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Abstract 

Arabidopsis thaliana is currently the most important plant model organism and therefore 

frequently used to investigate processes, which are more complex in other plants. The 

A. thaliana Columbia-0 (Col-0) genome sequence was the first available one of all plants [1] 

and comes with a high quality annotation [2]. Despite the use of numerous A. thaliana 

accessions in research projects, no other genome sequence of this species was available 

for a long time. Pan-genomic investigations were restricted to re-sequencing studies mainly 

limited by the available sequencing capacities. This hampered the discovery of large 

structural variants and investigations of genome evolution. Substantial technological 

progress during the last years made sequencing and de novo assembly of plant genomes 

feasible - even for single research groups. Since genes are determining the phenotype of a 

plant species, they are often the focus of genome sequencing projects. One major challenge 

during the prediction of protein encoding genes is the accurate detection of splice sites. 

Although terminal dinucleotides in introns are well conserved on the genomic level with GT 

at the 5‘-end and AG at the 3‘-end, there are a few reports about some rare variations [3,4]. 

Because of the extremely high number of possible gene models when considering splice 

site combinations besides this canonical GT-AG combination, ab initio gene prediction 

cannot identify non-canonical splice site combinations. 

 

Objectives of this work were i) the generation of a high quality A. thaliana Niederzenz-1 

(Nd-1) genome sequence assembly with a corresponding annotation and comparison 

against the Col-0 reference genome sequence, ii) investigation of non-canonical splice sites 

in A. thaliana, and iii) transfer of methods and knowledge about splice sites to the 

investigation of non-canonical splice sites across annotated plant genome sequences. 
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The following points summarize key results of this work: 

High quality A. thaliana Nd-1 genome sequence and corresponding annotations 

 Based on single molecule real-time sequencing reads, 123.5 Mbp of the A. thaliana 

Nd-1 genome sequence were assembled with an N50 of 13.4 Mbp. Successful 

identification of benchmarking sequences and high mapping rates of expressed 

sequence tags indicate a high assembly quality. 

 Hint-based gene prediction was applied to consider non-canonical splice sites in the 

gene prediction process and resulted in a final set of 27,247 protein encoding genes. 

This structural annotation is considered to be high quality as more than 89% of the 

nuclear protein encoding genes in the Araport11 annotation of the Col-0 reference 

sequence were matched as reciprocal best BLAST hits. 

 Comparison of the Nd-1 and Col-0 genome sequences revealed large structural 

variants often in proximity to the centromeres. With approximately 1 Mbp in length an 

inversion in the north of chromosome 4 is currently the biggest difference seen. A 

collapsed region in the Col-0 genome sequence around At4g22214 was detected 

during validation of apparent tandem duplication differences. 

 

Investigation of non-canonical splice sites in A. thaliana 

 In total, 1,267 representative transcripts of the Araport11 annotation contain 

non-canonical splice sites. Therefore, about 5% of all nuclear protein encoding 

genes in Araport11 cannot be predicted accurately without the consideration of 

non-canonical splice sites. 

 Canonical GT-AG splice site combinations are present in 98.9% of all introns. The 

major non-canonical splice site combinations GC-AG (0.9%) and AT-AC (0.1%) 

account for the biggest proportion of non-canonical splice site combinations in 

A. thaliana. Diverse minor non-canonical splice site combinations account for the 

remaining 0.1% of all splice site combinations. 

 RNA-Seq reads and cDNA-based amplicon sequencing support minor non-canonical 

splice site combinations. Genes with validated non-canonical splice site 

combinations contain on average ten exons thus substantially exceeding the average 

of four exons per gene. 
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Investigation of non-canonical splice sites across the kingdom of plants 

 The combined frequency of all minor non-canonical splice site combinations (0.09%) 

substantially exceeds the frequency of the major non-canonical AT-AC splice site 

combinations (0.06%). 

 Minor non-canonical splice site combinations are not just artefacts, but supported by 

RNA-Seq reads in multiple plant species. Moreover, the sequences of non-canonical 

splice site combinations are non-random displaying a strong decrease in frequency 

with divergence from the canonical GT-AG splice site combination. 

 Donor splice sites displayed a stronger usage compared to acceptor splice sites 

indicating that there might be more flexibility in the splicing process at the 3‘-end of 

an intron.  
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1 Introduction 

This introduction provides the general background for the analyses, results, and discussions 

in the following sections of the thesis. First, the motivation for sequencing plant genomes 

and transcriptomes as well as the progress in these fields are described. Different 

sequencing technologies for the analyses of DNA and RNA are presented, because this 

work is focused on sequence analysis of these molecule types. Descriptions of bioinformatic 

concepts and tools for the processing of the resulting data sets follow. Current challenges 

like functional annotation and diversity investigations by comprehensive re-sequencing 

projects are pointed out. The model organism Arabidopsis thaliana is introduced by 

describing selected aspects of previous work in genetics and genomics. Finally, an 

introduction into splicing and the importance of splice sites closes this section. 

 

1.1 Plant genome and transcriptome sequencing 

Besides the beautiful appearance of many flowers, plants are important due to various 

ecosystem services like CO2 fixation and protection of soil against erosion. Especially the 

contribution to the human nutrition is economically relevant. Understanding the genetic and 

genomic basis of plant biology is the first step towards the improvement of traits in breeding 

projects. 

 

1.1.1 Motivation and application 

Genome and transcriptome sequences are powerful resources for the plant research 

community, as comprehensive insights into species can be inferred. Sequence-based 

approaches range from oligonucleotide design [5] to RNA-Seq experiments [6–9]. 

Genome-wide investigations of gene families [10–12] are also facilitated by available 

genome and transcriptome sequences. Comparative genomics enables the identification of 

structural variants (SVs) [13–15], the assessment of diversity in a population [16–18], the 

identification of genomic regions under selection [19,20], and the investigation of genome 

evolution [21–25]. Genome sequences are crucial for the efficient development of molecular 

markers e.g. for the detection of quantitative trait loci (QTL) in research [26–28], 

marker-assisted selection in crop breeding [29–34], or even to enable genetic engineering of 
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plants [35,36]. Advanced breeding approaches [37–39] often rely on availability of genome 

sequences and suitable annotations. Even partial and fragmented genome or transcriptome 

sequences can be valuable when enabling the development of molecular markers to 

increase the resolution of genetic mapping approaches [40]. Making genomic resources 

available can help to establish new crop species [34,41,42]. Although these orphan crop 

species [43] are of minor economic and scientific interest, recent advances in sequencing 

technologies enable the cost-effective generation of genome or transcriptome sequences. 

Pan-genomic resources, i.e. multiple genome sequences of the same species, can facilitate 

the conservation of genetic diversity and provide economic benefits when used to advice 

crosses between landraces and wild relatives [44–47]. To harness the full potential of 

sequences, a structural and functional annotation is required. As the annotation process of 

new genome sequences is often based on comprehensive and reliable annotations of other 

plant genome sequences [48,49], the generation of high quality annotations for several 

model plant species is of high importance. In summary, these examples show the relevance 

of genome and transcriptome sequencing projects in facilitating basic research and crop 

improvements. 

Recent publications provided numbers of sequenced plant genomes [50–52], but these are 

quickly outdated due to dropping sequencing costs (Fig.1). Rapid developments in 

sequencing technologies enable almost every research group to run own sequencing 

projects [51,53,54]. Therefore, it is no longer feasible to provide exact information about the 

number of sequenced plant genomes. Recent announcements by leading sequencing 

centres indicate that genomic resources for all living species might be available within a 

couple of years. 
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Fig.1: Sequencing costs and number of sequenced plant species. 

This development of per Mbp sequencing costs from 2001 to 2017 is based on data provided by the 

National Human Genome Research Institute [55]. Basis of the presented values are the production 

costs for sequence generation without any downstream processing. With substantially dropping 

sequencing costs, the number of sequenced plant species increases. Since not all generated genome 

sequences are published and only the first complete sequence per species is counted, the presented 

values are lower bounds [56]. 

 

1.1.2 Generations of sequencing technologies and strategies 

Sanger sequencing [57,58] and the method developed by Maxam and Gilbert [59] are 

usually considered as the first generation of sequencing technologies [60]. Although the 

chain-termination method developed by Sanger is still frequently applied e.g. for the 

validation of constructed plasmids or the investigation of amplicons [61–66], methods of the 

first generation are omitted here for brevity. Unfortunately, sequencing technologies of the 

following generations are inconsistently classified in the literature [60,67–74]. Throughout 

this work, Roche/454 pyrosequencing, Solexa/Illumina® sequencing-by-synthesis, and Ion 

Torrent sequencing are considered as second generation. Ion Torrent will be considered as 
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second generation due to the short read lengths which are closer to Roche/454 reads than 

to long reads generated by Oxford Nanopore Technologies (ONT). Although the concept of 

nanopore sequencing goes back to the 1980s [75], the two long read sequencing 

technologies provided by Pacific Biosciences (PacBio®) and ONT will be described as third 

generation. Despite timely overlap between the technologies of all generations [60,76], the 

third generation is currently dominating genome sequencing approaches due to extremely 

high contiguity achieved in long read assemblies. Nevertheless, second generation 

technologies are still deployed in applications where cost-efficient generation of numerous 

tags is more important than the length of reads e.g. RNA-Seq [77]. 

 

1.1.2.1 Second generation sequencing technologies 

Sequencing technologies of the second generation were dominated by Roche/454 and 

Solexa/Illumina technologies [78–82]. Due to the origin after the first generation of 

sequencing technologies, second generation sequencing technologies are frequently 

referred to as ‗next generation sequencing‘ (NGS). 

Roche/454 pyrosequencing is based on the release of pyrophosphate upon integration of a 

nucleotide into the synthesized DNA strand which is detected based on a chain of enzymatic 

reactions ultimately resulting in luminescence emitted from a firefly luciferase [60,78,82]. 

Reactions are taking place in extremely small wells containing only copies of one template 

molecule, which was previously amplified via so called emulsion PCR inside extremely small 

water droplets embedded in oil. The sequencing process involves i) the successive 

streaming of nucleotides in a predetermined order (TCGA), ii) the continuous measuring of 

fluorescence as result of a nucleotide incorporation, and iii) extensive washing steps to keep 

the background signal low [60,78]. Although luminescence signal intensity corresponds to 

the number of integrated nucleotides, it reaches saturation in homopolymers leading to 

length errors [83]. Despite this drawback, the read length of Roche/454 sequencing 

substantially exceeded the achievements of all other second generation sequencing 

technologies at that time. 

The Ion Torrent sequencing is based on semiconductor technology that allows the detection 

of protons when nucleotides are incorporated into a DNA strand [84]. After attachment of 

templates to a bead, amplification is performed similar to Roche/454, and following 
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sequencing is performed with one bead per well in a microtiter plate [72]. Nucleotides are 

supplied successively with washing steps in between to keep the noise low. Like Roche/454, 

the Ion Torrent technology is likely to produce sequencing errors in homopolymers [71], 

because the pH signal is only roughly proportional to the number of integrated nucleotides 

[72]. In addition, it is not suitable for sequencing AT-rich regions [71], which are frequent in 

plant genomes. The biggest advantages are the extremely short run time of only a few hours 

and the lack of optics, which facilitate sequencing outside the lab under less controlled 

conditions [72]. 

The Solexa/Illumina technology is sequencing by cycle reversible termination on a surface 

(Fig.2) [60,82]. Libraries are generated by adding adapters to DNA fragments and amplifying 

these in an initial PCR step. Next, these adapters bind to complementary sequences on the 

surface of dedicated flow cells. Bridge amplification on the flow cell is used to generate 

clusters of molecule copies which amplify the signal during the following sequencing steps. 

Sequencing is performed by supplying nucleotides marked with four specific fluorescence 

dyes which block the 3‘-OH thus permitting only the incorporation of a single nucleotide per 

cycle [85,86]. After fluorescence readout, the block is removed to enable the integration of 

the next nucleotide [79]. The incorporation of a single nucleotide in each cycle results in a 

clear fluorescence signal per cluster and finally equal read lengths from all clusters. Despite 

this elegant design and generally low error rates, several systematic errors were identified 

[87]. Systematic errors include an increased error probability after ‗G‘ [88] especially 

following the ‗GGC‘ motif [71,89] and underrepresentation of regions with a very low 

[88,90,91] or very high GC content [90,91]. 
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Fig.2: Illumina sequencing. 

Simplified illustration of an illumina paired-end sequencing process of a dual-indexed library. Several 

steps including washing, strand removals, and the synthesis of a complementary strand prior to the 

second sequencing process are not shown. Although multiple copies of identical molecules are 

sequenced in parallel, these steps are only displayed for one template molecule. 

