
Efficient Grouping Methods for the
Annotation and Sorting of Single Cells

Markus Lux





Bielefeld University
Faculty of Technology

Ph.D. Thesis

Efficient Grouping Methods for the
Annotation and Sorting of Single Cells

submitted by

Markus Lux
for the degree of Dr. rer. nat.

Referees Prof. Dr. Barbara Hammer
CITEC centre of excellence
Bielefeld University

Prof. Dr. Cedric Chauve
Dept. of Mathematics
Simon Fraser University, Vancouver

Prof. Dr. Gyan Bhanot
Dept. of Molecular Biology and Biochemistry & Physics
Rutgers University, New Jersey

Disputation on April 24, 2018



Gedruckt auf alterungsbeständigem Papier nach DIN ISO 9706.

Printed on permanent, non-aging paper according to DIN ISO 9706.

Markus Lux

Computational Methods for the Analysis of the Diversity and Dynamics of Genomes

German-Canadian DFG International Research Training Group (1906/1)

Bielefeld University – Faculty of Technology

P.O. Box 10 01 31

D-33501 Bielefeld, Germany

mlux@techfak.uni-bielefeld.de

mailto:mlux@techfak.uni-bielefeld.de


Zusammenfassung

Computergestützte Methoden, welche verborgene Datenstrukturen und
Muster zuverlässig und effizient erkennen können, sind nötig um biologis-
che Forschung voranzutreiben. Um die damit verbundenen, komplexen
Probleme lösen zu können, ist es oft notwendig, homogene Gruppen in
Daten aufzudecken. Damit verbunden sind Clustering- und Klassifikations-
methoden, welche in allen Wissenschaftszweigen angewendet werden. Oft
erschweren dabei Störfaktoren die Datenanalyse und eine sorgfältige Wahl
von Methoden und Parametern ist unabdingbar. Diese Arbeit beschäftigt
sich mit Methoden zur Analyse von Einzelzellen – Dazu habe ich für drei
verschiedene Technologien Clustering- und Klassifikationsmethoden en-
twickelt, evaluiert, verglichen und angepasst:

1. Ein vorherrschendes Problem in metagenomischen Proben ist die De-
tektion von Clustern, welche die darin befindlichen Spezies repräsentieren
(“Binning”). Obwohl Methoden zur Erkennung von bekannten Taxa ex-
istieren, ist de novo Binning ungelöst. In diesem Kontext habe ich eine
optimale Wahl von Methoden und Parameterisierungen für solche Daten
analysiert. Daraus resultiert, basierend auf der Integration von Dimension-
sreduktion und Clustering, eine automatisierte Binning-Methodik.

2. Kontamination mit Fremdgenomen ist bei der Sequenzierung von Einzel-
zellen nach wie vor eines der Hauptprobleme. Aus der Sicht der Infor-
matik können sowohl in der Metagenomik als auch in der Einzelzellanalyse
Genome als Cluster dargestellt werden. Jedoch ist die Analyse der Cluster
für Einzelzellen eine grundlegend andere. In diesem Kontext habe ich eine
Anwendung entwickelt, die es ermöglicht, Kontamination in Einzelzellen
automatisch zu detektieren und Konfidenzen zu berechnen.

3. Eine weitere Herausforderung besteht in der Erkennung von Zellpop-
ulationen in der Durchflusszytometrie. Dieses Problem wird oft durch
manuelle und mühsame Zellannotation gelöst. Automatisierte Methoden
existieren, benötigen jedoch schwierige Feinjustierung von Hyperparame-
tern. Um diese Beschränkung aufzuheben, habe ich eine halb-überwachte
Methodik zur Identifikation von Zellpopulationen entwickelt. Diese besitzt
nur wenige, sehr robuste Parameter, ist präzise, schnell und gleichzeitig
interpretierbar.
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Abstract

Insights into large-scale biological data require computational methods
which reliably and efficiently recognize latent structures and patterns. In
many cases, it is necessary to find homogeneous subgroups of the data
in order to solve complex problems and to enable the discovery of novel
knowledge. Here, clustering and classification techniques are commonly
employed in all fields of research. Confounding factors often complicate
data analysis and require a thorough choice of methods and parameters.
This thesis is focused on methods around single-cell research – I developed,
evaluated, compared and adapted grouping methods for open problems
from three different technologies:

First, metagenomics is typically confronted with the problem of detecting
clusters representing involved species in a given sample (binning). Albeit
powerful technologies exist for the identification of known taxa, de novo
binning is still in its infancy. In this context, I evaluated optimal choices of
techniques and parameters regarding the integration of modern machine
learning methods, such as dimensionality reduction and clustering, resulting
in an automated binning pipeline.

Second, in single-cell sequencing, a major problem is given by sample con-
tamination with foreign genomic material. From a computational point of
view, in both metagenomics and single-cell genome assemblies, genomes
can be represented as clusters. Contrary to metagenomics, the clustering task
for single cells is a fundamentally different one. Here, I developed a method-
ology to automatically detect contamination and estimate confidences in
single-cell genome assemblies.

A third challenge can be seen in the field of flow cytometry. Here, the precise
identification of cell populations in a sample is crucial and requires manual,
tedious, and possibly biased cell annotation. Automated methods exist,
however they require difficult fine-tuning of hyper-parameters to obtain the
best results. To overcome this limitation, I developed a semi-supervised tool
for cell population identification, with few very robust parameters, being
fast, accurate and interpretable at the same time.
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1Introduction

1.1 Motivation

Rapid advances in biotechnology and the wide-spread use of high through-
put devices enable the gathering of seemingly unlimited amounts of infor-
mation. Next-Generation-Sequencing (NGS, Goodwin et al., 2016) machines
can reliably read the DNA of a human genome in under three days at
low cost, and Flow Cytometry (FCM, Shapiro, 2005) devices can accurately
characterize thousands of individual cells per minute. The availability of
such novel technologies results in unprecedented opportunities, and a large
number of applications from different research fields find great benefit in
them. Particular interest can be seen in the context of single cells and the
interaction thereof. An example is given by the metagenomic analysis of
hot springs. Here, looking at individual cells or organisms of microbial
communities generates new insights into “microbial dark matter”, possi-
bly revealing undiscovered life forms on planet earth (Rinke et al., 2013;
Bremges, 2016). Moreover, by analyzing the interaction of biogas-producing
bacteria (Bremges et al., 2015; Maus et al., 2016), research for renewable
energies greatly benefits from metagenomics as well. While metagenomics
deals with the analysis of a large set of related microbes or cells, single-cell
genome analysis focuses on the individual characteristics of cells. Using
single-cell sequencing (SCS), it is possible to study the heterogeneity of
tumors, ultimately leading to more efficient, precise, and successful cancer
therapies (Zhang et al., 2016). Furthermore, SCS has shown to be a powerful
tool in neurobiology, where single-cell neuronal diversity has important
implications for neural circuit function and neurological diseases (Harbom
et al., 2016). A large set of other applications include stem cells, developmen-
tal biology, drug discovery, reproductive health, and immunology (Illumina,
2016). Those fields, especially immunology also utilize FCM technology to
untangle complex interactions of different cell types in the human immune
system, making it an important tool, for example, for the detection of tumor
markers (Sukhdeo et al., 2013), diagnosing acute myeloid leukemia (Kaleem
et al., 2003), or discovering new immunological phenotypes (3i, 2017).
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The list of applications could easily be expanded and emphasizes the impor-
tance of NGS and FCM technologies for modern research. At least equally
important is the extraction of meaningful information from the raw data
that is generated. It frequently has to undergo intensive processing in a
number of complex transformations. Depending on the task, confounding
factors complicate data analysis and computational methods need to reliably
and efficiently recognize latent structures and patterns. In many cases, in
order to ease analysis, it is necessary to find homogeneous subgroups of the
data, i.e. grouping similar data elements together, while at the same time
separating them from more dissimilar elements.

In general, such grouping methods can be differentiated into unsupervised
and supervised ones. The former type of methods is frequently denoted
as “clustering” and does not make use of auxiliary knowledge, i.e. uses
only information inherent to the given data. In contrast, the latter, often
synonymous to “classification”, uses auxiliary knowledge, for example data
from which the grouping of interest is already known. An example of unsu-
pervised grouping methods is given by the clustering of DNA sequences.
Clustering highly similar sequences together while putting dissimilar se-
quences far apart from each other is a common pre-processing step for
solving many problems. For example, it can be used for error correction
in NGS reads (Nikolenko et al., 2013) and the identification of functionally
related genes (Yi et al., 2007).

In this thesis, clustering is used, first for finding metagenomic sequences of
the same species, and second for the detection and removal of contamination
in single cell genomes. When there is prior knowledge about the sequences
in questions, these problems can also be solved using classification methods
(Wood and Salzberg, 2014). Another classification task is highlighted as a
third problem in this thesis: A crucial step in FCM analysis is the identifi-
cation of cell populations using prior biological knowledge. Sorting single
cells based on their characteristics can enable disease diagnostics and aid in
immunophenotyping.

The application of grouping methods can be found in nearly all areas of
the social and natural sciences, including economics, psychology, sociology,
chemistry, physics, and many more. At the same time, there is a large num-
ber of clustering and classification methods in existence. In many cases,
the question of what method is most appropriate for the application to a
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given data set is difficult to decide. Most algorithms are suitable for a certain
kind of data only, and many factors and variables complicate the decision of
which algorithm works best. Often, it is necessary to evaluate and analyze a
good amount of techniques, before finding the right one. Additionally, the
majority of methods require the setting of hyper-parameters, i.e. parameters
controlling the result of an automated method, typically set by practitioners
in a way that the outcome of the method is satisfactory. In some cases, it is
also crucial to pre-process the data such that a given method can take ad-
vantage of it. This further complicates the evaluation process. Consequently,
while the majority of grouping algorithms are surprisingly simple, for an
optimal result, the application thereof is complex and requires considerable
effort.

This thesis puts a particular focus on the development of computational
methods for novel biological data. It spotlights efficient grouping meth-
ods for the annotation and sorting of single cells, spanning three areas of
research. Specifically, for each of metagenomics, single-cell genomics and
flow cytometry, I will present one particular methodology that addresses a
predominant problem in the respective field. I evaluated the suitability of
clustering and classification algorithms, developed and adapted methods
for the automatic determination of crucial parameters, included essential
pre-processing steps, integrated auxiliary data, and tested the methodolo-
gies on a large number of complex data sets. In the remainder of this chapter,
I will briefly introduce the topics and problems of each of these three sub-
projects, and my contributions to solve them. It is followed by an in-depth
presentation of the methodologies in the subsequent chapters.

1.1 Motivation 3



1.2 Metagenomics

Fig. 1.1.: Thermophile archaea and bacteria produce bright colors in a hot spring.
Photo: Public domain (Peaco, 2001).

The vast majority of organisms in most environments on earth is represented
by microbial communities and the analysis of the diversity and dynamics
of such is highly important (Handelsman, 2004; Forbes et al., 2017). In con-
trast to classical genomics where the focus is on the genome of one specific
organism, in metagenomics all species contained in such samples are of
interest. Two examples are given by methanogenic micro-organisms living
in meromitic lakes (Gies et al., 2014) or the gut microbiome (Gill et al., 2006),
which are of tremendous interest for renewable energies and health, respec-
tively. Our ability to predict the response of such microbial communities
to perturbation will improve in accord with the depth of understanding.
The standard is higher yet for efforts to engineer the function of microbial
systems (Blainey, 2013).

A common problem in metagenomic analysis is “binning”: Using shotgun
sequencing and sophisticated assembly methods, contigs and scaffolds from
hundreds of organisms have to be assigned to their originating genome.
Because of missing reference knowledge, in the case of de novo assembly,
this is a non-trivial task. To solve it, several promising attempts to partially
automate this process have been proposed. Quite a few recent approaches
rely on machine learning techniques, in particular clustering. However, so
far, there does not exist a fully automated process, nor a thorough evaluation
of its accuracy and robustness with respect to parameterization. Given that,
in this thesis, I address a particular type of binning, namely taxonomy-
independent, sequence-composition based methods, particularly:
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1. The integration of modern dimensionality reduction and clustering
techniques suitable for high-dimensional data, and an automated se-
lection of the number of clusters.

2. A formal quantitative evaluation of the pipeline in benchmarks.

3. An evaluation of an optimal parameter choice, resulting in an automa-
tion of the process.

1.3 Single-cell genomics

Fig. 1.2.: Electron micrograph of a cluster of E. coli bacteria.
Photo: Public domain (Erbe, 2005).

