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. Abstra_ct

We consider a model, in which two agents are engaged in two separate bargaining prob-
lems. We introduce a notion of bargaining power, which is basically given by asymmetric
versions of the Perles-Maschler bargaining solution. Thereby, we view bargaining power as
ordinary goods that can be traded in an exchange economy. With equal initial endowment
of bargaining power there exists a Walrasian equilibrium in this exchange economy. The
utility allocation in equilibrium coincides with the Perles-Maschler bargaining solution of
the aggregate bargaining problem. Equilibrium prices are given by the standard traveling
times of the two bargaining problems (see Perles-Maschler (1981)). As a version of the
Second Fundamental Welfare Theorem, we show that any efficient allocation of bargaining
power can be supported by this price system. Therefore, any asymmetric version of the
PM solution can be achieved via suitably adjusted initial endowments. '
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1 Imtroduction @~ | _

In this paper we consider a model for two agents who are involved in two separate bar-
gaining problems A and B. The term “separate” reflects the fact that agents have to
agree on two separate points. We will assume that utility scales that are used are com-
patible with each other in the sense that the total utility for agent ¢ from an agreement
is the sum of utilities he gets in A and B. It is well known that in case the bargain-
ing problems are treated separately, the sum of agreements will not be Pareto optimal.
Hence, agents should take both problems into account during negotiation. Clearly, this
setup calls for superadditive solution concepts, which in particular assures that there is no
dispute whether to treat the bargaining problems one after another or to connect them.

Perles & Maschler (1981b) introduced a superadditive bargaining solution for two per-.
son bargaining games. Thereby, they did not only discuss the symmetric version of this
solution. Application of an asymmetric bargaining solution reflects that the conflicting -
parties may not have equal bargaining power. Such an unbalancedness of power may,
for example, come from hierarchical structures, informational advantages or experience in
bargaining situations. It is undisputed that there is a correlation between the outcome of
an asymmetric bargaining solution and the effects of exerting bargaining power.

There are few references in the literature concerning superadditive solutions in the bar-
. gaining context. Definitely, one reason for this is that the superadditivity axiom is incom-
patible with the presence of more than two players. A counterexample is given in Perles
- (1982). However, Calvo & Gutherrez (1994) extend the construction of the PM solution
to n-person bargaining games, but their solution of course loses the superadditivity prop-
- erty.

We exploit this relation to define a notion of bargaining power. Our idea now is to pa-
rameterize the set of (Pareto optimal) agreements in A and B, and let then agents agree
on parameters. We identify such a parameter with a distribution of bargaining power. To
reach an agreement, we treat parameters as “ordinary goods”, initially endow agents with
exactly half of each good and let them eﬁcchange these goods as in an ordinary exchange
economy with two agents and two goods. We will show that an equilibrium allocation
always exists. This specific pair of parameters in effect determines the final solution,
which is in particular Pareto efficient (in the aggregate bargaining problem). It turns
out that equilibrium prices are determined by standard traveling times of the underlying
bargaining problems. In case that agents are equally endowed with “bargaining power .
in A and B”, the utility allocation arising in equilibrium will be the symmetric version .
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of the Perles-Maschler solution.. As a version of the Second Welfare Theorem, we show
that this equilibrium price system serves to support any efficient allocation of bargaining
power. Moreover, asymmetric versions of the Perles-Maschler solution can be established
by suitably adjusted initial endowments.

The organization of the paper is as follows: Section 2 provides the bargaining theoretic
framework and reviews the definition of the Perles-Maschler solution. In Section 3 the
basic model is introduced and discussed. Sections 4 and 5 discuss the main results of
the paper on existence and uniqueness of equilibria in the exchange economy and the
resulting utility allocations in the aggregate bargaining problem. Three examples are -
given in Section 6. Section 7 concludes. : ‘

2 Basic Definitions and Notation

An (axiomatic) bargaining problem for two persons is a pair V := (U, z) consisting of
a closed and convex set U C R? describing feasible allocations of utilities and a vector
z € U that reflects the agents’ utilities, when no agreement can be reached. Throughout
the paper we will make the following assumption: '

Assumption 1

For each bargaining problem V = (U,z) the set U is comprehensive (i.e. z € U and
-y < z implies y € U). The set of individual rational allocations U, := {u e U|u > z}
is bounded (hence compact). Moreover, each U is generated by its individual rational
utility allocations, i.e. U = compH (U;), where compH (-) denotes the comprehensive hull
operator.

Let U° dénote the class of bargaining problems that satisfy Assumption 1 and denote by
Ug the subclass in U° that consists of bargaining problems having the common disagree-
ment point z = 0. '

A mapping ¢ : US — R? is said to satisfy the symmetry axiom (SYM), if n(p(V)) =
p(m(V)), where w : R2 — R? is the function that “changes coordinates”, i.e. m(x;, z2) 1=
(22,2:)*. Such a mapping ¢ is said to be covariant with (affine) linear transforma-
tions of utility (COV), if for each (affine) linear function L : R> — R? the condition

_ THere m applied to a bargaining problem in /¢ yields a bargaining problem in 2/ with exchanged roles
of the agents. '
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w(L(V)) = L(cp(V)) holds for each V' € U°. Since the class U is not invariant under

affine transformations, we restrict transformations to be linear. But the analysis in the |
paper is valid on /° and affine transformations. ,'

A bargaining solution (b.s.) on US is a mapping ¢ : U — R? such that for each

V = (U, 0) € U the solution (V') is feasible, individually rational (IR) and Pareto opti-

mal (PO) in U. Moreover, ¢ has to satisfy SYM and COV.

