x-axis, read coverage is shown on the y-axis. The seed
sequence is centred under both contigs, assembled sequences extending the initial
seed are marked with red boxes. Both assemblies only provide short glimpses into
neighbouring sequence areas, which are no longer than 20 nt. A) The original seed
sequence, showing the linkage between exon 1 and exon 2 of TMPRSS2. A slight
decrease in coverage is observable at the transition from seed sequence to newly
assembled sequence. B) The seed sequence was altered by introducing a A at the 3’
end (underlined), therefore yielding a different set of spanning reads, which confirm
a fusion of the TMPRSS2 exon 1 to ERG exon 4. The coverage drop between seed
and extended sequence is much pronounced as in the previous example, thus showing
that those fusions account for a small amount of altered transcripts. Image modified
from [Warren and Holt, 2011].

the correct order of contigs among each other for long insert values (Figure 4.4 B,
yellow arrows).

Mapsembler Mapsembler was the first tool specifically designed for seed-based
and targeted de novo assembly and was published in 2012 by Peterlongo and
Chikhi [2012]. The tool uses given seed sequences only as a starting point for the
assembly process, but does not try to reconstruct the seed sequences from reads of
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Figure 4.4: Overview of the assembly strategy employed by PRICE. A) Step 1) For
each seed sequence, overlapping reads from the set of input reads are detected. Step
2) Local assembly joins reads extending a common seed into a specific direction into
a new contig. Step 3) The new contigs are scanned for overlaps and - if possible -
merged. B) Detailed view of steps 1 & 2 from Figure A). Paired end information of
reads is used to anchor neighbouring contigs (yellow). Image modified from [Warren
and Holt, 2011].

the input data set. Therefore, only 5’ and 3’ end of the seed sequences are extended
as far as possible in order to obtain novel upstream and downstream sequence
information (Figure 4.5 A). With clever designed target sequences however, similar
results compared to those of TASR can be obtained.

The published version of Mapsembler does not employ fixed indices, which may
be saved from one run to another. Instead, during preprocessing, all occurring seed
kmers are stored in a runtime index, together with the position of the occurrence.
All available reads are screened for according kmers and are only retained, if any of
the read kmers is found within the seed index, thus indicating a possible overlap.

In contrast to TASR, the only parts of the seed sequence which are reconstructed
during the extension phase are the initial 5’ and 3’ ends which are needed to anchor
a first set of reads onto the seed. The software also features a majority vote-based
error correction, known from earlier de novo assembly software [Zerbino and
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Birney, 2008], to account for sequencing errors within the input reads (Figure 4.5
B).

After error correction, possible overlaps are written into a graph structure, as not
every extension step is unambiguous and a simple FASTA file would not be able to
store different assembly branches. Nevertheless, Mapsembler allows to abort the
extension phase if a branching is detected, thus only exporting confirmed extension
sequences. The new sequence ends processed in this iteration again are the starting
point for overlap detection in the following step. This process is repeated until no
further extensions are possible.

Figure 4.5: Two different stages within the assembly process of the Mapsembler
software. A) Reads are positioned above the initial starter sequence s. Red bold
letters indicate read bases deviating from the reference sequence (the seed). In the
lower right a base of a read is processed by error correction. Due to two different
possible variations indicated by input reads, two sub-starters with the consensus
sequence of aligning reads are created. B) Three reads are forming an extension
(ACT) of the seed sequence. The single overhanging ’T’ is not stored since the minimal
coverage is two. Image modified from [Peterlongo and Chikhi, 2012].

Both tools TASR and Mapsembler share that they work in an iterative fashion,
that minimizes memory usage and allows for execution on standard hardware
such as laptops. However, program runtime increases especially for large datasets
originating from eukaryotes and mammals as the typical amount of reads used in
such setups usually reaches higher orders of magnitude compared to prokaryotic
sequencing experiments.
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Changes have been introduced into the current development version of Mapsem-
bler, also indicated by the new major version number. Mapsembler2 has not been
published by now, but is accessible through the tool’s homepage13. In order to im-
prove performance for larger datasets, the memory-minimizing strategy employed
in the first version was exchanged for fixed read indices, which are written on
disk for later reuse. Additionally, the assembly backend now uses data structures
from the Minia de Bruijn graph-based short read assembler developed by Chikhi
and Rizk [2013]. In essence, these changes transforms Mapsembler2 into a locally
limited version of the Minia de novo assembler.

4.1.1.1 Conclusion

In the preceding section different software solutions related to targeted and seed-
based assembly were introduced. Most of the presented tools however aim at very
specific questions and are of limited use only for the seed-and-extend approach
outlined in Section 4.1 and Figure 4.1 B. An overview of all existing solutions is
summarised in Table 4.1 in form of a feature matrix. As the comparison suggests,
Mapsembler is the only tool out of the very narrow field of published software
solutions to address the exact issue of targeted assembly as defined in this work,
although some performance bottlenecks remain. Thus, Mapsembler in its second,
unpublished version was chosen as a suitable reference for benchmarks and evalua-
tion of the software solution developed throughout this work in order to deal with
targeted assembly on state of the art sequencing data scale although later evalua-
tions will reveal that these bottlenecks become a serious issue for very large sets of
reads.

4.1.2 Software requirements

As stated previously, one of the most important points to consider during the de-
velopment phase of a new software, aiming at targeted assembly is data handling
and especially the handling of several tens or hundreds of gigabases produced by
today’s sequencing systems. The new software should be able to work on such
datasets within a reasonable time frame. The seed sequences required for a seeded
assembly approach should not be limited in any way, neither in number nor in
the maximal seed length. As for competing software no assumptions can be made
about origin of the seed sequence, thus either mRNA, genomic sequences or artifi-
cial constructs have to be accepted. Two distinct modi operandi exist for targeted
assembly software, namely reconstruction (Figure 4.1 B) or extension (Figure 4.1
C). The focus of this implementation clearly is the extension of seed sequences into
previous uncharted 5’ and 3’ regions with the help of assembled reads, thus recon-
struction of the seed sequence itself is of lesser interest within this work and will not

13http://colibread.inria.fr/mapsembler2
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SHORTY X X – X [Hossain et al., 2009]

TASR X X X – [Warren and Holt, 2011]

PRICE X X � X [Ruby et al., 2013]

Mapsembler X X � X [Peterlongo and Chikhi, 2012]

Table 4.1: Feature matrix of selected targeted assembly tools. X: feature available,
� : feature available with limitations, – : not available. SHORTY accepts SOLiD
data, but is not able to deal with amount of data produced by state of the art Illumina
high throughout systems. TASR focuses on reconstruction of seed sequences and
only performs minimal extension of the seeds. PRICE is specialised on metagenomic
datasets and further specialised on assembly of low abundant specimens. Mapsembler
in principal is NGS data capable, but shows performance bottlenecks for human
genome sized projects.

be implemented. It is reasonable to assume that running the program with different
parameters and different sets of seed sequences are common use cases. In conjunc-
tion with the already mentioned amount of data it is wise to facilitate a disk based
index structure to store indices constructed during the program runtime for later
use. Indeed, creation of these data structures consumes significant compute and
memory resources, which, however amortises after several program calls depending
on input data size. Quality of the assembled extensions should be comparable to
existing de novo algorithms to depict a detailed, biologically as correct as possible
version of the sequence area surrounding the seed. The length of the extension
should be user controllable or, if no value is given, only be limited by the avail-
ability of suitable reads in the given input read set. In most cases, more than one
possible order of reads will represent possible extensions. In such cases, additional
information such as (average) coverage, read errors or specific sequences features
should be considered to discard unsuitable forks within the extension graph. This
requires that possible extensions are stored in graph structures, implemented with
adequate, possible external libraries. After extension has finished, the most prob-
able path within the assembly graph should be constructed and stored in form of
FASTA files for further usage, whereas the graph should be saved in a standardised
graph file format. For performance and portability reasons, the program should be
implemented in C / C++ and only use standardised libraries. As the vast major-
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ity of bioinformatics tools the software should run on Linux and other Unix-based
systems like Solaris.

Overview: Requirements

� Next generation sequencing data capable

� Targeted and seeded assembly

� Reusable, disk based index structure

� Extension sequence quality comparable to established de novo assemblers

� Scalable, portable, and performance orientated implementation

4.2 Principal software design and methods

Module Description

I/O Reading and verification of seed and read input files in
FASTQ, FASTA, or SEQ format.

Utility Provides a multiplicity of helper functions used by other
modules, such as Hamming distance calculation or se-
quence conversion function

Storage Storage facility for read data. Burrows-Wheeler trans-
form based, exchange layer between application and
BEETL library

Index Provides index functions (locate, count, extract)
to the BWT transformed reads through the Storage

module.

Extension Implementation of the iterated assembly algorithm used
to extend seed sequences in 5’ and 3’ direction

Table 4.2: Overview of SATYR’s core modules and their specific functions within
the software.

SATYR was developed from scratch in a modular manner and the functionality
was divided into five main modules, namely Input/Output module, utility module,
extension module, storage module, and index module (Figure 4.6 and Table 4.2).
Additional functionality was added through three libraries, the Standard Template
Library (STL) [Plauger et al., 2000], the Boost library [Siek, 2002; Schaeling, 2011],
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Figure 4.6: Simplified depiction of the internal design of SATYR. Five major mod-
ules are shown in red, orange, blue, green, and purple inside the light blue box
indicating the functionality of SATYR. External libraries are shown as grey boxes
separated from SATYR modules. Connecting arrows in black indicate relations and
access patterns between modules.
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and the BEETL library [Cox et al., 2012a] (Figure 4.6, surrounding grey boxes and
Table 4.3). The software project is implemented in C/C++ and controlled by a
standard Makefile, allowing for compiling and running on all Linux-based systems
as well as Solaris. The program’s source code together with supplementary scripts
for analysis and evaluation is available on request through a Mercurial repository14

hosted on the Bielefeld University Bioinformatics Server (BiBiServ)15. The software
is purely command line-based and features no graphical user interface, since its
normal use will more likely include server systems without connected displays rather
than desktop or laptop systems.

Library Description

STL
[Plauger et al., 2000]

Includes a large set of useful functions and data
structures (e.g. vector, a static contiguous array
or deque, a dynamic contiguous array)

BEETL16

[Cox et al., 2012a]
Implements a Burrows-Wheeler transform for se-
quencing read sets and provides additional com-
pression backends

Boost17

[Schaeling, 2011]
A large collection of libraries, reaching from mul-
tithreading over graph representation to unit test-
ing, currently contains over 80 libraries

Table 4.3: Overview of external libraries employed by SATYR.

4.2.1 Software workflow

Initially, SATYR is supplied with a list of files containing sequencing reads and
another file containing seed sequences which are used as start points for the assem-
bly process. Two distinct work flows, the first one dedicated to read processing,
the second one responsible for seed processing are initiated, given all command
line parameters were verified and accepted, otherwise meaningful error messages
are issued. For read files, the Burrows-Wheeler transformation process is initiated
if no previously created BWT is found on disk and subsequently loaded into RAM
for quick access (Figure 4.7, green coloured steps). Seed sequences are processed
differently, since in contrast to the sequencing reads only fragments of the seed’s
sequence are of interest. Therefore 5’ and 3’ ends corresponding in length to the

14ssh://hg@hg.cebitec.uni-bielefeld.de/bioinfo/satyr
15http://bibiserv.techfak.uni-bielefeld.de
16http://www.github.com/BEETL/BEETL
17http://www.boost.org
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chosen kmer value are extracted from the seed and stored in memory. These initial
kmers are used as start point for iterative assembly to find reads of similar sequence
(Figure 4.7, red and orange coloured steps).

The second phase of the approach is dominated by the iterative assembly
(Figure 4.7, central grey box). In a first step, reads including kmers previously
extracted from the seeds are located through the BWT index. Suitable reads are
reconstructed to their full length using the in-RAM BWT read set, while to short
or error-prone reads are discarded. Remaining reads are grouped and temporary
consensus sequences corresponding to potential ambiguous extensions (forks within
the assembly graph) are generated. For each of these possible extensions, sequences
of length k are extracted from 5’ or 3’ end to server as start points for the next
iteration of the assembly process. It is either possible to carry on extension as far as
possible or to supply a fixed number of iterations after which extension should cease.

Once the limit has been reached or no further extension are possible, a final
consensus has to be generated. To retrieve the consensus each node along a path
from the last added node back to the root of the assembly graph has to be visited
and its DNA sequence has to be recovered from BWT-index. Afterwards overlap-
ping sequence stubs are removed and sequences are concatenated until a single
consensus sequences emerges. However, there is no guarantee that this consensus
is the correct one, since forks within the assembly graph introduced by sequencing
errors or repetitive regions interfere with the graph traversal step.

The workflow finishes with the export of assembled regions as FASTA files, sepa-
rated into 5’ extension, seed, and 3’ extension. Additionally to the sequence output
files the complete assembly graph with coverage information for each node is ex-
ported as GraphViz-compatible18 ”.dot” file. These files can be visualised by a
broad range of tools on all operating systems while also allowing for different graph
layouts. The log file generated by the software contains supplementary statistics
of the assembly, including average extension length, maximal length, number and
ID’s of non-extended seeds as well as other runtime metrics.

4.2.2 The Burrows-Wheeler transform

4.2.2.1 Introduction

More than 20 years ago, during the mid 1990s, portable music was most commonly
found in form of compact disc players or still in form of cassette-based walkmans.
However, these two gimmicks vanished a few years later, starting in the early 2000s
and were replaced by much smaller players with internal hard disks, able to carry
hundreds of songs instead of the 90 minutes of a standard CD. But how was is

18http://www.graphviz.org
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Figure 4.7: Classical flow diagram of SATYR. Start steps are indicated as rect-
angles with rounded corners, data input/output is depicted as parallelogram. Each
processing step is shown as rectangle, whereas the flow direction is indicated by black
arrows. Each step is colour coded to match the module’s colour shown in Figure 4.6.

.



58 Chapter 4. Targeted assembly with SATYR

Figure 4.8: The naive approach to the Burrows-Wheeler transform, divided into
3 steps. The sentinel character $ is marked red. A) Input string of length n is
written in the first row of a matrix, the remaining (n− 1) rows are filled with cycled
rotations of the string. B) Rows of the matrix are sorted lexicographically. C) The
transformed string can be read in the last column of the sorted matrix.

.

possible to fit these amounts of audio data onto a small hard disk?

The answer to this question, of course, is the MP3 (MPEG-2 Audio Layer III) file
format, which is able to compress audio data to a fraction of its original size. While
MP3 is a lossy compression algorithm, meaning that part of the information of the
source is lost during compression, there are also lossless compression methods, used
e.g. to compress files to send them as email. The bzip2 format19, first released
in 1996 is an example of lossless compression and itself based on the Burrows-
Wheeler transform (BWT). This text transformation, originally developed in 1983
but not published before 1994 [Burrows and Wheeler, 1994] does not change the
size of the input data, but instead permutates the order of characters in such a way,
that similar characters are more likely to follow each other, making them easier to
compress [Adjeroh et al., 2008].

19http://www.bzip.org
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Figure 4.9: Reference based sorting of substrings during the second step of BWT
generation. A) Initialisation of R with numbers from 1 . . . n. B) Assignment of
substrings in relation to the original sorting.

4.2.2.2 Encoding

The process of text transformation from its source form to the BW-transformed
string is also called encoding. This encoding takes three steps and, in this special
case is limited to the alphabet of DNA, therefore

∑
= {$,A,C,G,T}, whereas $

is used as a sentinel character to mark the end of the string20. Additionally the
sentinel $ is defined to be lexicographically smaller than A,C,G, and T. The sample
string used throughout this section is “TGAAGTACGTAAAG$” and the Burrows-
Wheeler transform starts by writing this string of length 15 into the first row of a
15 × 15 matrix. The next 14 rows of the first matrix are filled with cyclic rotated
versions of the source string, each shifted by one character as distinguishable by
the pattern created by the red sentinel character (Figure 4.8 A).

Within the second step, the cyclic rotated string of the first matrix are sorted by
their lexicographical ordering (Figure 4.8 B). The BW-transformed string can be
read from the last column L of the sorted matrix (Figure 4.8 C). While the naive
approach shown may be suitable for understanding the algorithm, its complexity is

20The sentinel character is not mandatory for the basic BWT implementation, however, the
sentinel helps to visualise the BWT process and is actually used in the implementation of the
BEETL library.



60 Chapter 4. Targeted assembly with SATYR

not recommend for implementation. Since n strings of length n have to be compared
to each other, O(n2) space is required for this version [Adjeroh et al., 2008]. Since
for large texts the space requirement can quickly become infeasible an improved
version using only a reference based array R was proposed. The array is initialised
with entries from 1 . . . n (Figure 4.9 A) corresponding to the original ordering of
substrings in the input text. Subsequently the R array is sorted. The transformed
string, previously read from the last column L now can be extracted using the
character at the specific position, e.g. T [R[i]]. The usage of a single array reduced
the space and time complexity down to O(n), the time complexity for sorting itself
may be assessed with O(n log n) given a quicksort-based sorting method. The
estimate might however be inaccurate, due to already sorted input text, yielding
O(n2) worst-case complexity for quicksort [Adjeroh et al., 2008]. To avoid this
pitfall, Burrows and Wheeler [1994] proposed a modified quicksort algorithm which
employs a preceding radix-sort to identity out potential repeating text.