Strongly related to metagenomics is the analysis of single cells. Composite
genomes assembled from metagenomic data do not presently distinguish
between genes that are tightly coupled within the context of the same organ-
ism and genes that are coupled across different organisms (Blainey, 2013).
Hence, in order to study their individual genetic composition, single cells
are often physically isolated from metagenomes. Traditionally, in order to
obtain the large amounts of DNA material needed for sequencing, such cells
are cultivated in axenic cultures in vitro. But the large majority of microbial
organisms, often denoted as “microbial dark matter”, cannot be grown in
laboratories. Here, single-cell sequencing provides novel techniques, allow-
ing the study of these organisms at the most fundamental biological unit
(Hedlund et al., 2014).

1.3 Single-cell genomics 5



Unfortunately, even though sophisticated isolation and amplification meth-
ods exist, single-cell research is still confronted with a predominant problem
which is contamination (Blainey, 2013; Bowers et al., 2017). To guarantee
clean genome assemblies and to prevent the introduction of contamination
into public databases, considerable quality control efforts are put into post-
sequencing analysis. Contamination screening generally relies on reference-
based methods such as database alignment or marker gene search, which
limits the set of detectable contaminants to organisms with closely related
reference species. As genomic coverage in the tree of life is highly frag-
mented, and microbial dark matter makes up a large part of it, there is an
urgent need for a reference-free methodology for contaminant identification
in sequence data.

In this thesis, I developed a methodology specifically to aid the quality
control process of genomic sequence data. Combining supervised and unsu-
pervised methods, it reliably detects both known and de novo contaminants.
For that task, it builds on the foundations established in Chapter 2. Similar
to metagenomic binning, reference-free inspection is enabled by the use of
state-of-the-art machine learning techniques that include fast, non-linear
dimensionality reduction, and subsequent clustering algorithms that auto-
matically estimate the number of clusters. In my contribution, I address the
following open problems:

1. The integration of cluster validity indices to accurately and reliably
detect contamination in de novo single-cell sequencing.

2. Provision of interpretable confidence measures.

3. The ability to both interactively and automatically clean a given sam-
ple, eliminating the costly necessity of re-sequencing in the case of
contamination.
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1.4 Flow cytometry

Fig. 1.3.: Fluorophore stained endothelial cells under the microscope.
Photo: Public domain (ImageJ, 2005).

One possibility to isolate single cells from metagenomes is targeted enrich-
ment. Given a metagenomic sample, it is possible to sort cells of interest
based on their shape, density, and spectral characteristic of fluorescent labels
(Blainey, 2013). The latter “fluorophores” can be attached to different parts
of the cell, for example to certain characterizing genomic regions such as
conserved genes or to characteristic receptors on the cell membrane. Using
fluorescence-activated cell sorting (FACS) devices, cells pass a laser beam
one-by-one at high rate. As each fluorophore, when excited, emits light of a
certain wave length, it is possible to sort cells, enabling the sequencing and
assembly of a single genome. Flow cytometry technology is not only used
for cell isolation in single-cell sequencing. It is also widely used in medicine,
such as for the diagnosis of cancer and other heterogeneous immunodefi-
ciencies. It is also widely used in immunophenotyping which holds great
promise for assessing the immune status of patient populations.

A critical part of flow cytometry analysis is the identification of cell popula-
tions, which lays the groundwork for both clinical diagnostics and research
discovery. One classical technique is manual analysis which consists of the
inspection of bivariate cell plots and drawing shapes around populations
of interest, commonly denoted as “gating”. This current paradigm is time
consuming and subjective. Although a large number of automated methods
exist and supervised tools are on par with manual gating (Aghaeepour et al.,
2013), they require fine-scale parameterization. In order to obtain the best
results, a careful choice of hyper-parameters is essential. Consequently, there
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is a strong need for methods that are fast to setup, accurate and interpretable
at the same time.

To overcome the drawbacks present in current gating standards, in this
thesis I report a novel semi-supervised approach for population identifi-
cation. Specifically, within my methodology, the following problems are
addressed:

1. The integration of density alignments for fast prediction of diverse cell
populations, being more accurate than existing techniques.

2. Minimal manual annotation and biological interpretability of results.

3. Evaluation and quality-checking of existing gating sets.

1.5 Structural overview

Efficient grouping methods for
the annotation and sorting of single cells

Single-cell genomics
(Chapter 3)

Metagenomics
(Chapter 2)

Flow cytometry
(Chapter 4)

Fig. 1.4.: This work investigates the use of efficient grouping methods for open
problems from three different fields related to single-cell research.

Given the three sub-domains of my thesis, this work is organized into three
chapters, respectively (Figure 1.4). Each chapter provides a more in-depth
introduction to the topic, before theoretical and methodological foundations
are established. Based on this, the methodology in question is described
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in detail, results are presented and discussed. Each chapter is summarized
with an individual conclusion and outlook.

Complete list of publications

I had the opportunity to present parts of the work in the thesis to an interna-
tional audience within the following publications.

Main contributions

• Markus Lux, Ryan Remy Brinkman, Cedric Chauve, Adam Laing,
Anna Lorenc, Lucie Abeler-Dörner, Barbara Hammer. flowLearn: Fast
and precise identification and quality checking of cell populations
in flow cytometry. Bioinformatics, 2018.
DOI: 10.1093/bioinformatics/bty082

• Markus Lux, Jan Krüger, Christian Rinke, Irena Maus, Andreas Schlüter,
Tanja Woyke, Alexander Sczyrba, Barbara Hammer. acdc – Automated
Contamination Detection and Confidence estimation for single-cell
genome data. BMC Bioinformatics, 2016.
DOI: 10.1186/s12859-016-1397-7

• Markus Lux, Alexander Sczyrba, Barbara Hammer. Automatic dis-
covery of metagenomic structure. 2015 International Joint Conference
on Neural Networks (IJCNN).
DOI: 10.1109/ijcnn.2015.7280500

Additional contributions

• Markus Lux, Barbara Hammer, Alexander Sczyrba. Automated Con-
tamination Detection in Single-Cell Sequencing. bioRxiv, 2015.
DOI: 10.1101/020859

• Bassam Mokbel, Sebastian Gross, Markus Lux, Niels Pinkwart, Bar-
bara Hammer. How to Quantitatively Compare Data Dissimilarities
for Unsupervised Machine Learning? Artificial Neural Networks in
Pattern Recognition, 2012.
DOI: 10.1007/978-3-642-33212-8_1
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2Automatic discovery of
metagenomic structure

Parts of this chapter are based on

Markus Lux, Alexander Sczyrba, Barbara Hammer

Automatic discovery of metagenomic structure

2015 International Joint Conference on Neural Networks (IJCNN)

DOI: 10.1109/ijcnn.2015.7280500

2.1 Background

Microorganisms make up the major part of all life on earth and can be found
in every part of the ecosphere. Being highly diverse, they are able to adapt to
the most extreme conditions, such as the deep sea, hot springs, permafrost,
and high altitude. Their study is highly important for modern research
and contributes to many technological advancements. In that context, their
genetic composition and function is particularly relevant and the field of
metagenomics provides methods for their analysis.

In a typical metagenomic workflow (Figure 2.1), samples are taken from
environmental sites in order to inspect their microbial diversity. Examples
include the analysis of microbes in the gastrointestinal system (Frank and
Pace, 2008) or methane-producing archaea (methanogens) out of samples
from marine sites (Gies et al., 2014). Furthermore, it has been shown (Rinke
et al., 2013) that the metagenomic analysis of microbial dark matter can
yield new insights into phylogeny and coding potential of such organisms,
discovering new branches in the tree of life (Parks et al., 2017). Applications
in other fields, including agriculture (Charles and Marco, 2010), renewable
energies, biofuel, biomass, (Charles and Marco, 2010; Hess et al., 2011),
health (Qin et al., 2010), and ecology (Raes et al., 2011) are plenty.

Given an environmental sample, the analysis of a metagenome is done in a
number of steps, depicted in Figure 2.1. The sample has to be prepared in
the laboratory in order to separate and extract the included DNA. It is then
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Fig. 2.1.: Metagenomics workflow (Thomas et al., 2012): A major part of it consists
of computational methods. An important step for annotating the data is
the binning of sequences.

sequenced and the resulting data, depending on the sequencing technology,
consists of a large number of small sequences with a length between 100 bp
and 300 bp (base pairs), so called “reads”. To extract meaningful information
from these data, a large part of the analysis process is made of computational
methods. First, the sequences have to be assembled into larger, contiguous
sequences (“contigs”). Depending on the sequence read coverage, contig
lengths vary, and the largest contigs are typically 1× 104 bp to 1× 105 bp
long. Once assembled, contigs are annotated, functionally (gene annotation)
or taxonomically. It is followed by statistical analysis and data storage and
sharing.

The taxonomic annotation of metagenome assemblies is a crucial step in the
pipeline. As the large majority of microbial species is still unknown (Rinke
et al., 2013), the identification of such mostly cannot depend on existing
data (i.e. known taxa from reference databases). Hence, an unsupervised
taxonomy-free analysis is required (Mande et al., 2012). The analysis of
microbial diversity heavily depends on proper tools that allow for selection
of individual genomes out of a given metagenome. Here, “binning” plays an
important role: it refers to the process of sorting DNA sequences into groups
that might represent an individual genome or genomes from closely related
organisms (Thomas et al., 2012). In general, taxonomy-independent binning
methods can be divided into two types: sequence composition based and
abundance based (Sedlar et al., 2017). The former is based on the assump-
tion that taxons are defined by unique genomic signatures. A widely used
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signature is the distribution of oligonucleotides as a characteristic feature. A
common strategy is to compare oligonucleotide frequencies between differ-
ent sequences and bin those based on the resulting composition similarity
or dissimilarity. In contrast, abundance based approaches build a statistical
model over the oligonucleotide abundance, which is the frequency with
which these occur in the sample, and not in just one sequence. Lately, hybrid
approaches, utilizing both compositional and abundance features gained
attention. A detailed review of existing techniques has been provided by
Sedlar et al., 2017.

This thesis focuses specifically on the analysis of taxonomy-independent,
sequence composition based approaches. In general, this type of binning
can be performed in three steps:

1. Transform sequence data into vectorial data and calculate composi-
tional, genomic signatures.

2. Reduce dimensionality of vectorial data, remove noise.

3. Clustering and actual binning.

Sequence data is transformed into frequencies of oligonucleotides. De-
pending on their size, the resulting vectorial representation can be high
dimensional. Hence, from the perspective of computational intelligence,
metagenome binning using oligonucleotide frequencies corresponds to the
problem to reliably detect clusters in a high dimensional data space. Quite a
few challenges arise in this context.

To circumvent negative side effects in such high dimensional spaces and to
enable human expert inspection, it is crucial to use appropriate subspace em-
beddings to transform the data into an easily visualizable representation, i.e.
two or three dimensions. A few dimensionality reduction techniques have
been tested in this context, prominent examples being the self-organizing
map or modern nonlinear dimensionality reduction techniques (Wang et al.,
2014; Albertsen et al., 2013; Laczny et al., 2014). Another challenge consists
in the automatic determination of the number of clusters and its cluster
validity, a deep and crucial question in the context of clustering (Vendramin
et al., 2010; Jain, 2010). Interestingly, methods proposed in the context of
metagenomic binning determine this number either in an interactive, not
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fully automatic process (Laczny et al., 2014), or they rely on heuristics and
lack a thorough integration and comparison of standard techniques (Wang
et al., 2014; Albertsen et al., 2013).

Summarizing, metagenomic binning relies on crucial parameters that heav-
ily influence the final binning result, but there does not exist a thorough
evaluation of their robustness and influence on accuracy. For each of the
three steps shown above, I will compare state-of-the-art techniques to auto-
mate the process of cluster detection as regards cluster shape and its number,
and evaluate its robustness in several benchmarks. For this task, the re-
mainder of this chapter will continue with building the methodological
foundation for each of the three steps. It is followed by proposing a more
specific, automated binning pipeline on the basis of which different choices
of included techniques and parameters are going to be evaluated.

2.2 Methodology

2.2.1 Data representation

Fig. 2.2.: Using the GC-content to separate genomes. Left two genomes are linearly
separable just by their GC-content. Right: Two more related genomes are
not anymore linearly separable by their GC-content.
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Fig. 2.3.: Sliding window algorithm: A window of width w is shifted over the
input sequence N times. On each shift, each l-mer within the window is
counted and tabulated, obtaining a vectorial representation with N data
points of dimensionality 4l .

As the majority of techniques from machine learning work on vectorial data
only, it is necessary to convert the input contigs to vectors that represent
signatures. One signature that can separate genomes for binning can be seen
in the GC-content of a sequence. Genomes from two distinct species, for
example, may be distinguished just by the means of their GC content while
more related genomes are not easily separable (Figure 2.2). Hence, a more
sophisticated representation is necessary. Here, it is common practice to look
at signatures over small sub-sequences of DNA (Teeling et al., 2004). Given
an input contig sequence, and any sub-sequence s ∈ S, where S are all DNA
sequences of length w, it is the task to find a mapping g : S→ Rd such that
the resulting d-dimensional representation sufficiently captures the genomic
characteristics inherent to the original sequence.