~ We will ‘use the following notation in the description of a bargaining problem. Fix
V =(U,0) e Ug. Let :(V) = 7; := max {t|te’ € U} denote the maximal possible utility
for agent 7 among individual rational utility allocations.? By 8U we denote the Pareto
boundary of U,. W.l.o.g. we will also assume that 89U does not contain line segments
parallel to the axes. With such restrictions, we can describe 8U as the graph of a function
C :[0,m) — R with C(¢) := max {z € R| (¢, 2) € U}. Due to the convexity assumption
for bargaining problems the function C is continnous, strictly decreasing, concave and it
is differentiable at all but at most countably many points ¢ € [0, 7;]. For this reason, we
may use C’(-) to denote the first derivative of C, taking into account that this is almost
everywhere well-defined. '

A parametrization of V is a continuous mapping z : [a,b] — U with a,b € Ra < b
such that z(a) = (0, 72),2(b) = (71,0) and z;(-) is non-decreasing (which implies z,(-) is
non-increasing). ' '

The mapping C itself generates a canonic parametrization z¢ : [0,;] — R? with
°0) = (t,C(t). | o -

For the canonic parametrization®, we define a function f : [0,7;] — R by

) 1= [ =356) 25 do = [ V-0 ds

(where £{(-) denotes the derivative of z8(-)).

The Perles-Maschler bargaining solution u on IS (hereafter PM solution) is now
determined as follows: First, compute the real number T = T(V) that satisfies

(2) fo v —C'(s) ds = /:: V—C'(s)ds ie f(T)= I—gl)

Second, the PM solution is defined by u(V) := z¢(T(V)). In fact, u is well defined as it
does not depend on the parametrization used in (1) and (2) (for details see Rosenmiiller

2By €' we denote the i-th unit vector in R2.
3In fact, we can take any parametrization.
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(2000) or Perles & Maschler (1981b)). -

The function f is continuous and strictly increasing, because the integrand is strictly
positive except for s = 0 (here C'(0) might be zero). Denote by b(V) = b := f(n)
the largest possible value that f attains. One can show that b does not depend on the
parametrization chosen in (1). Hence, f is a bijection from the interval [0, 7;] onto the
interval [0,5]. By h := f~! we denote its inverse mapping. With the mapping & and
the ‘canonic parametrization =¥, we get a new parametrization ¢ : [0,5] — R? with
¢ :== 2% o h. In fact, the mapping & : [0,5] — [0, 71] describes the transformation of-
parameters when changing the parametrization from z to . ‘

A straightforward computation now yields

E1(s) - &a(5) = T1C(h(s)) - K (s) - £2C(R(s)) - K (s)
- C'(h(s)) - (W (5))?

-6 (7ray) =

Hence, computing the PM solution with the parametrization £, we get

/\/*&_Ezds—/m ds =5

and therefore obtain w(V) = £(b/2).

II

(3)

Let us pause for an interpretation. As Perles & Maschler (1981b) argue one can view the
PM solution as follows. There are two particles moving along the Pareto frontier. We
will associate each particle with one player. Player 1's particle starts at (0,7,) whereas
player 2’s particle starts at (73,0). The interval [0, 5] reflects time. They “move” on the
boundary according to the parametrization £, i.e. the product of coordinate velocities
equals —1. In view of this, we detect 5(V) as the time needed to traverse the whole
boundary. We therefore call b the standard traveling time. Hence, after time s € [0, ]
player 1’s particle is located at £(s), whereas player 2’s particle stands at & (b — s). At
time b/2 the two particles meet at the PM solution.

It is well known that the PM solution can be axiomatized . using the superadditivity
axiom. A bargaining solution ¢ on U is said to be superadditive (SUPA), if it satisfies
(V1) + o(V?) < (V! +V?) for any V!, V2 € US. Then the PM solutior is the only
continuous* bargaining solution that satisfies PO, IR, COV, SYM and SUPA (see Perles
& Maschler (1981b), Peters (1992) or Rosenmiiller (2000)).

- %i.e. continuous with respect to the Hausdorff topology on g -
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3 A Model for Bargaining Power Exchange

" In this section we will discuss the basic model.

Suppose there are two agents beihg engaged in two (different) bargaining problems Va =
(U4,0) and VB = (U,0) € US. An agreement consists of a pair (u4,uB) € U4 x UB
specifying a utility allocation for each of the bargaining problems separately. We assume
that utility scales are chosen in a way that does not oﬁly allow interpersonal utility com-
parison but also enables us to compute an agént’s total utility by adding his utilities in
V4 and VE. The main problem, however, is that in general an agreement is not efficient
‘w.r.t. the aggregate bargaining problem, which is given by the sum of V4 and V2,

A first (naive) approach from bargaining theory would be the following. One com-
putes the sum of the bargaining problems, and applies some bargaining solution ¢ to
V = V4 4+ V5 which automatically determines some agreement (u#,u®) that fulfills
u® + 4P = (VA + VEB). Of course, this final agreement should be compared with the
utility allocations that p(V4) and o(B), respectively. In case that ¢ is. not superaddi-
tive, then in the final agreement one of the agents could be worse off in both bargaining -
problems compared to what o dictates. |

Yet, even with the PM solution which assures superadditivity, this “procedure” to achieve
efficiency seems to be too “mechanical”. It appears to be more realistic that agents start
with an efficient focal point in each of the bargaining problems (e.g. they start with p(1V'4)
* and u(V®)) and then deviate from this by favoring one agent in situation A4 and the other
in situation B. The idea of our model is to engage a “Walrasian mechanism” to en-
sure efficiency. For this we construct an (artificial) exchange economy, in which, roughly
speaking, bargaining power is traded and initial endowments are determined by the PM
solution in A and B, respectively. | |

