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Introduction

Stochastic ordinary differential equations (SODEs) are used in many applications to
model the time-dependent processes, which are exposed to deterministic influences as
well as stochastic perturbations. For example, in financial mathematics it is a widely ac-
cepted principle to model stock price performance with SODEs, see [30]. Also in biology,
physics or chemistry many problems can be formulated in terms of stochastic differential
equations (see [2] and [62]). The majority of these SODEs cannot be solved explicitly and
numerical methods become increasingly important. Several monographs have been pub-
lished which set up and analyze numerical methods for stochastic differential equations,
see for instance [36], [42], [43], [45].
In this thesis we deal with stochastic differential equations driven by large or rather

stiff noise. By stiff noise we understand multiplicative noise terms with large coefficients
respectively matrices with large eigenvalues. Strong perturbations frequently appear in
stock price performance, in physics, chemical or biological processes. Large noise can
certainly contribute to a damping or stabilization of the solutions of SODEs. It will be
specified more precisely below.
Let us first consider a homogeneous linear stochastic differential equation in the form

dX(t) =AX(t) dt+
m∑
r=1

GrX(t) dWr(t), t ∈ [0, T ]

X(0) =X0,

(0.1)

where A,Gr ∈ Rd×d, r = 1, . . . ,m and Wr are independent real-valued standard Wiener
processes. Details of the analytical setting for SODEs and their solutions will be provided
in Chapter 1. If the matrices A and Gr, r = 1, . . . ,m commute, i.e. AGr = GrA and
GrGl = GlGr for all r, l, then the explicit solution of (0.1) has the form (see [3], [42])

X(t) = exp
(
(A− 1

2

m∑
r=1

G2
r)t+

m∑
r=1

GrWr(t)
)
X0. (0.2)

For d = m = 1 the equation (0.2) is also known as the geometric Brownian motion.
In the literature there are many results on the longtime behavior of solutions to SODEs,

see for instance [3], [37], [34], [36], [42], [40]. Quite a few of them focus on the study
of the stability of stochastic systems, i.e. the insensitivity of the system state to minor
changes in the initial state or system parameters. In particular, they study the asymptotic



Contents 5

stochastic stability in the mean-square sense and the asymptotic stability in the almost
sure sense. For definitions we refer to [3], [34], [42]. In the one dimensional case it is
shown that the equilibrium position of (0.1), i.e. X(t) = 0 with X0 = 0 is asymptotically
mean-square stable if and only if 2A + G2

1 < 0. Moreover, the equilibrium position is
asymptotically stable in the almost sure sense if and only if A − 1

2G
2
1 < 0. It follows

that for sufficiently large G1 the equilibrium position of (0.1) is asymptotically stable in
the almost sure sense but asymptotically unstable in the mean-square sense (see [3], [34],
[1]). In the multidimensional case a criterion of the asymptotic mean-square stability of
the equilibrium position of (0.1) is derived in [3], [55], [34], [10], [1]. The criterion refers
to the stability matrix

S = id⊗A+A⊗ id +

m∑
r=1

Gr ⊗Gr, (0.3)

where ⊗ denots the Kronecker product (see [10]). The matrix S is derived from the
second moment of the solution of (0.1). Properties of the stability matrix are based on
the classical theory of deterministic differential equations. If the spectral abscissa of S
is negative, then the equilibrium position of (0.1) is asymptotic mean-square stable (see
[23] and also [10, Lemma 3.3], [1, Lemma 1]).
The authors from [10] have derived stability matrices for numerical schemes such as the

θ-Maruyama method and the θ-Milstein method and explored their asymptotic mean-
square stability. We also refer to [25] for results of the exponential stability in the
mean-square sense for numerical solutions to stochastic differential equations. In this
thesis we are interested in developing methods that treat large noise terms in a more
quantitative way on finite time intervals. Nevertheless, for our examples in Section 1.7
we check asymptotic mean-square stability properties of the equilibrium position of (0.1)
given in [10, Lemma 3.3] or [1, Lemma 1].
Let us consider the general nonlinear case

dX(t) =f(t,X(t)) dt+

m∑
r=1

gr(t,X(t)) dWr(t), t ∈ [0, T ]

X(0) =X0,

(0.4)

where f : [0, T ] × Rd → Rd is the drift coefficient function, gr : [0, T ] × Rd → Rd, r =

1, . . . ,m are the diffusion coefficient functions and Wr are independent real-valued stan-
dard Wiener processes. If we assume that f and gr, r = 1. . . . ,m are globally Lipschitz
continuous and also fulfill a linear growth condition then existence and uniqueness of the
solution to (0.4) are guaranteed (see [36], [16], [42]). In the numerical analysis there are
many results known for such problems. Since we are interested in the SODEs with stiff
noise terms we cite some authors who investigate this problem. For instance, in [44] a
balanced implicit method for solving of the SODEs with large noise terms is proposed.
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Later, based on in [44] C. Kahl and H. Schurz investigate higher order methods in which
the global mean square convergence is shown (see [32]). However, there are several prob-
lems with their approach: First, there seems to be no general recipe how to choose their
control functions. Second, their error analysis in [32] uses some estimates which need to
be corrected (for details see Remark 4.4.8 and Remark 4.5.6).
In our approach we pursue the following idea: If we have m noise terms and the

largest of them can be solved exactly, then the remaining terms can be solved numerically
without causing large errors. This idea, described in Section 1.4, is based on an orthogonal
transform of the Wiener process and a subsequent two-step recursion of the numerical
method. Various transformations of stochastic differential equations have been used to
analyze their qualitative properties (see [57]). But only few of them seem to be utilized
for numerical purposes. For instance, in [1] the authors use the Girsanov transformation
of the Wiener process to see the asymptotic mean-square instability of the equilibrium
position numerically. In this thesis we use the orthogonal Wiener process transformation
to isolate the largest noise term.
Let us consider SODE (0.1) and letQ ∈ Rm×m be orthogonal. Further, let us transform

the Wiener process as follows:

W̃ (t) = Q>W (t), t ∈ [0, T ]. (0.5)

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4
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transformed W(t)

Figure 0.1.: Single trajectories of a two-dimensional Wiener process and their orthogonal
transformation
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Actually, the orthogonal transformation mixes trajectories but it does not change the
stochastic nature of the processes (see [18], [57]). Figure 0.1 shows a random walk in
R2 and its transformed version obtained by a rotation. Then the stochastic differential
equation (0.1) takes the form

dX(t) =AX(t) dt+
m∑
k=1

G̃kX(t) dW̃k(t),

X(0) =X0,

(0.6)

where G̃k =
m∑
r=1

QrkGr, k = 1, . . . ,m. Taking the Frobenius norm for the matrices G̃k

follows

‖G̃k‖2F =

m∑
r,j=1

QrkQjkΓrj , k = 1, . . . ,m

with Γrj = trace(G>r Gj). By a singular value decomposition of the matrix Γ we are
then able to arrange that G̃1 has the largest Frobenius norm equal to the largest singular
value. The access to the largest noise term suggests to split equation (0.6) as follows

dY (t) =AY (t) dt+
m∑
k=2

G̃kY (t) dW̃k(t), t ∈ [0, T ]

Y (0) =Y0,

(0.7)

and

dZ(t) =G̃1Z(t) dW̃1(t),

Z(0) =Z0.
(0.8)

The splitting idea is also known in the deterministic case (see [21], [9]): A vector field is
split into integrable parts and treated separately. The Lie-Trotter and Strang splittings
are well-known numerical methods for solving differential equations.
In this thesis we approximate the first SODE (0.7) with the standard Euler-Maruyama

or the Milstein schemes. In the second step we solve exactly the SODE (0.8), where the
initial value Z0 is replaced by the result of the first step at a specific time. Our approach
is related to the work of Erdoğan and Lord [14]. They treat SODEs and assume that the
noise terms commute. Then an exponential integrator is used for explicitly solving the
linear part of the SODEs with multiplicative noise terms. Similar problems with uniform
estimates for the proof of convergence as in [32] appear and need to be corrected.

Let us denote by h = (h1, . . . , hN ) ∈ (0, T ]N a vector of step sizes with
N∑
i=1

hi = T,N ∈

N. Every vector of step sizes induces a set of time grid points given by

Th := {tn :=
n∑
i=1

hi : n = 0, . . . , N}.
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Then our sample balanced shift noise Euler-type method is given by the two-step recur-
sion

Xh(ti) =Xh(ti−1) +AXh(ti−1)h+
m∑
k=2

G̃kXh(ti−1)Ĩ
ti−1,ti
(k) ,

Xh(ti) = exp
(
− 1

2
G̃2

1h+ G̃1Ĩ
ti−1,ti
(1)

)
Xh(ti), i = 1, . . . , N.

(0.9)

Here we denote the Wiener increments by Ĩti−1,ti
(k) = W̃k(ti)−W̃k(ti−1) (see [36]). Since we

are interested in the convergence of (0.9) in the mean-square sense, we strive to ensure
that the second moment of Xh stays bounded. It means that the matrix exponential
in (0.9) should not contain very large eigenvalues. To damp the exponential solver we
propose the following shift of the deterministic term in (0.8)

dZ(t) =CZ(t) dt+ G̃1Z(t) dW̃1(t), t ∈ [0, T ],

Z(0) =Z0,
(0.10)

where C ∈ Rd×d. Moreover, we assume that CG̃1 = G̃1C. Then the SODE (0.10) has
an explicit solution in the form (see [3], [42] or [36])

Z(t) = exp
(
(C − 1

2
G̃2

1)t+ G̃1W̃1(t)
)
Z0, t ∈ [0, T ]. (0.11)

This shift gives us the possibility to choose the matrix C such that the second moment
of (0.11) has small values. Therefore, we determine the shift matrix C = −1

2G̃
2
1. Of

course, at this shift we get an additional term in (0.7), which can cause stiffness in the
drift term. Hence, we assume that the spectrum of the matrix A lies to the left of the
imaginary axis of the complex plane. Then our balanced shift noise explicit Euler-type
method takes the form

Xh(ti) =Xh(ti−1) +A+Xh(ti−1)h+
m∑
k=2

G̃kXh(ti−1)Ĩ
ti−1,ti
(k) ,

Xh(ti) = exp
(
− G̃2

1h+ G̃1Ĩ
ti−1,ti
(1)

)
Xh(ti), i = 1, . . . , N,

(0.12)

where A+ = A+ 1
2G̃

2
1.

In the following we describe the main contents of this thesis. In particular, we dis-
cuss several extensions of our basic splitting methods above and we give an overview of
the theoretical and numerical in the further chapters. Generally, we consider strongly
convergent numerical methods, whose one-step maps satisfy suitable Lipschitz-type con-
ditions, which allow the underlying SODE to have non-globally Lipschitz continuous
coefficient functions. For the error analysis of the numerical schemes we use the notion
of B-consistency and C-stability from [5], [6] and study the strong error of convergence
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under the one-sided Lipschitz condition

〈x1 − x2, f(t, x1)− f(t, x2)〉+ η

m∑
r=1

|gr(t, x1)− gr(t, x2)|2 ≤ L|x1 − x2|2 (0.13)

for all x1, x2 ∈ Rd, t ∈ [0, T ]. This condition includes several examples of SODEs
with superlinearly growing drift and diffusion coefficient functions, for which the explicit
Euler-Maruyama scheme diverges (see [28]). However, in [29] the authors proposed a
tamed Euler scheme that has a modified drift term such that it is uniformly bounded.
They show that this method converges strongly to the exact solution of the SODE if
the drift term is one-sided Lipschitz continuous. An alternative approach is developed
in [5], the projected Euler-Maruyama method (PEM), which is based on the standard
Euler-Maruyama method and a projection onto a ball in Rd whose radius is expanding
with a negative power of the step size. It is proved that the PEM scheme with the one-
sided Lipschitz continuous coefficients is strongly convergent of order 1

2 . Also we refer to
[56], [25] for the strong error analysis of the backward Euler scheme and the split-step
backward Euler method.
In Chapter 1 we describe our problem setting and general assumptions. As an approach

to solving this problem, we present our balanced shift noise Euler-type schemes.
In Chapter 2 we put our focus on the linear case and prove that the balanced shift noise

as well as the explicit and the implicit Euler type methods are strongly convergent to
the exact solution of the stochastic differential equation. In order to show the advantage
of our balanced Euler-type scheme over the standard Euler-Maruyama method we derive
sharp error estimates and keep track of the constants that occur. Instead of standard
matrix norms we use the so-called logarithmic norm, which gives a more precise bound
to the matrix exponential (see [12], [58] or [60]).
In Chapter 3 we treat the nonlinear drift term in the SODE (0.6). We show how

to transfer from [5] the cut-off procedure for the explicit case and the splitting for the
implicit case. Here we apply known techniques for solving the nonlinear equations under
a one-sided Lipschitz condition and prove the strong convergence of the projected and
split-step balanced shift noise Euler type schemes.
In Chapter 4 we consider higher order schemes and suggest the projected balanced shift

noise Milstein type method. We do not carry out the numerical analysis of this scheme
and test it only in our numerical experiments. The numerical experiments suggest that
the projected balanced shift noise Milstein-type method converges strongly with order 1

if the diffusion matrices commute. Otherwise the order of the strong convergence of this
scheme seems to be only 1

2 . Let us emphasize at this point that our goal is not to achieve
a high order of convergence, but rather to treat the problem of the stiff noise term.
Further, returning to the classical balanced Milstein method [32] we prove in Sec-

tions 4.4- 4.5 that the balanced Milstein method with one-sided Lipschitz continuous
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coefficient functions is strongly convergent of order 1. Our proof repairs some incorrect
estimates in [32], which were mentioned above.
In Chapter 5 we present some numerical experiments which support our theoretical

results for the discretization of the stochastic Hopf equation and the stochastic Lorenz
equation. It is easy to see that the coefficient functions of the Hopf equation satisfy one-
sided Lipschitz condition. On the contrary, the drift coefficient functions of the Lorenz
equation are not one-sided Lipschitz continuous but satisfy the one-sided linear growth
condition (1.7) (see [54], [27]). This point makes this equation interesting. It is shown
that the balanced shift noise Euler- and Milstein-type schemes yield good results for the
Hopf system but are not very suitable for solving the stochastic Lorenz system.
Our final remark concerns the numerical implementation of the splitting methods pro-

posed and analyzed in this thesis. There are two possibilities to simulate the solution of
the transformed equation (0.6). The first one is to simulate a Wiener process for the orig-
inal equation (0.1) and then transform it via (0.5). This will allow us to obtain numerical
solutions that converge strongly to the solutions of the original equation (0.1). However,
to simplify our numerical computations we allow to simulate the modified Wiener process
W̃r, r = 1, . . . ,m directly by a random number generator. In this way we obtain strongly
convergent solutions of the modified equation (0.6). When compared with the original
equation, these solutions have only the same distribution. Hence they are only suitable
for approximating smooth functionals of solutions as it is common in the theory of weak
convergence (see [51], [11]).
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1. Balanced integration methods

In this chapter we study known methods and set up a new type of numerical methods
for solving stochastic differential equations (SODEs) with the multiplicative noise terms
with large coefficients. For deterministic systems with stiff drift terms there is a well-
developed theory how to solve such systems efficiently with implicit methods, see for
example [22]. However, there seems to be no simple analogue for stiff noisy systems,
since a naive implicit treatment of the noise term generally leads to divergence (see [44]).
Therefore, we propose in this chapter a different approach that deals with the problem

of the stiff noise terms and we focus on the linear case. The general case is considered in
further chapters.

1.1. Problem setting and general assumptions

In this section we introduce the general notations of the stochastic differential equations
and their assumptions. In addition, we assume that a one-sided Lipschitz condition is
satisfied.
Let d,m ∈ N, T ∈ (0,∞), and (Ω,F ,P) be a complete probability space with a filtra-

tion (Ft)t∈[0,T ] which fulfills the usual conditions (i.e., the filtration is right continuous
and each Ft contains all sets A ∈ F with P(A) = 0, see for instance [42],[50]). We
consider the solution X : [0, T ] × Ω → Rd to the Itô stochastic differential equation of
the form

dX(t) =f(t,X(t)) dt+
m∑
r=1

gr(t,X(t)) dWr(t),

X(0) =X0, t ∈ [0, T ]

(1.1)

with the drift and diffusion coefficient functions f, gr : [0, T ]× Rd → Rd and real-valued
standard Wiener processesWr : [0, T ]×Ω→ R, r = 1, . . . ,m defined on (Ω,F ,P). In the
following we impose the conditions on the drift and diffusion coefficient functions (see
[5], [6]).

Assumption 1.1.1. The mappings f : [0, T ]×Rd → Rd and gr : [0, T ]×Rd → Rd, r =

1, . . . ,m, are continuous. Furthermore, there exists a positive constant L ∈ (0,∞) and a
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parameter value η ∈ (1
2 ,∞) such that for all t ∈ [0, T ] and x1, x2 ∈ Rd it holds

〈
x1 − x2, f(t, x1)− f(t, x2)

〉
+ η

m∑
r=1

∣∣gr(t, x1)− gr(t, x2)
∣∣2 ≤ L|x1 − x2|2. (1.2)

In addition, there exists q ∈ [1,∞) such that for all t, t1, t2 ∈ [0, T ], x, x1, x2 ∈ Rd and
r = 1, . . . ,m it holds

|f(t, x)| ∨ |gr(t, x)| ≤L(1 + |x|q), (1.3)

|f(t1, x)− f(t2, x)| ∨ |gr(t1, x)− gr(t2, x)| ≤L(1 + |x|q)|t1 − t2|
1
2 , (1.4)

|f(t, x1)− f(t, x2)| ∨ |gr(t, x1)− gr(t, x2)| ≤L(1 + |x1|q−1 + |x2|q−1)|x1 − x2|. (1.5)

Here we denote by | · | the Euclidean norm in Rd and by 〈·, ·〉 the Euclidean innner
product. The assumption (1.2) is also called global monotonicity condition. In the case
q = 1 conditions (1.4) and (1.5) lead to the well-known global Lipschitz condition. The
conditions above guarantee the existence and uniqueness of the solution to (1.1) (see
[38] or [42]). That means that there exists a unique, P-almost surely continuous, and
(Ft)t∈[0,T ]-adapted stochastic process X : [0, T ] × Ω → Rd which satisfies the integral
equation

X(t) = X0 +

∫ t

0
f(s,X(s)) ds+

m∑
r=1

∫ t

0
gr(s,X(s)) dWr(s), t ∈ [0, T ]. (1.6)

Moreover, recall from [42, Chap.2.4] if there exist a constant αf ≥ 0 and p ≥ 2 such that

〈
x, f(t, x)

〉
+
p− 1

2

m∑
r=1

|gr(t, x)|2 ≤ αf(1 + |x|2) (1.7)

for all x ∈ Rd and t ∈ [0, T ], then

sup
t∈[0,T ]

‖X(t)‖Lp(Ω;Rd) <∞. (1.8)

The condition (1.7) is also known as global coercivity condition.
The following lemma is a generalization of [42, Th.4.1]. We assume that the solution

X(t), t ∈ [0, T ] to (1.1) is unique with the initial value X(0) = X0.

Lemma 1.1.2. Let X0 ∈ Lp(Ω;Rd) for p ∈ [2,∞) and assume that there exist constants
ε ≥ 0 and αf ≥ 0 such that for all x ∈ Rd and t ∈ [0, T ] it holds

〈x, f(t, x)〉+
p− 1

2

m∑
r=1

|gr(t, x)|2 ≤ αf(ε
2 + |x|2). (1.9)

Then

‖X(t)‖Lp(Ω;Rd) ≤
(
ε+ ‖X0‖Lp(Ω;Rd)

)
eαf t. (1.10)
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Proof. For ε = 1 we refer to the proof in [42, Th.4.1]. Now, let ε > 0. Then by the Itô
formula, the Cauchy-Schwarz inequality, the fact that |x| ≤ (ε2 + |x|2)

1
2 , x ∈ Rd, and

(1.9) we obtain

(ε2 + |X(t)|2)
p
2 =(ε2 + |X0|2)

p
2 + p

∫ t

0
(ε2 + |X(s)|2)

p−2
2 〈X(s), f(s,X(s))〉ds

+
p(p− 2)

2

m∑
r=1

∫ t

0
(ε2 + |X(s)|2)

p−4
2 |X(s)>gr(t,X(s))|2 ds

+
p

2

m∑
r=1

∫ t

0
(ε2 + |X(s)|2)

p−2
2 |gr(s,X(s))|2 ds

+ p
m∑
r=1

∫ t

0
(ε2 + |X(s)|2)

p−2
2 〈X(s), gr(s,X(s))〉 dWr(s)

≤(ε2 + |X0|2)
p
2 + p

∫ t

0
(ε2 + |X(s)|2)

p−2
2 〈X(s), f(s,X(s))〉ds

+
p(p− 2)

2

m∑
r=1

∫ t

0
(ε2 + |X(s)|2)

p−4
2 (ε2 + |X(s)|2)|gr(t,X(s))|2 ds

+
p

2

m∑
r=1

∫ t

0
(ε2 + |X(s)|2)

p−2
2 |gr(s,X(s))|2 ds

+ p

m∑
r=1

∫ t

0
(ε2 + |X(s)|2)

p−2
2 〈X(s), gr(s,X(s))〉 dWr(s)

≤(ε2 + |X0|2)
p
2

+ p

∫ t

0
(ε2 + |X(s)|2)

p−2
2

(
〈X(s), f(s,X(s))〉+

p− 1

2

m∑
r=1

|gr(s,X(s))|2
)

ds

+ p

m∑
r=1

∫ t

0
(ε2 + |X(s)|2)

p−2
2 〈X(s), gr(s,X(s))〉 dWr(s)

≤(ε2 + |X0|2)
p
2 + pαf

∫ t

0
(ε2 + |X(s)|2)

p
2 ds

+ p
m∑
r=1

∫ t

0
(ε2 + |X(s)|2)

p−2
2 〈X(s), gr(s,X(s))〉 dWr(s).

Here the last stochastic integral is a local martingale. Therefore, the stochastic Gronwall
Lemma A.2.2 applies and we obtain

E[(ε2 + |X(t)|2)
p
2 ] ≤ E[(ε2 + |X0|2)

p
2 ]eαfpt. (1.11)

Taking the limit as ε↘ 0 shows that (1.11) also holds for ε = 0. It remains to take the
p-th root and by the Minkovski inequality with respect to the L

p
2 (Ω;Rd)-norm we get

(1.10).



1.2. Transformed Wiener noise 15

Remark 1.1.3. Let us add to the proof of Theorem 4.1 in [42] that the stochastic
integral, obtained by the Itô formula is a local martingale. Therefore, one can apply the
stochastic Gronwall Lemma A.2.2, proposed in [53]. In [42] stopping times are used for
such an estimate.

Remark 1.1.4. Using ε in the proof above avoids studying cases p = 2 and p ≥ 4 as in
[39], for instance.

In particular, in the linear case we use the so-called logarithmic norm, which is defined
below.

Definition 1.1.5. For the quadratic matrix B ∈ Rd×d with the induced matrix norm | · |
the logarithmic norm µ2(B) is given by

µ2(B) = λmax

(B +B>

2

)
, (1.12)

where λmax is the largest eigenvalue of the matrix B+B>

2 .

We note that the logarithmic norm does not have all properties of the standard norm
and can also be negative. For details see Appendix, Section A.4.

Corollary 1.1.6. In the linear case with f(x) := Ax and gr(x) := Grx, r = 1, . . . ,m

for all x ∈ Rd and A,Gr ∈ Rd×d it holds

〈x,Ax〉+
p− 1

2

m∑
r=1

|Grx|2 =x>
(
A+

p− 1

2

m∑
r=1

G>r Gr
)
x

≤µ2(B)|x|2,
(1.13)

where

B := A+
p− 1

2

m∑
r=1

G>r Gr. (1.14)

According to the property of the logarithmic norm (see Appendix, Lemma A.4.2 ) we
can say, that

µ2(B) ≤ |B|.

1.2. Transformed Wiener noise

In this section we use an orthogonal transformation of the vector-valued Wiener noise to
order the matrix coefficients in the linear noise term. Let us consider a linear homoge-
neous stochastic differential equation in the form

dX(t) = AX(t) dt+
m∑
r=1

GrX(t) dWr(t),

X(0) = X0, t ∈ [0, T ],

(1.15)
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where A,Gr ∈ Rd×d and Wr : [0, T ]×Ω→ R, r = 1, . . . ,m denote an independent family
of real-valued standard Wiener processes defined on the probability space (Ω,F ,P) with
filtration (Ft)t∈[0,T ].
Let Q ∈ Rm×m be an orthogonal matrix and consider for all t ∈ [0, T ] the transformed

Wiener process

W̃ (t) = Q>W (t). (1.16)

The random vector W̃ (t) is again a vector of independent real-valued standard Wiener
processes, see for example [57, Sec.3.4.4]. Then for all r = 1, . . . ,m we have

dWr(t) =

m∑
k=1

Qrk dW̃k(t) (1.17)

and we rewrite (1.15) in the following form

dX(t) =AX(t) dt+

m∑
r=1

GrX(t)

m∑
k=1

Qrk dW̃k(t)

=AX(t) dt+

m∑
k=1

m∑
r=1

QrkGrX(t) dW̃k(t)

=AX(t) dt+

m∑
k=1

G̃kX(t) dW̃k(t), t ∈ [0, T ],

(1.18)

with the initial value X(0) = X0 and

G̃k =

m∑
r=1

QrkGr. (1.19)

The corresponding integral form is given by

X(t) = X0 +

∫ t

0
AX(τ) dτ +

m∑
k=1

∫ t

0
G̃kX(τ) dW̃k(τ). (1.20)

We note that by our derivation the solutions of (1.18) and (1.15) agree pathwise if the
Wiener processes are related by (1.17). However, if we consider (1.18) as an SODE with
an arbitrarily given Wiener process W̃ , then we get a new solution process X̃ which has
the same distribution as X, see Chapter 5.
The idea is to determine a matrix Q such that the Frobenius norms of the matrices

G̃k are ordered:

|G̃1|F ≥ |G̃2|F · · · ≥ |G̃m|F . (1.21)
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Calculating the Frobenius norm for all k = 1, . . . ,m yields

|G̃k|2F =trace
(
G̃>k G̃k

)
=trace

(( m∑
r=1

QrkGr
)> m∑

j=1

QjkGj
)

=
m∑

r,j=1

QrkQjktrace
(
G>r Gj

)
=

m∑
r,j=1

QrkQjkΓrj

=(Q>ΓQ)kk,

(1.22)

where the m×m matrix Γ = (Γrj)
m
r,j=1 is defined by Γrj := trace(G>r Gj).

Hence the ordering above is achieved by the singular value decomposition (SVD) of
the matrix Γ, i.e.,

Q>ΓQ = D,

where D denotes the diagonal matrix whose entries are the singular values γ1 ≥ · · · ≥ γm
of Γ (see for instance, [8]).
The fact that the singular values of Γ are ordered according to size will be used later

to suggest numerical approximations to (1.18) with large noise term. It seems that the
choice of the Frobenius norm is very useful to get the relation (1.21). However, in our
later estimates we use the spectral norm which satisfies |G̃k| ≤ |G̃k|F , k = 1, . . . ,m.
Therefore, it is desirable to have the ordering (1.21) with respect to the spectral norm,
but we don’t have a simple algorithm for this problem.

1.3. Hölder continuity of the solution

In this section we derive a result on the Hölder continuity of the solution of (1.18)
with respect to the norm L2(Ω;Rd), which is given by ‖Z‖L2(Ω;Rd) :=

(
E[|Z|2]

) 1
2 for all

Z ∈ L2(Ω;Rd).
Let the following block matrices

G =

G1
...
Gm

 ∈ Rm×d,d, G̃ =

 G̃1
...
G̃m

 ∈ Rm×d,d.

be given. Then their spectral norm is given by (see [26], [19])

|G| = |G>G|
1
2 (1.23)
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and

|G̃| = |G̃>G̃|
1
2 . (1.24)

The following lemma simplifies a few estimates.

Lemma 1.3.1. Let Gr, r = 1, . . . ,m be real-valued d× d-matrices and G̃k, k = 1, . . . ,m

are given by (1.19). Then

|G̃| = |G|. (1.25)

Proof. By (1.19) and (1.24) we obtain

m∑
k=1

G̃>k G̃k =

m∑
k=1

( m∑
r=1

QrkGr
)> m∑

j=1

QjkGj

=

m∑
r,j=1

G>r Gj

m∑
k=1

QkrQjk

=
m∑

r,j=1

G>r Gjδrj

=
m∑
k=1

G>k Gk,

where δrj denotes the Kronecker symbol. Taking the norm and the square-root proves
the assertion (1.25).

Further, similar to Corollary 1.1.6 with p = 2 it holds for all x ∈ Rd

〈x,Ax〉+
1

2

m∑
k=1

|G̃kx|2 =x>(A+
1

2

m∑
k=1

G̃>k G̃k)x

=x>(A+
1

2

m∑
k=1

G>k Gk)x

≤µ2(B̃)|x|2,

where µ2(B̃) is the logarithmic norm of

B̃ := A+
1

2

m∑
k=1

G>k Gk. (1.26)

In the following, let us denote by

α := µ2(B̃) and α+ := max(α, 0). (1.27)
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Lemma 1.3.2. The solution X : [0, T ]× Ω→ Rd of (1.18) satisfies for 0 ≤ s < t ≤ T

‖X(t)−X(s)‖L2(Ω;Rd) ≤ C(t− s, t)‖X0‖L2(Ω;Rd)|t− s|
1
2 , (1.28)

where C(δ, δ1) = eα+δ(|A|δ
1
2
1 + |G|) for 0 ≤ δ1 < δ ≤ T .

Proof. For all 0 ≤ s ≤ t ≤ T we have

X(t)−X(s) =

∫ t

s
AX(τ) dτ +

m∑
k=1

∫ t

s
G̃kX(τ) dW̃k(τ).

Then by the triangle inequality and the Itô isometry we obtain

‖X(t)−X(s)‖L2(Ω;Rd) ≤
∫ t

s
‖AX(τ)‖L2(Ω;Rd) dτ +

∥∥∥ m∑
k=1

∫ t

s
G̃kX(τ) dW̃k(τ)

∥∥∥
L2(Ω;Rd)

=

∫ t

s
‖AX(τ)‖L2(Ω;Rd) dτ +

( m∑
k=1

∫ t

s
‖G̃kX(τ)‖2L2(Ω;Rd) dτ

) 1
2
.

By Lemma 1.1.2 we obtain for the first integral∫ t

s
‖AX(τ)‖L2(Ω;Rd) dτ ≤|A|‖X0‖L2(Ω;Rd)

∫ t

s
eατ dτ

≤eα+t|A|‖X0‖L2(Ω;Rd)|t− s|.
(1.29)

For the second summand we use Lemma 1.3.1 and Lemma 1.1.2( m∑
k=1

∫ t

s
‖G̃kX(τ)‖2L2(Ω;Rd) dτ

) 1
2

=
(∫ t

s

m∑
k=1

‖G̃kX(τ)‖2L2(Ω;Rd) dτ
) 1

2

=
(∫ t

s

m∑
k=1

∫
Ω
〈G̃kX(τ), G̃kX(τ)〉dP(ω) dτ

) 1
2

=
(∫ t

s

∫
Ω
X(τ)T

m∑
k=1

G̃Tk G̃kX(τ) dP(ω) dτ
) 1

2

≤
∣∣∣ m∑
k=1

GTkGk

∣∣∣ 12(∫ t

s
‖X(τ)‖2L2(Ω;Rd) dτ

) 1
2

≤|G|‖X0‖L2(Ω;Rd)(

∫ t

s
e2ατ dτ

) 1
2

≤|G|eα+t‖X0‖L2(Ω;Rd)|t− s|
1
2 .

(1.30)

Altogether, this yields

‖X(t)−X(s)‖L2(Ω;Rd) ≤ ‖X0‖L2(Ω;Rd)e
α+t
(
|A||t− s|

1
2 + |G|)|t− s|

1
2 .
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The Hölder exponent can be increased if we insert the conditional expectation with
respect to the σ-field Fs:

Corollary 1.3.3. The solution X : [0, T ]×Ω→ Rd of (1.18) satisfies for 0 ≤ s < t ≤ T

‖E[X(t)−X(s)|Fs]‖L2(Ω;Rd) ≤Ccond(t)‖X0‖L2(Ω;Rd)|t− s|,

with Ccond(t) = eα+t|A|.

