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* oncu.maraci@uni-bielefeld.de

Abstract

Secale L. is a small but important genus that includes cultivated rye. Although genetic diver-

sity of cultivated rye is high, patterns of genetic diversity in the whole genus, and potential

factors affecting the distribution of genetic diversity remain elusive. The population structure

and distribution of genetic variation within Secale, and its correlation with taxonomic delimi-

tation, cultivation status or spatial distribution in relation to geography and climate zones

were analyzed in this study. A collection of 726 individual plants derived from 139 different

accessions representing Secale cereale, S. vavilovii, S. strictum, and S. sylvestre were

investigated using SSR analysis and sequence diversity analysis of a nuclear EST region.

Our results indicated that perennial S. strictum subspecies are genetically divergent from

annual forms of the genus. Existence of two distinct clusters within the annual taxa was

observed, one corresponding to samples from Asia, and a second to those outside of Asia.

No clear genetic structure was observed between different annual species/subspecies, indi-

cating introgression between these taxa. The analysis of cultivated rye revealed that land-

race populations from the Middle East have the highest genetic diversity, supporting the

idea of the area being the center of origin for cultivated rye. Considering high adaptive

potential of those populations, Middle Eastern landraces should be regarded as genetic

resources reservoirs for new niches and future breeding programs.

Introduction

Sustainable food production is a vital environmental issue, in the context of global climate

change. Elevated temperatures and accompanying alterations in precipitation regimes are

expected to decrease yields significantly. At the same time, global requirement for food is

expected to increase by 60% by 2050. The adaptive capacity of plant populations under stress

conditions are positively related to the degree of genetic diversity maintained in those popula-

tions [1]. Genetic diversity of modern varieties (cultivars) of crop plants is quite low due to

genetic erosion stemming from domestication syndrome and modernization bottlenecks. On

the other hand, wild relatives of crop plants and unimproved varieties known as ‘landraces’ are

genetically diverse [2,3] and contain many adaptive alleles in their gene pools.
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Secale L. is a small but economically important taxon, which includes such wild relatives

and landraces, comprising cultivated rye, containing annual, perennial, self-incompatible or

self-compatible, cultivated, weedy and wild taxa [4]. Although the genus is regarded as the typ-

ical representative of Mediterranean flora and Southwest Asia, specifically Turkey, Lebanon,

Syria, Iran, Iraq, and Afghanistan are the main centers of its distribution [5]. Taxonomy of the

genus Secale is still not without contention, due to disagreements on the delimitation of species

and intraspecific taxa, the out-crossing nature of many species, and lack of hybridization barri-

ers between species and subspecies. Hence, regarding the taxonomical classification and phy-

logeny of Secale species, several hypotheses were proposed [5–8]. Recent molecular findings

[9–11] are consistent with Frederiksen and Petersen‘s [7] hypothesis that the genus is repre-

sented by three species: S. sylvestre, S. strictum and S. vavilovii. There is a general agreement

on S. strictum, the perrenial species being the ancestral form [10,11]. The first species that

diverged from S. strictum was proposed to be S. sylvestre [9,12,13]. S. strictum subsp. africanum
is considered to have diverged from S. strictum during the early Pleistocene and evolved inde-

pendently [13]. S. cereale and S. vavilovi, on the other hand, are considered to be evolutionarily

the youngest species [12,14]. Although S. vavilovi was classified as a distinct species based on

morphological differences [6,8,15], recent molecular studies revealed no clear difference

between S. vavilovii and S. cereale [10,11,13,16], and suggested that S. vavilovii should be

ranked as a subspecies within the cereale group.

For the ancestry of cultivated rye, S. cereale subsp. cereale, different researchers have differ-

ent opinions as well: S. vavilovii [17,18], S. ancestrale [19], and S. strictum [20] were suggested

to be the progenitor of cultivated rye. Similarly, the exact geographical center of origin for cul-

tivated rye is not known, but south-western Asia was proposed to be most probably the center

of origin [5,18]. Although production of cultivated rye declined worldwide during the 20th

century, it has long been an important crop in Northern and Central Europe, especially in the

cooler parts that is not suitable for cultivation of other cereals [21]. Rye has a cross-pollinating

reproductive system and thus its levels of intraspecific diversity are high compared to self-pol-

linating grains [22]. Although, cultivated varieties of cereal rye has been experiencing extensive

genetic bottleneck [23] due to strong selection pressure, like many other cereal crops, signifi-

cant proportion of genetic diversity is maintained in landraces [24,25] and wild and weedy

forms [26,27]. Furthermore, these populations contain potentially useful traits such as resis-

tance to diseases, adaptability to biotic and abiotic stress [28,29]. Therefore, considering that

the wild and weedy forms may crossbreed with cultivated rye [30], these taxa, along with the

landraces, constitute gene pools for desirable genes, and can be regarded as genetic resource

reservoirs for new niches and future breeding programs of wheat, triticale and other crops

[22]. Hence understanding genetic structuring of the genus Secale and distribution of genetic

diversity within the genus is extremely important. In this vein, with this study, we investigated

wild, weedy, landrace and cultivated varieties of rye using Simple Sequence Repeats (SSRs) and

sequence diversity analysis of a nuclear Expressed Sequence Tag (EST) region in order to

obtain further insights about taxonomy, phylogeny, and genetic structure of Secale species.

Specifically we evaluated the correlation of genetic structure with taxonomic delimitation, cul-

tivation status or spatial distribution in relation to geography and climate zones [31] at a global

scale.