We keep the notation from the previous section and attach sﬁperscripts A and B to distin-
guish the quantities in the referring bargaining problems. With the standard parametriza-
tions £4,£% we could interpret the quantities »* and 57 as the time a particle needs to
move from (0,74!) to (7{*,0) (or the other way round), when the law of motion is deter-
mined by (3). Starting with the PM solution corresponds to letting each agent’s particle
move half of the standard traveling time in each problem. We will now let agents trade
fractions of these traveling times. For this, consider functions w*, w® : [0, 1] — R? given
by

wi(o) =& (a-b) =hta-bY)  wile) =&((1-0) b)) =CHR* (1 - ) -5%)
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wi(B) =7 (B-8°) =hP(8-0%)  wi(B) =& (1~ B)-b°) = CP{hP((1 - B) - b))
For example, the quantity w{(cr) denotes the utility that agent 1 obtains'in A, if he were
allowed to “move his particle” from (0, 19(V4)) according to £4 for o -b* (units of time).
Analogously, w#(a) reflects agent 2’s utility, if he were allowed to travel « - 5* units of
time. By straightforward computations, the point on U that agent 2’s particle reaches
is exactly the point, where agent 1’s particle would be after (1 — ¢) - 5* time units.

Lemma I .
The functions wf(K = A, B, i = 1,2) are strictly increasing and concave. If CK(K =
A, B) is strictly concave then so is wf(i = 1,2).

Proof:
- To start with, we assume that the functions G4, C® are twice continuously differentiable.
Then we compute for the function f# (analogously in problem B): '

. fA.(t) = /: v/ —C4'(s) ds, ) = vV —CA.’(t) =0

-—CA”(t)

A'" _
0 = 2

The first derivative of f# is thereby strictly positive for ¢ > 0. This shows that f4 is
strictly decreasing and convex. The second derivative of f4 is strictly positive, if and
only if C4” is strictly negative, hence if C4 is strictly concave. For the derivatives of
hA = (F471 we get: '

1 ' 1

(4) (h‘ )"(S) = (fA)'(h,A(S)) = /——lCA’(h(S)) >0
. v _ —F2(0A(S) - (BAY(s) _  CH'(h(s))
®) | = (FA (A2 2(v/—CH () =0

This means that h* is again strictly increasing (first derivative in -(4) may not be defined .
for h(s) = 0) and concave. In view of (5) the function h# is strictly concave, if and only
if C4 is strictly concave. The same arguments show concavity of h5. o

- Since the mappings wf* and w¥ are linear transformations of A* and k%, respectively,
(strict) concavity of wft and w¥ is also guaranteed. Let r# : [0,1] — [0,5"] be the
affine linear function defined by r(a) = (1 — a)b*. Then h* o r4’is concave and strictly
decreasing. Therefore ws = C4 o h* o r4 is (strictly) concave as a composition of two
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strictly decreasing (strictly) concave functions®. -

A re-inspection of (4) and (5) reveals that the differentiability assumptions are in fact
not needed. The first derivative of h* exists at all but at most countably many points
in [0,54]. With (strict) monotonicity of C4' we get (strict) monotonicity of %', which
implies the desired concavity property. O

Remark 1

1. It may appear slightly dubious to express the multi-faceted notion of bargaining
power by a simple parameter o € [0, 1]_. However, we do not want to characterize
bargaining power itself, but to describe the effects of “exerting bargaining power o.”.
And these effects should be described by the utility allocation resulting in a specific
bargaining problem. Hence, we can formally describe the effects of bargaining power
by a mapping P : US x [0,1] — R? that assigns to each bargaining problem V" and
each bargaining weight o (of agent 1) a utility allocation P(V, ). Generally, there
are two kinds of plausible properties that P should satisfy. First, conditions for a
fixed bargaining problem and varying weight, and second, conditions for fixed weight
and varying bargaining problems. Thereby, we think of the following conditions: For
fixed bargaining problem the mapping P (V,-) should be strictly increasing (i.e. a
gain of power should always pay off}, normalized (i.e. P (V,0) = 0, “no power
yields no utility”) and concave (the additional gain of utility from an additional
small unit of power should decrease with the amount of power the agent already
possesses). For fixed weight o we want to require the “usual” regularity conditions,
such as covariance with (affine) linear transformations. This means in effect we
require P(-, ) to be an {(asymmetric) bargaining solution. : '
Lemma, 1 shows that all these natural conditions are satisfied by our formal notion
of bargaining weight. Set for example P(V4, a) = éA(ab”) = (wi(a), wi(1 — a)).
In this spirit, we view this as a justification to speak of a parameter « to represent
(agent 1’s) bargaining power in V4. |

2. Perles & Maschler (1981b) provide an economic interpreta.tio.n of the “law of mo-
tion”, according to which the two particles move along the Pareto boundary (see
also Calvo & Gutherrez (1994)). Their idea can be described in the present context
roughly as follows. We look at a fixed distribution of weights, say (e, 1 —«) and con-
sider the ratio %ié% Linearizing first derivatives, this is roughly - ("ilf:fgzzi Eﬂ )
for small £ > 0. Thus, the numerator is agent 1’s utility gain from an extra’'e of

Ssee, e.g.,Rockafellar (1970)
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power, whereas the denominator reflects his utility loss, when having weight 1 —
and losing €. Hence the denominator describes his utility loss, when agent 2’s bar-
gaining weight were o and he gets an extra €. Then the law of motion incorporated
in eq. (3) requires such ratios of utility gain and loss to be equal, i.e.

utility gain for 1 . wi(a) wh(a) _ utility gain for 2
utility loss for 1 ~ wi(l — e) ~ wi(l—a) ~ utility loss for 2

has to be satisfied at each « € [0, 1).