To achieve this, a window of fixed width w is subsequently shifted over
the input contig sequence with step ∆w (Figure 2.3). For each shift and
underlying sequence s, g(s) = (a1, . . . , ad), where ai = fi, with fi being
the frequency of the i-th l-mer (Gori et al., 2011). Here, l-mers are all sub-
sequences of length l that are counted and normalized, resulting in N data
points with dimension d = 4l (corresponding to the four nucleotide bases)
using N shifts. In the case of tetramers (l = 4), this results in d = 256
dimensions. Since the underlying sequencing technologies can sequence
both DNA strands, it is also beneficial to account for reverse complements
in a symmetrized signature. Given the reverse complement of the i-th l-mer,
d can be reduced: frequencies of l-mers and their reverse complement are
added to the same vectorial feature: ai = fi + f C

i if the i-th l-mer is not equal
to its reverse complement, and ai = fi otherwise. Exemplary, for l = 4, the
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reduced dimensionality is d = 136, because 16 tetramers coincide with their
reverse complement and 240 do not (Gori et al., 2011).

Furthermore, it is worth to note that by taking ∆w < w, windows overlap,
and with decreasing ∆w, neighboring data points share increasingly similar
signatures. Consequently, data points from the same genomic origin are also
located near each other in the resulting vectorial space. This observation
is important: An optimal choice of the two connected parameters w and
∆w is crucial for the clustering step in a binning pipeline. The window size
and step determine the type of the captured genetic signature. Choosing a
smaller w will capture more of the local characteristics of a genome such as
individual genes, while a larger w will capture information that describes
more of the global characteristics. Choosing the parameters too small will
result in neighboring data points that are nearly identical, and choosing
them too large will result in the loss of identifying global characteristics.

The parameter l controls how fine-grained the signature is. Taking l = 1
corresponds to the special case of capturing the GC-content of the underlying
sequence, hence l-mer frequencies are a generalization of the GC-content,
a widely used compositional feature for metagenomic assessment (Sedlar
et al., 2017; Land et al., 2015). Greater l will result in a finer resolution of the
signature, however choosing a large l is computationally more expensive as
the number of dimensions d grows exponentially, and increasing l decreases
the probability that two neighboring windows share l-mers.

2.2.2 Dimensionality reduction

Problems of high-dimensional spaces

Genomic data in general and l-mer frequencies in particular are usually
high-dimensional. Such data has a number of disadvantageous properties
that complicate their analysis. Those drawbacks are often summarized un-
der the umbrella term “Curse of Dimensionality” (Hastie et al., 2009) and
can be best described by looking at the geometric properties of such spaces.
Considering a regular d-dimensional grid with 10 equally spaced cells along
each dimension, it is worth to note that the number of cells N = 10d within
the whole grid is growing exponentially with increasing d (Bellman et al.,
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1961). Therefore, already with only nine dimensions, such a grid contains 109

cells, making such spaces inherently sparsely populated by data. Another
phenomenon is the volume of a d-dimensional hypersphere. When looking
only at a thin ε-shell of the hypersphere, the relative volume contained in
this shell is Vrel = 1− (1− ε)d (Lee and Verleysen, 2007). Thus, with increas-
ing dimension, nearly all the sphere’s volume is contained only in this small
shell, confirming that most of the space in a high-dimensional hypersphere
is in fact empty and data accumulates at the boundary. Connected to the
volume of a hypersphere is a third, and for the purpose of this thesis most
important point of high-dimensional data analysis: distances. Most cluster-
ing methods depend on the notion of a distance or similarity, i.e. they have
to assess whether a given pair of points is close to or far away from each
other, being in the same or a different cluster, respectively. Unfortunately,
distances tend to become relatively uniform with increasing dimensionality
(Beyer et al., 1999). This is, given an independently selected data point,
the relative distances Dmin and Dmax of its closest and furthest data point,
respectively, approaches zero:

lim
d→∞

Dmax − Dmin

Dmin
= 0 (2.1)

Again, consider a hypersphere centered at one data point, with a radius
r = Dmin. Because the relative difference between Dmin and Dmax is very
small, increasing the radius only slightly will include many more data points
(Steinbach et al., 2004). This behavior of distances makes the notion of a
nearest neighbor become meaningless in such high-dimensional spaces. But
as clustering algorithms heavily depend on this notion, such effects have
serious consequences and have to be taken care of, for example by the use
dimensionality reduction techniques.

Dimensionality reduction is the task of embedding high dimensional data
points xi ∈ Rd in a lower dimensional subspace as points yi ∈ Rd′ where
d′ � d such that as many properties as possible (e.g. distances or similarities)
are preserved. This avoids negative effects in high dimensional spaces as
discussed earlier and allows for direct visualization when d ∈ {2, 3}. In
general, dimensionality reduction methods can be divided into linear and
nonlinear ones. Using an orthogonal linear map, the most prominent linear
technique is Principal Component Analysis (PCA). Its main objective is
the preservation of variance and it finds a transformed coordinate system,
such that the new axis directions explain as much of the data’s variance as
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possible. As PCA considers linear relationships between the input features
only, it cannot reliably detect structure in nonlinear data. As real-world data
is seldom linear, in order to discover cluster structures in l-mer frequencies
of metagenomic sequences, nonlinear methods have to be applied.

t-SNE

There are many methods for nonlinear dimensionality reduction in existence,
but recently one particular technique, named “t-distributed stochastic neigh-
borhood embedding” (t-SNE, Maaten and Hinton, 2008) gained immense
popularity in many fields of research. In the following I will introduce t-SNE,
and additional improvements concerning runtime and memory complexity
(Van Der Maaten, 2014).

The original t-SNE algorithm aims to minimize the difference between two
distributions of pairwise probabilities in the high and lower dimensional
space. Considering N data points, high dimensional probabilities are defined
as pij = (pi|j + pj|i) / (2N) where

pj|i =
exp

(
−||xi − xj||2/(2σ2

i )
)

∑l 6=i exp
(
−||xi − xl||2/(2σ2

i )
) (2.2)

can be interpreted as the probability that xi would pick xj as its neighbor
under the assumption that it was picked from a Gaussian distribution cen-
tered at xi. The parameter σi for each data point is automatically determined
using a hyper-parameter called perplexity that is usually insensitive. This
parameter is an integer and specifies the effective number of neighbors. In
general, a larger data set requires a higher perplexity. Probabilities in Rd′

are modeled by

qij =

(
1 + ||yi − yj||2

)−1

∑m 6=l (1 + ||ym − yl||2)
−1 (2.3)

Using the long-tailed student-t distribution instead of the Gaussian has the
advantage that it allows to avoid the “crowding problem” in low dimen-
sional spaces, leaving more space for distant pairs of points. The Kullback-
Leibler divergence C = ∑i 6=j pij log

pij
qij

is used to minimize the difference
between both probability distributions by numerical optimization. Because
the t-SNE cost function is not convex, the resulting representation is likely
to originate from a local optimum, although it is usually satisfying.
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The sum over all pairs of data points in the denominator of both pij and
qij requires a quadratic computational runtime and memory complexity,
making it unsuitable for larger data sets such as metagenomes. To overcome
this limitation, an approximative method named “Accelerated t-SNE” (Van
Der Maaten, 2014) approximates the similarities between input points, ef-
fectively reducing its runtime complexity to linearithmic time while using
only linear memory. This is achieved by using sparse approximations of the
probabilities pij. Observing that pij for distant pairs of points is nearly in-
finitesimal, these can be neglected without substantial adverse consequences.
This boils down to finding only a subset of neighbors which is efficiently
done using vantage point trees. Accelerated t-SNE employs a robust pa-
rameter 0 ≤ θ ≤ 1 that controls the trade-off between speed and accuracy,
where θ = 0 corresponds to the original t-SNE method and θ > 0 controls
the amount of approximation. Because Accelerated t-SNE heavily relies on
approximations, the resulting representation can contain artifacts such as
points that belong one cluster appearing wrongly in another cluster. Such
artifacts can also result from the original t-SNE, for example when stuck in
a low quality local optimum. However, this can be remedied by running
t-SNE multiple times and taking the result with the lowest cost function
value.

Even though t-SNE is widely applied in many fields, the algorithm’s success
has not been fully understood, yet. A particular aspect is the suitability of
the method for clustered data. Given that the perplexity parameter is chosen
correctly, t-SNE is capable of preserving cluster structures very well. To
support this observation, Shaham and Steinerberger, 2017 proved that under
certain weak assumptions, and if the input data is already well separated,
an optimal t-SNE embedding into any dimension preserves cluster structure.
Interestingly, this fact does not depend on the number of clusters. Therefore,
it makes t-SNE well suited for metagenomic binning.

2.2.3 Cluster Analysis

The segmentation of a set of objects into groups such that similar objects
are placed in the same group while dissimilar objects are placed in different
groups, is called clustering. Any such group is called a cluster of objects.
Clusters occur naturally in many types of structured data. A simple example
is given by Figure 2.4, which shows exemplars of the Iris flower, defined
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Fig. 2.4.: Example of clusters that represent three different species of the Iris flower.
While I. setosa has a clearly smaller petal length, I. versicolor and I. virginica
are more similar.

by sepal and petal lengths. From the coloring by species, three clusters are
visible, with two species being more similar to each other than a third one.

In the absence of cluster labels, it is the task of a clustering algorithm to
group objects, which are data points defined by a number of features, into
their respective cluster. As the notion of a cluster is not well-defined, this is
an ill-posed task: the definition of a cluster is driven by human perception,
and given one data set, people will give different answers on the question
of how many clusters are visible (Jain and Dubes, 1988). Exemplary in
Figure 2.4, if there was no colored labeling by species, some people would
guess the number of clusters to be two instead of three. Therefore, there
cannot be one single correct definition of what constitutes a cluster, and
many algorithms for different types of data and clustering objectives exist.
As the goal of this chapter is to evaluate cluster analysis techniques in the
context for metagenomic binning, I applied a number of algorithms, each
with different objectives, and methods for estimating cluster validity. In the
following, I will briefly introduce those techniques.
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Clustering algorithms

A clustering algorithm can be seen as a mapping C : Rd → {1, . . . , k}, where
each data point xi ∈ Rd is assigned one integer C(xi), representing one
out of k unique clusters. There exist many categorizations of clustering
algorithms (Estivill-Castro, 2002). A general distinction can be made using
five different types, being based on:

• centroids: clusters are defined by a single data point that can be an
average of its cluster members, or itself be a cluster member.

• distributions: clusters are based on the underlying assumption that they
were generated by a certain data distribution.

• connectivity: clusters are defined based on having loose or tight con-
nections, often in a hierarchical way.

• density: data points in regions with high density constitute a cluster.

• graphs: clusters are given by properties of a graph that is constructed
from the data.

Next, one or more examples of algorithms for each of these types are de-
scribed. In the remainder of this thesis, the number of clusters will be
referred to as k and the correct (optimal) number of clusters is kopt. Since
the algorithms are not the main focus of the thesis, they are introduced only
briefly.

K-Means Perhaps the most recognized clustering algorithm is k-Means
(KM, described in detail in Hastie et al., 2009). Being an exemplar of centroid-
based methods, it optimizes

min
k

∑
j=1

∑
xi∈Cj

‖xi − µj‖2 (2.4)

where µj denotes the mean of cluster j. Hence, it simply minimizes the
within-cluster variance, and because of that is restricted to convex clusters
only. Because the search for an optimal solution is NP-hard, different ap-
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proximation algorithms exist. For example, a solution can be found based
on expectation-maximization (Bottou and Bengio, 1995) by randomly initial-
izing centers µj, and iteratively assigning each data point xi to its nearest
center, followed by a re-calculation of means. Unfortunately, the quality of
the found solution heavily depends on the initialization of means. Another
approach named k-Means++ (KM++, Arthur and Vassilvitskii, 2007) tries to
improve this point by spreading the initial cluster centers according to the
data and already chosen centers.

Neural Gas Another centroid-based algorithm is given by Neural Gas (NG,
Martinetz et al., 1993). Similar to self-organizing maps (SOM), the cluster
centers are given by SOM weight neurons. In contrast to SOMs however,
NG does not use a fixed lattice. As in k-Means, it minimizes within-cluster
sum-of-squares distances, resulting in a Voronoi-tesselation, which also
restricts NG to convex clusters. The cluster centers are found by iteratively
and randomly selecting a data point, and instead of only updating one
winning center weight, all weights are updated by a soft-max rule, taking
into account a neighborhood ranking of the weights.