Materials and methods

Plant material and DNA extraction

In this study, a total of 726 samples belonging to 139 different accessions of cultivated varieties,

landraces, weedy and wild populations of Secale were investigated from 45 different countries
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(S1 Table). Among these, 584 samples from 100 accessions of S. cereale, 46 samples from nine

accessions of S. vavilovii, 89 samples from 23 accessions of S. sitrictum, two samples from two

accessions of S. sylvestre, and five hybrid samples were used (S1 Table). In terms of cultivation

status, 137 genotypes belonged to wild accessions, 51 genotypes to weedy accession, 343 geno-

types to landrace accessions and 195 genotypes to cultivated accessions.

The accessions were provided by United States Department of Agriculture Germplasm

Resources Information Network (USA), and Leibniz Institut für Pflanzengenetik und Kulturp-

flanzenforschung (Germany). Two accessions were collected in farms from Turkey, in 2010. In

order to confirm taxonomic delimitations of accessions, seeds were planted in trial fields from

December 2010 to June 2011, and the samples were regularly evaluated for certain phenotypic

characters during all developmental stages following [7]. Total DNA was extracted according

to the method described by Doyle and Doyle [32].

SSR analysis. Initially, 20 nuclear SSR primers previously used in the genus Secale [33,34]

were screened in eight individual plants, representing four Secale species in terms of PCR

amplification success and peak profiles. Among these, a set of ten microsatellite primers yield-

ing good PCR products and scorable peaks were selected (REMS1187, REMS1254, REMS1323,

REMS1264, REMS1205, REMS1238, REMS1160, REMS1303, REMS1259 and SCM 180) and

used for the analysis of 721 samples (S2 Table). All PCR reactions were performed as described

by Khlestkina et al. [33] and Saal and Wricke [34]. Amplification success was checked and suc-

cessful PCR products were read on an ABI 3100 capillary sequencer with GS400HD size stan-

dard (Applied Biosystems).

The alleles were automatically binned using FlexiBin [35] and checked manually. The geno-

typing errors stemming from null alleles, large allele dropout or the scoring of stutter peaks

that can potentially lead to deviations from Hardy–Weinberg proportions were detected using

Micro-checker version 2.2 [36]. Based on the results, three markers (REMS1303, REMS1259

and SCM 180) were and seven SSR markers (REMS1187, REMS1254, REMS1323, REMS1264,

REMS1205, REMS1238, REMS1160) were used for the subsequent analyses. The mean poly-

morphism information content (PIC) was calculated for each marker using MolKin v.3.0 soft-

ware [37].

We analyzed the whole data set, consisting of 721 samples, excluding the hybrids, in three

different categories on the basis of (1) taxonomic identity, (2) cultivation status and (3) cli-

matic conditions of geographical origin. In the first category, all of the genotypes were pooled

into 11 groups based on their taxonomic identity, at the species and subspecies level, in order

to understand the distribution of genetic diversity in different taxonomic groups. In the second

category, all genotypes were grouped as wild, weedy, landrace and cultivated varieties, to evalu-

ate the effect of cultivation status on the distribution of genetic diversity. In the third category,

all genotypes excluding two samples of unknown geographical origin were assigned to 18 cli-

mate subgroups belonging to five main climate groups, as determined by Köppen-Geiger clas-

sification system, which is based on classifying the mean climate conditions on geographic

areas around the globe using different climatic variables [31], in order to understand whether

climatic conditions of geographic origins affect distribution of genetic diversity.

In addition to these three categories, patterns of genetic diversity in cultivated rye i.e. S. cer-
eale subsp. cereale genotypes (both landrace and cultivated varieties were analyzed separately.

In this analysis, a total of 533 genotypes from 83 different accessions originating from various

geographical regions, representing 10 main gene pools (Africa, Australia, Europe, Balkans,

Caucasus, East Asia, South and Central Asia, Middle East, North America and South America)

were used. These samples were analyzed using the same seven microsatellite primers, as

described above.

Phylogeny and genetic structure in the genus Secale
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Allelic frequencies were tested for the deviations from Hardy–Weinberg equilibrium

(HWE) using an exact test with a Markov chain (10000 steps) and 1000 dememorisation steps

in Genepop version 4.0.10 [38,39]. Linkage disequilibrium was also tested between all loci

using Genepop version 4.0.10 [38,39]. Genetic diversity parameters were computed for each

group using GenAlEx v6.4 [40]. The sample sizes in different accessions/regions used in the

study were different from each other. Therefore, to compensate for this sampling bias that may

lead to inaccurate comparisons of allelic richness between loci, allelic richness (RS) and private

allele richness (PR), independent from sample size were computed by a rarefaction method as

implemented in HP-RARE version 1.0 [41]. In addition to these genetic diversity parameters,

the overall gene diversity (HT), the within-population genetic diversity (HS), the amount of

gene diversity among populations (DST), and the coefficient of genetic differentiation between

populations (GST) were calculated with FSTAT version 2.9.3 [42]. To avoid any misinterpreta-

tion stemming from sampling bias, DST, HT and GST values were also calculated independently

of sample size, using the same program. Pairwise FST values between each population were cal-

culated using GenAlEx version 6.4 [40] Population structure was also analyzed using a Bayes-

ian clustering algorithm, as implemented in STRUCTURE version 2.3.3 [43]. Admixture

model of ancestry and correlated allele frequency were allowed. The LOCPRIOR model was

also applied using population information as a prior, to assist clustering [44]. The length of the

burn-in was set to 30,000, and data were collected over 300,000 Markov Chain Monte Carlo