'With this interpretation in mind, we will now set up an exchange economy in which such
bargaining weights can be traded. Formally, it is described by a tuple

(6) £ = 8VA’VB = ([Oa 1] X [07 1]) Ui, Ug, W, LUQ) ’

where [0, 1]* reflects the commodity space for the two “commodities” bargaining power
in A and B. Utilities are determined by adding utilities in the two bargaining problems,
which means

w(e, §) = wi(@) +uP(5)  (i=12)

Both agents are initially endowed with equal weights, i.e. wi =w, = (%,1).

Note that the initial utility allocation is

(u(1/2,1/2) , w (1/2,1/2)) = (& (4/2) +€8 (5/2) . ef (5*/2) + & (5°/2) )
= (V) +u? (VE) s ug (V) +48 (vVF) )

Thus, initial utilities are given by the sum of PM solutions in the two underlying bargain-
ing problems. '

Lemma 2 _

For each agent ¢ the utility function u; is concave and strictly increasing.

If both bargaining problems V4, VZ are described by strictly concave functions C* and
C?®, then w; is strictly concave.

Proof: | 7
With the (strict) concavity of w and wf (i = 1,2) one immediately obtains (strict)
concavity of the utility functions u; and u,, respectively. Use Lemma 1 to complete the

proof. - i
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Lemma 2 guaraniees existence of Walrasian equilibria in £ and, as all assumptions of the
First Welfare Theorem are satisfied, equilibrium allocations are Pareto efficient. Moreover,
any Walrasian equilibrium is located in the Core of £, so that neither agent will be worse
off in equilibrium, compared to their initial endowments.

Note also, that the set of Pareto efficient allocations i in £ is mapped via (ul, ug) onto the
set of Pareto efficient utility allocations in V.

4 Walrasian Equilibria and the PM Solution

Before we start equilibrium analysis in £, we will have a closer look at the connection
between standard traveling times and aggregation of bargaining problems.

The following lemma is discussed in Perles & Maschler (1981b).

Lemma 3
The function b : b{c — R that assigns to each bargaining problem its standard travehng
time is additive on L.

Moreover, we need a well known result on efficient points in aggregate bargaining prob-

lems.

Lemma 4 -
‘A utility allocation z € U is Pareto efficient (z € 8U), if and only if there exist points
24 € 9UA and 2B € OUP satisfying

z=2z% 425, NCy(2) N NCpa(z*) N NCys(28) £ 0
where NCy(z) denotes the set of supporting normal vectors at z € 8U.
For 2z = (z1,22) € 8U define T}, := compH((U — z - ) NR?) (I = 1,2). We call

(T..,0) € U§ ((TF,,0)) the truncated bargaining problem of U in direction of the first
(second) axis. :

Lemmas 3 and 4 together yield a helpful connection between traveling times and efficient

points.
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Lemma 5 : ' -
 Suppose z4 = (21, 2) € OUA and 2% = (2f,27) € OUP are such that NCya(z AN,
NCys(zP) # 0 (which guarantees 24 + 28 € 9U).

1. Forl = 1,2 we have TIIIA,z"’- +T{IB,ZB =T,

A4 B
2. Let 5%, 5% be determined by £4(54) = 24, ¢B(sP) = . Then b(TZ ) =s%+sP
holds true. ' '

24z B

- 3. Denote by s the corresponding traveling time for zA_ + 2B, ie £(s) = 24 4 2P =
. €4(s4) + ¢B(sP). Then we have s =54 + 5.

Proof: (Sketch) ,
To prove 1) use concavity for the functions C4 and C?, which in particular means de-
creasing first derivatives. Then assertions 2) and 3) are a direct consequence of 1} and
Lemma 3. : 0O

Now, let 2 = (21, 22) € 8U be Pareto efficient in V and s € [0,d] with £(s) := z. From
the construction of aggregate bargaining problems we know that 2z, can be expressed as
the value of the following maximization problem:
z =max {C*(t*) + CP(t%) |t € [0,7{'],tP € [0,7F), t*+tP =2}
- =max {C4(h*(s*)) + CB(AE(s7)) | s* € [0,54),
(7) | - Pe[0,b7), B+ hB( F)=h(s)}.
| | B 4P (6B) =610

First order conditions (in the differentiable case) require C4'(R4(s4)) = CB'(hB(sB)).
This means that necessarily we are in the situation of Lemma 5 and can therefore rewrite
(7) to S

(8) 2 = max {€f(s*) + £8(s7) | s* € [0,64], 5% € [0,85), 4+ 7 =5}

- Analogously for z; we have

(9) 2 = max{ff s*) 4§f’(sﬂ) [s% € [0,54], sB c0,8%], s*+s%=5}.

In particular, the coordinates of the PM solution (V') are obtained from (8) and (9) with
5 =b/2, ie.
(10)

w(V) = max {E{‘(s"‘) +€P(s%) 5" € [o, E“‘],'sB €[0,5%], s*+s"= g} (i=1,2).
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Roughly speaking, the PM solution is obtained by efficiently splitting a total traveling
time of 5/2 in traveling times s* and s% in A and B.

Coming back to the exchange economy Lemma 4 has the following direct implication.