4.2.2.3 Decoding

One of the main reasons the Burrows-Wheeler transform is so popular is its re-
versibility. The decoding process requires more steps than the initial encoding but
again features an elegant and simple algorithm. Decoding starts with nothing more
but the BW-transformed string which corresponds to the L column of the BWT
matrix (Figure 4.10 A). Since the in the second encoding step all cyclic rotations
of the input string were sorted lexicographically, in turn, the first column, F , must
consist of all characters of the input string (or the transformed string) in sorted
order (Figure 4.10 B). Due to the cyclic rotations during encoding, the strings of
the BWT matrix wrap around at the end of the row, therefore a character in a
specific row of column L must be followed by the character in column F . The con-
tents of column F are also known, since F must contain all characters of the input
string in sorted order. Now, columns L and F are combined, therefore creating a
list of tuples (Figure 4.10 C). The sorting of this list of tuples yields reconstructed
column 2 (Figure 4.10 D). This process is iterated until the matrix is completely
filled and in each round the existing columns are prefixed with the characters from
the fixed L column (Figure 4.10 E & F). Once the matrix is filled, the source
string can be read in the first row of the matrix (Figure 4.10 G). Although the
presented algorithm is an evidence for the simplicity of this approach, it is also
clear that, due to the used matrix the space complexity of the algorithm is O(n2).
This however, renders the approach infeasible for very large strings such as genomes.

The naive algorithm however can be improved by the addition of several auxiliary
array structures holding a number of indices to reduce the overall space complexity
and to speed up decoding for multiple strings [Adjeroh et al., 2008]. As stated, the
naive approach retains the complete matrix with all cyclic rotated and sorted input
strings, therefore O(n2) space is required. A logical step would be the removal
of the complete matrix and the introduction of smaller auxiliary arrays. When
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Figure 4.10: Naive decoding algorithm for a BW-transformed string. A) The en-
coded string as read from the L column during the last step of the encoding process.
B) Column F can be constructed from column L by simple lexicographical sorting.
C) Contents of column 2 are revealed by creating a list of pairs from column L and
F . D) Sorting this list again lexicographically, leads to the reconstructed column
2 when reading the second character of each tuple. E) & F) In each iteration a
new character is added to the reconstructed string, the principle of concatenating
columns and sorting them as lexicographically as in D) remains the same. G) The
reconstructed string can be read from the first line of the matrix after the last column
has been reconstructed.
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inspecting column F it becomes clear, that the information content of the column
could easily be reduced by counting the number of different characters as well as
their first occurrence within the sorted column. This modification of the algorithm
replaces the O(n) column F by two new matrices, M and K of O(|

∑
|) size each.

The remainder of the initial matrix is not needed, only a temporary array Q used
to store the intermediate result after each iteration and the column L containing
the transformed string both of size O(n) have to be kept additionally.

Figure 4.11: More complex implementation of the reverse BWT, including several
additional arrays used to lower the overall memory consumption as well as run time.
Column F may be replaced by a combination of array M which records the start
position of a new character in F and K, holding the total count for each character
of the alphabet. This is possible due to the lexicographical sorting of F and the
fact that is contains all characters of the source string. The original matrix used in
Figure 4.8 is not needed for this approach, as well as column F (displayed greyed out).
Especially in case of multiple decoding calls, arrays V and W become important,
as they represent a mapping between F and L in forward and reverse direction and
allow for backward or reverse decoding. Both arrays are constructed with help of M
(shown here in its initial state). M is modified during the construction.

As the space complexity could be reduced, a next step aims for a speedup of
the actual decoding process. It should be noted that with the current setup the
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Algorithm 4.1 Construct V and W from M and L [Adjeroh et al., 2008].

1: for i = 1; i ≤ n; i++ do
2: V[i] = M[L[i]]
3: W[M[L[i]]] = i
4: M[L[i]] = M[L[i]]+1
5: end for

source string is computed in reverse owed to the naive approach. While, especially
in bioinformatics context reverse versions of strings are not unfamiliar, a possibility
to decode in forward direction would significantly improve the algorithm. For this
reason Burrows and Wheeler [1994] added two further auxiliary arrays to the ap-
proach, V and W . While V [i] holds a pointer to the value of the character following
a specific character L[i], W [i] contains a pointer to the character preceding L[i].
Both columns can be constructed in linear time in one pass using Algorithm 4.1.
Due to the pre-computation of V and W it is possible to seamlessly decode a BW-
transformed string into both directions by simply following the pointers in those
two arrays. Therefore, these arrays may be understood as a kind of cache which
speeds up decoding of multiple instances of strings. The overall space requirements
can be summarised as follows:

O(

Arrays C & K

(n) +
∣∣∣∑∣∣∣

Arrays L, C, V, & W

)

4.2.2.4 Counting and locating patterns

Motivated by the possibility to efficiently encode and decode texts using the
Burrows-Wheeler transform different approaches were published, aiming at the use
of the BWT as an (compressed) full text index useful for pattern matching. Fer-
ragina and Manzini [2000] developed methods to count the number of occurrences
of a pattern p within a compressed text T in linear time and to exactly locate
the position of each hit within the original text. Their proposed index structures
was coined “Full-text index in Minute space” or FM-index for short [Ferragina and
Manzini, 2005].

Counting patterns in the BWT Counting of hits is performed using the
BW search function (Algorithm 4.2) which depends on an auxiliary function Occ. It
is remarkable that the only input required for counting and location are a pattern P
and column L containing the transformed string. The helper function Occ(c,1,k)

returns the number of occurrences of character c in the prefix L[1, k] in constant
time. Therefore the total time required to count the number of hits for a pattern is
linear with respect to its length. The idea behind BW search is to narrow down the
number of auspicious suffixes (Figure 4.12, left) in each iteration which is achieved
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Figure 4.12: Stepwise strategy of the BW search algorithm (Algorithm 4.2) for the
BW-transformed string of “TGAAGTACGTAAAG$” and pattern “AAG”. Columns
M and L are given as input. In each of the four steps the pattern is extended by one
character from right to left (therefore backward search). For each step the portion of
characters marked in red indicates the position of the sp and ep pointers employed
by the algorithm. Step three is the terminating step due to the length of the pattern,
yielding a hit count of (4− 3 + 1) = 2.

through two pointer variables sp and ep for the first occurrence of the suffix and
the last occurrence of the current suffix. The function is terminated when either
the ep pointer passes the sp pointer, indicating that the query pattern is not part of
the BWT string or if the iteration counter reaches the length of the query pattern.
In case the pattern is found the number of hits can be derived directly from the
distance between the sp and ep pointers, as each row of the virtual BWT matrix
comprises a suffix starting with the pattern in question.

Locating patterns in the BWT While previously the check for existence of a
specific suffix and the corresponding count of hits was the focus, the locate operation
returns the position within the original string for a chosen index of the L column
(Figure 4.13). To allow for a quicker search process, a position mapping from L
to T is constructed, in order to provide a balance between speed and memory
requirements only a fraction of the positions of L are included into this mapping,
for example each 1000th position in L. In case the BWT position of question is
such an index, the position in T can directly be returned. Otherwise, a detour via
the next nearest index is necessary. To reach the nearest indexed entry of L the
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Algorithm 4.2 BW Search
Counts the number of occurrences of pattern P [1, p] in a BWT text T [1, u] [Ferrag-
ina and Manzini, 2000].

1: c = P[p]
2: i = p
3: sp = M[c] +1 . First occurrence of initial 1-letter suffix
4: ep = M[c+1] . Last occurrence of initial 1-letter suffix
5:

6: while sp < ep && i > 2 do
7: c = P[i-1]
8: sp = M[c] + Occ(c,1,sp-1) + 1 . Update sp pointer
9: ep = M[c] + Occ(c,1,ep) . Update ep pointer

10: i = i - 1
11: end while
12:

13: if ep < sp then
14: return 0 . No hits found
15: else
16: return (ep− sp+ 1) . hits = number of suffixes between sp and ep
17: end if

LF-mapping property is used, i.e. the i-th character c in L corresponds to the i-th
character c in F .

4.2.2.5 BWT on multi sequence sets

The previous functions and properties of the BWT are by now only defined for one
string T , for example a book or, in bioinformatics context, a genome. By employ-
ing the presented functions, it is possible to construct read mapping algorithms
able to align millions of reads against very large compressed and indexed reference
genomes. Well established tools include BWA [Li and Durbin, 2009], SOAP2 [Li
and Durbin, 2009] and Bowtie2 [Langmead and Salzberg, 2012]. In various use
cases it might however be of interest to be able to transform a set of n sequences
S = {S1, S2, S3, . . . , Sn} instead of a single sequence. In this context the sentinel
character $, introduced in Section 4.2.2.2 changes its relevance from an optional
character used for presentation purposes to an integral part of the concept. First
ideas to extend the classical BWT to an extended BWT of string sets were pub-
lished by Mantaci et al. [2005] and previous work by Gessel and Reutenauer [1993]
on permutation count in cyclic structures was used as foundation for the novel ap-
proach. In essence, instead of using the sentinel only once at the end of the string,
a set of identifiable sentinel characters $ = {$1, $2, $3, . . . , $n} is attached to the end
of each string. This is necessary since otherwise it would not be possible to assign
a given suffix to a specific string, therefore resulting in ambiguity within the BWT.
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Figure 4.13: Mode of operation for the location function within a BWT. The po-
sition within the initial string of first occurrence of pattern “AAG”, located in row
3 of the L column (see Figure 4.12) should be recovered. Since ’A’ at position 3 is
not indexed, the L-F mapping leads to the first ’A’ in F (red arrow) and therefore to
the first ’T’ in L (black arrow). Since this ‘’T’ is indexed neither, the L-F mapping
redirects to the first ’T’ in F (red arrow), which in turn leads to the 3 ’G’ of L, which
is indexed with original string position 13. As t = 2 steps had to be made, “AAG”
is located at position 10 + 2 = 12 in the original string.

Several years after the initial approach, Bauer et al. [2011] further pursued the
extended BWT idea by developing two algorithms able to store, index and process
large amounts of Illumina-based reads in a BWT structure. This prototype finally
matured to BEETL, a BWT C++ library [Cox et al., 2012a], featuring compression
techniques like compression of the BWT with runlength encoding or Huffman en-
coding [Huffman, 1952]. The classical BWT uses a string to store the transformed
characters. The BEETL library divides all characters among 5 different piles, one
for each letter ($,A,C,G,T) and corresponding to the current suffix (Figure 4.14).
These individual piles are virtually compiled into one string which is used for fur-
ther processing. Therefore all operations discussed previously are available for the
extended BWT.
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Figure 4.14: Burrows-Wheeler transformed set of strings. The original sequence
set is shown in the silver box, coloured boxes contain parts of the BW-transformed
string, sorted by suffixes into 5 piles ($,A,C,G,T). Note the usage of the identifiable
sentinel characters $1 to $4. Example taken from Cox et al. [2012a].

4.3 Implementation of SATYR

The implementation of SATYR follows the requirements outlined in Section 4.1.2
and the principal design decisions made in Section 4.2. In the following each of
the modules is introduced in depth while setting the focus on actual implementa-
tion details like employed libraries and data structures. The section is divided into
three parts corresponding to the organisation of the modules. While housekeeping
and maintenance functions are carried out by the I/O and Utility module respec-
tively, both Storage and Index module are focused on BWT interactions, and the
Extension module is solely responsible for the actual assembly.
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Figure 4.15: Internal organigram of the I/O module. Colours are in correspondence
with the overall program design (Figure 4.6). The module provides direct read &
write access to files, especially to read and seed files in different formats (FASTA,
FASTQ, and SEQ).

4.3.1 I/O and supplementary functions

4.3.1.1 I/O module

Main responsibility of the I/O module is to provide read and write access to all files
used within the program flow. This includes files containing reads, files containing
seeds and in case the BWT for the read set was already constructed the direct access
to the BWT files. For seed and read files different formats are accepted, covering
the most widespread bioinformatics formats. FASTA files [Lipman and Pearson,
1985] include only a information tag in the header and the sequence information.
The FASTQ format [Cock et al., 2010], containing additionally quality information
for each base is generally found as final output of sequencing runs. SATYR also
supports SEQ-files which only contain sequence information, in the form of one
sequence per line. It may be used to either save disk space or in cases where meta
information for each read is not required. In order to ensure a correct program
flow all file types are checked for errors during import and unsuitable reads are
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Figure 4.16: Internal organigram of the Utility module. Colours are in correspon-
dence with the overall program design (Figure 4.6). The module provides a broad
range of utility functions, reaching from string helper functions over command line
parsing to time measurement for each module.

automatically discarded. Several helper functions allow to obtain read length and
several statistics like average seed length and G+C content.

4.3.1.2 Utility module

The Utility module (Figure 4.16) was designed to provide a range of globally
used helper functions in order to avoid redundant implementations and code to
ease code maintenance. Several different classes are joined within the module, each
one focussing on a different scope. The command line class ensures that all user
supplied command line arguments, such as file paths, kmer-sizes, or error thresh-
olds are of correct format and within a valid range. The scope of the utility class
comprises of a set of versatile helper functions, whereas most of these are related to
DNA-specific transformations or distance measurements, such as reverse comple-
ment, complement, or Hamming distance. Additional string-related functions are
included which are not covered by the C++ standard library. For benchmarking
and evaluation purposes, SATYR possesses its own timing system to independently
keep track of time spent within different modules for different tasks. Therefore it is
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possible to output the time needed to load/create the BWT index, the seed prepro-
cessing or the iterative seed extension phase. Error handling and display of suitable
error and help messages is also performed by the Utility module.

4.3.2 Working with the BWT

Figure 4.17: The Storage module with its three main fields of duty. Main focus of
the module is the BWT interface with provides several functions for BWT interaction.
Additionally, seed sequences and meta information are processed in the module and
a pair of helper functions for BWT-related assembly tasks were implemented in the
Storage module.

The BEETL library [Cox et al., 2012a] is referenced within the program as ex-
ternal library and dynamically linked. Functions of the library are used to generate
the BWT of the input reads if no BWT is present yet. Index and Storage module
are implemented without using function calls from the BEETL library and work
independent.

4.3.2.1 Storage module

The Storage module provides different functions, ranging from seed management
over BWT interface function up to assembly related helper functions (Figure 4.17).
Within the program flow of a SATYR run, the first task of the Storage module
is the accommodation of the set of seed sequences. Since typically the number
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of seed sequences will not exceed a few thousand, all seeds accompanied by meta
information such as seed name and seed ID are stored within a hashmap. While
SATYR was implemented in C++, parts of the algorithms and functionality are
kept in plain C99 for optimal performance. As C99 does not feature any kind of
hashmap data structure, an external approach was employed. UThash [Hanson,
2009] is a BSD licensed, well documented, and actively maintained hashmap for use
in C and is supplied as a stand alone header file providing all necessary functions
without the need for further linking.

Although the Storage module provides several non-BWT related functions,
its main duty is to act as interface to the BWT files on disk. For this task,
the module employs a number of auxiliary data structures and caches to speed
up queries. BWT functions implemented within the Storage module allow for
example counting the occurrences of specific kmers (see Algorithm 4.2) which
translates into the question ’how many possible extensions for a given 5’ or 3’ end
exist’. While reconstruction of these hits is performed in the Index module, the
Storage module is able to retrieve all reads including a kmer of choice. This list is
used later within the extension phase. Each kmer in the BWT text can be directly
accessed using its unique BWT position. Using an auxiliary hash structure, pairs
of recently searched kmers and their corresponding BWT positions are kept in
cache to reduce the number of queries send to the BWT.

The module also contains two assembly related functions due to dependency
constraints within the program. Usually, the query for reads given a kmer returns
a certain amount of hits. Since the reads originate from sequencing experiments are
therefore not expected to be completely error-free, a mechanism is needed which
accounts for single sequencing errors and yet is able to separate the hits into different
classes corresponding to their overall sequence similarity. After the initial call of
the compact function which acts as a wrapper, the consensus sequence for the set
of reads extending the current kmer has to be generated generated. Ideally all
extending reads would be grouped into a single bin, yielding a a single, distinct
extension. In reality, due to sequencing errors mentioned and repeating kmers
several bins, each corresponding to a different direction in the assembly graph exist.
While some of these bins can be discarded because of coverage values deviating
from the average others have to be included in the graph and add a certain level of
ambiguity to the assembly process.