(MCMC) replications in each run (K = 1–5). The optimum number of clusters (K), was deter-

mined as described by Evanno et al. [45]. Each individual with an ancestry value equal to or

larger than 0.7 was assigned to the corresponding cluster, while the individuals with a smaller

ancestry value were considered to have mixed ancestry following Coulon et al. [46]. The corre-

spondences of obtained groups were evaluated for taxonomic identity, cultivation status, geo-

graphical origin, and climatic zones, as mentioned above. Finally, an Unweighted Pair Group

Method with Arithmetic Mean (UPGMA) tree was constructed using Poptree2 [47] based on

Nei’s genetic distance (DA) [48] with 10,000 bootstrap iterations.

Sequence diversity analysis of nuclear EST markers

Varshney et al. [49] had shown that existing barley nuclear expressed sequence tag (EST)-

derived DNA markers could be employed in sequence diversity analysis in rye. Four of these

markers were tested (S2 Table) and GBS0551, which gave the best results, was selected and

used in this study. A total of 61 samples representing four species of Secale and five hybrid

samples were included in the analysis. The PCR reactions were performed as described by

Varshney et al. [49]. The amplified fragments were commercially sequenced at Macrogen

Europe and the sequences were edited visually and aligned using Sequencher version 4.5

(Gene Code Corp). However, the discrimination of the alleles of heterozygote samples, espe-

cially with multiple differences was not straightforward. Therefore, these sequences were

edited by DNAsp version 5.0 [50] using the coalescent-based Bayesian algorithm of PHASE

software [51] that resolves haplotype phases and infers haplotypes correctly. A maximum-like-

lihood (ML) tree was constructed using MEGA 5 [52], and the reliability of the phylogenetic

relationships was tested by bootstrapping (1000 replicates).

Results

Informativeness of the SSR markers

The number of alleles per locus ranged between 9 and 22 with an average value of 14.

Polymorphism information content (PIC) values ranged from 0.605 (REMS1264) to 0.882

(REMS1160), with an average value of 0.718 (Table 1).

Phylogeny and genetic structure in the genus Secale
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Distribution of SSR genetic diversity in different categories

Genetic allelic patterns were calculated for each group, in the three categories created based on

taxonomic identity, cultivation status, and climatic conditions of geographical origin of the

samples (Table 2). In the taxonomy based groups observed heterozygosity was higher than the

expected heterozygosity in all taxa. Expected heterozygosity was the highest in S. strictum
subsp. strictum (0.731) and the lowest in S. cereale subsp. afghanicum (0.579), excluding S. cer-
eale subsp. dighoricum, S. strictum subsp. irmanuso and S. sylvestre that had small sample sizes.

The highest and lowest differentiation based on FST was observed between S. cereale subsp.

afghanicum and S. sylvestre (FST = 0.181), and S. cereale and S. vavilovii (FST = 0.007), respec-

tively (S3 Table). S. cereale subsp. afghanicum and S. sylvestre were found to be the most diver-

gent from the rest of the taxa analyzed.

The assessment of cultivation status based genetic diversity in 137 wild, 51 weedy, 343 land-

race, and 190 cultivated plants showed that expected heterozygosity was the highest in wild

accessions (0.735) and the lowest in cultivated varieties (0.675). Comparison of pairwise FST

values revealed no significant differentiation between different groups.

In terms of the climate subgroups, the highest expected heterozygosity was observed in the

Warm-summer Mediterranean subgroup (0.73), and the lowest in Tropical monsoon climate

subgroup (0.46) (Table 2). Pairwise FST comparisons revealed the Tropical monsoon climate

subgroup to be the most different from the remaining climate subgroups, with the highest

genetic distance when compared to the Mild tundra climate populations (0.19) (S4 Table).

STRUCTURE and UPGMA results. The Bayesian clustering analysis based on the distri-

bution of 98 alleles at seven SSR loci among 721 accessions revealed presence of three separate

clusters (Fig 1). The primary division at K = 2 was observed mainly between perennial S. stric-
tum and remaining annual taxa. At K = 3, S. strictum cluster remained fairly intact, while

annual taxa (S. cereale and S. vavilovi) grouped within two different clusters. The first cluster

contained a total of 25 samples of S. strictum subsp. strictum and one S. strictum subsp. anatoli-
cum sample. Among these, 20 samples originated from Iran, and the remaining samples origi-

nated from other parts of the Middle East (Fig 2A). The second cluster included 222 samples

of S. cereale (202 samples of S. cereale subsp. cereale, 13 samples of S. cereale subsp. segetale, six

samples of S. cereale subsp. ancestrale and one sample of S. cereale subsp. afghanicum). All of

the six S. strictum subsp. strictum samples in cluster 2 originated from Russia. Geographical

origins of majority of the Secale cereale samples (70.17%) in this cluster corresponded to the

Middle East or South-Central Asia (Fig 2B). The third cluster was composed of 66 S. cereale
subsp. cereale and three S. vavilovi samples, most of which (86.4%) originated from out of Asia

Table 1. Levels of genetic variability at the seven microsatellite loci.