Proof. By applying the conditional expectation and the properties of the stochastic in-
tegral (see for instance, [42, Th.5.9]) we get

E[X(t)−X(s)|Fs] =E
[ ∫ t

s
AX(τ) dτ +

m∑
k=1

∫ t

s
G̃kX(τ) dW̃k(τ)|Fs

]
=

∫ t

s
E[AX(τ)|Fs] dτ.

Further, we use the fact that

‖E[Z|Ft]‖L2(Ω;Rd) ≤ ‖Z‖L2(Ω;Rd), (1.31)

for all Z ∈ L2(Ω;Rd) and (1.29) and obtain

‖E[X(t)−X(s)|Fs]‖L2(Ω;Rd) ≤
∫ t

s
‖E[AX(τ)|Fs]‖L2(Ω;Rd) dτ

≤
∫ t

s
‖AX(τ)‖L2(Ω;Rd) dτ

≤eα+t|A|‖X0‖L2(Ω;Rd)|t− s|.

This completes the proof.

We observe that all estimates above involve only terms of the type exp(αt), 0 < t ≤
T where α is a one-sided Lipschitz bound, see (1.9). A dependence of similar type
will frequently occur in the following text with the constants getting more and more
complicated. Therefore, we use the convention below as a shorthand in the following
theorems. Simultaneously, we refer to the precise dependence of constants on the data
of the problem.

Convention 1.3.4. Constants are called of moderate exponential type with respect to the
data of the problem if they only contain exponential terms of the form exp(α+t), t ∈ [0, T ],
where α+ = α and α is a one-sided Lipschitz bound.
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1.4. A simple balanced method

In this section we suggest a numerical method which achieves a balancing by a two-step
procedure. In the first step we approximate the stochastic differential equation excluding
the largest noise of the diffusion term. In the second step we treat the result of the first
step as an inhomogeneity and solve a simple stochastic differential equation with the
largest noise explicitly. In a sense we use the idea of exponential integrators for SODEs
with multiplicative noise, see [14].
Consider the same situation as in Section 1.2. Next, select the first diffusion term with

the largest noise and write (1.18) in the form

dX(t) = AX(t) dt+ G̃1X(t) dW̃1(t) +
m∑
k=2

G̃kX(t) dW̃k(t),

X(0) = X0, t ∈ [0, T ].

(1.32)

For our procedure we do not assume that the matrices A and G̃k as well as G̃k, G̃j for
k 6= j, k, j = 1, . . . ,m commute.
STEP 1: We exclude the largest noise term in (1.32)

dY (t) =AY (t) dt+

m∑
k=2

G̃kY (t) dW̃k(t), t ∈ [0, T ],

Y (0) =Y0.

(1.33)

This stochastic differential equation can be approximated, for example, with the well-
known Euler-Maruyama scheme or with a higher order method of Milstein type.
STEP 2: We consider the Itô equation

dZ(t) =G̃1Z(t) dW̃1(t), t ∈ [0, T ],

Z(0) =Z0.
(1.34)

Later on, Z0 will be the result of the first step at a specific time. It is known that the
fundamental matrix to (1.34) has the explicit form (see for instance, [3] or [42])

Φ0(t, 0) = exp(−1

2
G̃2

1t+ G̃1W̃1(t)), (1.35)

and the exact solution is given by

Z(t) = Φ0(t, 0)Z0, t ∈ [0, T ]. (1.36)

Before we formulate a simple balanced method let us introduce some notation: We define

a vector of step sizes h = (h1, . . . , hN ) ∈ (0, T ]N with
N∑
i=1

hi = T,N ∈ N (see Section 2.1).

The maximal step size in h is given by

|h| := max
i=1,...,N

hi.
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Moreover, every vector of step sizes h gives rise to a set of temporal grid points, which
given by

Th :=
{
tn :=

n∑
i=1

hi : n = 0, . . . , N
}
. (1.37)

Further, let t, s ∈ [0, T ] with s < t. We use as in [36] the following notation for the
stochastic increments:

Ĩs,t(k) :=

∫ t

s
dW̃k(τ), k = 1, ...,m. (1.38)

Then the simple balanced Euler-type method is given by the following split-step approxi-
mation

Xh(ti) =Xh(ti−1) +AXh(ti−1)hi +
m∑
k=2

G̃kXh(ti−1)Ĩ
ti−1,ti
(k) ,

Xh(ti) =Φ0(ti, ti−1)Xh(ti), i = 1, . . . , N,

(1.39)

where Z0 of (1.36) replaced by Xh(ti) and

Φ0(ti, ti−1) = exp(−1

2
G̃2

1hi + G̃1Ĩ
ti−1,ti
(1) ), i = 1, . . . , N.

This scheme is similar to a method suggested in [14]. The difference is that commutativity
of the noise terms is assumed in [14] and then each of them is solved by an exponential
integrator. By contrast through our pre-transformation of the Wiener process we have
access to the largest noise term, which can be solved exactly. The fact that the matrix
Φ0(ti, ti−1) contains only one Wiener increment facilitates our estimates. On the other
hand we have an additional difficulty since we do not assume the noise terms to commute.
We expect the new scheme to give better numerical approximations than the Euler-

Maruyama method in systems with large noise. The diagram below illustrates this for a
sample path of a two-dimensional system.
Figure 1.1 shows the simulations of one path generated by a reference solution, the

scheme (1.39), and the explicit Euler Maruyama method with step size h = 2−4 and
parameters

A =

(
−0.8 −1

0.5 −1

)
, G1 =

(
−3.8 0.05

0.075 0.1

)
, G2 =

(
−0.3 −0.05

0.5 −2

)
, T = 1, and the initial

value X0 =

(
0.1

0.1

)
.

We note that the stability matrix S, defined in (0.3) is given by

S =


0.68 −0.82 −0.82 −0.005

−1.42 5.77 0.02 −1.10

−1.42 0.02 5.77 −1.10

0.07 0.4 0.4 −2.4





1.4. A simple balanced method 23

with the eigenvalues {0.22,−2.27, 6.12, 5.74}. Then the spectral abscissa in this case is
equal to 6.12 (see for instance, [20]). Following, the equilibrium position of the linear
SODE (1.15) with the given matrices A,G1 and G2 is not asymptotically mean-square
stable (see [23],[10, Lemma 3.3],[1, Lemma 1]).
The matrices A,G1, G2 ∈ R2×2 do not commute. Therefore, we compute our reference

solution by the numerical approximation (1.39) with a step size ∆t = 2−18. In this
example we follow the recipe from Section 1.2: We first simulate Wiener increments for
the origin SODE (1.15) and then transform them by (1.16). Therefore, we get a strong
approximation to (1.15). The transformed matrices are given by

G̃1 =

(
3.81 −0.05

−0.12 0.09

)
and G̃2 =

(
0.06 −0.05

0.49 −2

)
.

Figure 1.1.: Sample trajectories of the simple balanced Euler-type method and Euler-
Maruyama scheme with step size h = 2−4 and reference solution obtained
by ∆t = 2−18. The initial value X0 = (0.1, 0.1)>.

Table 1.1 shows an overview of the Frobenius norm and the eigenvalues of G1, G2, G̃1

and G̃2. One can see that the values in Table 1.1 do not vary significantly from each
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other. Therefore, the main effect of (1.39) comes from the exact integrator in the second
step.

Table 1.1.: Frobenius norm and eigenvalues
G1 G2 G̃1 G̃2

Frobenius norm 3.80 2.08 3.81 2.06

Eigenvalues −3.80 −0.31 3.81 0.05

0.10 −1.99 0.09 −1.99

However, the theoretical investigations of this method can not yield better error es-
timates than other well-known numerical schemes, see Section 1.5 below. It is obvious
that for large G̃1 the second moment of (1.39) increases exponentially.

1.5. Modified solution operator

In this section we modify the solution operator Φ0 by a shift matrix C. This shift is
useful to get good estimates for the solution operator of STEP 2. Motivated by this we
keep track of the constants.
To be more precise let C ∈ Rd×d and let us consider (1.33) and (1.34) as a two-step

form

dY (t) =(A− C)Y (t) dt+
m∑
k=2

G̃kY (t) dW̃k(t),

Y (0) =Y0,

(1.40)

dZ(t) =CZ(t) dt+ G̃1Z(t) dW̃1(t), t ∈ [0, T ],

Z(0) =Z0.
(1.41)

On the continuous level we first solve (1.40) and then (1.41) with initial data Z0 = Y (δ),
where δ denotes a step size. In order for (1.41) to be explicitly solved the matrices C
and G̃1 should commute, i.e., CG̃1 = G̃1C. Then the fundamental matrix of (1.41) has
the explicit form (see [3], [42])

Φ1(t, 0) = exp
(
(C − 1

2
G̃2

1)t+ G̃1W̃1(t)
)
, (1.42)

for all t ∈ [0, T ] and the exact solution to (1.41) is giving by

Z(t) = Φ1(t, 0)Z0. (1.43)

For the second step we have the following estimates
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Corollary 1.5.1. Let Φ1 be given as in (1.42) and let the matrices C, G̃1 ∈ Rd×d com-
mute. Moreover, let Z0 ∈ L2(Ω;Rd). Then for every t ∈ [0, T ] it holds

‖Φ1(t, 0)Z0‖L2 ≤ ‖Z0‖L2(Ω;Rd)e
µ2(B̂)t, (1.44)

where µ2(B̂) is the logarithmic norm of the matrix

B̂ = C +
G̃>1 G̃1

2
. (1.45)

In particular, the conditional expectation of (1.43) is given by

E[Φ1(t, 0)Z0|F0] = eCtZ0. (1.46)

Proof. The assertion (1.44) follows from Lemma 1.1.2. The special case of the condi-
tion (1.9) with p = 2 and ε = 0 yields〈

x,Cx
〉

+
1

2

∣∣G̃1x
∣∣2 =x>Cx+

1

2
x>G̃>1 G̃1x

=x>
(
C +

G̃>1 G̃1

2

)
x

≤µ2(B̂)|x|2

(1.47)

for all x ∈ Rd. Since Φ1 is Ft-measurable and CG̃1 = G̃1C we obtain

E
[

exp
(
(C − 1

2
G̃2

1)t+G̃1W̃1(t)
)
Z0|F0

]
= exp

(
(C − 1

2
G̃2

1)t
)
E
[

exp
(
G̃1W̃1(t)

)]
Z0.

(1.48)

Let V (t) = exp
(
G̃1W̃1(t)

)
. Then by Itô‘s formula we have

dV (t) =
1

2
G̃2

1V (t) dt+ G̃1V (t) dW̃1(t),

V (0) =V0.

The integral form of this equation is given by

V (t) = V0 +

∫ t

0

1

2
G̃2

1V (τ) dτ +

∫ t

0
G̃1V (τ) dW1(τ).

Taking expectation yields

E[V (t)] = E[V0] +
1

2
G̃2

1

∫ t

0
E[V (τ)] dτ.

Let denote E[V (t)] := φ(t). Taking the t-derivative, we get

φ′(t) =
1

2
G̃2

1φ(t),
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φ(t) = exp
(1

2
G̃2

1t
)
V0, t ∈ [0, T ].

With V0 = id we have

E[exp
(
G̃1W̃1(t)

)
] = exp

(1

2
G̃2

1t
)
. (1.49)

Thus, by inserting of (1.49) into (1.48) we get (1.56).

In the one-dimensional case one can easily see that, depending on the choice of C, the
second moment of (1.43) can either grow exponentially or reduce the exponential growth
(see [42, Example 5.5]). Since our problem is multi-dimensional we discuss our choice of
the shift matrix C. First of all, this matrix should commute with G̃1. Second, we strive
to avoid large eigenvalues of the matrix B̃ such that the estimate in (1.44) does not grow
exponentially. In view of this goal we choose

C = −1

2
G̃2

1. (1.50)

Of course, we should allow several types of the matrix G̃1. In the symmetric case we
obtain that B̂ ≡ 0 and the constant in (1.44) equal to one. If the matrix G̃1 is skew
symmetric, i.e. G̃>1 = −G̃1 then the eigenvalues of G̃2

1 are negative and the shift in (1.41)
is not necessary, i.e. we should choose C ≡ 0.
In fact we shift the stiffness of the diffusion term to the drift term. Therefore, we

assume that the spectrum of A lies to the left of the imaginary axis of the complex plane.
Moreover, we suggest below an implicit scheme that is well suited for SODEs with the
stiff drift term.
We remark that the SODE (1.41) with C = 1

2G̃
2
1 represents the Stratonovich integral

in the differential form (see [36]). With our choice C = −1
2G̃

2
1 we derive that (1.41) is

equivalent to

dZ(t) =− G̃2
1Z(t) dt+ G̃1Z(t) ◦ dW̃1(t), t ∈ [0, T ]

Z(0) =Z0.

Let us denote

α1 :=µ2(−1

2
G̃2

1) and α1,+ := max(α1, 0). (1.51)

as the logarithmic norm of the matrix −1
2G̃

2
1. In order to obtain small values in (1.51)

the argument arg(λi) should be from [−π
4 ; π4 ]∪ [3π

4 ; 5π
4 ] for all eigenvalues λi, i = 1, . . . of

the matrix G̃1. By Lemma A.4.2 we have

|e−
1
2
G̃2

1t| ≤ eµ2(− 1
2
G̃2

1)t = eα1t, t ∈ [0, T ]. (1.52)
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Further, by

αS := µ2

(−G̃1 + G̃>1
2

G̃1

)
and αS,+ := max(αS, 0). (1.53)

we denote the logarithmic norm of the matrix B̂ with C = −1
2G̃

2
1.

Lemma 1.5.2. Let for every 0 ≤ s ≤ t ≤ T and G̃1 ∈ Rd×d the fundamental matrix Φ1

be given in the form

Φ1(t, s) := exp(−G̃2
1(t− s) + G̃1(W̃1(t)− W̃1(s))). (1.54)

Then for all Fs-measurable random variable Y ∈ L2(Ω;Rd) the estimate holds

‖Φ1(t, s)Y ‖L2(Ω;Rd) ≤ ‖Y ‖L2(Ω;Rd)e
αS,+(t−s), (1.55)

where αS denotes the logarithmic norm given in (1.53).
In addition, for all 0 ≤ s ≤ t ≤ T it holds

‖E[Φ1(t, s)Y |Fs]‖L2(Ω;Rd) ≤ ‖Y ‖L2(Ω;Rd)e
α1(t−s), (1.56)

where α1 is given by (1.51).

Proof. For the proof use Lemma 1.1.2 and Corollary 1.5.1.

Remark 1.5.3. We note that the conditional expectation can be estimated by the deter-
ministic part of the equation (1.41). Hence, the estimate (1.56) holds without applying
Lemma 1.1.2. Moreover, it holds the following relation of exponents

α1 ≤ αS ≤ αS,+. (1.57)

Lemma 1.5.4. For every Fs-measurable random variable Y ∈ L2(Ω;Rd) and 0 ≤ s ≤
t ≤ T the following estimate holds

‖(id− E[·|Fs])Φ1(t, s)Y ‖L2(Ω;Rd) ≤Kcond(t− s)‖Y ‖L2(Ω;Rd)|t− s|
1
2 , (1.58)

where Kcond(δ) = |G̃1|
(

1
2 |G̃1||δ|

1
2 + 1

)
eαS,+δ for 0 ≤ δ ≤ T .

Proof. From the definition of Φ1 for all 0 ≤ s ≤ t ≤ T we obtain

(id− E[·|Fs])Φ1(t, s)Y =− 1

2

∫ t

s

(
id− E[·|Fs]

)
Φ1(τ, s)G̃2

1Y dτ

+

∫ t

s
Φ1(τ, s)G̃1Y dW̃1(τ).
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Taking the L2-norm and using the Itô isometry yields

‖(id− E[·|Fs])Φ1(t, s)Y ‖L2(Ω;Rd) ≤
1

2

∫ t

s
‖
(
id− E[·|Fs]

)
Φ1(τ, s)G̃2

1Y ‖L2(Ω;Rd) dτ

+
∥∥∫ t

s
Φ1(τ, s)G̃1Y dW̃1(τ)

∥∥
L2(Ω;Rd)

=
1

2

∫ t

s
‖
(
id− E[·|Fs]

)
Φ1(τ, s)G̃2

1Y ‖L2(Ω;Rd) dτ

+
( ∫ t

s
‖Φ1(τ, s)G̃1Y ‖2L2(Ω;Rd) dτ

) 1
2 .

Since E[·|Fs] is an orthogonal projector onto L2(Ω,Fs,P;Rd), it holds for all Z ∈
L2(Ω;Rd)

‖Z‖2L2(Ω;Rd) = ‖E[Z|Fs]‖2L2(Ω;Rd) + ‖
(
id− E[·|Fs]

)
Z‖2L2(Ω;Rd).

Therefore, we obtain

‖
(
id− E[·|Fs]

)
Z‖L2(Ω;Rd) ≤ ‖Z‖L2(Ω;Rd). (1.59)

Using (1.59) and Lemma 1.5.2 yields

‖(id−E[·|Fs])Φ1(t, s)Y ‖L2(Ω;Rd)

≤1

2
|G̃2

1|‖Y ‖L2(Ω;Rd)

∫ t

s
eαS,+(τ−s) dτ

+ |G̃1|‖Y ‖L2(Ω;Rd)

( ∫ t

s
e2αS,+(τ−s) dτ

) 1
2

≤|G̃1|
(1

2
|G̃1||t− s|

1
2 + 1

)
‖Y ‖L2(Ω;Rd)e

αS,+(t−s)|t− s|
1
2 .

The following lemma compares solutions with different initial data.

Lemma 1.5.5. Let matrix Φ1 be given as in (1.54) with G̃1 ∈ Rd×d. Then for all
Fs-measurable variable Y ∈ L2(Ω;Rd) and 0 ≤ s ≤ s1 < t ≤ T it holds

‖(Φ1(t, s1)− Φ1(t, s))Y ‖L2(Ω;Rd) ≤ K(t− s, s1 − s)‖Y ‖L2(Ω;Rd)|s1 − s|
1
2 , (1.60)

where K(δ, δ1) = |G̃1|(1
2 |G̃1|δ

1
2
1 + 1)eαS,+δ for 0 ≤ δ1 < δ ≤ T .

Proof. For all 0 ≤ s ≤ s1 ≤ t ≤ T we get

(Φ1(t, s1)− Φ1(t, s))Y = Φ1(t, s1)(id− Φ1(s1, s))Y
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Let us define

Ỹ := (id− Φ1(s1, s))Y.

The random variable Ỹ is Fs1-measurable. Then by Lemma 1.5.2 we obtain

‖Φ1(t, s1)Ỹ ‖L2(Ω;Rd) ≤ ‖Ỹ ‖L2(Ω;Rd)e
αS,+(t−s1).

Further, from the definition of Φ1 we get for s ≤ s1

Φ1(s1, s)Y = Y − 1

2

∫ s1

s
Φ1(τ, s)G̃2

1Y dτ +

∫ s1

s
Φ1(τ, s)G̃1Y dW̃1(τ).

Then by the Itô isometry and Lemma 1.5.2 we get

‖(id− Φ1(s1, s))Y ‖L2(Ω;Rd) =
∥∥1

2

∫ s1

s
Φ1(τ, s)G̃2

1Y dτ

−
∫ s1

s
Φ1(τ, s)G̃1 dW̃1(τ)

∥∥
L2(Ω;Rd)

≤1

2

∫ s1

s
‖Φ1(τ, s)G̃2

1Y ‖L2(Ω;Rd) dτ

+
( ∫ s1

s
‖Φ1(τ, s)G̃1Y ‖L2(Ω;Rd) dτ

) 1
2

≤‖Y ‖L2(Ω;Rd)e
αS,+(s1−s)|G̃1|(

1

2
|G̃1||s1 − s|

1
2 + 1)|s1 − s|

1
2 .

This completes the proof.

We note that the constants in Lemma 1.5.2, Lemma 1.5.4, and Lemma 1.5.5 are of
moderate exponential type in the sense of Convention 1.3.4.

1.6. Reformulation of the linear integral equation

In this section we rewrite the integral equation (1.20) in the form, which is convenient
for our later estimates. Let the linear SODE

dX(t) =AX(t) dt+
m∑
k=1

G̃kX(t) dW̃k(t), t ∈ [0, T ] (1.61)

with the initial data X(0) = X0 be given. Using the shift matrix (1.50) we can write the
equation (1.61) in the following form

dX(t) = (A+
1

2
G̃2

1)X(t) dt− 1

2
G̃2

1X(t) dt+ G̃1X(t) dW̃1(t) +

m∑
k=2

G̃kX(t)W̃k(t),

X(0) = X0, t ∈ [0, T ],
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with A, G̃k ∈ Rd×d, k = 1, . . . ,m. Let denote by

A+ := A+
1

2
G̃2

1. (1.62)

Further, let X(t) be a solution of (1.61) and V (t) = Φ−1
1 (t, 0)X(t), t ∈ [0, T ]. Then by

applying Itô’s formula to V (t) we obtain

dV (t) =Φ−1
1 (t, 0)

(
G̃2

1 dt− G̃1 dW̃1(t) +
1

2
G̃2

1 dt
)
X(t)

+ Φ−1
1 (t, 0)

(
AX(t) dt+

m∑
k=1

G̃kX(t) dW̃k(t)
)

+ Φ−1
1 (t, 0)

(
G̃2

1 dt− G̃1 dW̃1(t) +
1

2
G̃2

1 dt)(AX(t) dt+
m∑
k=1

G̃kX(t) dW̃k(t)
)

=Φ−1
1 (t, 0)

[
(
1

2
G̃2

1 +A)X(t) dt− G̃1X(t) dW̃1(t) +
m∑
k=1

G̃kX(t) dW̃k

]
=Φ−1

1 (t, 0)A+X(t) dt+
m∑
k=2

Φ−1
1 (t, 0)G̃kX(t) dW̃k(t).

(1.63)

For the calculation in the one-dimensional case we refer to [36]. Then the equation (1.63)
has the integral form

X(t) =Φ1(t, 0)
(
X0 +

∫ t

0
Φ−1

1 (τ, 0)A+X(τ) dτ

+

m∑
k=2

∫ t

0
Φ−1

1 (τ, 0)G̃kX(τ) dW̃k(τ)
)
.

(1.64)

1.7. Balanced shift noise Euler-type methods

In this section we propose three balanced shift noise Euler-type methods. These methods
are based on the reformulations from the previous section. We recall from Section 1.4

that h = (h1, . . . , hN ) ∈ (0, T ]N , N ∈ N is a vector of step sizes if
N∑
i=1

hi = T . Every

vector of step sizes h induces a set of temporal grid points Th, which is given by (1.37)
and |h| := maxi∈{1,...,N} hi denotes an upper step size bound. Further, let A+ be given
by (1.62).
Now, we suggest several so called split-step methods, which we denote as balanced shift

noise explicit, balanced shift noise implicit, balanced shift noise fully implicit Euler-type
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schemes. The first method, in short BSNE, is given by

Xh(ti) =Xh(ti−1) +A+Xh(ti−1)hi +
m∑
k=2

G̃kXh(ti−1)Ĩ
ti−1,ti
(k)

Xh(ti) =Φ1(ti, ti−1)Xh(ti), 1 ≤ i ≤ N
(1.65)

with Xh(0) = X0. It is known that for SODEs, which are stiff with respect to the drift
term, implicit methods are well-suited. Therefore, the second method uses an implicit
first step, i.e. starting with Xh(0) = X0

Xh(ti) =Xh(ti−1) +A+Xh(ti)hi +
m∑
k=2

G̃kXh(ti−1)Ĩ
ti−1,ti
(k)

Xh(ti) =Φ1(ti, ti−1)Xh(ti), 1 ≤ i ≤ N.
(1.66)

We call this method balanced shift noise implicit, abbreviated as BSNI. Let us note that
for numerical analysis of the implicit method BSNI we will need an extra condition: For
µ2(A+)hi < 1 the estimate holds

|(id−A+hi)
−1| ≤ (1− µ2(A+)hi)

−1, i = 1, . . . , N,

where µ2(A+) is the logarithmic norm of matrix A+.
Finally, we suggest a fully implicit method Euler type scheme (BSNFI)

Xh(ti) =Xh(ti−1) +A+Xh(ti)hi +
m∑
k=2

G̃kXh(ti−1)Ĩ
ti−1,ti
(k)

Xh(ti) =Φ1(ti, ti−1)Xh(ti), 1 ≤ i ≤ N,
(1.67)

with Xh(0) = X0. Note that (1.67) may be written as

(id− Φ1(ti, ti−1)A+hi)Xh(ti) = Φ1(ti, ti−1)
(
Xh(ti−1) +

m∑
k=2

G̃kXh(ti−1)Ĩ
ti−1,ti
(k)

)
.

The theoretical analysis of this method has not been carried out since it is not clear how
to guarantee the invertibility of the leading matrix id− Φ1(ti, ti−1)A+hi, and bound its
inverse. This is in contrast to the BSNI method above. Nevertheless, this method gives
good numerical results and will be used for comparison in the experiments, see Figure 1.3.
In the following picture we compare the behavior of one path of the simple balanced

scheme (1.39) and BSNE Euler-type method to reference solution with step size h = 2−4

and parameters

A =

(
−8 −1

0.5 −1

)
, G1 =

(
−3.8 0.05

0.075 0.1

)
, G2 =

(
−0.3 −0.05

0.5 −2

)
, T = 1, and initial

value X0 =

(
0.1

0.1

)
.



1.7. Balanced shift noise Euler-type methods 32

As in the example of Section 1.4 we calculate the stability matrix S (see (0.3))

S =


−13.72 −0.82 −0.82 −0.05

−1.42 −1.43 0.02 −1.10

−1.42 0.02 −1.43 −1.10

0.07 0.4 0.4 −2.4

 .

and its eigenvalues: {−13.90,−1.81 + 0.71i,−1.81 + 0.71i,−1.45}. The spectral abscissa
of S is equal to −1.45 (see for instance, [20]). Then the equilibrium position of the linear
SODE (1.15) with the given matrices A,G1 and G2 is asymptotically mean-square stable.
For this we refer to [23],[3],[55],[10],[1].

-0.1 -0.05 0 0.05 0.1 0.15 0.2

X
1

-0.05

0

0.05

0.1

0.15

0.2

0.25

X
2

reference solution

simple balanced

BSNE

Figure 1.2.: Sample trajectories of the simple balanced method and BSNE Euler-type
scheme with step size h = 2−4, initial value X0 = (0.1, 0.1)>, and T = 1.

In this example we take the same parameters as in the example from Section 1.4 with
a small difference: We change an entry in the matrix A such that adding the shift matrix
(1.50) does not cause very large stiffness in the drift term. Also, we follow here the recipe
of the transformed Wiener noise, see Section 1.2. The calculation yields

A+ =

(
−0.73 −1.09

0.26 −0.99

)
, G̃1 =

(
3.81 −0.05

−0.12 0.09

)
, G̃2 =

(
0.06 −0.05

0.49 −2

)
.
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Table 1.2 shows that the spectrum of G̃1 lies to the right of the imaginary axis of
the complex plane. Thus, due to the shift, we also shift the spectrum of the matrix
exponential Φ1 to the left.

Table 1.2.: Frobenius norm and eigenvalues
A A+ G1 G2 G̃1 G̃2

Frobenius norm 8.14 1.67 3.80 2.08 3.81 2.06

Eigenvalues −7.93 −0.86 + 0.52i −3.80 −0.31 3.81 0.05

−1.07 −0.86− 0.52i 0.10 −1.99 0.09 −1.99

Since matrices A,G1, G2 ∈ R2×2 do not commute we replaced the exact solution of
(1.15) by a numerical approximation obtained with a very small step size ∆t = 2−18.
Figure 1.2 shows that there can be cases where the error occurs in the approximation
(1.39), while the BSNE approximation (1.65) gives a better result. However, the strong
error convergence in the mean square sense of the simple balanced method and the BSNE
Euler-type scheme shows no difference, see Figure 5.2 and Table 5.2 in Chapter 5.

Figure 1.3.: Sample trajectories of the BSNE, BSNI and BSNFI Euler-type schemes with
step size h = 2−4, initial value X0 = (0.1, 0.1)>, and T = 1.
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The next Figure 1.3 compares a behavior of the three balanced shift noise Euler-
type schemes (1.65)-(1.67) to reference solution with step size h = 2−4 and the same
parameters as above. In addition, µ2(A+) = −0.43 and µ2(A+)h = −0.03.

The detailed study of orders of convergence and the interplay of large drift and noise
terms will be given in Section 2.2 and Section 2.3.



2. Numerical analysis of the balanced
shift noise methods

In this chapter we analyze the B-consistency and C-stability of the balanced shift noise
methods. These notions are introduced in [5] and [6] and applied to so-called projected
Euler-Maruyama and Milstein schemes with nonlinearities satisfying a one-sided Lipschitz
estimate. Below we will point out the difference to the schemes considered in this work.
We continue to consider the linear stochastic differential equation

dX(t) =AX(t) dt+
m∑
k=1

G̃kX(t) dW̃k(t),

X(0) =X0, t ∈ [0, T ].

(2.1)

2.1. Stochastic B-consistency and C-stability

In this section we recall general definitions and the abstract convergence Theorem 2.1.5,
which was proved in [5].
First we introduce some additional notations: Let h̄ ∈ (0, T ] be an upper step size

bound and define the set T := T(h̄) ⊂ [0, T )× (0, h̄] as

T := {(t, δ) ∈ [0, T )× (0, h̄] : t+ δ ≤ T}.

We denote by G2(Th) the space of all adapted and square integrable grid functions

G2(Th) := {Y : Th × Ω→ Rd : Y (tn) ∈ L2(Ω,Ftn ,P;Rd), n = 0, 1, . . . , N},

for a given vector of step sizes h ∈ (0, h̄]N . Here Th is a set of temporal grid points given
by (1.37).

Definition 2.1.1. Let h ∈ (0, T ] be an upper step size bound and Ψ: Rd × T× Ω→ Rd

be a mapping satisfying the following measurability and integrability condition: For every
(t, δ) ∈ T and Y ∈ L2(Ω,Ft,P;Rd) it holds

Ψ(Y, t, δ) ∈ L2(Ω,Ft+δ,P;Rd). (2.2)

Then, for every vector of step sizes h = (h1, . . . , hN ) ∈ (0, h]N , N ∈ N, we say that a
grid function Xh ∈ G2(Th) is generated by the stochastic one-step method (Ψ, h, ξ) with
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initial condition ξ ∈ L2(Ω,F0,P;Rd) if

Xh(ti) = Ψ(Xh(ti−1), ti−1, hi), 1 ≤ i ≤ N,
Xh(t0) = ξ.

(2.3)

We call Ψ the one-step map of the method.

The definition of C-stability already appears in [13] and used in the context of numerical
approximation of stiff differential equations. More recent exposition one can find in [22]
and [59]. The authors from [5] extend this definition to numerical solutions of stochastic
differential equations.

Definition 2.1.2. A stochastic one-step method (Ψ, h̄, ξ) is called stochastically C-stable
(with respect to the norm in L2(Ω;Rd)) if there exist a constant Cstab and a parameter
value η ∈ (1,∞) such that

‖E[Ψ(Y, t, δ)−Ψ(Z, t, δ)|Ft]‖2L2(Ω;Rd)

+ η‖(id− E[·|Ft])(Ψ(Y, t, δ)−Ψ(Z, t, δ))‖2L2(Ω;Rd))

≤(1 + Cstabδ)‖Y − Z‖2L2(Ω;Rd))

(2.4)

for all Y,Z ∈ L2(Ω,Ft,P;Rd)) and (t, δ) ∈ T.

The next definition is concerned with the local truncation error.

Definition 2.1.3. A stochastic one-step method (Ψ, h̄, ξ) is called stochastically B-consistent
of order γ > 0 to (1.1) if there exist constants Ccons,1 and Ccons,2 such that for every
(t, δ) ∈ T it holds

‖E[X(t+ δ)−Ψ(X(t), t, δ)|Ft]‖L2(Ω;Rd) ≤ Ccons,1δ
γ+1 (2.5)

‖(id− E[·|Ft])(X(t+ δ)−Ψ(X(t), t, δ))‖L2(Ω;Rd) ≤ Ccons,2δ
γ+ 1

2 , (2.6)

where X : [0, T ]× Ω→ Rd.