Lemma 6 :

Let ((a, B8); (1—a, 1— ﬁ)) be an efficient allocation in £. Then £4(ab*) = (wi{a ) 41— a)),
which implies h*(eb*) = wit(cr) (analogously in situation B). Then the two derived util-
ity allocations have a common normal vector, i.e. NCya(§%(a ¥)NNCys (E8(855)) # 0.
Thus, in the dlfferentlable case (and 0 < « ﬁ < 1) the equation C4'(hA(abt)) =
CB'(hB(8 7)) holds.

Proof:

Suppose to the contrary that o', 5’ are such that the referring utility allocations in V4 and
V8 do not have a common normal vector, i.e. NCya(£4(ce/ b)) N NCys (€8(8 55)) = 0.
By Lemma 4 this means that the sum.£4(a’ b)) + £8(8'b) is not located in 8U, i.e. it
is not eflicient. Hence, there exists z € 8U that dominates this sum. Agé,in, by use of
Lemma 4 there exist z* € 8U4 and 2% € QU® with NCya(z*) N NCys(zF) # @ and
z#% + 28 = 2. Let o, B now be defined to satisfy £4(ad?) = z* and £8(858) = 2B. Then
C(ui(e B, ue(l—a,1=B)) = 24 +28 > A/ b)) +£B(8' D) = (w1 (¢, B), ua(1~/, 1—8))
shows that ((¢/, 8); (1 — o/,1 — '})) is not efficient and the lemma is proved. iy

Next, we address the question how equi_librium prices in & look like? For this, we look at
agent 1’s utility maximization problem. Suppose u,, u» are differentiable. Note that for
« € [0,1] we have |

BA
V(= C4(hA(a-34)))
Furthermore, we know that in an equilibrium ((c_"z, B;1—a,1— fB),p1,P2) we have that the
allocation is efficient and therefore (uy(&, 8), ua(1 — &, 1 — B)) is located in 8U.

wi(a) = BV (a - BA) - b4 =

In the differentiable case® we can achieve a result on equilibrium prices.
q )

Theorem 1 _

'Let £ be an exchange economy as in (6) with differentiable utility functions u, uz' Then
there exists a ‘Walrasian equ1hbr1um with equilibrium prlces (pl, Do) that satisfy py/De =
bA /bB .

5In the non-differentiable case the assertions have to be properly adjusted.
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Proof:
We assume differentiability of C4 and C®. For prices p; (for a unit of “power” in A) and
p2 we have the familiar first order conditions o

HA .
1) B %3:;( h) _wt(@)_ V& cA'?r;A(abA») b
B G@h) wrh) \/E—C'B'l(,hB(ﬂ-BB))) ¥
(12) ﬁ1'0+1?2‘5=§'(ﬁ1+152) |
(the last equation in (11) holds due to Lemma 6). _ 7 o

An inspection of agent 1’s demand in an equilibrium for the two commodities with equi-
librium prices (51, p;) = (b4, bB ) now yields

2

b + b8
2

n;aéx{ul(a,ﬁ) |Pra+pp= ’—’l—f—@}; max {wf(a)+wf(5) 5o+ 588 =

—max (a5 +hP(5- 1) [P 87 5 = £

54 gB

- (13) | . =max {h*“(s“‘) +hB(sB)|é**+sB =g}
=g {6 + €26 154 + 57 = £}

This means in view of (10) that given equilibrium prices as above agent 1 has to solve
exactly the same maximization problem that also generates his coordinate of the PM
-solution. With similar considerations one obtains the same result for agent 2.

This establishes the following theorem.

Theorem 2

Let £ be an exchange economy as in (6). Then there is an equilibrium .((&, 8); (1 —
-&,1 — B),p1,D0) with equilibrium prices (p1,5;) = (5%,58) and the utility allocation
in equilibrium coincides with the Perles-Maschler solution of the aggregate bargaining
problem, i.e. : ,
ui (& B) = m(V), up(l — &, 1— B) = pa(V).

Theorem 2 guarantees that the PM solution is achieved in some equilibrium with equilib-
rium prices that reflect the different traveling times. But still, there may be a large set
of equilibrium prices. This question will be addressed in the next section.
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5 Uniqueness and the Second Welfare Theorem

In this section we will again have a closer look at Pareto efficient allocations and supporting
prices. Due to concavity and monotonicity of utility functions the Second Fundamental

Welfare Theorem a,pplies to our exchange economy and therefore any efficient allocation

can be described as an equilibrium with transfers (e.g. ofinitial endowments). Lemma 6
gives a necessary condition for efficient allocations in £. In Theorem 1 this was exploited

to show that the traveling times 5% and b% in fact determine equilibrium prices. A re-

inspection of the proof reveals that traveling times also determine supporting prices for

arbitrary efficient allocations. '

Lemma 7 N :

Let V = (U, 0) € U be a bargaining problem and A = ()\1,‘)\2) € R2 be a normal vector

at U in (f,C(1)), i.e. A € NCy(t,C(t)). Let 3 be the corresponding traveling time, which .
means £(5) = (£;C(f)). Set & := 3/b the corresponding weight (for agent 1). Then

X := (~b+/A2, /A1) is a normal vector for wi(-) at &. To be precise, we assert

AECE)) = A1, CE) (t€[0,7]) implies N (&,;cul(&)) > X {(a,un(a)) (a€]0,1]).