Locus N Na Ne PIC Ho He

REMS1187 659 9 3.09 0.676 0.825 0.676

REMS1254 541 17 3.25 0.692 0.698 0.692

REMS1323 660 22 3.93 0.745 0.85 0.746

REMS1264 644 11 2.54 0.605 0.651 0.606

REMS1205 600 11 3.14 0.681 0.733 0.681

REMS1238 665 9 3.94 0.745 0.768 0.746

REMS1160 576 19 8.48 0.882 0.858 0.882

Average 621 14 4.05 0.718 0.769 0.718

N, sample size; Na, number of alleles; Ne, number of effective alleles; PIC, Polymorphism information content; Ho, observed heterozygosity; He, expected heterozygosity;

uHe, unbiased expected heterozygosity.

https://doi.org/10.1371/journal.pone.0200825.t001
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and the Middle East (Fig 2C). The remaining 408 samples could not be assigned to any of

these three clusters, and was considered to have mixed ancestry. Except for the first cluster that

consisted of wild S. strictum samples, a weak correlation between clustering and cultivation

status was noted. The structuring exhibited no significant correlation with major agro-climatic

zones as described by Kottek et al [31].

The UPGMA dendogram constructed using subspecies of S. cereale, subspecies of S. stric-
tum, S. vavilovii and S. sylvestre revealed a clear separation between S. sylvestre and the rest of

genus (Fig 3A). S. cereale subsp. afghanicum separated from the other subspecies of S. cereale
and S. strictum. S. strictum subsp. kuprijanovii also diverged from the other remaining subspe-

cies at a relatively basal position in the tree topology. S. cereale subsp. cereale, S. cereale subsp.

Table 2. Mean genetic diversity measures in different panels.

Taxonomic Identity Group N Na I Ho He

S. cereale subsp. afghanicum 3 3.14 1.00 0.67 0.58

S. cereale subsp. ancestrale 11 5.14 1.34 0.72 0.67

S. cereale subsp. cereale 533 13.00 1.57 0.77 0.71

S. cereale subsp. dighoricum 1 1.14 0.40 0.57 0.29

S. cereale subsp. segetale 36 7.43 1.55 0.80 0.72

S. strictum subsp. anatolicum 13 5.43 1.32 0.84 0.66

S. strictum subsp. irmanuso 1 1.29 0.40 0.57 0.29

S. strictum subsp. kuprijanovii 6 4.14 1.25 0.94 0.67

S. strictum subsp. strictum 69 8.71 1.63 0.71 0.73

S. sylvestre 2 2.29 0.74 0.79 0.48

S. vavilovii 46 7.86 1.53 0.81 0.71

Cultivation Status Wild 137 11.29 1.68 0.78 0.74

Weedy 51 8.43 1.58 0.76 0.73

Landrace 343 12.86 1.61 0.78 0.72

Cultivar 190 9.29 1.44 0.76 0.68

Climate Type Tropical monsoon 6 2.57 0.77 0.67 0.46

Savanna 20 5.00 1.28 0.88 0.67

Hot semi-arid 11 4.43 1.18 0.75 0.62

Cold semi-arid 69 9.14 1.58 0.72 0.71

Hot desert 9 3.86 1.05 0.72 0.57

Cold desert 15 5.43 1.36 0.73 0.67

Humid subtropical 64 8.43 1.51 0.78 0.71

Temperate oceanic 140 9.86 1.55 0.77 0.71

Hot-summer Mediterranean 88 10.86 1.61 0.76 0.72

Warm-summer Mediterranean 78 10.00 1.62 0.76 0.73

Subtropical highland 9 3.71 1.08 0.82 0.60

Hot-summer humid continental 22 6.43 1.48 0.85 0.71

Warm-summer humid continental 71 8.14 1.53 0.77 0.71

Subarctic 19 5.71 1.33 0.81 0.67

Hot, dry-summer continental 11 5.00 1.19 0.72 0.60

Warm, dry-summer continental 68 8.71 1.53 0.81 0.70

Monsoon-influenced humid continental 15 4.86 1.19 0.75 0.61

Mild tundra 4 3.14 1.00 0.86 0.58

N, sample size; Na, number of alleles; I, Information Index Ho, observed heterozygosity; He, expected heterozygosity; uHe, unbiased expected heterozygosity.

https://doi.org/10.1371/journal.pone.0200825.t002
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segetale, S. vavilovii, S. strictum subsp. anatolicum and S. strtictum subsp. strictum constituted a

group, while S. cereale subsp. ancestrale remained outside of this cluster. S. cereale subsp. cer-
eale and S. cereale subsp. segatale were more closely related to S. vavilovii, rather than their con-

specifics S. cereale subsp. afghanicum and S. cereale subsp. ancestrale.

As the STRUCTURE analysis revealed a clear separation between S. strictum subsp. strictum
samples originating from Iran, as a next step, these populations were grouped separately (S.

strictum subsp. strictum clade 1). The remaining S. strictum populations were also grouped

together (S. strictum subsp. strictum clade 2), and the dendogram was rebuilt using these sepa-

rated groups (Fig 3B). Branching off of S. strictum subsp. strictum clade 2 with a high bootstrap

value (99%) revealed its significant divergence. Except for this difference, both trees reflected

nearly identical topologies.