Gaussian Mixture Model As an example for distribution-based methods,
Gaussian Mixture Models (GMM, described in detail in Hastie et al., 2009)
were included. As GMM models are also based on optimization by expectation-
maximization, they are much related to k-Means. However, they assume a
Gaussian distribution as a data-generating model. Besides fitting the cluster
center, this requires the fitting of covariances, as well. Effectively, this makes
GMMs a soft version of k-Means, where data points are not a hard member
of one particular cluster, but are rather defined based on membership proba-
bilities for each cluster. The convergence of GMMs is much slower than the
original k-Means algorithm (Bishop, 2006). Therefore, it is useful to initialize
the Gaussian parameters with estimations from clusters found by k-Means
or k-Means++. In the following, the latter is referred to as GMM++.

Hierarchical Clustering The most commonly used connectivity-based clus-
tering method is Hierarchical Clustering (HC). It works either in a top-down
or bottom-up fashion. In the former, starting with one cluster for all data
points, the cluster is recursively split until each data point is in its own
cluster. Conversely, in bottom-up, starting with one cluster per data point,
they are merged until everything is in one cluster. This results in a cluster
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hierarchy, where on each tree level two clusters are split or merged. The
key step lies in the determination of which clusters to link. Here, a number
of linkage criteria exist, based on the distances between members of each
cluster. A common criterion is average linkage, where distance between two
clusters A and B is given as the mean distance between all points in both:

d(A, B) =
1

|A| · |B| ∑
xa∈A

∑
xb∈B

d(xa, xb) (2.5)

The two clusters with minimum distance are then linked together. Finally,
the resulting linkage tree is cut below level k to extract an assignment with k
clusters.

DBSCAN An example of density-based clustering is given by the popular
DBSCAN algorithm (DBS, Ester et al., 1996). It defines density by the notion
of different types of points. First, core points are ones that have minPts
points within a radius of ε. Both values have to be provided by the user.
Second, density-reachable points are defined by being connected to at least
one core point over a path of other core points. This type of point can be
thought to appear at cluster borders. Third, outlier points are neither core
points, nor density-reachable. Given a good understanding of the data,
choosing minPts and ε is straightforward for a user. Two advantages of
the algorithm include its direct estimation of the number clusters and the
applicability to arbitrarily shaped clusters. It is difficult to apply to data
which have large differences in density, because the supplied parameters fit
for a certain density distribution only.

Spectral Clustering Last, a prominent graph-based algorithm is Spectral
Clustering (SC, Von Luxburg, 2007). Here, a graph is constructed on top
of the data. For example, in a nearest-neighbor graph, every data point
is connected by an edge to its knn nearest neighbors. Given the adjacency
matrix A and degree matrix D, the normalized Laplacian matrix is given
by L = D−1/2AD−1/2. Decomposing L, Spectral Clustering takes the eigen-
vectors for its k (number of clusters) largest eigenvalues and clusters them
row-wise using a partitional algorithm such as k-Means++. SC basically
calculates a normalized cut (Shi and Malik, 2000) and can find arbitrarily
shaped clusters. Additionally, the algebraic multiplicity of the eigenvalue
zero defines the number of connected components (CC), which is a simple
way of determining the number of clusters. However, a computationally
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less expensive way to count the number of connected components is given
by Tarjan’s algorithm (Tarjan, 1972).

Clustering evaluation

The term clustering evaluation summarizes techniques for the determination
of the number of clusters k. Often, the structure of a given data set is
unknown. As most clustering algorithms require k to be specified as a
parameter, it has to be estimated first. Because the notion of a cluster is not
well-defined (section 2.2.3), a variety of methods to estimate k exist. The
term “clustering evaluation” stems from the fact that, in order to estimate
kopt, usually a number of clusterings for different k have to be evaluated
with respect to certain criteria of validity. In general, these criteria can be
divided into external and internal cluster validity indices. External indices
take into account information other than the data points themselves, mostly
an existing reference clustering. The result of such indices can then be
used to evaluate the clustering quality of an algorithm on known data, in
order for it to perform well on unknown data as well. In contrast, internal
validity measures only use information inherent to the data itself. In the
evaluation of metagenomic binning, one external and five internal cluster
validity indices are used. I will discuss them in the following.

Given a reference clustering, the evaluation of another clustering is as simple
as comparing wrongly and correctly clustered data points. For that task, the
Jaccard index (Levandowsky and Winter, 1971) is commonly used. The index
itself measures the similarity between two sets A and B: J = |A ∩ B|/|A ∪ B|.
Hence, if the two sets are equal, their intersection equals their union and
J = 1. Now, given two clusterings, their similarity can be calculated by
comparing the two respective sets of pairs of points that are clustered to-
gether in both. More formally (Ben-Hur et al., 2001), a labeling for a given
clustering can be represented by a matrix C with components Cij = 1, if xi

and xj belong to the same cluster and i 6= j, and Cij = 0, otherwise. In order
to compare two labelings C(1) and C(2), let Nij for i, j ∈ {0, 1} be the number
of entries on which C(1) and C(2) have values i and j, respectively. Then, the
Jaccard index is defined as

J(C(1), C(2)) =
N11

N01 + N10 + N11
(2.6)
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If, in both clusterings, all pairs of points appear in the same clusters, N11 = 1,
N01 = N10 = 0, and J = 1. The number N01 counts false positives, and
N10 are false negatives. Besides the Jaccard index, there exist a number of
other external validity indices, for example the Adjusted Rand index (Rand,
1971). Such measures mainly differ in their way of counting entries in the
contingency table.

Next, different methods for the assessment of internal cluster validity are
discussed. In some sense, all of these methods define what constitutes a
cluster differently.

Dunn, Davies-Bouldin and Xie-Beni index A common notion is based on
intra- and inter-cluster distances that measure the compactness and sepa-
ration of clusters: in a good clustering, pairwise intra-cluster distances are
small (making the cluster compact), and inter-cluster distances are large
(setting a good separation between clusters). A detailed analysis of measures
that take these distances into account is given in Ben-Hur et al., 2001. From
there, three selected examples are given:

• The Dunn index (DUNN) uses the minimum pairwise distance be-
tween data points in different clusters to define separation, while the
maximum diameter among all clusters defines compactness.

• The Xie-Beni index (XB) simply defines separation as the minimum
square distance between cluster centers, and compactness as the within-
cluster mean-square distance to the center.

• For each cluster C, the Davies-Bouldin index (DB) calculates the maxi-
mum similarity between C and all other clusters and averages these
maxima to obtain a validity index for the whole data set.

Given a set of clusterings, with different partitionings and different number
of clusters, an optimal clustering is then given by the minimum or maximum
of such indices.

Gap statistic Another very popular method to assess the number of clusters
is given by the Gap Statistic (GAP, Tibshirani et al., 2001). In contrast to
the measures discussed before, where the index is directly given from a
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certain clustering, the Gap Statistic compares its compactness to an expected
reference null distribution. The compactness is simply measured by the
pooled within-cluster sum of squares around the cluster means (dispersion).
The key idea behind is that clustering a reference uniform distribution will
produce less compact clusters than the optimal clustering with k = kopt,
and any sub-optimal clustering with k 6= kopt is nearer to the reference
distribution. A simplified formalization is to maximize

Gapn(k) = En (log Wk)− log Wk (2.7)

Wk =
k

∑
r=1

∑
xi,xj∈Cr

d(xi, xj) (2.8)

where Wk denotes the within-cluster dispersion for a k-clustering, and its
expectation is calculated by generating a reference distribution with same
size and dimensionality B times, clustering each one. This step makes the
Gap Statistic computationally expensive, because in order to obtain a reliable
expected dispersion, B ≥ 100 is usually large. The estimated number of
clusters is chosen as k = smallest k′ such that Gap(k) ≥ Gap(k + 1)− sk+1,
where sk is the observed standard deviation of the dispersion. This rule is
also known as “elbow” rule, because kopt is located at a perceived elbow in
the distribution of gap values.

Validity based on stability A last method to estimate k, considered in this
thesis, can be seen in measuring the clustering stability with respect to
random sub-sampling (SS, Ben-Hur et al., 2001; Von Luxburg, 2010). For
different values of k, a fraction f = 0.8 of the data is sub-sampled two
times and each subset is clustered. Both clusterings can be compared by
taking the intersection of both sets and evaluating them using an external
validity measure, such as the Jaccard index. While for an optimal clustering,
each cluster is labelled uniquely, for k 6= kopt, either multiple clusters are
assigned to one label (k < kopt) or multiple labels are assigned to one cluster
(k > kopt). Because most clustering algorithms are not deterministic with
respect to different sub-samples, a sub-optimal clustering is unstable because
it is likely that assignments change for each sub-sample. In contrast, given
an optimal clustering, an algorithm is assumed to be stable. However, in
practice, even for k < kopt clusterings can be stable. For that reason, kopt is
determined as the largest k for which the clustering similarity is above a
certain threshold.
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Fig. 2.5.: Metagenomic binning pipeline. Grey boxes represent steps with which
the data are processed either before or after the actual binning. Short
reads from the sequencing process are first assembled into contigs. Based
on tetramer frequencies, a vectorial representation is obtained, and sub-
sequently reduced to two dimensions. On this basis, the number of
clusters is estimated and the actual binning takes place. The resulting
assignments can be used to refine the metagenome assembly.

2.2.4 Binning pipeline

To perform metagenomic binning, I propose a pipeline as outlined in Fig-
ure 2.5. Input to the pipeline are contigs which resulted from the assembly
of a given metagenome. To convert sequences into vectorial data, a sliding
window approach (section 2.2.1) is used to calculate oligonucleotide fre-
quencies (step A). As this data has high dimensionality, it has to be mapped
(section 2.2.2) to a lower-dimensional manifold (step B). The resulting repre-
sentation is suited for clustering and it is the task to estimate the number of
clusters (step C, Equation 2.2.3) and finally bin the contigs.

2.3 Evaluation

The influence of a variety of method choices and hyper-parameters involved
in a metagenomic binning pipeline is assessed, ultimately to give guidance
for future research on using dimensionality reduction and clustering for
metagenomic binning. In the following, used data sets are introduced and
described (section 2.3.1). Next, steps A–C as shown in Figure 2.5 are eval-
uated thoroughly. For a clustering algorithm to correctly identify metage-
nomic clusters, the correct representation thereof is essential. It is shaped by
both oligonucleotide frequency calculation and dimensionality reduction.
Therefore, parameters of steps A&B are evaluated (section 2.3.2, 2.3.3) before
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suitable clustering algorithms are going to be discussed (section 2.3.4). Suit-
able choice for all involved methods and parameters are then applied to low,
medium and high complexity metagenomes, closely resembling real-world
assemblies (section 2.3.5).

2.3.1 Data

In order to evaluate the performance of the ingredients of a binning pipeline,
a total of 16 metagenomic samples from three different sources are used,
including theoretical and simulated data. The genomic composition of real-
world metagenomes is often unknown, and hence it is not possible to define
a gold standard binning to compare to. Even though existing binnings for
such metagenomes may be used, only the use of theoretical and simulated
data enables full and 100% correct control over evaluation.

THEO-k In order to verify the correct functionality of the used algorithms, six
theoretical data sets with k ∈ {5, 10, 20, 30, 40, 50} clusters were generated.
Each cluster contains a random number r ∈ {25, . . . , 75} of data points
x ∈ R2 which are sampled uniformly from an ellipse with center µk and
random principal axis lengths a, b ∈ [0, 1]. This procedure generates convex
clusters of different sizes and shapes. To ensure non-overlapping clusters,
the centers µk are randomly chosen from an equally spaced lattice set of data
points using a probabilistic seeding rule (Arthur and Vassilvitskii, 2007). It
gives centers that are located near already selected centers a lower selection
probability than centers that are more distant.

NCBI-k Seven metagenomic samples containing k ∈ {5, 9, 10, 20, 30, 40, 50}
genomes were simulated. The data was generated by randomly selecting
k complete microbial genomes from the NCBI database (for k 6= 9) (Geer
et al., 2009) and simply concatenating the finished assemblies. This way,
the evaluation process can rely on correct ground truth data. A special case
is given by NCBI-9, for which genomes were selected manually according
to low cophenetic similarity based on a dendrogram constructed using
16S sequence identity, resulting in nine related archaea, including three
closely related methanogens. A list of all included genomes is given in
Table A.1. In the following section, the NCBI-9 metagenome is used to assess
suitable parameter values which concern sequence signature generation
and dimensionality reduction. All other NCBI samples are then used to
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verify those choices, while simultaneously assessing suitable choices for of
clustering algorithms.