4.3.2.2 Index module

While the Storage module implements several helper functions and takes care of
seed storage and management, the Index module is solely responsible for index
management and queries against the BWT index (Figure 4.18). The BWT con-
struction is performed directly by the BEETL library through wrapper functions
implemented within the Storage module. Index creation however works without
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Figure 4.18: Internal structure of the Index module. While other modules typically
provide more than one function, the Index module is restricted to the eponymous
index. The module holds the entire BWT of several tens or hundreds of gigabyte in
RAM and possesses several caching structures used to work with the BWT. It also
implements all relevant functions described in Section 4.2.2.

referencing any BEETL functions and is therefore fully integrated into SATYR.
Initially, all so called piles have to be preprocessed (Figure 4.19 A). Six piles
together form a virtual BWT string, whereas each pile contains all suffixes starting
with a specific character. In contrast to the five piles shown in Figure 4.14, the
BEETL library adds an additional sixth pile for characters not in the alphabet set,
named “Z-pile”. All piles are read into memory, one after another in chunks equal
to the chosen BWT block size which defaults to 1,000 characters (Figure 4.19 B)
& C). During the transfer from disk into main memory, different counter variables
used in later stages to keep track of borders between the different piles are initiated.
The BWT block size has direct influence on the performance of the index, as these
blocks act as markers within the BWT. A block size of 1 means direct access to
each element combined with a very large amount of memory consumed by marker
structures. To large values for the block size on the contrary translate to lower
memory usage but also included much longer run times, since from a given point
within the BWT index a way back or forward to the nearest index has to be found
via L− F mapping (see Section 4.2.2.4). For each block, a set of 1,000 sub blocks
is created and filled whereas each sub block itself contains an integer array of size
255 (Figure 4.19 D). Since the size of 255 entries corresponds exactly to the size
of the standard ASCII alphabet each sub block is used to establish a mapping
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Figure 4.19: Representation of the BWT within the library. A) The complete
BWT string is divided into six different piles, which act as one virtual BWT string.
B) Each of the six piles has a varying amount of blocks, dependent on the number
of suffixes allocated in this pile. C) The sub-block size is normally set to 1,000 as
a compromise between speed and memory consumption. D) A Sub-block has 255
entries, corresponding to one byte or in other words the range of all ASCII characters.

between ASCII code of a character and its count within the BWT. The letter ’A’
has a decimal code of 65, therefore array[65] would be increased by 1 in case an
’A’ is encountered within the BWT.

Once the BWT is available in memory and all counters are initialised the index
structure is ready for queries from other modules. In order to answer queries, the
Occ() and BW search() functions as well as procedures for forward and reverse
reconstruction of reads from the read set were implemented and modified to work
with multiple sequence BWTs (Figure 4.18). Whereas the initial version of the
FM-index employed the Occ() function to find the number of occurrences of a
given symbol letter until a given BWT position [Ferragina and Manzini, 2005],
the Index module additionally features the select() function which is able to to
find the position of the X-th occurrence of given letter symbol in the BWT. As
SATYR tries to extend in either 5’ or 3’ direction, it is necessary to reconstruct
reads from the BWT in both directions. Therefore, 5’ extensions are handled by
the forward reconstruction() function and 3’ reconstructions are performed by
reverse reconstruction(). This ensures that only those parts of the read which
are relevant for an extension of the seed are reconstructed, while the opposite
direction is skipped.
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4.3.3 Iterated assembly

Figure 4.20: Organisation of the Extension module. The extension phase starts
by calling the seeding functions while the seed pool controls a set of seeding workers.
The seeding phase is very similar to the subsequent extension phase, however, during
seeding several data structures used for extension are initialised. The extension func-
tions provide the framework for the assembly process, while several functions located
throughout other modules perform single steps of the assembly. After the assembly
process has finished, consensus sequences are derived from the assembly graphs.

4.3.3.1 Extension module

The Extension module basically runs the initial seeding phase as well as the iter-
ative assembly and the consensus generation (Figure 4.20). The so called seeding
phase is the first step of the iterative assembly and tries to locate first overlaps
between the seed sequence and the input read set. Due to the initialisation of
several data structures used during the assembly process the first overlap step
was implemented separated from the subsequent main assembly stage. For all
seeds that report relevant overlaps the extension phase is started right after the
seed step. Both, seeding and extension phase are multi-threaded and possess
thread pools which assure that at each time point a given number of threads is
active. Each seed runs in its own thread context, whereas global data structures
such as the BWT are shared between all threads and synchronised where neces-
sary. Main function of the Extension module is to control the program flow of
the assembly process, functions related to the BWT, the BWT index, graph sim-
plification, and filtering steps are implemented within their corresponding modules.

While the functionality required for the assembly process does not reside in
the module, all relevant data structures do. With respect to the assembly, the
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Figure 4.21: Visualisation of the extension process for the 3’ end of an seed (black).
The forward extension process is shown in green, the kmer for which the BWT index
is queried for is shown in bold font, the derived extension of the kmer is underlined.
The process for the second strand is depicted in red. The reverse-complemented kmer
is shown in bold whereas the extension, this time acquired through reverse extension
is again underlined. To simplify work, all results form the second strand are reverse
completed to match the results from the first strand.

assembly graph is the most important structure within the program, as it stores
the network of overlapping reads for each seed and therefore is the direct precursor
of the final consensus produced by SATYR. In order to reproduce the topography
of the assembly graph the Boost Graph library (BGL) [Trobin, 2002] was chosen as
it provides a very mature and well documented set of graph data structures, func-
tions, and algorithms. From the various kinds of graph structures the BGL offers,
the adjacency list was selected due to support for directed edges. The functions
defined on its vertices and edges include the count of ingoing and outgoing edges,
the possibility to add custom data structures to nodes and direct access to each of
the graph’s nodes and vertices.

In a first step, the list of flanking kmers stored by either the initial seeding or the
last iterative assembly step is retrieved by the Storage module (see Figure 4.7).
In case of the first extension step, this list contains only one entry per direction (5’
and 3’), while the reverse complement of the overlapping sequences is implicitly
computed throughout the program and subsequently translated into results of the
sense strand. For each seed and therefore in each thread two distinct units perform
the extension in 5’ and 3’ direction.

The Index module takes the aforementioned list as input and queries the BWT
index for existence and position of these kmers in any of the input reads. Depending
on the direction of the current extension and the strand of the current kmer, hits
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Figure 4.22: The binning mechanism used by SATYR is based on the inherent
properties of the BWT. Due to the strict lexicographical sorting of all hits found
by the search and their corresponding extensions, single base changes (indicated in
black) create drops in the sequence length distribution.

are extended using the forwardExtension() and reverseExtension() functions
supplied by the Index module (Figure 4.21).

Once the extensions from both strands have been filtered for to short extension
(≤ 2× kmer size) a sequence similarity-based binning is performed. Due to the
properties of the BWT, all hits and extensions extracted from the BWT are
lexicographically sorted. It it therefore possible to detect larger variations within
the set of extension by drops in the sequence length distribution in the ordered
extension list (Figure 4.22). Although the binning does not work flawlessly in
every case, it produces bins with enough similarity to produce significant consensus
sequences for each bin, since sequencing errors are typically outvoted during the
majority vote-based consensus generation by other members of the bin. For each
bin’s consensus sequence, the 5’ or 3’ flanking kmer is extracted and stored in the
kmer extension list.

The BGL-based assembly graph is updated in such a way that based on the
current node (initially the root node) for each bin a new node is created and linked
via a directed edge to the parent node. Within the node’s data structure, coverage
information, the node ID, and its extension sequence is stored. Since the sequence
is also stored in the BWT and for each bin a representative read is chosen which
allows for exact location of the extension sequence there is no obviously no need to
store the extension sequence a second time within the node. Indeed, benchmarks
during SATYR’s implementation showed performance benefits when storing the
sequence in the graph compared to the BWT only storage, while the additional
memory consumption stays reasonable.

After the last extension step, induced by either the absence of suitable extensions
or by reaching the user-supplied limit of cycles the final consensus generation is
carried out by the Extension module. The process works by backtracking the
path from the final node inserted in the graph back to the root node, as this will
construct the longest extension. At each node the extension sequence is retrieved
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Figure 4.23: The “.dot” format used by the Boost graph library during export. A)
Source format exported by SATYR. B) Visualisation of the corresponding .dot file
using the dot layout algorithm22.

and added to the consensus while clipping possible overlaps between the nodes.

Depending on the input reads and the initial seed, structures of the assembly
graph show a great range of variation, reaching from very simple and linear graphs
(Figure 4.24 A) to variants including simple branches which quickly terminate (Fig-
ure 4.24 B) and to complex, highly ambiguous layouts with many internal branches
(Figure 4.24 C). Additionally to consensus sequence for 5’ and 3’ extension both
assembly graphs are exported in the widely supported “.dot” format used by the
GraphViz software package21 (Figure 4.23).

4.4 Results

SATYR was implemented to meet the requirements outlined previously, while
its main focus was set to a seed-based, targeted assembly of next generation
sequencing data, to provide insights into the flanking regions of the seed as far as
possible. As such, the length of the produced extensions is the main criteria under
which SATYR was evaluated, the accuracy ranks only second in comparison to
contig length. This section therefore evaluates the presented tool in comparison
with Mapsembler by Peterlongo and Chikhi [2012], as both tools share similar use
cases and requirements.

For evaluation purposes two different data sets were used. The first set from the
K12 MG1665 Escherichia coli strain and the second read set, a genomic CHO-K1
cell line Illumina sequencing experiment, were evaluated on a high performance

21http://www.graphviz.org
22Part of the Graphviz package
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Figure 4.24: Three different example assembly graphs produced by SATYR and
exported using the Boost-graph library. The numbers within the vertices represent
the node ID. Layouts are partly cropped to fit into the figure. A) Ideal graph with
no branching, each extension only overlaps with one specific read set. B) Assembly
graph with simple branch. The branching most probably was related to a sequencing
error, as no further extensions were found for this read set. C) Heavy branching in
the graph. Typically occurs in repetitive regions or in case of a too small kmer value,
thus leading to multiple and contrary read sets.
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server carrying eight X7542 (2.67GHz) Xeon CPUs and 1.0 TB of RAM. The ma-
chine employs the Fedora Linux distribution (release 18).

4.4.1 Prokaryotic Escherichia coli K12 MG1665 dataset

The genome of the Escherichia coli K12 MG1665 strain (GenBank accession
NC 000913) was sequenced in 2008 on an Illumina Genome Analyzer using a 200 bp
insert library. In total 20,708,709 paired end reads were generated, yielding 749 Mb
of sequence data (≈ 162× coverage) which are publicly accessible (Short Read
Archive [SRA] ID SRX000429). A set of 10,000 seeds was generated by a Perl script
that randomly samples 36 bp seed sequence from the MG1665 reference genome.
The Mapsembler software was compiled and evaluated using the most recent 2.1.2
version and the supplied Makefile with no additional settings. Program parameters
were chosen to match SATYR’s method of operation as close as possible. In corre-
spondence with the read size of 36 nt a suitable range of kmer sizes was restricted to
values from k = 17 to k = 29. Only values of odd kmers were used for evaluation,
as Mapsembler does not allow even kmer values due to possible palindromes, there-
fore resulting in the final kmer set {17, 19, 21, 23, 25, 27, 29}. Since the reference
sequence is exactly known it is used as gold standard against which all similarity
comparisons are performed with BLAST.

4.4.1.1 Assembly analyses - similarity

Figure 4.25: A misassembled extension produced by SATYR. Shortly after position
4,000, a second alignment (blue) is shown, indicating that this assembled regions most
probably originates from a different site within the genome. The assembly quality
however, is not affected by this misassembly.

In a first step the quality of assembled sequences was assessed by BLAST com-
parisons against the reference genome. To allow for minor variations discontiguous
MegaBLAST was used [Zhang et al., 2000; Ma et al., 2002], as this BLAST imple-
mentation is specialised for search of similar but not exactly identical sequences.
The coverage term used throughout the evaluation is defined as the percentage
of bases in the BLAST reference covered by bases of assembled regions. The
assembled sequences consisting of 5’ extension, seed sequence, and 3’ extension
were used as query, while the analysis was repeated for each of the seven kmer
values. For smaller kmer values reaching from 17 to 21 Mapsembler performs
optimal, i.e. the average coverage is 99.99% or higher (Figure 4.26). Starting
from k = 23, SATYR constantly loses coverage reaching its lowest value of 79%
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Figure 4.26: Graphical representation of the average reference coverage of all ex-
tensions. The coverage of the reference sequence provides information about the
structural accuracy of the assembly.

for k = 29. This decrease in reference coverage is caused by SATYR’s internal
handling of the extension process. On the one hand, for small kmer values, usually
many matching reads are found which are subsequently grouped into a few large
bins (Figure 4.22) due to high similarity between the reads. On the other hand,
long kmers typically result in fewer hits, since the probability of finding an exact
match decreases for growing kmer values. Often, hits reported by longer kmers
show a certain amount of variation, therefore introducing more different bins in
relation to the hit count than hits of short kmers. While for short kmers one bin
is typically dominating the set in terms of members, for longer kmers the number
of entries per bin is more evenly distributed, yielding a higher chance of choosing
a wrong way in the assembly graph. It is important to point out that these
misassemblies do not contain randomly assembled reads but correctly assembled
regions originating from other parts of the genome (Figure 4.25), as blasting the
corresponding regions of SATYR assemblies leads to high quality database matches.

The previous statement concerning quality of misassembled regions is confirmed
by the average percentage of identity of all alignments, shown in Figure 4.27. Again,
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Figure 4.27: Graphical representation of the overall percentage of identity for
Mapsembler and SATYR. Higher values indicate more similarity to the reference
genome. The identity value can be used to assess an assembly on nucleotide level,
compared to the structural assessment of coverage values.

Mapsembler performs well with qualities of 99.99% and above for all kmer values.
However, the distance to the values achieved by SATYR is relatively small as sug-
gested by the y-axis scaling of the diagram. The overall average percentage of
identity for SATYR is 99.89%, resulting in a very small quality decrement of only
0.1%.

4.4.1.2 Assembly analyses - length

In a next step, the focus was set to assembly performance in terms of extension
length. In contrast to the query coverage and percentage of identity, SATYR
performs very well throughout all tested kmer sizes. For small kmer values,
SATYR was able to reliably generate extensions of 2,000 nt and more, while
Mapsembler crosses the 2,000 nt threshold not before k = 23 (Figure 4.28). For
no kmer value Mapsembler is able to reach the average extension length achieved
by SATYR. Averaging through all kmers, SATYR’s extension are 3.35 fold longer
than the sequences generated by Mapsembler, although for large kmer sizes the
distance between both approaches decreases. The average extension length reaches
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Figure 4.28: Diagram showing the average length of the assembled extensions for
Mapsembler and SATYR.

a maximum value at k = 27, as for k = 29 no further increase is recognisable. The
tendency visible for Mapsembler does not show signs of a similar stagnation for up
to the largest kmer value.

The difference between SATYR and Mapsembler demonstrated in average ex-
tension length becomes more apparent for the maximal extension lengths achieved
by the two tools (Figure 4.29). While the maximal length for SATYR surpasses
10,000 nt directly with the smallest kmer, Mapsembler requires a kmer size of at
least 21 to generate extensions of similar length. For k = 21 SATYR is able to dou-
ble its maximum output from ≈ 19, 000 nt to more than 40,000 nt. From k = 23 on,
the maximal obtained length increases at slower rate, reaching roughly 65,000 nt as
peak value for k = 29. In comparison, the development of Mapsembler’s maximal
extension length shows a slower increment, reaching 10,000 nt not before k = 21.
Mapsembler reaches its maximum extension length exactly at 20,060 nt for k = 27,
while 25 and 27 show similar values with minor deviations. Further evaluations
with several different setups confirmed a hard limit for the maximal extension at
20,060 nt, as under no parameter choice longer extensions were reached.
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Figure 4.29: Diagram of the maximal length reached by assembled extension for
Mapsembler and SATYR. Note the stagnation of Mapsembler for k ≥ 25 at 20,000 nt.