Fig 1. STRUCTURE results at K = 2 to K = 5.

https://doi.org/10.1371/journal.pone.0200825.g001
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Nuclear sequence diversity of the genus Secale
The general topology of the maximum-likelihood (ML) tree constructed using a 667 bp frag-

ment of nuclear sequences in 61 samples (GenBank accession numbers: MH421898-

MH421958), representing four species in the genus Secale, and five hybrid samples showed

that there were two main lineages (Fig 4). However, these groups did not correspond to taxo-

nomic or spatial delimitations. S. vavilovii accessions were dispersed within S. cereale subspe-

cies in both groups. The two S. sylvestre samples clustered together in a subgroup, rather than

forming a separate linage. S. strictum subspecies clustered together forming two and one

Fig 2. Distribution of samples in different clusters. (A) Distribution of samples in cluster 1. (B) Distribution of

samples in cluster 2. (C) Distribution of samples in cluster 3. This figure produced using Tableau Public Software.

https://doi.org/10.1371/journal.pone.0200825.g002
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subgroups within the first and second lineage, respectively. Furthermore, a separated subgroup

was recovered within the first linage containing S. cereale and S. vavilovii samples from South

and Central Asia, except for a S. cereale subsp. cereale sample originating from Argentina. In

the second group, no clear relationships were recognized between the genealogy of Secale spe-

cies and their geographic origin.

Microsatellite based genetic diversity and population structure of the

cultivated rye (Secale cereale subsp. cereale)

In the genetic diversity analysis conducted exclusively in landrace and cultivated rye samples,

the total number of alleles and private alleles were 96 and 26, respectively (Table 3). The high-

est mean corrected allelic richness was found in the Middle East populations (3.68), and lowest

in the Africa population (2.76). Private allelic richness independent of sample size was also the

highest in the Middle Eastern populations (0.35), and lowest in South America and South-

Central Asia populations (0.14). The observed heterozygosity levels were higher than expected

heterozygosity levels in all geographical regions. The mean expected heterozygosity was high-

est in the Middle East gene pool (0.72), and lowest in the African gene pool (0.51). Shannon’s

information index (I) was again highest in the Middle Eastern populations (1.62), and lowest

in African population (0.85). The corrected total genetic diversity (HT
0) in cereal rye showed

variations from region to region, and found to be highest in the Middle East (0.74) and Cauca-

sus (0.71), and lowest in East Asia (0.62). Intra-population genetic diversity (HS), the measure

of average differences within populations was found to be the highest in the Middle East and

Caucasus populations (0.70), and lowest in North American populations (0.59).

The comparison of coefficient of among-populations genetic diversity independent of sam-

ple sizes (DST
0), and coefficient of gene differentiation independent of sample sizes (GST

0) as

Fig 3. UPGMA dendograms showing the phylogenetic relationship of Secale species based on pairwise DA. (A)

UPGMA dendogram I. (B) UPGMA dendogram II. Bootstrap values are provided on the nodes.

https://doi.org/10.1371/journal.pone.0200825.g003
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the measures of genetic differentiation between populations in each region was found to be

highest in North America (DST
0 = 0.08, GST

0 = 0.12) and the Balkans (DST
0 = 0.08, GST

0 = 0.11),

and lowest in East Asia (DST
0 = 0.01, GST

0 = 0.01) (Table 3). Furthermore, comparison of pair-

wise FST differentiation [53, 54] showed the African gene pool to be the most different from

remaining gene pools, having the highest genetic distance when compared to the South-Cen-

tral Asian populations (FST = 0.96) (S5 Table). The genetic differentiation among other gene

pools was insignificant.

STRUCTURE analysis showed the presence of two separate clusters, with the first one com-

posed of 333 samples, 72.02% of which were landraces that originated from the Middle East,

and South and Central Asia. Except for two samples, all of the Australian cultivars clustered in

this group. The second cluster was composed of 136 samples, mainly originating from Europe,

Balkans and South America. The proportion of Middle Eastern and south Central Asian sam-

ples in this group was only 6.25%.

In the PCA analysis conducted to explore pattern of relationship between cultivated rye

populations from different geographical regions with the microsatellite data, the first, second

Fig 4. Maximum likelihood phylogenetic tree based on the nuclear GBS0551 region.

https://doi.org/10.1371/journal.pone.0200825.g004
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and third components explained 45.44%, 23.37% and 12.54% of the variance, respectively.

First and second components of the PCA analysis revealed two clusters (Fig 5A), while three

distinct clusters were observed based on the first and third components (Fig 5B). The first clus-

ter was dominated by samples from the Middle East, whereas the other clusters contained sam-

ples from diverse geographical areas. PCA clustering did not reflect cultivation status of the

samples.

Discussion

Distribution of SSR diversity in Secale
In this study, genetic diversity within Secale was evaluated using seven SSR markers. A world-

wide collection of 721 samples belonging to 11 taxonomic units included wild, weedy, landrace

and cultivated materials from diverse climatic zones. All of the SSR markers employed in the

study had (PIC) values higher than 0.6 and are considered to be highly informative. The

genetic diversity ofSecale at a global scale was relatively high compared to other crops like sor-

ghum [55] and maize [56], which can be attributable to the outcrossing nature of many species

in the genus Secale, and its wind-pollinated reproduction.

In our study, relative genetic diversity co-varied with the cultivation status: the highest

diversity was observed in wild accessions, followed by weedy and landrace accessions, and low-

est in cultivated varieties. Furthermore, wild and landrace populations had private alleles

which were not detected in the cultivated gene pools, indicating that these forms offer a richer

source of alleles, and high potential for crop improvement. High genetic diversity and presence

of private or rare alleles in wild and weedy forms can be explained by the lack of a domestica-

tion bottleneck, see below.