CAMI-k The “Critical Assessment of Metagenome Interpretation” initiative
(CAMI, Sczyrba et al., 2017) provides benchmark metagenomes that were
generated from a large number of newly sequenced microorganisms and
novel viruses and plasmids, including genomes with varying degrees of
relatedness to each other and to publicly available ones, representing com-
mon experimental setups. All samples were simulated by generating 150 bp
reads with an Illumina HighSeq error profile, providing a gold standard
assembly and binning. Included species have partial strain-level diversity,
viruses and plasmids, providing a near-realistic simulation. Metagenomes
with low, medium and high complexity (k ∈ {30, 93, 306}, respectively) were
used to assess the performance of evaluated parameters on these assemblies.
The numbers of genomes contained in the original data is higher (Table 2.2)
than the numbers of clusters kopt in this data. This is due to the setting of a
minimum contig length as described in section 2.3.5. The CAMI-k data set is
used to apply the method and parameter choices assessed earlier on data
that closely resemble real-world assemblies, including a significant amount
of strains.

2.3.2 Dimensionality reduction

A suitable data representation optimally produces compact and separated
clusters, in order for a clustering algorithm to pick up the structure without
any problems. For that, the calculation of oligonucleotide frequencies and
dimensionality reduction go hand in hand. Even though, in the binning
pipeline the former is followed by the latter, for reasons of understandability,
they are discussed in reverse order.

To quantitatively evaluate different dimension reduction techniques, pos-
sible combinations of oligonucleotide frequency window size and step pa-
rameters on the NCBI-9 data set were evaluated. As good compactness and
large separation of clusters will have a positive impact on the quality of
a subsequent clustering, the Davies-Bouldin index (DB) as an evaluation
measure is used. As it is shown later in this chapter, this index is a good
choice for estimating the number of clusters, too. Additionally, using the
true class label information, the 9-nearest-neighbor classification error (9-
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NN) is evaluated. For a given data point, it is defined as the proportion of
its 9 nearest neighbors that are not assigned to the same cluster. The value is
averaged over the full data set, normalized by the number of data points that
result from the given window parameters. Because this methodology takes
into account a wide range of window parameters and because it only relies
on characteristics specific to the embedding, it rules out eventual influences
of both the oligonucleotide frequency calculation and the clustering step.

Three choices for dimensionality reductions (DR) are reviewed: no DR, linear
DR using PCA, and nonlinear DR using t-SNE. For that task, the distribu-
tions of DB and 9-NN values for different window-sizes were compared
using a one sided Mann-Whitney U test (null hypothesis: tested distribu-
tions are equal). The columns of Figure 2.6 depict the DR techniques in
question, while the rows correspond the test measure. As it is visible, using
t-SNE as a dimension reduction method yields the best values: it has a
significantly better (smaller) DB index both compared to no dimensionality
reduction and linear PCA (both p < 10−24), indicating clusters that are more
compact and separated. The same holds for the 9-NN error (compared to
no dimensionality reduction: p = 0.0033; PCA: p = 10−33). This confirms
earlier preliminary results as reported by Gisbrecht et al., 2013 and Laczny
et al., 2014. Visually inspecting the difference of exemplary 2D embeddings
as shown in Figure 2.7 also supports these findings. It is clearly visible
that t-SNE (right column) delivers embeddings with clusters that are much
more compact and separated when compared to PCA (left column) where
clusters are partially fuzzy and overlapping. It is worth to note that, since a
non-linear method resolves clusters well, there has to be some non-linearity
in the data. In the same way, the one-dimensional GC-content may result in
linear inseparability for more related species (Figure 2.2), similar effect may
be expected in the more general, high-dimensional oligonucleotide feature
set.

Parameters of t-SNE are mostly robust to small changes. However, it was
observed that some parameter values deliver better results in terms of the
above evaluation measures. Initially, t-SNE performs a PCA to remove
noise from the data. Here, the number of dimensions was set to 50 as
it was found to work well in all settings. This is supported by the fact
that the kept variance for this value is high (> 99%). Next, the t-SNE
perplexity was chosen as perp(n) = blog(n)2c, with n being the number
of data points. This way, a small number of data points receives a small
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perplexity whereas with growing n the perplexity saturates. Consequently,
given the assumption that with fewer data points, clusters contain fewer
data points, they can still be resolved. At the same time, with larger data,
the perplexity values do not grow as much, as suggested in Van Der Maaten,
2014. Finally, the parameter θ controls the trade-off between speed and
accuracy of the resulting embedding. While still delivering reasonably good
results, the default value of θ = 0.5 was found to be too inaccurate, resulting
in less compact clusters. Here, a value of θ = 0.2 was chosen, taking the
consequence of a higher computational complexity.

2.3.3 Data representation by oligonucleotide
frequencies

As pointed out in section 2.2.1, the vectorial representation, and with it, the
resulting clustering heavily depends on the choice of window parameters.
Different combinations of these parameters were evaluated. First, different
lengths of oligonucleotides (l-mers) are reviewed. In general, the Davies-
Bouldin index decreases with increasing l, with improvements for l > 4 bp
being negligible (sometimes even worse) such that tetramers (l = 4 bp) are
used in all further settings, avoiding a significantly higher computational
complexity for larger choices of l.

Figure 2.6 depicts the effects of different window sizes w and steps ∆w on the
compactness and separation as well as on the 9-nearest-neighbor error exem-
plary on the NCBI-9 data set (similar results were obtained on all other data
sets). Window size values ranged from w = 2000 bp to w = 0.1 ·maxg length(sg)

where sg denotes the sequence of a contained genome g. Window step val-
ues ∆w = w/wdiv in the range wdiv ∈ [1, 2] were tested, resulting in half to
no overlapping windows. Looking at only the t-SNE results on the right, it
is visible that starting from w = 2000 bp there is an improvement both in
terms of DB and 9-NN. The same effect can be seen in Figure 2.7 where the
embeddings of smaller window sizes are noisier than embeddings with a
larger window size. As a smaller window size captures more of the local
characteristics, this manifests itself in a higher variance, resulting in more
noise. In opposite, a larger window size will cancel out such effects. Another
advantage of the latter lies in the fact that it generates fewer data, keeping
computational complexity low. This raises the question what window size
is large enough?
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Fig. 2.6.: Illustration of the effects of different oligonucleotide window sizes and
steps on the 9-nearest-neighbor error (top) and Davies-Bouldin index
(bottom) using no dimension reduction (left), PCA (center) and t-SNE
(right) on the NCBI-9 data set. Tetramer frequencies were used (l = 4 bp).
The window step is indirectly given by ∆w = w

wdiv
, indicating half to no

overlapping windows.
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Fig. 2.7.: Different projections of the NCBI-9 data set with PCA (left) and t-
SNE (right) using tetramer frequencies (l = 4 bp) computed with
different window sizes (top: w = 2000 bp, ∆w = 1000 bp; bottom:
w = 25 000 bp, ∆w = 12 500 bp).

Further investigation of the t-SNE plots in Figure 2.6 shows that 9-NN stays
optimal on a large range, only getting worse for extremal w. DB does not
show such a stable behavior in this area, being smaller towards areas with
larger window sizes and steps. This would indicate that choosing w and ∆w
as large as possible is optimal. However, a very large window size will also
result in only very few data points for each cluster. This is even more pro-
nounced if there is only small to no overlap between, which can also be seen
in Figure 2.6 where DB and 9-NN increase for such values. A certain number
of data points is also needed for clustering algorithms. As these utilize data
characteristics such as centroids, distributions or densities, a small number
of data points will result in inaccurate estimations of such. Additionally,
window sizes in the range of w = 1× 105 bp might be larger than most
contigs, making them inapplicable. Therefore, it can be argued that choosing
window sizes in the range of w ∈ [25 000 bp, 50 000 bp] and ∆w = w

2 is a
good default value, which is also consistent with the observations on other
data sets and with respect to clustering.

However, for large metagenomes, choosing window sizes in that range can
be computationally intractable, depending on the available hardware. For
example, already for a sample such as CAMI-306, containing genomes with
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a total size of nbp = 2.8 Gbp, and choosing ∆w = 25 kbp, around 112000
data points are generated. As hierarchical clustering requires quadratic
memory complexity, on a 64 bit system, storing the matrix would require
around 93 GB of main memory. Therefore, it might be necessary to increase
the window size in order to accommodate the data in memory. Given a
target number of data points n, one can estimate the according parameters
∆w = dnbp

n e and w = 2 · ∆w.

2.3.4 Clustering algorithms and cluster validation

Having determined an optimal range of parameter values both for oligonu-
cleotide frequency calculation and dimension reduction, it is the task to
cluster the data. Here, a particularly difficult step lies in finding the correct
number kopt of genomes/clusters which is unknown for real world data. A
quantitative comparison of different combinations of state-of-the-art cluster-
ing algorithms and procedures for estimating kopt was performed, in order
to find combinations which work well when applied to metagenomic data.
For each data set THEO-k and NCBI-k, the estimated number k of clusters
was evaluated. To account for the possibility that k was estimated correctly
but the actual partitioning is wrong, the Jaccard-index J for each respective
optimal clustering was calculated. The results are depicted in Table 2.1.
Here, missing values either indicate undefined values (e.g. caused by empty
clusters) or tasks that were skipped because of a too long computation time.
The Jaccard index of SS is missing because in its stability calculation, there is
no specific optimal clustering.

Looking at the theoretical data, most combinations of algorithms and k-
estimation methods deliver good to optimal results. For larger k preferences,
differences arise. Specifically, KM++ and GMM++ deliver better results
than their randomly initialized counterparts KM and GMM. In most cases,
GAP fails to find a correct partitioning. Still, for all theoretical data sets,
the corresponding gap curves show a clear elbow close to kopt. However,
for k > kopt, the gap value approximately stays the same, in some cases
even slightly increases. In the presence of a non-negligible standard error,
this makes it difficult to automatically estimate the correct elbow location.
As an exception, for kopt = 40, GAP gives a perfect estimation for some
clustering algorithms. Here, for k > kopt, the gap value decreases, enabling
a correct elbow location. Furthermore, when applied using an appropriate
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DB DUNN XB GAP SS
THEO K J K J K J K J K

kopt = 5
KM 5 1.00 5 1.00 3 0.56 55 0.10 5
KM++ 5 1.00 5 1.00 5 1.00 64 0.09 6
NG 5 1.00 5 1.00 5 1.00 5 1.00 5
HC 5 1.00 5 1.00 5 1.00 65 0.12 6
GMM 5 1.00 5 1.00 - - 7 0.80 5
GMM++ 5 1.00 5 1.00 - - 12 0.47 7
SC 5 1.00 5 1.00 5 1.00 - - 20
DBS K = 5, J = 1.00
CC K = 5, J = 1.00

kopt = 10
KM 12 0.90 9 0.92 - - 29 0.36 2
KM++ 10 1.00 10 1.00 10 1.00 32 0.34 10
NG 9 0.93 10 1.00 11 1.00 9 0.93 2
HC 10 1.00 10 1.00 10 1.00 26 0.46 14
GMM 12 0.95 10 1.00 - - 13 0.78 1
GMM++ 10 1.00 10 1.00 - - 15 0.71 11
SC 10 1.00 10 1.00 10 1.00 - - 13
DBS K = 10, J = 1.00
CC K = 10, J = 1.00

kopt = 20
KM 23 0.79 8 0.36 - - 51 0.42 2
KM++ 20 1.00 20 1.00 20 1.00 56 0.44 25
NG 20 0.89 15 0.74 18 0.86 18 0.80 5
HC 20 1.00 20 1.00 20 1.00 56 0.54 39
GMM 28 0.81 5 0.22 - - 13 0.55 1
GMM++ 20 1.00 20 1.00 20 1.00 40 0.58 23
SC 33 0.55 20 1.00 7 0.11 - - 21
DBS K = 20, J = 1.00
CC K = 20, J = 0.88

kopt = 30
KM 27 0.80 19 0.63 - - 67 0.54 1
KM++ 30 1.00 30 1.00 30 1.00 68 0.50 39
NG 26 0.86 34 0.94 32 0.94 24 0.83 3
HC 30 1.00 30 1.00 30 1.00 49 0.79 62
GMM 25 0.73 23 0.59 - - 9 0.24 1
GMM++ 30 1.00 30 1.00 30 1.00 44 0.80 35
SC 33 0.93 31 0.97 31 0.97 - - 31
DBS K = 30, J = 1.00
CC K = 31, J = 0.97

kopt = 40
KM 39 0.66 21 0.49 - - 68 0.65 1
KM++ 39 0.96 35 0.77 35 0.77 40 1.00 43
NG 34 0.82 29 0.64 45 0.96 26 0.58 3
HC 39 0.96 35 0.77 35 0.77 40 1.00 61
GMM 44 0.62 9 0.21 - - 6 0.15 3
GMM++ 39 0.96 35 0.77 35 0.77 40 1.00 44
SC 35 0.56 3 0.03 2 0.28 - - 41
DBS K = 35, J = 0.77
CC K = 40, J = 0.88

kopt = 50
KM 29 0.52 16 0.27 - - 63 0.63 3
KM++ 50 1.00 50 1.00 50 1.00 50 1.00 54
NG 35 0.63 51 0.83 43 0.74 24 0.45 11
HC 50 1.00 50 1.00 50 1.00 50 1.00 70
GMM 49 0.59 9 0.15 - - 3 0.06 2
GMM++ 50 1.00 50 1.00 50 1.00 50 1.00 55
SC 58 0.67 2 0.02 4 0.02 - - 13
DBS K = 36, J = 0.48
CC K = 51, J = 0.65