This formulation is given in [5], where the local truncation error is split into deter-
ministic and stochastic part. The conditions (2.5) and (2.6) are already known in the
literature and can be found in slightly different form in [43], [45]. Finally, we give the
definition of strong convergence.

Definition 2.1.4. A stochastic one-step method (Ψ, h, ξ) converges strongly with order
γ > 0 to the exact solution of (1.1) if there exists a constant C such that for every vector
of step sizes h ∈ (0, h]N it holds

max
n∈{0,...,N}

∥∥Xh(tn)−X(tn)
∥∥
L2(Ω;Rd)

≤ C|h|γ .

Here X denotes the exact solution of (1.1) and Xh ∈ G2(Th) is the grid function generated
by (Ψ, h, ξ) with step sizes h ∈ (0, h]N .
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The following theorem investigates the strong convergence of a stochastic one-step
method.

Theorem 2.1.5. Let the stochastic one-step method (Ψ, h, ξ) be stochastically C-stable
and stochastically B-consistent of order γ > 0. If ξ = X0, then there exists a constant C
depending on Cstab, Ccons,1,Ccons,2, T , h, and η such that for every vector of step sizes
h ∈ (0, h]N it holds

max
n∈{0,...,N}

∥∥X(tn)−Xh(tn)
∥∥
L2(Ω;Rd)

≤ C|h|γ ,

where X denotes the exact solution to (1.18) and Xh the grid function generated by
(Ψ, h, ξ) with step sizes h. In particular, (Ψ, h, ξ) is strongly convergent of order γ.

For the proof we refer to [5]. We recall that the constant C is given by (see [5, Th.3.7])

C =
(

e

(
1+Cstab(1+h̄)

)
T (C2

cons,1(1 + h̄) + C2
cons,2Cη

)
T
) 1

2
, (2.7)

where Cη = 1 + (η − 1)−1.

2.2. Stochastic B-consistency and C-stability of the BSNE
Euler-type method

In this section we derive a strong convergence result for the balanced shift noise explicit
(BSNE) Euler-type scheme. Let us first show that this method is a stochastic one-step
method in the sense of Definition 2.1.1.
We assume that Assumption 1.1.1 hold. Then for an arbitrary upper size bound

h̄ ∈ (0, 1] we define the one-step map ΨBSNE : Rd × T × Ω → Rd of the balanced shift
noise explicit Euler-type method (1.65) by

ΨBSNE(x, t, δ) :=Φ1(t+ δ, t)x+ δΦ1(t+ δ, t)A+x

+
m∑
k=2

Φ1(t+ δ, t)G̃kxĨ
t,t+δ
(k) ,

(2.8)

for all x ∈ Rd and (t, δ) ∈ T. The matrix Φ1 is defined by

Φ1(t+ δ, t) := exp(−G̃2
1δ + G̃1Ĩ

t,t+δ
(1) ). (2.9)

Recall (1.38) for the definition of the stochastic increments. Now, let Y ∈ L2(Ω,Ft,P;Rd)
for arbitrary (t, δ) ∈ T. Then form Lemma 1.5.2

Φ1(t+ δ, t)Y ∈ L2(Ω,Ft+δ,P;Rd)
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and we have that ΨBSNE(Y, t, δ) : Ω→ Rd is an Ft+δ/B(Rd)-measurable random variable,
which satisfies condition 2.2.
The following estimates will be used for analyzing the consistency error and for estab-

lishing stability bounds. We note that the obtained constants are of moderate exponential
type in the sense of Convention 1.3.4.

Lemma 2.2.1. Let X be the exact solution of (2.1) with the initial value X0 ∈ L2(Ω;Rd).
Then for all 0 ≤ t1 ≤ t2 ≤ T the estimates hold∫ t2

t1

‖Φ1(t2, τ)A+(X(τ)−X(t1))|‖L2(Ω;Rd) dτ ≤K1(t2 − t1, t2)‖X0‖L2(Ω;Rd)|t2 − t1|
3
2 ,

(2.10)∫ t2

t1

‖
(
Φ1(t2, τ)− Φ1(t2, t1)

)
A+X(t1)‖L2(Ω;Rd) dτ ≤K2(t2 − t1, t1)‖X0‖L2(Ω;Rd)|t2 − t1|

3
2 ,

(2.11)

where K1,K2 : {(t1, t2) : 0 ≤ t1 ≤ t2 ≤ T} → R are given by

K1(δ, δ1) =
2

3
|A+|

(
|A|δ

1
2 + |G|

)
exp

(
αS,+δ + α+δ1

)
, (2.12)

K2(δ, δ2) =|A+||G̃1|(
1

3
|G̃1|δ

1
2 +

2

3
) exp

(
α+δ2 + αS,+δ

)
(2.13)

for 0 ≤ δ2 ≤ δ ≤ δ1 ≤ T . The constants α and αS are the logarithmic norms defined by
(1.27) and (1.53), respectively.

Proof. By Lemma 1.3.2 and Lemma 1.5.2 we obtain

‖Φ1(t2, τ)A+(X(τ)−X(t1))‖L2(Ω;Rd)

≤|A+|(|A||t2 − t1|
1
2 + |G|)eα+t2eαS,+(t2−τ)‖X0‖L2(Ω;Rd)|τ − t1|

1
2 .

Thus, by inserting into the integral we obtain∫ t2

t1

‖Φ1(t2, τ)A+(X(τ)−X(t1))‖L2(Ω;Rd) dτ

≤|A+|(|A||t2 − t1|
1
2 + |G|)‖X0‖L2(Ω;Rd)e

α+t2

∫ t2

t1

eα s+(t2−τ)|τ − t1|
1
2 dτ

≤2

3
|A+|‖X0‖L2(Ω;Rd)(|A||t2 − t1|

1
2 + |G|)eαS,+(t2−t1)eα+t2 |t2 − t1|

3
2 .

For the proof of the second estimate we use Lemma 1.1.2 and Lemma 1.5.5. It holds

‖
(
Φ1(t2, τ)− Φ1(t2, t1)

)
A+X(t1))‖L2(Ω;Rd)

≤|A+|‖X0‖L2(Ω;R2)e
αt1 |G̃1|

(1

2
|G̃1||t2 − t1|

1
2 + 1

)
eαS,+(t2−t1)|τ − t1|

1
2 .
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By integrating we obtain

|A+|‖X0‖L2(Ω;R2)e
αt1 |G̃1|

(1

2
|G̃1||t2 − t1|

1
2 + 1

)
eαS+

(t2−t1)
∫ t2

t1

|τ − t1|
1
2 dτ

≤|A+||G̃1|(
1

3
|G̃1||t2 − t1|

1
2 +

2

3
)‖X0‖L2(Ω;R2) exp(α+t1 + αS,+(t2 − t1))|t2 − t1|

3
2 .

Thus, this proves the assertion (2.11).

Corollary 2.2.2. Let X be the exact solution of (2.1) with the initial value X0 ∈
L2(Ω;Rd). Then for all 0 ≤ t1 ≤ t2 ≤ T the estimate holds∫ t2

t1

‖E[Φ1(t2, τ)A+(X(τ)−X(t1))|Ft1 ]‖L2(Ω;Rd) dτ ≤ K3(t2 − t1, t2)‖X0‖L2(Ω;Rd)|t2 − t1|2,

where K3 : {(t1, t2) : 0 ≤ t1 ≤ t2 ≤ T} → R is given by

K3(δ, δ1) =
1

2
|A+||A| exp

(
α1,+δ + α+δ1

)
(2.14)

for 0 ≤ δ ≤ δ1 ≤ T . The constants α1 and α denote the logarithmic norm given by (1.51)
and (1.27), respectively.

Proof. By independence of the terms Φ1(t2, τ) and X(τ) − X(t1), Corollary 1.3.3, and
(1.56) we get

‖E[Φ1(t2, τ)A+(X(τ)−X(t1))|Ft1 ]‖L2(Ω;Rd)

=‖E[Φ1(t2, τ)]E[A+(X(τ)−X(t1))|Ft1 ]‖L2(Ω;Rd)

≤
∣∣e− 1

2
G̃2

1(t2−τ)
∣∣∥∥E[A+(X(τ)−X(t1))|Ft1 ]

∥∥
L2(Ω;Rd)

≤|A+|eα1(t2−τ)‖E[X(τ)−X(t1)|Ft1 ]‖L2(Ω;Rd)

≤|A+||A|eα1(t2−τ)eα+τ‖X0‖L2(Ω;Rd)|τ − t1|.

(2.15)

Further, it holds

|A+||A|‖X0‖L2(Ω;Rd)

∫ t2

t1

eα1(t2−τ)eα+τ |τ − t1|dτ

≤1

2
|A+||A|‖X0‖L2(Ω;Rd) exp

(
α1,+(t2 − t1) + α+t2

)
|t2 − t1|2.

Let us denote by

G̃− =

 G̃2
...
G̃m

 ∈ Rm−1×d,d.
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Then the spectral norm of the matrix G̃− is given by (see [26], [19])

|G̃−| = |(G̃−)>G̃−|
1
2 . (2.16)

Lemma 2.2.3. Let X be the exact solution to (2.1) with initial value X0 ∈ L2(Ω;Rd).
Then for all 0 ≤ t1 ≤ s ≤ t2 ≤ T the estimates hold∥∥∥ m∑

k=2

∫ t2

t1

Φ1(t2, s)G̃k(X(s)−X(t1)) dW̃k(τ)
∥∥∥
L2(Ω;Rd)

≤K4(t2 − t1, t2)‖X0‖L2(Ω;Rd)|t2 − t1|,
(2.17)

∥∥∥ m∑
k=2

∫ t2

t1

(Φ1(t2, s)−Φ1(t2, t1))G̃kX(t1) dW̃k(τ)
∥∥∥
L2(Ω;Rd)

≤K5(t2 − t1, t1)‖X0‖L2(Ω;Rd)|t2 − t1|,
(2.18)

where K4,K5 : {(t1, t2) : 0 ≤ t1 ≤ t2 ≤ T} → R are given by

K4(δ, δ1) =|G̃−|(|A|δ
1
2 + |G|) exp

(
αS+δ + α+δ1

)
, (2.19)

K5(δ, δ2) =|G̃−||G̃1|(
1

2
|G̃1|δ

1
2 + 1) exp

(
α+δ2 + αS+δ

)
(2.20)

for 0 ≤ δ2 ≤ δ ≤ δ1 ≤ T .

Remark 2.2.4. We recall that for all t1, t2 ∈ [0, T ] the matrix-valued random variable
Φ1(t2, t1) contains only one Wiener increment W̃1(t2)− W̃1(t1) and therefore is indepen-
dent of the further increments W̃2(t2) − W̃2(t1), . . . , W̃m(t2) − W̃m(t1). Moreover, the
integrals from the left of (2.17) and (2.18) are continuous, square-integrable (Ft2)t2∈[0,T ]-
martingales.

Proof of Lemma 2.2.3. First, we use the Itô isometry and obtain∥∥∥ m∑
k=2

∫ t2

t1

Φ1(t2, τ)G̃k(X(τ)−X(t1)) dW̃k(τ)
∥∥∥
L2(Ω;Rd)

=
( m∑
k=2

∫ t2

t1

‖Φ1(t2, τ)G̃k(X(τ)−X(t1))‖2L2(Ω;Rd) dτ
) 1

2

and ∥∥∥ m∑
k=2

∫ t2

t1

(Φ1(t2, τ)− Φ1(t2, t1))G̃kX(t1)) dW̃k(τ)
∥∥∥
L2(Ω;Rd)

=
( m∑
k=2

∫ t2

t1

‖(Φ1(t2, τ)− Φ1(t2, t1))G̃kX(t1)‖2L2(Ω;Rd) dτ
) 1

2
.
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By Lemma 1.3.2 and Lemma 1.5.2 it holds for all 0 ≤ t1 ≤ s ≤ t2 ≤ T and k = 2, . . . ,m

E[|Φ1(t2, τ)G̃k(X(τ)−X(t1))|2]

≤|G̃k|2e2αS,+(t2−τ)(|A||t2 − t1|
1
2 + |G|)2e2α+t2E[|X0|2]|τ − t1|.

Therefore, we obtain( m∑
k=2

∫ t2

t1

‖Φ1(t2, τ)G̃k(X(τ)−X(t1))‖2L2(Ω;Rd) dτ
) 1

2

≤
(

2

m∑
k=2

|G̃k|2
(
|A|2|t2 − t1|+ |G|2

)
E[|X0|2]e2α+t2

∫ t2

t1

e2αS,+(t2−τ)|τ − t1| dτ
) 1

2

≤|G̃−|(|A||t2 − t1|
1
2 + |G|)eα+t2eαS,+(t2−t1)‖X0‖L2(Ω;Rd)|t2 − t1|.

For the second expression we use Lemma 1.1.2 and Lemma 1.5.5 and get

E[|(Φ1(t2, τ)− Φ1(t2, t1))G̃kX(t1)|2]

≤|G̃k|2|G̃1|2(
1

2
|G̃1||t2 − t1|

1
2 + 1)2e2αS,+(t2−t1)e2α+t1E[|X0|2]|τ − t1|.

Further, an integration provides

E[|(Φ1(t2, τ)− Φ1(t2, t1))G̃kX(t1)|2]

≤
(

2

m∑
k=2

|G̃k|2e2α+t1 |G̃1|2
(1

4
|G̃1|2|t2 − t1|+ 1

)
e2αS(t2−t1)

∫ t2

t1

|τ − t1| dτ
) 1

2

≤|G̃−||G̃1|(
1

2
|G̃1||t2 − t1|

1
2 + 1)eα+t2eαS,+(t2−t1)‖X0‖L2(Ω;Rd)|t2 − t1|.

This completes the proof.

The following theorem shows the stochastic B-consistency of the BSNE Euler-type
scheme.

Theorem 2.2.5. Let h̄ ∈ (0, 1] be arbitrary. Then the balanced shift noise explicit Euler-
type method (ΨBSNE , h̄, X0) for the linear SODE (2.1) is stochastically B-consistent of
order γ = 1

2 . The constants Ccons,1 and Ccons,2 are of moderate exponential type, see
(2.22).

Proof. Let (t, δ) ∈ T be arbitrary. By inserting (1.64) and (2.8) into (2.5) we obtain

‖E[X(t+δ)−ΨBSNE(X(t), t, δ)|Ft]‖L2(Ω;Rd)

=
∥∥E[ ∫ t+δ

t
Φ1(t+ δ, τ)A+X(τ) dτ +

m∑
k=2

∫ t+δ

t
Φ1(t+ δ, τ)G̃kX(τ) dW̃k(τ)
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− Φ1(t+ δ, t)A+X(t)δ −
m∑
k=2

Φ1(t+ δ, t)G̃kX(t)It,t+δ(k)

∣∣Ft]∥∥L2(Ω;Rd)

≤
∫ t+δ

t
‖E[Φ1(t+ δ, τ)A+(X(τ)−X(t))|Ft]‖L2(Ω;Rd) dτ

+

∫ t+δ

t
‖E[(Φ1(t+ δ, τ)− Φ1(t+ δ, t))A+X(t)|Ft]‖L2(Ω;Rd) dτ.

Then by Corollary 2.2.2 we get∫ t+δ

t
‖E[Φ1(t+ δ, τ)A+(X(τ)−X(t))|Ft]‖L2(Ω;Rd) dτ ≤ K3(δ, t+ δ)‖X0‖L2(Ω;Rd)δ

2,

with

K3(δ, t+ δ) =
1

2
|A+||A| exp

(
α1,+δ + α+(t+ δ)

)
.

Using the fact that ‖E[Z|Ft]‖L2(Ω;Rd) ≤ ‖Z‖L2(Ω;Rd) for all Z ∈ L2(Ω;Rd) and (2.11) we
obtain ∫ t+δ

t
‖E[(Φ1(t+ δ, τ)− Φ1(t+ δ, t))A+X(t)|Ft]‖L2(Ω;Rd) dτ

≤
∫ t+δ

t
‖(Φ1(t+ δ, τ)− Φ1(t+ δ, t))A+X(t)‖L2(Ω;Rd) dτ

≤K2(δ, t)‖X0‖L2(Ω;Rd)δ
3
2 ,

(2.21)

where

K2(δ, t) =|A+||G̃1|(
1

3
|G̃1|δ

1
2 +

2

3
) exp(α+t+ αS,+δ).

Further, for the second estimate (2.6) we get

‖(id− E[·|Ft])(X(t+ δ)−ΨBSNE(X(t), t, δ))‖L2(Ω;Rd)

≤
∫ t+δ

t
‖(id− E[·|Ft])Φ1(t+ δ, τ)A+(X(τ)−X(t))‖L2(Ω;Rd) dτ

+

∫ t+δ

t
‖(id− E[·|Ft])(Φ1(t+ δ, τ)− Φ1(t+ δ, t))A+X(t)‖L2(Ω;Rd) dτ

+
∥∥∥ m∑
k=2

∫ t+δ

t
Φ1(t+ δ, τ)G̃k(X(τ)−X(t)) dW̃k(τ)

∥∥∥
L2(Ω;Rd)

+
∥∥∥ m∑
k=2

∫ t+δ

t
(Φ1(t+ δ, τ)− Φ1(t+ δ, t))G̃kX(t) dW̃k(τ)

∥∥∥
L2(Ω;Rd)

=:

4∑
i=1

Ti.
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Together with ‖(id − E[| · |Ft])Z‖L2(Ω;Rd) ≤ ‖Z‖L2(Ω;Rd) for all Z ∈ L2(Ω;Rd) and
Lemma 2.2.1 we obtain

T1 ≤
∫ t+δ

t
‖Φ1(t+ δ, τ)A+(X(τ)−X(t))‖L2(Ω;Rd) dτ

≤K1(δ, t+ δ)‖X0‖L2(Ω;Rd)δ
3
2 .

K1 is given by

K1(δ, t+ δ) =
2

3
|A+|(|A|δ

1
2 + |G|) exp

(
αS,+δ + α+(t+ δ)

)
.

The estimate of the second term T2 is similar to (2.21). Further, by using Lemma 2.2.3
and (2.17) we get

T3 ≤ K4(δ, t+ δ)‖X0‖L2(Ω;Rd)δ,

where

K4(δ, t+ δ) =|G̃−|(|A|δ
1
2 + |G|) exp

(
αS,+δ + α+(t+ δ)

)
.

Finally, by Lemma 2.2.3, inequality (2.18) we have for the last term

T4 ≤ K5(δ, t)‖X0‖L2(Ω;Rd)δ,

with

K5(δ, t) =|G̃−||G̃1|(
1

2
|G̃1|δ

1
2 + 1) exp

(
α+t+ αS,+δ

)
.

This completes the proof.

Remark 2.2.6. The constants Ccons,1 and Ccons,2 in (2.5) and (2.6) are given by

Ccons,1 =|A+|
(
|G̃1|

(1

3
|G̃1|h̄

1
2 +

2

3

)
exp

(
α+T + αS,+h̄

)
+

1

2
|A| exp

(
α1,+h̄+ α+T

))
,

Ccons,2 =
(
|A+|2

3
(|A|h̄

1
2 + |G|) + |A+||G̃1|(

1

3
|G̃1|h̄

1
2 +

2

3
)

+ |G̃−|(|A|h̄
1
2 + |G|) + |G̃−||G̃1|(

1

2
|G̃1|h̄

1
2 + 1)

)
exp

(
α+T + αS,+h̄

)
.

(2.22)

The next step of our numerical analysis is to prove the stochastic C-stability of the
BSNE method.

Theorem 2.2.7. For the linear SODE (2.1) with every inital value ξ ∈ L2(Ω,F0,P;Rd)
the BSNE Euler-type method is stochastically C-stable. The constant Cstab in (2.4) de-
pends on the data αS,+, η, |A+|, |G̃1|, |G̃−|, and h̄, see (2.26).
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Proof. Let (t, δ) ∈ T be arbitrary and Y,Z ∈ L2(Ω,Ft,P;Rd). Since Φ1(t + δ, t) is
Ft+δ-measurable we obtain

E[ΨBSNE(Y, t, δ)−ΨBSNE(Z, t, δ)|Ft]
=E[Φ1(t+ δ, t)(Y − Z +A+Y δ −A+Zδ)|Ft],

(2.23)

and

(id−E[·|Ft])(ΨBSNE(Y, t, δ)−ΨBSNE(Z, t, δ))

=(id− E[·|Ft])Φ1(t+ δ, t)(Y − Z +A+Y δ −A+Zδ)

+

m∑
k=2

Φ1(t+ δ, t)(G̃kY − G̃kZ)Ĩt,t+δ(k) ).

(2.24)

Using (1.56) we obtain

‖E[ΨBSNE(Y, t, δ)−ΨBSNE(Z, t, δ)|Ft]‖2L2(Ω;Rd)

=E[|E[Φ1(t+ δ, t)(Y − Z +A+Y δ −A+Zδ)|Ft]|2]

≤|e−
1
2
G̃2

1δ|2E[|(id +A+δ)(Y − Z)|2]

≤e2α1δe2|A+|δE[|Y − Z|2]

≤e2(α1+|A+|)δ‖Y − Z‖2L2(Ω;Rd).

Here we use the rule: If X is independent of Ft and Y is Ft-measurable then E[XY |Ft] =

E[X]Y . Thus, the term (2.23) fulfills the requirement of (2.4). It remains to show that
the remaining summand (2.24) allows for a sharper estimate. It holds

‖(id− E[·|Ft])(ΨBSNE(Y, t, δ)−ΨBSNE(Z, t, δ))‖2L2(Ω;Rd)

=E[|(id− E[·|Ft])Φ1(t+ δ, t)(Y − Z +A+Y δ −A+Zδ)

+
m∑
k=2

Φ1(t+ δ, t)(G̃kY − G̃kZ)Ĩt,t+δ(k) )|2]

≤2E[|(id− E[·|Ft])Φ1(t+ δ, t)(Y − Z +A+Y δ −A+Zδ)|2]

+ 2E
[∣∣ m∑
k=2

Φ1(t+ δ, t)(G̃kY − G̃kZ)Ĩt,t+δ(k) )
∣∣2].

(2.25)

Then by Lemma 1.5.4 we obtain

E[|(id− E[·|Ft])Φ1(t+ δ, t)(Y − Z +A+Y δ −A+Zδ)|2]

≤K2
cond(δ)δE[|(id +A+δ)(Y − Z)|2]

≤K2
cond(δ)δe2|A+|δE[|Y − Z|2],
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with Kcond(δ) = |G̃1|
(

1
2 |G̃1|δ

1
2 + 1

)
eαS,+δ. Finally, the Itô isometry and Lemma 1.5.2

yield

E
[∣∣ m∑
k=2

Φ1(t+ δ, t)(G̃kY − G̃kZ)Ĩt,t+δ(k) )
∣∣2]

=δ
m∑
k=2

E[|Φ1(t+ δ, t)(G̃kY − G̃kZ)|2]

≤|G̃−|2δe2αS,+δE[|Y − Z|2].

Altogether, this shows

‖E[ΨBSNE(Y, t, δ)−ΨBSNE(Z, t, δ)|Ft]‖2L2(Ω;Rd)

+ η‖(id− E[·|Ft])(ΨBSNE(Y, t, δ)−ΨBSNE(Z, t, δ))‖2L2(Ω;Rd)

≤eCstabδ‖Y − Z‖2L2(Ω;Rd),

where

Cstab =2η
(
|G̃1|2(

1

2
|G̃1|h̄

1
2 + 1)2 + |G̃−|2

)
+ 2|A+|+ 2αS,+

)
. (2.26)

Remark 2.2.8. Equation (2.26) shows that the constant Cstab is not of moderate type,
i.e. in addition to the one-sided Lipschitz constant αS,+ the norms |A+|, |G̃1|, and |G̃−|
appear. Hence, the constant (2.7) in the convergence Theorem 2.1.5 is not of moderate
exponential type in the sense of Convention 1.3.4. This seems unavoidable in view of the
fact that our assumptions allow the solutions to grow exponentially in mean square, see
the discussion in Introduction.

Now, the strong convergence of the BSNE Euler-type scheme follows directly from
Theorem 2.2.5 and Theorem 2.2.7.

Theorem 2.2.9. Let h̄ ∈ (0, 1]. Then the balanced shift noise explicit Euler-type method
(ΨBSNE , h̄, X0) for the linear SODE (2.1) is strongly convergent of order γ = 1

2 .

2.3. Stochastic B-consistency and C-stability of the BSNI
Euler-type scheme

In this section we analyse the balanced shift noise impicit (BSNI) Euler-type scheme
(1.66). With the inverse of Mh = id− hA+ we rewrite this scheme in the explicit form

Xh(ti) :=M−1
h

(
Xh(ti−1) +

m∑
k=2

G̃kXh(ti−1)Ĩ
ti−1,ti
(k)

)
Xh(ti) :=Φ1(ti, ti−1)Xh(ti),

Xh(0) =X0, 1 ≤ i ≤ N,

(2.27)
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where Φ1(ti, ti−1) = exp(−G̃2
1h+ G̃1Ĩ

ti−1,ti
(1) ) and Ĩti−1,ti

(k) =
∫ ti
ti−1

dW̃k(s).
The following lemma is a special case of Corollary 4.2 in [5] and Corollary 3.2.2 and

plays an important role in the further proofs. The similar result can be found in [58].

Lemma 2.3.1. Denote α̂ := µ2(A+) and assume that α̂δ < 1 for all δ ∈ (0, 1]. Then

|M−1
δ | ≤ (1− α̂δ)−1. (2.28)

Proof. Consider the matrixM−δ := A+δ−id. Using properties 2 and 3 from Lemma A.4.2
we obtain

µ2(M−δ ) = µ2(A+δ)− µ2(id) = α̂δ − 1 < 0.

Then by Lemma A.4.2, property 7 it holds

|(A+δ − id)−1| ≤ − 1

α̂δ − 1
,

which proves (2.28).

Let (t, δ) ∈ T be arbitrary and let h̄ ∈ (0, α̂−1) is an upper size bound. Then we
define the one-step map ΨBSNI : Rd × T × Ω → Rd of the balanced shift noise implicit
Euler-type method (1.66) by

ΨBSNI(x, t, δ) = Φ1(t+ δ, t)M−1
δ (x+

m∑
k=2

G̃kxĨ
t,t+δ
(k) ), (2.29)

for all x ∈ Rd, whereMδ = id−A+δ. By the continuity and boundedness of the mapping
Rd 3 x 7→ Φ1(t+ δ, t)M−1

δ x ∈ Rd we get for all (t, δ) ∈ T and Y ∈ L2(Ω,Ft,P;Rd) that

Φ1(t+ δ, t)M−1
δ Y ∈ L2(Ω,Ft+δ,P;Rd).

Thus, ΨBSNI(Y, t, δ) : Ω → Rd is an Ft+δ/B(Rd)-measurable random variable, which
satisfies condition (2.2).
The following lemma is the linear version of a more general nonlinear result from [5,

Lemma 4.3].

Lemma 2.3.2. Let h̄ ∈ (0, |α̂|−1) be given and δ ∈ (0, h̄]. Then for all x ∈ Rd the
estimates hold

|(id−M−1
δ )x| ≤ C1δ|x|,

|(id−M−1
δ +A+δ)x| ≤ C2δ

2|x|,

where

C1 = (1− α̂h̄)−1|A+|, and C2 = (1− α̂h̄)−1|A+|2. (2.30)
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Proof. Let z ∈ Rd be arbitrary. Then by Lemma 2.3.1 we get

|(id−M−1
δ )x| = |M−1

δ (Mδ − id)x| =|M−1
δ (id−A+δ − id)x|

≤(1− α̂δ)−1|A+|δ|x|
≤(1− α̂h̄)−1|A+|δ|x|.

For the second estimate we obtain

|(id−M−1
δ +A+δ)x| =|(M−1

δ (Mδ − id) +A+δ)x|
=δ|(id−M−1

δ )A+x|
≤(1− α̂h̄)−1|A+|2δ2|x|.

The following theorem provides the stochastic B-consistency of the BSNI Euler-type
scheme.

Theorem 2.3.3. Let h̄ ∈ (0, |α̂|−1). Then the balanced shift noise implicit Euler-type
method (ΨBSNI , h̄, X0) for the linear SODE (2.1) is stochastically B-consistent of order
γ = 1

2 . The constants Ccons,1 and Ccons,2 are of moderate exponential type, see (2.35).

Proof. First, we note that for arbitrary (t, δ) ∈ T it holds

X(t+ δ)−ΨBSNI(X(t), t, δ) =

∫ t+δ

t
Φ1(t+ δ, τ)A+X(τ)− Φ1(t+ δ, t)A+X(t) dτ

+
m∑
k=2

∫ t+δ

t
(Φ1(t+ δ, τ)G̃kX(τ)− Φ1(t+ δ, t)G̃kX(t)) dW̃k(τ)

+ Φ1(t+ δ, t)X(t) + Φ1(t+ δ, t)A+X(t)δ − Φ1(t+ δ, t)M−1
δ X(t)

+
m∑
k=2

(
Φ1(t+ δ, t)G̃kX(t)− Φ1(t+ δ, t)M−1

δ G̃kX(t)
)
Ĩt,t+δ(k) .

Then by Definition (2.1.3) we get

‖E[X(t+ δ)−ΨBSNI(X(t), t, δ)|Ft]‖L2(Ω;Rd)

≤
∫ t+δ

t
‖E[Φ1(t+ δ, τ)A+X(τ)− Φ1(t+ δ, t)A+X(t)|Ft]‖L2(Ω;Rd) dτ

+ ‖E[Φ1(t+ δ, t)X(t) + Φ1(t+ δ, t)A+X(t)δ − Φ1(t+ δ, t)M−1
δ X(t)|Ft]‖L2(Ω;Rd)

=:T1 + T2.

For the first term we have

T1 ≤
∫ t+δ

t
‖E[Φ1(t+ δ, τ)A+

(
X(τ)−X(t)

)
|Ft]‖L2(Ω;Rd) dτ
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+

∫ t+δ

t
‖E[
(
Φ1(t+ δ, τ)− Φ1(t+ δ, t)

)
A+X(t)|Ft]‖L2(Ω;Rd) dτ.

Then, by Corollary 2.2.2 we get for the first summand∫ t+δ

t
‖E[Φ1(t+ δ, τ)A+

(
X(τ)−X(t)

)
|Ft]‖L2(Ω;Rd) dτ ≤ K3(δ, t+ δ)‖X0‖L2(Ω;Rd)δ

2,

with

K3(δ, t+ δ) =
1

2
|A+||A| exp

(
α1,+δ + α+(t+ δ)

)
. (2.31)

For the second summand we use the fact that ‖E[Z|Ft]‖L2(Ω;Rd) ≤ ‖Z‖L2(Ω;Rd), for all
Z ∈ L2(Ω;Rd), and (2.11). It follows∫ t+δ

t
‖E[
(
Φ1(t+ δ, τ)− Φ1(t+ δ, t)

)
A+X(t)|Ft]‖L2(Ω;Rd) dτ

≤
∫ t+δ

t
‖
(
Φ1(t+ δ, τ)− Φ1(t+ δ, t)

)
A+X(t)‖L2(Ω;Rd) dτ

≤K2(δ, t)‖X0‖L2(Ω;Rd)δ
3
2 ,

where

K2(δ, t) =|A+||G̃1|(
1

3
|G̃1|δ

1
2 +

2

3
) exp(α+t+ αS,+δ). (2.32)

Further, using Lemma 1.1.2, Lemma 2.3.2 and (1.56) we get

T2 =‖E[Φ1(t+ δ, t)(X(t) +A+X(t)δ −M−1
δ X(t))|Ft]‖L2(Ω;Rd)

=‖ exp
(
− 1

2
G̃2

1δ
)(

id−M−1
δ +A+δ

)
X(t)‖L2(Ω;Rd)

≤| exp(−1

2
G̃2

1δ)|‖(id−M−1
δ +A+δ)X(t)‖L2(Ω;Rd)

≤eα1δC2δ
2‖X(t)‖L2(Ω;Rd)

≤C2δ
2‖X0‖L2(Ω;Rd) exp

(
α1δ + α+t

)
,

(2.33)

where the constant C2 is given by (2.30). Next, consider

‖(id− E[·|Ft])(X(t+ δ)−ΨBSNI(X(t), t, δ))‖L2(Ω;Rd)

≤
∫ t+δ

t
‖(id− E[·|Ft])Φ1(t+ δ, τ)A+X(τ)− Φ1(t+ δ, t)A+X(t)‖L2(Ω;Rd) dτ

+ ‖id− E[·|Ft])(Φ1(t+ δ, t)(X(t) +A+X(t)δ −M−1
δ X(t))‖L2(Ω;Rd)

+
∥∥ m∑
k=2

∫ t+δ

t
(Φ1(t+ δ, τ)G̃kX(τ)− Φ1(t+ δ, t)G̃kX(t)) dW̃k(τ)

∥∥
L2(Ω;Rd)
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+
∥∥ m∑
k=2

(
Φ1(t+ δ, t)G̃kX(t)− Φ1(t+ δ, t)M−1G̃kX(t)

)
Ĩt,t+δ(k)

∥∥
L2(Ω;Rd)

=:

4∑
i=1

Si.