Genetic clustering

Existence of three distinct clusters in the STRUCTURE analyses of the whole genus indicated

the presence of three different gene pools: (1) perennial S. strictum subsp. strictum, (2) annual

taxa that originated from Asia (Middle East and South-Central Asia), (3) annual taxa that orig-

inated from outside of Asia (mainly Europe). The clear separation between perennial S.

Table 3. Levels of genetic variability at seven microsatellite loci for cultivated rye.

Region N NA RS Ne I Ho PA PR He Hs HT HT
0 DST DST

0 GST

Africa 6 3.14 2.76 2.17 0.85 0.65 0.00 0.18 0,51 Nd Nd Nd Nd Nd Nd

Australia 32 5.86 3.13 3.38 1.25 0.74 0.29 0.20 0,63 0.64 0.65 0.66 0.01 0.01 0.01

Balkans 62 7.14 3.44 3.69 1.43 0.80 0.29 0.21 0,68 0.63 0.70 0.71 0.07 0.08 0.10

Caucasus 14 5.29 3.53 3.24 1.34 0.80 0.00 0.34 0,68 0.70 0.71 0.73 0.02 0.03 0.02

East Asia 31 5.71 3.19 2.95 1.22 0.73 0.00 0.21 0,58 0.62 0.62 0.62 0.00 0.01 0.01

Europe 36 6.71 3.46 3.58 1.42 0.80 0.00 0.21 0,68 0.65 0.68 0.69 0.03 0.04 0.05

Middle East 240 12.43 3.68 4.06 1.62 0.77 2.86 0.35 0,72 0.70 0.74 0.74 0.04 0.04 0.06

N. America 22 5.71 3.32 3.20 1.30 0.77 0.14 0.17 0,65 0.59 0.64 0.67 0.05 0.08 0.08

South America 43 6.00 3.42 3.29 1.36 0.82 0.00 0.14 0,67 0.65 0.68 0.69 0.03 0.04 0.05

South and

Central Asia

47 6.43 3.20 3.27 1.29 0.74 0.14 0.14 0,63 0.64 0.66 0.66 0.01 0.02 0.02

N, sample size; NA, number of alleles; RS, allelic richness; NE, number of effective alleles; PR, number of private alleles independent of sample size; I, Shannon’s

information index; HO, observed heterozygosity; HE, expected heterozygosity; PR, private allelic richness; HS, the within population genetic diversity; HT’, the total

genetic diversity independent of sample size; DST
0 among-populations genetic diversity independent of sample size; GST

0 the coefficient of genetic differentiation

independent of sample size.

https://doi.org/10.1371/journal.pone.0200825.t003
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strictum and the annual form has been shown previously [11,57,58] and can be explained by

restricted gene-flow between annual and perennial taxa, possibly due to the differences in life-

history traits such as timing of reproduction.

Further separation of annual taxa was based on geographic origin, rather than taxonomic

identity. This was also supported by maximum likelihood tree constructed using nuclear

sequences, where all of the S. cereale subspecies and S. vavilovii were grouped together.

Recently, Hagenblad et al. [11] showed that there was no clear taxonomic structuring among

annual forms of the genus. Previous studies have also shown lack of morphological [59] and

molecular [8,9,10,57] differences between annual forms (S. vavilovii, S. cereale subsp. ances-
trale, S. cereale subsp. afghanicum, and S. cereale subsp. segetale) belonging to different taxa.

Genetic similarity between annual wild and weedy forms and cultivated subspecies S. cereale
subsp. cereale supports the hypothesis that S. cereale is of relatively recent origin, dating back

to only a few centuries ago [60]. It is likely that there was insufficient time for the evolution of

Fig 5. PCA analysis of S. cereale subsp. cereale samples with different geographical origins. (A) 1st and 2nd

components. (B) 1st and 3rd components.

https://doi.org/10.1371/journal.pone.0200825.g005
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isolation mechanisms or barriers between cultivated rye, and its wild and weedy relatives, and

hence the lack of structuring among annual taxa can be explained by introgression between

sympatric populations of cultivated rye, and wild and weedy forms. As a result, morphological

differences between the subspecies cannot be explained by genetic differentiation indicating

the lack of nonexistence of the taxonomic boundaries at subspecies level. Interbreeding

between different taxa, except for S. sylvestre and subsequent formation of hybrids with high

pollen and seed fertility is very common in the Secale genus [6,20,61,62].

The further structuring of annual taxa based on geographic origins of samples suggests that

each of the two annual clusters detected in the study originated from two distinct gene pools.

Subsequently, the two distinct lineages retrieved in this study were initially separated, probably

due to restriction of gene flow because of geographical isolation. Consistent with our findings,

Hagenblad et al. [11] also showed that geographic clustering was evident among annual taxa,

which is reflected by a separation between Asian and European accessions. Furthermore, Boli-

bok-Bragoszewska et al. [63] noted divergence of the Near Eastern and European accessions.

On the other hand, some other studies reported that genetic structuring among different taxa

corresponded to cultivation status [58,64–66], and no geographical structuring was found in

these studies. These conflicting results might be stemming from low discriminatory power of

markers used in these studies. It should be noted that despite the existence of the clear geo-

graphical structuring among annual taxa mentioned above, no significant correlation with

major agro-climatic zones was detected. Similarly, Hagenblad et al. [11] also reported a limited

correlation between genetic structuring and agro-climatic conditions of the sampling localities

in geographically structured rye populations. This can be explained by the observed structure

stemming from geographical proximity and related pollen dispersal, rather than ecological

and climatic adaptations.