Proof:
Fix t € [0, 71]. Since } is a supporting normal vector at (£, C'(£)) one immediately concludes
that ' '

9 RO 2 M2k (-CL0)

holds, where C{ (f) (C'x(f)) denotes the left-hand (right-hand) first derivative of C att.
Due to concavity of the function C, the left inequality is valid for all » > ¢ instead of
f, whereas the right inequality is valid for all < f. Taking appropriate integrals over
square roots in (14) yields

\/x\_z-f;\/iﬁﬁdrz[\/ﬂdr (27
f:x/)\_ldri\/)\_r/:_\/mdf (t <),

which is translated to

(15) V= < Vaalf(0) - £@) (t€[0,7]).
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Since the m.ﬁpping h is a bijection from [0, 5] onto [0, 7], inedua.lity (15) can be rewritten

Va(h(s) — h(8)) < Vo (£ s)) ~ F(h(3))) (s € [0,8)
Va(s = 3) 2> VA (h( ) (s €[0,8))
Va(ab— ab) > /A h(ab h(ab)) (ac0,1])
b/ Dol — @) > V(wi(e) — wi (@) (o € [0,1])
(—5 Vo VA (@wi(@) 2 (

( —b /A2, VA ) o wl(a  (a€0,1))
The last inequality shows that X' = (—b+/Az,/A) is in fact a supporting normal vector

for wy at @ and the lemma is proved. A O

Lemma 7 now enables us to derive supporting prices at an efficient allocation (& B); (1 -
&,1— ) in the Edgeworth box. By Lemma 6 we know that the two corresponding utility
allocations £4(a&b?) € UA and ¢B(F58) € UP have a common normal vector, say A. From
Lemma 7 we obtain the inequalities -

[(16) (=5 v, V) (@, wt(@) 2 (-5 Ve VAL (o uf() (a€ 0,1)
17) (=87 Ve, V1) (B,wP(B)) 2 (=87 vz, V1) (8w (5)) (8 € [0,1]).

Adding up (16) and (17) we get

(=8 Ve, =8 V2o, V1) (6, B,(8,B) 2 (=84 v/, <82 v/, v ) (@ B, wa(as B))
(18) (EA \/-'ga BB \/A_2) ((0{, :3) - (d’: ﬁ)) 2> '\/_1_ ('U.]_(CY, JB) - ul(a:ﬁ)) ' (a:ﬁ € [0! 1])

Inequality (18) now gix;es us the desired implication. W'henever agent 1 thinks the bundle

(e, B) is at least as good as the “efficient bundle” (&, ), then the right hand side in {18)

is not negative. This implies that the left hand side has to be non-negative and therefore
the value of (@&, B) under prices (5%, %) does not exceed the value of (a, 3).

For agent 2 we get the analogous .condit-io'n to (16) and (17) by interchanging A; and Xs.
Thus the analogous inequality to (18) reads as

19 (bA \/_11 bB \/—) ((a:ﬁ) - (&’ B)) 2 \/‘)\_2(?;2((1’ 16)_ UQ(&,.B)) (av’l@ € [0? 1])

This establishes the following theorem.
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Theorem 3 -
Let ((&,8);(1 — @1~ B)) be an efficient allocation in £. Denote by K4 (K¥) the set -
of normal vectors supporting the respective utility allocations in U4 and U?; i.e. K# :=
NCya{¢A(ab?)) (K? := NCys(£2(8b7))). Then the following statements hold:

1. The set of price vectors supporting U1 at (& E) is given by
Su(@ B) = {p= (p,p2) €R% |p = (Vmprb*, i pzb°),ne K4, p € KB}
Analogously, the set of price vectors supporting u; at (1-—&,1— B) is given by
Sunl1-8,1-F) = {p = (1, 12) € B | p = (T 5, v 7 5%) 1 € K, p € KB}

Then the set of price vectors supporting the efficient allocation ((&, 5); (1-a&, 1—5))
is given by the intersection Sy, (&, 5) NSy, (1 — &, 1 — 3).

2. In particular, the price system (54, 5%) is a supporting price system for any efficient
~ allocation in &. |

Proof: ,

In order to determine subgradients of u;, consider inequality (16) with n € K* instead of
A and (17) with p € KB 1nstead of A. Multiplying the first inequality with \/,ch and the
second with /M ylelds ‘ '

(=b* /oo, o1 m) (&, wit(@) > (- bA\/P2771:\/P1771) (Ot wil( a) - (a€]0,1])
(‘bB VTR PL VT Pl) (5a wy ( )) = ( \/ .,01,\/711 Pl) (6,w1 (5)) (Beo, 1)).

Summation now yields

(o* oz, b2 /2 1) ((03, B)— (&, B) > vmm (_’Ul(a, 8) —wu(@B)) (oB€]0,1)).

This shows the support property for u; at (@, 8). With analogous arguments and use of

(19) we get the assertion for u,.

The second part follows directly by taking p = n € K4NK?Z. Then from part 1) the vector

VPi Pz (b*,07) (and hence the vector (b4,87)) is located in Sy, (@, 8) N Sy, (1 — &,1— B).
' ' O

Corollary 1 _

Let £ be an exchange economy as in (6). ‘Assume that the functions C4 and CE are
differentiable. Let ((& B3);(1 — &1 — B)) be an efficient allocation with 0 < &, < 1.
Then (54,5%) is (up to normalization) the unique price vector supporting this allocation.
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Proof: | : -

Differentiability, efficiency and the non-boundary assumption together imply NCy 4 (23 Aab?)) =
NCys(£8(abP)) =: {gA]q € Ry, }. From Theorem 3 it-follows S,, (&, 8) = S,,(1—-&,1—

B) = {r (b*,5%)|r € R, }, which proves the corollary. : O

Corollary 2
Let £ be an exchange economy as in (6). Assume that the functions C* and CF are
strictly concave, differentiable and satisfy
(20) imCA(®) =0  lim CA(t) =0 imCF'(t) =0 lim CP(t) =

N0 _ t At ™0 ‘ t/ P
Then equilibrium prices are (up to normalization) uniquely determined by p,/ps = b4 /5.
Moreover, if C4 and CPF are strictly concave, then there exists exactly one equilibrium in
£.