By using of the fact that ‖(id − E[·|Ft])Z‖L2(Ω;Rd) ≤ ‖Z‖L2(Ω;Rd) for all Z ∈ L2(Ω;Rd)
and Lemma 2.2.1 we get for S1

S1 ≤
∫ t+δ

t
‖Φ1(t+ δ, τ)A+

(
X(τ)−X(t)

)
‖L2(Ω;Rd) dτ

+

∫ t+δ

t
‖
(
Φ1(t+ δ, τ)− Φ1(t+ δ, t)

)
A+X(t)‖L2(Ω;Rd) dτ

≤
(
K1(δ, t+ δ) +K2(δ, t)

)
‖X0‖L2(Ω;Rd)δ

3
2 ,

where

K1(δ, t+ δ) =
1

2
|A+|(|A|δ

1
2 + |G|) exp(αS,+δ + α+(t+ δ)). (2.34)

and K2(δ, t) given in (2.32). For the term S2 we have

‖(id−E[·|Ft])(Φ1(t+ δ, t)
(
X(t) +A+X(t)δ −M−1

δ X(t)
)
‖L2(Ω;Rd)

≤‖(Φ1(t+ δ, t)
(
X(t) +A+X(t)δ −M−1

δ X(t)
)
‖L2(Ω;Rd)

≤eαS,+δ‖X(t) +A+X(t)δ −M−1
δ X(t)‖L2(Ω;Rd)

≤eαS,+δC2δ
2‖X(t)‖L2(Ω;Rd)

≤C2δ
2‖X0‖L2(Ω;Rd) exp

(
αS,+δ + α+t

)
.

Here we used Lemma 1.1.2, Lemma 1.5.2, and Lemma 2.3.2. Further, by Lemma 2.2.3
we get

S3 ≤
∥∥ m∑
k=2

∫ t+δ

t
Φ1(t+ δ, τ)G̃k

(
X(τ)−X(t)

)
dW̃k(τ)

∥∥
L2(Ω;Rd)

+
∥∥ m∑
k=2

∫ t+δ

t

(
Φ1(t+ δ, τ)− Φ1(t+ δ, t)

)
G̃kX(t)) dW̃k(τ)

∥∥
L2(Ω;Rd)

≤
(
K4(δ, t+ δ) +K5(δ, t)

)
‖X0‖L2(Ω;Rd)δ,

with

K4(δ, t+ δ) =|G̃−|(|A|δ
1
2 + |G|) exp

(
αS,+δ + α+(t+ δ)

)
,

and

K5(δ, t) =|G̃−||G̃1|(
1

2
|G̃1|δ

1
2 + 1) exp

(
α+t+ αS,+δ

)
.
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Finally, by the Itô isometry, Lemma 1.1.2, and Lemma 2.3.2 we obtain

S4 =
( m∑
k=2

‖Φ1(t+ δ, t)(id−M−1
δ )G̃kX(t)δ‖2L2(Ω;Rd)

) 1
2

≤C1|G̃−| exp
(
αS,+δ + α+t

)
‖X0‖L2(Ω;Rd)δ

2,

where C1 is given by (2.30). This completes the proof.

Remark 2.3.4. The constants Ccons,1 and Ccons,2 in (2.5) and (2.6) are given by

Ccons,1 :=
1

2
|A+||A| exp

(
α1,+h̄+ α+T

)
+ |A+|2(1− α̂ĥ)−1 exp(α1h̄+ α+T )

+ |A+||G̃1|(
1

3
|G̃1|h̄

1
2 +

2

3
) exp

(
α+T + αS,+h̄

)
,

Ccons,2 :=
(1

2
|A+|(|A|h̄

1
2 + |G|) + |G̃−|

(
|A|h̄

1
2 + |G|) + |G̃−||G̃1|(

1

2
|G̃1|h̄

1
2 + 1)

+ |A+|(1− α̂h̄)−1(|A+|+ |G̃−|)
)

exp
(
αS,+h̄+ αT

)
.

(2.35)

It remains to show that the BSNI scheme is stochastically C-stable.

Theorem 2.3.5. Let h̄ ∈ (0, |α̂|−1). For the linear SODE (2.1) with every initial value
ξ ∈ L2(Ω,F0,P;Rd) the BSNI Euler-type method is stochastically C-stable. The constant
Cstab in (2.4) depend on data αS,+, α̂, η, |G̃1|, |G̃−|, and h̄, see (2.39).

Proof. Let (t, δ) ∈ T be arbitrary and Y,Z ∈ L2(Ω,Ft,P;Rd). We note that

E[ΨBSNI(Y, t, δ)−ΨBSNI(Z, t, δ)|Ft] = E[Φ1(t+ δ, t)M−1
δ (Y − Z)|Ft] (2.36)

and

(id− E[·|Ft](ΨBSNI(Y, t, δ)−ΨBSNI(Z, t, δ))

=(id− E[·|Ft])(Φ1(t+ δ, t)M−1
δ (Y − Z)

+
m∑
k=2

Φ1(t+ δ, t)M−1
δ G̃k(Y − Z)Ĩt,t+δ(k) .

(2.37)

Then by (1.56) and Lemma 2.3.1 we obtain for (2.23)

E[|E[Φ1(t+ δ, t)M−1
δ (Y − Z)|Ft]|2] ≤| exp(−1

2
G̃2

1δ)|2|M−1
δ |

2E[|Y − Z|2]

≤e2α1δ(1− α̂δ)−2E[|Y − Z|2].

As already mentioned in [5], the function (1− α̂δ)−2 is convex and it follows that for all
δ ∈ [0, h̄] the estimate holds

(1− α̂δ)−2 =
(1− α̂δ)2 + 2α̂δ − α̂2δ2

(1− α̂δ)2
≤ (1 + Ccδ), (2.38)
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where Cc = 2α̂−α̂2h̄
(1−α̂h̄)2

. Therefore, we get

E[|E[Φ1(t+ δ, t)M−1
δ (Y − Z)|Ft]|2] ≤ exp

(
(2α1 + Cc)δ

)
E[|Y − Z|2].

Further, from (2.37) we obtain

E[|(id− E[·|Ft])(Φ1(t+ δ, t)M−1
δ (Y − Z)

+
m∑
k=2

Φ1(t+ δ, t)M−1
δ G̃k(Y − Z)Ĩt,t+δ(k) |

2]

≤2E[|(id− E[·|Ft])(Φ1(t+ δ, t)M−1
δ (Y − Z)|2]

+ 2E
[∣∣ m∑
k=2

Φ1(t+ δ, t)M−1
δ G̃k(Y − Z)Ĩt,t+δ(k)

∣∣2]
=:T1 + T2.

By Lemma 1.5.4, Lemma 1.5.2, and Lemma 2.3.1 we get for the first term

T1 ≤2K2
cond(δ)δ(1− α̂δ)−2E[|Y − Z|2]

≤2|G̃1|2(
1

2
|G̃1|δ

1
2 + 1)2 exp

(
(2αS,+ + Cc)δ

)
δE[|Y − Z|2].

For the last term we get

T2 =2δ

m∑
k=2

E|Φ1(t+ δ, t)M−1
δ G̃k(Y − Z)|2]

≤2δ|G̃−|2 exp
(
(2αS,+ + Cc)δ

)
E[|Y − Z|2].

Here we used the Itô isometry, Lemma 1.5.2, and (2.38). Altogether, this shows that

‖E[ΨBSNI(Y, t, δ)−ΨBSNI(Z, t, δ)|Ft]‖2L2(Ω;Rd)

+ η‖(id− E[·|Ft](ΨBSNI(Y, t, δ)−ΨBSNI(Z, t, δ))‖L2(Ω;Rd)

≤eCstabδ‖Y − Z‖2L2(Ω;Rd).

where

Cstab = 2η
(
|G̃1|2(

1

2
|G̃1|h̄

1
2 + 1)2 + |G̃−|

)
+ 2αS,+ + Cc

)
. (2.39)

The constant Cstab is not of moderate type, compare Remark 2.2.8. We conclude
this section by stating the strong convergence of the BSNI scheme as obtained from
Theorem 2.3.3 and Theorem 2.3.5.

Theorem 2.3.6. Let h̄ ∈ (0, |α̂|−1). Then the balanced shift noise implicit Euler-type
method (ΨBSNI , h̄, X0) for the linear SODE (2.1) is strongly convergent of order γ = 1

2 .



3. Nonlinearity in the drift term

The balanced shift noise approach from Section 1.7 heavily relies on the linearity of the
noise terms. In this chapter we keep this structure but generalize our results to SODEs
with a nonlinear drift term. In particular, we follow the approach in [5] and investigate
convergence of our new methods under one-sided Lipschitz conditions. It turns out that
the BSNE method has to be complemented by a projection or cutoff procedure while the
theory for the BSNI method works without such precautions.

3.1. Assumptions and main results

At first we consider a stochastic differential equation in the form

dX(t) =f(X(t)) dt+

m∑
k=1

G̃kX(t) dW̃k(t),

X(0) =X0, t ∈ [0, T ],

(3.1)

where f : Rd → Rd is the drift coefficient function, G̃k ∈ Rd×d, k = 1, . . . ,m and W̃k, k =

1, . . . ,m are defined as in Section 1.2. Further, we assume that the function f satisfies
the conditions below.

Assumption 3.1.1. Let f : Rd → Rd be continuous and G̃k ∈ Rd×d, k = 1, . . . ,m. There
exists a constant L > 0 and a parameter value η ∈ (1

2 ,∞) such that for all x1, x2 ∈ Rd it
holds

〈x1 − x2, f(x1)− f(x2)〉+ η
m∑
k=1

|G̃kx1 − G̃kx2|2 ≤ L|x1 − x2|2. (3.2)

In addition, there exists a constant q ∈ (1,∞) such that for all x, x1, x2 ∈ Rd it holds

|f(x)| ≤L0(1 + |x|q), (3.3)

|f(x1)− f(x2)| ≤L1(1 + |x1|q−1 + |x2|q−1)|x1 − x2|. (3.4)

We denote by 〈·, ·〉 the Euclidean inner product and | · | the Euclidean norm in Rd.
We recall that Assumption 3.1.1 is sufficient to ensure the existence of a unique solution
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to (3.1), i.e., there exists an almost surely continuous and (Ft)t∈[0,T ]-adapted stochastic
process Z : [0, T ]× Ω→ Rd such that

X(t) = X0 +

∫ t

0
f(X(τ)) dτ +

m∑
k=1

∫ t

0
G̃kX(τ) dW̃k(τ), (3.5)

for all t ∈ [0, T ] P-almost surely (see for example, [42]). Moreover, we assume that there
exist constants ε ≥ 0, αf ≥ 0, and p ∈ [2,∞) such that for all x ∈ Rd the estimate holds

〈x, f(x)〉+
p− 1

2

m∑
k=1

|G̃kx|2 ≤ αf(ε
2 + |x|2). (3.6)

Then the exact solution satisfies (see [42, Th.4.1] and Lemma 1.1.2)

‖X(t)‖Lp(Ω;Rd) ≤ (ε+ ‖X0‖Lp(Ω;Rd))e
αf t. (3.7)

We note that (3.6) follows from (3.2) with ε = |f(0)|, η = p−1
2 and αf = |f(0)|(L +√

L2 + 1).
In the following we prove further regularity of the solutions to (3.1) by establishing

Hölder regularity with respect to the Lp-norm. The lemma below is analogous to Propo-
sition 5.4 in [5].

Lemma 3.1.2. Let f satisfies condition 3.3 with L0 > 0, q ∈ (1,∞) and let G̃k ∈
Rd×d, k = 1, . . . ,m. Further, let p ≥ 2 be given such that the exact solution X satisfies
supt∈[0,T ] ‖X(t)‖Lpq(Ω;Rd) <∞. Then there exists a constant C such that

‖X(t)−X(s)‖Lp(Ω;Rd) ≤ C
(
1 + sup

t∈[0,T ]
‖X(t)‖q

Lpq(Ω;Rd)

)
|t− s|

1
2 (3.8)

for all 0 ≤ s < t ≤ T .
In addition, if condition (3.6) holds with η = pq−1

2 for p ∈ [2,∞) and q ∈ [1,∞) then
(3.8) can be estimated by

‖X(t)−X(s)‖Lp(Ω;Rd) ≤ R(t− s, t)|t− s|
1
2 , (3.9)

where R : {(t, s) : 0 ≤ s ≤ t ≤ T} → R is of moderate size and given by

R(δ, δ1) =
(
L0 + L0(1 + ‖X0‖qLpq(Ω;Rd)

)eqαfδ1
)
δ

1
2

+ Cp|G|‖X0‖Lp(Ω;Rd)e
αfδ1

(3.10)

for 0 ≤ δ ≤ δ1 ≤ T . Here Cp denotes the Burkholder-Davis-Gundy constant.

Proof. For the proof of (3.8) we refer to [5]. Further, let t, s ∈ [0, T ] with s < t. Then
we get

‖X(t)−X(s)‖Lp(Ω;Rd) ≤
∫ t

s
‖f(X(τ))‖Lp(Ω;Rd) dτ
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+
∥∥∥ m∑
k=1

∫ t

s
G̃kX(τ) dW̃k(τ)

∥∥∥
Lp(Ω;Rd)

.

By condition (3.3) and Lemma 1.1.2 we get∫ t

s
‖f(X(τ))‖Lp(Ω;Rd) dτ ≤L0

∫ t

s
‖1 + |X(τ)|q‖Lp(Ω;Rd) dτ

≤L0

∫ t

s

(
1 + ‖X(τ)‖q

Lpq(Ω;Rd)

)
dτ

≤L0

∫ t

s
dτ + L0(1 + ‖X0‖qLpq(Ω;Rd)

)

∫ t

s
eqαfτ dτ

≤
(
L0 + L0(1 + ‖X0‖qLpq(Ω;Rd)

)eqαf t
)
|t− s|.

Finally, we use the Burkholder-Davis-Gundy inequality (see [42, Th.7.3]) and Lemma 1.1.2
and obtain∥∥∥ m∑

k=1

∫ t

s
G̃kX(τ) dW̃k(τ)

∥∥∥
Lp(Ω;Rd)

≤Cp
( m∑
k=1

∫ t

s
‖G̃kX(τ)‖2Lp(Ω;Rd) dτ

) 1
2

≤Cp|G|‖X0‖Lp(Ω;Rd)e
αf t|t− s|

1
2 .

This completes the proof.

In the following we assume that function f : Rd → Rd satisfies Assumption 3.1.1 with
L > 0 and η ∈ (1

2 ,∞). In order to formulate the generalization of our balanced shift
noise Euler-type methods with nonlinear drift term let us introduce

f+(x) := f(x) +
1

2
G̃2

1x, (3.11)

with G̃1 ∈ Rd×d given in (1.19). This notation is similar to (1.62).
The following assumption is an extension of Assumption 3.1.1.

Assumption 3.1.3. Let f+ be given as in (3.11). There exists a constant L+ > 0 and
a parameter value η ∈ [1

2 ,∞) such that for all x1, x2 ∈ Rd it holds

〈x1 − x2, f
+(x1)− f+(x2)〉+ η

m∑
k=2

|G̃kx1 − G̃kx2|2 ≤ L+|x1 − x2|2. (3.12)

Moreover, for all q ∈ (1,∞) there exist constants L+
0 , L

+
1 > 0 such that for all

x, x1, x2 ∈ Rd

|f+(x)| ≤L+
0 (1 + |x|q) (3.13)

|f+(x1)− f+(x2)| ≤L+
1 (1 + |x1|q−1 + |x2|q−1)|x1 − x2|. (3.14)
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It is clear that (3.12) implies with η = 1
2

〈x1 − x2, f(x1)− f(x2)〉+
1

2
〈x1 − x2, G̃

2
1(x1 − x2)〉

+
1

2

m∑
k=2

〈G̃k(x1 − x2), G̃k(x1 − x2)〉

≤L+|x1 − x2|2.

In particular, if G̃1 is symmetric, then Assumption 3.1.3 hold with L+ = L. Moreover,
it holds

〈x1 − x2, G̃
2
1(x1 − x2)〉 ≤ µ2(G̃2

1)|x1 − x2|2 ≤ |G̃1|2|x1 − x2|2.

Here we used the first property of the logarithmic norm from Lemma A.4.2.
Now, we define two balanced shift noise methods for the drift nonlinear equations

(3.1). The first method is the projected balanced shift noise explicit Euler-type method
(PBSNE). As already suggested in [5] we use a projection onto a ball in Rd whose radius
is expanding with a suitable negative power of the step size.
Let h ∈ (0, 1]N be an arbitrary vector of step sizes. The parameter β ∈ (0,∞) is

chosen to be a suitable negative power in dependence of the growth rate q. Then the
PBSNE Euler-type method is given by the three-step recursion

X◦h(ti) := min(1, h−βi |Xh(ti−1)|−1)Xh(ti−1),

Xh(ti) =X◦h(ti) + f+(X◦h(ti))hi +
m∑
k=2

G̃kX
◦
h(ti)Ĩ

ti−1,ti
(k) ,

Xh(ti) =Φ1(ti, ti−1)Xh(ti), i = 1, . . . , N,

Xh(0) =X0,

(3.15)

where Φ1 is defined as in the previous chapter by

Φ1(ti, ti−1) = exp(−G̃2
1hi + G̃1Ĩ

ti−1,ti
(1) ).

Our aim is to prove the following convergence result:

Theorem 3.1.4. Let Assumption 3.1.3 hold with growth rate q ∈ (1,∞) and let h̄ ∈
(0, 1]. If supτ∈[0,T ] ‖X(τ)‖L6q−4(Ω;Rd) <∞, where X denotes the exact solution to (3.1),
then the projected balanced shift noise explicit Euler-type method (ΨPBSNE , h̄, X0) with
β = 1

2(q−1) is strongly convergent of order γ = 1
2 .
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The next method is implicit and given by the recursion

X̂h(ti) =Xh(ti−1) + f+(X̂h(ti))hi,

Xh(ti) =X̂(ti) +
m∑
k=2

G̃kX̂(ti)Ĩ
ti−1,ti
(k) ,

Xh(ti) =Φ1(ti, ti−1)Xh(ti),

Xh(0) =X0, i = 1, . . . , N.

(3.16)

We call this method split-step balanced shift noise implicit (SSBSNI) Euler-type method.
If the one omits the shift term and the stochastic integration step with Φ1 then one
obtains an implicit method studied in [5], [24]. We recall that the recursion in (3.16)
evaluates the diffusion term at time ti in the i-th step. In section 3.5 we will show that
the SSBSNI Euler-type method is stochastically C-stable and B-consistent. As a result
one obtains the following convergence theorem:

Theorem 3.1.5. Let Assumption 3.1.3 hold with growth rate q ∈ (1,∞) and let h̄ ∈
(0, 1

L+ ). If supτ∈[0,T ] ‖X(τ)‖L4q−2(Ω;Rd) < ∞, where X denotes the exact solution to
(3.1), then the split-step balanced shift noise implicit Euler-type method (ΨSSBSNI , h̄, X0)

is strongly convergent of order γ = 1
2 .

3.2. Solution estimates for nonlinear equations under
one-sided Lipschitz conditions

In this section we cite from [5, Chap.4] some known results on the solvability of the
nonlinear equations under a one-sided Lipschitz condition.
The first theorem is the so-called Uniform Monotonicity Theorem of nonlinear analysis,

which can be found, for instance in [48, Chap. 6.4], [61, Th.C.2].

Theorem 3.2.1. Let g : Rd → Rd be a continuous mapping such that for all x1, x2 ∈ Rd

there exists a constant c > 0 with

〈g(x1)− g(x2), x1 − x2〉 ≥ c|x1 − x2|2.

Then g is a homeomorphism with Lipschitz continuous inverse and for all y1, y2 ∈ Rd it
holds

|g−1(y1)− g−1(y2)| ≤ 1

c
|y1 − y2|.

For the proof we refer to [5, Th.4.1]. The following corollary is a consequence of
Theorem 3.2.1, which was prooved in [5].
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Corollary 3.2.2. Let f+ : Rd → Rd satisfies Assumption 3.1.3 with L+, L+
0 , L

+
1 > 0 and

η ∈ (1,∞). Let h̄ ∈ (0, 1
L+ ) and define the mapping Fδ : Rd → Rd by Fδ(x) = x−f+(x)δ

for all δ ∈ (0, h̄]. Then the mapping x 7→ Fδ(x), x ∈ Rd is a homeomorphism.
In addition, for all x, x1, x2 ∈ Rd the estimates hold

|F−1
δ (x1)− F−1

δ (x2)| ≤(1− L+δ)−1|x1 − x2|, (3.17)

|F−1
δ (x)| ≤(1− L+δ)−1(L+

0 δ + |x|). (3.18)

Moreover, for all x1, x2 ∈ Rd it holds

|F−1
δ (x1)− F−1

δ (x2)|2+ηδ
m∑
k=2

|G̃kF−1
δ (x1)− G̃kF−1

δ (x2)|2

≤(1 + CHδ)|x1 − x2|2,
(3.19)

where

CH =
L+(2− L+h̄)

(1− L+h̄)2
. (3.20)

The poof can be found in [5, Corollary 4.2].
Further, we quote from [5] a useful lemma, which plays an important role in the analysis

of the local error of the SSBSNI method.

Lemma 3.2.3. Let Assumption 3.1.3 hold with L+, L+
0 , L

+
1 > 0 and η ∈ (1,∞). Let h̄ ∈

(0, 1
L+ ) and for all δ ∈ (0, h̄] the mapping Fδ : Rd → Rd is given by Fδ(x) = x− f+(x)δ.

Then for all x ∈ Rd the estimate holds

|F−1
δ (x)− x| ≤CL0δ(1 + |x|q), (3.21)

|F−1
δ (x)− x− f+(x)δ| ≤CL1δ

2(1 + |x|2q−1), (3.22)

where

CL0 =L+
0 (1 + 2q−1(1− L+h̄)−q), (3.23)

CL1 =L+
1 CL0(1 + (1− L+h̄)1−q(1 + (L+

0 h̄)q−1). (3.24)

For the proof we refer to [5, Lemma 4.3].

3.3. Reformulation of the nonlinear integral equation

In this section we rewrite the integral equation (3.5) in the same way as in Section 1.6. Let
X be a solution to (3.1). Applying Itô’s formula to the function V (t) = Φ1(t, 0)−1X(t)
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for all t ∈ [0, T ] provides (compare (1.63))

dV (t) =Φ−1
1 (t, 0)

(
G̃2

1 dt− G̃1 dW̃1(t) +
1

2
G̃2

1 dt
)
X(t)

+ Φ−1
1 (t, 0)

(
f(X(t)) dt+

m∑
k=1

G̃kX(t) dW̃k(t)
)

+ Φ−1
1 (t, 0)

(
G̃2

1 dt− G̃1 dW̃1(t) +
1

2
G̃2

1 dt
)(
f(X(t)) dt+

m∑
k=1

G̃kX(t) dW̃k(t)
)

=Φ−1
1 (t, 0)

(
f+(X(t)) dt+

m∑
k=2

G̃kX(t) dW̃k(t)
)
,

(3.25)

where f+ is defined by (3.11). Due to the independence of Φ1 and the terms: W̃2, . . . , W̃m

we can rewrite (3.25) in the following integral form

X(t) = Φ1(t, 0)X0 +

∫ t

0
Φ1(t, τ)f+(X(τ)) dτ +

m∑
k=2

∫ t

0
Φ1(t, τ)G̃kX(τ) dW̃k(τ), (3.26)

for all t ∈ [0, T ].

3.4. Stochastic C-stability and B-consistency of the PBSNE
method

In Chapter 2 we have shown the stochasic B-consistency and C-stability of the BSNE
scheme for linear SODEs. In this section we study the convergence theory of this method
with nonlinear deterministic term satisfying Assumption 3.1.3.
Let h̄ ∈ (0, 1] be an arbitrary upper size bound step-size. Then for all x ∈ Rd and

(t, δ) ∈ T we define the one-step map ΨPBSNE : Rd × T×Ω→ Rd of the PBSNE Euler-
type method with the abbreviation x◦ := min(1, δ−β|x|−1)x by

ΨPBSNE(x, t, δ) :=Φ1(t+ δ, t)x◦ + δΦ1(t+ δ, t)f+(x◦)

+
m∑
k=2

Φ1(t+ δ, t)G̃kx
◦Ĩt,t+δ(k) ,

(3.27)

with

Φ1(t+ δ, t) = exp(−G̃2
1δ + G̃1Ĩ

t,t+δ
(1) ), (t, δ) ∈ T.

The following proposition shows that (3.27) is a one-step method in the sense of Defi-
nition 2.1.1. This result was already proved for the projected Euler-Maruyama (PEM)
and projected Milstein (PMil) schemes in [5] and [6].
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Proposition 3.4.1. Let f+ satisfies Assumption 3.1.3 with L+, L+
0 , L

+
1 > 0, q ∈ (1,∞)

and let h̄ ∈ (0, 1]. Then for every initial value ξ ∈ L2(Ω,F0,P;Rd) it holds that
(ΨPBSNE , h̄, ξ) with β ∈ (0,∞) is a stochastic one-step method.

Proof. Since, the mapping x 7→ min(1, δ−β|x|−1)x, x ∈ Rd is continuous and bounded,
then for all Y ∈ L2(Ω,Ft,P;Rd) and arbitrary (t, δ) ∈ T we obtain

min(1, δ−β|Y |−1)Y ∈ L∞(Ω,Ft,P;Rd).

By continuity of the function f+ it holds

Φ1(t+ δ, t)f+(min(1, δ−β|Y |−1)Y ) ∈ L∞(Ω,Ft+δ,P;Rd).

Therefore, ΨPBSNE(Y, t, δ) : Ω → Rd is an Ft+δ/B(Rd)-measurable random variable,
which satisfies condition (2.2).

In preparation for the proof of C-stability we quote the result from [5, Lemma 6.2], [6,
Lemma 4.2], which states the global Lipschitz continuity of the mapping Rd 3 z 7→ z◦ ∈
Rd.

Lemma 3.4.2. For every β ∈ (0,∞) and δ ∈ (0, 1] the mapping Rd 3 x 7→ x◦ ∈ Rd,
defined by x◦ := min(1, δ−β|x|−1)x is globaly Lipschitz continuous with Lipschitz constant
1. In particular, it holds for all x1, x2 ∈ Rd

|x◦1 − x◦2| ≤ |x1 − x2|. (3.28)

The next lemma plays an important role for the stability analysis of the PBSNE Euler-
type method. It is similar to Lemma 6.3 in [5].

Lemma 3.4.3. Let f+ satisfies Assumption 3.1.3 with L+, L+
0 , L

+
1 > 0, q ∈ (1,∞) and

η ∈ (1
2 ,∞). Consider the mapping x 7→ x◦, defined by x◦ := min(1, δ−β|x|−1)x with

β = 1
2(q−1) . Then for all x1, x2 ∈ Rd the estimate holds

|x◦1 − x◦2+δ(f+(x◦1)− f+(x◦2))|2 + 2ηδ

m∑
k=2

|G̃k(x◦1 − x◦2)|2

≤(1 +Kδ)|x1 − x2|2,
(3.29)

with G̃k ∈ Rd×d and

K = 2L+ + 9(L+
1 )2. (3.30)
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Proof. Expanding the inner product and using condition (3.12) we get

|x◦1 − x◦2+δ(f+(x◦1)− f+(x◦2))|2

=|x◦1 − x◦2|2 + 2δ〈x◦1 − x◦2, f+(x◦1)− f+(x◦2)〉
+ δ2|f+(x◦1)− f+(x◦2)|2

≤(1 + 2L+δ)|x◦1 − x◦2|2 − 2ηδ
m∑
k=2

|G̃k(x◦1 − x◦2)|2

+ δ2|f+(x◦1)− f+(x◦2)|2.

Further, we use the fact that |x◦1|, |x◦2| ≤ δ−β , condition (3.14), and Lemma 3.4.2 and
obtain

|f+(x◦1)− f+(x◦2)| ≤L+
1 (1 + |x◦1|q−1 + |x◦2|q−1)|x◦1 − x◦2|

≤L+
1 (1 + 2δ−β(q−1))|x1 − x2|.

Next, we insert β = 1
2(q−1) and conclude

|x◦1 − x◦2+δ(f+(x◦1)− f+(x◦2))|2 + 2ηδ

m∑
k=2

|G̃k(x◦1 − x◦2)|2

≤(1 + 2L+δ)|x1 − x2|2 + δ2(L+
1 (1 + 2δ−

1
2 ))2|x1 − x2|2

=(1 + 2L+δ + (L+
1 )2δ2 + 4(L+

1 )2δ
3
2 + 4(L+

1 )2δ)|x1 − x2|2

≤(1 +Kδ)|x1 − x2|2.

This completes the proof.

Since K contains the constant L+
1 it is no longer of moderate size.

The following theorem verifies that the projected balanced shift noise Euler-type
method is stochastically C-stable.

Theorem 3.4.4. Let Assumption 3.1.3 hold with L+, L+
0 , L

+
1 ∈ (0,∞), q ∈ (1,∞) and

η ∈ (1
2 ,∞). Then for every initial value ξ ∈ L2(Ω,F0,P;Rd) the PBSNE Euler-type

method with β = 1
2(q−1) is stochastically C-stable. The constant Cstab in (2.4) depend on

the data αS,+, |G̃1|, L+, L+
1 and h̄, see (3.31).

Proof. The proof is analogous to the proof of the Theorem 2.2.7 but here we take care
of the nonlinear deterministic term. Let Y, Z ∈ L2(Ω,Ft,P;Rd) and (t, δ) be arbitrary.
We recall the notation Y ◦ := min(1, δ−β|Y |−1)Y and Z◦ := min(1, δ−α|Z|−1)Z. Then,
using the fact that E[|E[Z|Ft]|2] ≤ E[|Z|2] and Itô’s isometry we get

E[|E[ΨPBSNE(Y, t, δ)−ΨPBSNE(Z, t, δ)|Ft]|2]
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+ ηE[|(id− E[·|Ft])(ΨPBSNE(Y, t, δ)−ΨPBSNE(Z, t, δ))|2]

=E[|E[Φ1(t+ δ, t)(Y ◦ − Z◦ + f+(Y ◦)δ − f+(Z◦)δ)|Ft]|2]

+ηE[|(id− E[·|Ft])(Φ1(t+ δ, t)(Y ◦ − Z◦ + f+(Y ◦)δ − f+(Z◦)δ)

+
m∑
k=2

Φ1(t+ δ, t)G̃k(Y
◦ − Z◦)Ĩt,t+δ(k) )|2]

≤E[|Φ1(t+ δ, t)(Y ◦ − Z◦ + f+(Y ◦)δ − f+(Z◦)δ)|2]

+ 2ηδ
m∑
k=2

E
[∣∣Φ1(t+ δ, t)G̃k(Y

◦ − Z◦)
∣∣2]

+ 2ηE[|(id− E[·|Ft])(Φ1(t+ δ, t)(Y ◦ − Z◦ + f+(Y ◦)δ − f+(Z◦)δ)|2].

By Lemma 1.5.2 we get

E[|Φ1(t+ δ, t)(Y ◦−Z◦ + f+(Y ◦)δ − f+(Z◦)δ)|2]

≤e2αS,+δE[|Y ◦ − Z◦ + δ(f+(Y ◦)− f+(Z◦)|2].

The similar estimate applies to the second summand

2ηδ
m∑
k=2

E
[∣∣Φ1(t+δ, t)G̃k(Y

◦ − Z◦)
∣∣2]

≤2ηδe2αS,+δ
m∑
k=2

E[|G̃k(Y ◦ − Z◦)|2].