DB DUNN XB GAP SS
NCBI K J K J K J K J K

kopt = 5
KM 4 0.87 4 0.87 4 0.87 12 0.38 5
KM++ 5 1.00 4 0.87 4 0.87 11 0.41 7
NG 5 1.00 4 0.87 4 0.87 10 0.45 8
HC 5 1.00 4 0.87 4 0.87 6 0.80 6
GMM 5 0.98 4 0.87 - - 7 0.69 5
GMM++ 5 0.98 4 0.87 4 0.87 - - 8
SC 4 0.73 4 0.73 4 0.73 - - 10
DBS K = 4, J = 0.87
CC K = 5, J = 0.67

kopt = 10
KM 10 0.98 6 0.63 9 0.94 68 0.13 4
KM++ 10 0.98 10 0.98 10 0.98 53 0.16 11
NG 10 0.98 6 0.63 8 0.89 17 0.50 12
HC 10 0.98 10 0.98 10 0.98 18 0.50 11
GMM 9 0.79 8 0.71 - - 13 0.89 9
GMM++ 10 0.98 10 0.98 10 0.98 50 0.20 11
SC 2 0.13 2 0.13 2 0.13 - - 12
DBS K = 10, J = 0.98
CC K = 12 J = 0.79

kopt = 20
KM 22 0.85 5 0.32 - - 61 0.26 3
KM++ 22 0.73 16 0.91 16 0.90 63 0.24 20
NG 20 0.74 4 0.27 13 0.76 30 0.53 18
HC 19 0.97 17 0.90 18 0.96 39 0.44 19
GMM 18 0.91 16 0.85 - - 16 0.88 1
GMM++ 16 0.87 17 0.94 17 0.92 34 0.48 20
SC 14 0.61 12 0.46 11 0.44 - - 21
DBS K = 18, J = 0.96
CC K = 24, J = 0.58

kopt = 30
KM 23 0.78 10 0.40 - - 60 0.45 4
KM++ 30 0.93 12 0.49 17 0.63 51 0.46 30
NG 27 0.77 18 0.71 26 0.92 28 0.80 16
HC 27 0.91 13 0.53 26 0.89 65 0.47 36
GMM 23 0.75 52 0.67 - - 17 0.65 1
GMM++ 31 0.84 19 0.70 21 0.76 55 0.49 30
SC 2 0.44 9 0.14 2 0.04 - - 14
DBS K = 28, J = 0.91
CC K = 39, J = 0.22

kopt = 40
KM 39 0.75 17 0.53 - - 70 0.53 4
KM++ 46 0.75 25 0.70 24 0.66 68 0.49 4
NG 37 0.81 17 0.53 16 0.51 31 0.78 14
HC 41 0.92 11 0.35 36 0.95 53 0.69 48
GMM 29 0.78 17 0.49 4 0.12 17 0.45 1
GMM++ 43 0.81 29 0.80 4 0.12 - - 1
SC 31 0.6 4 0.04 7 0.06 - - -
DBS K = 36, J = 0.91
CC K = 49, J = 0.25

kopt = 50
KM 40 0.76 34 0.71 - - 66 0.70 1
KM++ 50 0.81 68 0.64 31 0.68 69 0.63 4
NG 42 0.80 37 0.80 34 0.76 33 0.73 1
HC 47 0.89 15 0.33 44 0.88 46 0.89 66
GMM 65 0.82 65 0.79 - - 6 0.12 1
GMM++ 49 0.83 2 0.05 28 0.62 - - 1
SC 2 0.03 2 0.03 2 0.03 - - 10
DBS K = 45, J = 0.82
CC K = 68, J = 0.18

Tab. 2.1.: Clustering results for both the THEO and NCBI data. Bold values depict
the best result in a given data set.
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Fig. 2.8.: The Davies-Bouldin index for k = {1..70} on the exemplary NCBI-30
data set. It is continuously decreasing before and increasing after the
correct number k = 30 of clusters.

clustering algorithm, SS tends to pick k slightly larger than kopt. Looking
at the stability curve, there are pronounced maxima at the correct number
of clusters for all theoretical data sets. However, for k > kopt, the curves
are decreasing only slowly such that these values of k also lie above the
threshold which is hard to choose. Last, while delivering very good results
when estimating k using only the eigenspectrum (connected components,
CC), SC delivers less promising results when used as a clustering algorithm
itself. The curves of internal validation indices and SS show a high variance,
which can be attributed to the arbitrary nature of the corresponding graph
cut for different k. In general, results on the theoretical data show, that with
nearly all combinations of methods, it is possible to accurately estimate the
number of clusters even for larger data sets. Here, the clusters are optimally
distributed and noise-free, and results on the NCBI data can be expected to
differ.

For the oligonucleotide frequency computation of the NCBI data, tetramers
and window parameters of w = 25 000 bp, ∆w = 12 500 bp were used. Here,
GAP curves show a pronounced elbow only for kopt < 20, making it even
more difficult to locate the correct number of clusters. SS stability curves still
yield a maximum for k ≈ kopt. However, its value drops below the thresh-
old for larger metagenomes, adding to the problem of finding an optimal
threshold. Additionally, because of outliers and a heterogeneous cluster
structure, CC can over-estimate the number of clusters and displays low
values of the Jaccard index. Still, estimations of other combinations are often
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near-optimal and very accurate. In particular, the Davies-Bouldin index
shows very good performance for most clustering algorithms. Additionally,
exemplarily shown for the NCBI-30 data set in Figure 2.8, DB displays a
nearly monotonic decrease before and increases after the optimum number
of clusters kopt = 30. Thus, provided a suitable conversion, it could also
be related to a confidence measure to facilitate a post hoc human expert
analysis. Results on metagenomic data sets do not perform as well as on
the optimal theoretical data. As in the latter clusters are well pronounced
while in the former they are often noisy, this behavior is expected. Still, some
methods, in particular the Davies-Bouldin index, have shown to be able to
work well in this setting, too.

2.3.5 Application to complex metagenomes

Given the results on the THEO and NCBI data, optimal window parameters
and method choices were taken to assess performance on metagenome data
that closely resembles the real world. For this task, the CAMI data sets are well
suited. Due to the size of the samples and computational limitations, it was
not possible to test all possible combinations of methods and parameters.
Therefore, evaluation was limited to the use of hierarchical clustering in
combination with the Davies-Bouldin index, in addition to DBSCAN and
connected component clustering (CC). Results are shown in Table 2.2.

Data representation For the low complexity metagenome, a large and fixed
window size of 30 kbp was used. For the more complex data sets, because
of limited memory the number of data points n was restricted, resulting in
much larger window sizes, even exceeding 100 kbp for the most complex one.
Looking at the resulting cluster representations in Figure 2.9, and Figures
A.1, A.2, there is a clear structure visible, with compact and separated
clusters that match their originating genomes very well. However, in some
cases a cluster contains contigs from multiple species, exemplary seen in
the low complexity metagenome, in which only k = 22 instead of kopt = 30
clusters are visible. This behavior can be explained by both high similarity
between different species (e.g. strain level) or t-SNE artifacts.

Clustering For DBSCAN, it was difficult to find good choices for its minPts
and ε parameters. The resulting number of clusters varied heavily with
small changes of those parameters and for many combinations of these
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Fig. 2.9.: Data representation using t-SNE of the CAMI-306 high complexity
metagenome, colored by gold standard binning.

CAMI-30 CAMI-93 CAMI-306
genomes (strains) 40 (22) 132 (100) 596 (399)
min. contig length 1000 bp 5000 bp 10 000 bp

kept base pairs 96.7 % 90.2 % 97.9 %
size 155 Mbp 507 Mbp 2.75 Gbp
w 30 kbp 33.8 kbp 137 kbp

∆w w
2

w
2

w
2

n 14463 27717 36592
complexity low medium high

kopt 30 93 306
kDB 20 91 400
kCC 30 81 302
Jopt 0.36 0.41 0.20
JDB 0.53 0.42 0.17
JCC 0.27 0.32 0.30

Tab. 2.2.: Parameters and results on the CAMI data. The number of clusters k and
the Jaccard index J were evaluated for a hierarchical clustering using
the k = kopt, and using the number of clusters as given by the Davies-
Bouldin index kDB, as well as the number for connected components
clustering kCC.

38 Chapter 2 Automatic discovery of metagenomic structure



values, the algorithm identified a large number of points as outliers. As the
results were unusable, they were not included in the results. Next, because
of the assemblies containing numerous contigs that are much smaller than
the window size, this resulted in one data point per contig. Therefore, it
was necessary to ignore all contigs smaller than a certain minimum length.
However, the kept percentage of total base pairs was large (> 90%). As
regards the estimated number of clusters, using the DB index, for the low
and medium complexity data sets, k was close to the correct number of
clusters. Interestingly, for the medium complexity data set, k was estimated
better than for the low complexity data. This is likely due to highly similar
species as mentioned earlier. Similar to the NCBI data, for the low and
medium complexity data, the DB index shows a clear minimum near the
optimal number of clusters (Figure A.3). In contrast, for the high complexity
data, the DB index fails to correctly identify kopt. The number of clusters as
given by CC apparently gives a much better estimation than DB, especially
for the high complexity data where it nearly perfectly estimates the kopt =

306 clusters. Interestingly, the according values of the Jaccard index are
not as good and much lower than the ones obtained on the NCBI data.
This indicates the limitations of the evaluated approach. Here, the high
strain-level diversity could not be matched, i.e. individual strains of the
same species that are highly similar could not be resolved into individual
clusters.

2.4 Summary

I showed that a taxonomy-independent, sequence composition based pipeline
as in Figure 2.5 can assign metagenomic fragments accurately, given the
involved methods and parameters are correctly chosen. In particular, the
combination of the highly flexible dimensionality reduction method t-SNE,
followed by clustering, can reveal correct results for artificial data for clus-
ter numbers as large as 50, as well as excellent results (J ≥ 0.9) for small,
simulated metagenomic data represented in terms of tetramer frequencies
for almost the same number of clusters. Additionally, this simple approach
can detect the number of genomes in data sets from the CAMI challenge for
low, medium and high complexity metagenomes. However, possibly due
to a high strain-level diversity, it could not find a good partitioning of the
data. Here, incorporating additional post-processing steps that account for
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t-SNE artifacts, and possibly clustering multiple times may remedy the low
performance and is subject to future investigation.

Moreover, it was shown, that a modern dimensionality reduction such as
t-SNE is crucial to deal with the high data dimensionality, while several
popular clustering paradigms reveal reasonable values for the clusters. On
average, cluster validity indices, in particular the Davies-Bouldin index,
seem more reliable than alternatives such as direct methods or statistical
counterparts. Interestingly, classical clustering techniques such as hierar-
chical clustering or K-means++ perform better for metagenomic data than
computationally complex alternatives. Clustering by connected components
is suited as well, particularly for highly complex metagenomes. These re-
sults are robust to the choice of meta-parameters, and default values which
allow a complete automation of the process for a reasonable first binning
to be derived. Referring to the three ingredients for metagenomic binning
(section 2.1), optimal default parameters can be summarized:

1. Transform sequence data into vectorial data by calculating tetramer
frequencies within a sliding window with window width
w ∈ [25 000 bp, 50 000 bp] and window step ∆w = w

2 . For larger data
sets, computational limitations can be an issue and larger window
sizes can be calculated from a given maximum number of points.

2. Reduce dimensionality of vectorial data using t-SNE to two dimen-
sions.

3. On the resulting representation, estimate the number of clusters using
either the Davies-Bouldin index and a simple clustering method such
as k-Means++ or hierarchical clustering, or using connected compo-
nent clustering.