Proof:

Condition (20) guarantees that the only efficient allocations, in which at least one of the

weights is zero are those with either (&, 8) = (0,0) or (&, 8) = (1,1). But neither of these

allocations can form an équilibrium Thus, we are in the situation of Corollary 1 and

therefore all efficient allocations are supported by a unique price vector. This establishes

uniqueness of equlhbrlum prices. In case that C# and C® are strictly concave functions
we know by Lemma 2 that utility functions u; and u, are strictly concave and therefore

each agent’s demand corresponderice is single-valued, which implies that in this case there

is exactly one equilibrium allocation. O

So far, we have treated the symmetric case, in the sense that initial endowments in £ were
determined by an equal endowment of bargaining weights. The second part of Theorem 3
in particular says that any efficient allocation in £ can be achieved as a Walrasian equi-
librium with equilibrium prices § = (b4, b8} after an appropriate redistribution of initial
endowments. Such a redistribution can be performed by endowing agent 1 with a fraction
n € [0, 1] of bargaining power in each bargaining problem (agent 2’s initial endowment
is then (1 — 5,1 — 7). Given an efficient allocation, this fraction can be obtained as a

specific convex combination.

Theorem 4
Let £, be an exchange economy as in (6) but with initial endowments wy = (n,7) and
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1. Let ((a,8); (1 = &1 — f)) be an efficient allocation in £. Then {(&, f); (1 — &, 1 —
BY; (8*,bP)) is an equilibrium in &, for n.:= 93{ &+ 9; B. ‘

2. For each 77 € [0, 1] there exists an equilibrium ((&, 8); (1-&, 1~5); (5%, 5%)) such that
its derived utility allocation is the asymmetric PM solution with weights (7,1 — n),
ie. (u1(&, B), ua(1 — &1~ B)) = &(nb) holds true.

Proof:

Agent 1’s budget constraint in £, with prices (b4, b%) is given by b* a+b% 8 = n (b4 +55).
Rearranging and plugging in the efficient allocation yields the desired implication, since
(b*,57) is by Theorem 3 a supporting price syétem. ‘

- The proof of the second part follows the proof of Theorems 1 and 2. Reconsider, e.g.,
equations (10) and (13) with 7 b instead of b/2. With the same arguments as used above;
this leads to the conclusion (u;(& 8),u2(1 — &,1 — B)) = &(n}), the asymmetric PM
solution with weights (1,1 — 7). ' O

Theorem 4 has an interesting interpretation. It tells us how to achieve the asymmetric
PM solution with weights (7,1 —‘n) of the aggregate bargaining problem. As with the
symmetric version, agents may trade bargaining weights with prices (%, 5%). All one has
to do is to adjust initial endowments such that agent 1 initially receives a fraction of 7 of
each commodity. ‘

Alternatively, one can as well argue that the distribution of bargaining weights among
the two agents is exogenously given. We should set initial endowments in the exchange
economy according to these ﬁxed.‘weights and let agents trade with prices (3*,58). Then
in equilibrium the pre-determined power distribution is preserved, because the resulting
utility allocation in V' exactly reflects these weights.

6 Examples

Example 1 (Non-differentiable case)
Consider the following setup:

' : <t<8 - .
C4:[0,9] — R, CA(t):= 8 - —g CB:[0,2] - R CPt)=2-t



6. Examples | : ‘ 19

The bargaining problems are defined by - -

VA = (U4,0), U*:=compH ({z€[0,9] % [0,3]| 22 < C4(z)})
VE = (UB,0), U®:=compH ({z€10,2] x[0,2]]2 < C®(z)}).

Figure 1 illustrates the two bargaining problems and the aggregated one.

£AF)

: —yALVE
V=VI+VT v +uve),

(V)

Figure 1: Bargaining Problems in Example 1

Standard traveling times are given by

b = ) —C4'(s)ds =32 EB=.2_ —CB'(3)ds = 2.
fv-e I

Straightforward computations reveal that standard parametrizations are given by

hA(-s)={ VBs , 0<s<VB £4(5) = (RA(s), CA(RA(s))

% 3+6 , V8<s<3v2

h‘B(s) = & gB(‘S) = (SJ 2- S) ’
from which we can easily compute the PM solutions of V4 and VE. We simply eval-
uate p(V4) = £4(2v2) = (6,2) and p(VE) = £8(1) = (1,1). As one immediately

checks, the sum u(V4) + x(V®) is not efficient in V. The PM solution of V is u(V) =
- (9-1v2,3+1V2) (see Figure 1). :

From standard parametrizations we obtain the weight functions w4, w®

e VB (abt) =124 , 0<a<? .'wA(a)— 6 , 0<ac<!
- ) Afq) =
1 @) +6=3a+6 , <a<l Sa4+i , Lca<l

wB(B) =28, wB(g)=28.
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which determines utilities as -
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Figure 2: Edgeworth Box for Example 1