The nominotypic S. strictum subsp. strictum has been previously shown to be significantly

different from its subspecies [8,9,10, 67], indicating that it has been evolving independently

of other S. strictum subspecies [13]. In our study S. strictum subsp. strictum samples from

northwest and west of Iran were divergent from the rest of the S. strictum accessions. In the

UPGMA dendogram, the ancestral position of this group was observed, when compared to the

rest of S. strictum subsp. strictum samples. The same dendogram also revealed that rest of the

S. strictum subsp. strictum samples (i.e. other than the Iranian clade) originating from diverse

areas, were genetically more similar to S. cereale accessions. This is compatible with the

hypothesis that cultivated rye evolved from S. strictum [17,20,60]. In addition, in the dendo-

gram constructed based on microsatellite data, S. strictum subsp. anatolicum and S. strictum
subsp. strictum accessions originating from out of Iran were found to be closer to S. cereale
subspecies compared to S. strictum subsp. kuprijanovii samples, and S. strictum subsp. strictum
accessions originating from Iran. This suggests existence of gene flow between S. cereale sub-

species and S. strictum subspecies originating from outside of Iran.

It was also interesting that S. strictum subsp. strictum samples that originated from Iran

were basal to the clade that included the rest of S. strictum subspecies and all of the annual

taxa, except for S. cereale subsp. afghanicum and S. sylvestre. This observation is also consistent

with previous studies that show S. strictum being the most ancestral species, which the rest of

the taxa have originated from[4,6,20, 68,69]. This finding also underpins the hypothesis that

Northeastern Turkey and the adjacent area including Armenia and northwestern Iran could

be the center of origin for the genus [5,18].

Taxonomical position of S. vavilovii has also been a point of discussion: in some studies, S.

vavilovii was considered to be a distinct species close to S. cereale [6,8,15,57,58, 70], while some

other researchers postulated that S. vavilovii should be classified as a subspecies of S. cereale
[7,9–11,13,67]. In our study, SSR and nuclear sequence diversity analysis did not reveal
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significant differentiation between S. cereale and S. vavilovii. Therefore, it is concluded that S.

vavilovii should be considered as a synonym and a subspecies of S. cereale.

Our study affirmed that S. sylvestre is genetically the most divergent species, which is consis-

tent with the general agreement that S. sylvestre is the first species that diverged from S. stric-
tum during the Pliocene, and is morphologically and genetically the most distinct species

[12,13,71].

Genetic diversity and structuring of cultivated rye

Genetic diversity. Cultivated rye is a wind pollinated allogamous species with a highly

developed self-incompatibility system. As a result, high genetic diversity has been previously

noted not only between different accessions [24,72,73], but also within the same cultivar

[9,10,65]. Consistently, our study showed high degrees of genetic diversity in cultivated rye

from all over the world. Moreover, due to its high tolerance of different environmental condi-

tions, rye has a global geographic distribution which may also have contributed to its high lev-

els of genetic diversity.

In the scope of the present study, genetic diversity levels of different gene pools were com-

pared. Our results showed that landraces are genetically more diverse, when compared to culti-

vars. Similar results were previously reported in other studies on rye [23,61]. It is well established

that current breeding practices narrows genepool and leads to reduction of genetic diversity [74].

Such reduction in genetic diversity results in loss of many important alleles, and this may have sig-

nificant negative effects on adaptive capacity of plants. On the other hand, landraces are cultivated

by traditional agricultural practices through many generations of selection, and they have become

locally adapted to various environments by accumulating new alleles [75]. Therefore, compared

to cultivars, the genetic diversity of landraces is high. Our findings highlighted that landraces

should be regarded as a source of genetic variation, and should be integrated to rye breeding pro-

grams to compensate genetic diversity lost during modern breeding processes.

Second, we analyzed the distribution of genetic diversity in different geographic regions.

Genetic diversity of cultivated rye was affected by geographic origins of the samples and found

to be higher in the Middle East region (Turkey, Iran and Israel) compared to other regions.

Although sample size of the region is larger than the others, to avoid any bias due to sample

size, corrected genetic diversity measures (independent of sample size) were also used. The

degree of genetic diversity was found to be highest in the Middle East for the corrected param-

eters, as well. Therefore the obtained results likely reflect real genetic diversity patterns of the

region, rather than being a sampling artifact. Vavilov [17] proposed that genetic diversity of

crop species on interspecific and intraspecific level is not evenly distributed: the genetic diver-

sity in the center of origins is higher. Based on this assumption, our results indicate that the

most likely center of origin for the genus is the Middle East or Caucasus. This is consistent

with the idea that all Secale taxa have originated somewhere in the Middle East or South-Cen-

tral Asia [5,18] that also covers the geographical area known as “Fertile Crescent”, the center of

origin for many crop species like wheat, barley, pulses, pea and flaxes [18]. Taking into account

that many wild and weedy forms of the genus Secale are found in the area between northeast-

ern Turkey and northwestern Iran, gene flow between wild forms and cultivated forms by

introgression is quite possible, resulting in an increase in genetic diversity. High genetic diver-

sity observed in the region can also be explained by most of the populations in this region

being landraces, rather than genetically more-or-less uniform cultivars.