 

Illumina sequencing is still applied in genome sequencing projects as it is cost-efficient and 

generates reads with extremely low error rates. Sequencing of DNA fragments from both 

ends (paired-end) is a frequently applied mode. The distance between reads is determined 

by the size of the DNA fragment enclosed by adapters at both ends, i.e. the insert size. Mate 

pair sequencing is a more sophisticated protocol developed to generate read pairs with even 

larger insert sizes [60]. Several kbp long DNA fragments are tagged at the ends and 
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circularized. Next, the circular DNA molecule is fragmented and fragments with joints of the 

original ends are enriched. This enriched fraction is subjected to paired-end sequencing. 

The resulting reads are orientated in opposite directions, but can be converted into 

paired-end read pairs through bioinformatic processing [92]. A methods for the investigation 

of the three-dimensional DNA structure i.e. Hi-C [93] involves the generation of read pairs 

with even larger distances although the distance of reads in a pair is only roughly known 

[94,95]. Hi-C relies on the assumption that DNA parts in close proximity in space are also 

close together on the same DNA strand [93]. Based on this assumption, chromatin is 

isolated, chimera DNA molecules are generated from neighbouring molecules, and cleaved 

by restriction enzymes. The resulting chimeric DNA fragments are subjected to paired-end 

sequencing. 

PCR can be used to selectively amplify fragments and allows very small amounts of DNA as 

starting material for sequencing processes, but it is biased in several ways [91,96–98]. To 

minimize the biases introduced by PCR amplification during sequencing library preparation, 

PCR-free protocols were developed [98]. The bridge amplification of the flow cell is 

enriching fragments with successful ligated adapters at both ends thus avoiding an 

additional PCR step in the classic library preparation protocol [98]. 

 

1.1.2.2 Whole genome shotgun sequencing 

With the rise of high-throughput second generation sequencing technologies [60,78,82] 

sequencing costs dropped extremely fast [51,99]. Multiplexing, i.e. combined sequencing of 

multiple samples in one sequencing run, was important for the cost reduction [100]. Tags 

are derived from short oligonucleotides with a distinct sequence. Specific oligonucleotides 

are added to DNA fragments of each sample during the sequencing library construction. 

These short oligonucleotides allow the binning of reads after the sequencing process thus 

reads can be assigned to a sample. As a result of low costs and high-throughput 

sequencing, whole genome shotgun (WGS) sequencing became the dominating strategy in 

genome sequencing projects. It replaced the previously applied hierarchical sequencing 

approach, which involved the cloning of genomic fragments into vectors like bacterial 

artificial chromosomes (BACs). In contrast, WGS relies on random fragmentation of multiple 

genome copies and following sequencing of these fragments in parallel. However, the 

quality of assemblies based on WGS reads was substantially inferior to the first reference 
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genome sequences which were generated based on isolated Sanger sequencing of cloned 

genome fragments [101,102]. Depending on genome size, genome complexity, and 

available sequencing data WGS assemblies resulted in thousands [53], tens of thousands 

[21,103], or even hundreds of thousands of sequences [104]. To address different WGS 

assembly issues, there are approaches revisiting hierarchical BAC-based sequencing in 

combination with modern Illumina sequencing technologies to assemble highly repetitive 

genomes e.g. Tritium aestivum, Saccharum spp., and others [105–108]. Although the 

number of contigs is reduced in these approaches, the number of assembled sequences per 

genome remains high. 

A high number of short contigs in an assembly comes with a high risk of including 

sequences derived from DNA contamination [102]. The presence of bacteria and fungi on 

plant leaves makes it almost impossible to extract clean plant DNA. As a result, numerous 

approaches were developed or adapted to address this issue bioinformatically. Examples 

are acdc [109], ProDeGe [110], Kraken [111], and various customized approaches based on 

sequence alignments [21,53,112,113]. Other major challenges for short read assemblers 

were repeats if the repeat length exceeds the length of reads or even the length of 

sequenced fragments [101,114]. For the same reason, gene duplications are likely to 

collapse in WGS assemblies [102]. This issue was avoided in first genome sequencing 

projects by cloning genome fragments and then resolving the sequence of only one 

fragment at a time.  

 

1.1.2.3 Long reads of the third generation 

The most important long read sequencing technologies are single molecule real-time 

(SMRT) sequencing provided by PacBio [60,76] and nanopore sequencing provided by ONT 

[115]. These long read technologies started the third generation of sequencing technologies 

and are currently dominating it. 

SMRT sequencing relies on monitoring a polymerase fixed to the bottom of a zero-mode 

waveguide detector in real-time while this polymerase is integrating dye-labelled nucleotides 

into the newly synthesized DNA strand (Fig.3) [60,76,116,117]. Due to the small volume of 

each well the residence time of a fluorescent nucleotide is only sufficient for detection of an 

emitted light pulse if this nucleotide is incorporated [60]. Stochastically distributed insertions 
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and deletions are the most frequent error type of this sequencing technology with an overall 

error rate of about 20% [60,118,119]. Reports of average read lengths in publications 

reached 20 kbp, while longest reads can even exceed 60 kbp [120,121]. PacBio claims that 

top read lengths of over 250 kbp can be achieved if the DNA quality is sufficient. 

 

 

Fig.3: Single molecule real-time sequencing. 

A DNA polymerase is fixed in a zero-mode waveguide (a). Only if a fluorescently labelled nucleotide 

is incorporated, the residence time in this well is sufficient to detect a signal. Even the incorporation 

of a single nucleotide results in detectable signals (b) which can be used to identify the respective 

base. Illustration concept is based on [76]. 

 

ONT provides an alternative technology for the generation of even longer reads [75,122]. 

Top lengths of sequenced DNA molecules are currently above 2 Mbp [123] thus the read 

length is mainly limited by the quality of the input molecules. Single molecules move through 

a pore in a membrane based on the electric charge of these molecules and cause changes 

in the ion flow through this pore by partly blocking it [124–127]. These changes in the ion 

flow are measured as current over the membrane. Current changes are specific to certain 

parts of the DNA [128,129], RNA [130,131], or even peptide [132] molecule being located in 

the pore at a certain time. It is currently assumed that six or even more nucleotides are 

affecting the signal at a given time resulting in a high number of k-mers which need to be 

distinguished [126,129,133]. This system is not restricted to determining the nucleotide 

sequence, but provides the opportunity to identify various modifications of nucleotides [134–

138]. At the same time, these modifications pose an issue to the accurate sequence 

detection due to effects on the observed signal [133]. Controlled movement of a DNA strand 
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at a constant speed through the nanopore is one of the biggest challenges [124,133]. Since 

homopolymers result in the same signal for several consecutive k-mers, measuring the 

duration of this signal is currently the best but still an erroneous approach to infer the 

homopolymer length [133,139–142]. Base callers like DeepNano [143], BasecRAWller [136], 

and Albacore (ONT) include neural networks to take information from adjacent k-mers into 

account [133]. It is possible to sequence just one strand (1D) or to sequence the forward 

and the reverse strand (2D or 1D2) [133,142,144–146]. Combining the sequencing results of 

both strands results in slightly more accurate reads [142,146]. Although the second 

generation of sequencing technologies enabled the generation of small genome sequences 

by single labs [51,53], especially the availability and portability of nanopore sequencing is 

currently revolutionising and democratising the field of genome assembly even further 

[122,147–151]. 

 

1.1.3 RNA-Seq 

RNA-Seq, the massively parallel sequencing of cDNAs, is technically very similar to 

genomic sequencing workflows once the RNA of interest is reverse transcribed into cDNA. 

This technology revolutionized the field of gene expression analysis [77,152,153] and almost 

completely replaced array technologies [154,155]. Alternative splice variants of transcripts 

can be detected and transcript abundance can be quantified without prior knowledge about 

the sequence [2,77,156]. On the one hand, there is no longer an upper limit to the dynamic 

range of gene expression analyses, as the expression signal is inferred from counted reads 

[77,153]. On the other hand, lowly expressed transcripts can be detected as theoretically a 

single molecule would be sufficient to generate a countable read [157]. This comes with the 

additional benefit of a reduced amount of required sample material [77,157]. Quantification 

of transcriptional activity per gene is often performed by aligning reads to a genome or 

transcriptome sequence assembly and counting the number of reads assigned to each 

annotated gene or transcript, respectively. The alignment of RNA-Seq reads to an 

eukaryotic genome sequence requires dedicated split-read mappers like STAR [158] or 

HiSat2 [159] to account for the intron-exon structures of most genes. Since a high quality 

genome sequence is not always available, RNA-Seq is frequently applied to generate data 

for de novo transcriptome assemblies [160]. Transcriptome assemblies were used to 

discover candidate genes underlying a certain trait [113,161,162], to support gene prediction 
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on a genome assembly [163,164], or to generate a reference sequence for transcript 

quantification [113,165]. 

Although RNA-Seq can be deployed to analyse all kinds of RNAs [157], many studies focus 

on mRNAs as these sequences encode proteins. Extreme differences in the abundance of 

different RNA types require isolation of the type of interest prior to sequencing. Enrichment 

of eukaryotic mRNAs is achieved via immobilized oligo-dT [166], oligo-dT priming during 

cDNA synthesis [167], selective hexamer priming during cDNA synthesis [168,169], or 

through depletion of rRNAs [170,171]. Oligonucleotides attached to magnetic beads can 

hybridize to rRNAs and enable controlled pulldown of this RNA type [170]. Since average 

mRNA lengths of many plant species are substantially exceeding 1000 nucleotides [7], 

resulting cDNAs are usually too long for direct sequencing. Therefore, an enzymatic or 

physical fragmentation step is needed [77]. While the fragmentation of cDNAs results in an 

enrichment of 3‘-end fragments [77,152], the fragmentation of RNA would cause a depletion 

of 3‘-end fragments [77,153]. Other applications focus on the analysis of small or non-coding 

RNAs [77,172]. Sophisticated protocols were developed to enable the strand-specific 

investigation of RNA to enrich the sequence with additional information about directionality 

of a molecule [173,174]. This information is important when quantifying the transcriptional 

activity of a gene. Observing sequences of mRNAs would indicate transcriptional activity, 

while sequences from complementary non-coding RNAs could indicate a repression of the 

gene of interest. 

 

1.2 Genome assembly 

Only fragments of a complete genome are represented in one read. Therefore, sophisticated 

software is required to reconstruct the genome sequence based on overlapping short reads 

[81,175,176]. 

 

1.2.1 Assembly of reads into contigs and scaffolds 

Assembly results are usually continuous sequences (contigs) and scaffolds, which are 

composed of contigs separated by gaps of unknown sequence but estimated size. To avoid 

the inclusion of any artificial sequences like cloning vectors or adapters and to remove low 
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quality reads, trimming of sequencing reads e.g. by trimmomatic [50] prior to the assembly is 

needed. 

Assemblers evolved with the development of sequencing technologies. Assemblers for 

Sanger reads e.g. TIGR Assembler [177], Celera Assembler [178,179], CAP3 [180], and 

ARACHNE [181] expected long sequencing reads with a low error rate and a low 

sequencing depth [83,182]. 

Assemblers for second generation reads were mostly based on two general assembly 

paradigms: De Bruijn graph (DBG) [183–185] or overlap-layout consensus (OLC) [186] 

which have been nicely reviewed and explained before [160,187,188]. While the 

computation of overlaps between all reads in the OLC approach is a huge computational 

burden, it resolves many repeats [189]. However, the superior computational efficiency of 

DBG was the main reason for the application of DBGs in projects with large amounts of high 

quality short reads as generated by Illumina sequencers. 

Frequently used DBG assemblers are Velvet [190], ALLPATHS-LG [191], SOAPdenovo2 

[192], CLC [193], and SPAdes [194]. Platanus [114] is another example and was specifically 

developed for the assembly of highly heterozygous plant genome sequences. Newbler [78] 

is probably the most famous OLC assembler and was initially developed to assemble 

Roche/454 reads. While CABOG [83] is another OLC assembler, MaSuRCA [189] is 

combining OLC and DBG. However, there are also assemblers relying on different concepts 

e.g. the string graph assembler SGA [195]. 

Since it is often impossible to predict the best assembler for a given data set [196], it 

became best practice to empirically identify the best assembler and the best parameters by 

optimizing general assembly statistics [182]. The most important parameter for many 

assemblers is the k-mer size which depends on various factors e.g. the sequencing quality, 

the amount of reads, the read length, and the repeat content of the genome [197,198]. 

Some assemblers like Velvet and Platanus already come with support for the empirical 

identification of optimal assembly parameters [114,190]. 