4.4.1.3 Distribution of extension lengths

To further investigate the assembled extensions produced by Mapsembler and
SATYR, for each tested kmer value a histogram containing the number of sequences
and the corresponding length of these extension was generated. The histograms
(Figure 4.30) provide insight into the composition of the extended sequences, e.g.
how many of the 10,000 seed extensions are shorter or longer than 10,000 nt. For
the histograms a bin size of 200 was chosen to allow for a fine grained resolution of
the analysis. For k = 17 Mapsembler is only able to produce about 7,500 very short
extensions which do not exceed 200 nt in length. With k = 19 the distribution be-
comes more heterogeneous with more bins, however no extensions reach more than
10,000 nt in length. Starting from k = 21 up to k = 25, the length of extensions
generally increases and first sequences can be extended further than 10,000 nt. The
image changes for kmer values ≥ 27; the bin counts for longer sequences increase
while two dominant bins, one for sequences reaching about 10,000 nt, and a second
one containing extensions of roughly 20,000 nt contain most extensions. Although
these bins contain more extensions than all other bins, their content only contains
15% of all extensions. The diagram also confirms the previous statement, that no
extension produced by Mapsembler reaches more than 20,000 nt length as no bins



84 Chapter 4. Targeted assembly with SATYR

Figure 4.30: Histogram of the extensions length for different kmer sizes. The x-axis
shows the number of sequences in the corresponding bin (bin size: 200 nt length),
the y-axis holds the extension length. Red dots represent Mapsembler extensions,
blue dots indicate SATYR extensions.

are identifiable past the 20 kb border for k ≥ 27. SATYR in comparison, shows a
different development throughout the different kmer sizes. SATYR quickly starts
to extend seeds longer than Mapsembler, while the majority of extensions is con-
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centrated in bins below 20,000 nt length. This distribution changes for kmer sizes
≥ 23, when more and more bins with lengths ≥ 20,000 nt are identifiable and again
for k = 27 when more than half of the bins contain extensions ≥ 20,000 nt. For
the largest tested kmer 29, the count of sequences in bins ≤ 20,000 nt decreases
significantly, leading to a relatively even distribution of extensions of various length.

4.4.1.4 Ratio between shorter and longer extensions

In a last step, the evaluation focuses on the number of extensions reaching at
least a certain length threshold. Thus, three different thresholds (500 nt, 5,000 nt,
and 10,000 nt) were examined (Figure 4.31), in order to assess the amount of
very short and therefore most probably undesired extensions. As for the previous
analyses, Mapsembler does not generate reasonable extensions for kmer sizes ≤ 17,
while SATYR can extend nearly half of the seeds to 500 nt or more. Mapsembler
subsequently catches up with SATYR’s results, although it is not before k = 29
that Mapsembler can outperform SATYR.

For mid-sized extensions of at least 5,000 nt the portion of longer extensions
decreases for both tools. Again Mapsembler does not produce significant amounts
of suitable extensions for k ≤ 23, while SATYR is able to deliver reasonable
amounts of long extensions for k ≥ 19 and continues to increase the number
of extensions up to a maximum of almost 80% of all extensions. As for the pre-
vious threshold, Mapsembler is not able to catch up before the last kmer is reached.

Following, the threshold was set to 10,000 nt which corresponds to 50% of
Mapsembler’s extension limit. For this threshold, Mapsembler first starts to gen-
erate long extensions for k = 25, while SATYR is able to produce roughly the
same portion already for smaller kmer values (k ≥ 21). The limit for both tools
is located slightly below ≈ 6,000 nt. As for both previous thresholds, for k = 29
Mapsembler is able to outperform SATYR for the first time, producing also slightly
more extensions of the given threshold.

4.4.1.5 Program run times and memory consumption

Mapsembler’s memory consumption averaged around 40 MB of RAM, which is less
than the size of the input reads and owed to the iterative build up of the index
structures in such a way, that at no point the whole set of reads is present in
memory. The program run times varied between 20 minutes for the smallest kmer
size and 25 minutes for the largest kmer, where the time for the initial kmer index
creation is already included in the overall running time.

Memory consumption for SATYR is stable at roughly 3.7 GB of RAM. Index
creation for SATYR is independent from the kmer size, therefore the index had to
be created only one time which took 8:50 minutes. Run times for SATYR however
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Figure 4.31: Portions of reads larger than three chosen thresholds (500 nt, 5,000 nt,
and 10,000 nt). The x-axis shows the kmer size, the y-axis contains the corresponding
number of sequences.
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are heavily affected by the number of seeds. Due to the high number of seeds
(10,000 samples) used for evaluation run times for larger kmer values increase up
to 17 hours. Indeed, the amount of seeds employed for benchmarking will typically
not be used for actual use cases, therefore greatly reducing the run time of SATYR.

4.4.2 Eukaryotic CHO-K1 ATCC CCL61 dataset

As the initial aim of SATYR was the extension of incomplete cDNAs originating
from a CHO-K1 cell line, genomic sequencing reads for this cell line had to be
generated in order to perform a targeted assembly as proposed by SATYR. The
source cell line was the same for the supplied cDNA seed sequences and the new
genome sequencing experiment, thus DNA sequence compatibility between both
experiments can be assumed.

4.4.2.1 DNA library setup and sequencing

Lane Library name DNA concentration Fragment length Read overlap

1 K2 CHO PE 8 pM 339 nt +27 nt

2 K3 CHO PE 6.5 pM 575 nt -209 nt

3 R2 CHO PE 8 pM 314 nt +89 nt

4 R3 CHO PE 8 pM 530 nt -138 nt

6 R2 CHO PE 8 pM 314 nt +89 nt

7 R3 CHO PE 7 pM 530 nt -138 nt

Table 4.4: Flowcell allocation of the sequencing run. The flowcell has 8 lanes;
lane 5 was used for Illumina’s recommended quality control with the PhiX phage.
Lane 8 was used for a different sequencing experiment. In total 6 lanes (1-4,6-7)
of this flowcell were used for CHO paired end sequencing. Four different libraries
were employed: two with a negative overlap size (K3 CHO PE, R3 CHO PE, Figure
4.32 A), resulting in a gap between the two adjacent reads, and two libraries with
positive overlap values (K2 CHO PE, R2 CHO PE, Figure 4.32 B), yielding an overlap
between the two reads which therefore can be merged into longer reads.

Prior to sequencing several DNA libraries were prepared by Karina Brinkrolf. In
a first step genomic DNA was extracted from CHO-K1 cells followed by purification
and washing steps (Figure 4.33 A). The obtained DNA molecules were subsequently
fragmented into shorter samples (4.33 B) by mechanical sheering. To allow for
later sequencing, two different adapter and sequencing primer pairs are ligated to
the fragmented, linear DNA molecules (Figure 4.33 C), while each of these pairs
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consists of the adapter/primer construct on the one strand (coloured boxes) and a
non-functional sequence on the other strand (grey boxes). The ligation process is
followed by a binding step which attaches both adapter sequences to complementary
sequences on the flowcell (Figure 4.33 D), resulting in a characteristic U-shaped
construct. The still double stranded DNA molecules are separated by a temperature
shift which leaves only the adapter sequences attached to the flow cell (Figure 4.33
E). The resulting lawn of DNA strands on the flow cell can now be sequenced by
employing the specific sequencing primers (Figure 4.33 F and G). The produced
libraries (Table 4.4) were subsequently sequenced on an in-house GAIIx sequencing
system with 125 cycles using the Illumina standard paired end protocol (Figure
4.32), which corresponds to a read length of 125 nt.

Figure 4.32: Overview of the libraries used for sequencing. Due to the paired end
sequencing protocol, where the DNA fragment is sequenced from both directions,
two different outcomes are possible. The fragment size refers to the size of the DNA
template (blue) without any linker sequences (red). Dotted lines indicate areas of
overlaps or gaps. A) Libraries K3 CHO PE and R3 CHO PE have larger fragment
sizes (see Table 4.4), therefore the sequenced reads will not produce an overlapping
sequence, resulting in a gap between both reads. B) Libraries K2 CHO PE and R2
CHO PE contain fragments of smaller size, therefore overlaps between read 1 and 2
of each pair are expected.

The reads produced by this experiment were initially intended for a de novo
assembly of the CHO-K1 genome, thus the paired end protocol was employed
to maximise the effective read length (Figure 4.32 B) and to produce additional
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Library name # Read pairs sequenced Yield [Gb] Used pairs [%]

K2 CHO PE 36,726,297 9.181 85.67

K3 CHO PE 30,095,262 7.523 83.01

R2 CHO PE 37,724,343 9.431 88.66

R3 CHO PE 32,107,071 8.026 84.86

R2 CHO PE 38,131,469 9.532 88.51

R3 CHO PE 31,108,180 7.777 84.52

∑
205,892,622

∑
51.47 ∅ 85.88

Table 4.5: Results of the sequencing run using the prepared libraries. In total, six
lanes were sequenced, yielding 205,892,622 read pairs (2×125 nt), which cumulates
to 51.47 gigabases of data in total. In order to obtain optimal read quality and to
discard non-matching reads for subsequent analyses, reads were mapped against the
Chinese hamster ovary cell line (CHO-K1) reference genome [Xu et al., 2011] . The
number given in the last column thus refer to the percentage of reads used for further
analyses.

valuable meta information (Figure 4.32 A). While state of the art sequencing and
assembly techniques would employ primarily mate pair reads (Section 2.1.3.2), in
2010 only a limited set of suitable assembly software was available and the scientific
community had not yet developed mature protocols for de novo sequencing and
assembly of higher eukaryotic organisms.

In total 51.47 gigabases of sequencing data distributed through 205,892,622 read
pairs (Table 4.5) were produced. Quality control of raw reads was performed with
the FastQC software, which allows for checks of quality values, linker residues or
vector fragments [Andrews, 2012]. The results of the initial quality checks for each
library are summarised in Figure 4.34 and 4.35. The analyses showed reasonable
quality values for the first 100 bases, with a significant decrease for the last 10-25
bases for most libraries. The libraries generally show decreasing quality tendencies
for each following library and additionally a degradation from read one to read two.
While the degradation of the second read is owed to the chemistry and protocol
employed for paired end reads, the decreasing qualities for the last 25 nt agree
with previous experiences with the in-house GAIIx system. In order to compensate
for the quality issues a mapping against the CHO-K1 draft genome sequence [Xu
et al., 2011] was performed to discard faulty reads which may interfere with later
assembly steps. Only reads mapping onto the CHO-K1 reference genome were used
for further processing, all other reads were discarded (Table 5.2).
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Figure 4.33: Library preparation for the CHO-K1 based sequencing run on the Il-
lumina GAIIx sequencing system. A) Double stranded genomic DNA is the source
material used for sequencing. B) The source DNA is fragmented into shorter se-
quences. C) Adapter 1 (green) and adapter 2 (orange), later anchoring the DNA
molecule onto the flowcell, are ligated to the DNA samples together with two se-
quencing primers (SP1 and SP2, purple and red) required to start the sequencing
process. D) Adapters ligated in the previous step retain the samples on the flowcell.
E) The double stranded construct is denatured, leading to single stranded sequences
fixated on the flowcell. F) Read 1 of 2 is sequenced from 5’ to 3’ using SP1 G) Read
2 of 2 is sequenced from 5’ to 3’ using SP2.
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Figure 4.34: Sequencing quality assessment of the first three lanes performed with
FastQC [Andrews, 2012]. The first column shows the quality for the first read of the
pair, the second column contains the quality of the second read. The x-axis contains
the position within the read (starting from 1 to 125), the y-axis contains Phred-
based quality values (see Section 2.1.2). Green areas in the graph represent a ’good’
quality, yellow reports average quality, and red regions indicate poor base quality.
Again within the Box-Whisker plot, the red line is the median value, the yellow boxes
represent the inter-quartile range (25-75%), upper and lower whiskers represent the
10% and 90% points and the blue line finally represents the mean quality. The library
name is shown centred above each plot. In general, the second read always shows
slightly lesser quality the first read, owed to the sequencing reaction. Especially D)
andF) show significant outliers in the quality of the last base.
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Figure 4.35: Legend identical to Figure 4.34. Compared to the first three lanes,
quality for the second reads shows a negative trend leading to up to 6 bases with
arguable reliability (F).
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4.4.2.2 Evaluation of SATYR with an eukaryotic dataset

The CHO dataset is used to assess the performance of Mapsembler and SATYR
with datasets typically found in eukaryotic genome projects. Unfortunately,
Mapsembler in its most recent version (2.1.2) failed repeatedly with the CHO
dataset after approximatively 4 weeks running time with a program error and
without producing any assembly output. Analyses of the program during runtime
with the strace debugging utility revealed that even after 4 weeks Mapsembler
still was in the process of read indexing. As such only the results for the SATYR
software developed throughout this thesis are presented and discussed within this
section.

As SATYR requires seed sequences to start the assembly process, a suitable set
of seeds was selected. These sequences were generated in a work by Becker et al.
[2011] and represent 3,533 partially incomplete cDNA sequences originating from
the same cell line as the genomic DNA sequenced within this work. SATYR was
set up to extend all seeds as far as possible with a minimal coverage of two reads.
To accelerate the assembly process for this larger set SATYR’s multi-threading
capability was exploited to use all of the 48 available processor cores.

The general setup for the CHO dataset evaluation is the same as for the previous
prokaryotic dataset. However, the seed sequences used for the CHO dataset are
significantly longer with an average length of 22,584 nt and a maximal length of
up to 174,210 nt compared to the fixed seed length of 36 nt for the artificial Es-
cherichia coli dataset. Therefore, instead of considering the complete construct (5’
extension, seed, and 3’ extension) analyses were performed for 5’ and 3’ extension
while discarding the already known seed sequence from further processing.

4.4.2.3 Assembly analyses - similarity

In a first step of the evaluation the focus was set on sequence similarity and cover-
age of respective reference sequence which was evaluated with the BLAST software
suite. Compared with the first evaluation employing an Escherichia coli dataset
with 162-fold coverage first impressions show lower average coverage values for
the CHO dataset (Figure 4.36). Although the CHO reads were preprocessed to
eliminate interference with the assembly, this pre-filtering also reduced the over-
all genome coverage to approximatively 16-fold for the CHO dataset. This is a
factor of 10, not even including the much more complex genomic structure of the
Chinese hamster. While 80-fold coverage represented the lower border for the Es-
cherichia coli dataset, this mark is not reached by the most-covered regions for
k = 15. Generally, extensions for 3’ and 5’ perform similar without larger devia-
tions. While the overall trend throughout the increasing kmer values is decreasing,
for a single kmer (92) a peak in coverage can be observed. This peak also stresses
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the importance of the right choice for the kmer value and the fact that often no
clear trend for the correct kmer choice can be extrapolated from a few test runs of
assembly software.

Figure 4.36: Graphical representation of the average coverage for all 5’ and 3’
extensions for a given kmer size. The coverage of the reference sequence provides
information about the structural accuracy of the assembly.

The above statement is additionally validated by the graphical representation of
the percentage of identity (Figure 4.37). The values shown in the representation
indicate the level of basepair similarity between the covered parts of the reference
(Figure 4.36) and the reference sequence. Similarity generally is located between
nearly 100% for k = 15 and several longer kmer sizes (70, 80, 81) and 97% for
k = 45. There are, however several outliers which show similarity measurements
below 96% (k = 42 and 61). Although 84 different kmer values were tested for this
evaluation, no clear trend for similarity can be observed apart from the increasing
tendency to produce more outliers for larger kmer sizes.

4.4.2.4 Assembly analyses - extension length

In contrast to the similarity measurements where no clear trend could be observed,
the analyses of the extension lengths shows more concrete effects of the kmer size
on the length of extensions (Figure 4.39). Kmer sizes ≤ 20 on average produce
very short extensions of less than 500 nt. The average length increases further to
up to 800 nt for k = 29, starts to decrease for k = 37 while reaching a level similar
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Figure 4.37: Graphical representation of the average percentage of identity for all
5’ and 3’ extensions for a given kmer size. Higher values indicate more similarity
to the reference genome. The identity value can be used to assess an assembly on
nucleotide level, compared to the structural assessment of coverage values.

to the start level around k = 65. Interestingly, the number of outliers for k ≥ 50
decreases, which may be related to the lower number of reads returned by the
BW search algorithm due to the large kmer values and therefore most extension
terminate after a few iterations.

The trend established by the average extension length is continued to a certain
degree by the maximal extension length. As expected, very small kmer sizes pro-
duce relatively short extensions, owed to the higher probability of reaching the
maximal hit threshold. For medium kmer sizes from = 30 to k = 70 the rate
of outliers increases, while for large kmer sizes the number of outliers as well as
the maximal extension length decrease. This decrease can be explained in by the
smaller number of reads possible to extend and therefore a higher probability of
breaking the iterated assembly within a few cycles. While the maximal measured
extension length of 14,024 nt was produced with a kmer size of 33, 14 kb correspond
approximatively to the average extension length achieved by larger kmers of the
Escherichia coli dataset.
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Figure 4.38: Diagram of the maximal length reached by assembled extension for
SATYR. The kmer size is shown on the x-axis, the y-axis shows the length of the
maximal extension.

4.4.2.5 Number of extended seeds

Due to the large deviation in coverage and genome complexity, the most obvious
question is how many of the supplied seeds actually can be extended. While for the
Escherichia coli dataset in nearly all cases 100% of the seeds could be extended
this should not be assumed for the CHO dataset. Additionally the seed sequences
consisting of cDNAs represent spliced versions of the underlying genome sequences,
therefore 5’ and 3’ end sequences of the seeds may contain splice junctions, which
make it impossible to find matching genomic reads spanning those regions.