Then by Lemma 3.4.3 we obtain

e2αS,+δ
(
E
[∣∣Y ◦ − Z◦ + δ(f+(Y ◦)− f+(Z◦))|2

+ 2ηδ
m∑
k=2

|G̃k(Y ◦ − Z◦)
∣∣2])

≤e2αS,+δ(1 +Kδ)E[|Y − Z|2]

≤e(2αS,++K)δE[|Y − Z|2],

where K is given by (3.30). For the last summand we obtain by Lemma 1.5.4 and
Lemma 3.4.3

E[|(id− E[·|Ft])(Φ1(t+ δ, t)(Y ◦ − Z◦ + f+(Y ◦)δ − f+(Z◦)δ)|2]

≤Kcond(δ)2δE[|Y ◦ − Z◦ + f+(Y ◦)δ − f+(Z◦)δ|2]

≤Kcond(δ)2δ(1 +Kδ)E[|Y − Z|2]

≤Kcond(δ)2δeKδE[|Y − Z|2],
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where

Kcond(δ) = |G̃1|(
1

2
|G̃1|δ

1
2 + 1)eαs,+δ.

Altogether, this shows that

‖E[ΨPBSNE(Y, t, δ)−ΨPBSNE(Z, t, δ)|Ft]‖2L2(Ω;Rd)

+ η‖(id− E[·|Ft])(ΨPBSNE(Y, t, δ)−ΨPBSNE(Z, t, δ))‖2L2(Ω;Rd)

≤eCstabδ‖Y − Z‖2L2(Ω;Rd),

where

Cstab = 2η|G̃1|2(
1

2
|G̃1|h̄

1
2 + 1)2 +K + 2αS,+. (3.31)

Thus, the constant Cstab is not of moderate type in the sense of Convention 1.3.4,
compare Remark 2.2.8. In the preparation of the proof of consistency we consider the
next lemma, which is an analog of Lemma 5.5 in [5].

Lemma 3.4.5. Let f+ satisfies Assumption 3.1.3 with L+, L+
0 , L

+
1 > 0 and q ∈ (1,∞).

Further, let the exact solution X to (3.1) satisfy supt∈[0,T ] ‖X(t)‖L4q−2(Ω;Rd) <∞. Then
there exists a constant C such that∫ t

s
‖f+(X(τ))− f+(X(s))‖L2(Ω;Rd) dτ ≤C

(
1 + sup

t∈[0,T ]
‖X(t)‖2q−1

L4q−2(Ω;Rd)

)
|t− s|

3
2 (3.32)

for all 0 ≤ s < t ≤ T .
In addition, if condition (3.6) holds with η = pq−1

2 for p ∈ [2,∞) and q ∈ [1,∞) then
(3.32) can be estimated by∫ t

s
‖f+(X(τ))− f+(X(s))‖L2(Ω;Rd) dτ ≤C1(t− s, t)|t− s|

3
2 , (3.33)

where C1 : {(t, s) : 0 ≤ s ≤ t ≤ T} → R is of moderate size and given by

C1(δ, δ1) =
2

3
L+

1

(
1 + 2(1 + ‖X0‖q−1

L4q−2(Ω;Rd)
)e(q−1)αfT

)((
L0

+ L0(1 + ‖X0‖qL4q−2(Ω;Rd)
)eqαfδ1

)
δ

1
2

+ Cp|G|‖X0‖
L

4q−2
q (Ω;Rd)

eαfδ1
) (3.34)

for 0 ≤ δ ≤ δ1 ≤ T . Here Cp denotes the Burkholder-Davis-Gundy constant.
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Proof. For the proof of (3.32) we refer to [5]. From condition (3.14) and Hölder‘s in-
equality with exponents ρ = 2q−1

q , ρ′ = 2q−1
q−1 we get

‖f+(X(τ))−f+(X(s))‖L2(Ω;Rd)

≤‖L+
1 (1 + |X(τ)|q−1 + |X(s)|q−1)|X(τ)−X(s)|‖L2(Ω;Rd)

≤L+
1

(
1 + 2 sup

t∈[0,T ]
‖X(t)‖q−1

L2ρ′(q−1)(Ω;Rd)

)
‖X(τ)−X(s)‖L2ρ(Ω;Rd)

We note that 2ρ′(q − 1) = 4q − 2. By (3.9) for p = 2ρ we obtain

‖X(τ)−X(s)‖L2ρ(Ω;Rd) ≤
((
L0 + L0(1 + ‖X0‖qL4q−2(Ω;Rd)

)eqαf t
)
|t− s|

1
2

+ Cp|G|‖X0‖
L

4q−2
q (Ω;Rd)

eαf t
)
|τ − s|

1
2 .

Following, by integration we find∫ t

s
‖f+(X(τ))− f+(X(s))‖L2(Ω;Rd) dτ

≤L+
1

(
1 + 2(1 + ‖X0‖q−1

L4q−2(Ω;Rd)
)e(q−1)αfT

)((
L0

+ L0(1 + ‖X0‖qL4q−2(Ω;Rd)
)eqαf t

)
|t− s|

1
2

+ Cp|G|‖X0‖
L

4q−2
q (Ω;Rd)

eαf t
)∫ t

s
|τ − s|

1
2 dτ

≤2

3
L+

1

(
1 + 2(1 + ‖X0‖q−1

L4q−2(Ω;Rd)
)e(q−1)αfT

)((
L0

+ L0(1 + ‖X0‖qL4q−2(Ω;Rd)
)eqαf t

)
|t− s|

1
2

+ Cp|G|‖X0‖
L

4q−2
q (Ω;Rd)

eαf t
)
|t− s|

3
2 .

This completes the proof.

Now, we quote Lemma 6.5 from [5], which formalizes a method of proof originating
from [24, Th.7.7].

Lemma 3.4.6. For arbitrary β ∈ (0,∞) and δ ∈ (0, 1] consider the mapping Rd 3 x 7→
x◦ ∈ Rd, which given by x =: min(1, δ−β|x|−1)x. Let L+ ∈ (0,∞), κ ∈ [1,∞) and let
φ : Rd → Rd be a measurable mapping with

|φ(x)| ≤ L+(1 + |x|κ), x ∈ Rd.

For some p ∈ (2,∞) let Y ∈ Lpκ(Ω;Rd). Then there exists a constant Cdif only depending
on L+ and p such that

‖φ(Y )− φ(Y ◦)‖L2(Ω;Rd) ≤ Cdif(1 + ‖Y ‖κLpκ(Ω;Rd))
p
2 δ

1
2
β(p−2)κ.
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The following theorem investigates stochastic B-consistensy of PBSNE. We recall that
the constant Cdif is given by

Cdif =
(2(2L+)p + p− 2

p

) 1
2
. (3.35)

Theorem 3.4.7. Let f+ satisfies Assumption 3.1.3 with L+, L+
0 , L

+
1 > 0 and q ∈ (1,∞).

Let h̄ ∈ (0, 1] be arbitrary. If the exact solution X satisfies supt∈[0,T ] ‖X(t)‖L6q−4(Ω;Rd) <

∞, then the PBSNE Euler-type method (ΨPBSNE , h̄, X0) is stochastically B-consistent
of order γ = 1

2 . The constants Ccons,1 and Ccons,2 are of moderate exponential type, see
(3.37).

Proof. For arbitrary (t, δ) ∈ T we get

X(t+ δ)−ΨPBSNE(X(t), t, δ) =Φ1(t+ δ, t)
(
X(t)−X◦(t)

)
+

∫ t+δ

t
Φ1(t+ δ, τ)

(
f+(X(τ))− f+(X(t))

)
dτ

+

∫ t+δ

t

(
Φ1(t+ δ, τ)− Φ1(t+ δ, t)

)
f+(X(t)) dτ

+ Φ1(t+ δ, t)δ
(
f+(X(t))− f+(X◦(t))

)
+

m∑
k=2

∫ t+δ

t
Φ1(t+ δ, τ)

(
G̃kX(τ)− G̃kX(t)

)
dW̃k(τ)

+
m∑
k=2

∫ t+δ

t

(
Φ1(t+ δ, τ)− Φ1(t+ δ, t)

)
G̃kX(t) dW̃k(τ)

+
m∑
k=2

Φ1(t+ δ, t)
(
G̃kX(t)− G̃kX◦(t)

)
Ĩt,t+δ(k) ,

with X◦(t) = min(1, δ−β|X(t)|−1)X(t). By (2.5) and (2.6) we obtain

‖E[X(t+δ)−ΨPBSNE(X(t), t, δ)|Ft]‖L2(Ω;Rd)

≤‖E[Φ1(t+ δ, t)(X(t)−X◦(t))|Ft]‖L2(Ω;Rd)

+

∫ t+δ

t
‖E[Φ1(t+ δ, τ)

(
f+(X(τ))− f+(X(t))

)
|Ft]‖L2(Ω;Rd) dτ

+

∫ t+δ

t
‖E[
(
Φ1(t+ δ, τ)− Φ1(t+ δ, t)

)
f+(X(t))|Ft]‖L2(Ω;Rd) dτ

+ δ‖E[Φ1(t+ δ, t)
(
f+(X(t))− f+(X◦(t))

)
|Ft]‖L2(Ω;Rd)

=:
4∑
j=1

Sj ,
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and

‖(id−E[·|Ft])(X(t+ δ)−ΨPBSNE(X(t), t, δ))‖L2(Ω;Rd)

≤‖(id− E[·|Ft])Φ1(t+ δ, t)(X(t)−X◦(t))‖L2(Ω;Rd)

+

∫ t+δ

t
‖(id− E[·|Ft])Φ1(t+ δ, τ)(f+(X(τ))− f+(X(t)))‖L2(Ω;Rd) dτ

+

∫ t+δ

t
‖(id− E[·|Ft])

(
Φ1(t+ δ, τ)− Φ1(t+ δ, t)

)
f+(X(t)))‖L2(Ω;Rd) dτ

+ δ‖(id− E[·|Ft])Φ1(t+ δ, t)
(
f+(X(t))− f+(X◦(t))

)
‖L2(Ω;Rd)

+
∥∥∥ m∑
k=2

∫ t+δ

t
Φ1(t+ δ, τ)

(
G̃kX(τ)− G̃kX(t)

)
dW̃k(τ)

∥∥∥
L2(Ω;Rd)

+
∥∥∥ m∑
k=2

∫ t+δ

t

(
Φ1(t+ δ, τ)− Φ1(t+ δ, t)

)
G̃kX(t) dW̃k(τ)

∥∥∥
L2(Ω;Rd)

+
∥∥∥ m∑
k=2

Φ1(t+ δ, t)
(
G̃kX(t)− G̃kX◦(t)

)
Ĩt,t+δ(k)

∥∥∥
L2(Ω;Rd)

=:
7∑
j=1

Tj .

By applying (1.56) and Lemma 3.4.6 with ϕ = id, κ = 1, p = 6q − 4, and β = 1
2(q−1) we

obtain

S1 ≤|e−
1
2
G̃2

1δ|‖X(t)−X◦(t)‖L2(Ω;Rd)

≤eα1δCdif(1 + ‖X(t)‖3q−2
L6q−4(Ω;Rd)

)δ
3
2 ,

where Cdif is given by (3.35). From Lemma 1.5.2, Lemma 3.4.5, and the fact that
‖E[Z|Ft]‖L2(Ω;Rd) ≤ ‖Z‖L2(Ω;Rd) for all Z ∈ L2(Ω;Rd) we obtain for S2

S2 ≤
∫ t+δ

t
‖Φ1(t+ δ, τ)

(
f+(X(τ))− f+(X(t))

)
‖L2(Ω;Rd) dτ

≤
∫ t+δ

t
eαS,+(t+δ−τ)‖f+(X(τ))− f+(X(t))‖L2(Ω;Rd) dτ

≤eαS,+δC(1 + sup
t∈[0,T ]

‖X(t)‖2q−1
L4q−2(Ω;Rd)

)δ
3
2 .
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Further, by Lemma 1.5.5 and condition (3.13) we obtain for the third term

S3 ≤
∫ t+δ

t
‖
(
Φ1(t+ δ, τ)− Φ1(t+ δ, t)

)
f+(X(t)))‖L2(Ω;Rd) dτ

≤L+
0 ‖1 + |X(t)|q‖L2(Ω;Rd)|G̃1|(

1

2
|G̃1|δ

1
2 + 1)eαS,+δ

∫ t+δ

t
|τ − t|

1
2 dτ

≤L+
0 (1 + sup

t∈[0,T ]
‖X(t)‖q

L2q(Ω;Rd)
)|G̃1|(

1

2
|G̃1|δ

1
2 + 1)eαS,+δδ

3
2 .

(3.36)

The terms f+(X(t)) and f+(X◦(t)) are Ft-measurable and we apply estimate (1.56) and
Lemma 3.4.6 with ϕ = f+(·), κ = q, p = 4q−2

q . This yields

S4 ≤δ|e−
1
2
G̃2

1δ|‖f+(X(t))− f+(X◦(t))‖L2(Ω;Rd)

≤δeα1δ‖f+(X(t))− f+(X◦(t))‖L2(Ω;Rd)

≤Cdife
α1δ(1 + ‖X(t)‖2q−1

L4q−2)δ
3
2 .

Further, using Lemma 1.5.4 and Lemma 3.4.6 we get

T1 ≤Kcond(δ)δ
1
2 ‖X(t)−X◦(t)‖L2(Ω;Rd)

≤|G̃1|(
1

2
|G̃1|δ

1
2 + 1)eαS,+δCdif(1 + ‖X(t)‖3q−2

L6q−4(Ω;Rd)
)δ2.

By inequality ‖(id − E[·|Ft])Z‖L2(Ω;Rd) ≤ ‖Z‖L2(Ω;Rd) for all Z ∈ L2(Ω;Rd) we obtain
that

T2 ≤
∫ t+δ

t
‖Φ1(t+ δ, τ)(f+(X(τ))− f+(X(t)))‖L2(Ω;Rd) dτ

and

T3 ≤
∫ t+δ

t
‖
(
Φ1(t+ δ, τ)− Φ1(t+ δ, t)

)
f+(X(t)))‖L2(Ω;Rd) dτ.

The estimates of T2 and T3 are similar to the estimates of the terms S2 and S3. Further,
by Lemma 1.5.4 and Lemma 3.4.6 with ϕ = f+(·), κ = q, p = 4q−2

q we get

T4 ≤δKcond(δ)δ
1
2 ‖f+(X(t))− f+(X◦(t))‖L2(Ω;Rd)

≤|G̃1|(
1

2
|G̃1|δ

1
2 + 1)eαS,+δCdif(1 + ‖X(t)‖2q−1

L4q−2))δ2.

The terms T5 and T6 were already estimated in Section 2.2, Lemma 2.2.3 and obey the
following estimates

T5 ≤K4(δ, t+ δ)‖X0‖L2(Ω;Rd)δ,
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T6 ≤K5(δ, t)‖X0‖L2(Ω;Rd)δ,

where

K4(δ, t+ δ) =|G̃−|(|A|δ
1
2 + |G|) exp

(
αS,+δ + α+(t+ δ)

)
,

K5(δ, t) =|G̃−||G̃1|(
1

2
|G̃1|δ

1
2 + 1) exp

(
α+t+ αS,+δ

)
.

Finally, using the Itô isometry yields

T7 =
(
δ

m∑
k=2

‖Φ1(t+ δ, t)G̃k
(
X(t)−X◦(t)

)
‖2L2(Ω;Rd)

) 1
2
.

As above we use Lemma 1.5.2 and Lemma 3.4.6 with ϕ = id, κ = 1, p = 6q − 4 and
obtain

T7 ≤|G̃−|eαS,+δCdif(1 + ‖X(t)‖3q−2
L6q−4(Ω;Rd)

)δ2.

This completes the proof.

Remark 3.4.8. The constants Ccons,1 and Ccons,2 in (2.5) and (2.6) are given by

Ccons,1 =eα1h̄Cdif(1 + sup
t∈[0,T ]

‖X(t)‖3q−2
L6q−4(Ω;Rd)

)

+ eαS,+C(1 + sup
t∈[0,T ]

‖X(t)‖2q−1
L4q−2(Ω;Rd)

)

+ eαS,+h̄|G̃1|(
1

2
|G̃1|h̄

1
2 + 1)L+

0 (1 + sup
t∈[0,T ]

‖X(t)‖q
L2q(Ω;Rd)

),

Ccons,2 =eαS,+h̄Cdif(1 + sup
t∈[0,T ]

‖X(t)‖3q−2
L6q−4(Ω;Rd)

)
(
|G̃1|(

1

2
|G̃1|h̄

1
2 + 1) + |G̃−|

)
+ eαS,+h̄|G̃−|‖X0‖L2(Ω;Rd)e

α+T
(
|A|h̄

1
2 + |G|+ |G̃1|(

1

2
|G̃1|h̄

1
2 + 1)

)
+ eαS,+h̄

(
1 + sup

t∈[0,T ]
‖X(t)‖2q−1

L4q−2(Ω;Rd)

)(
Cdif |G̃1|(

1

2
|G̃1|h̄

1
2 + 1) + C

)
+ eαS,+h̄L+

0 (1 + sup
t∈[0,T ]

‖X(t)‖q
L2q(Ω;Rd)

)|G̃1|(
1

2
|G̃1|h̄

1
2 + 1).

(3.37)

3.5. Stochastic C-stability and B-consistency of the SSBSNI
method

Our next aim is to show that the split-step balanced shift noise implicit Euler-type scheme
is convergent with order γ = 1

2 . Let us first show that the SSBSNI Euler-type method is
a stochastic one-step method in the sense of the Definition 2.1.1.
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Consider an arbitrary vector h ∈ (0, h̄]N with h̄ ∈ (0, 1
L+ ). By Corollary 3.2.2 there

exists a homeomorphism Fhi(·) : Rd → Rd such that

X̂h(ti) = F−1
hi

(Xh(ti−1))

is a solution of

Xh(ti) = Xh(ti−1) + f+(X̂h(ti))hi

for all i = 1, . . . , N. With this observation the split-step balanced shift noise implicit
Euler-type method becomes a one-step method in the sense of Definition 2.1.1 by defining
ΨSSBSNI : Rd × T× Ω→ Rd as follows

ΨSSBSNI(x, t, δ) = Φ1(t+ δ, t)F−1
δ (x) +

m∑
k=2

Φ1(t+ δ, t)G̃kF
−1
δ (x)Ĩt,t+δ(k) , (3.38)

where Φ1(t+ δ, t) = exp
(
− G̃2

1δ + G̃1Ĩ
t,t+δ
(1)

)
, (t, δ) ∈ T and x ∈ Rd.

Proposition 3.5.1. Let Assumption 3.1.3 hold with L+, L+
0 , L

+
1 > 0 and q ∈ (1,∞)

and let h̄ ∈ (0, 1
L+ ). For all initial value ξ ∈ L2(Ω,F0,P;Rd) the tuple (ΨSSBSNI , h̄, ξ)

defines a stochastic one-step method.

Proof. Let (t, δ) ∈ T and Y ∈ L2(Ω,Ft,P;Rd). By Corollary 3.2.2 the mapping F−1
δ (·) :

Rd → Rd satisfies the linear growth condition (3.18). It follows

F−1
δ (Y ) ∈ L2(Ω,Ft,P;Rd).

Further, by Lemma 1.5.2 we have

Φ1(t+ δ, t)F−1
δ (Y ) ∈ L2(Ω,Ft+δ,P;Rd).

Therefore, ΨSSBSNI(Y, t, δ) : Ω→ Rd is a well-defined, Ft+δ-measurable random variable
in L2(Ω,Ft+δ,P;Rd), which satisfies (2.2).

The following theorem investigates stochastic C-stability of the split-step balanced
shift noise implicit Euler-type method.

Theorem 3.5.2. Let Assumption 3.1.3 hold with L+, L+
0 , L

+
1 > 0, q ∈ (1,∞) and

η ∈ (1
2 ,∞) and let h̄ ∈ (0, 1

L+ ). Then for all ξ ∈ L2(Ω,F0,P;Rd) the SSBSNI Euler-type
method (ΨSSBSNI , h̄, ξ) is stochastically C-stable. The constant Cstab in (2.4) depends
on data αS,+, ‖G̃1‖, L+, CH, η and h̄, see (3.39).
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Proof. Let fix arbitrary (t, δ) ∈ T and consider Y, Z ∈ L2(Ω,Ft,P;Rd). Then we get

E[ΨSSBSNI(Y, t, δ)−ΨSSBSNI(Z, t, δ)|Ft] = E[Φ1(t+ δ, t)(F−1
δ (Y )− F−1

δ (Z))|Ft]

and (
id− E[·|Ft]

)(
ΨSSBSNI(Y, t, δ)−ΨSSBSNI(Z, t, δ)

)
=
(
id− E[·|Ft]

)
Φ1(t+ δ, t)(F−1

δ (Y )− F−1
δ (Z))

+
m∑
k=2

Φ1(t+ δ, t)G̃k(F
−1
δ (Y )− F−1

δ (Z))Ĩt,t+δ(k) .

Further, by (2.4), the Itô isometry, and since E[|E[Z|Ft]|2] ≤ E[|Z|2] for all Z ∈ L2(Ω;Rd)
we have

E
[∣∣E[Φ1(t+ δ, t)(F−1

δ (Y )− F−1
δ (Z))|Ft]

∣∣2]
+ ηE

[∣∣(id− E[·|Ft])Φ1(t+ δ, t)
(
F−1
δ (Y )− F−1

δ (Z)
)

+
m∑
k=2

Φ1(t+ δ, t)G̃k
(
F−1
δ (Y )− F−1

δ (Z)
)
Ĩt,t+δ(k)

∣∣2]
≤E
[∣∣Φ1(t+ δ, t)(F−1

δ (Y )− F−1
δ (Z))

∣∣2]
+ 2ηE

[∣∣(id− E[·|Ft])Φ1(t+ δ, t)
(
F−1
δ (Y )− F−1

δ (Z)
)∣∣2]

+ 2ηδ
m∑
k=2

E
[∣∣Φ1(t+ δ, t)G̃k

(
F−1
δ (Y )− F−1

δ (Z)
)∣∣2].

By Lemma 1.5.2 and Corollary 3.2.2 we obtain

E[|Φ1(t+ δ, t)(F−1
δ (Y )− F−1

δ (Z))|2]

+ 2ηδ

m∑
k=2

E
[∣∣Φ1(t+ δ, t)G̃k

(
F−1
δ (Y )− F−1

δ (Z)
)∣∣2]

≤e2αS,+δE[|F−1
δ (Y )− F−1

δ (Z)|2]

+ 2ηδe2αS,+δ
m∑
k=2

E[|G̃k(F−1
δ (Y )− F−1

δ (Z))|2]

≤e2αS,+δ(1 + CHδ)E[|Y − Z|2]

≤e(2αS,++CH)δE[|Y − Z|2],

where CH is given by (3.20). It remains to show that the last term has a sharper estimate.
By Lemma 1.5.4 and (3.17) we get

E
[∣∣(id−E[·|Ft])(Φ1(t+ δ, t)

(
F−1
δ (Y )− F−1

δ (Z)
)∣∣2]

≤K2
cond(δ)δE[|F−1

δ (Y )− F−1
δ (Z)|2]
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≤|G̃1|2(
1

2
|G̃1|δ + 1)2e2αS,+δ(1− L+δ)−2δE[|Y − Z|2].

Since (1− L+δ)−2 is convex, then for all δ ∈ (0, h̄] (see Section 2.3)

(1− L+δ)−2 =≤ 1 + CHδ ≤ eCHδ.

Hence, we obtain

E
[∣∣(id−E[·|Ft])(Φ1(t+ δ, t)

(
F−1
δ (Y )− F−1

δ (Z)
)∣∣2]

≤δ|G̃1|2(
1

2
|G̃1|δ + 1)2 exp

(
(2αS,+ + CH)δ

)
E[|Y − Z|2].

Altogether, this shows that

‖E[ΨSSBSNI(Y, t, δ)−ΨSSBSNI(Z, t, δ)|Ft]‖2L2(Ω;Rd)

+ η‖(id− E[·|Ft])(ΨSSBSNI(Y, t, δ)−ΨSSBSNI(Z, t, δ))‖2L2(Ω;Rd)

≤eCstabδ‖Y − Z‖2L2(Ω;Rd),

where

Cstab = 2η|G̃1|2(
1

2
|G̃1|h̄+ 1)2 + 2αS,+ + CH (3.39)

with CH given by (3.20).

The constant Cstab is not of moderate type, see Remark 2.2.8. In the following theorem
we prove B-consistency of the SSBSNI Euler-type scheme.

Theorem 3.5.3. Let f+ satisfies Assumption 3.1.3 with L+, L+
0 , L

+
1 > 0 and q ∈ (1,∞)

and let h̄ ∈ (0, 1
L+ ). If the exact solution X satisfies supt∈[0,T ] ‖X(t)‖L4q−2(Ω;Rd) < ∞,

then the SSBSNI Euler-type method (ΨSSBSNI , h̄, X0) is stochastically B-consistent of
order γ = 1

2 . The constants Ccons,1 and Ccons,2 are of moderate exponential type, see
(3.40).

Proof. By inserting (3.26) and (3.38) for arbitrary (t, δ) ∈ T we obtain

X(t+ δ)−ΨSSBSNI(X(t), t, δ) =

∫ t+δ

t
Φ1(t+ δ, τ)

(
f+(X(τ))− f+(X(t))

)
dτ

+

∫ t+δ

t

(
Φ1(t+ δ, τ)− Φ1(t+ δ, t)

)
f+(X(t)) dτ

+ Φ1(t+ δ, t)
(
X(t) + f+(X(t))δ − F−1

δ (X(t))
)

+
m∑
k=2

∫ t+δ

t
Φ1(t+ δ, τ)G̃k

(
X(τ)−X(t)

)
dW̃k(τ)
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+
m∑
k=2

∫ t+δ

t

(
Φ1(t+ δ, τ)− Φ1(t+ δ, t)

)
G̃kX(t) dW̃k(τ)

+

m∑
k=2

Φ1(t+ δ, t)G̃k
(
X(t)− F−1

δ (X(t))
)
Ĩt,t+δ(k) .

For the proof of (2.5) we have to estimate three summands:

‖E[|X(t+ δ)−ΨSSBSNI(X(t), t, δ)|Ft]‖L2(Ω;Rd)

≤
∫ t+δ

t
‖E[Φ1(t+ δ, τ)

(
f+(X(τ)− f+(X(t))

)
|Ft]‖L2(Ω;Rd) dτ

+

∫ t+δ

t
‖E[
(
Φ1(t+ δ, τ)− Φ1(t+ δ, t

)
)f+(X(t))|Ft]‖L2(Ω;Rd) dτ

+ ‖E[Φ1(t+ δ, t)
(
X(t) + f+(X(t))δ − F−1

δ (X(t))
)
|Ft]‖L2(Ω;Rd)

=:
3∑
j=1

Sj .

Since the estimate of S1 and S2 has been done in the section 3.4, Theorem 3.4.7 it remains
to show that the estimate of the summand S3 satisfies (2.5). By (1.56) and Lemma 3.2.3
we obtain

S3 ≤eα1δCL1δ
2‖1 + |X(t)|2q−1‖L4q−2(Ω;Rd)

≤eα1δCL1δ
2(1 + sup

t∈[0,T ]
‖X(t)‖2q−1

L4q−2(Ω;Rd)
),

where CL1 is given by (3.24). Further, the proof of (2.6) is obtained as follows

‖(id− E[·|Ft])
(
X(t+ δ)−ΨSSBSNI(X(t), t, δ)‖L2(Ω;Rd)

≤
∫ t+δ

t
‖(id− E[·|Ft])Φ1(t+ δ, τ)

(
f+(X(τ))− f+(X(t))

)
‖L2(Ω;Rd) dτ

+

∫ t+δ

t
‖(id− E[·|Ft])

(
Φ1(t+ δ, τ)− Φ1(t+ δ, t)

)
f+(X(t))‖L2(Ω;Rd) dτ

+ ‖(id− E[·|Ft])Φ1(t+ δ, t)
(
X(t) + f+(X(t))δ − F−1

δ (X(t))
)
‖L2(Ω;Rd)

+
∥∥∥ m∑
k=2

∫ t+δ

t
Φ1(t+ δ, τ)G̃k

(
X(τ)−X(t)

)
dW̃k(τ)

∥∥∥
L2(Ω;Rd)

+
∥∥∥ m∑
k=2

∫ t+δ

t

(
Φ1(t+ δ, τ)− Φ1(t+ δ, t)

)
G̃kX(t) dW̃k(τ)

∥∥∥
L2(Ω;Rd)

+
∥∥∥ m∑
k=2

Φ1(t+ δ, t)G̃k
(
X(t)− F−1

δ (X(t))
)
Ĩt,t+δ(k)

∥∥∥
L2(Ω;Rd)
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=:

6∑
j=1

Tj .

The estimates of T1, T2, T4 and T5 have already been shown in Theorem 3.4.7. Therefore,
we consider only T3 and T6. Using Lemma 1.5.4 and Lemma 3.2.3 yields

T3 ≤Kcond(δ)δ
1
2CL1δ

2‖1 + |X(t)|2q−1‖L4q−2(Ω;Rd)

≤|G̃1|(
1

2
|G̃1|δ

1
2 + 1)eαS,+δCL1

(
1 + sup

t∈[0,T ]
‖X(t)‖2q−1

L4q−2(Ω;Rd)

)
δ

5
2 .

Finally, by the Itô isometry, Lemma 1.5.2, and Lemma 3.2.3 we obtain

T6 =
(
δ

m∑
k=2

‖Φ1(t+ δ, t)G̃k
(
X(t)− F−1

δ (X(t)
)
‖2L2(Ω;Rd)

) 1
2

≤|G̃−|eαS,+δCL0‖1 + |X(t)|q‖L2qδ

≤|G̃−|eαS,+δCL0(1 + sup
t∈[0,T ]

‖X(t)‖q
L2q)δ,

where CL0 is given by (3.23). Since 2q ≤ 4q − 2 for q ≥ 1, this completes the proof.

Remark 3.5.4. The constants Ccons,1 and Ccons,2 in (2.5) and (2.6) are given by

Ccons,1 =(CeαS,+h̄ + CL1eα1h̄)(1 + sup
t∈[0,T ]

‖X(t)‖2q−1
L4q−2(Ω;Rd)

)

+ eαS,+h̄L+
0 (1 + sup

t∈[0,T ]
‖X(t)‖q

L2q(Ω;Rd)
)|G̃1|(

1

2
|G̃1|h̄

1
2 + 1),

Ccons,2 =eαS,+h̄
(
1 + sup

t∈[0,T ]
‖X(t)‖2q−1

L4q−2(Ω;Rd)

)(
CL1 |G̃1|(

1

2
|G̃1|h̄

1
2 + 1) + C

)
+ eαS,+h̄(1 + sup

t∈[0,T ]
‖X(t)‖q

L2q(Ω;Rd)
)(L+

0 |G̃1|(
1

2
|G̃1|h̄

1
2 + 1) + CL0 |G̃−|)

+ eαS,+h̄eα+T ‖X0‖L2(Ω;Rd)

(
|A|h̄

1
2 + |G̃1|(

1

2
|G̃1|h̄

1
2 + 1)

)
,

(3.40)

where CL0 and CL1 are given by (3.23) and (3.24), respectively.



4. Balanced higher order methods

So far, the focus of the thesis has been to isolate the largest noise term and to analyze
of the numerical methods, in which the largest noise is integrated by an extra step. Of
course, the question arises whether this approach can be used to implement the methods
of higher order, γ > 1

2 . At the beginning, we shall introduce a Milstein version of our
PBSNE method, in which the intermediate step is realized by a method of higher order.
However, this does not lead to a higher order method in the general case, since the split
into steps avoids evaluating double stochastic integrals. But these are essential for a
higher order method (see [46]).
For the reasons stated above, we analyze in this chapter the classical balanced method

proposed in [44] and [32]. For this method a higher order is achievable, if it is assumed
that double stochastic integrals can be evaluated accurately. However, there is no sys-
tematic rule how to determine weight functions within a damping matrix.
In Chapter 5 we will present some numerical experiments that show in the case of

commutative noise (see [36]) both approaches are suitable to approximate stiff stochastic
differential equations.