The contiguity of WGS assemblies based on reads from second generation sequencing 

technologies can be improved through scaffolding. Tools like SSPACE [199] and SGA [195] 

utilize the information about approximate distances of paired-reads or mate pair reads to 

connect contigs and to estimate the size of gaps within scaffolds. After generation of 
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scaffolds, gaps in the sequence can be filled using dedicated tools like GapFiller [200] or 

Sealer [201]. Although these gap sequences were not assembled in the first place, there 

might be reads which are actually covering these regions. 

Long reads of the third sequencing generation pose computational challenges as assembly 

algorithms need to be optimized or even developed to take the characteristics of these new 

data types into accounts [73,119,202–205]. The major challenge of high error rates in long 

sequencing reads can be addressed by generating a high coverage [202]. As the distribution 

of sequencing errors is almost perfectly random within SMRT sequencing reads, an efficient 

detection and correction is feasible if sufficient coverage is given [202,205]. Multiple reads 

covering the same position of a genome of interest can be harnessed to infer the correct 

sequence at any position based on the sequence in the majority of all reads at and around 

this position. Correcting errors in ONT reads is more difficult and might not be accomplished 

by increasing the coverage as a component of the error is systematic [145,206]. In general, 

ONT reads have more deletions than insertions [207]. Even after application of various error 

correction tools [208–210], the reads possess a higher error rate than reads generated by 

sequencing technologies of the second generation. Despite these challenges, long reads of 

the third generation revolutionized the genome assembly field by enabling 

chromosome-level assemblies [54,126,203,211–213]. In respect to read properties, these 

new technologies display some similarity to Sanger sequencing. Therefore, it is not 

surprising that some of the new assemblers are in fact inspired by or even represent 

modifications of first generation assemblers [204]. Canu is based on the Celera Assembler 

[178,179] thus using an improved OLC approach [204]. It was reported before to be very 

efficient in the telomere assembly [214]. FALCON and FALCON-Unzip were developed to 

assemble haplophases of heterozygous species correctly [215]. Flye resolves repeats by 

selecting an arbitrary path through an A-Bruijn graph and corrects the resulting error-prone 

contigs in following steps [216]. Miniasm assembles contigs based on uncorrected reads in 

a time-efficient way [217]. Since long read processing is an extremely fast expanding field, 

there are many more tools under development. As both long read technologies display high 

error rates of up to 15% [208,209], polishing of generated assemblies can improve the 

sequence substantially [54,133,213]. Assembly polishing tools like Nanopolish for ONT read 

assemblies [203] and Arrow for SMRT sequencing read assemblies [202] utilize the random 

distribution of sequencing errors to correct an assembly by inspecting all mapped raw reads 

around a given position. Pilon [218] is not restricted to one long read technology and allows 
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the polishing of assemblies e.g. based on mappings of Illumina reads [54,142,213]. Since an 

accuracy of 99.9% with insertions/deletions (InDels) being the main error type is not 

sufficient for gene prediction, polishing of raw assemblies with uniquely mapped Illumina 

reads is crucial [54,127,144,219,220]. 

 

1.2.2 Linkage information for high-level assembly scaffolding 

After generation of contigs or scaffolds, anchoring of these sequences to chromosomes can 

be achieved through the incorporation of genetic markers [221,222] or by sequencing of 

fosmid, cosmid, yeast artificial chromosome, or BAC ends which provide long range linkage 

information [223]. Mapping of the read pairs from Hi-C data sets enables high level 

scaffolding [94,127,205]. Alternatively, BioNano Genomics and OptGen provide optical 

mapping information which can be incorporated into the scaffolding process [127,224,225]. 

Patterns of enzymatic restriction sites are investigated by electrophoretic analyses of 

fluorescently labelled DNA molecules which are up to several hundred kbp long [226,227]. 

The resulting patterns can be assembled into genome-wide maps which provide scaffolding 

information [121,228,229]. Many recent high quality assemblies of complex genomes rely on 

combinations of long sequencing reads and genetic linkage information derived from optical 

mappings [127,229,230]. 

A genetic map based on molecular markers can be used to achieve scaffolding on a very 

high level. The recombination between genetic markers is measured in centiMorgans (cM), 

the percentage of observed recombinations. There is a variety of marker types e.g. based 

on restriction fragment length polymorphisms [231], amplified fragment length 

polymorphisms [232–235], and simple sequence repeats [236]. Although genetic and 

physical maps are collinear, there are recombination hot spots and cold spots [237,238] 

which prevent direct correlation of genetic and physical distances. Nevertheless, genetic 

linkage supports the placement of assembled sequences resulting in high contiguity 

[212,213,219,239]. Genotyping-by-sequencing was recently applied for anchoring of 

assembled sequences [112]. 
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1.2.3 Genome assembly validation 

A huge variety of different sequencing technologies [60,72,81] and different assemblers 

requires careful assessment of the resulting assemblies to identify the best one 

[182,196,240–242]. Several competitions e.g. assemblathons were hold to characterize the 

performance of numerous assemblers on different data sets [182,196,242]. The results 

provide good hints towards suitable assemblers for a given sequencing data type. However, 

this assessment was limited to second generation sequencing technologies [182,242]. The 

increased pace of sequencing technology development and the corresponding development 

of novel assembly software makes it difficult to perform a benchmarking study which would 

be valid for a substantial amount of time. 

In general, assembly quality assessment can harness the power of many orthogonal 

methods e.g. comparison of assembly statistics like N50 [242–244], inspection of read 

coverage depth after mapping reads against the assembly [245,246], assessment of mate 

distances in a mapping [246,247], and comparison against an existing reference sequence 

[53,191,241] or previously sequenced fragments of the same species [53,248]. There are 

trade-offs between certain properties e.g. high contiguity and correctness of an assembly 

[223,249–251]. While high contiguity, frequently measured as N50 [244], is generally 

desired to gain insights into the order and position of genetic features in a genome, the 

correctness of an assembly needs to be ensured. Mapping sequencing reads back to the 

final assembly is a very powerful approach to identify critical regions based on suspicious 

coverage values and positions of paired-end reads [247,252]. Collapses of multi copy genes 

or other repeats are indicated by substantially increased coverage values and broken pairs 

[247,252]. Miss-joints of contigs would lead to very low coverage values and a lack of 

spanning read pairs [247,252]. The completeness of assemblies can be assessed by 

looking for expected sequences like expressed sequence tags (ESTs) [53,253] or through 

comparison against a reference sequence [254]. In addition, genome size predictions based 

on sequencing reads [21] or biochemical assays like flow cytometry [255] can be compared 

against the assembly size. Tools like JellyFish2 [256], GenomeScope [257], and findGSE 

[258] estimate the genome size based on k-mer distributions in the sequencing reads. Since 

high error rates would bias such a prediction, the application of these tools is restricted to 

highly accurate reads of second generation sequencing technologies. 

Since assembly assessment and validation is challenging and labour-intensive, dedicated 

tools were developed to support this task. QUAST [259] eases the comparison of different 
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assemblies by calculation of statistics and optional comparison against a reference 

sequence. REAPR [247] inspects the read coverage depth and the distances of mates in a 

mapping of paired-end or mate pair reads. NucDiff [260] allows efficient comparison against 

an existing reference by utilizing NUCmer [261] to align genome sequences. Benchmarking 

Universal Single-Copy Orthologs (BUSCO) [262] can check an assembly for the presence of 

highly conserved genes which should be present in all genomes within a certain taxonomic 

group. Specific reference sequence sets for numerous taxonomic groups were generated to 

allow an optimal assessment [263]. Other approaches assess assembly quality based on 

the frequency of InDels in aligned regions where these differences are expected with a 

specific frequency [240]. 

 

1.3 Genome sequence annotation 

After the generation of a high quality genome sequence assembly a structural annotation is 

needed to facilitate usage of this genomic resource. The prediction of protein encoding 

genes, RNA genes, transposable elements (TEs), and other repeats is a major challenge 

[187,264–267]. In general, gene prediction approaches can harness three types of 

information: i) sequence properties [268], ii) transcriptomic information e.g. RNA-Seq or 

ESTs [269,270], and iii) homology to other species [48,49,271]. The first information type is 

used in ab initio approaches, while the two latter approaches are hint-based [271]. 

 

1.3.1 Prediction of gene structures 

Complex intron-exon structures in plant genomes prevent a simple search for protein 

encoding sequences [265,272]. Instead (generalized) hidden Markov models are frequently 

applied to account for species-specific gene model properties like intron size and codon 

usage [268,272–274] hence gene prediction can be performed ab initio without the 

incorporation of any hints [272]. Another approach is the transfer of information from closely 

related species through identification of sequence similarity thus an annotation is based on 

homology [48,49]. Frequently applied gene prediction tools are AUGUSTUS [272,275], 

various GeneMark derivatives [276–279], MAKER and MAKER2 [265,280], SNAP [281], 

Gramene [282], Gnomon [283], BRAKER [269], and GeMoMa [48,49]. Substantial 
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improvements of the gene prediction are possible if RNA-Seq reads, ESTs, or sequences 

from closely related species [62,265,280,284,285] can be harnessed for the generation of 

hints. These sequences are mapped to the genome assembly to identify the positions of 

exons, introns, and especially the borders between exons and introns. Alignments of 

RNA-Seq reads against an assembly require the application of split-read aligners like STAR 

[158,286]. General alignment tools like BLAST [287] and BLAT [288] or dedicated tools like 

exonerate [289] can be applied to generate hints based on ESTs or sequences from related 

species. Annotations of the same sequence by multiple tools can be compared and even 

merged [290–292]. Hints from RNA-Seq reads can be used for the gene prediction process 

and additionally allow the selection of a final gene set based on transcription evidence [164]. 

While the ab initio prediction of protein encoding sequences is challenging, the prediction of 

features like UTRs or promoter sequences is even more difficult without hints [62,284,293]. 

 

1.3.2 Annotation of transposable elements 

Annotation and classification of TEs is often omitted or poorly performed when annotating a 

genome sequence [294–296]. Since repeats and TEs account for substantial proportions of 

many genome sequences [23,297–299] and sometimes even have functional roles [299–

307], both genomic feature types should not be ignored during the annotation process 

[295,308]. Numerous tools like RepeatScout [309] and RepeatMasker [310] are dedicated to 

the identification and annotation of repeat sequences and TEs [296,308]. Several tools were 

even combined into pipelines to harness individual strengths and compensate weaknesses 

[311], because no single tool was sufficient on its own [312,313]. Although there is little gain 

in masking repeats prior to the prediction of protein encoding genes [269], RepeatMasker is 

frequently deployed for this task [308]. Since the identification of TEs is challenging [296], 

well annotated TE sets of closely related species could be used to transfer the annotation 

and to flag predicted protein encoding genes as TE genes [213]. Due to the importance of 

TE annotation and the number of available tools and approaches, there is a huge need for a 

comparative benchmarking study to assess the performance of all tools on the same data 

set [296,308]. 
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1.4 Re-sequencing projects and the diversity within species 

High-throughput sequencing technologies enabled re-sequencing projects to investigate the 

genetic and genomic diversity within plant species (Fig.4) [40]. Although differences 

between accessions of the same species might be small, these differences can still cause 

variations in the outcomes of experiments [314]. A high number of accessions is available 

for Arabidopsis thaliana [53,254,315–327]. Some accessions were genotyped with focus on 

single nucleotide polymorphisms (SNPs) [322,328,329] or already subjected to Illumina 

sequencing [319–321,323,325,330]. In addition, varieties of various crop species were 

studied in similar re-sequencing projects [45,331–335]. Reads are mapped to a reference 

sequence using dedicated tools like Burrows-Wheeler Aligner (BWA)-MEM [336] or bowtie2 

[337]. Large panels allow joint genotyping as provided by GATK [338,339]. Low confidence 

variants in multiple samples support each other and thus enhance the sensitivity of the 

variant calling process. As a result, sequence variants are identified with high reliability 

[330]. This investigation of 1,135 A. thaliana accessions revealed an average pair-wise 

difference of 439,145 SNPs [330] which results in one SNP in 271 bp. Calling variants 

based on long reads would efficiently identify substantially higher numbers of SVs than 

previously detected based on short reads [340–342]. Dedicated long read aligners like 

marginAlign [207], GraphMap [343], and PoreSeq [344] were developed to facilitate such 

variant detection approaches. However, recent improvements of the quality of sequencing 

technologies and advanced assembly algorithms might render reference sequences 

obsolete in the near future [51]. 
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Fig.4: Detection of sequence variants. 

Alignments of sequencing reads against a reference sequence reveal single nucleotide polymorphisms 

(a), insertions/deletions (b), and regions with coverage values deviating from the average (c). Cases of 

coverage deviation can be distinguished into presence/absence variations (PAVs) and copy number 

variations (CNVs). These variants are classified as PAVs if the sequence is unique, while repetitive 

sequences are considered CNVs. 