4.4.2.6 Program run times and memory consumption

Mapsembler was not able to complete the evaluation. The execution of the program
terminated after roughly 4 weeks of running time with a constant memory usage
of 3.2 GB. During this time the Mapsembler process constantly occupied one CPU
and was confirmed to still import reads.

SATYR required 161 GB of main memory to store the whole read index, which
is the same for all kmer sizes. While the creation of the index took around 90 hours
on a dedicated system, the running time for the actual assembly process averaged
around 10 minutes per kmer size. This is in contrast to the run times measured for
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Figure 4.39: Diagram of the average length reached by assembled extension for
SATYR. The kmer size is shown on the x-axis, the y-axis shows the length of the
maximal extension.

Figure 4.40: Graphical representation of the average coverage for all 5’ and 3’
extensions for a given kmer size. The coverage of the reference sequence provides
information about the structural accuracy of the assembly.
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the Escherichia coli dataset, where the number of seed sequences was more than
three times higher.

4.5 Targeted assembly on eukaryotic scale

Several targeted assembly-related tools were introduced throughout the chapter
and their applicability to the given requirements was assessed in detail. Out of all
presented tools, only Mapsembler developed by Peterlongo and Chikhi [2012] ful-
filled all four requirements (targeted assembly, seed-based assembly, NGS capable,
extension of seeds). The SATYR (Targeted assembly of Yield increasing Regions)
software tailored specifically to extend given cDNA seeds in 5’ and 3’ direction,
while the capability for large next generation sequencing data sets was ensured by
using a Burrows-Wheeler transform-based index structure comprising all sequencing
reads. SATYR was able to extend seeds of an Escherichia coli dataset significantly
longer than Mapsembler, but in turn showed lower similarities than Mapsembler.
Although Mapsembler’s publication contains a use case with eukaryotic sequencing
data, the software was not able to cope with the ≥ 50 gigabase Chinese hamster
dataset which in contrast could be processed with SATYR. Within the evaluation it
became evident that the quality and quantity of available sequencing data have sig-
nificant impact on assembly performance and consensus quality, therefore requiring
scalable algorithms able to deal with the required amounts of data.



CHAPTER 5

Identification of transcription start sites in
the Chinese hamster genome by

next-generation RNA sequencing

5.1 Previous approaches

Over the years several efforts tackling the problem of transcription start site de-
tection using different analytical methods have been published. The fraction of
organisms for which in-depth studies of promoter regions and transcription start
sites have been carried out, however, is still limited and has a focus on Mus mus-
culus and Homo sapiens as mammalian representatives [Sandelin et al., 2007],
Drosophila melanogaster for insects [Ohler et al., 2002], as well as several plant
species [Kumari and Ware, 2013]. Following successful studies with the cap analy-
sis of gene expression (CAGE, see Section 2.2.4.2) protocol for instance by Carninci
et al. [2006], several refinements of the initial CAGE method have been developed.
While nanoCAGE dramatically lowers the amount of RNA required for analysis,
CAGEscan allows for the identification of sequences upstream of the transcription
start site which may not have been been assigned solely on basis for the 21-23 nt
short CAGE tags [Plessy et al., 2010]. The DeepCAGE protocol is an adaptation of
the original protocol to 454, Illumina and SOLiD sequencing systems [de Hoon and
Hayashizaki, 2008; Valen et al., 2009] and aims at a further increase of throughput.
The most recent development in terms of CAGE was the so called HeliScopeCAGE
[Kanamori-Katayama et al., 2011] approach based on the equally named single
molecule sequencing system, which however is not available any more since to Heli-
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cos BioSciences went out of service in 2012. Common to all these works is the fact
that so far no study was conducted for the industrially relevant promoter regions
of the Chinese hamster.

5.2 A dual-library RNA sequencing approach for TSS
detection

Due to the importance of promoters in biotechnological context and the lack of
significant public contributions specifically for CHO cells a state of the art tech-
nique for TSS identification in large mammalian genomes was required. Since all
currently available sequencing systems offer more than enough output in order to
easily sequence whole transcriptomes within one run (see chapter 2.1 for a compari-
son of sequencing systems), the importance of a suitable sequencing protocol proved
to be essential. After careful consideration, the choice was made for dual-library
setup as offered by Vertis Biotechnologie AG (Freising, Germany). Basically two
5’ enriched cDNA libraries were constructed. Library one, in the following referred
to as “peak library” contains only cDNA which had its 5’ cap removed by tobacco
acid pyrophosphatase (EC 3.6.1.-), while library two, the “background library”,
was left untreated. The removal of the 5’ cap in one of the two libraries is crucial,
as the presence of the cap inhibits the amplification and therefore the sequencing of
correct 5’ mRNA ends, thus leading to a library consisting only of background mR-
NAs. In combination with the TAP-treated peak library a bioinformatics pipeline
is able to remove false positive TSS peaks identified by peaks in both, background
and peak library. In comparison to previous CAGE or SAGE protocols the overall
library setup was simplified, as no restrictions and ligations of tags are needed.

5.2.1 Cell line and culture conditions

Cultivation and harvesting was performed by Stefan Northoff, member of the In-
stitute for Cell Culture Technology at Bielefeld University. CHO-K1 cells (ATCC
CCL61) adapted to serum-free media and cultivation in suspension were cultured
in 250 mL Erlenmeyer flasks using TC-42 (TeutoCell AG, Bielefeld, Germany), a
serum free, chemically defined media, containing a recombinant protein measured
below 1 mg/L. The medium was inoculated with 6 mM glutamine originating from
a 200 mM stock solution. Cultivation parameters were set to 37°C, 5% CO2 content,
and a relative humidity of 80%, where the shaking device worked at an oscillation
of 5 cm at 185 rpm and the initial volume was 130 mL. Samples with a cell count
of 4×107 were taken on days 2 to 8, centrifuged at 115 × g and the pellets were
stored at -80°C. For all analyses within manuscript, material from day 2, 6, and 8
was pooled (black dotted time points on black lines in Figure 5.1).
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Figure 5.1: Cultivation of CHO cells (ATCC CCL-61) used as source for cDNA
samples throughout this experiment. Viable cell density is shown on the left y-axis
in cells/ml, the corresponding time point of sampling is shown on the x-axis, the
right y-axis shows the viability of the cells throughout the cultivation. Black dots
indicate sampling points (days 2, 6, and 8) used for sequencing.

Sample Peak library Background library

TAP treatment yes no

Barcode CAACTA GTGAAA

PCR cycles 26 26

cDNA concentration 41 ng/µl 16 ng/µl

% of pool 70 30

Table 5.1: Summary of results from RNA sequencing library preparation for both
libraries prior to sequencing on a HiSeq 2000 machine.
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Figure 5.2: Two sequencing libraries were prepared in order to distinguish between
true TSSs and background noise. The peak library was treated with tobacco acid
pyrophosphatase (TAP) and includes sequences representing true TSSs, as well as
sequences originating from fragmented mRNAs. The background library was not
treated with TAP and includes only sequences from fragmented mRNAs.
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5.2.2 Library construction and sequencing

Instead of a single library containing all data, a dual library approach was chosen,
in which the sample DNA is distributed to two libraries subsequently receiving dif-
ferent treatments. These two 5’ enriched cDNA libraries were constructed at Vertis
Biotechnology AG (Freising-Weihenstephan, Germany). All samples were com-
bined into one cDNA pool in order to receive a broader perspective of active tran-
scripts during different phases of cultivation. Afterwards, total RNA was extracted
from the pool using a mirVana miRNA isolation kit (Ambion/Life Technologies
GmbH, Darmstadt, Germany). RNA preparation lead to an RNA concentration of
989 ng/µl and an total amount of 36.6 µg. In order to start 5’ cDNA synthesis all
RNA molecules exhibiting a mono-phosphate at the their 5’ end were degraded by a
terminator exonuclease (Epicentre, Madison, U.S.A.). Thereafter, the sample pool
was divided in a 70:30 ratio, while the 70 % fraction was treated with tobacco acid
pyrophophatase (TAP) and the remaining 30% were left untreated (Figure 5.2, step
B). A first adapter, later becoming the second Illumina sequencing adapter when
reverse transcribed is ligated to the 5’ ends of the sequences, succeeded by a frag-
mentation step (2 pulses, 30 seconds, 4°C, Figure 5.2, step B). A N6 random primer
was added to start the 1st strand cDNA synthesis carried out by M-MLV reverse
transcriptase (Ambion/Life Technologies GmbH, Darmstadt, Germany), followed
by the addition of the Illumina sequencing adapter to the 5’ ends of the antisense
strands (Figure 5.2, step C). The subsequent PCR (polymerase chain reaction) con-
ducted 26 cycles; exponential amplification only was achieved for sequences carrying
both sequencing adapters and hence sequences with remaining 5’ caps (background
library) did not reach a significant amplification (Figure 5.2, step D). In a last step,
both samples were again pooled and cDNAs ranging from 250-500 bp were selected
from agarose gel. Sequencing was eventually carried out on an Illumina HiSeq 2000
sequencing system. All library data available before sequencing is summarized in
Table 5.1.

5.3 Bioinformatics analysis pipeline

5.3.1 Overview of pipeline modules

By the time this manuscript is written, no specialized bioinformatics pipeline for
the analysis of promoter-centric experimental data was publicly available. The
customized nature of the dual-library sequencing approach in combination with
the large amount of data associated with genomes in the gigabase-range, as the
Chinese hamster, made the development of such a pipeline one of the main targets
of the study. The pipeline itself can be divided into seven distinct steps grouped
into three modules. Each of the modules has a specific task, handled by a tool
chain specific for the module. Module A (Figure 5.3 top) conducts preprocessing
tasks and outputs a list of candidate transcription start sites, module B (Figure 5.3



104 Chapter 5. TSS identification in the Chinese hamster by RNA sequencing

middle) handles transcription start site annotation, and module C finally performs
a set of promoter analyses (Figure 5.3 bottom).

5.3.2 General implementation

The majority of the software was implemented in Perl, the practical extraction
and report language, widely used for bioinformatics as well as many other data
manipulation intensive tasks. Perl is one of the constants of scripting languages
being in active development for nearly 30 years by now. As Perl is a typical “glue-
language” used for building pipelines of other software tools, it is very well suited
for the purpose of this work. Some parts of the well known BioPerl library [Stajich
et al., 2002] were employed for graphical output handling. Additionally a small
set of Bash scripts was included mainly as wrappers for external programs from
within the pipeline. The flowchart [Booch, 2006] of the pipeline is shown in Figure
5.3. Input RNA sequencing reads are shown as green parallelogram, the first and
last steps are shown as rounded rectangles, all other steps are represented by grey
rectangles. Smaller orange rectangles display the executed program, red rectangles
include the kind of analysis carried out, blue parallelograms indicate generated out-
put. The central decision point has purple colour, all steps are interconnected by
black arrows determining the direction of information flow. Although the pipeline
was developed on Linux systems, it is also fully functional on Solaris or any other
Unix-based operating system providing the required Perl environment. The soft-
ware is not dependent on any kind of database neither server nor flat-file based.
All output is generated in form a tab separated values (TSV) and as such human
readable and easy to parse. All graphical output is produced in form of resolution
independent scalable vector graphics (SVG).

5.3.3 Preprocessing

Due to maintenance and usability reasons the pipeline has three separated stages
distributed through several scripts. Within module A, all preprocessing needed
for further analysis of the raw read data is carried out. Several external tools are
employed for this module, reaching from raw read modification tools to read map-
ping tools and postprocessing software. Prior to any further analysis the clipper
component of the FASTX-Toolkit [Andrews, 2012] scans for remaining sequence
fragments originating from Illumina linker or primer sequences, as contaminated
reads introduce erroneous mapping positions in later steps. Usually this purging
removes a few percent of all reads, leaving a large portion of reads suitable for
further processing. Subsequently low quality reads are filtered out using the filter
component of the FASTX software suite, as these would also interfere with later
analyses.

Mapping of the reads against a reference genome is one of the central tasks in
transcription start site identification. Given a read length of 36 or even 50 nt an
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Figure 5.3: RNA sequencing bioinformatics pipeline. The pipeline has seven con-
secutive steps that are divided into three modules: preprocessing of raw data, TSS
identification and annotation, and promoter analysis. Analyses of each step are
summarized in grey boxes. Further colours used: Green (data input steps), orange
(programs executed), red (kind of analysis), blue (output steps), purple (points of
decision), and black arrows (direction of flow of information).
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Figure 5.4: Peak merging process within the preprocessing module. Reads from
background (red) and peak library (green) are processed separately until peak merg-
ing. Thresholds (dotted lines) filter out possible random mappings. For each read
stack of the peak library the list of background peaks is checked for a corresponding
peak. If no such peak exists a potential TSS is found, otherwise the peak is discarded.

unique assignment to one specific position in the genome is generally feasible, al-
though in special cases like repeats or orthologous genes non-unique mappings may
occur. Read mapping within this pipeline is carried out by Bowtie2 [Langmead
and Salzberg, 2012]. The software is robust, fast, and well established [Fonseca
et al., 2012]. The tool is also able to process the genome of the Chinese hamster
as reference, which can be classified within the same size category as the human
genome (Chinese hamster: 2.3 Gb [Brinkrolf et al., 2013], human genome: 3.2 Gb
[Istrail et al., 2004]).

In a next step, the SAMtools [Li et al., 2009] software package is employed to
extract features from the mapping results that are essential for further analyses.
Start and stop positions of each mapped read are extracted, together with strand
information to assign TSSs to the correct strand. In the following, reads are
grouped according to their start and stop position in combination with strand
information. Essentially, this step generates a list of read stacks, while coverage
information allows for a coarse relative ordering of the stacks in terms of transcrip-
tion activity.
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Figure 5.5: The two-phased peak annotation process within the equally named
module. A) In a first step a region starting 3,000 nt in front of annotated genes and
stretching until the end of the annotated region is screened for potential TSS peaks.
The 3,000 nt extra space compensate for mispredicted 5’ untranslated regions (UTR)
and possible wrong annotated gene starts. B) In several cases TSS peaks will not be
assigned to any CH annotated gene due to the draft status of the Chinese hamster
reference genome. Therefore a BLAST vs. RefSeq search is conducted with 3,000 nt
of sequence extracted in downstream direction starting from the TSS position.

Preprocessing concludes with merging of stacks from peak and background
library (Figure 5.4). Reads of both libraries were preprocessed separately, but are
now merged to a final set of reads stacks or “peaks”. The list of stacks from the
peak library is processed iteratively, in which the coverage of reads must exceed a
given threshold. For each peak above the threshold, the background peak list is
checked for corresponding peaks within the same start/stop range. In case such a
background peak is found, the initial peak is discarded. If no background reads
were found to map at that specific position or if the number of background reads
does not exceed the threshold, the peak is saved for later analysis and is a potential
TSS candidate. Final output of the preprocessing module is a data structure
consisting of candidate TSS positions, their coverage, and strand information.
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5.3.4 Transcription start site identification and annotation

The promoter analysis module takes the list of candidate TSS positions generated
by the preprocessing module and assigns annotations based on available reference
data and extrinsic approaches. The first phase of the module, depicted in Figure
5.5 A) uses the supplied reference genome to add as much information to a peak as
possible. The GenBank format [Benson et al., 2008] stores sequence information as
well as additional features of the sequence, such as coding regions, assembly gaps
or gene functions.

After caching the annotation information each candidate peak is processed.
Start and stop position of the peaks are screened for matches within the cached
positions for annotated regions. In order to compensate for incorrect in silico gene
predictions or to short 5’ untranslated regions (UTRs) a 3,000 nt safety margin is
added in front of each annotated gene (see Figure 5.5 A for details). It is important,
to not only screen the 5’ regions for TSS peaks as the experiment might also have
generated peaks originating from alternate start positions within the gene. This
might happen when a secondary transcript variant does not start with the first
(annotated) exon, but with a posterior exon. In case of a successful hit for the
TSS position, the second annotation phase is skipped, as all information already
is available. However, for numerous TSS candidate peaks no corresponding gene
annotated for the Chinese hamster was found, primarily owed to the draft status
(i.e. incompleteness) of the CH genome.

It is reasonable to assume that many of the genes missing an annotation in the
hamster genome can be found in related species, such as Rattus norvegicus or Mus
musculus . As such, a BLAST (version 2.2.28+) [Altschul et al., 1990] database
was set up from files containing data from the RefSeq database (release 62, [Pruitt
et al., 2007]). RefSeq is a collection of curated, non-redundant transcript sequences
of various organisms (also available for genomes and proteins), therefore assuring
a certain level of quality for the entries. In this second phase 3,000 nt of sequence
is extracted from the reference genome, starting downstream of the candidate TSS
position. These 3,000 nt are then screened for sequence similarities to transcripts in
the BLAST database. The e-value threshold used is based on input sequence length
and varies between 1 × 10−5 for fragments ≤ 500 nt and 1 × 10−20 for fragments
≤ 2, 000 nt. Results of the query are analysed and the most probable record is
chosen as representative for the corresponding peak. Additional information such
as gene name, functional annotation or pathway affiliation are extracted if available.