4.1. Projected balanced shift noise Milstein-type method

In this section we extend our previous methods from Section 3.1 by using a higher order
approximation for the intermediate step. Consider the same situation as in Chapter 3
with the stochastic differential equation

dX(t) =f(t,X(t)) dt+

m∑
k=1

G̃kX(t) dW̃k(t),

X(0) =X0, t ∈ [0, T ],

(4.1)

where f : [0, T ] × Rd → Rd and G̃k ∈ Rd×d, k = 1, . . . ,m are given by (1.19). In the
following we denote double Itô integrals as in [36]

Is,t(r1,r2) =

∫ t

s

∫ z

s
dWr1(τ) dWr2(z),

for all 0 ≤ s < t ≤ T .
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Furthermore, let h ∈ (0, h̄]N be an arbitrary vector with h̄ ∈ (0, 1] and let β ∈ (0,∞).
Then the projected balanced shift noise Milstein-type scheme (PBSNM) is given by the
three-step recursion

X◦h(ti) := min(1, h−βi |Xh(ti−1)|−1)Xh(ti−1),

Xh(ti) =X◦h(ti) + f+(X◦h(ti))hi +
m∑
k=2

G̃kX
◦
h(ti)Ĩ

ti−1,ti
(k) +

m∑
k1,k2=2

G̃k1G̃k2X
◦
h(ti)Ĩ

ti−1,ti
(k1,k2),

Xh(ti) =Φ1(ti, ti−1)Xh(ti),

Xh(0) =X0,

(4.2)

for all i = 1, . . . , N.

The numerical analysis of this scheme has not yet been carried out in detail, but we
will use it for comparison in our numerical simulations, see Chapter 5.

4.2. The classical balanced Milstein method

Our interest is to verify that the classical balanced Milstein method (BMM), proposed in
[32], fits into our convergence concept from Section 2.1 provided the nonlinearity satisfies
a one-sided Lipschitz condition as in (1.2).
Let us consider the stochastic ordinary differential equation

dX(t) =f(t,X(t)) dt+
m∑
r=1

gr(t,X(t)) dWr(t),

X(0) =X0, t ∈ [0, T ],

(4.3)

where f, gr : [0, T ] × Rd → Rd, r = 1, . . . ,m are drift and diffusion coefficient functions
and Wr, r = 1, . . . ,m are independent standard real Wiener processes.
For an arbitrary vector h ∈ (0, h̄]N with h̄ ∈ (0, 1] the approximation to (4.3) is given

by

Xh(ti) =Xh(ti−1) + f(ti−1, Xh(ti−1))hi

+
m∑
r=1

gr(ti−1, Xh(ti−1))I
ti−1,ti
(r) +

m∑
r1,r2=1

gr1,r2(ti−1, Xh(ti−1))I
ti−1,ti
(r1,r2)

+
(
d0(ti−1, Xh(ti−1))hi +

m∑
l=1

dl(ti−1, Xh(ti−1))I
ti−1,ti
(l,l)

)(
Xh(ti−1)−Xh(ti)

)
,

(4.4)

for all i = 1, . . . , N . This is called the balanced MIlstein method (see [32]). In (4.4) we
use the same notation as in [6] for some coefficients of stochastic Taylor expansions:

gr1,r2(t, x) :=
∂gr1

∂x
(t, x)gr2(t, x), (4.5)
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for all x ∈ Rd and t ∈ [0, T ]. Furthermore, dl, l = 0, . . . ,m denote d × d-matrix valued
weight functions. This scheme can be rewritten in one-step form as follows

Xh(ti) =Xh(ti−1) +M−1
Xh,ti−1,ti

(
f(ti−1, Xh(ti−1))hi

+

m∑
r=1

gr(ti−1, Xh(ti−1))I
ti−1,ti
(r) +

m∑
r1,r2=1

gr1,r2(ti−1, Xh(ti−1))I
ti−1,ti
(r1,r2)

)
,

(4.6)

with the damping matrix

M(Xh, ti−1, ti) = id + d0(ti−1, Xh(ti−1))hi +
m∑
l=1

dl(ti−1, Xh(ti−1))I
ti−1,ti
(l,l) . (4.7)

This method was first studied by C. Kahl and H.Schurz in [32]. They have shown under
global Lipschitz condition the global mean square convergence of the balanced Milstein
method. We note, however that some of estimates there are not correct as written, see
Remark 4.4.8 and Remark 4.5.6 below.
In fact, strong convergence of order 1 is true under global Lipschitz condition and even

more can be shown: in [31] it is proved that under these conditions the BMM scheme
is bistable and consistent of order 1 which implies strong convergence. Here we are
interested in the cases where the global Lipschitz condition is not fulfilled. The one-sided
Lipschitz condition weakens our assumptions on the function f by using a projection
onto a ball in Rd whose radius is expanding with a negative power of the step size (see in
Section 3.1). Moreover, we assume that the matrices dl ∈ Rd×d, l = 0, . . . ,m are constant.
It is possible to treat matrices which depend on Xh(ti) in a Lipschitz continuous way,
but this involves tricky calculations which we try to avoid here.
Now, we consider a modified form of the classical balanced Milstein method: Let

h ∈ (0, h̄]N be an arbitrary vector of step sizes and h̄ ∈ (0, 1]. Then for a given parameter
β ∈ (0,∞) the projected balanced Milstein method (PBMM) is defined by

Xh(ti) = min(1, h−βi |Xh(ti−1)|−1)Xh(ti−1),

Xh(ti) =Xh(ti) +M−1
ti−1,ti

(
f(ti−1, Xh(ti))hi +

m∑
r=1

gr(ti−1, Xh(ti))I
ti−1,ti
(r)

+
m∑

r1,r2=1

gr1,r2(ti−1, Xh(ti))I
ti−1,ti
(r1,r2)

)
,

(4.8)

where

M(ti−1, ti) = id + d0hi +

m∑
l=1

dlI
ti−1,ti
(l,l) .

The convergence of (4.8) and numerical results will be studied in the sections below.
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4.3. Preliminaries

In this section we describe our assumptions on the stochastic differential equation

dX(t) =f(t,X(t)) dt+
m∑
r=1

gr(t,X(t)) dWr(t),

X(0) =X0, t ∈ [0, T ],

(4.9)

where f : [0, T ] × Rd → Rd is the drift diffusion coefficient function, gr : [0, T ] × Rd →
Rd, r = 1, . . . ,m are the diffusion coefficient functions. ByWr : [0, T ]×Ω→ R we denote
an independent family of real-valued standard Wiener processes on the probability space
(Ω,F , P ). Since we consider methods of higher order we have to extend the assumptions
from Section 1.1 by assumptions on the derivatives of the coefficient functions.
In the following we denote by 〈·, ·〉 and | · | the Euclidean inner product and the

Euclidean norm on Rd, respectively. For sufficiently smooth function f : [0, T ]×Rd → Rd

we denote by ∂f
∂x (t, x) ∈ Rd×d the Jacobian matrix of the mapping x 7→ f(t, x) ∈ Rd for

all x ∈ Rd and t ∈ [0, T ].

Assumption 4.3.1. The functions f : [0, T ]× Rd → Rd and gr : [0, T ]× Rd → Rd, r =

1, . . . ,m are continuously differentiable. Furthermore, there exists a positive constant L
and a parameter value η ∈ (1

2 ,∞) such that for all t ∈ [0, T ] and x1, x2 ∈ Rd it holds

〈
f(t, x1)− f(t, x2), x1 − x2

〉
+ η

m∑
r=1

∣∣gr(t, x1)− gr(t, x2)
∣∣2 ≤ L|x1 − x2|2. (4.10)

In addition, there exists q ∈ [2,∞) such that for all t ∈ [0, T ] and x, x1, x2 ∈ Rd it holds∣∣∣∂f
∂t

(t, x)
∣∣∣ ≤L(1 + |x|)q, (4.11)∣∣∣∂gr

∂t
(t, x)

∣∣∣ ≤L(1 + |x|)
q+1
2 , r = 1, . . . ,m, (4.12)∣∣∣∂f

∂x
(t, x1)− ∂f

∂x
(t, x2)

∣∣∣ ≤L(1 + |x1|+ |x2|)q−2|x1 − x2| (4.13)∣∣∣∂gr
∂x

(t, x1)− ∂gr
∂x

(t, x2)
∣∣∣ ≤L(1 + |x1|+ |x2|)

q−3
2 |x1 − x2|, r = 1, . . . ,m. (4.14)

Moreover, there exists a constant q ∈ [1,∞) such that for all t, t1, t2 ∈ [0, T ] and
x, x1, x2 ∈ Rd it holds

|f(t, x)| ≤L(1 + |x|)q, (4.15)∣∣∣∂f
∂x

(t, x)
∣∣∣ ≤L(1 + |x|)q−1, (4.16)

|f(t1, x)− f(t2, x)| ≤L(1 + |x|)q|t1 − t2|, (4.17)
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|f(t, x1)− f(t, x2)| ≤L(1 + |x1|+ |x2|)q−1|x1 − x2|. (4.18)

and for all r = 1, . . . ,m

|gr(t, x)| ≤L(1 + |x|)
q+1
2 , (4.19)∣∣∣∂gr

∂x
(t, x)

∣∣∣ ≤L(1 + |x|)
q−1
2 , (4.20)

|gr(t1, x)− gr(t2, x)| ≤L(1 + |x|)
q+1
2 |t1 − t2|, (4.21)

|gr(t, x1)− gr(t, x2)| ≤L(1 + |x1|+ |x2|)
q−1
2 |x1 − x2|. (4.22)

We recall that condition (4.10) is also called a global monotonicity condition. In
addition, we use the weights (1 + |x|)q instead of 1 + |x|q, compare conditions (1.3)-(1.5)
from Section 1.1 with (4.15), (4.17), (4.18), (4.19), (4.21) and (4.22). For q ≥ 0 this
makes no difference, but if 2 ≤ q < 3 then the Lipschitz constants in condition (4.14) are
required to decrease .
Now, we extend Assumption 4.3.1: The mappings gr1,r2 satisfy the polynomial growth

condition

|gr1,r2(t, x)| ≤ L(1 + |x|)q, r1, r2 = 1, . . . ,m, (4.23)

for all x ∈ Rd, t ∈ [0, T ], and the local Lipschitz condition

|gr1,r2(t, x1)− gr1,r2(t, x2)| ≤ L(1 + |x1|+ |x2|)q−1|x1 − x2|, r1, r2 = 1, . . . ,m, (4.24)

for all x1, x2 ∈ Rd, t ∈ [0, T ].
The Assumption 4.3.1 is also sufficient to ensure the existence of a unique solution

to (4.9), see for instance [38], [42] or [50, Chap.3]. We recall that an almost surely
continuous and (Ft)t∈[0,T ]-adapted stochastic process X : [0, T ]×Ω→ Rd is a solution of
(4.3) if it satisfies the integral equation

X(t) = X0 +

∫ t

0
f(s,X(s)) ds+

m∑
r=1

∫ t

0
gr(s,X(s)) dWr(s), t ∈ [0, T ]. (4.25)

In addition, the exact solution has finite p-th moments, that is

sup
t∈[0,T ]

‖X(t)‖Lp(Ω;Rd) <∞, (4.26)

if there exist a constants C > 0 and p ∈ [2,∞) such that

〈f(t, x), x〉+
p− 1

2

m∑
r=1

|gr(t, x)|2 ≤ αf(1 + |x|2) (4.27)

for all x ∈ Rd, t ∈ [0, T ]. For the proof see [42, Th.4.1] and Lemma 1.1.2.
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4.4. C-stability of the projected balanced Milstein method

In this section we prove stochastic C-stability of the projected balanced Milstein scheme.
Throughout we assume that Assumption 4.3.1 is satisfied with grow rate q ∈ [2,∞).

At first, define the matrix

Ms,t = id + d0Is,t(0) +

m∑
l=1

dlIs,t(l,l), 0 ≤ s ≤ t ≤ T, (4.28)

where dl ∈ Rd×d, l = 0, . . . ,m.
The following condition states the uniform boundedness of the inverse of Ms,t.

Assumption 4.4.1. For the chosen matrices dl ∈ Rd×d, l = 0, . . . ,m there exists an
inverse M−1

s,t , 0 ≤ s ≤ t ≤ T and a constant KM > 0, such that

|M−1
s,t | ≤ KM. (4.29)

The next lemma is quoted from [32] and provides sufficient conditions on the matrices
dl, l = 0, . . . ,m, which guarantee Assumption 4.4.1.

Lemma 4.4.2. The Assumption 4.4.1 with the constant KM are satisfied by weight ma-
trices dl, l = 0, . . . ,m if

d0 − 1

2

m∑
l=1

dl is positive semi-definite (4.30)

and dl is positive semi-definite for all l = 1, . . . ,m. (4.31)

For details we refer to [32].

Proof. The proof of (4.29) follows from the fact that for all 0 ≤ s ≤ t ≤ T the double
integral of the matrix M can be written as

Is,t(l,l) =
1

2
((Is,t(l) )2 − h), l = 1, . . . ,m,

where h = t− s. By inserting in (4.28) we get

Ms,t = id + (d0 − 1

2

m∑
l=1

dl)h+
1

2

m∑
l=1

dl(Is,t(l) )2.

This representation of the matrix Ms,t with (4.30) and (4.31) guarantees the existence
of the inverse matrix M−1

s,t and the estimate |M−1
s,t | ≤ KM ≤ 1.

The following lemma provides estimates of products of multiple integrals needed later
on.
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Lemma 4.4.3. Let Assumptions 4.4.1 hold and let Y ∈ L2(Ω,Fs;Rd). Then there
exist constants C(r), C(r1,r2), C(r,l,l), and C(r1,r2,l,l) such that for all 0 ≤ s < t ≤ T and
r, r1, r2, l = 1, . . . ,m the estimates hold

‖E[M−1
s,t I

s,t
(r)Y |Fs]‖L2(Ω;Rd) ≤C(r)‖Y ‖L2(Ω;Rd)(t− s)

3
2 , (4.32)

‖E[M−1
s,t I

s,t
(r1,r2)Y |Fs]‖L2(Ω;Rd) ≤C(r1,r2)‖Y ‖L2(Ω;Rd)(t− s)2, (4.33)

‖E[M−1
s,t I

s,t
(l,l)I

s,t
(r)Y |Fs]‖L2(Ω;Rd) ≤C(r,l,l)‖Y ‖L2(Ω;Rd)(t− s)

5
2 , (4.34)

‖E[M−1
s,t I

s,t
(l,l)I

s,t
(r1,r2)Y |Fs]‖L2(Ω;Rd) ≤C(r1,r2,l,l)‖Y ‖L2(Ω;Rd)(t− s)3. (4.35)

Proof. For all 0 ≤ s ≤ t ≤ T and r = 1, . . . ,m we have

E
[
M−1
s,t I

s,t
(r)Y |Fs

]
= E

[
M−1
s,t I

s,t
(r)Y − I

s,t
(r)Y |Fs

]
= E[(M−1

s,t − id)Is,t(r)Y |Fs]. (4.36)

Using the inequality ‖E[Z|Fs]‖L2(Ω;Rd) ≤ ‖Z‖L2(Ω;Rd) for all Z ∈ L2(Ω;Rd), Assump-
tions 4.4.1, Lemma A.3.1 and the fact that E[|Is,t(r)|

2] = t − s, r = 1, . . . ,m for 0 ≤ s <

t ≤ T we get

‖E[M−1
s,t I

s,t
(r)Y |Fs]‖L2(Ω;Rd) ≤ ‖

(
M−1
s,t − idRd

)
Is,t(r)Y ‖L2(Ω;Rd)

=‖M−1
s,t

(
d0Is,t(0) +

m∑
l=1

dlIs,t(l,l)

)
Is,t(r)Y ‖L2(Ω;Rd)

≤KM|d0|‖Y ‖L2(Ω;Rd)(t− s)
3
2

+mKM max
l=1,...,m

|dl|
m∑
l=1

(E[|Is,t(l,l)I
s,t
(r)|

2])
1
2 ‖Y ‖L2(Ω;Rd)

≤C(r)‖Y ‖L2(Ω;Rd)(t− s)
3
2 .

In the same way and the fact that E[|Is,t(r1,r2)|
2] = 1

2(t − s)2, r1, r2 = 1, . . . ,m we get the
second estimate

‖E[M−1
s,t I

s,t
(r1,r2)Y |Fs]‖L2(Ω;Rd) ≤ ‖

(
M−1
s,t − idRd

)
Is,t(r1,r2)Y ‖L2(Ω;Rd)

≤ 1√
2
KM|d0|(t− s)2‖Y ‖L2(Ω;Rd)

+mKM max
l=1,...,m

|dl|
m∑
l=1

(E[|Is,t(l,l)I
s,t
(r1,r2)|

2])
1
2 ‖Y ‖L2(Ω;Rd)

≤C(r1,r2)‖Y ‖L2(Ω;Rd)(t− s)2.

A similar estimate holds also for the proof of (4.34).

‖E[M−1
s,t I

s,t
(l,l)I

s,t
(r)Y |Fs]‖L2(Ω;Rd) ≤ ‖

(
M−1
s,t − idRd

)
Is,t(l,l)I

s,t
(r)Y ‖L2(Ω;Rd)
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=‖M−1
s,t

(
d0Is,t(0) +

m∑
l=1

dlIs,t(l,l)

)
Is,t(l,l)I

s,t
(r)Y ‖L2(Ω;Rd)

≤KM|d0|(t− s)
(
E
[∣∣Is,t(l,l)I

s,t
(r)

∣∣2]) 1
2 ‖Y ‖L2(Ω;Rd)

+mKM max
l=1,...,m

|dl|
m∑
l=1

(
E
[∣∣(Is,t(l,l)

)2∣∣4]) 1
2
(
E
[∣∣Is,t(r)

∣∣4]) 1
2 ‖Y ‖L2(Ω;Rd)

≤C(r,l,l)‖Y ‖L2(Ω;Rd)(t− s)
5
2 .

For the last estimate we get

‖E[M−1
s,t I

s,t
(l,l)I

s,t
(r1,r2)Y |Fs]‖L2(Ω;Rd)

≤‖M−1
s,t

(
d0Is,t(0) +

m∑
l=1

dlIs,t(l,l)

)
Is,t(l,l)I

s,t
(r1,r2)Y ‖L2(Ω;Rd)

≤KM|d0|(t− s)
(
E
[∣∣Is,t(l,l)I

s,t
(r1,r2)

∣∣2]) 1
2 ‖Y ‖L2(Ω;Rd)

+mKM max
l=1,...,m

|dl|
m∑
l=1

(
E
[∣∣(Is,t(l,l)

)2∣∣4]) 1
2
(
E
[∣∣Is,t(r1,r2)

∣∣4]) 1
2 ‖Y ‖L2(Ω;Rd)

≤C(r1,r2,l,l)‖Y ‖L2(Ω;Rd)(t− s)3.

This completes the proof.

For the definition of the one-step map of the PBMM scheme we introduce, as in
Section 3.1, the following notation: Let h̄ ∈ (0, 1]N be an arbitrary vector of step sizes.
The parameter β ∈ (0,∞) is chosen to be suitable negative power in dependence of the
growth rate q. Further, for all δ ∈ (0, h̄] let us denote the projection of x ∈ Rd onto the
ball of radius δ−β by

x◦ := min(1, δ−β|x|−1)x. (4.37)

Then the one-step map ΨPBMM : Rd × T × Ω → Rd of the projected balanced Milstein
method is given by

ΨPBMM (x, t, δ) :=x◦ +M−1
t,t+δ

[
f(t, x◦)δ +

m∑
r=1

gr(t, x
◦)It,t+δ(r) +

m∑
r1,r2=1

gr1,r2(t, x◦)It,t+δ(r1,r2)

]
,

(4.38)

for all x ∈ Rd and (t, δ) ∈ T.
The proposition below is an analog to the Proposition 4.1 in [6] und shows that the

PBMM is a stochastic one-step method in the sense of the Definition 2.1.1.
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Proposition 4.4.4. Let the functions f and gr, r = 1, . . . ,m satisfy Assumption 4.3.1
with constants L ∈ (0,∞), q ∈ [2,∞) and let Assumption 4.4.1 hold. Further, let
h̄ ∈ (0, 1]. Then for every β ∈ (0,∞) and inital value ξ ∈ L2(Ω,F0,P;Rd) it holds that
(ΨPBMM , h̄, ξ) is a stochasic one-step method.
In addition, there exists a constant C0 only depending on L and m such that

‖E[ΨPBMM (0, t, δ)|Ft]‖L2(Ω;Rd) ≤C0δ, (4.39)

‖(id− E[·|Ft])ΨPBMM (0, t, δ)‖L2(Ω;Rd) ≤C0δ
1
2 (4.40)

for all (t, δ) ∈ T.

Proof. For the proof we fix arbitrary (t, δ) ∈ T and let Y ∈ L2(Ω,Ft,P;Rd). Since the
mapping x 7→ min(1, δ−β|x|−1)x, for every x ∈ Rd is continuous and bounded it holds

Y ◦ ∈ L∞(Ω,Ft,P;Rd).

Further, by the smoothness of f and gr, r = 1, . . . ,m, conditions (4.15), (4.19), (4.23)
and Assumption 4.4.1 it follows that for all r, r1, r2 = 1, . . . ,m

M−1
t,t+δf(t, Y ◦),M−1

t,t+δgr(t, Y
◦),M−1

t,t+δg
r1,r2(t, Y ◦) ∈ L2(Ω,Ft+δ,P;Rd).

Thus, ΨPBMM (Y, t, δ) is an Ft+δ-measurable random variable, which satisfies condi-
tion (2.2). To show (4.39) we use Assumption 4.4.1, conditions (4.15), (4.19), (4.23), and
Lemma 4.4.3 and obtain

‖E[ΨPBMM (0, t, δ)Ft]‖L2(Ω;Rd) ≤ ‖E[M−1
t,t+δf(t, 0)δ|Ft]‖L2(Ω;Rd)

+
∥∥ m∑
r=1

M−1
t,t+δgr(0, t)I

t,t+δ
(r) |Ft]

∥∥
L2(Ω;Rd)

+
∥∥ m∑
r1,r2=1

M−1
t,t+δg

r1,r2(t, 0)It,t+δ(r1,r2)|Ft]
∥∥
L2(Ω;Rd)

≤LKMδ + LC(r)δ
3
2 + LC(r1,r2)δ

2.

Since δ ≤ h̄ ≤ 1 this verifies (4.39). It remains to show (4.40). Using the fact that
‖(id− E[·|Ft])Z‖L2(Ω;Rd) ≤ ‖Z‖L2(Ω;Rd) for all Z ∈ L2(Ω;Rd) yields

‖(id−E[·|Ft])ΨPBMM (0, t, δ)‖L2(Ω;Rd) ≤ ‖(id− E[·|Ft])M−1
t,t+δf(t, 0)δ‖L2(Ω;Rd)

+
∥∥ m∑
r=1

(id− E[·|Ft])M−1
t,t+δgr(t, 0)It,t+δ(r)

∥∥
L2()Ω;Rd

+
∥∥ m∑
r1,r2=1

(id− E[·|Ft])M−1
t,t+δg

r1,r2(t, 0)It,t+δ(rr,r2)

∥∥
L2()Ω;Rd

≤‖M−1
t,t+δf(t, 0)δ‖L2(Ω;Rd) +

∥∥ m∑
r=1

M−1
t,t+δgr(t, 0)It,t+δ(r)

∥∥
L2()Ω;Rd



4.4. C-stability of the projected balanced Milstein method 82

+
∥∥ m∑
r1,r2=1

M−1
t,t+δg

r1,r2(t, 0)It,t+δ(rr,r2)

∥∥
L2(Ω;Rd)

≤2LKMδ + LKMδ
1
2 .

Here we used Assumption 4.4.1, conditions (4.15), (4.19), and (4.23).

As a preparation for the proof of C-stability we consider the following estimates:

Lemma 4.4.5. Let f and gr, r = 1, . . . ,m satisfy Assumption 4.3.1 with L > 0, η ∈
(1

2 ,∞) and q ∈ [2,∞) and let Assumption 4.4.1 hold. Consider the mapping Rd 3 x 7→
x◦ ∈ Rd defined in (4.37) with parameter β = 1

2(q−1) and δ ∈ (0, 1]. Then there exist
constants K1,K2, and K3 such that for all x1, x2 ∈ Rd and (t, δ) ∈ T the following
estimates hold ∣∣E[(M−1

t,t+δ − id)δ(f(t, x◦1)− f(t, x◦2)
]∣∣ ≤K1δ

3
2 |x1 − x2|, (4.41)∣∣E[ m∑

r=1

(M−1
t,t+δ − id)(gr(t, x

◦
1)− gr(t, x◦2))It,t+δ(r)

]∣∣ ≤K2δ
5
4 |x1 − x2|, (4.42)

∣∣E[ m∑
r1,r2=1

(M−1
t,t+δ − id)(gr1,r2(t, x◦1)− gr1,r2(t, x◦2))It,t+δ(r1,r2)

]∣∣ ≤K3δ
3
2 |x1 − x2|. (4.43)

Proof. Using Hölder’s inequality, the fact that E[|It,t+δ(l,l) |
2] = 1

2δ
2, and condition (4.18)

yields ∣∣E[(M−1
t,t+δ−id)δ(f(t, x◦1)− f(t, x◦2)

]∣∣
≤δE[|M−1

t,t+δ(d
0δ +

m∑
l=1

It,t+δ(l,l) dl)(f(t, x◦1)− f(t, x◦2))|]

≤KM|d0|δ2|f(t, x◦1)− f(t, x◦2)|

+ δ
m∑
l=1

(E[|M−1
t,t+δ|

2])
1
2 (E[|It,t+δ(l,l) |

2])
1
2

∣∣dl(f(t, x◦1)− f(t, x◦2))
∣∣

≤KMδ
2(|d0|+ 1√

2
m max

l=1,...,m
|dl|)L(1 + |x◦1|+ |x◦2|)q−1|x◦1 − x◦2|.

Since |x◦1|, |x◦2| ≤ δ−β with δ ∈ (0, 1] and β(q− 1) = 1
2 we obtain that δ

1
2 (1 + 2δ−β)q−1 ≤

3q−1. Then by Lemma 3.4.2 it holds∣∣E[(M−1
t,t+δ−id)δ(f(t, x◦1)− f(t, x◦2)

]∣∣
≤KMδ

2(|d0|+ 1√
2
m max

l=1,...,m
|dl|)L(1 + 2δ−β)q−1|x1 − x2|
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≤3q−1KML(|d0|+ 1√
2
m max

l=1,...,m
|dl|)δ

3
2 |x1 − x2|.

To show (4.42) we use the Hölder inequality, the fact that E[|It,t+δ(r) |
2] = δ, and Lemma A.3.1:

∣∣E[(M−1
t,t+δ−id)

m∑
r=1

(gr(t, x
◦
1)− gr(t, x◦2))It,t+δ(r)

]∣∣
≤E
[∣∣M−1

t,t+δ(d
0δ +

m∑
l=1

It,t+δ(l,l) dl)
m∑
r=1

(gr(t, x
◦
1)− gr(t, x◦2))It,t+δ(r)

∣∣]
≤δ

m∑
r=1

(E[|M−1
t,t+δ|

2])
1
2 (E[|It,t+δ(r) |

2])
1
2 |d0(gr(t, x

◦
1)− gr(t, x◦2))|

+
m∑
l=1

m∑
r=1

(E[|M−1
t,t+δ|

2])
1
2 (E[|It,t+δ(l,l) It,t+δ(r) |

2])
1
2 |dl(gr(t, x◦1)− gr(t, x◦2))|

≤δ
3
2mKML

(
|d0|+mKmult max

l=1,...,m
|dl|
)(

1 + |x◦1|+ |x◦2|
) q−1

2 |x◦1 − x◦2|

≤3
q−1
2 mKML

(
|d0|+mKmult max

l=1,...,m
|dl|
)
δ

5
4 |x1 − x2|,

where Kmult is a constant, obtained by multiplying of the Wiener increments (see Lemma
A.3.1). Here we used Lemma 3.4.2 and the fact that for β(q−1)

2 = 1
4 and δ ∈ (0, 1)] it

follows that δ
1
4 (1+2δ−β)

q−1
2 ≤ 3

q−1
2 . It remains to show (4.43). By the Hölder inequality,

condition (4.24), Lemma 3.4.2, and Lemma A.3.1 it holds

∣∣E[(M−1
t,t+δ − id)

m∑
r1,r2=1

(gr1,r2(t, x◦1)− gr1,r2(t, x◦2))It,t+δ(r1,r2)

]∣∣
≤E
[∣∣M−1

t,t+δ(d
0δ +

m∑
l=1

It,t+δ(l,l) dl)
m∑

r1,r2=1

(gr1,r2(t, x◦1)− gr1,r2(t, x◦2))It,t+δ(r1,r2)

∣∣]
≤δ

m∑
r1,r2=1

(E[|M−1
t,t+δ|

2])
1
2 (E[|It,t+δ(r1,r2)|

2])
1
2

∣∣d0(gr1,r2(t, x◦1)− gr1,r2(t, x◦2))
∣∣

+
m∑
l=1

m∑
r1,r2=1

(E[|M−1
t,t+δ|

2]|
1
2 (E[|It,t+δ(l,l) It,t+δ(r1,r2)|

2])
1
2

∣∣dl(gr1,r2(t, x◦1)− gr1,r2(t, x◦2))
∣∣

≤δ2m2KML
( 1√

2
|d0|+mKmult max

l=1,...,m
|dl|
)(

1 + |x◦1|+ |x◦2|
)q−1|x◦1 − x◦2|.

From δ
1
2 (1 + 2δ−β)q−1 ≤ 3q−1 we obtain

∣∣E[(M−1
t,t+δ − id)

m∑
r1,r2=1

(gr1,r2(t, x◦1)− gr1,r2(t, x◦2))It,t+δ(r1,r2)

]∣∣
≤3q−1m2KML

( 1√
2
|d0|+mKmult max

l=1,...,m
|dl|
)
δ

3
2 |x1 − x2|.
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This completes the proof.

Corollary 4.4.6. Consider the same situation as in Lemma 4.4.5. Then there exists
constants K4,K5, and K6 such that for all (t, δ) ∈ T the following estimates hold

E
[∣∣(M−1

t,t+δ − id
)
δ(f(t, x◦1)− f(t, x◦2))

∣∣2] ≤K4δ
3|x1 − x2|2], (4.44)

E
[∣∣ m∑
r=1

(
M−1
t,t+δ − id

)
(gr(t, x

◦
1)− gr(t, x◦2))It,t+δ(r)

∣∣2] ≤K5δ
5
2 |x1 − x2|2, (4.45)

E
[∣∣ ∑

(r1,r2)

(
M−1
t,t+δ − id

)
(gr1,r2(t, x◦1)− gr1,r2(t, x2))It,t+δ(r1,r2)

∣∣2] ≤K6δ
3|x1 − x2|2. (4.46)

Proof. The proof is similar to the proof of Lemma 4.4.5 if we square the estimates there.

In the next theorem we show that the PBMM scheme is stochastically C-stable.

Theorem 4.4.7. Let the functions f and gr, r = 1, . . . ,m satisfy Assumption 4.3.1
with L > 0, q ∈ [2,∞) and η ∈ (1

2 ,∞) and let Assumption 4.4.1 hold. Further, let
h̄ ∈ (0, 1]. Then for every ξ ∈ L2(Ω,F0,P;Rd) the projected balanced Milstein method
(ΨPBMM , h̄, ξ) with β = 1

2(q−1) is stochastically C-stable.

Proof. First consider for arbitrary (t, δ) ∈ T and Y,Z ∈ L2(Ω,Ft,P;Rd)

E[ΨPBMM (Y, t, δ)−ΨPBMM (Z, t, δ)|Ft] = Y ◦ − Z◦ + δ(f(t, Y ◦)− f(t, Z◦))

+ E
[
(M−1

t,t+δ − id)
(
δ(f(t, Y ◦)− f(t, Z◦)) +

m∑
r=1

(gr(t, Y
◦)− gr(t, Z◦))It,t+δ(r)

+
m∑

r1,r2=1

(gr1,r2(t, Y ◦)− gr1,r2(t, Z◦))It,t+δ(r1,r2)

)
|Ft
] (4.47)

and

(id−E[·|Ft])(ΨPBMM (Y, t, δ)−ΨPBMM (Z, t, δ)) =

m∑
r=1

(gr(t, Y
◦)− gr(t, Z◦))It,t+δ(r)

+
m∑

r1,r2=1

(gr1,r2(t, Y ◦)− gr1,r2(t, Z◦))It,t+δ(r1,r2)

+ (id− E[·|Ft])(M−1
t,t+δ − id)

(
δ(f(t, Y ◦)− f(t, Z◦))

+
m∑
r=1

(gr(t, Y
◦)− gr(t, Z◦))It,t+δ(r) +

m∑
r1,r2=1

(gr1,r2(t, Y ◦)− gr1,r2(t, Z◦))It,t+δ(r1,r2)

)
.