 

1.5 Arabidopsis thaliana – a model organism for plant genomics 

Arabidopsis thaliana (L.) Heynh. is THE model organism in plant genomics [1], general plant 

research [345–350], and plant systems biology [351]. Research on this plant was started in 

1905 by Friedrich Laibach who collected first seeds around Limburg and from many other 

places in Germany [345,350,352,353]. The small genome size with a relatively low repeat 

content was beneficial for the generation of a high quality genome sequence through 

expensive and time-consuming BAC-based sequencing [1]. Assembled from Sanger 

sequencing reads [1], the Col-0 reference sequence remained the best plant genome 

sequence for almost two decades [120] and is still the best annotated one [2,349]. Many 
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beneficial properties like a small size, short generation time, high number of seeds, and 

accessibility to genetic manipulation [348,354] facilitated the use of this plant species for 

functional genomics [2,349]. 

Some of the properties of A. thaliana, which made it a model organism in the first place, 

restrict its broader use due to substantial biological differences to many other plant species. 

Obviously, no model organism can be closely related to all species of scientific or economic 

interest (Fig.5). The transfer of knowledge from A. thaliana is generally more efficient over 

short phylogenetic distances. In contrast to most closely related species, A. thaliana is 

selfing instead of outcrossing and the chromosome number is reduced from eight to five 

[355]. The mating system of plants is of scientific interested for a very long time [356]. 

Selfing evolved several times independently in multiple plant species thus leading to a 

discussion about being an evolutionary dead end [357–360]. As an annual and herbaceous 

plant, it is not well suited for perennial plants and especially trees. In contrast to many other 

plant species, A. thaliana was assumed to be a non-mycorrhizal plant [361]. Although recent 

reports indicate that symbiotic interactions between A. thaliana and fungi do exist [362], 

important interactions between plants and fungi were studied in other models before. 

Despite all these limitations, A. thaliana is of high relevance for basic research. The 

extensive knowledge about the A. thaliana genome is also the basis for functional 

annotations of other plants [113] including crop species [363]. 

 

 

Fig.5: Phylogenetic position of A. thaliana. 
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The relative position of A. thaliana in a phylogenetic tree with important plant species (a) and with 

closely related species of the Brassicaceae (b) is displayed. Trees were constructed via phyloT [364] 

and iTOL [365]. 

 

1.5.1 Columbia-0, Landsberg erecta, and Niederzenz-1 

Col-0 and Landsberg erecta (Ler) are two accessions which are frequently used in research 

on A. thaliana. George Rédei generated Ler by mutagenesis of Laibach‘s Landsberg strain 

and defined the Columbia (Col) accessions through single seed decent from the original 

Landsberg strain after observing that Landsberg was probably a mixture of different lines 

[366–368]. As a result, the genetically German accession Col-0 carries a name which points 

to the origin from the University of Missouri in Columbia where Rédei was working at that 

time [350]. Ler was used in most studies due to a beneficial growth phenotype caused by 

the erecta mutation [350]. Nevertheless, Col-0 was selected for genome sequencing, 

because Ler was expected to be substantially modified through the mutagenesis [1,350]. 

However, the importance of Ler resulted in the publication of the chromosome-level genome 

sequence in 2016 [212]. The documented close relation between the two accessions with an 

available genome sequence suggests very similar genome sequences. Thus, additional de 

novo assemblies are needed to elucidate the intraspecific genomic diversity. Despite this 

very close relation between Col-0 and Ler, a large inversion on chromosome 4 was 

identified between both accession and appears to occur in other A. thaliana accessions as 

well [212]. A possible explanation for this contradiction might be the heterogeneity of the 

initial Landsberg seed batch which was used by Rédei as origin of Col-0 and Ler. 

Fortunately, Nd-1 is independent of Col-0 and Ler except for the geographic origin from 

central Europe. The name Niederzenz is assumed to indicate the geographic location where 

Laibach collected the first seeds [369]. Unfortunately, there is no village or town named 

Niederzenz thus the precise origin of Nd-1 remains unknown [369]. Several publications 

reported research on Nd-1 before the genome sequence was released [328,369–375] and 

Nd-1 was also included in the 1001 genomes project [376]. Additional motivation for the 

selection of Nd-1 as accession for a de novo sequencing project was the existence of 

recombinant inbred lines generated by crossing Nd-1 and C24 [372]. These lines were used 

to study biomass formation in A. thaliana [372] and provide a valuable resource for the 

investigation of other differences between both parents e.g. BGLU6 which encodes a 
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flavonol glucosyltransferase [375]. Although differences between Col-0 and Nd-1 exist and 

were described before, plants of both accessions cannot be distinguished optically under 

standard growth conditions in the greenhouse. 

 

1.5.2 Genetics and genomics of A. thaliana 

Genetic mapping approaches based on molecular markers were applied [377,378] e.g. to 

identify QTL [379] long before the first genome sequences were released. Famous are 

recombinant inbred lines which were developed to facilitate genetic studies in this model 

organism [380]. These lines were genotyped and allow an easy investigation of new 

phenotypic traits [378]. Investigations of genetic variations in A. thaliana have the potential 

to reveal new insights into development and physiology [381] and enhance the 

understanding of evolution [382]. Although genomic resources provide great potential for 

genome-wide association studies, the strong population structure of A. thaliana poses a 

challenge [383]. Intervals of variants in A. thaliana appear to be very small thus the 

resolution of genetic mapping can be in the single digit kbp range which is often equivalent 

to one or two genes [315,316,318,322]. 

The Col-0 reference sequence comprises approximately 120 Mbp [384] with 27,445 nuclear 

protein encoding genes included in the most recent Araport11 annotation [2]. Manually 

curated gene models and hints derived from numerous RNA-Seq data sets were 

incorporated in Araport11 [2]. Although the sequence is given as pseudochromosomes 

[384], there are a few completely missing [324,385–387] and collapsed [213,387,388] 

regions. Despite all efforts, the centromeric regions and nucleolus organizing regions 

(NORs) remained largely unassembled [1,54,212,213]. In total, there are still 29 large 

mis-assemblies [387] and over 90 gaps indicated by ‗N‘ throughout the reference sequence 

[213,324]. Some of the most interesting genes were reported to be located in clusters of 

almost identical copies which are hard to assemble [378,389]. Although the Col-0 reference 

sequence is still of high quality compared to other assemblies, these issues are now 

addressed by long read sequencing technologies [54,120,211,213] which could improve the 

reference sequence through de novo assembly [390]. However, this reference sequence 

was crucial to investigate the evolution of species within the Brassicaceae [391,392], the 

biology of TEs [393–395], and genome evolution in general [391,392]. At least three whole 

genome duplications occurred during the phylogenic history of A. thaliana [391,396]. 
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Paralogous gene copies, which originate from genome duplication, are called ohnologs 

[397]. There is still a substantial number of these ohnologs present in A. thaliana. While the 

genome duplication events probably took place about 7-12 million years ago (Mya), 47 Mya, 

and 124 Mya [391,398], the shift from outcrossing to selfing occurred only 

150,000-1,000,000 years ago [123,399]. Associated with the shift from outcrossing to selfing 

could be the reduction in genome size as proposed before [400]. 

 

1.5.3 Molecular evolution 

The rate of evolution i.e. the accumulation of variations over generations was studied in 

A. thaliana [320,323,401–403]. A strong bias towards conversion of G:C to A:T and an 

enrichment of mutations around the centromeres were reported as result of greenhouse 

experiments [402]. The average mutation rate was estimated to 7*10-9 substitutions per site 

per generation [402]. However, this substantial general excess of G:C to A:T conversion 

was not observed in natural strains [320]. This discrepancy can be explained by low 

frequency alleles of responsible SNPs in highly variable regions close to the centromeres 

[320]. A reduced selection pressure in A. thaliana compared to its closest sequenced 

relatives A. lyrata and A. halleri was reported to enhance the rate of protein evolution 

[404,405]. This reduced selection pressure could be caused by the shift from outcrossing to 

selfing, because the effective population size was reduced [405–407] and therefore an 

accelerated rate of protein evolution can be assumed [408]. A lower purifying selection and 

a higher mutation rate is assumed to increase the rate of pseudogenization [404,405]. 

 

1.5.4 Genome size of A. thaliana 

Although the first genome sequence of A. thaliana was provided almost 20 years ago [1], 

the precise genome size is still unknown. While the common ancestor of all Brassicaceae 

had an estimated genome size of 500 Mbp [409] distributed over eight chromosomes, there 

are major differences between the genome structures of derived species [410,411]. In 

contrast to other Arabidopsis species, A. thaliana has only five chromosomes and an 

estimated genome size of 130-150 Mbp [1,53]. The genome size difference between 

A. thaliana and A. lyrata was partly attributed to small InDels, differences in heterochromatic 

regions, and differences in the number of TEs [412]. Comparison with Capsella rubella 
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revealed the TE differences between the Arabidopsis species as a derived characteristic in 

A. lyrata [413]. There are even reports of intraspecific genome size differences in A. thaliana 

with Col-0 displaying a relatively small genome [258,324,414]. The number of rDNA repeats, 

which encode the 45S rRNA and are located in the NORs, were also identified as important 

sources for genome size differences [324,415]. Previously, genome sizes were investigated 

over multiple decades while the resolution of applied technologies increased. Deployed 

methods included reassociation kinetics [416], quantitative gel blot hybridization [417], 

Feulgen photometry [418], flow cytometry [255,419], and k-mer-based calculation to harness 

the power of second generation sequencing technologies [21,53,257]. However, recent 

developments in sequencing technologies promise complete genome assemblies as the 

ultimate method to assess the genome size precisely. 

 

1.5.5 Transposable elements in A. thaliana 

Besides polyploidization, TE amplification is one of the major forces contributing to the 

genome size [23,420,421]. In comparison to other plant genomes, the TE and repeat 

contribution to the known A. thaliana genome is relatively small with only 10-30% [1,395]. 

TEs in A. thaliana Col-0 were annotated in 2008 [393] and despite some issues 

[394,395,422] this annotation was never updated [2,384]. Since TEs are generally less 

active in selfing plants [395,423], observed losses of TEs in A. thaliana compared to 

outcrossing relatives like A. lyrata are expected. Re-sequencing projects revealed already 

that up to 80% of all annotated TEs appeared to be fragmented or deleted in at least one 

accession [320]. 

 

1.5.6 Gene set of A. thaliana 

The minimal set of genes necessary for a plant to survive under controlled conditions or in 

the natural environment is still unknown [246,424]. While some genes might not be 

necessary for survival, these genes could still be beneficial or even necessary under specific 

conditions [246]. A. thaliana is not an ideal model to address these questions since many 

functionally redundant ohnologs are still present as a result of the ancestral genome 

duplications. Nevertheless, the comprehensive annotation of 27,445 protein encoding 

nuclear genes in the A. thaliana genome sequence [2] is very beneficial for gene set 



Introduction 

28 
 

investigations. While copy number variations just alter the gene dose, presence/absence 

variations (PAVs) distinguish between wild type and knock-out. 

Previous studies reported 620 A. thaliana genes which are involved in the seed 

development or physiology thus causing visible differences to the wild type when knocked 

out [425]. Sets of 130 and 60 essential genes were identified in the female gametophyte 

development and male gametophyte development, respectively [424,426]. While these 

results are derived from knock-out experiments, the natural diversity of A. thaliana provides 

the material to classify genes based on presence/absence in various accessions as ‗core‘ or 

‗non-core‘. Only genes present in all accessions belong to the core gene set. Although this 

set of core genes is not necessarily identical with the set of essential genes, a strong 

overlap can be expected. Genes absent from at least one accession can be considered to 

be dispensable, because plants of one accession are apparently able to survive without 

these genes. Re-sequencing projects revealed copy number variations (CNVs) and PAVs 

between numerous accessions and the reference sequence, which involved several 

hundred genes [320,427]. In total, 26,373 genes were identified as core genes of 19 

A. thaliana accessions and 11,416 additional ones were classified as accessory genes 

[428]. Not just the absence of genes is informative to narrow down the core gene set, but 

also reports about genes with sequence variants likely to render a gene functionless. In 

total, 4,263 genes with a premature stop codon in at least one accession were identified 

during a re-sequencing project, but the false positive rate of this process is high [320]. 