Peaks not receiving an annotation from neither the reference nor from RefSeq
similarities are either false positive hits, or genes unique to the Chinese hamster
but missing from all other RefSeq-listed organisms. This probability, however, is
relatively low, as such these genes are neglected. In contrast to the preprocessing
module, for the TSS identification graphical output is provided. The SVG-based
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images show each TSS peak with its characteristic peak shape within its genomic
neighbourhood of annotated genes.

5.3.5 Promoter analysis

The third module of the bioinformatics pipeline enriches hitherto results with sev-
eral promoter-centric analyses. As for the TSS identification, base data from the
preprocessing module is used as starting point for all analyses. Although the typical
core promoter extends from -40 to +35 relative to the TSS (Figure 2.4, Chapter
2.2.1) 100 nt of upstream and downstream sequence based on the identified posi-
tion of the transcription start were extracted from the reference genome. Indeed,
localisation of the TSS on a basepair-exact basis is not possible in all cases, due
to different shapes of transcription start sites [Carninci et al., 2006]. Therefore an
adequate safety margin is added to compensate for deviating peak shapes.

5.3.5.1 Position weight matrices (PWMs)

To identify possible regulatory elements within the core promoter, a filter method-
ology is required to classify sequences. One solution to this problem, developed
by Stormo and Schneider [1982] are position weight matrices (PWMs). PWMs are
constructed from a set of input sequences and were developed as an alternative to
consensus sequences. Although a consensus sequence may represent a set of se-
quences, a consensus is normally not able to conserve all information of the original
set due to its “compressed” kind of illustration. The use of PWMs in contrast, re-
gains almost all features of the original sequence set, taking also underrepresented
sequence features into account. A PWM is a A×l matrix, with A = A,C,G, T
in the case of DNA sequences and l is the length of the longest sequence in the
sequence set S the PWM is constructed of. Given a set S of N = 10 sequences
of length l = 9 (Equation 5.2), Equation 5.1 is used to compute each cell of the
matrix M (Equation 5.3), while i ∈ (1. . .N), k ∈ A, and j ∈ (1. . .l). Figure 5.6
additionally shows a graphical representation of matrix M .

Figure 5.6: A graphical representation of M , created with the WebLogo [Crooks
and Hon, 2004] software. Bases are distinguishable by colour, the size of each base
corresponds to its relative frequency at the given position in the sequence set S.

Mk,j =
1

N

N∑
i=1

f(Si,j), where f(Si,j) =

{
1 if j = k

0 otherwise
(5.1)
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S =



GAGGTAAAC

TCCGTAAGT

CAGGTTGGA

ACAGTCAGT

TAGGTCATT

TAGGTACTG

ATGGTAACT

CAGGTATAC

TGTGTGAGT

AAGGTAAGT


(5.2)

M =
A
C
G
T


1 2 3 4 5 6 7 8 9

0.3 0.6 0.1 0.0 0.0 0.6 0.7 0.2 0.1
0.2 0.2 0.1 0.0 0.0 0.2 0.1 0.1 0.2
0.1 0.1 0.7 1.0 0.0 0.1 0.1 0.5 0.1
0.4 0.1 0.1 0.0 1.0 0.1 0.1 0.2 0.6

 . (5.3)

Matrix M contains a probabilities for each base at each position, the columns
values sum up to 1 (i.e. 100%). Compared to the example shown, in reality much
more sequences, typically extracted from experimentally verified promoter regions
are used to construct reliable PWMs. A PWM assumes statistical independence,
i.e. the probability for each base is calculated independently. Thus, the overall
probability of a given sequence, e.g. “TAGGTAAGT” can be calculated given the
probabilities of M by simple multiplication of each bases probability:

p(TAGGTAAGT |M) = 0.4× 0.6× 0.7× 1.0× 1.0× 0.6× 0.7× 0.5× 0.6 (5.4)

= 0.021168 (5.5)

The position weight matrices for regulatory elements used within this work were
collected from different sources. The TATA box PWM used within the pipeline
was published in the Eukaryotic Promoter Database (EPD) [Dreos et al., 2013],
while the INR model is based on work from Chalkley and Verrijzer [1999]. DPE,
BREu and MTE definitions were used as published previously by Jin et al. [2006].
For DCE and BREd reference data from the original publication was used to create
suitable PWMs [Lewis et al., 2000; Deng and Roberts, 2005].

The algorithm to locate appearances of potential elements was originally pub-
lished by Cartharius et al. [2005] as MatInd and MatInspector. It was ported
to a stand alone version, as the original algorithm is only available via web-
interface and not suitable for high throughput analyses. MatInd constructs an
additional utility vector from a given PWM, while MatInspector performs the
actual probability calculation for each sequence (Figure 5.7). For each k-mer
of the 200 nt broad sequence window, nine different scores for each regulatory
element are computed. In case of a probability ≥ 0.75 the sequence is defined as hit.
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Figure 5.7: Overview of the promoter analysis process. A sequence reaching from
-100 to +100 relative to the TSS is extracted from the reference genome. A sliding
window screens the whole sequence for potential promoter motifs using PWMs and
a local MatInspector implementation. Results are stored on a genome-wide and per
gene basis.

If a probability ≥ 0.75 is measured within the defined borders of a specific
promoter motif, the core promoter of the corresponding TSS is assumed to possess
this particular promoter element. To compensate for different transcript start
site peak shapes, up to 5 nt deviation in both 5’ and 3’ direction are tolerated.
Values ≤ 0.75 are not considered for per-gene analysis if they appear outside of
their expected location. However, these findings are included in the genome-wide
analysis. The genome-wide approach sheds light on the distribution of motifs
throughout the core promoter region and therefore answers questions concerning
the general position and spacing of motifs. In contrast, the gene-centric view
provides information about the set of motifs for specific genes.

Additionally to the nine promoter motifs, other sequence features are analysed
during processing. CpG islands are stretches of guanine and cytosine nucleotides
connected by a phosphodiester bond (hence CpG) reaching over≥ 200 nt [Gardiner-
Garden and Frommer, 1987]. On the one hand, these islands can be used as criteria
for promoter discovery, as 40% of mammalian promoter and 70% of human pro-
moters exhibit a significantly higher G+C content within their promoter regions
[Fatemi et al., 2005]. On the other hand, a study by Saxonov et al. [2006] showed,
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that CpG islands may also be used to distinguish between two promoter classes,
since one class exhibits a much higher CpG density than the second one. A CpG
analysis was integrated into the bioinformatics pipeline, based on the cpgplot tool
and part of the Staden bioinformatics software suite [Staden, 1996; Larsen et al.,
1992].

It is known that the -1/+1 position has a preference for pyrimidine/purine
(PyPu) dinucleotides [Carninci et al., 2006], which, at least in parts is triggered by
the INR motif located around this position and exhibits a strong PyPu peak in its
centre. These dinucleotide peaks are also captured by an additional filter, together
with general statistics concerning nucleotide usage within core the promoter region
and beyond, as these pattern might reveal effects of base pair composition on
promoter type and shape.

5.4 Results

5.4.1 Preprocessing

The sequencing process of both libraries on a HiSeq 2000 machine was successful
and achieved a total yield of 4.67 Gb for the run, divided into 3.43 Gb for the
peak library and 1.26 Gb for the background library. The imbalance between
both sequencing results is owed to the 70:30 ratio of peak and background library
introduced before sequencing. 111,980,314 and 44,686,574 reads were generated
for peak and background library respectively (Table 5.2).

Prior to any further analysis quality checks were performed in order to eliminate
potential difficulties in following downstream analyses. Quality control of sequenc-
ing reads was realised through the FastQC software which allows for a standard
repertoire of checks, including quality values, checks for linker and vector fragments,
or biased base composition of the reads [Andrews, 2012]. A graphical representa-
tion showing the per base quality of both libraries is shown in Figure 5.8. The
background library (Figure 5.8a) displays a flawless quality up to base 32, when
first outliers reach values below 28. Even the last base, shows reasonable quality
values, however, due to outliers below phred scores of 20 the last three bases (48
to 51) were clipped from all background reads before further analysis. The image
for reads originating from the peak library (Figure 5.8b) is very similar and only
deviating in the fact, that the last five bases (46 to 51) were clipped due to outliers
below phred score 20. Clipping removed a total of 560 Mb of sequence information
from the peak and 134 Mb from the background library, which is negligible.

Directly after clipping, quality filtering was carried out to remove any residual
linker sequences, which may cause interference during read mapping. Therefore,
all reads were screened for fragments of suitable adapter sequences used during
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(a) Sequencing quality of the background library. Generally,
reads achieve reasonable quality scores of not less than 31,
although base 51 includes outliers reaching down to phred 20.

(b) Sequencing quality of the peak library. Reads achieve
qualities comparable to the background library. Bases starting
at 49 however show decreasing quality values for outliers.

Figure 5.8: Quality overview of sequencing runs for background (5.8a) and peak
library (5.8b) produced produced by the FastQC quality control tool. The x-axis
shows the base position within the read, the y-axis indicates the phred quality score.
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Peak library Background library

Yield 3.43 Gb 1.24 Gb

Read length 51 nt 51 nt

Read length (clipped) 46 nt 48 nt

No. of Reads 111,980,314 44,686,574

Discarded reads (quality filtered) 565,212 418,503

Remaining reads 111,415,102 44,121,362

Table 5.2: Results of the RNA sequencing run conducted on a Illumina HiSeq 2000
mashine. The remaining reads in the last row are the data source for all further
analyses.

Illumina sequencing. Indeed, a fraction of the reads showed residual linker pat-
terns, whereupon the whole read was removed instead of only removing the linker
sequences from the read. A removal of adapter sequences yields very short remain-
ing reads due to the initial read length of only 50 nt and was therefore considered
infeasible. Adapters were found in 565,212 and 418,503 reads belonging to peak
and background library (Table 5.2). These numbers were within the expected range
(below 1%) and were removed.

5.4.1.1 Evaluation of different read mapping tools

The basis for all following analyses, TSS identification as well as promoter analyses
is a correct mapping of as many reads as possible onto a chosen reference genome.
Only if reads are mapped back to their correct original position a precise location
of transcription start sites is possible

miRNA filtering As this work’s focus are protein coding genes synthesised by
RNA polymerase II, other non-coding mRNA types, such as miRNA should be fil-
tered out prior to further steps. miRBase23 [Kozomara and Griffiths-Jones, 2014],
a central, curated registry of miRNA stemloops and mature miRNA sequences was
selected a sources for miRNA reference data. The 20th database release, pub-
lished in June 2013, contains 24,521 precursor miRNAs and 30,424 mature miRNA
products. In order to maximise filter efficiency, both stemloops and mature se-
quences were converted for use as read mapping reference. This mapping resulted
in 2,074,740 (1.86%) peak reads and 1,329,483 (3.00%) background reads that pro-
duced significant mappings for the miRBase reference. Those reads were excluded
from further processing.

23http://www.mirbase.org
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Read mapping against CHO-K1 and Chinese hamster references Initially, read
mapping was performed with the Bowtie (version 0.12.7) [Langmead et al., 2009]
read mapper. The achieved mapping rates however, were not satisfactory (Figure
5.9). Since the RNA samples used within this work originate from a CHO-K1
cell line, a logical choice for a reference genome was the published CHO-K1 draft
genome sequence [Xu et al., 2011]. Howsoever, with trimmed and filtered reads
Bowtie was only able to map 47.06 % of peak reads and 13.39 % of all background
reads to the reference genome. Low mapping rates as those reported by Bowtie
may indicate a general problem in sequencing, such as contaminations, sequencing
artefacts or large ratio of spliced RNAs in the sample, which cannot be mapped
with simple mapping software such as Bowtie.

Figure 5.9: Graphical representation of the different mapping approaches evalu-
ated. CH is used as abbreviation for Chinese hamster, CHO represents the CHO-
K1 draft genome. The continuous increase of mapped reads and the decrease
of unmapped reads is easily visible from approach to approach. Mapping rates
for each tool in format peak CH/peak CHO, background CH/background CHO:
Bowtie: 47.06 %/39.10 %, 28.33 %/13.09 %; TopHat2/Bowtie: 60.29 %/49.09 %,
37.25 %/19.92 %; TopHat/Bowtie2: 63.82 %/53.08 %, 37.77 %/21.57 %; Bowtie2:
80.81 %/76.20 %, 75.02 %/66.72 %.

In a first step a random sample of reads was extracted from both libraries and
screened for possible contaminations with BLAST [Altschul et al., 1990] against
the nt database. Most of the reads had their best hit within the CHO-K1 genome.
However, a significant amount of reads did not score any hit in CHO-K1 but in
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mouse, rat or human instead. No contaminations such as Escherichia coli or PhiX
could be confirmed. Further analysis of reads scoring hits in rat and mouse showed
perfect hits, suggesting that those reads are indeed from a CHO cell but probably
located in non-assembled areas of the CHO genome, which still has draft status.
Since the CH draft genome is now publicly available [Brinkrolf et al., 2013; Lewis
et al., 2013] a second read mapping with identical setup was employed to assess
the effect on mapping ratios.

A direct comparison between both mappings is given in first section of four
columns of Figure 5.9. Although the number of reads successfully mapped in-
creases by 8 % to 47.06 % for peak reads and another 15 % increase to 28.33 %
is visible for background reads both rates are still below 50 % and require fur-
ther improvement to increase the yield of recovered reads. As pointed out earlier,
it is possible that a certain amount of reads could not be mapped due to splice
sites within the reads. Although the read length of only 50 bp makes this scenario
unlikely, read mapping was conducted with TopHat2 (version 2.0.4) [Kim et al.,
2013], a splicing site aware transcriptome mapping extension that is based on the
Bowtie mapper family, to assess the influence of splice sites on the mapping. Again,
CHO-K1 and CH provide the reference indices, while peak and background reads
of both libraries were mapped separately. Two setups differing in the underlying
Bowtie version (0.12.7 and 2.0.0-beta6) were prepared to evaluate potential im-
provements added in Bowtie2. Analysis of TopHat2’s output showed promising
results already for the Bowtie backend, yielding about 11.5 % gain for peak and
7.5 % for background. However, differences between both setups do not exceed 4 %
for the peak library and 2 % respectively for background library. In a last mapping
setup, Bowtie2 was employed using default parameters with the exception of the so
called “localmode”. This mode adds the possibility to clip 5’ and/or 3’ end of the
read in order to obtain suitable alignments. In some cases, this ability might be
able to recover additional, otherwise not mapping reads. Prior to sequencing, the
first cDNA strand was synthesised using random N6 primers (see Section 5.2.2).
Indeed, a recent study by Hansen et al. [2010] showed cases of biases in Illumina
transcriptome sequencing which were caused by N6 random priming during library
preparation. Due to the possibility of clipping non-aligning regions of the read the
percentage of mapped reads may increase significantly. The difference between the
best TopHat2/Bowtie2 run (Figure 5.9, third group of columns) and the Bowtie2
run with localmode enabled (Figure 5.9, last group) is easily visible and resulted in
mapping rates over 80 % for peak reads and 75 % for background reads (given the
CH reference), while both mappings with CHO-K1 reference performed about 4 %
and 9 % inferior compared to the CH run. Overall, the mapping results seem to
verify the assumptions on potentially biased reads produced by the RNA sequenc-
ing setup. Further analyses of mappings generated by Bowtie2 showed a significant
prevalence for soft clipping events at the 5’ end of the reads (56.38 % vs 18.20 % for
background reads, 46.54 % vs 37.75 % for peak reads, based on the CH mapping),
which correlates with the 5’ bias suggested by Hansen et al. [2010].
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5.4.2 Identification of transcription start sites

Read mapping typically produces BAM files containing all information about the
mapping process. The initial peak extraction generates a preliminary list of 51,892
peak entries and 20,931 background entries (Figure 5.10, first row). However, these
numbers represent unfiltered data, which requires additional processing steps. All
peaks, which are supported by < 10 reads are removed from the set, leading to
15,876 and 3,458 remaining peaks from peak and background library, while a large
portion of the removed peaks was supported by one read only and therefore deemed
as not reliable for further processing (Figure 5.10, second row). Subsequently con-
secutive peaks were grouped, as many transcription start sites are defined by more
than one peak, normally separated by several nucleotides. This grouping reduces
the number of peaks by roughly 50 %, down to 7,462 (Figure 5.10, third row). In
a last step false positive peaks are removed from the peak set, identified by peaks
for background and peak library at the same position. In such a case, the peak is
removed only if the background read coverage corresponds to at least 10‘% of the
peak library coverage. In total, 915 background peaks could be removed from the
peak set, leaving a final set of 6,547 potential TSSs (Figure 5.10, fourth row).