(4.48)
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Hence it follows

E
[∣∣E[ΨPBMM (Y, t, δ)−ΨPBMM (Z, t, δ)|Ft]

∣∣2]
=E
[
|Y ◦ − Z◦|2 + 2δ〈Y ◦ − Z◦, f(t, Y ◦)− f(t, Z◦)〉

+ 2〈Y ◦ − Z◦,E
[
(M−1

t,t+δ − id)|Ft](δ(f(t, Y ◦)− f(t, Z◦))〉

+ 2〈Y ◦ − Z◦,E[(M−1
t,t+δ − id)

m∑
r=1

(gr(t, Y
◦)− gr(t, Z◦))It,t+δ(r) |Ft]〉

+ 2〈Y ◦ − Z◦,E[(M−1
t,t+δ − id)

m∑
r1,r2=1

(gr1,r2(t, Y ◦)− gr1,r2(t, Z◦))It,t+δ(r1,r2)|Ft]〉

+
∣∣δ(f(t, Y ◦)− f(t, Z◦)) + E

[
(M−1

t,t+δ − id)
(
δ(f(t, Y ◦)− f(t, Z◦))

+
m∑
r=1

(gr(t, Y
◦)− gr(t, Z◦))It,t+δ(r)

+

m∑
r1,r2=1

(gr1,r2(t, Y ◦)− gr1,r2(t, Z◦))It,t+δ(r1,r2)

)
|Ft
]∣∣2].

By condition (4.10) and Lemma 3.4.2 we get for the second term that

2δE
[
〈Y ◦ − Z◦, f(t, Y ◦)− f(t, Z◦)〉

]
≤2δE

[
L|Y ◦ − Z◦|2 − η

m∑
r=1

|gr(t, Y ◦)− gr(t, Z◦)|2
]

≤2δE
[
L|Y − Z|2 − η

m∑
r=1

|gr(t, Y ◦)− gr(t, Z◦)|2
]
.

By an application of the Cauchy-Schwarz inequality we get for the three next terms

2〈Y ◦ − Z◦,E[(M−1
t,t+δ − id)(δ(f(t, Y ◦)− f(t, Z◦))|Ft]〉

+ 2〈Y ◦ − Z◦,E[(M−1
t,t+δ − id)

m∑
r=1

(gr(t, Y
◦)− gr(t, Z◦))It,t+δ(r) |Ft]〉

+ 2〈Y ◦ − Z◦,E[(M−1
t,t+δ − id)

m∑
r1,r2=1

(gr1,r2(t, Y ◦)− gr1,r2(t, Z◦))It,t+δ(r1,r2)|Ft]〉

≤2
∣∣Y ◦ − Z◦∣∣∣∣E[(M−1

t,t+δ − id)δ(f(t, Y ◦)− f(t, Z◦)]
∣∣

+ 2
∣∣Y ◦ − Z◦∣∣∣∣E[(M−1

t,t+δ − id)

m∑
r=1

(gr(t, Y
◦)− gr(t, Z◦))It,t+δ(r) ]

∣∣
+ 2
∣∣Y ◦ − Z◦∣∣∣∣E[(M−1

t,t+δ − id)
m∑

r1,r2=1

(gr1,r2(t, Y ◦)− gr1,r2(t, Z◦))It,t+δ(r1,r2)]
∣∣.
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Hence, using Lemma 3.4.2 and Lemma 4.4.5, one can derive that

2E
[∣∣Y ◦ − Z◦∣∣∣∣E[(M−1

t,t+δ − id)δ(f(t, Y ◦)− f(t, Z◦)
]∣∣

+
∣∣Y ◦ − Z◦∣∣∣∣E[(M−1

t,t+δ − id)
m∑
r=1

(gr(t, Y
◦)− gr(t, Z◦))It,t+δ(r)

]∣∣
+
∣∣Y ◦ − Z◦∣∣∣∣E[(M−1

t,t+δ − id)
m∑

r1,r2=1

(gr1,r2(t, Y ◦)− gr1,r2(t, Z◦))It,t+δ(r1,r2)

]∣∣]
≤2(K1δ

3
2 +K2δ

5
4 +K3δ

3
2 )E[|Y − Z|2]

Further, we consider the next summand

E
[∣∣δ(f(t, Y ◦)− f(t, Z◦)) + E

[
(M−1

t,t+δ − id)
(
δ(f(t, Y ◦)− f(t, Z◦))

+

m∑
r=1

(gr(t, Y
◦)− gr(t, Z◦))It,t+δ(r) +

m∑
r1,r2=1

(gr1,r2(t, Y ◦)− gr1,r2(t, Z◦))It,t+δ(r1,r2)

)
|Ft
]∣∣2]

≤4δ2E
[∣∣f(t, Y ◦)− f(t, Z◦)

∣∣2]+ 4E
[∣∣E[(M−1

t,t+δ − id)δ(f(t, Y ◦)− f(t, Z◦))|Ft]
∣∣2]

+ 4E
[∣∣E[(M−1

t,t+δ − id)
m∑
r=1

(gr(t, Y
◦)− gr(t, Z◦))It,t+δ(r) |Ft]

∣∣2]
+ 4E

[∣∣E[(M−1
t,t+δ − id)

m∑
r1,r2=1

(gr1,r2(t, Y ◦)− gr1,r2(t, Z◦))It,t+δ(r1,r2)|Ft
∣∣2]

:=
4∑
j=1

Tj .

By condition (4.18), Lemma 3.4.2 and the fact that |Y ◦|, |Z◦| ≤ δ−β with β = 1
2(q−1) for

all δ ∈ (0, 1] we get for the first summand

T1 ≤4δ2L2E[(1 + |Y ◦|+ |Z◦|)2(q−1)|Y ◦ − Z◦|2]

≤4δ2L2(1 + 2δ−β)2(q−1)E[|Y ◦ − Z◦|2]

≤32(q−1)4L2δE[|Y − Z|2].

Using the fact that E[|E[Z|Ft]|2] ≤ E[|Z|2] for all Z ∈ L2(Ω;Rd) and Corollary 4.4.6 we
get that

T2 ≤ 4K4δ
3E[|Y − Z|2], T3 ≤ 4K5δ

5
2E[|Y − Z|2], and T4 ≤ 4K6δ

3E[|Y − Z|2].

So, we showed that

E
[∣∣E[ΨPBMM (Y, t, δ)−ΨPBMM (Z, t, δ)|Ft]

∣∣2] ≤ (1 + Cδ)E[|Y − Z|2]

− 2ηδ
m∑
r=1

E[|gr(t, Y ◦)− gr(t, Z◦)|2],
(4.49)



4.4. C-stability of the projected balanced Milstein method 87

where C depends on K1,K2,K3,K4,K5,K6, L, q and h̄. Further, let us consider

E
[∣∣(id− E[·|Ft])(ΨPBMM (Y, t, δ)−ΨPBMM (Z, t, δ))

∣∣2]
≤2E

[∣∣ m∑
r=1

(gr(t, Y
◦)− gr(t, Z◦))It,t+δ(r) +

m∑
r1,r2=1

(gr1,r2(t, Y ◦)− gr1,r2(t, Z◦))It,t+δ(r1,r2)

∣∣2]
+ 2E

[∣∣(id− E[·|Ft])(M−1
t,t+δ − id)

(
δ(f(t, Y ◦)− f(t, Z◦))

+
m∑
r=1

(gr(t, Y
◦)− gr(t, Z◦))It,t+δ(r) +

m∑
r1,r2=1

(gr1,r2(t, Y ◦)− gr1,r2(t, Z◦))It,t+δ(r1,r2)

)∣∣2]
=:S1 + S2.

Since the stochastic increments are pairwise uncorrelated, i.e. cov
(
It,t+δ(r) , It,t+δ(r1,r2)

)
= 0 and

independent of Y ◦ and Z◦ we get for the first summand (see for example, [42, Chap.1],
[49])

S1 =2E
[∣∣ m∑
r=1

(gr(t, Y
◦)− gr(t, Z◦))It,t+δ(r)

∣∣2]
+ 2E

[∣∣ m∑
r1,r2=1

(gr1,r2(t, Y ◦)− gr1,r2(t, Z◦))It,t+δ(r1,r2)

)∣∣2]
=2δ

m∑
r=1

E[|gr(t, Y ◦)− gr(t, Z◦)|2]

+ 2δ2
m∑

r1,r2=1

E[|gr1,r2(t, Y ◦)− gr1,r2(t, Z◦)|2].

Here we used the variance relation V (x + y) = V (x) + V (y) for uncorrelated variables
x, y ∈ L2(Ω;Rd) and the Itô isometry. Thus, we arrive at

E
[∣∣E[ΨPBMM (Y, t, δ)−ΨPBMM (Z, t, δ)|Ft]

∣∣2]
+ ηE

[∣∣(id− E[·|Ft])(ΨPBMM (Y, t, δ)−ΨPBMM (Z, t, δ))
∣∣2]

≤(1 + Cδ)E[|Y − Z|2] + 2ηδ2
m∑

r1,r2=1

E[|gr1,r2(t, Y ◦)− gr1,r2(t, Z◦)|2] + ηS2.

Using the fact that |Y ◦|, |Z◦| ≤ δ−β with 2β(q − 1) = 1 and δ ∈ (0, 1] we get

2ηδ2
m∑

r1,r2=1

E[|gr1,r2(t, Y ◦)− gr1,r2(t, Z◦)|2] ≤32(q−1)2ηm2L2δE[|Y − Z|2].

Here we applied condition (4.24) and Corollary 3.4.2. Further, by E[|(id−E[·|Ft])Z|2] ≤
E[|Z|2] for all Z ∈ L2(Ω;Rd) and Lemma 4.4.6 we obtain

S2 ≤2E
[∣∣(M−1

t,t+δ − id
)(
δ(f(t, Y ◦)− f(t, Z◦))
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+
m∑
r=1

(gr(t, Y
◦)− gr(t, Z◦))It,t+δ(r) +

m∑
r1,r2=1

(gr1,r2(t, Y ◦)− gr1,r2(t, Z◦))It,t+δ(r1,r2)

)∣∣2]
≤6E[

∣∣(M−1
t,t+δ − id)δ(f(t, Y ◦)− f(t, Z◦))

∣∣2]
+ 6E

[∣∣(M−1
t,t+δ − id)

m∑
r=1

(gr(t, Y
◦)− gr(t, Z◦))It,t+δ(r)

∣∣2]
+ 6E

[∣∣(M−1
t,t+δ − id)

m∑
r1,r2=1

(gr1,r2(t, Y ◦)− gr1,r2(t, Z◦))It,t+δ(r1,r2)

∣∣2]
≤6
(
K4δ

3 +K5δ
5
2 +K6δ

3
)
E[|Y − Z|2].

This completes the proof.

Remark 4.4.8. The proof of stability of the classical BMM in [32, Th. 3.1] uses the
equality

E[|ΨBMM (Y, t, δ)|2] = E[|Y |2] + E[2〈Y,M−1
t,t+δf(t, Y )〉]δ + T1 + T2

+ E
[∣∣M−1

t,t+δ

(
f(t, Y )δ +

m∑
r=1

gr(t, Y )It,t+δ(r) +
m∑

r1,r2=1

gr1,r2(t, Y )It,t+δ(r1,r2)

)∣∣2],
where

T1 =E[2〈Y,M−1
t,t+δ

m∑
r=1

gr(t, Y )It,t+δ(r) 〉]

and T2 =E[2〈Y,M−1
t,t+δ

m∑
r1,r2=1

gr(t, Y )It,t+δ(r1,r2)〉].

It is claimed in [32] that T1 and T2 vanish due to “ well-known martingale properties ”.
We could not decide whether this is true in general. The problem is that the elements of
M−1
t,t+δ and I

t,t+δ
(r) , It,t+δ(r1,r2), r, r1, r2 = 1, . . . ,m are correlated. In the previous paper [44] on

balanced Euler-type methods the authors give a symmetry argument why T1 wanishes in
the scalar case. In the proof of Theorem 4.4.7 we cure this problem by further estimating
the terms T1 and T2.

4.5. B-consistency of the projected balanced Milstein
method

In this section we show that the PBMM scheme is stochatically B-consistent of order
γ = 1. We prove the following theorem:
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Theorem 4.5.1. Let the functions f and gr, r = 1, . . . ,m satisfy Assumption 4.3.1 with
L > 0 and q ∈ [2,∞) and let Assumption 4.4.1 hold. Further, let h̄ ∈ (0, 1]. If the
exact solution satisfies supτ∈[0,T ] ‖X(τ)‖L8q−6 <∞, then the projected balanced Milstein
method (ΨPBMM , h̄, X0) with β = 1

2(q−1) is stochastically B-consistent of order γ = 1.

Before we prove this result we quote the following lemmas from [5] and [6].

Lemma 4.5.2. Let Assumption 4.3.1 be satisfied with L > 0 and q ∈ [2,∞) . Further,
let the exact solution X to the SODE (4.9)) satisfies supt∈[0,T ]

∥∥X(t)
∥∥
L4q−2(Ω;Rd)

< ∞.
Then, there exists a constant C such that for all t1, t2, s ∈ [0, T ] with 0 ≤ t1 ≤ s ≤ t2 ≤ T
it holds ∫ t2

t1

∥∥f(τ,X(τ))− f(s,X(t1))
∥∥
L2(Ω;Rd)

dτ

C
(
1 + sup

t∈[0,T ]

∥∥X(t)
∥∥2q−1

L4q−2(Ω;Rd)

)∣∣t1 − t2∣∣ 32 .
The proof can be found in [5, Lemma 5.5]. If we insert the conditional expectation

with respect to the σ-field Ft1 then the Hölder exponent increases:

Lemma 4.5.3. Let Assumption 4.3.1 be satisfied with L > 0 and q ∈ [2,∞) . Further,
let the exact solution X to the SODE (4.9)) satisfies supt∈[0,T ]

∥∥X(t)
∥∥
L6q−4(Ω;Rd)

< ∞.
Then, there exists a constant C such that for all t1, t2, s ∈ [0, T ] with 0 ≤ t1 ≤ s ≤ t2 ≤ T
it holds ∫ t2

t1

∥∥E[f(τ,X(τ))− f(s,X(t1))
∣∣Ft1]∥∥L2(Ω;Rd)

dτ

C
(
1 + sup

t∈[0,T ]

∥∥X(t)
∥∥3q−2

L6q−4(Ω;Rd)

)∣∣t1 − t2∣∣2.
For the proof we refer to [6, Lemma 5.6].

Lemma 4.5.4. Let Assumption 4.3.1 be satisfiedwith L > 0 and q ∈ [2,∞). Further,
let the exact solution X to the SODE (4.9) satisfies supt∈[0,T ]

∥∥X(t)
∥∥
L6q−4(Ω;Rd)

< ∞.
Then, there exists a constant C such that for all r = 1, . . . ,m and t1, t2, s ∈ [0, T ] with
0 ≤ t1 ≤ s ≤ t2 ≤ T it holds∥∥∥∫ t2

t1

gr(τ,X(τ))− gr(s,X(t1)) dW r(τ)−
m∑

r1,r2=1

gr1,r2(s,X(t1))It1,t2(r1,r2)

∥∥∥
L2(Ω;Rd)

≤ C
(
1 + sup

t∈[0,T ]

∥∥X(t)
∥∥3q−2

L6q−4(Ω;Rd)

)∣∣t1 − t2∣∣ 32 .
The proof can be found in [6, Lemma 5.7]
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Lemma 4.5.5. Let f and gr, r = 1, . . . ,m satisfy Assumption 4.3.1 with L > 0 and
q ∈ [2,∞) and let Assumption 4.4.1 hold. Further, let the exact solution X to the SODE
(4.9) satisfies supt∈[0,T ]

∥∥X(t)
∥∥
L2q(Ω;Rd)

<∞. Then, there exists a constant C such that
for all s, t ∈ [0, T ] with 0 ≤ s ≤ t ≤ T the following estimate holds∥∥∥E[(id−M−1

s,t )
(
f(s,X(s))Is,t(0) +

m∑
r=1

gr(s,X(s))Is,t(r)

+

m∑
r1,r2=1

gr1,r2(s,X(s))Is,t(r1,r2)|Fs
]∥∥
L2(Ω;Rd)

≤C
(
1 + sup

t∈[0,T ]
‖X(t)‖q

L2q(Ω;Rd)

)
|t− s|2.

(4.50)

Remark 4.5.6. In the proof of the mean consistency of the classical BMM in [32, Th.2.4]
it is claimed that

|E[(id−M−1
s,t )(f(s,X(s))Is,t(0) +

m∑
r=1

gr(s,X(s))Is,t(r)

+

m∑
r1,r2=1

gr1,r2(s,X(s))Is,t(r1,r2)|Fs]|

≤
∣∣M−1

s,t

∣∣∣∣E[(Ms,t − id
)(
f(s,X(s))Is,t(0) +

m∑
r=1

gr(s,X(s))Is,t(r)

+
m∑

r1,r2=1

gr1,r2(s,X(s))Is,t(r1,r2)

)]∣∣.
The authors justify this by using the “ discrete Hölder inequality “. However,M−1

s,t is only
Ft-measurable and not Fs-measurable. Hence, can not be taken out from the conditional
expectation. On the other hand, if one wants to estimate the term, then the product
|M−1

s,t |E[| · · · |] appears. The following proof contains a suitable correction, which uses
arguments similar to those in Remark 4.4.8.

Proof of Lemma 4.5.5. For arbitrary r = 1, . . . ,m we obtain∥∥∥E[(id−M−1
s,t )
(
f(s,X(s))Is,t(0) +

m∑
r=1

gr(s,X(s))Is,t(r)

+

m∑
r1,r2=1

gr1,r2(s,X(s))Is,t(r1,r2)|Fs
]∥∥
L2(Ω;Rd)

≤‖E[M−1
s,t

(
d0Is,t(0) +

m∑
l=1

dlIs,t(l,l)

)
f(s,X(s))Is,t(0)|Fs]‖L2(Ω;Rd)

+ ‖E[M−1
s,t

(
d0Is,t(0) +

m∑
l=1

dlIs,t(l,l)

) m∑
r=1

gr(s,X(s))Is,t(r)|Fs]‖L2(Ω;Rd)
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+ ‖E[M−1
s,t

(
d0Is,t(0) +

m∑
l=1

dlIs,t(l,l)

) m∑
r1,r2=1

gr1,r2(s,X(s))Is,t(r1,r2)|Fs]‖L2(Ω;Rd)

=:
3∑
j=1

Tj .

By condition (4.15), Assumption 4.4.1, and and the fact that E[|Is,t(l,l)|
2] = 1

2(t − s)2 for
0 ≤ s < t ≤ T it holds

T1 ≤‖M−1
s,t d

0Is,t(0)f(s,X(s))Is,t(0)‖L2(Ω;Rd)

+

m∑
l=1

∥∥M−1
s,t I

s,t
(l,l)d

lf(s,X(s))Is,t(0)

∥∥
L2(Ω;Rd)

≤KM|t− s|2(|d0|+ 1√
2
m max

l=1,...,m
|dl|)L‖(1 + |X(s)|)q‖L2(Ω;Rd)

≤KML|t− s|2(|d0|+ 1√
2
m max

l=1,...,m
|dl|)

(
1 + sup

t∈[0,T ]
‖X(t)‖q

L2q(Ω;Rd)

)
.

For the second term we use (4.32), (4.34), and condition (4.19) and get

T2 ≤
m∑
r=1

∥∥E[M−1
s,t I

s,t
(r)d

0Is,t(0)gr(s,X(s))|Fs]
∥∥
L2(Ω;Rd)

+
m∑
l=1

m∑
r=1

∥∥E[M−1
s,t I

s,t
(l,l)I

s,t
(r)d

lgr(s,X(s))|Fs]
∥∥
L2(Ω;Rd)

≤|d0|mC(r)|t− s|
5
2L‖(1 + |X(s)|)

q+1
2 ‖L2(Ω;Rd)

+m2 max
l=1,...,m

|dl|C(r,l,l)|t− s|
5
2L‖(1 + |X(s)|)

q+1
2 ‖L2(Ω;Rd)

≤Lm|t− s|
5
2 (|d0|C(r) +mC(r,l,l) max

l=1,...,m
|dl|)

(
1 + sup

t∈[0,T ]
‖X(t)‖

q+1
2

Lq+1(Ω;Rd)

)
.

Since q + 1 ≤ 2q for q ≥ 1, it follows that T2 satisfies the estimate (4.50). Finally, by
Assumption (4.4.1), estimations (4.33), (4.35), and condition (4.23) we get for the last
term

T3 ≤
m∑

r1,r2=1

∥∥E[M−1
s,t I

s,t
(r1,r2)d

0Is,t(0)g
r1,r2(s,X(s))|Fs]

∥∥
L2(Ω;Rd)

+

m∑
l=1

m∑
r1,r2=1

∥∥E[M−1
s,t I

s,t
(l,l)I

s,t
(r1,r2)d

lgr1,r2(s,X(s))|Fs]
∥∥
L2(Ω;Rd)

≤m2C(r1,r2)|t− s|3|d0|L‖(1 + |X(s)|)q‖L2(Ω;Rd)

+m3C(r1,r2,l,l)|t− s|
3 max
l=1,...,m

|dl||L‖(1 + |X(s)|)q‖L2(Ω;Rd)
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≤Lm2|t− s|3(|d0|C(r1,r2) +m max
l=1,...,m

|dl|C(r1,r2,l,l))
(
1 + sup

t∈[0,T ]
‖X(t)‖q

L2q(Ω;Rd)

)
.

This proves the assertion (4.50).

Proof of Theorem 4.5.1. By using of (4.25) and (4.38) we obtain

X(t+ δ)−ΨPBMM (X(t), t, δ) = X(t)−X◦(t) +

∫ t+δ

t
f(τ,X(τ))− f(t,X(t)) dτ

+
m∑
r=1

∫ t+δ

t
gr(τ,X(τ))− gr(t,X(t)) dWr(τ)−

m∑
r1,r2=1

gr1,r2(t,X(t))It,t+δ(r1,r2)

+M−1
t,t+δδ

(
f(t,X(t))− f(t,X◦)

)
+M−1

t,t+δ

m∑
r=1

(
gr(t,X(t))− gr(t,X◦(t))

)
It,t+δ(r)

+M−1
t,t+δ

m∑
r1,r2=1

(
gr1,r2(t,X(t))− gr1,r2(t,X◦(t))

)
It,t+δ(r1,r2)

+
(
id−M−1

t,t+δ

)(
δf(t,X(t)) +

m∑
r=1

gr(t,X(t))It,t+δ(r) +

m∑
r1,r2=1

gr1,r2(t,X(t))It,t+δ(r1,r2)

)
.

Further, it holds

‖E[X(t+ δ)−ΨPBMM (X(t), t, δ)|Ft]‖L2(Ω;Rd)

≤‖X(t)−X◦(t)‖L2(Ω;Rd) +

∫ t+δ

t
‖E[f(τ,X(τ))− f(t,X(t))|Ft]‖L2(Ω;Rd) dτ

+ ‖E[M−1
t,t+δδ

(
f(t,X(t))− f(t,X◦)

)
|Ft]‖L2(Ω;Rd)

+ ‖E[M−1
t,t+δ

m∑
r=1

(
gr(t,X(t))− gr(t,X◦(t))

)
It,t+δ(r) |Ft]‖L2(Ω;Rd)

+ ‖E[M−1
t,t+δ

m∑
r1,r2=1

(
gr1,r2(t,X(t))− gr1,r2(t,X◦(t))

)
It,t+δ(r1,r2)|Ft]‖L2(Ω;Rd)

+
∥∥E[(id−M−1

t,t+δ

)(
δf(t,X(t)) +

m∑
r=1

gr(t,X(t))It,t+δ(r)

+

m∑
r1,r2=1

gr1,r2(t,X(t))It,t+δ(r1,r2)

)
|Ft
]∥∥
L2(Ω;Rd)

=:

6∑
j=1

Sj .

For the first term it holds by Lemma 3.4.6 with ϕ = id, κ = 1, p = 8q− 6 and β = 1
2(q−1)

S1 ≤Cdif(1 + ‖X(t)‖4q−3
L8q−6(Ω;Rd)

)δ2,
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since 1
2β(p− 2)κ = 2. For the second term we have by Lemma 4.5.3

S2 ≤ C
(
1 + sup

t∈[0,T ]

∥∥X(t)
∥∥q
L2q(Ω;Rd)

)
δ2.

An application of Lemma 3.4.6 with ϕ = f(t, ·), κ = q and p = 6q−4
q and since 1

2β(p −
2)κ = 1 we obtain

S3 ≤‖M−1
t,t+δδ

(
f(t,X(t))− f(t,X◦(t))

)
‖L2(Ω;Rd)

≤KMδ‖f(t,X(t))− f(t,X◦(t))‖L2(Ω;Rd)

≤KMCdif

(
1 + ‖X(t)‖3q−2

L6q−4(Ω;Rd)

)
δ2.

(4.51)

Further, using estimate (4.32) we obtain for S4

S4 =

m∑
r=1

∥∥E[M−1
t,t+δI

t,t+δ
(r)

(
gr(t,X(t))− gr(t,X◦(t))

)
|Ft]

∥∥
L2(Ω;Rd)

≤C(r)δ
3
2

m∑
r=1

‖gr(t,X(t))− gr(t,X◦(t))‖L2(Ω;Rd).

By applying Lemma 3.4.6 with ϕ = gr(t, ·), κ = q+1
2 and p = 10q−6

q+1 we get

S4 ≤C(r)mδ
3
2Cdif

(
1 + ‖X(t)‖L5q−3

) 5q−3
2 δ

≤C
(
1 + sup

t∈[0,T ]
‖X(t)‖

5q−3
2

L5q−3(Ω;Rd)

)
δ

5
2 ,

(4.52)

and we note that 5q − 3 ≤ 8q − 6 for q ≥ 1. Similarly, by estimate (4.33) we obtain

S5 =
m∑

r1,r2=1

∥∥E[M−1
t,t+δI

t,t+δ
(r1,r2)

(
gr1,r2(t,X(t))− gr1,r2(t,X◦(t))

)
|Ft]

∥∥
L2(Ω;Rd)

≤C(r1,r2)δ
2

m∑
r1,r2=1

‖gr1,r2(t,X(t))− gr1,r2(t,X◦(t))‖L2(Ω;Rd).

Then, by Lemma 3.4.6 with ϕ = gr1,r2(t, ·), κ = q and p = 4q−2
q it holds

S5 ≤C(r1,r2)m
2δ2Cdif

(
1 + ‖X(t)‖L4q−2(Ω;Rd)

)2q−1
δ

1
2

≤C(r1,r2)Cdifm
2
(
1 + sup

t∈[0,T ]
‖X(t)‖2q−1

L4q−2(Ω;Rd)

)
δ

5
2 .

By applying Lemma 4.5.5 we get for the last summand

S6 ≤C(1 + sup
t∈[0,T ]

‖X(t)‖q
L2q(Ω;Rd)

)δ2.
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This proves (2.5). It remains to show (2.6). It holds

‖(id− E[·|Ft])(X(t+ δ)−ΨPBMM (X(t), t, δ)‖L2(Ω;Rd)

≤‖(id− E[·|Ft])
∫ t+δ

t
f(τ,X(τ)) dτ‖L2(Ω;Rd)

+
m∑
r=1

∥∥∫ t+δ

t
gr(τ,X(τ))− gr(t,X(t)) dWr(τ)−

m∑
r2

gr,r2(t,X(t))It,t+δ(r2,r)

∥∥
L2(Ω;Rd)

+ ‖(id− E[·|Ft])M−1
t,t+δδ

(
f(t,X(t))− f(t,X◦(t))

)
‖L2(Ω;Rd)

+
m∑
r=1

‖(id− E[·|Ft])M−1
t,t+δ

(
gr(t,X(t))− gr(t,X◦(t))

)
It,t+δ(r) ‖L2(Ω;Rd)

+
m∑

r1,r2=1

‖(id− E[·|Ft])M−1
t,t+δ

(
gr1,r2(t,X(t))− gr1,r2(t,X◦(t))

)
It,t+δ(r1,r2)‖L2(Ω;Rd)

+
∥∥∥(id− E[·|Ft])(id−M−1

t,t+δ)
(
δf(t,X(t)) +

m∑
r=1

gr(t,X(t))It,t+δ(r)

+
m∑

r1,r2=1

gr1,r2(t,X(t))It,t+δ(r1,r2)

)∥∥∥
L2(Ω;Rd)

=:

6∑
j=1

Qj .

For the first summand we have

Q1 = ‖(id− E[·|Ft])
∫ t+δ

t
f(τ,X(τ))− f(t,X(t)) dτ‖L2(Ω;Rd),

since E[f(t,X(t))|Ft] = f(t,X(t)). Using the fact that ‖(id − E[·|Ft])Z‖L2(Ω;Rd) ≤
‖Z‖L2(Ω;Rd) for all Z ∈ L2(Ω;Rd) and Lemma 4.5.2 we obtain

Q1 ≤
∫ t+δ

t
‖f(t,X(τ))− f(t,X(t))‖L2(Ω;Rd) dτ

≤C
(
1 + sup

t∈[0,T ]
‖X(t)‖2q−1

L4q−2(Ω;Rd)

)
δ

3
2 .

For the second term we apply Lemma 4.5.3 and get

Q2 ≤ C
(
1 + sup

t∈[0,T ]
‖X(t)‖3q−2

L6q−4(Ω;Rd)

)
δ

3
2 .

In the same way and with (4.51) we have for the next term

Q3 ≤ KMCdif

(
1 + ‖X(t)‖3q−2

L6q−4(Ω;Rd)

)
δ2.
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Further, by Lemma 3.4.6 with ϕ = gr(t, ·), κ = q+1
2 and p = 10q−6

q+1 we get

Q4 ≤
m∑
r=1

‖M−1
t,t+δ

(
gr(t,X(t))− gr(t,X◦(t))

)
It,t+δ(r) ‖L2(Ω;Rd)

≤KMCdif

(
1 + sup

t∈[0,T ]
‖X(t)‖

5q−3
2

L5q−3(Ω;Rd)

)
δ

3
2 ,

since E[|It,t+δ(r) |
2] = δ and 1

2β(p − 2)κ = 1. A similar estimate holds also for Q5 with
ϕ = gr1,r2(t, ·), κ = q and p = 4q−2

q

Q5 ≤
m∑

r1,r2=1

‖M−1
t,t+δ

(
gr1,r2(t,X(t))− gr1,r2(t,X◦(t))

)
It,t+δ(r1,r2)‖L2(Ω;Rd)

≤ 1√
2
KMCdif

(
1 + sup

t∈[0,T ]
‖X(t)‖2q−1

L4q−2(Ω;Rd)

)
δ

3
2 .

In this case 1
2β(p−2)κ = 1

2 and E[|It,t+δ(r1,r2)|
2] = 1

2δ
2. Finally, using ‖(id−E[·|Ft])Z‖L2(Ω;Rd) ≤

‖Z‖L2(Ω;Rd) for all Z ∈ L2(Ω;Rd) and Lemma 4.5.5 yield

Q6 ≤
∥∥∥(id−M−1

t,t+δ)
(
δf(t,X(t)) +

m∑
r=1

gr(t,X(t))It,t+δ(r)

+

m∑
r1,r2=1

gr1,r2(t,X(t))It,t+δ(r1,r2)

)∥∥∥
L2(Ω;Rd)

≤C
(
1 + sup

t∈[0,T ]
‖X(t)‖q

L2q(Ω;Rd)

)
δ2.

This completes the proof.