Besides the search for a minimal gene set, the identification of genes unique to one 

accession is an important contribution to the pan-genome of A. thaliana. The pan-genome 

comprises all genes or even non-genic sequences which are present in at least one member 

of a species [429,430]. Comprehensive knowledge of the pan-genome is necessary to 

understand the genetic and genomic diversity within a species [430]. Assembly quality, 

annotation quality, detection of orthologs, and the selection of appropriate samples are main 

factors determining the quality of pan-genome analyses [430]. Differences in the gene sets 

of individuals were previously proposed as the basis of heterosis effects [431] which are 

important in plant breeding. 
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1.5.7 Transcriptomics of A. thaliana  

Gene expression in this model organism was assessed by RT-qPCR [432–435] and array 

technologies for years [436–439] resulting in comprehensive expression databases [440–

444]. The rise of high-throughput sequencing technologies enabled the investigation via 

RNA-Seq [174,386] thus facilitating the detection of transcripts in a reference-independent 

way [77]. The most recent annotation of the Col-0 reference sequence is based on a set of 

diverse RNA-Seq data sets and focused on the annotation of numerous RNA genes [2]. De 

novo transcriptome assemblies based on RNA-Seq reads revealed sequences which could 

not be mapped to the reference genome sequence [445,446]. Only a small number of novel 

genes were detected [445,446], but these reports indicate that not all expressed genes are 

represented in the current Col-0 reference sequence. 

 

1.6 Splicing and splice sites 

Plant genes harbour an average of 4.5 introns per protein encoding gene [7], which 

separate the exons and require a removal from transcripts prior to translation [447–450]. 

Splicing, i.e. the removal of introns from primary transcripts, involves five snoRNAs and over 

150 proteins which are associated in the spliceosome [451]. Different types of introns are 

recognized and removed by the U2 [452] or the U12 [453] spliceosome, respectively. 

Discussions about the classification of introns, potential additional spliceosomes [454], and 

minimal intron sizes [455–457] are still ongoing. Specific binding of the spliceosome and 

proper removal of introns require highly conserved sequences around the splice sites [458–

460]. The terminal dinucleotides of introns are highly conserved: GT at the 5‘-end and AG at 

the 3‘-end on the DNA level [7,62,461]. These GT-AG splice site combinations are named 

canonical. There are also rare cases where terminal dinucleotides deviate from the 

canonical GT-AG sequence resulting in so called non-canonical splice site combinations 

[3,7,62]. The major non-canonical splice site combinations GC-AG and AT-AC account on 

average for 1.3% of all splice sites in plant genomes [7]. Minor non-canonical splice site 

combinations display all other nucleotide combinations at a much lower average frequency 

of approximately 0.1% (Fig.6) [7]. 
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Fig.6: Splice site combinations. 

Besides the canonical GT-AG splice site combination, there are two major non-canonical splice site 

combinations: GC-AG and AT-AC. In addition, all other dinucleotide combinations might occur as 

minor non-canonical splice site combinations (NN-NN), but the frequency drops with divergence 

from the canonical sequence. Although the actual splicing process modifies RNA, all sequences in 

this thesis refer to the corresponding DNA sequence. 
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1.7 Objectives 

Arabidopsis thaliana is well established as a model organism for many years. However, only 

a single genome sequence at chromosome-level quality was described in the literature at 

the beginning of this work. 

Therefore, the first objective was to generate a de novo genome assembly and a 

corresponding annotation of the A. thaliana accession Niederzenz-1 (Nd-1). Numerous 

comparative genomic analyses are enabled through the availability of the here presented 

highly contiguous genome sequence. Synteny, structural variants, and copy number 

variations between A. thaliana accessions are investigated. Novel sequences are inferred 

from this de novo assembly thus contributing to the pan-genome of A. thaliana. An 

independent high quality assembly can also facilitate the correction of errors in the Col-0 

reference sequence. 

The second objective was to investigate non-canonical splice sites in A. thaliana. These 

splice sites evade ab initio gene prediction causing erroneous gene structures. As a model 

plant A. thaliana is the perfect system to establish methods for an improved gene prediction 

and for the investigation of non-canonical splice sites in other species. 

The third objective was to transfer knowledge about non-canonical splice sites in A. thaliana 

and methods for the investigation of these splice sites to other plants. Since existing 

knowledge about this topic was sparse, a comprehensive investigation of non-canonical 

splice sites was necessary to shed light on this topic and to provide resources for future 

studies. The analysis of over 120 plant genome sequences and annotations requires 

automation. Implementing the analysis workflow in Python scripts provides scalability and 

transferability. 
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2 Results 

The results of this work are described within the following chapters. Summaries of the four 

research items are presented with figures, tables, and the corresponding captions coming 

from these items. 

First, the A. thaliana Niederzenz-1 (Nd-1) de novo genome sequence assembly based on 

second generation sequencing data is presented [53]. The Nd-1 genome sequence was 

compared against the Columbia-0 (Col-0) reference sequence to identify small sequence 

variants and PAVs. 

Next, insights into non-canonical splice site combinations in Col-0 are presented. Based on 

this knowledge an improved annotation of the Nd-1 genome sequence assembly is 

presented. This improvement was achieved through consideration of non-canonical splice 

site combinations during the gene prediction process [62]. 

Afterwards, a de novo genome sequence assembly based on SMRT sequencing is 

presented together with an extended comparison against the Col-0 reference sequence 

[213]. Large structural variants (SVs) between Nd-1 and Col-0 were revealed by this 

assembly. Copy number variations (CNVs) and presence/absence variants (PAVs) across 

numerous A. thaliana accessions were identified by mapping of reads against the assembly 

and investigation the resulting coverage values. 

Fourth, the analyses of non-canonical splice sites are extended to all annotated plant 

genome sequences and supplemented with support from transcriptomics [7]. Methods 

developed based on A. thaliana are adjusted and optimized for application on various plant 

genome sequences to enhance automation of the analyses. 

 

2.1 De novo genome sequence assembly of A. thaliana Nd-1 

Re-sequencing of various A. thaliana accessions was performed for years 

[120,212,254,324], but this approach is mostly limited to the detection of small sequence 

variants [254,320,324]. Reference-independent de novo assemblies are needed to resolve 

larger insertions, to  detect SVs, to identify PAVs, and to assess synteny [102,254]. 

Therefore, the Nd-1 genome was analysed using various second generation sequencing 

technologies. 
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2.1.1 The A. thaliana Nd-1 assembly 

Approximately 120 fold coverage of Illumina paired-end reads and additional linkage 

information from mate pair reads was used for the Nd-1 genome sequence assembly. The 

resulting assembly comprised 5,197 scaffolds with an N50 of 0.59 Mbp (Table 1). The Nd-1 

genome size was estimated to 146 Mbp based on k-mer distributions of reads. This Nd-1 

assembly covers approximately 99.8% of the Col-0 reference sequence, while a read 

mapping covered only 96%. SVs within the assembled regions are likely to explain this 

difference. Most Nd-1 scaffolds are mapped close to the peri-centromere sequences on the 

five Col-0 pseudochromosomes. TEs were identified as a challenge to the assembler, 

because 65% of the mapped contig ends are matching an annotated TE in the Col-0 

reference sequence. A total of 28,670 protein encoding genes were predicted in this 

assembly. The encoded proteins were assigned to Col-0 proteins via reciprocal best BLAST 

hits (RBHs) to transfer the comprehensive functional annotation of the Col-0 annotation to 

Nd-1. An analysis of the positions of the identified 22,178 RBHs revealed strong synteny 

between Nd-1 and Col-0 (Fig.7). Genes in RBH pairs with non-syntenic positions were partly 

caused by close paralogs which prevent the detection of proper orthologs. 

 

Table 1: Assembly statistics. 

Metrics of the Nd-1 genome sequence assembly generated via CLC Genomics Workbench before and 

after application of SSPACE, GapFiller and subsequent RBH-based manual improvement. 

parameter CLC assembly scaffolded gaps filled polished 

number of scaffolds 10,057 5,201 5,201 5,197 

total number of bases 113,939,710 117,144,260 117,816,107 116,846,015 

average scaffold length 11,329 bp 22,523 bp 22,652 bp 22,483 bp 

minimal scaffold length 500 bp 500 bp 500 bp 500 bp 

maximal scaffold length 445,914 bp 3,176,818 bp 3,190,961 bp 2,967,516 bp 

GC content 35.98% 35.98% 35.95% 35.95% 

N25 102,863 bp 1,299,823 bp 1,304,062 bp 1,211,412 bp 

N50 52,252 bp 709,626 bp 713,021 bp 589,639 bp 

N75 22,586 bp 214,378 bp 215,617 bp 174,007 bp 

N90 7,163 bp 42,960 bp 43,285 bp 40,994 bp 
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Fig.7: Synteny between Nd-1 and Col-0 based on reciprocal best BLAST hits. 

All five pseudochromosomes of the two genome sequences were ordered by their number to provide 

the x (Col-0) and y (Nd-1) axes of the diagram. Positions of each RBH pair in the two genome 

assemblies were plotted, resulting in a bisecting line formed from black dots representing perfectly 

matching RBH pairs. RBH gene pair positions deviating from a fully syntenic position, i.e. the 

outliers, are represented by green dots for RBH pairs with ambiguous best hits in RBH pair 

identification, and by red dots for RBH pairs with deviating (non-syntenic) gene positions. Since two 

red dots overlap each other, only three locations are visible. Positions of the centromeres (CEN1 to 

CEN5) are indicated by purple lines. Ends of pseudochromosomes (telomeres) are indicated by short 

black lines at the bisectrix (forming crosses) and on both axes. Formally, the unmapped fraction of 
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Nd-1 contigs is appended after pseudochromosome 5, but this sequence of about 134 kbp in length 

becomes invisible due to the limited resolution of the figure. 

 

2.1.2 Small sequence variants 

The generated sequencing data were also subjected to a read mapping against the Col-0 

reference sequence to enable variant detection. A total of 485,887 identified single 

nucleotide polymorphisms (SNPs) and insertions/deletions (InDels) were functionally 

annotated to find genes with relevant differences. While 314 genes displayed premature 

stop codons, 117 genes lost the stop codon, and 1,228 additional genes displayed 

frameshifts. The genome-wide distribution of the small sequence variants did not reveal 

specific clusters and did not show substantial differences between the chromosomes (Fig.8). 

When comparing InDel lengths between protein encoding sequences and other regions, a 

substantial difference in the distributions emerged (Fig.9). Protein encoding regions 

displayed an increased frequency of InDel lengths that are a multiple of three as these do 

not shift the reading frame. 

Previously reported effects in RRS1 (At5g45260) [371,462], MYB114 (At1g66380) [374], 

and BGLU6 (At1g60270) [375] were recovered in this analyses thus supporting its validity 

and value. 
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Fig.8: Genome-wide distribution of small sequence variants. 

Numbers of SNPs (black) and InDels (red) in a given interval on the chromosomes are shown. Both 

variant types were identified using GATK and CLC Genomics Workbench as described in the method 

section [53]. The overlap of both tools was considered as the best choice. 
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Fig.9: Insertion/deletion size distributions. 

Most frequent InDel sizes differ between protein encoding sequences (a) and non-coding sequences 

(b). InDel lengths that are a multiple of three are much more common in protein encoding sequences. 

 

2.1.3 Presence/absence variations 

Thousands of PAVs and highly divergent regions were identified between Nd-1 and Col-0 

through substantial differences in the read mapping coverage. The PAV size ranged up to 

53 kbp with a combined size of 5.5 Mbp. After validation via sequence alignment, randomly 

selected candidates were validated via PCR (Fig.10). 

The Nd-1 assembly revealed a previously described modification of the 

FLOWERING LOCUS M (At1g77080) [373]. In addition, two copies of SEC10 (At5g12370) 

which are collapsed in the Col-0 reference sequence [388] were correctly resolved in this 

assembly. 



Results 

38 
 

 

Fig.10: Validation of an insertion in Nd-1 via PCR. 

The concept is visualized by using a PAV of about 13 kbp in length that is present in Nd-1 and absent 

from Col-0 as an example. This figure shows the primer positions used for experimental validation 

(bottom). Outer primers (Nd66 and Nd67) were used for standard PCR on genomic DNA of Col-0 

and Nd-1 (gel picture of amplicons, top left) and for long range PCR on genomic DNA of Nd-1 (top 

right). Inner primers were used for amplicon generation in standard PCR with genomic DNA of Nd-1. 

 

2.2 Consideration of non-canonical splice sites improves gene 

prediction 

Terminal dinucleotides in intron sequences are highly conserved, because these sequences 

are crucial signals in the mRNA splicing process. Despite strong conservation of the 

canonical GT at the 5‘ splice site and AG at the 3‘ splice site, some variants of this splice 

site combination occur at low frequencies [4,463]. Besides the major non-canonical splice 

site combinations GC-AG and AT-AC, there are numerous combinations of minor 

non-canonical splice sites occurring at very low frequencies [4,463]. These exceptions pose 
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a severe challenge to ab initio gene prediction approaches, which try to identify gene 

structures based on sequence properties [464,465]. The low frequency of non-canonical 

splice site combinations would cause a substantial number of false positive splice site 

predictions if considered [466,467]. In addition, the number of possible gene models would 

increase extremely if all dinucleotides would be considered as potential splice sites 

[466,467]. Therefore, ab initio gene predictions are only identifying canonical splice site 

combinations resulting in erroneous predictions of genes with bona fide non-canonical splice 

sites [466,467]. 