In consequence, this contribution not only quantitatively evaluates the per-
formance of these machine learning techniques for metagenomic binning
and their stability for the first time, but it also shows the potential of this
pipeline for a fully automated process in the de novo setting. These findings
open the way towards further progress and more advanced technology:
often, auxiliary information besides the mere DNA fragments is available
such as coverage information (for a better characterization of statistically
relevant frequencies for the nucleotides), 16S sequences (for an initial guess
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about reasonable ranges for the number of clusters), or paired-end read
information. This information could be integrated into the pipeline for even
more robust results. In addition, binning is rarely a single loop process,
rather, partial knowledge for known species can be integrated by relying
on databases, and existing assembly tools can be applied again since they
greatly benefit from grouping information to arrive at a better assembly of
the given data. The latter observation opens the possibility of a loop which
can be either automatic, interleaving assembly technology and machine
learning based approaches, or involving human experts, integrating expert
knowledge or database queries on demand. Such a loop can even open the
possibility to overcome the problem of a suitable initial data representation
based on tetramer frequencies for short fragments. Since short fragments
only allow short windows and a potentially noisy data representation, a start
from shorter windows together with loops seems a particularly promising
approach to automatically arrive at a high quality binning.

To conclude, taxonomy-independent, sequence composition based data pro-
vides an essential source of information for binning.Taken alone, it showed
good performance on small metagenomes, but showed its limitations on
more complex data. Therefore, in the future, it is of high interest to see
whether the presented findings can be incorporated into existing tools,
adding to their quality and leveraging other information, too.
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3.1 Background

Single-cell sequencing In the previous chapter, focus was directed to the
analysis of genomes from cell communities, i.e. metagenomes. Here, it is
not uncommon to physically isolate a single cell from a metagenome using
modern techniques by the means of single-cell sequencing (SCS). Named
“Method of the year 2013” (Nature, 2013), SCS plays a continuously impor-
tant role in many domains. Notable areas of research include medicine
and the analysis of disease pathways (Eberwine et al., 2014), especially in
cancer biology (Navin, 2015) and the development of targeted treatments
(personalized medicine, Speicher, 2013). Additionally, SCS has proven a
valuable and very powerful tool in evolutionary and environmental micro-
biology, for example by assessing intra- and inter-phylum relationships of
bacteria and archaea (Rinke et al., 2013) and providing insights into key
metabolic functions of uncultivated clades within their ecosystems (Swan
et al., 2011).
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To obtain the genome of a given organism, modern sequencing technologies
rely on large amounts of DNA material. Up until a few years ago, the
only way to obtain the needed mass of DNA molecules was cultivating the
organism of interest in vitro. Unfortunately, the large majority of microbial
species is still unknown (Rinke et al., 2013), and therefore in many cases the
optimal cultivation conditions for novel organisms are unknown. Hence,
the majority of organisms could not be grown in the laboratory and their
genomes could not be sequenced by the means of conventional technologies.
This situation was remedied by the rise of SCS, providing new techniques
such as multiple displacement amplification that allows for the million-fold
amplification of one single DNA molecule (Gawad et al., 2016). This enables
the sequencing of one single amplified genome (SAG) and at the same
time makes it possible to analyze its individual characteristics with high
resolution. During the rise of SCS, another method to obtain single genomes
got popular. With metagenomic binning methods becoming increasingly
powerful, it is possible to extract metagenome-assembled genomes (MAG)
from the individual bins of a metagenome. However, in contrast to SAGs,
this method reconstructs composite genomes made of many cells from the
same organism contained in a metagenome.

The problem of contamination A primary technological challenge in the
analysis of SAG data is the potential presence of contamination and the
detection and removal thereof (Bowers et al., 2017; Blainey, 2013). Foreign
DNA which does not belong to the target genome of a given single cell, might
be introduced into a sample in different ways. Sources of contamination can
include unclean lysis or whole genome amplification reagents, in addition
to sample introduced non-target DNA (Woyke et al., 2011; Salter et al., 2014).
While much effort has been invested into engineering devices and methods
for cell isolation and amplification steps that minimize contamination caused
by the surrounding sequencing setup (Woyke et al., 2011; Blainey, 2013;
Gawad et al., 2016), careful quality control is vital to prevent the propagation
of misleading results in public databases. The same holds for MAG data –
as binning cannot yet produce 100% clean bins (section 2), their quality and
purity has to be assessed as well. Recently, Bowers et al., 2017 proposed
new quality standards for the reporting of bacterial and archaeal genome
sequences from SAGs and MAGs. They conclude that contamination rates
should be smaller than 10% for low-quality and smaller than 5% for high-
quality draft genomes. This emphasizes the importance of tools for the
accurate contamination detection and removal. Figure 3.1 gives an overview
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Fig. 3.1.: Single-cell workflow with possible sources of contamination (Gawad
et al., 2016): For both SAGs and MAGs, laboratory procedures and
sequencing are main sources of contamination. For MAGs, metagenome
binning may result in impure bins, too.

of the single-cell workflow for both SAGs and MAGs, including possible
sources of contamination.

Given those obstacles, ProDeGe, an automated Protocol for the Decontami-
nation of Genomes was recently developed (Tennessen et al., 2015). ProDeGe
combines the BLAST algorithm (Camacho et al., 2009) as a popular choice
for database sequence alignment with reference-free PCA-reduced oligonu-
cleotide profiling to enhance classification accuracy. Another method, CheckM
(Parks et al., 2015), solely relies on the presence of multiple single-copy
marker genes as an indication for contamination in a given sample, not
operating reference-free. More recent classification methods (Ander et al.,
2013; Naeem et al., 2013), most notably Kraken (Wood and Salzberg, 2014),
are as accurate as BLAST but much faster, thus can speed up supervised
detection. All these techniques heavily rely on references, hence they re-
quire existing knowledge about the characteristics of possible contaminants,
making them less applicable either in the case of contaminants not being
contained in databases or marker genes not being present in the sample
(i.e. contamination is small or incomplete). Since the majority of species is
unknown (Rinke et al., 2013), they are difficult to detect by such methods
and unsupervised, taxonomy-free analysis is required (Mande et al., 2012).

Contamination and clustering Complementary to reference-based meth-
ods, clustering of oligonucleotide signatures is a promising approach that
already found early application in metagenomic binning (chapter 2). From
the perspective of computational intelligence, contamination detection as a
clustering problem is very similar to metagenomic binning. Both metage-
nomic and SCS samples can be represented as a set of high-dimensional data
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points. Binning and also contamination detection then address the same
challenge of reliably detecting clusters in a high-dimensional data space.
As already shown in chapter 2, quite a few challenges arise: To circumvent
negative side effects in such high-dimensional spaces and to enable human
expert inspection, it is crucial to use appropriate subspace embeddings to
transform the data into an easily visualizable representation, i.e. two or
three dimensions. Modern, non-linear dimensionality reduction methods, in
particular t-SNE (Van Der Maaten, 2014) have proven useful (Laczny et al.,
2014) in that context.

The automatic determination of the number of clusters and its cluster valid-
ity, a deep and crucial question in the context of clustering (Vendramin et al.,
2010; Jain, 2010), poses yet another challenge. In contrast to metagenomic
binning where the aim is to accurately bin sequences in a larger number of
clusters, contamination detection in SCS is a fundamentally different task. It
requires the discrimination between one or more clusters (genomes). This
complication heavily reduces the set of applicable clustering algorithms:
The majority of methods for estimating the number of clusters rely on
cluster-specific measures such as internal validity indices (Liu et al., 2010).
Since these are not defined for only one cluster, a distinctive null model
for unimodal data is required, i.e. the techniques are usually not suited to
distinguish one versus more than one cluster, hence cannot reliably identify
non-contaminated samples.

Last, machine learning methods such as dimensionality reduction and clus-
tering are based on statistics of the data and introduce certain amounts of
variance. To overcome this limitation and to provide accurate and inter-
pretable results, it is useful to integrate confidence measures. For this task,
bootstrapping (Hastie et al., 2009) is a popular choice.

In this chapter, I present a novel software tool called “acdc” (Automated Con-
tamination Detection and Confidence estimation for single-cell genome data,
availability: section A.1.1). It seamlessly integrates reference-based with
reference-free methods. Being based on both, very fast exact database align-
ments and modern techniques from unsupervised machine learning, acdc is
able to accurately identify and remove contamination in single-cell sequenc-
ing data. To my knowledge, integrating entirely reference-free methodolo-
gies is a novelty, and complements existing high performing database-driven
approaches such as ProDeGe. The use of appropriate clustering algorithms
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Fig. 3.2.: Acdc contamination detection pipeline: Results from both reference-free
and reference-based techniques are fusioned and post-processed to end
up with a clean sample.

allows the removal of foreign sequences to yield clean single-cell genome
assemblies. Additionally, the integration of confidence values support ex-
pert interpretation. As it is expected that single-cell genomes further and
rapidly populate public databases, acdc will be a resource-effective tool in
the quality assurance of single-cell draft genomes, especially for users who
do not have the background to use the included techniques directly.

The remainder of this chapter will continue by first introducing a contam-
ination detection pipeline in a number of different steps. For each step,
necessary computational techniques are established. Based on that, the
software acdc is presented and evaluated using a large number of annotated
SCS assemblies containing clean and contaminated samples. Using metage-
nomic bins from the previous chapter, acdc’s capability to work on MAGs is
discussed, as well.

3.2 Methodology

Acdc detects contamination in a series of steps which are depicted in Fig-
ure 3.2. Starting with contigs from a given single-cell genome assembly, both
reference-free and reference-based methods are employed. In the former,
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tetramer frequencies are calculated first (1), resulting in a high-dimensional
vectorial representation which makes it possible to apply suitable machine
learning algorithms. As its high dimensionality would introduce a number
of adverse side effects in further processing, it is crucial to reduce dimension-
ality (2). This enables the accurate estimation of contamination confidences
on the basis of clustering (3). External tools are then used to both classify
sequences using ultrafast exact alignment (4) and to predict 16S rRNA genes
(5). In the case of detected contamination, further clustering algorithms are
employed to enable decontamination and export of clean samples. This is
done either manually (6) or automatically (7), with prior taxonomic annota-
tion. Results are then interactively visualized using a flexible web interface
(8). Most of these steps include a number of hyper-parameters crucial in
machine learning, for which acdc provides an auto-selection mode with
well-tested default values. A summary of parameters can be found in sec-
tion A.4. In the following, the steps depicted in Figure 3.2 are explained in
detail.

3.2.1 Reference-free detection

Steps 1&2: Data pre-processing and dimensionality reduction

In order to apply machine learning techniques, it is necessary to transform
contigs, represented as sequences, into a vectorial representation. Here, it is
common practice to use oligonucleotide signatures (Teeling et al., 2004). This
methodology has already been established in Chapter 2.2.1 and does not
need further introduction. As shown before, in metagenomics due to a large
range of possible sample sizes, selecting appropriate window parameters
can be difficult. In contrast, for prokaryote single-cell data, the range is much
more narrow. Typical bacterial or archaeal genome sizes average at around
5 Mbp (Koonin, 2011). Given this size, for both enabling accurate clustering
estimations and to generate window sizes that are large enough to capture
genomic signatures, it was found that a target number of ntarget = 1000 data
points delivers the best results. Choosing a smaller number may result in
too few data points per cluster to enable accurate clustering while choosing
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Fig. 3.3.: Difference between small and large window overlaps: two t-SNE repre-
sentations of the same sample with different window overlaps, colored
by contig identity. Left: w = 1000, ∆w = 2000. Right: w = 8000,
∆w = 1000.

a larger one will be computationally more expensive. Hence, window
parameters are estimated using the total number of base pairs nbp:

∆w = d
nbp

ntarget
e, w = 2 · ∆w (3.1)

Because of contigs smaller than w, the real number of data points n usually
differs from the given target by a small margin.

Furthermore, besides using l-mers as a characteristic genomic signature, the
use of coverage information was considered, as well. However, due to the
coverage bias in multiple displacement amplification (Woyke et al., 2011),
using this data for single genomes is problematic.

Similar to the application in metagenomic binning (section 2.2.2), the result-
ing high dimensional representation is reduced to two dimensions using
t-SNE (Van Der Maaten, 2014). An example is given by Figure 3.3. On the
left, it shows the representation of an assembly that resulted from using half-
overlapping windows, while on the right the same assembly was processed
using a much larger window overlap. Using this parameterization, neigh-
boring data points share more information and let t-SNE resolve individual
contigs as small “worms”. Even though the right representation more closely
resembles the assembly, some clustering algorithms may cluster contigs as
individual clusters which has to be prevented. Hence, it was found that
half-overlapping windows are suited better for clustering genomes.
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Step 3: Estimating contamination confidences

An integral part of acdc is the confidence and decision of whether a sample
is contaminated or not. This problem can be seen as a clustering task. Opti-
mally, one operational taxonomic unit (OTU, the set of genomic sequences
from one single cell) is represented as one cluster. This is the core underlying
assumption of acdc, implying that the presence of more than one cluster
indicates contamination. Thus, the task is to estimate the number of clusters
k.