Remark 4.5.7. If the weight coefficients dl ∈ Rd×d, l = 0, . . . ,m are non-constant then
the proof of stochastic C-stability and B-consistency needs more delicate estimates. And
it can happen that one needs even higher moments of the solutions than before.



5. Numerical results

In this chapter we present several numerical examples. On one hand they show strengths
and weaknesses of the proposed method, and on the other hand they are designed to
illustrate the strong convergence results from previous sections.
We note that we have two ways to compute the transformed schemes. The first way is

to follow exactly the Wiener transformation described in Section 1.2. In this case we get
strong approximations of the (1.15). The second way is to determine the Wiener processes
for the transformed equation (1.18) directly by a random number generator and avoid
the transformation. In this case we obtain only weak approximation of (1.15). Anyway,
in both cases we have the same distribution. In order to simplify the computations we
use for our numerical tests the second method.
First, we turn to the example in the linear case, in which we compared the simple

balanced method (1.39) and the Euler-Maruyama scheme, see Section 1.4. Table 5.1 and
Figure 5.1 show the estimated strong error of convergence for seven different equidistant
step sizes h = 2k−11, k = 1, . . . , 7. For simplicity we only estimate the error at the end
time T = 1, that is

error =
(
E[|Xh(T )−X(T )|2]

) 1
2 , (5.1)

where Xh(T ) denotes the numerical approximation of the reference solution X(T ). The
expected value is estimated by a Monte Carlo simulation based on 106 sample paths.

Table 5.1.: Estimated errors and EOCs for the approximations of the linear SODE (1.18).

Simp.bal.meth. Euler-Maruyama

h error EOC error EOC

2−4 1.43300 9.98300
2−5 0.93560 0.62 7.50900 0.41
2−6 0.53790 0.80 3.52700 1.09
2−7 0.32920 0.70 3.25500 0.12
2−8 0.37660 -0.19 2.89000 0.17
2−9 0.16490 1.19 2.19200 0.40
2−10 0.10130 0.70 0.93910 1.22
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Figure 5.1.: Strong convergence errors for the approximation of the linear SODE (1.18).

As before the parameter values are

A =

(
−0.8 −1

0.5 −1

)
, G1 =

(
−3.8 0.05

0.075 0.1

)
, G2 =

(
−0.3 −0.05

0.5 −2

)
, T = 1, and the initial

value X0 =

(
0.1

0.1

)
. Table 5.1 contains the estimates of the errors and the corresponding

experimental order of convergence:

EOC =
log(error(hi))− log(error(hi−1))

log(hi)− log(hi−1)
, i = 2, . . . , k.

This example shows that the Euler-Maruyama scheme gives very large errors comparing
with the simple balanced method. This indicates that the latter method is more suitable
to capture the solution behavior of SODEs with large noise.
In our next numerical example we compare the simple balanced method (1.39) and

the balanced shift noise Euler-type scheme (1.65), see section 1.7. Here we use the same
parameters as above except the matrix A, which is given by

A =

(
−8 −1

0.5 −1

)
.
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Table 5.2.: Estimated errors and EOCs for the approximations of the linear SODE (1.18).

Simp.bal.meth. BSNE

h error EOC error EOC

2−4 0.16499 0.16451
2−5 0.11045 0.58 0.12256 0.42
2−6 0.08467 0.38 0.09576 0.36
2−7 0.06143 0.46 0.06643 0.53
2−8 0.04379 0.49 0.04343 0.61
2−9 0.03396 0.37 0.03130 0.47
2−10 0.02092 0.70 0.02442 0.36
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Figure 5.2.: Strong convergence errors for the approximation of the linear SODE (1.18).

In contrast to the path-wise convergence (see Figure 1.2), one can see that the conver-
gence in the mean square sense (5.1) delivers almost no difference in the error estimate
for both numerical approximations. In Figure 5.2 and Table 5.2 one clearly observes
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strong order γ = 1
2 for both methods.

5.1. Stochastic Hopf equation

Consider the following two-dimensional system of stochastic differential equations

dx(t) =

[(
x1 −x2

x2 x1

)(
µ− x2

1 − x2
2)

θ

)
− 1

2
G2

2

(
x1

x2

)]
dt

+G1

(
x1

x2

)
dW1(t) +G2

(
x1

x2

)
dW2(t),

(5.2)

where x = (x1, x2) ∈ R2, µ, θ ∈ R and G1, G2 ∈ R2×2. As in [6, Section 8] we call this
the stochastic Hopf system since variation of the parameter µ drives the system through
a stochastic Hopf bifurcation (see [3, Ch.9.4.2]). In [6, Section 8] the matrices G1 and G2

were assumed to commute while here we consider the general noncommuting case. Since
f is cubic with uniform upper Lipschitz bound and the diffusion coefficients are globally
Lipschitz continuous, the Assumption 1.1.1 as well as Assumption 4.3.1 are fulfilled with
the growth rate q = 3.
In our tests the SODE (5.2) is discretized by the PBSNE Euler-type scheme, the

SSBSNI Euler-type method, the projected Euler-Maruyama (PEM) scheme, proposed in
[5], the PBSNM method, and the PBMM scheme.

5.1.1. PBSNE and SSBSNI Euler-type schemes

In this section we test the projected balanced shift noise Euler-type method (3.15) and
the split-step balanced shift noise Euler-type scheme (3.16). In addition, we compare
with the projected Euler-Maruyama method (see [5])

Xh(ti) = min(1, h−βi |Xh(ti−1)|−1)Xh(ti−1),

Xh(ti) =Xh(ti) + hif(X(ti)) +

m∑
r=1

GrXh(ti)I
ti−1,ti
(r) ,

for all i = 1, . . . , N, h ∈ (0, 1]N , β = 1
2(q−1) and Xh(0) := X0.

Figure 5.3 shows the simulation of a single path of the reference solution and the PB-
SNE Euler-type method with step-size h = 2−4 and parameters

G1 =

(
−0.5 1

0.5 1

)
, G2 =

(
2 0.5

−4.5 2

)
, β = 1

4 , µ = −0.5, θ = 1, T = 24, and the

initial value X0 =

(
1.35

1.35

)
.
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Figure 5.3.: Sample trajectory of the PBSNE Euler-type method with step size h = 2−4,
initial value X0 = (1.35, 1.35)>, and T = 24.

Since there is no explicit expression for the solution of (5.2) we replace the exact
solution by a reference approximation (3.15) with very small step-size ∆t = 2−18. The
transformed matrices are given by

G̃1 =

(
2.01 0.47

−4.51 1.97

)
, G̃2 =

(
−0.44 1.01

−0.37 1.06

)
.

Table 5.3 provides an overview of the Frobenius norm and eigenvalues of the diffusion
matrices G1, G2, G̃1, and G̃2.

Table 5.3.: Frobenius norm and eigenvalues
G1 G2 G̃1 G̃2

Frobenius norm 1.58 5.33 5.34 1.57

Eigenvalues −0.78 2 + 1.5i 1.99+1.45i −0.66

1.28 2− 1.5i 1.99−1.45i 1.27

As already mentioned in [5], [6] we are interested in trajectories of the PBSNE method
which do not coincide with trajectories generated by the balanced shift noise explicit
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Euler-type scheme. This event occurs when the scheme leaves the sphere of radius h−β ,
i.e.

#-Proj. = {i = 1, . . . , N : |XPBSNE
h (ti)| > h−β}. (5.3)

In the Figure 5.3 one can see that the trajectory of the PBSNE scheme crosses the circle
of radius h−β = 2 twice: in the first and in the twelfth steps. The intermediate values
X◦h(t2) and X◦h(t13) are connected by dashed lines.
Figure 5.4 and Table 5.4 show the results of the strong error convergence for the PBSNE

method, the SSBSNI scheme, and PEM method. All three methods converge with the
strong order γ = 1

2 . The parameters and initial value are as in Figure 5.3. Nonlinear
equations in the SSBSNI scheme are solved by the Newton method with three iteration
steps. The number of samples for which the trajectories of the PBSNE method, SSBSNI
scheme, and PEM method leave the sphere of radius h−β is given in the fourth and ninth
column of Table 5.4.

10
-4

10
-3

10
-2

10
-1

h

10
-2

10
-1

10
0

10
1

e
rr

o
r

order line 1/2

PBSNE

SSBSNI

PEM

Figure 5.4.: Strong convergence errors for the approximation of (5.2).

The error estimates, given by (5.1) at the final time T = 1 with seven different equidis-
tant step sizes h = 2k−11, k = 1, . . . , 7 are based on Monte Carlo simulations with 106

samples. In Figure 5.4 it can be seen that the PEM scheme gives larger errors than the
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PBSNE method and the SSBSNI scheme. Actually, the explicit solution of the SODE
with the largest noise term plays an important role in the damping of large amplitudes
and leads to better results in the approximations. In the PEM method all noise terms
are approximated with the Euler-Maruyama scheme.

Table 5.4.: Estimated errors and EOCs for the approximations of (5.2)
PBSNE SSBSNI PEM

h error EOC #-
proj.

error EOC error EOC #-
proj.

2−4 0.76556 73766 0.68454 1.31484 268618
2−5 0.53193 0.53 28017 0.43965 0.64 0.88604 0.57 61672
2−6 0.38325 0.47 10085 0.29964 0.55 0.60729 0.54 14702
2−7 0.27743 0.47 3005 0.21107 0.51 0.41853 0.54 3529
2−8 0.20258 0.45 797 0.15026 0.49 0.29125 0.52 859
2−9 0.14526 0.48 200 0.10721 0.49 0.20543 0.50 189
2−10 0.10627 0.45 49 0.07600 0.50 0.14724 0.48 48

5.1.2. PBSNM and PBMM schemes

In the next step we compare the projected balanced shift noise Milstein-type scheme
(4.2) and the projected balanced Milstein method (4.8).
Since m = 2 both steps of the split-step method involve at most one double stochastic

integral and no mixed integrals. As in [36] we evaluate the double integral by

1

2

(
(Ĩ
ti−1,ti
(2) )2 − hi

)
, i = 1, . . . , N.

As we already noted in Chapter 4 the splitting into steps avoids in this example evaluating
the iterated Itô integrals Ĩti−1,ti

(1,2) and Ĩti−1,ti
(2,1) . In [46] it was proved that without evaluating

iterated stochastic integrals the higher order of convergence is not possible. Table 5.5
and Figure 5.5 show that the strong order of convergence for the balanced shift noise
Milstein-type is only one half.
Here we use the same parameters as in Section 5.1.1 for T = 1 and the initial value

X0 =

(
1.35

1.35

)
. The estimates of the errors are based on the Monte Carlo simulation with

the same number 106 of samples.
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Table 5.5.: Estimated errors and EOCs for the approximations of (4.1)
PBSNM

h error EOC #-proj.

2−4 0.51966 35791
2−5 0.37318 0.48 17383
2−6 0.27702 0.43 7609
2−7 0.20089 0.46 2722
2−8 0.14588 0.46 718
2−9 0.10400 0.49 183
2−10 0.07490 0.47 41
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Figure 5.5.: Strong convergence errors for the approximation of (4.1)

However, if the noise terms commute, then the strong order of convergence is one. This
can be seen in Table 5.6 and Figure 5.6. Here we present the comparison of the PBSNM
method and the PBMM scheme. For this experiment we use the following parameter
values:

G1 =

(
−0.5 0

0 1

)
, G2 =

(
2 0

0 2

)
, β = 1

4 , µ = −0.5, θ = 1, T = 1, and the initial value
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X0 =

(
1.35

1.35

)
. The transformed matrices are given by

G̃1 =

(
1.91 0

0 2.12

)
and G̃2 =

(
−0.78 0

0 0.70

)
. It is obvious that the PBSNM method

has smaller errors than the PBMM scheme.

Table 5.6.: Estimated errors and EOCs for the approximations of (4.1)
PBSNM PBMM

h error EOC #-proj. error EOC #-proj.

2−4 0.03104 1072 0.09771 830
2−5 0.01741 0.83 415 0.04192 1.22 420
2−6 0.00983 0.82 123 0.02076 1.01 161
2−7 0.00579 0.76 51 0.01045 0.99 49
2−8 0.00243 1.25 8 0.00512 1.03 13
2−9 0.00117 1.06 2 0.00246 1.06 0
2−10 0.00047 1.32 0 0.00172 0.51 1
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Figure 5.6.: Strong convergence errors for the approximation of (4.1)
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For the implementation of the PBMM method we use the following weight matrices

d0 =

(
1 0

0 1

)
, d1 =

(
0.5 0

0 1

)
, and d2 =

(
0.5 0

0 0.5

)
.

As in the case of the Euler-type methods we can see that the PBSNM method has
smaller errors than the PBMM scheme.
Our next task is to implement the projected balanced Milstein method (4.8) if the

noise terms do not commute. Except the integrals Iti−1,ti
(1,1) and I

ti−1,ti
(2,2) we should also

generate the integrals Iti−1,ti
(1,2) and Iti−1,ti

(2,1) . There are several publications for evaluating
iterated stochastic integrals, see for example [35], [63], [52], [17]. In our numerical tests
we don’t focus on excellent calculations of double Itô integrals, but we only check whether
the theoretical statements of the PBMM scheme also apply in practice. Therefore, we
generate the iterated integrals as well as the reference solution of (5.2) by the Euler-
Maruyama method with a very small step size ∆t = 2−18. For computing of I0,t

(1,2) we
have to implement the following system for t ∈ [0, T ]

dX1(t) = dW1(t), X1(0) = 0,

dX2(t) =X1(t) dW2(t), X2(0) = 0.

Using the relation (see [36])

I(1,2) + I(2,1) = I(1)I(2)

we determine the second iterated Itô integral I(2,1). It is certainly a very expensive
procedure, but we accept that to get the expected order of convergence 1 of the PBMM
scheme.

Table 5.7.: Estimated errors and EOCs for the approximations of (4.1)
PBMM

h error EOC #-
proj.

2−4 0.11289 830
2−5 0.04777 1.24 319
2−6 0.02500 0.93 120
2−7 0.01348 0.89 42
2−8 0.00749 0.85 8
2−9 0.00429 0.80 2
2−10 0.00316 0.44 1
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Table 5.7 and Figure 5.7 show the results of the strong convergence for the projected
balanced Milstein method with the parameter values

G1 =

(
0 1

0.5 1

)
, G2 =

(
2 0.5

0 2

)
, β = 1

4 , µ = −0.5, θ = 1, T = 1, and the initial value

X0 =

(
1.35

1.35

)
. The matrices d0, d1 and d2 are given as above.
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Figure 5.7.: Strong convergence errors for the approximation of (4.1)

Our estimate of the errors are based on a Monte Carlo simulation with 106 sample
paths. The numerical results confirm the theoretical order of convergence, though with
some loss towards smaller step sizes for the PBMM scheme.

5.2. Some experiments for the stochastic Lorenz system

The next example is a three-dimensional system, goes back to Lorenz [41], which is
showing chaotic features already in the deterministic case. The stochastic version of the
Lorenz system was already studied in [54]. Let us consider for a triple (λ1, λ2, λ3) ∈ R3

and G1, G2, G3 ∈ R3×3 the following system
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dx(t) =

−λ1 λ1 0

λ2 −1 −x1

x2 0 −λ3


x1

x2

x3

 dt+G1

x1

x2

x3

 dW1(t)

+G2

x1

x2

x3

 dW2(t) +G3

x1

x2

x3

 dW3(t)

(5.4)

for every x = (x1, x2, x3) ∈ R3. It is known that apart from the global Lipschitz contin-
uous diffusion coefficient in (5.4), the drift coefficient is not globally one-sided Lipschitz
continuous. But it satisfies the global coercivity condition (1.7), see [54], [27]. Therefore,
it is an interesting example where only part of our assumptions are satisfied.
There is no explicit solution available, hence we replace the exact solution in (5.4) by

the numerical approximation (3.15) with a very fine step size ∆t = 2−18. The implicit
scheme is again implemented by solving the nonlinear equation by the Newton method
with three iteration steps. Figure 5.10 shows the simulation of the single paths of the
reference solution, the PBSNE and SSBSNI Euler-type schemes with parameters

G1 =

 2−3 2−5 0

2−10 2−7 0

0 0 0

, G2 =

0 2−5 2−4

0 2−7 2−10

0 0 0

, G3 =

0 0 0

0 2−4 2−7

0 2−4 2−6

,

X0 =

2−7

2−7

2−7

, and T = 26. The transformed matrices are given by

G̃1 =

−0.124 −0.034 −0.006

−0.001 −0.012 0

0 −0.004 −0.001

, G̃2 =

0.009 −0.002 −0.008

0 −0.062 −0.008

0 −0.061 −0.016

,

and

G̃3 =

0.010 −0.028 −0.061

0 0.001 0

0 0.009 0.002

.

An overview of the Frobenius norm and eigenvalues is shown in Table 5.8.

Table 5.8.: Frobenius norm and eigenvalues
G1 G2 G3 G̃1 G̃2 G̃3

Frobenius norm 0.13 0.07 0.09 0.13 0.09 0.07

Eigenvalues 0.13 0 0.01 −0.13 0.01 0.01

0.01 0.01 0.07 −0.01 −0.07 0

0 0 0 0 −0.01 0.01
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The stochastic Lorenz system is analyzed theoretically in [54], [29]. Practically, un-
bounded trajectories arise when the noise terms are not very small. In the Figure 5.10
(b) one can see that the SSBSNI scheme produces for h = 2−6 large errors in contrast to
the PBSNE method.

(a) (b)

Figure 5.8.: Sample trajectories of reference solution, PBSNE and SSBSNI Euler-type
methods with step size h = 2−6, initial value X0 = (2−7, 2−7, 2−7)>, and
T = 26.

(a) h = 2−8 (b) h = 2−9

Figure 5.9.: Sample trajectories of reference solution and SSBSNI Euler-type method
with several step sizes, initial value X0 = (2−7, 2−7, 2−7)>, and T = 26.

Figure 5.9 shows that the split-step scheme creates only for a step size as small as
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h = 2−9. This show that the SSBSNI method is inefficient for the stochastic Lorenz
system.
The simulation of a single path of the PBSNE method with a step size h = 2−6

for T = 1 shows that already on a small time interval the PBSNE scheme deviates
significantly from the reference solution. It is known from the deterministic case that the
Lorenz system is sensitive to the initial conditions. In the stochastic case this sensitivity
increases even more.
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Figure 5.10.: Sample trajectory of PBSNE Euler-type method with step size h = 2−6,
initial value X0 = (2−7, 2−7, 2−7)>, and T = 1.

Table 5.9.: Estimated errors and EOCs for the approximations of (5.4)
PBSNE SSBSNI

h error EOC #-proj. error EOC

2−10 9.89413 0 10.17977
2−11 6.13433 0.69 0 5.97699 0.77
2−12 3.24605 0.92 0 3.04421 0.97
2−13 1.62101 1.00 0 1.75943 0.79
2−14 0.78605 1.04 0 1.37597 0.35
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Table 5.9 and Figure 5.11 show the strong convergence errors of the PBSNE scheme
and the SSBSNI method with five different steps h = 2k−15, k = 1, . . . , 5. The strong
error is measured at the endpoint T = 1 by (5.1) with a Monte Carlo simulation using
106 samples.
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Figure 5.11.: Strong convergence errors for the approximation of (5.2).

Perhaps the perturbation in stochastic terms is neglected here and we can see only
the strong convergence of the deterministic system, and for this system both methods
produce a large error for every step size. According to our experiments it seems that the
balanced shift noise methods (3.15) and (3.16) are not well suited to the approximation
of the stochastic Lorenz system given by (5.4).



Conclusions

In this thesis, we have dealt with numerical solutions for stochastic differential equations
with large noise. We have analyzed our proposal for the solution of these problems
analytically as well as numerically.
As shown in Section 1.2 an orthogonal transformation of the Wiener process gives

us the opportunity to isolate the largest noise term. Our approach is then to split the
numerical integration into two steps:
1. Solving the SODE without the largest noise term by the Euler-Maruyama scheme

or the Milstein method,
2. Solving explicitly the SODE with the largest noise term.

The theoretical and numerical results lead to several open questions:
- How do the suggested methods work if the diffusion coefficient functions are not

autonomous or even nonlinear?
- Is there an optimal choice for the shift matrix C (see (1.40) and (1.41))?
As in [5] the convergence theory of numerical methods was based on the study of

stochastic C-stability and stochastic B-consistency under the one-sided Lipschitz condi-
tion. By keeping track of the constants we have tried to derive sharper estimates. It is
shown that the constants Ccons,1 and Ccons,2 in (2.5) and (2.6) are of moderate type in
the sense of Convention 1.3.4. On the other hand, the C-stability constant Cstab is not
of moderate type, because our assumptions allow the solutions to grow exponentially in
mean square. This leads to the further questions:
- Is it possible to improve this result under stronger assumptions?
- Can the exponents of the exponential terms be replaced by the logarithmic norm of

the stability matrix S (see (0.3))?
The experiments in Chapter 5 have shown that in general our method of Milstein-type

converges strongly with order 1
2 and therefore does not belong to the methods of higher

order. On the contrary, the projected balanced Milstein method is strongly convergent
of order 1. Therefore, there is interest in the investigating the weak convergence of these
methods.



A. Appendix

A.1. Itô formula

In this section we recall some known results from stochastic analysis.

Definition A.1.1. Let (W (t))t≥0 be an m-dimensional Brownian motion defined on the
complete probability space (Ω,F ,P) adapted to the filtration (Ft)t≥0. A d-dimensional
Itô process is an Rd-valued continuous adapted process X(t) on t ≥ 0 of the form

X(t) = X0 +

∫ t

0
f(τ) dτ +

∫ t

0
g(τ) dW (τ),

where f = (f1, . . . , fd)
T ∈ L1(R+;Rd) and g = (gij)d×m ∈ L2(R+;Rd×m). The integral

is formally written with stochastic differentials as follows

dX(t) = f(t) dt+ g(t) dW (t). (A.1)

Theorem A.1.2 (The multi-dimensional Itô formula). Let X(t) be a d-dimensional Itô
process on t ≥ 0 with the stochastic differential (A.1). Let V ∈ C2,1(Rd × R+;R). Then
V (X(t), t) is again an Itô process with the stochastic differential given by

dV (X(t), t) =[Vt(X(t), t) + Vx(X(t), t)f(t)

+
1

2
trace(gT (t)Vxx(X(t), t)g(t))] dt+ Vx(X(t), t)g(t) dW (t).

(A.2)

The proof of the Theorem A.1.2 can be found, for example, in [15], [36] or [42].

Remark A.1.3 (Version for Wiener processes). Let (W (t))t≥0 be a standard Wiener
process and h : R→ R is a twice continuously differentiable function. Then it holds

h(W (t)) = h(W0) +

∫ t

0
h′(W (τ)) dW +

1

2

∫ t

0
h′′(W (τ)) dτ.

Also, for the process Y (t) = h(W (t)), t ≥ 0 this formula can be written in the differential
notation

dY (t) = h′(W (t)) dW (t) +
1

2
h′′(W (t)) dt.
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A.2. Stochastic Gronwall lemma

In this section we prove an stochastic version of the Gronwall lemma in continuous time,
proposed in [53]. The proof of this lemma is taken from the book [7] that is currently in
preparation.

Definition A.2.1. Let (Ω,F ,P) be a probability space. A right continuous adapted
process M = {M(t)}t∈[0,T ] is called a local martingale if there exists a non-decreasing
sequence {τn}n∈N of stopping times with P(τn → ∞ as n → ∞) = 1 such that every
{Mτn∧t −M0}t∈[0,T ] is a martingale.

This definition can be found in [42]. In the following, let (Ω,F ,P) be a filtered prob-
ability space and T ∈ (0,∞).

Lemma A.2.2. Let Z,H : [0, T ] × Ω → R be nonnegative, adapted processes with con-
tinuous paths and assume that ψ : [0, T ] → [0,∞) is integrable and nonnegative. Let
M : [0, T ] × Ω → R be a continuous local martingale with M(0) = 0. Suppose that for
every t ∈ [0, T ] it holds

Z(t) ≤ H(t) +

∫ t

0
ψ(s)Z(s) ds+M(t). (A.3)

Then

E[Z(t)] ≤ exp
( ∫ t

0
ψ(s) ds

)
E[ sup
s∈[0,t]

H(s)]. (A.4)

Proof. Let for t ∈ [0, T ] define

Φ(t) :=

∫ t

0
ψ(s) ds.

We note that Φ is a deterministic process. Further, let us assume that the process
H is non-decreasing and, hence, of bounded variation. Otherwise we replace H(t) by
sups∈[0,t]H(s). Next, let define two auxiliary processes Z,ψ : [0, T ]× Ω→ [0,∞) by

Z(t) :=H(t) +

∫ t

0
ψ(s)Z(s) ds+M(t),

ψ(t) :=IZ(t) 6=0(t)ψ(t)
Z(t)

Z(t)
,

for all t ∈ [0, T ]. By (A.3) we have that 0 ≤ Z(t) ≤ Z(t) P-almost surely. Following, ψ
is well-defined and ψ(t) ≤ ψ(t). Consequently, we define by

Φ(t) :=

∫ t

0
ψ(s) ds
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for every t ∈ [0, T ]. We have that Φ(t) ≤ Φ(t) almost surely. By setting Z and ψ in
(A.4) we obtain

Z(t) = H(t) +

∫ t

0
ψ(s)Z(s) ds+M(t), P-almost surely.

It is obvious that Z is an almost surely continuous semimartingale. By the Itô formula
we get for the semimartingales that (see [33, Th.17.18])

exp(−Φ(t))Z(t) = H(0) +

∫ t

0
exp(−Φ(s)) dH(s) +

∫ t

0
exp(−Φ(s)) dM(s).

Obeserve that Φ(t) ≥ 0, then it follows that exp(−Φ(t)) ≤ 1. Further, let (τn)n∈N be a
non-decreasing sequence of stopping times with P(τn → ∞ as n → ∞) = 1, such that
the stopped process (M(t∧τn))t∈[0,T ] is a martingale for all n ∈ N. Then for all t ∈ [0, T ]

and n ∈ N we obtain

E[exp(−Φ(t ∧ τ ∧ τn))Z(t ∧ τ ∧ τn)] ≤ E[H(t ∧ τ ∧ τn)] ≤ E[H(t)],

since exp(Φ(t)) ≤ 1 and H is non-decreasing. Further, by Fatou’s lemma we get

E[exp(−Φ(t ∧ τ))Z(t ∧ τ)] =E[ lim
n→∞

inf exp(−Φ(t ∧ τ ∧ τn))Z(t ∧ τ ∧ τn)]

≤ lim
n→∞

E[exp(−Φ(t ∧ τ ∧ τn))Z(t ∧ τ ∧ τn)]

≤E[H(t)].

Since Φ(t) ≤ Φ(t) almost surely and Z is non-negative it holds with τ = t

E[Z(t)] =E[exp(Φ(t)) exp(−Φ(t))Z(t)]

≤ exp(Φ(t))(E[exp(−Φ(t))Z(t)]

≤ exp(Φ(t))E[H(t)]).

Then, by Z(t) ≤ Z(t) follows (A.4).

A.3. Higher order estimates for Itô multi-integrals

The following lemma is a general result for the products of multiple Itô integrals. Here
we use the same notation for the multi-indices as in [36]. For example, the hierarchical
set of the classical Milstein method is given by

A1 = {α ∈ A : 1 ≤ l(α) + n(α) ≤ 2} = {(0), (1), . . . , (m)} ∪ {(i, j)|i, j = 1, . . . ,m},

where A is the set of multi-indices, l = l(α) is the length of α and n(α) is the number of
components in α with αi = 0, i = 1, . . . , l.
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Lemma A.3.1. Assume that 0 ≤ t− s ≤ 1. Then there exists a real constant Kmult =

Kmult(α, α
′, p) for all α = (α1, ..., α`) ∈ A, α′ = (α′1, ..., α

′
`) ∈ A and p = 1, 2, ..., such

that

E
[(
Is,tα Is,tα′

)2p] ≤ Kmult(t− s)p(`(α)+n(α)+`(α′)+n(α′)). (A.5)

Proof. It is convenient, to introduce the rescaled and shifted Brownian motion for r ∈
[0, 1]

Wαi
[s,t](r) = (t− s)−(1+δαi,0)/2

(
Wαi(s+ r(t− s))−Wαi(s)

)
, t > s, i = 0, ...,m, (A.6)

where δαi,0 is the Kronecker symbol. In the case αi = 0 the increment is dW 0
[s,t](r) =

dW 0(r) = dr. Let n(α) =
∑̀
i=1

δαi,0. By shifting and the time change formula for Itô-

integrals (see Th.8.5.7 in [47]) we have

Is,tα = (t− s)(`(α)+n(α))/2Is,t[α], (A.7)

where

Is,t[α] =

∫ 1

0
s

(1+δα1,0)/2
1

∫ 1

0
s

(1+δα2,0)/2
2 · · ·

∫ 1

0
dWα1

[s,s+s`−1(t−s)](s`) · · · dW
α`
[s,t](s1). (A.8)

Then for all α, α′ ∈ A it holds

E
[(
Is,tα Is,tα′

)2p]
= (t− s)p(`(α)+n(α)+`(α′)+n(α′))E

[(
Is,t[α]I

s,t
[α′]

)2p]
. (A.9)

For the estimate of the expectation of the product of iterated stochastic integrals we
apply the Cauchy-Schwarz inequality

E
[(
Is,t[α]I

s,t
[α′]

)2p] ≤ (E[(Is,t[α]

)4p]) 1
2
(
E
[(
Is,t[α′]

)4p]) 1
2 .

Now, by Burkholder-Davis-Gundy inequality (see for example in [4]) we obtain for all
α ∈ A, p = 1, 2, ...,

E
[(
Is,t[α]

)4p] ≤ KBDGE
[( ∫ 1

0
(s

(1+δα1,0)/2
1 · · ·

∫ 1

0
· · · dWα`−1

[s,s+s1(t−s)](s2))2ds1

)2p]
≤ KBDG

∫ 1

0
s

2p(1+δα1,0)
1 E

[( ∫ 1

0
s

(1+δα2,0)/2
2 · · ·

∫ 1

0
· · · dWα`−1

[s,s+s1(t−s)](s2)
)4p]

ds1

≤ · · ·

≤ K`−1
BDG

(4p− 1)!!

(2p)`−1
∏`−1
j=1(1 + δαj ,0)

,

where KBDG is the Burkholder-Davis-Gundy constant. Therefore also for all α′ ∈ A we
obtain

E
[(
Is,t[α′]

)4p]
≤ K`−1

BDG

(4p− 1)!!

(2p)`−1
∏`−1
j=1(1 + δα′j ,0)

, p = 1, 2, ...,

which proves the assertion (A.5).
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A.4. Logarithmic norm and its properties

The logarithmic norm appears in various applications: in differential equations, numerical
analysis, or in matrix theory. The classical definition was independently introduced in
1958 by Dahlquist and Lozinskii, see more, for example, in [58].

Definition A.4.1. For the quadratic matrix M with an induced matrix norm | · | the
associated logarithmic norm µ(M) is defined by

µ(M) = lim
h→0+

|id +Mh| − 1

h
, (A.10)

where id is identity matrix, and h > 0.

It is known that the limit in (A.10) exists and convergence to the limit is monotonic,
see in [12]. As an alternative, the logarithmic norm can be defined as follows

µ(M) = sup
z 6=0

Re〈z,Mz〉
〈z, z〉

for all z ∈ Cd. The following lemma summarizes well-known results of properties of the
logarithmic norm. These may be found, for example in [58], [60].

Lemma A.4.2. Let M and P be quadratic matrices and α(M) is the maximal real part
of the eigenvalues of M . Denote by λ a real number and by z a complex number. Then
the following properties hold

1. µ(M) ≤ |M |,
2. µ(λM) = |λ|µ(sgn(λ)M),

3. µ(M + P ) ≤ µ(M) + µ(P ),

4. α(M) ≤ µ(M),

5. |eMt| ≤ eµ(M)t,

6. µ(M + zid) = µ(M) + Rez,

7. If µ(M) < 0, then |M−1| ≤ − 1

µ(M)
.

For the most common norms | · |p, p = 1, 2,∞ the logarithmic norm may be expressed
as follows:

• µ∞(M) = supi(Re(mii) +
∑
j,j 6=i
|mij |),

• µ1(M) = supj(Re(mjj) +
∑
i,i 6=j
|mij |),

• µ2(M) = λmax

(
M+MH

2

)
.
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