 

2.2.1 Non-canonical splice sites in A. thaliana 

The Araport11 annotation [2] of Col-0 contains 1,267 genes with non-canonical splice sites 

in the representative transcript i.e. the transcript with the longest CDS. While 98.9% of all 

splice site combinations are the canonical GT-AG, there are 1.0% GC-AG, and 0.1% AT-AC 

major non-canonical splice site combinations. Consequently, the remaining 0.1% 

(88 introns) are minor non-canonical splice site combinations. 

The actual usage of these non-canonical splice sites was validated for FGT1 (At1g79350), 

AGY1 (At4g01800), and PPI1 (At4g27500) via amplicon generation from cDNA and 

following Sanger sequencing. Independent Illumina sequencing data were used to validate 

the corresponding DNA sequences. 

 

2.2.2 Improved gene prediction 

To harness the full power of the manually curated annotation of Araport11, representative 

transcript sequences were mapped to the Nd-1 assembly [53] to generate hints for the gene 

prediction. Hints for exons or exon-intron borders, respectively, are required to enable the 

prediction of non-canonical splice sites. Again, AGUSTUS was applied for the prediction of 

gene structures based on the generated hints and information about expected minor 

non-canonical splice site combinations. The resulting 30,834 protein encoding gene models 

matched 91.2% of the CDS features in the ab initio annotation and 50.2% of the UTRs. The 

distribution of 99.0% canonical splice site combinations, 0.8% GC-AG major non-canonical 

splice site combinations, 0.05% AT-AC major non-canonical splice site combinations, and 
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0.15% (206) minor non-canonical splice site combinations is similar to Col-0. The total of 

1,256 genes with non-canonical splice site combinations in Nd-1 is almost perfectly 

matching the number of 1,267 genes with non-canonical splice site combinations observed 

in Col-0. The importance of hints in the gene prediction in respect to non-canonical splice 

sites can be seen when looking at the RBHs of FGT1, AGY1, and PPI1. For example, 

intron20 of FGT1 in Nd-1 displays non-canonical splice sites at both terminal ends (Fig.11). 

Therefore, the ab initio gene prediction is skipping the exon20 completely (Fig.11). In 

general, the identification of substantially more RBHs between Araport11 and the 

GeneSet_Nd-1_v1.1 compared to the previous ab initio annotation GeneSet_Nd-1_v1.0 

indicates an increased annotation quality. Since Araport11 contains the manually improved 

annotation of Col-0, it can be considered a gold standard. 

 

 

Fig.11: Representative gene structure of missed non-canonical splice sites in the ab initio gene 

prediction on Nd-1. 

Gene structure of the At1g79350 RBH in the hint-based gene prediction (GeneSet_Nd-1_v1.1) on the 

Nd-1 genome sequence is displayed (a). The non-canonical splice sites were missed in the ab initio 

gene prediction leading to a skipping of exon20 (highlighted in yellow) (b). 
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2.3 Chromosome-level assembly reveals structural variants between 

Nd-1 and Col-0 and facilitates pan-genomic analyses 

One important motivation for de novo assemblies of genome sequences for species with an 

available reference sequence is the detection of structural variants (SVs) [102]. Whole 

genome shotgun (WGS) assemblies based on short reads already revealed some variants 

up to several kbp between Col-0 and Nd-1 [53]. However, the limited assembly contiguity 

hampered the identification of large structural rearrangements. N50 values of A. thaliana de 

novo genome sequence assemblies were usually far below 1 Mbp [53,254]. With long 

sequencing reads generated by technologies of the third generation, assembly contiguity 

improved substantially [120,202,211] making chromosome-level assemblies possible at 

least for model organisms like A. thaliana [54,212]. 

 

2.3.1 Assembly based on SMRT sequencing reads 

A Canu [204] assembly based on SMRT sequencing reads (Ath-Nd-1_v2c) was selected as 

representative Nd-1 genome sequence assembly after evaluating results of different 

assemblers (Table 2). Assuming a genome size of 150 Mbp the coverage of this data set 

was 112 fold. Although it was not the focus of this work, differences between the tested 

assemblers were observed. While FALCON was unable to resolve sequences close to some 

telomeres, these regions were included in the Canu assembly Ath-Nd-1_v2c. The total 

assembly size exceeds the original Col-0 reference sequence [1] by about 3 Mbp. 

Substantial improvement of the assembly contiguity over the previous Ath-Nd-1_v1 

assembly [53] is indicated by the N50 of 13.4 Mbp. In addition, AthNd-1_v2c resolves 1,744 

additional TEs compared to Ath-Nd-1_v1 [53]. Nd-1 contigs were placed and orientated 

based on genetic linkage information, where possible. This linkage information was derived 

from genotyping F2 plants of reciprocal crossings of Nd-1 and Col-0. Unanchored small 

contigs were placed based on the Col-0 reference sequence and all contigs mapped to the 

same chromosome were joined into a pseudochromosome. Ath-Nd-1_v2c bridges several 

regions where the Col-0 reference sequence is interrupted by gaps. Compared to 

Ath-Nd-1_v1, 6.9 Mbp additional sequence mostly close to the centromeres is included in 

Ath-Nd-1_v2c. Assembly completeness is also indicated by the presence of telomeric 

repeats at the end of most pseudochromosomes (Fig.12). While the WGS assembly 

Ath-Nd-1_v1 was not able to resolve nucleolus organizing repeats (NORs) automatically, 



Results 

42 
 

there are several repeat units represented in Ath-Nd-1_v2c (Fig.12). BUSCO [262] detected 

all benchmarking genes which are also found in the Col-0 reference sequence thus 

providing additional evidence for a high quality assembly. 

 

Table 2: Nd-1 de novo assembly statistics. 

Metrics of assemblies of the Nd-1 nucleome sequence generated by Canu, FALCON, miniasm, and 

Flye, respectively. All described assemblies are the final version after polishing. 

parameter Ath-Nd-1_v2c Ath-Nd-1_v2f Ath-Nd-1_v2m Ath-Nd-1_v2y 

Assembler Canu FALCON Miniasm Flye 

number of contigs 69 26 72 44 

total number of bases 123,513,866 119,540,544 120,159,079 116,964,092 

average contig length 1,790,056 bp 4,597,713 bp 1,668,876 bp 2,658,274 bp 

minimal contig length 50,345 bp 86,055 bp 50,142 bp 53,207 bp 

maximal contig length 15,898,009 bp 15,877,978 bp 14,338,505 bp 14,857,908 bp 

GC content 36.14% 36.04% 36.07% 36.01% 

N25 14,369,729 bp 14,534,675 bp 11,880,610 bp 12,510,540 bp 

N50 13,422,481 bp 9,302,209 bp 8,595,164 bp 10,607,548 bp 

N75 8,555,326 bp 6,666,836 bp 3,513,050 bp 6,001,858 bp 

N90 2,928,047 bp 2,829,734 bp 1,430,525 bp 2,524876 bp 

 

  



Results 

43 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F
ig

.1
2
: 

N
d

-1
 g

e
n

o
m

e 
st

r
u

ct
u

re
. 

 

S
ch

em
a
ti

c 
p
se

u
d

o
ch

ro
m

o
so

m
es

 
a
re

 
sh

o
w

n
 
in

 
b
la

ck
 
w

it
h
 
c
en

tr
o
m

er
e 

re
p

ea
t 

p
o
si

ti
o
n
s 

in
 
g
re

en
. 

R
ed

 
d

o
ts

 
in

d
ic

a
te

 
p

o
si

ti
o

n
s 

o
f 

4
5

S
 
rD

N
A

 

fr
a
g
m

en
ts

 a
n

d
 a

n
 o

ra
n

g
e 

st
a
r 

re
p

re
se

n
ts

 c
o
m

p
le

te
 4

5
S

 r
D

N
A

 t
ra

n
sc

ri
p
ti

o
n
 u

n
it

s.
 B

lu
e 

tr
ia

n
g
le

s 
in

d
ic

a
te

 t
h

e 
p

o
si

ti
o

n
s 

o
f 

5
S

 r
D

N
A

s.
 T

h
e 

p
o
si

ti
o
n
s 

o
f 

te
lo

m
er

ic
 r

ep
ea

ts
 a

re
 s

h
o

w
n
 b

y
 p

u
rp

le
 t

ri
a
n
g
le

s.
  



Results 

44 
 

2.3.2 Large structural variants 

The most striking difference between Col-0 and Nd-1 is a 1 Mbp inversion in the north of the 

chromosome 4 (Fig.13). This inversion allele in Nd-1 is slightly different from the 1.2 Mbp 

inversion allele reported previously in Ler [212]. As reported for the Ler allele [212], a 

repression of recombination events in this region was also observed for Nd-1 while studying 

genetic linkage. In addition, there is a translocation on chromosome 3 effecting 

At3g60975-At3g61035. Several smaller SVs are clustered around the centromeres. Since 

these regions are highly repetitive, assembly or alignment errors could influence this 

observation. 

 

 

Fig.13: Inversion on chromosome 4. 

The dot plot heatmaps show the similarity between small fragments of two sequences. Each dot 

indicates a match of 1 kbp between both sequences, while the colour is indicating the similarity of the 

matching sequences. Matches with low similarity are indicated by white dots, while perfect matches 

are indicated by blue dots. Comparison of the Nd-1 genome sequence against the Col-0 reference 

sequence reveals a 1 Mbp inversion (a). The Ler genome sequence displays another inversion allele 

(b) [212]. 
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2.3.3 The Nd-1 gene set 

Protein encoding genes were predicted based on hints derived from the Araport11 

annotation of the Col-0 reference sequence and previously optimized parameters [62]. In 

total, 30,126 genes with an average transcript length of 1.8 kbp were predicted. An 

alignment of previously generated ESTs [328] with the predicted mRNA sequences 

displayed an average similarity of 98.7% thus supporting the assembly and annotation 

quality. In total, 28,042 (93%) predicted Nd-1 genes were connected to nuclear protein 

encoding genes in the Araport11 annotation of Col-0 through the identification of RBHs or at 

least unidirectional best BLAST hits on the peptide level. After discarding TE genes from this 

prediction, 27,247 protein encoding genes remained. Differences between the gene sets of 

Nd-1 and Col-0 are usually caused by (tandem) duplications or deletions of such copies. 

Duplications of At2g06555 (unknown protein), At3g05530 (RPT5A), and At4g11510 

(RALFL28) were validated via PCR. However, the new assembly confirms the strong overall 

synteny between Nd-1 and Col-0. At first, At4g22214 appeared to be another duplication 

example. However, one of the gene copies present in the Col-0 genome is missing in the 

reference sequence. Although this locus does not display a PAV or CNV between both 

accessions, it highlights the potential of this long read assembly to reveal mis-assemblies in 

the high quality reference sequence. 

 

2.3.4 Pan-genomic analysis of A. thaliana 

Based on the structural annotation of the Nd-1 assembly, PAVs in 964 A. thaliana 

accessions were investigated to identify dispensable genes. The coverage values of a read 

mapping were harnessed to infer the presence/absence of genes by comparing the average 

coverage across a gene to the overall average coverage value of the respective accession. 

In total, 1,438 genes were classified as dispensable, because these genes lacked read 

mapping coverage in at least 100 accessions. There are probably many more dispensable 

genes. However, a strict cutoff is needed to avoid a high false positive rate due to very low 

sequencing depth of several accessions. In agreement with previous reports [427,468], 

many genes associated with pathogen response were identified as dispensable. However, 

over 30% of the dispensable genes have no functional annotation, because no suitable 

match against the Araport11 annotation of Col-0 was detected or due to a lack of functional 

information in Araport11. 
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2.4 Non-canonical splice sites in plant genomes 

Eukaryotic genes are split into multiple parts by introns [448]. The removal of these introns 

requires the binding of a spliceosome and cutting at precisely defined positions [469,470]. 

These splice sites are defined by highly conserved dinucleotides at the terminal intron ends: 

GT-AG [4]. However, the major non-canonical splice site combinations GC-AG and AT-AC 

are known exceptions from this rule. In addition, there were reports about other nucleotides 

observed at these positions which are likely to be in part artefacts of the sequencing, 

assembly, or annotation process [3,4]. Nevertheless, non-canonical splice sites are effecting 

a substantial number of genes and pose a challenge to accurate gene prediction [62,465]. A 

comprehensive identification of these splice site combinations is needed to understand the 

pattern of occurrence. A validation of annotated non-canonical splice site combinations e.g. 

via RNA-Seq read mapping is necessary to avoid investigating annotation artefacts and 

degenerated pseudogenes. In addition, this analysis of all 121 annotated plant genome 

sequences is intended as a resource for future studies. 