Genetic diversity of the accessions originating from Africa and East Asia was comparably

low, probably due to a potential genetic bottleneck during introduction of cultivated rye to

these regions. Besides, in comparison to South American and European samples, genetic
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diversity was lower in North America that contains populations from Mexico, USA and Can-

ada. This probably stems from extensive use of genetically uniform cultivars in these regions.

On the other hand, genetic diversity of the Balkan group (that contained samples from Euro-

pean part of Turkey (Thrace), Montenegro, Serbia, Macedonia, Yugoslavia, and Bosnia and

Herzegovina) and the Caucasus gene pool (that consisted of two accessions from Georgia and

East Azerbaijan) was high. Finally, the European gene pool sampled in this study contained

accessions from a wide geographical range containing Germany, Switzerland, UK, Poland and

Sweden, and their genetic diversity levels were found to be moderately high. Although agricul-

tural systems of many countries in Europe favor the genetically uniform cultivars [76], the rela-

tively high levels of genetic diversity observed could be explained by European cultivars having

been developed using different genepools.

Origins of the ryes from different continents. The separation of genotypes originating

from Asia (Middle Eastern, and south and central Asian) and from out of Asia (mainly Europe,

Balkans and South America) was consistent with previous studies reporting a clear separation

between the Middle East and European genepools [11,23,63].

Based on our findings it can be speculated that each of the two clusters obtained in the study

originated from two distinct gene pools. The two main distinctive lineages retrieved in this

study were initially separated probably due to restriction of gene flow because of geographical

separation. Considering that in crop plants geographical distribution patterns usually reflect

prevailing human mediated selection pressures in a particular environment [77], another expla-

nation for this separation could be the cultivated rye having been introduced into new geo-

graphical ranges in which climatic and environmental conditions are quite different compared

to those in the center of origin. This was possibly followed by anthropogenic selection of adapt-

able phenotypes to the conditions in those regions, leading to adaptive divergence. The Middle

Eastern samples were observed in all three clusters, indicating their potential ancestral position,

and supporting the conclusion -based on genetic diversity levels above- that the Middle Eastern

populations are the likely progenitors of cultivated rye, and they recently expanded globally due

to human mediated distribution and long-distance gene flow. Similarly, Einkorn wheat, emmer

wheat, barley and lentil [78] were domesticated in the Middle East, more specifically in the Fer-

tile Crescent and subsequently were radiated to Europe [79] and the rest of the world.

In the context of the study, the origin of the samples collected from outside of Asia and

Europe was also investigated. Samples from South America grouped together with European

samples into second cluster. This is consistent with the idea that many crop plants dispersed to

South America from Europe, after the voyages of Columbus [80]. On the other hand, samples

from Australia and North America grouped into the first cluster, indicating that cultivated rye

was possibly introduced into these areas from the Middle East or South-Central Asia.

Furthermore, genetic differentiation among geographical regions revealed a significant dif-

ferentiation between the African gene pool and the remaining gene pools. Considering cli-

matic conditions of the region being relatively unique and that the region is physically

separated from remaining gene pools by geographical barriers, it can be concluded that rye

became locally adapted to this continent and remained separated. This is consistent with the

idea that S. cereale subsp. cereale evolved as an isolated population in Africa [5]. Similarly,

based on AFLP data, Chikmawati [73] previously reported that African populations of culti-

vated rye were genetically more distant when compared to other populations.

Conclusion

The global scale analysis of genetic diversity and phylogenetic relationships of Secale genus

show a clear separation between perennial S. strictum subspecies and annual taxa. Further
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separation of annual taxa belonging to different species or subspecies into two groups was

based on geographical origin, rather than taxonomic identity. Separation of the Middle Eastern

and South Central Asian accessions from remaining accessions confirmed the previous find-

ings revealing partitioning between Asian and European accessions, and the existence of

two different genepools. The lack of any structuring within different species or subspecies

belonging to annual taxa can be explained by recent separation of the species or subspecies,

insufficient time having passed for the evolution of isolation mechanisms, and consequent

continuation of gene flow even between species. In addition, the lack of a clear genetic separa-

tion between S. cereale and S. vavilovii led us to conclude that S. vavilovii, rather than being a

distinct species, should be classified as a subspecies of S. cereale. The phylogenetic relationships

of different species in the genus should be investigated in greater detail using high resolution

molecular markers, such as RAD-seq, as well.

The evaluation of genetic diversity of cultivated rye populations led us to conclude that

high levels of genetic variation exist in cultivated rye. The highest allelic variation and genetic

diversity was found in the Middle Eastern landrace populations. This finding supports the idea

that the area could be the center of origin for the genus. Nearly all of the populations examined

in Near East are locally adapted landraces that have not been exposed to intense artificial selec-

tion pressures. Therefore, in contrast to modern crop varieties that have undergone genetic

bottlenecks associated with the process of domestication, resulting in a decrease in genetic

diversity, landraces constitute a large pool of genetic variation and contain many interesting

traits, like strong tolerance to abiotic and biotic stress [81]. Considering that high genetic

diversity in crop plant populations is directly related to adaptive potential of those populations

to changing environmental conditions, landraces should be regarded as genetic resources res-

ervoirs for new niches and future breeding programs. From a conservation point of view, the

results obtained from the study suggest that an immediate action plan is required for in-situ

conservation of the ancestral and highly diverse Middle Eastern landrace populations.
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