5.4.3 Annotation of transcription start sites

Annotation using the Chinese hamster reference genome The annotation
module received a set of 6,547 potential transcription start sites which require
further functional annotation. A majority of transcription start sites should be
assignable to annotated CH genes, even if the hamster reference genome still is in
draft status in 2014. As such a mapping of all TSSs to genes of the CH reference
genome is performed in a first annotation step. 4,320 transcription start sites were
directly assigned to 3,808 different hamster genes as depicted in the lower part of
Figure 5.10, while the difference between TSS count and gene count is caused by
multiple alternative TSSs per gene. For 2,227 remaining peaks no genes were found
within the threshold of 3,000 nt (Section 5.3.4). However, due to the draft status
of the reference genome, a large portion of these TSS candidates is expected to find
corresponding genes in closely related genomes. Therefore, the remaining 2,227
TSSs were screened for potential target genes by means of sequence similarities.

Annotation by RefSeq sequence similarity search The transcript variant of the
RefSeq database was used in combination with BLAST as described in Section
5.3.4 in which three different search results are distinguished (shown in the yellow
area of Figure 5.10). In case no hit is found for the extracted 3,000 nt sequence
downstream of the TSS, the TSS remains without annotation. In most cases,
multiple hits for single gene symbols are found in the database, corresponding
to several different source organisms. This status of sequence conservation is a
strong indicator for a reliable assignment and 1,581 of the 2,227 TSSs could be
classified into this category, representing 542 unique genes and thus increasing
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Figure 5.10: Graphical representation of preprocessing and TSS identification re-
sults. 51,892 and 20,931 peaks were initially identified for peak and background
library. Filtering for reads ≥ 10 removed 70 % and 83 % of noise peaks. 7,462 peaks
remained for the peak library, 915 peaks were recognised as background peak. 6,547
transcription start sites were located, of these 4,320 could directly associated with
Chinese hamster genes. 1,812 of 2,227 TSSs were assigned to non Chinese hamster
genes, 1,581 were classified as trustworthy hits, and 231 received a putative rating.
In total, 6,035 TSSs (93.66 %) could be assigned to genes, 415 TSSs (6.33 %) could
not be assigned to any gene.
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the count of successfully annotated TSS to 5,901. A third category comprises of
less well conserved hits within the RefSeq database, caused by non-unique gene
names for similar transcripts or single hits in only one organism. 231 of these
less confident hits were found and assigned to 174 genes during the analysis,
resulting a total count of 6,132 annotated TSSs (93.66 %) assigned to 4,437
unique gene names. Only 415 TSS (6.33 %, shown red in the lower part of Figure
5.10) could be assigned by neither reference-based nor sequence similarity methods.

To further characterize the set of 415 unassigned TSS, the average and median
peak heights were computed for assigned and unassigned peaks, resulting in a nearly
identical average peak height of 3,644 reads for the assigned peaks and 3,613 reads
for the unassigned peaks. However, median values deviated significantly, showing
1,577 reads for assigned peaks and only 339 reads for unassigned peaks. There-
fore, most of the unassigned peaks seem to possess a significantly lower coverage
with only a few outliers showing considerably higher read counts. This data sug-
gests a relatively large fraction of weaker expressed background peaks in the 415
unconfirmed TSS.

5.4.4 Gene Ontology classification of transcription start sites

The successful assignment of genes to experimentally verified transcription start
sites also added access to the complete functional annotation of these genes. In
order to validate the obtained results in terms of functional annotation and to
estimate the range of functions associated to the genes of the detected promoters a
functional analysis was performed. The required information is provided in form of
specialized tags or terms, assigned by the Gene Ontology (GO) consortium [Ash-
burner et al., 2000]. By defining a common set of terms, classified into three super
categories, function, localisation, and involved biological processes can described
precisely. Following both gene assignment steps, all unique gene symbols (e.g.
Bop1, Gtf2h2, . . .) were extracted from the final mapping, resulting in a list of
2,241 gene names. This set defined the input data for processing with the DAVID
Functional Annotation Tool [Huang et al., 2009a,b], provided as an online analysis
tool. The tool is based on a massive set of functional databases and mappings
between those databases, helping to establish links between different annotations.
As the tool does not yet incorporate Cricetulus griseus as source genome, Mus
musculus was selected as substitution and 2,126 entries (94.87 %) of the set of
2,241 unique genes could be identified in the mouse genome. GO terms were
extracted and classified into the three main categories. 1,602 (75.6 %) of the 2,126
genes mapped to mouse possess one or more GO terms for biological processes,
1,781 (84.0 %) have a cellular component assigned, and 1,675 (78.9 %) are involved
in molecular functions according to GO.

For each category, all top level terms were selected for graphical representation
(Figure 5.11). For the molecular function category (Figure 5.11, red bars), the
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Figure 5.11: Gene Ontology based mapping of genes assigned to TSSs. A list
of 4,437 unique genes names was screened for associated Gene Ontology (GO) [Ash-
burner et al., 2000] terms in the three categories “Molecular function” (red), “Cellular
component” (blue), and “Biological process” (green). The x-axis shows the name of
the assigned GO term, on the y-axis the number of genes assigned to this term are
shown. For each class, only the 20 most abundant go terms were selected. The gene
name ⇒ GO term mapping was performed through the DAVID web suite [Huang
et al., 2009a,b].

four GO terms are dominated by binding functions followed by catalytic activity
in the first column, while regulatory activity and molecule activity only play minor
roles. Location information for the gene set is delivered by the cellular component
category (Figure 5.11, blue bars). Here, the two most abundant terms represent
location in the cell or parts of the cell, followed by cell organelles. Assignment of
genes to biological processes (Figure 5.11, green bars) shows clear overrepresenta-
tion of cellular and metabolic processes, followed after a gap to other processes such
as localisation, cellular component organisation of cellular component biogenesis.

Functional classifications of the presented approach into GO terms were com-
pared to the results obtained by Rupp et al. [2014] for a CHO-K1 cell line genome
assembly. Although the deviation in the number of gene clusters detected by Rupp
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et al. [2014] and the number of assigned genes of this work partially reaches one
order of magnitude, the general distribution of functional assignments stays compa-
rable. As such it is reasonable to assume that the set of genes assigned to observed
promoters in this study does show signs of strong biases for specific functions,
locations or processes.

5.4.5 KEGG based mapping of genes of transcription start sites

In industrial context the systematic overexpression of specific genes is one of most
common use cases within cell line optimisation to obtain a desired protein. In order
to maximize the yield of such processes, in-depth knowledge of involved pathways is
crucial. To demonstrate the industrial relevance of the approach presented in this
work, a mapping of peaks to genes of a selected KEGG pathway was performed
[Kanehisa and Goto, 2000]. KEGG, the Kyoto Encyclopedia of Genes and Genomes
provides a database of enzymes, uniquely identifiable through EC (Enzyme Com-
mission) numbers. Such a number comprises of four letters divided by dots and
six different major categories (1.-.-.- to 6.-.-.-). The naming scheme is hierarchical,
meaning that 1.1.-.- is the parent group of 1.1.2.- and 1.1.3.- and as such the latter
two are more specific enzymes of the parent group. Annotation data in form of EC
numbers was extracted from input GenBank files and combined with corresponding
expression heights. A logarithmic colour scale adjusted to fit the minimal and max-
imal values of the data set is automatically generated and allows precise assignment
of expression heights. On the basis of the generated scale, a CSV file is generated,
suited for upload within the KEGG “colour pathway” web tool24. Overall 463 dif-
ferent EC numbers were extracted from the conducted functional annotation of the
transcription start sites. In Figure 5.12, the mouse reference pathway for glycolysis
is shown. It is possible to reveal most of the pathway, only a few genes coding
for alternative enzymes could not be found in the data set. For glycolysis 18 dif-
ferent EC numbers were mapped onto the pathway and their corresponding genes
are scattered throughout the genome on all chromosomes. Although most of the
enzymes are marked with average expression strength, the high dynamic range of
the RNA sequencing approach is able to reveal very weakly expressed genes like
Galm (EC number 5.1.3.3, between 30 and 50 reads) as well as genes with a signifi-
cantly higher expression strength like Akr1a1 (EC number 1.1.1.2, >140,000 reads).
Again, the difference between lowest and highest expression level in the glycolysis
pathway alone covers five orders of magnitude, which would not be feasible with
traditional microarray experiments due to saturation effects [Zhao et al., 2014].

5.4.6 Insights into the Chinese hamster promoter landscape

6,132 of the 6,547 peaks were successfully assigned to annotations of the Chinese
hamster or they were correlated to homologous sequences of related species, indi-

24http://www.genome.jp/kegg/tool/map pathway2.html
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Figure 5.12: Mapping of TSS peaks to KEGG pathways. Export of the glycolysis
KEGG pathway with colour coded transcription levels. TSS peaks were assigned to
genes coding for specific enzymes involved in glycolysis. Most of the entries show a
medium transcription level of 2,000 - 10,000 reads, however, selected genes show very
high expression levels (1.1.1.2, >100.000 reads) or very low expression levels (5.1.3.3.,
>30 reads).
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Figure 5.13: Overview of different peak shapes. (A) Sharp peaks. These peaks
are characterized by one narrow peak, typically not much wider than the actual
read length. (B) Multimodal peaks. These broad promoters are characterized by a
plateau of basic transcription over more than one read length, accompanied by at
least two distinct peaks outreaching significantly the basal transcription level. (C)
Single dominant peaks. These broad promoters show a basal transcription similar to
multimodal peaks but possess only one distinct peak. (D) Broad peaks. They are
generally longer than one read length without any dominant distinct peaks. Green
bars, annotated genes; yellow bars, exons; green peaks, mapped reads.
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cating which genes were transcribed in the CHO-K1 culture under the experimental
conditions used. Due to the setup of this approach, a list of exact TSSs is avail-
able for 4,437 genes, paving the way for in-depth analyses of promoter regions.
These analyses are implemented and grouped in the promoter analysis module of
the bioinformatics pipeline (Figure 5.3). Studies of the visualized data (Figure 5.13
and Figure 5.14) showed highly diverse patterns of the promoter anatomy, which
correspond to similar findings in mammalians [Sandelin et al., 2007; Carninci et al.,
2006] as well as in Drosophila melanogaster [Rach et al., 2009] and plants [Kumari
and Ware, 2013]. This heterogeneity is reflected by the two main TSS classes
“broad” (including three sub-classes) and “sharp”. Broad TSSs exist, because in
many cases a TSS cannot be pinpointed to a specific base on the genome, owing to
the fact that transcription is initiated over a range of up to 150 nt [Carninci et al.,
2006]. These TSSs show a plateau-like distribution of mapped reads and are gen-
erally associated with ubiquitous spatial and temporal expression patterns [Rach
et al., 2009]. In contrast, sharp start sites exhibit a sharp, well-defined peak, com-
bined with tightly regulated spatial and temporal expression of their corresponding
genes [Rach et al., 2009]. Out of the 6,547 peaks previously identified, 5,449 peaks
(83.23%) were categorized as sharp (Figure 5.13 A), while 1,098 peaks (16.77%)
were assigned to the class of broad TSSs (Figure 5.13 B - D). Peaks assigned to
the broad set were further split into one of the three sub categories (i) multimodal
(MU), (ii) single dominant (PB), and (iii) broad (BR), defined by visual features
of the peaks [Carninci et al., 2006]. The majority of broad peaks belongs to the
sub-class multimodal (910, 13.90%), meaning that at least two clear peaks are vis-
ible above a basic transcription level (Figure 5.13 B). Another 162 peaks (2.47%)
were classified as dominant (Figure 5.13 C) and thus also possess a basic plateau-
like transcription activity, complemented by a single sharp peak. The sub class
of classical TSSs featuring a plateau-like appearance without any other distinctive
features (Figure 5.13 D) was assigned to only 26 peaks (0.40%). In order to uncover
the potential impact of the peak type on the existence of regulatory elements, all
subsequent analyses were calculated for broad and sharp TSS classes separately.

5.4.7 Promoter landscapes of the Chinese hamster

Another feature of module C of the bioinformatics pipeline is the analysis of
promoters on the global scale. The core promoter regions between -40 and +35
were screened for nine common regulatory elements of eukaryotic promoters (Fig-
ure 2.4). Since these elements can have severe impact on transcription activity,
an in-depth analysis of each regulatory element of the core promoter was conducted.

For the “TFIIB recognition element upstream” (BREu) [Lagrange et al., 1998]
three characteristic and decreasing summits can be identified (Figure 5.14 A),
which is consistent with previous observations in mouse and human [Carninci
et al., 2006]. Although the assumed BREu location is covered with little offset,
it is obvious that broad start sites seem to prefer BREu usage before sharp TSSs
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Figure 5.14: Matrix showing screened regulatory elements. Position relative to the
TSS (+1, black line) is shown on the X-axis, the Y-axis is labelled with the global
percentage of promoters having the corresponding feature at this position. Broad
(red) and sharp (blue) TSSs are shown separately, grey boxes indicate the expected
position of the maximal peak.
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with a difference of 4 % to 6 %. The striking drop observed around position +1
may be due to the fact that region -2 to +4 is dominated by the “initiator” (INR)
element [Corden et al., 1980]. The INR motif exhibits high pyrimidine content
combined with an ’A’ fixed at position +1 in contrast to the BREu consensus,
which is completely free of pyrimidine and therefore should not yield any signals
at the INR location.

The TATA box location fits perfectly to its assumed position and is slightly
preferred by broad over sharp TSSs (Figure 5.14 B) [Goldberg, 1979]. Thereby,
the average difference is only about 3 % to 4 %. The fact that only 10 % of all
(broad) TSSs possess a TATA box is consistent with comparable studies initially
relativizing the number of TATA box dependent promoters to 25 % [Suzuki et al.,
2001] and later on down to only 10 % [Carninci et al., 2006].

In contrast to the data for BREu, the “TFIIB recognition element downstream”
(BREd) does not fit well to the predicted position (Figure 5.14 C) [Deng and
Roberts, 2005]. A first accumulation is located at -30, more than 10 bp upstream
of its presumed location (-23 to -17). More than 70 % of all sharp promoters and
60 % of the broad promoters show this first peak. A second peak for 80 % of
all promoters was identified at position +30. However, similar studies in human
cells [Albert et al., 2010] showed likewise inconclusive results with no detectable
abundance at the predicted BREd location [Deng and Roberts, 2005]. Given
the generally high level of noise within the BREd data set, it seems plausible
that the shifted peak at -30 may in fact be an artefact. Additionally, the strong
broad/sharp cluster starts at +20, which might be attributable to the fact that
the BREd consensus sequence exhibits a high G+C ratio, which also is common
for the gene start [Saxonov et al., 2006].

The INR motif is very tightly located around the +1 position, with only minimal
abbreviations in upstream or downstream direction (Figure 5.14 D), which corre-
lates well to the fact that the INR motif operates efficiently only when correctly
positioned [Smale and Baltimore, 1989]. Although the general level of background
activity is in the order of 12 % to 15 %, no significant secondary clusters were
observed. INR usage does not seem to be related to the TSS type, as the difference
between sharp and broad start sites is negligible. Roughly 25 % of all TSSs
analysed have a correctly positioned INR motif, which is below the findings for
human and mouse, where up to 50 % of all promoters involve INR motifs [Maston
et al., 2006].

Additionally to previous regulatory motifs, we included the three “downstream
core elements” (DCE) DCE SI, DCE SII, and DCE SIII to receive a complete picture
of the Chinese hamster promoter landscape [Lewis et al., 2000]. The three subunits
of DCE are scattered over large parts of the core promoter positioned from +6 to
+34 (Figure 2.4). In contrast to other regulatory elements, the individual subunits
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of DCE are very short sequence tags of 3 to 4 bases with only minor variations
[Lewis et al., 2000]. Common for DCE SI and DCE SII is the almost exclusive use
of pyrimidines, resulting in massive clusters around +1, thus mimicking the INR
peak and creating a complement to the BREu, MTE, and DPE gaps (Figure 5.14
E - F). However, apart from a small secondary culmination, DCE SI does not seem
to be specifically overrepresented in our data set. Within the expected position
of DCE SII, another secondary cluster can be identified, but hardly exceeds the
general noise level of around 22 %. A similar situation is visible in the graph
for DCE SIII, with the exception that the background level varies around 6 %
to 8 % (Figure 5.14 G). Again, as for DCE SI and DCE SII, no local maxima
distinguishable from the background frequency are located at the correct position.

The “motif ten element” (MTE) is co-localized with DCE SII, while MTE and
INR are able to operate on a synergistic basis given a correct spacing between both
elements [Lim et al., 2004]. The signal distribution is bimodal, resulting in two
peaks of equal height, where the first peak from -30 to -10 is less wide than the
main cluster including the MTE location (Figure 5.14 H). The groove around +1
for the MTE is larger but similar to the one of BREu. The most probable cause for
this large MTE signal free area is the complete lack of pyrimidines strictly required
for the INR motif. The expected location of the MTE (+18 to +27) is completely
covered by the second cluster, yielding over 15 % of MTE promoters for the broad
group and 11 % for the sharp group.