 

2.4.1 Annotated diversity 

There is a huge diversity of different minor non-canonical splice site combinations annotated 

throughout plant genome sequences. Even when restricting the analyses to introns within 

the protein encoding part of representative transcripts, there is a substantial diversity 

detectable. However, some clear trends emerged during the analysis (Fig.14). There is a 

negative correlation between the frequency of non-canonical splice site combinations and 

the divergence of these non-canonical splice site combinations from the canonical GT-AG 

combination. A strong phylogenetic signal with respect to minor non-canonical splice sites 

was not observed. This might be due to artefacts in the annotation or assembly. Moreover, 

random variations at splice sites could contribute additional noise. An advanced inspection 

of homologous splice site combinations could be the next step to reveal the phylogenetic 

history of non-canonical splice site combinations. 
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Fig.14: Splice site combination frequency.  

The frequencies of selected splice site combinations across 121 plant species are displayed. Splice site 

combinations with high similarity to the canonical GT-AG or the major non-canonical 

GC-AG/AT-AC are more frequent than other splice site combinations.  

 

2.4.2 Intron sizes in relation to splice site combinations 

Comparing the sizes of introns with canonical splice site combinations and those with minor 

non-canonical splice site combinations revealed three major differences. First, 

non-canonical splice sites are more frequent in extremely short introns. Second, 

non-canonical splice sites are less frequent in introns with the average length of 

approximately 200 bp. Third, a substantially higher proportion of non-canonical introns are 

larger than 5 kbp. 
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2.4.3 Validation and usage quantification of splice sites 

Splice sites were validated by assessing the coverage profiles of mapped RNA-Seq reads 

(Fig.15). A proper splice site that is frequently used for the splicing process would result in a 

high number of reads which do not contain the intron sequence. The alignment of these 

reads to the genome sequence results in an alignment gap over the intron. Strong 

differences in the coverage next to splice sites can be used to support annotations. Up to 

91.3% of all annotated splice sites in representative transcripts were supported by mapped 

RNA-Seq reads. Donor splice sites displayed overall a stronger support than acceptor splice 

sites. One possible explanation is the use of alternative acceptor splice sites while there is 

less flexibility at the donor site. This is in agreement with previous studies which associated 

single donor splice sites with multiple acceptor splice sites [471,472]. 

 

 

Fig.15: Usage of splice sites. 
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Usage of splice sites was calculated based on the number of RNA-Seq reads supporting the exon next 

to a splice site and the number of reads supporting the intron containing the splice site. There is a 

substantial difference between the usage of 5’ and 3’ splice sites in favour of the 5’ splice sites. 

Canonical GT-AG splice site combinations are used more often than major or minor non-canonical 

splice site combinations. Sample size (n) and median (m) of the usage values are given for all splice 

sites. 

 

2.4.4 Script collection for the investigation of splice site combinations 

The whole investigation of non-canonical splice site combinations was performed based on 

dedicated Python scripts (https://github.com/bpucker/ncss2018). Initial functions were 

developed for the investigation of A. thaliana [62] and extended during the analysis of all 

plant genome sequences. Functions of these scripts include assessing the diversity of 

annotated splice site combinations, validation of these splice sites based on RNA-Seq read 

mappings, intron length analysis, and comparison between species. Various report files and 

figures are generated during the analysis process. The availability of all scripts facilitates 

updates of the complete analysis once more genome sequences become available. 

Moreover, analysing splice sites via these scripts is not restricted to the kingdom of plants, 

but could be applied to animals and fungi as well. 
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3 Discussion and outlook 

This section provides an integrative discussion of the presented results and suggests 

directions for future analyses based on experiences collected throughout this work. Ideas 

and hypotheses for future studies are formulated and possible tests are suggested. 

 

3.1 Genome sequencing and assembly 

This work described two versions of an A. thaliana Nd-1 de novo genome assembly 

[53,213]. Although the assembly contiguity was substantially improved by long single 

molecule real-time (SMRT) sequencing reads, there are still genome regions missing in the 

second assembly. Almost 20 years after the release of the first A. thaliana genome 

sequence the currently available genome sequence is still incomplete. Centromeres and 

nucleolus organising regions (NORs) pose a challenge and require the routine generation of 

even longer reads or alternatively reads with substantially lower error rates [54,213]. There 

are first reports of single molecules sequenced via Oxford Nanopore Technologies (ONT) 

substantially exceeding the 2 Mbp mark [123]. If the read length could be further increased, 

this technology might have the potential to finally enable the closure of the last remaining 

gaps in the A. thaliana genome sequence. Improvements of nanopore sequencing e.g. 

re-reading of the very same DNA strand [75] or coupling of two nanopores with different 

error profiles [214] might lead to the required improvements of ONT read quality. However, 

latest improvements of sequencing technologies require improved DNA extraction protocols 

to provide high molecular input material [213,473,474]. Therefore, the bottleneck in 

generating even longer reads is likely to be the DNA extraction process. Efficient separation 

of high molecular DNA molecules from smaller fragments would be required to harness the 

full potential of long read sequencing technologies. 

Comprehensive knowledge about the primary structure of a genome can facilitate 

investigations of the three-dimensional organization of DNA in the nucleus. Transcriptional 

regulation elements can be located far away on the sequence and are brought in physical 

contact with target genes through chromatin loops as observed in A. thaliana [475–478]. 

The regulation of gene expression is influenced by many factors including the chromatin 

structure and other epigenetic modifications [479]. Genes evolved in certain regions with 

local transcriptional regulation and are therefore non-randomly distributed over the genome 
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[480,481]. First studies investigated the three-dimensional structure of the A. thaliana 

genome via Hi-C and similar techniques [478,482,483]. In contrast to other species, 

topologically associated domains are not particular important in A. thaliana [477,482,484]. 

Chromatin loops in A. thaliana are often small and bring the 3‘-end of a gene into contact 

with the 5‘-end [478] which might facilitate transcription after initial recruitment of RNA 

polymerase II [477]. However, ‗transcriptional factories‘ [485], where highly transcribed 

genes are clustered, were not observed in A. thaliana [478]. Contiguous genome sequences 

like the one presented in this work [213] are especially important for these analyses as a 

strong interaction of heterochromatic regions e.g. around the centromeres was reported as 

the dominant structuring force in A. thaliana [478,484,486]. Another Hi-C study reported an 

enrichment of SVs at positions with increased interchromosomal contact [487]. These 

regions are also assumed to display more frequently T-DNA insertions in mutagenesis 

experiments [487] thus indicating general susceptibility to modifications. As regions with 

interchromosomal proximity were reported to comprise heterochromatin e.g. repeats around 

the centromeres [478], this might explain the frequent observation of SVs close to the 

centromeres in this work [53,213]. 

Besides the chromatin structure, modifications of the DNA like methylation are effecting 

gene expression. Epigenetic investigations with focus on methylation patterns are facilitated 

by third generation sequencing technologies which provide the ability to analyse sequences 

and modifications of DNA molecules at the same time. Although ONT sequencing reads are 

probably better suited for the investigation of methylation patterns as more modification 

types can be detected, SMRT sequencing data sets with sufficient sequencing depth can be 

subjected to analyses of some modifications [136]. Previous studies identified methylation 

mechanisms in A. thaliana [488] and reported quantitative trait loci (QTL) for differences in 

the methylation patterns between different accessions [323,489]. Long reads are crucial to 

resolve transposable elements (TEs) and especially nested insertions [213,490]. Most TEs 

in euchromatic regions are highly methylated in order to suppress transposition [491–494]. 

Therefore, sequence and methylation information must be collected for the same molecule 

to investigate the regulation of TEs. In addition, the methylation of currently inaccessible 

regions like NORs and centromeres [54,213] could be addressed in the future. 

These regions could become the target of comparative genomics with additional 

improvements of sequencing technologies within the next years. Since these inaccessible 

regions are missing in the current reference sequence TAIR9, re-sequencing experiments 
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focusing on the rate of variant accumulation per generation [320,323,402] cannot identify 

variants in these regions. NORs and centromeres were previously reported to account for 

major genome size differences between accessions [324,415] thus high variability of these 

regions seems likely. Finally, improved sequencing capacities might lead to a replacement 

of re-sequencing projects [324,330] by de novo assembly and comparative genomics based 

on complete genome sequences [51]. 

When it comes to annotation of the generated genome sequences, the sequencing of full 

length transcripts [164,495] would be beneficial for the generation of hints. Single cell 

RNA-Seq [496–499] might be helpful to capture genes which are only transcribed in specific 

developmental stages, in rare cell types, or under certain environmental conditions. 

Protocols for single cell RNA-Seq of plants are still in development and will require further 

optimization and adaptation especially for RNA extraction from different species and cell 

types [498,499]. In addition, bioinformatic tools need to be adjusted to the new requirements 

to cope with inherent biases [499,500]. Single cell DNA sequencing could also be applied to 

investigate the above mentioned three-dimensional structure of the genome as cell type 

specific differences are expected [478]. 

 

3.2 Genome size of A. thaliana 

Many studies investigated the genome size differences between various A. thaliana 

accessions [258,324,414,501], Arabidopsis species [411,422], and closely related species 

[409,411]. A huge proportion of these differences was previously attributed to changes in the 

number of 45S rDNA repeats [324,415]. This could be connected with previously observed 

hypomethylation of NORs and centromeres [502,503]. Investigations of a correlation 

between the degree of methylation in certain regions in correlation with the genome size 

could provide more insights. Although a contribution of additional regions and mechanisms 

cannot be ruled out, the relevance of NORs is supported by multiple independent studies. 

A. thaliana-derived rRNA genes are selectively silenced in A. suecica the allotetraploid 

hybrid of A. thaliana and A. arenosa [504] indicating that a loss of copies might take place 

without detrimental consequences. The same regulatory mechanism is expected behind the 

silencing of specific rRNA gene variants in A. thaliana during the ontogenesis [505,506]. 

While dimethylation of histone H3 on K9 leads to transcriptional silencing of attached rRNA 

genes, a trimethylation of K4 results in transcriptional activation [506–508]. Histon 
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modifications are not just affecting transcriptional activities, but the mutation of the 

monomethyltransferases ATXR5 or ATXR6 in A. thaliana were also reported to cause 

overreplication of silenced repetitive elements [508,509]. Correlating the transcriptional 

activity to sequence variants and the replication efficiency could be a strategy to identify 

mechanisms which effect genome sizes. In summary, it can be speculated that DNA 

sequence variants between accessions might lead to different degrees of histon-mediated 

compression thus explaining differences in the replication efficiency which leads to CNVs of 

45S rRNA genes ultimately resulting in genome size differences. 

TEs could be another source for genome size differences between accessions. Since most 

TEs in A. thaliana appear to have no functional relevance, these elements provide material 

for deletions without deleterious consequences [320]. The availability of highly contiguous 

genome sequences of several A. thaliana accessions [53,54,120,211–213] enables the 

identification of active TEs based on comparative genomics as previously suggested [510] 

and could reveal novel full length elements. Available sequencing data sets of many 

additional accessions [53,326,327,330,511] allow the identification of PAVs of TEs through 

read mappings against high quality genome sequences. Due to missing regions in the 

reference sequence [54,213], the true proportion of TEs might be underestimated since long 

terminal repeats (LTRs) are expected to be abundant in the pericentromeric regions [512–

514]. A comprehensive investigation of TEs in A. thaliana would therefore require a 

systematic re-annotation of a contiguous assembly according to the most recent 

classification system [515]. A. thaliana TEs appear to be smaller than A. lyrata TEs [516]. 

Thus fragmentation or deletion of repeats are likely to have contributed to the reduced 

genome size of A. thaliana compared to A. lyrata [422,517]. Although the reduced TE 

activity in selfing plants appears as a potential explanation for genome size differences, 

numerous small deletions in intergenic regions were previously reported to be the most 

important factor for the genome size difference [422]. In contrast, Capsella rubella was 

described with a genome size similar to A. lyrata, but differs from A. thaliana mainly by 

variants in the pericentromeric regions and probably NORs [413]. Although C. rubella 

converted to selfing like A. thaliana, no reduction in the amount of TEs was observed yet 

which could be attributed to the short phylogenetic time span [413]. An increased TE activity 

in A. lyrata compared to A. thaliana would be another explanation for the observed 

differences in TE content between both Arabidopsis species [394,413,422]. If TE 

degeneration and deletion contribute to the genome shrinkage of A. thaliana, control 
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mechanisms of TE activity must differ between both Arabidopsis species [394,422,518]. 