Thus, the exchange economy & (cf. (6)) is completely defined. Figure 2 illustrates utility
functions in the corrésponding Edgeworth box. The solid lines represent agent 1’s indif-
ference curves, whereas dashed lines describe agent 2’s indifference curves. The shaded
area represents all individually rational allocations. As one can immediately see, there are
multiple equilibria in this exchange economy. If we computed the specific one with prices
(D1, P2) = (3V/2,2), we get a unique equilibrium allocation, which is (&, 3;1 — &1 — )
with & = 2 and 8 = 1 (2 — v2) (cf. Figure 2). The utility allocation in this equilibrium
is (u1(@, 8),ua(l ~— @1 — B))) = (9—12v2,3+ 1 V2), which is indeed the PM solution
of the aggregate bargaining problem V. | ]

Example 2 _
We now consider an example with differentiable functions C4 and C2, which are given
by

CA:00,2) R, CAt):=4—1%, CB:[0,5]— R, CB(t):=5-1.
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Figure 3: Bargaining Problems in Example 2

Straightforward computations reveal

s“‘(s)=(%(3s)%;4—§(as)% : £8(s) = (s:5-9),
' . wP(B) =(58;55)

urfa, B) = 2a% + 50 ug(a, f) =4—4(1— @)% +58.

Figure 4 displays utility functions in the Edgewofth box that corresponds to this problem

To compute efficient allocations of the two commodities, we have to determine solutions
of the equation

aul (a ﬁ) _- %(a,ﬂ) > %a_% = -5- ~— = 1
%t(l_a’l_ﬁ) %."ﬂl(]__a’]__ﬁ) 1'3211% 5 8
Thus the set of efﬁcieﬁt allocations is
' 1 1 1
(a:ﬁ;l_aal_ﬁ)'(ﬁ 00<a<8) (a=g)or(ﬁ=1,—8-§agl)

Note that for a price (p;, p2) that supports an efficient allocation Wlth o=z and ﬁ € (0,1)
necessarily the equation

&z (87ﬂ) 8 EA
P2 (sa ) 3'5

L]
1]

21
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T 09 . equilibrium
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. initial endowment

0.6
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"""+ PE allocations
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031 budget fine .ocns0"
02]
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Figure 4: Edgeworth Box for Example 2

has to hold true. Therefore, taking the budget constraint, which amounts to p; ¢ +ps 8 =
%(pl + p2) we get a unique equilibrium with

_r . 5 7 _ 8 .

a=g, )8_-1_6’ P1—3,. P2 = 5.
Utilities in the equilibrium are (4, £'), which is exactly the PM solution of the aggregate-
bargaining problem. o a
Example 3

We now consider an example with strictly concave functions C# and C®. The are given
by

TR
I

CA:{0,2] — R, CA{t):=4-1%, CE:[0,n3] —R, CB(t):=

Again, by the same computations as in the examples above, we get

A= S oo

H

| | 3
o= (jeahe-1691), @)= (mernerar),
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..., PM solutions

o equilibrium allocation

' VB

a2 o4 [T N.) ] 1 12 14 15 12 Zz

Figure 5: Bargaining Problems in Example 3

wi) = (20f4-4(1-0)),  wi(B)= (ln(25+ )5 - 53~ w)?)
ui(e, ) = 208 +ln(2 8+ 1) ur(af) =4~ 4(1-a)i + 7 — 2(3-26)"

Figure 6 shows indifference curves for the two agents and the unique equilibrium alloca-

#

0.5 -.~+ initial endgwment
0.8 :
01 : equilibclifnm allocation
084
0.51
04

0.3

Figure 6: Edgeworth Box for Example 2

tion. Indeed, the equilibrium are according to Theorem 1 given by the standard traveling
times. The equilibrium ((&, ;1 — & 1 — 3), 51, P2) is given by
ax~03494  B~06129, g = g h=2 .
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7 Concluding Remarks S

One may as well think of other bargaining solutions and their asymmetric versions to get
a similar construction for bargaining power. Yet, it turns out that it is the superaddi-
tivity that guarantees the desired properties that the weight functions w' should have.
For example, with the (asymmetric) Nash solution, such mappings may fail to be strictly
increasing or to be concave. As a result, preferences in the Edgeworth box may no longer
~ be convex and hence existence of an equilibrium is not guaranteed.

Somme readers may feel uncomfortable with a seemingly conflicting mixture of cardinal
and ordinal solution concepts. Indeed, as soon as we enter the Edgeworth box and apply
the Walrasian equilibrium concept, we are no longer in a cardinal context. Yet, we view
this way as a tool to come up with a certain allocation of bargaining power.- And exactly
this allocation is meant to “execute” the utilities, i.e. to determine the solution in the
cardinal context. Note that agents’ preferences in the Edgeworth box are not touched by ‘
the right transformations of the two bargaining problems. If we apply the same linear
transformation to both bargaining problems, then the agents’ utility functions will be
linearly transformed and hence preferences will be preserved.” |

The work in the paper can be extended in a couple of directions. First, the class of
bargaining problems under consideration can be extended from U§ to U° without sub-
stantial change of the results. This is as unproblematic as allowing boundaries of utility
possibility sets to contain line segments that are parallel to some axis. Finally, there is
nothing special with the fact that we consider two bargaining problems. With analogous
-arguments as used in the paper, one can consider the model with finitely many bargaining
situations.

Since there is no superadditive bargaining solution for more than two persons (see Perles
(1982)), we cannot hope for a straightforward extension of our model to the n-person
case. Whether or not the extension of the PM solution to n-person -ba.rgaining‘prob—
lems can be used to define a notion of bargaining power is an open problem. But the
lack of superadditivity may be an insurmountable obstacle for the process of finding an
agreement.

7 Application of different linear transformations to the bargaining problems should not be a]lowed,
because this would violate our assumption that an agent’s overall utility is the sum of utilities hie gets in
the two bargaining problems.
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