Distribution of clusters for the “downstream processing element” (DPE) data
can be described as relatively heterogeneous with one dominant accumulation at
the proposed DPE location (+28 to +32) (Figure 5.14 I) [Burke and Kadonaga,
1996]. As for BREu and MTE, a significant drop of positive promoter signals is vis-
ible around the +1 region, similarly explainable by the pyrimidine-rich INR motif
residing around +1. Although the DPE consensus comprises up to four pyrimidine
bases, the probability that all of them are part of the motif is considerably lower,
resulting in only few overlaps with the INR motif. Based on DPE data, about
55 % of all broad promoters and 40 % to 45 % of the sharp TSSs possess a DPE.

A feature related to the INR is a pyrimidine/purine (PyPu) dinucleotide peak
starting directly in front of the +1 position. Due to the consensus sequence of the
INR motif, a striking increase of PyPu dinucleotides should be observable in at
least 25 % of the promoters, as each positively identified INR motif is expected
to show such a peak. And indeed, following a PyPu depletion at -3, -2 and -1
show a significant increase of PyPu dinucleotides, resulting in one very sharp peak
which reaches his maximal value at 55 % for both, broad and sharp TSSs (Figure
5.14 J), which also corresponds to previous findings by Sandelin et al. [2007]. The
dinucleotide peak may also be seen as an indicator for correct placement of the
TSSs screened for this element, as the primary peak shows no signs of shadow
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peaks shifted by several nucleotides.

In order to complement the previous motif-based analyses, several structure-
based views were integrated. For all TSS regions the nucleotide composition at
each position (from -50 to +50) was recorded and separated by TSS type (Figure
5.14 K and L). Scaling for both views was chosen equally to easily identify devia-
tions between both types. G+C and A+T curves show linkage to a certain degree,
which is not related to complementary base pairs, but to sequence similarities
within the core promoter region. Both diagrams show a decrease of G+C and an
increase of A+T in the region from -30 to -20, which is accurately the position
of the A+T-rich TATA box. A second general pattern can be found around
the +1 region and corresponds to the already mentioned PyPu peak. Directly
upstream of +1 a significant drop of adenosine, followed by a strong increase at
+1 is observable, consistent with the INR consensus which includes an A at +1.
Although both TSS types share a similar curve pattern, broad TSSs exhibit higher
G+C ratios and vice-versa lower A+T ratios, resulting in higher amplitudes within
base composition changes. Common to both types is also an increased fraction
of guanine in the region from +10 to +40 that fits to the guanine-rich consensus
sequences of MTE, DPE and DCE, all of which located within this core promoter
region.

In a last step, the core promoter region was screened for CpG islands, areas
with increased G+C content. As for other analyses, both TSS types were screened
individually. In conformity to a study by Saxonov et al. [2006], the average differ-
ence between both types is ≥ 25 %, while nearly 80 % of broad TSSs show CpG
islands, compared to 45-50 % of sharp TSSs with CpG islands (Figure 5.14 M).
Therefore, the consideration of additional structural features, such as CpG content
may further improve the classification process for transcription start sites.

5.4.8 Analysing Chinese hamster promoters on the gene level

The above identified promoter elements, as well as combinations of them, have
the potential to significantly increase or decrease transcription activity. As such,
a global view on promoter architecture can give hints about general usage pat-
terns. However, with regard to a biotechnological usage of promoters for the
pharmaceutical industry, specific knowledge of the regulatory promoter elements
on the gene level is of special interest. In this context, analyses from module C
of our bioinformatics pipeline (Figure 5.3) can also be used to demonstrate the
characteristics of every single promoter detected. This includes the expression
levels of the corresponding genes, which is possible due to the strict limitation on
unique mappings of reads. Due to the non-normalized nature of the chosen library
approach and the stringent mapping criteria (uniquely mapping reads only), the
data presented in this work have a very high information density, as shown by the
>90 % mapping rate from peaks to genes. Information about expression strength
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for each peak further increases this density.

Table 5.3 summarizes the 20 genes with the highest peaks detected in this ap-
proach, along with the type of TSS, regulatory elements detected, and chromosomal
location. 55 % (11) of these peaks could be assigned to ribosomal-like genes, an-
other 25 % (5) were identified as histone-like proteins and only 20 % (4) peaks were
annotated otherwise. This is consistent with expectations, as histone and ribosomal
genes are typically transcribed at very high rates. Most of the top expressed genes
are located on chromosomes 1, 2, and 3. This is not unexpected, as chromosome
sizes and therefore the number of genes located within the chromosomes drop from
563 Mb (6,161 genes) for chromosome 1 to 278 Mb (3,969 genes) for chromosome 3,
and 54 Mb (1,102 genes) for chromosomes 9+10 combined [Brinkrolf et al., 2013].
Focussing on the two main promoter classes it is noticeable that 75 % (15 of 20)
of the top 20 expressed genes belong to the sharp type promoters, whereof seven
possess TATA boxes. From the eight remaining TATA-less sharp promoters, four
are equipped with DPEs and only two sharp promoters do not appear to possess
any regulatory elements. On the global scale, only 10 % of the analyzed promoters
in this study do not seem to include any of the regulatory elements common to
eukaryotic promoters. DPE appears to be one of the most commonly used mo-
tifs, especially in combination with BREd, BREu, MTE, and INR. As predicted by
previous studies, TATA and TATA-combined promoters are rather exceptions and
account for only a fraction of all promoters [Suzuki et al., 2001; Carninci et al.,
2006].

5.5 A successful combination

The innovative dual-library sequencing approach enables the effective removal of
false positive in an early stage of the pipeline, thus reducing unnecessary computa-
tions and sophisticated removal of false positive by in silico measures. The bioinfor-
matics pipeline was specifically tailored to meet the requirements of the dual-library
sequencing strategy and thus profits from the library design. Although the pipeline
requires a reference genome, results showed that even draft status genomes are
capable of delivering a wide range of information. In case of annotated genomes
with gene predictions, a precise assignment of transcription start sites to genes is
possible. However, the pipeline also reported by now unknown transcription start
sites, either within genes or in previously uncharted genome regions. The presented
pipeline’s output provides promoter information on different scopes, reaching from
nucleotide-level to genome-wide observations for known regulatory elements.
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921,977 L28-like protein 9/10* SP - X - - X X - - -

911,238 H4-like protein 1 SP - - X - - X - - -

849,029 H4-like protein 3 SP - - X X - - - - -

719,851 S24-like protein 1 SP X X - - X X X - -

635,045 H1,3-like protein 3 MU - - X - - X - - X

627,213 histone H2B type 3 SP - - - X X - - - X

490,529 S26-like protein 2 SP - - X - X - - - X

466,529 S18-like protein 1 SP - X X X - - - - -

376,649 S17-like prneotein 3 PB - X X - - - - - X

357,815 45S RNA X SP - - - - - - - - X

315,382 L3-like protein 2 SP - X - - - X - - X

286,123 glucose-regulated precursor 6 SP - X X X - X - - X

285,072 L22e containing protein 2 SP X X - - X X - - -

278,889 L13 protein 3 PB - X - - - X - - X

277,277 clusterin-like protein 1 MU - X X - - X - X X

218,538 H4-like protein 8 SP - X X - X X - - -

205,055 S16-like protein 9/10* SP - - - - - X X X X

201,381 transketolase-like protein 1 SP - - - - X X - - -

188,862 S15a-like protein 9/10* SP - - - - X X - - X

181,819 RIKEN D130020L05 cDNA 1 SP - X X - - - X - X

Table 5.3: List of highly expressed genes in the dataset, sorted by number of mapped
reads. The number of reads mapped to the TSS are shown in column 1, column
2 shows the annotation, column 3 the chromosomal location. Type and detected
regulatory elements (Figure 2.4) are outlined in columns 4 - 9. Four different peak
types are shown: SP - sharp peak, PB - single dominant peak, MU - multimodal
peaks, BR - broad peaks (see Figure 5.13 for corresponding peak shapes). Rows are
colour coded, ribosomal-like genes are shown in red, histone-related genes have

blue colour, all other gene annotations have green background. *: Due to size
restrictions, chromosome 9 and 10 were not separated prior to sequencing [Brinkrolf
et al., 2013].



CHAPTER 6

Discussion

This thesis presented two approaches focussing on different aspects of transcrip-
tion start site analyses in eukaryotic genomes. While the SATYR (Seed Assisted
Targeted assembly of Yield increasing Regions) software is a targeted assembly
approach which can be used to reconstruct the incomplete 5’ and 3’ regions of
the cDNAs, the bioinformatics pipeline used to process dual library RNA sequenc-
ing runs employs also external data sources such as BLAST to annotate verified
transcription start sites. Within this last chapter will review both approaches, sum-
marise the results and will highlight advantages as well as possible disadvantages
of both approaches.

6.1 TSS identification in the Chinese hamster by
RNA sequencing

By employing a two-library-based RNA sequencing approach and a specifically
tailored bioinformatics pipeline, in Chapter 5 light was shed on the previously
unstudied promoter regions in the Chinese hamster genome on the global scale.
For this purpose, EST and CAGE based approaches from previous studies were
replaced with a state-of-the-art RNA sequencing technique. This cost-effective
method of TSS exploration combined with a specific dual-library setup is ide-
ally suited, because the sequence information is enriched directly at potential
transcription start sites rather than distributed throughout complete transcripts.
The modular bioinformatics pipeline developed for this study automates sequence
data preprocessing, TSS discovery, TSS annotation, and TSS visualization in one
workflow. The software detected 6,547 TSSs and assigned 93.66% of these to
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known genes. Furthermore, it uncovered 2,227 transcription start sites of genes
not yet annotated for the Chinese hamster genome. This fact emphasizes the
current draft status of the Chinese hamster genome, especially when compared to
the high-quality annotation status of the mouse and the human genome.

An advantage of the approach presented here in this work is that a single
experiment can be used to provide insights into several aspects. Notwithstanding
that TSS identification is the primary goal, the CHO community can now be
supplied with promoter structures for several thousand genes, including promoter
types, regulatory elements, expression height, and exact locations of the TSSs.
Both knowledge of expression strength and regulatory elements, such as TATA
box or DPE, are also valuable parameters when searching for potential high yield
promoter constructs. Here, further experiments have to be conducted for those
constructs, eventually resulting in a list of endogenous CHO promoters able to
replace classical SV40 and similar constructs together with their unintended side
effects. In addition to a gene-centric promoter view, this work also took genome
wide promoter architecture into account. It was possible to verify motif patterns
for seven of the nine tested regulatory elements, including important motifs such
as TATA box and INR. Difficulties occurred for the three DCE subunits as well
as for BREd, possibly caused by imprecise PSSMs or a lack of activity given the
conditions used for this approach.

The work carried out within this project represents a first step in global promoter
studies within the Chinese hamster, which may contribute to a more exact and
verified annotation of transcription start sites. The combination of experimental
and bioinformatics setup has proven to deliver data with high information density
usable in several scenarios and is expected to provide even deeper insights when
performed on larger input data sets.

Outlook

The initial RNA sequencing run used to detect possible transcription start sites
was based on a pooled DNA sample, therefore representing a virtual state of the
cell with various combined parameters. It would be of great interest to employ
the developed pipeline in conjunction with RNA sequencing experiments based on
several conditions and perform a kind of differential promoter study. The results
could be used to generate lists of promoters either active in a series of conditions,
e.g. in a series of pH concentrations or only active und certain parameters. Such
a strategy would allow for the detection of possible inducible promoters which are
of great use in biotechnological productions environments.

In direct contrast to the separated approach outlined above, the pooling strategy
could be extended, thus combining as many conditions as possible into one RNA
sequencing experiment in order to increase the number of detected transcription
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start sites. This way, the annotation of the Chinese hamster reference genome in
terms of transcription start sites could further be improved.

This however, brings up a question concerning the dynamic range of the se-
quencing experiment. As discussed, RNA sequencing offers a very broad range of
detection, starting from a few reads up to several million mapped reads. While the
naive method to increase the number of detected TSSs would only require to an
increase of the sequencing output, the question remains if the additional sequencing
coverage provided is able to capture a portion of very low expressed genes or if
the sequencing coverage is accumulated within the highly expressed genes. In the
latter case, no significant increase of the overall TSS count is expected and the
number of reads generated for this work can be used as an upper bound for further
sequencing experiments.

Following bioinformatics analyses within this work, the verification of the ob-
tained results should be performed using biotechnological methods. These experi-
ments involve the cloning of several of the “Top 20 promoters” (Table 5.3) into CHO
cells and the combination of these promoters with reporter genes. This validation
process has already started and is currently performed by Anna Wippermann as
part of her Ph.D. thesis. First results show that the cloned promoters are indeed
active and produce significant amounts of transcripts. However, in comparison to
the classical CMV promoters which is used as control promoter, the initial set of
endogenous CHO promoters only reaches ≈ 10% of the CMV activity.

6.2 Targeted assembly with SATYR

SATYR was developed from scratch as a seed based, targeted assembly tool. As
such, a BWT based index structure was employed to cope with the challenges of
next generation sequencing datasets. When the development of SATYR started,
no tools with a similar focus were available and simple script based approaches
using Python or Perl cannot be scaled up in a reasonable way to handle next
generation sequencing datasets of several gigabases. In Chapter 5 it was shown
that given a draft reference genome and a single RNA sequencing experiment
it is feasible to perform in-depth promoter analyses. The massive reduction of
sequencing costs combined with easy-to-use assembly software made the process
of constructing draft genomes of even mammalian genome sizes less cost-intensive
and as such one of the use cases of SATYR, the targeted assembly of reads without
a reference genome became at least in parts obsolete. SATYR however, can still
be applied to a wide range of use cases, e.g. to discover regions surrounding a
sequence of interest in organisms without any reference genome. The use of the
Burrows-Wheeler transformation makes SATYR an ideal tool to deal with data
from next generation sequencing projects, as the produced index is both re-usable
and fast to access. Concerning its performance, SATYR is able to outclass the only
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competing software with similar set of features, Mapsembler, with respect to the
average and maximal extension length for the Escherichia coli derived test dataset.
Mapsembler is able to perform at higher similarity levels, owed to the underlying
de Bruijn-graph based de novo assembly algorithm. The main flaw of Mapsembler
is its limitation to a maximal output of 20 kb per seed, which may limit the tool’s
usefulness in situations where length of the assembled regions matters more than
high accuracy.

The evaluation of the Chinese hamster dataset revealed deficiencies for both
tools, Mapsembler and SATYR. While Mapsembler does not seem to be suited to
properly handle more than 50 gigabases of sequence data, SATYR is able to perform
a targeted assembly on the dataset. Analyses of the CHO-based assemblies provided
by SATYR showed that the relatively short length of the extensions was in nearly
all cases caused by a lack of supporting reads. As a rule of thumb, for reasonable de
novo assemblies the sequencing coverage should not be ≤ 40×. However, the CHO
dataset even before any filtering does not reach this value. As such, the retrieved
sequencing coverage of the CHO genome should be assessed as at least fragmentary
and the short extensions combined with a decrease of the quality of the assembled
sequences can be attributed to lack of coverage and the quality of the sequence
reads.

Outlook

As stated above, the observed drop in extension length and sequence similarity is
caused by deficiencies of the initial dataset. Therefore further experiments with
state of the art Illumina-based sequencing data combined with a considerably
increased coverage of 60× to 120× would represent a great opportunity to evaluate
the capabilities of SATYR under optimal circumstances.

SATYR was developed with modern multi-core server systems in mind, therefore
supporting multi-threaded execution. Benchmarks showed that while assemblies
for small to medium numbers of seeds (up to 5,000) perform well and are processed
relatively fast, assemblies with a huge number of seeds (≥ 10,000) tend to have a
negative impact on the program runtime which is independent from the size of the
BWT index and therefore the number of input reads but depends purely on the
number of seeds. Additional work with this focus could contribute to a noticeable
increase in the program runtime.

Since both datasets used for evaluation revealed minor shortcomings in terms of
sequence similarity when compared to reference sequences, additional work in this
direction could effectively position SATYR in front of Mapsembler for the majority
of use cases currently better covered by Mapsembler. Work on a replacement for
the consensus generation functionality has already started and showed promising
results for the introduced Escherichia coli dataset.
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6.3 Final remarks

Throughout this manuscript, the rapid development of biotechnology was recog-
nisable in each chapter and reaches from sequencing techniques to bioinformatic
methods of data analysis. Still, there are many unanswered questions and pro-
cesses of which we only have a basic understanding. Promoters, especially those of
eukaryotic organisms are well studied for several decades bus still today new regu-
latory elements are found, partially with severe effects on the transcription process.
The two methods for promoter identification proposed in this work contribute in
different ways to eukaryotic promoter research and may help to correct in silico
predictions, annotate new promoters or to examine previously unassembled regions
of interest related to regulatory features. As the both methods are built in a mod-
ular way, future developments within promoter research may be integrated into the
software.
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