Other hypotheses assume a reduced TE activity in A. thaliana which might be caused by the 

high gene density which causes most TE insertions to be deleterious [409]. Since numerous 

RNA-Seq data sets are publicly available, an investigation of TE gene transcription in 

A. thaliana is feasible. These expression values could be compared to TE gene expression 

in other Brassicaceae with a high number of available RNA-Seq data sets thus providing 

information about the relative TE transcription in A. thaliana. 

The partial deletion of TEs is matching initial reports about a general excess of deletions 

over insertions in A. thaliana accessions [422]. These comparisons were based on 

chromosome sequence alignments and not on more biased short read mappings which 

would artificially favour deletions over insertions [102,422]. Illegitimate recombination 

between LTRs can cause deletions [519] and might contributed to the observed differences. 

High quality genome assemblies [54,212,213] could be used to validate these findings. 

Deletions should occur with higher allele frequencies than insertions if this mechanism is 

contributing to the genome shrinkage [520]. While the number of highly contiguous genome 

sequences is still too low for species-wide studies, the available data sets for the 1001 

genomes project allow investigation of allele frequencies based on read mappings. Since 

recent long read assemblies are already exceeding the Col-0 reference sequence in terms 

of contiguity [54,213], results of new studies could surpass previous ones. 

However, there must be a mechanistic explanation for previously reported differences in the 

genome size between accessions [258,324,414], because small differences in the genome 

size should not result in a selective advantage [521,522]. Differences in exonuclease activity 

were previously observed between A. thaliana and Solanum lycopersicum and therefore 

proposed as one possible explanation [523]. A recent study investigated the replication of 

the Col-0 genome of cells in suspension culture and classified regions of the genome into 

bins based on the replication in early, middle, or late S phase [524]. Correlating the 

replication phase of genes and regions with PAVs could be a way to find mechanistic 

explanations for the loss of certain regions. Genes and euchromatic regions are reported to 

replicate generally earlier than TEs and heterochromatic regions around the centromeres 

[524]. The observed enrichment of large SVs around the centromeres in this work [53,213] 

might be explained by errors at the end of the S phase. 
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Eukaryotic genomes usually contain a huge amount of introns which contribute substantially 

to the total genome size thus a removal of introns would contribute to genome shrinkage 

[404,525]. The mutational hazard hypothesis proposes the loss of introns to reduce the 

amount of DNA which could receive hazardous mutations [404,526]. While there is a 

correlation between the synonymous substitution rate and the likelihood that the effected 

intron is lost, selection works against the loss of introns with regulatory elements [404,527]. 

In general, the mutation rate in A. thaliana exceeds the rate in A. lyrata [528] thus 

suggesting a reason why intron loss is stronger in A. thaliana. 

In summary, different factors are likely to shape the A. thaliana genome: i) differences in 

45S rRNA gene replication due to methylation differences, ii) differences in TE activity, iii), 

favouring deletions over insertions, and iv) loss of introns. 

 

3.3 Gene set differences 

High quality genome sequences of several A. thaliana accessions [53,54,120,211–213] and 

sequencing data sets of many additional accessions [330] allow a detailed pan-genome 

analysis e.g. the classification of genes as ‗essential‘ or ‗dispensable‘. However, the 

situation is slightly more complex with intermediate genes which could be labelled 

‗conditionally dispensable‘ [246]. Since an organism with a truly minimal gene set would 

require an environment without selection pressure, the minimal gene set is a theoretical 

concept which is unlikely to be reached [529]. 

Previous re-sequencing studies reported about 300-500 presence/absence variants (PAVs) 

of genes per A. thaliana accession [320,427]. The number of apparently dispensable genes 

increases when additional accessions are included in the analysis as the investigation of 

1,135 accessions demonstrated by identifying 17,692 genes with at least one high impact 

variant [330]. Despite numerous false positives, this number might still be an 

underestimation due to the remaining gaps and errors in the Col-0 reference sequence 

which was used for the mapping-based identification of functionless genes. Due to at least 

three duplications of the genome of an A. thaliana ancestor, redundant gene copies can be 

removed without phenotypic impact. It will be interesting to see in the future if the 

incorporation of more sequencing data sets derived from additional accessions will lead to a 

saturation of observed absent genes. In this work, copy number variations (CNVs) and 
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PAVs were also identified based on the coverage in read mappings [53,213]. The number of 

gene differences between Col-0 and Nd-1 is in the same range as previous reports 

[320,427]. This method is probably still the best approach to perform pan-genomic 

investigations in A. thaliana. The risk of missing genes in the selected reference sequence 

decreases with increasing assembly quality. However, variations in the phylogenetic 

distances of the analysed accessions could bias the results due to differences in the 

mappability of reads. Another issue are differences in the applied sequencing technologies 

and therefore different coverage biases. 

Most previous studies were only focused on differences concerning protein encoding genes, 

but high quality sequences combined with advanced RNA-Seq workflows facilitate the 

investigation of various RNA genes. The annotation of non-coding RNA genes can be 

performed via Rfam [530] and other tools [531,532]. miRBase [533,534] is frequently applied 

for the annotation of miRNA genes and the prediction of tRNA genes is often based on 

tRNAscan-SE [535]. These tools provide the basis to expand comparative genomics to the 

RNA gene level. Since the focus of Araport11 was on the annotation of non-coding RNAs by 

incorporating information from RNA-Seq experiments, a comprehensive analysis of RNA 

genes across numerous A. thaliana accessions could add a pan-genomic perspective. 

 

3.4 Non-canonical splice sites 

After analysing the presence of non-canonical splice site combinations on a massive scale 

in plants [7,62], the functional impact of these splice site combinations needs to be 

assessed in much greater detail. Several suggestions for further experiments and current 

limitations that need to be addressed were already described [7]. This chapter illustrates 

some opportunities for future research including the analysis of i) an extended data set, 

ii) the impact of environmental factors on non-canonical splice sites, and iii) approaches to 

overcome technical limitations. 

A comparison of the non-canonical splice site combinations detected in plants to splice site 

combinations in animals and fungi would be interesting to identify plant-specific 

characteristics and mechanisms. Therefore, the established analyses [7] can be applied to 

an extended collection of data sets by re-using the collection of Python scripts. Since high 

contiguity genome sequences become available with increasing pace, it might be interesting 
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to repeat such analyses in the near future to harness the power of substantially larger data 

sets. Although no phylogenetic signal of non-canonical splice site combinations was 

observed yet [7], a pattern might emerge when more closely related species are included. 

In general, alternative splicing is substantially influenced by external factors e.g. light 

intensities, salt concentrations, or pathogens [536–538]. A comprehensive investigation of 

the usage of non-canonical splice site combinations under various conditions might reveal 

the relevance of these splice sites and could even facilitate the detection of molecular 

mechanisms involved in the splicing. As already speculated, certain splice site combinations 

might be associated with very precisely defined conditions [7]. It is important to distinguish 

between a potential dedication of non-canonical splice site combinations to specific 

environmental conditions and the expression of different genes, which happen to display 

such non-canonical splice sites. Performing the same analysis for multiple species could 

help to distinguish both possibilities. Another dimension is ontogenesis. Numerous reports 

describe changes in splicing patterns during the development and in different cell types 

[539–541]. Again, it would be interesting to see if certain non-canonical splice site 

combinations are dedicated to certain developmental stages. 

If non-canonical splice sites are used, what is the proportion of resulting transcripts 

compared to all transcripts of the gene? Relative quantification of different transcript 

isoforms could help to shed more light on the evolution of non-canonical splice sites. 

Especially changes herein over evolutionary times would be interesting. While isolated 

splice sites can be analysed based on common RNA-Seq data sets, the precise 

quantification of different transcript isoforms is still challenging. These analyses could be 

facilitated by high-throughput long read sequencing technologies to recover complete 

transcript sequences in a single read. 

On the technical level, the comparison of different annotations e.g. NCBI and Araport11 [2] 

for A. thaliana could reveal insights into workflow specific differences in the annotation of 

non-canonical splice site combinations. Similar comparisons are possible for many 

organisms for which the community is curating several annotations in parallel e.g. 

Vitis vinifera, Drosophila melanogaster, Caenorhabditis elegans, Mus musculus, and 

Homo sapiens. Different annotation tools and approaches were applied to data sets from 

different sources to generate these annotations. Systematic differences might exist between 
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popular annotation collections provided by the NCBI [542] and phytozome [543]. Results of 

these comparisons could help to further improve gene prediction workflows. 

The investigation of splice site usage is relying on the accurate placement of RNA-Seq 

reads to a genomic reference sequence which requires an alignment with gaps at the intron 

positions. There are several tools dedicated to this purpose, which might show differences in 

terms of performance. Assessing the best available and frequently applied tools like STAR 

[158,286], HiSat2 [159], TopHat2 [544], and exonerate [289] could further facilitate research 

on splice sites and might reveal explanations for currently observed annotation differences 

[7]. Such a benchmarking study should not just identify the most suitable tool for a specific 

application, but also provide insights into the best choice of parameters. The detection of 

novel non-canonical splice site combinations based on RNA-Seq data sets would benefit 

from these benchmarking results. This step from the assessment of existing annotations to 

the identification of novel non-canonical splice sites would substantially increase the 

accessible taxonomic diversity as genome sequences without annotation could be included 

in the analysis. 

 

3.5 Transfer to crops 

The investigation of non-canonical splice sites already demonstrated how methods and 

knowledge can be transferred from the model organism A. thaliana to other plant species 

including crops. Not just the assembled genome sequence [1,384], but also the high quality 

annotation [2,384] is crucial for plant biotechnology. Investigations of the (genome) evolution 

of A. thaliana revealed insights [23] which are also improving our understanding of the 

phylogenetic development of other plant species. A huge diversity of A. thaliana accessions 

allows the analysis of local adaptations as this inbreeding species preserves genes which 

originated in specific geographic regions [545]. Based on citations, A. thaliana research is 

even more important for research on other species than for research on this model organism 

itself [546]. 

Information is transferred from A. thaliana to other plant species on various levels including 

sequences and parameters for gene prediction [21,112,219,413,422,547] as well as 

functional annotations [24,113,363,548]. Moreover, A. thaliana is usually included in 

comparative genomics [21,112,219,413,422,547,549] and phylogenetic analyses 
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[11,21,230,413]. Thus, an improved understanding of the A. thaliana pan-genome and an 

improved reference sequence will result in enhanced annotations of other genome 

sequences. 

The Nd-1 genome sequence and all related genomic resources provide the basis for 

benchmarking studies. Different second generation sequencing technologies and SMRT 

sequencing were applied to analyse the same biological material. Since the detection of 

sequence variants is frequently required in re-sequencing projects or in 

mapping-by-sequencing studies [32,550], the Illumina sequencing reads could be used to 

optimize variant calling parameters in read mappings against the Col-0 reference sequence. 

The availability of a highly contiguous Nd-1 genome sequence based on independent SMRT 

sequencing reads provides the opportunity to validate sequence variants in silico. To the 

best of my knowledge, there is no benchmarking study about the best tools and parameters 

for variant calling in plants. 

The consideration of non-canonical splice sites during gene prediction on new crop genome 

sequences can lead to a higher quality of the structural annotation. One example with a 

non-canonical splice site combination in the gene structure is FGT1 (At1g79350) which was 

investigated in A. thaliana Col-0 and Nd-1 [7,62]. Homologous genes with non-canonical 

splice sites were discovered in other Brassicaceae including the crops Brassica napus, 

B. oleracea, and B. rapa [7]. Since FGT1 was reported to mediate chromatin memory in 

response to stress [551], a proper structural annotation is beneficial to understand stress 

responses in these crop species. Breeding programs might benefit from an accurate gene 

structure, because non-functional alleles were observed to cause too early down-regulation 

of stress response genes after heat exposure [551]. FGT1 is only one example for a gene 

with non-canonical splice sites in A. thaliana which could facilitate crop improvements if the 

knowledge is transferred. A systematic investigation of all genes with non-canonical splice 

site combinations is likely to reveal more cases. 
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3.6 Conclusion 

In summary, this work contributes to the research on A. thaliana by generating one of the 

most contiguous genome assemblies for this species together with an optimized structural 

annotation. This genomic resource revealed numerous variants and will facilitate A. thaliana 

pan-genomics in the future. The investigation of non-canonical splice sites in this model 

organism paved the way for an extended study across the kingdom of plants. This is a 

successful example how methods and knowledge gained from research on A. thaliana were 

transferred to other plants including important crop species. The extended analysis revealed 

insights about the impact of non-canonical splice sites and provides a comprehensive 

resource for future studies. 
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