This requires careful selection of methods and parameters (Estivill-Castro,
2002). In contrast to other applications such as metagenomic binning (sec-
tion 2), one is not primarily interested in the actual number of clusters,
rather in the distinction between k = 1 (no structure, clean sample) and
k > 1 (clusters, contaminated sample). As the notion of a cluster is ill-posed,
this is an inherently difficult task: Most techniques for estimating k operate
on cluster-specific characteristics, defined for k > 1 only, making them inap-
plicable in the presented approach. The case k = 1 requires an appropriate
null model to which the data is compared to in order to be able to detect
no structure. For example, the Davies-Bouldin index established in the
previous chapter can be used to estimate k. To achieve that, it uses cluster
compactness and separation which are not defined in the presence of only
one cluster. Techniques for this task were reviewed and two approaches are
particularly promising. They are described in the following

Testing for multimodality The dip-statistic test (DIP, Hartigan and Hartigan,
1985) can detect multimodality of pair-wise distances of data points in the
t-SNE representation. Given one cluster, this distribution can be assumed to
be unimodal, whereas a significant multimodal distribution indicates k > 1.
More specific, the dip statistic is based on the idea that a function is unimodal
if its cumulative density function (cdf) F is convex in [−∞, tL], of constant
slope in [tL, tU], and concave in [tU , ∞] (Kalogeratos and Likas, 2012), where
tL and tU denote lower and upper bounds of the cdf, respectively. To test
whether F belongs to the class of unimodal distributions U, the dip statistic
is defined as

dip(F) = min
G∈U

max
t
|F(t)− G(t)| (3.2)

where G are cdfs of functions in U. It measures the maximal deviation of F
from the nearest unimodal distribution. Hence, the smaller the dip values,

50 Chapter 3 Single-cell genome contamination detection



Fig. 3.4.: Construction of the nearest unimodal distribution (red) from a given
empirical distribution function (black). Support points of the greatest
convex minorant and least concave majorant are shown as dots. Three
different distributions are fitted. Left: normal, center: uniform, right:
bimodal.

the more likely F is unimodal. In practice, given an empirical cdf F with
n observations, the dip is calculated by constructing the nearest unimodal
distribution using the properties described above. In linear time, the great-
est convex minorant (gcm) in [tmin, tL] and least concave majorant (lcm)
in [tU, tmax] are calculated using an algorithm described in Hartigan and
Hartigan, 1985. Then, the maximal deviation from this curve defines the
dip. An example is given in Figure 3.4. It can be seen that the bimodal distri-
bution (right) has a much larger deviation (dip) from the fitted unimodal
distribution than both the normal and uniform distributions (left and center,
respectively). Based on this, the dip statistic calculates a p-value based on R
dip calculations on a reference distribution. It is defined as

pdip =
1
R

R

∑
r=1

1dip(F)<dip(Ur
n) (3.3)

where Ur
n consists of n elements sampled from a uniform distribution and

1 denotes the indicator function. The choice of the uniform distribution is
motivated by the observation that its dip value is asymptotically larger than
for any other unimodal distribution. The null hypothesis that F is unimodal
is rejected in favor of multimodality if pdip < αdip, a significance level.

Furthermore, to distinguish between k = 1 and k > 1 clusters, a method
by Kalogeratos and Likas, 2012 is adapted. Given a data set containing n
points, for each “viewer” the distribution of distances to all other points is
tested for multimodality using the dip statistic. The percentage of viewers
q = 1

n ∑n
i=1 1pdip<αdip indicating significant multimodality is observed and as

soon as q is larger than a small threshold qthresh, the full data set is considered
multimodal. The default parameter qthresh = 0.01% is robust, as evaluated
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by Kalogeratos and Likas, 2012. Hence, the estimated number of clusters
using the dip statistic is given by

kdip

= 1 , q < qthresh

> 1 , q ≥ qthresh

(3.4)

The runtime complexity of detecting multimodality with the dip statistic is
O (nv · R · n): For each of the considered nv viewer data points, a p-value
is obtained by R + 1 times calculating the dip value. The computation of
one dip value can be performed in O (n) (Kalogeratos and Likas, 2012). In
the case of significant multimodality, the computation of p-values can be
stopped early, after considering nv = qthresh · n� n data points only.

Connected component clustering A second method to distinguish between
k = 1 and k > 1 is counting the number of connected components (CC) in
a m-nearest-neighbor graph Gcc. It is constructed by connecting each data
point to its m (symmetric or mutual) nearest neighbors. In contrast to DIP,
where clusters have to have a reasonable size in order for multimodality to
be significant, the cluster size in CC can be arbitrarily small. CC clustering is
related to spectral clustering, in which the number of connected components
is given by the algebraic multiplicity of the eigenvalue zero of the Laplacian
matrix of a given neighborhood graph (Von Luxburg, 2007). Although, the
expensive computations of spectral clustering are not needed and k can be
determined much more efficiently. Using Tarjan’s algorithm (Tarjan, 1972),
the result can be found in linear time. For undirected graphs, the algorithm
is even simpler and only has to perform a depth-first search to visit all data
points in one cluster.

To accurately resolve contaminant clusters using CC clustering, the connec-
tivity of Gcc, in particular the choice of which neighbors are connected and
the setting of the parameter m, have to be chosen carefully. Maier et al.,
2007 argue that for the discovery of connected components as clusters, it
does not matter whether symmetric or mutual connectivity is used. In the
former, two data points xi and xj are connected by an edge if xi is a nearest
neighbor of xj and vice versa. In the latter case, the points are connected
only if both are mutual nearest neighbors. Empirical observations showed
mutual connectivity having the advantage that very small clusters with a
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Fig. 3.5.: Illustration of the complementary detection capabilities of DIP and CC us-
ing two different contaminated samples. Left: Using a mutual 9-nearest-
neighbor graph, CC identifies two clusters (very small contamination)
while DIP isn’t able to detect multimodality as seen in the distribution
of pairwise distances below. Right: Two overlapping clusters prevent
CC from detecting two components while DIP detects significant multi-
modality in the distribution of pairwise distances.

number of data points < m are still disconnected from other clusters, even
though the overall within-cluster connectivity decreases. Moreover, to iden-
tify the clusters as the connected components of the mutual m-NN graph, m
should be chosen to optimize the trade-off between having high probability
of being connected within clusters and high probability of having no edges
between the different clusters (Maier et al., 2007). Further empirical analyses
have shown that, in contamination detection in acdc, a default value of
m = 9 is robust. Here, the value of m was determined by taking a set of 201
clean assemblies (mdm, section 3.3.2) that are supposed to produce a single
connected component. For each assembly, from a range of different values
of m′ ∈ {1, . . . , 20}, the largest value m′ for which Gcc does not dissolve
into individual connected components anymore was recorded. From the
distribution of m′ (Figure A.4), the optimal value for m = 9 was chosen
to be the 90%-quantile. In the following, the estimated number connected
components (clusters) is given by kcc.

The time complexity of CC clustering is given by the depth/breadth-first
search performed in O (n + E) where E is the number of edges in Gcc. Be-
cause m is small, in this nearest-neighbor graph the number of edges is
small as well (E� n2). Hence, the dominating factor in the complexity is n,
keeping this computation in linear time.
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Contamination detection example Contamination may occur in a variety
of different cluster shapes and sizes. Both DIP and CC have been chosen
to be employed in acdc to detect those in an antagonistic fashion. While
the former is able to detect large and possibly overlapping clusters, the
latter is able to detect small and outlier clusters. An example is given
in Figure 3.5 where two different, contaminated samples are shown, left
and right, respectively. The 9-nearest-neighbor graph is shown, together
with the respective distribution of pairwise distances as used by the dip
statistic. While, in the left sample, the latter does not indicate significant
multimodality, a small trace of contamination can still be detected using CC.
In contrast, on the right-hand side sample, there are two large clusters that
form only one connected component, but now contamination is detected by
significant bimodality. Consequently, a given genome assembly is marked as
contaminated if kdip + kcc > 2. It is worth to note that, while this approach
can detect both small and large contaminants as individual clusters, it is
difficult to detect small clusters overlapping large ones, i.e. small traces of
contaminants highly related to the target genome.

Cluster re-assignments and outliers Furthermore, noisy data, e.g. from
very short contigs or from the inherent structure of some species might
form separate clusters even in the presence of only one OTU. There may
be t-SNE artifacts as discussed in section 2.2.2. To prevent false positive
contaminant identification from wrongly formed clusters, acdc modifies
cluster assignments in two steps:

1. Disregarding the possibility of chimeric contigs, a contig is expected
to appear in only one OTU. Thus, data points that occur in different
clusters, but belong to the same contig, indicate a wrong clustering.
All points of such a contig are reassigned to the cluster which has the
most points of the contig assigned.

2. An aggressive threshold is included that determines the minimum num-
ber of base pairs that is allowed to form a separate cluster. Smaller
clusters are considered as outliers and are neither included into the
calculation of contamination confidences nor into cleansing. The de-
fault threshold of 5000 bp works well throughout all tested data sets. A
lower threshold provides more sensitive results towards very low lev-
els of contamination and can be adapted by the user easily. This gives
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a more fine-grained control than for example setting m (the number of
nearest neighbors for CC clustering).

Confidence estimation using bootstrapping Last, the machine learning tech-
niques used in acdc, namely dimensionality reduction and clustering, de-
pending on data statistics, are not necessarily deterministic, hence introduce
certain amounts of variance over different runs. In the case of clear contam-
ination, i.e. well separated and compact clusters, these techniques agree
with high probability. The same holds true for the case of a clean sample
and one well-shaped cluster. However, in the case of an unclear contami-
nation state such as strongly overlapping clusters, results may vary. Hence,
in order to ease interpretation of results by domain experts, it is desirable
to provide confidence values gathered over different runs. For this task,
acdc employs bootstrapping (Hastie et al., 2009) with which it is possible
to calculate interpretable confidence measures. Bootstraps are generated by
randomly sub-sampling 75 percent of the original high-dimensional tetramer
data B-fold. Each fold is processed by applying dimensionality reduction
with t-SNE and subsequent testing using DIP/CC. A contamination confi-
dence value is obtained by counting the percentage of folds which detected
contamination:

νdip|cc =
1
B

B

∑
b=1

1kdip+kcc>2 (3.5)

3.2.2 Reference-based detection

Step 4: Sequence classification

Kraken (Wood and Salzberg, 2014) is employed as a fast alternative to
the popular BLAST method (Camacho et al., 2009). Based on a pre-built
database, Kraken assigns taxonomic labels to each contig from a sample.
Through the use of exact alignments of l-mers, it achieves classification
accuracy comparable to BLAST while being much faster. In acdc, Kraken
classifies contigs on a species level and assigns a taxonomy label to each
data point, depending on its originating contig. In case of an unclassified
species, a contig remains unknown.
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Acdc primarily focuses on de novo analysis without existing knowledge
from databases and it tackles the challenge to reliably answer whether a
given sample is contaminated or not. Reference-based cleansing is restricted
to the fast Kraken method while unsupervised detection of potentially non-
linear data clusters is performed by acdc. This distinguishes acdc from
ProDeGe which relies on both BLASTing predicted genes and a supervised
linear separation of contaminants, primarily aiming for an aggressive cleans-
ing with high precision.

Step 5: 16S rRNA gene prediction

Acdc utilizes RNAmmer (Lagesen et al., 2007) to predict the location of
highly conserved 16S rRNA gene sequences. Even if data could not be
classified by Kraken, this enables researchers to identify the higher-level
taxonomy of novel species quickly. Additionally, the location of the 16S
rRNA gene sequence can be seen as a marker: It is representative for the
whole cluster it is located in, and by exporting a cluster (cleansing), the
taxonomy for a full OTU can be obtained.

3.2.3 Decontamination

Step 6: Manual cleansing

If contamination is detected, acdc finds a clustering which allows for the
export of contigs from individual clusters, i.e. from the OTU of interest. As
this is a process of cleaning the sequence data from unwanted contaminant
data, it is referred to as cleansing or decontamination.

For this task, an optimal clustering has to be estimated. While CC provides
an optimal assignment by itself, for DIP the number of clusters k has to be
estimated. In contrast to detecting contamination where the task is to deter-
mine either k = 1 or k > 1, the cleansing step is slightly different. Similar
to metagenomic binning, it is known that k > 1, which makes it possible to
apply methods that estimate the number of clusters using cluster-specific
characteristics, only defined for that case. Many clustering and k-estimation
techniques are available for this task. In the previous chapter, it is suggested
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that the combination of hierarchical clustering and the Davies-Bouldin index
as a cluster validity measure works well for binning metagenomic tetramer
profiles. In acdc, the same approach is used. This can also be motivated by
the fact that this combination estimates the number of clusters accurately
even in the presence of imbalanced clusters, which was found to be the case
in contaminated SCS samples. Therefore, an optimal cluster assignment is
determined by finding the minimal (optimal) Davies-Bouldin index for a
given range of k ∈ {2, 3, 4, kmax}-clusterings using hierarchical clustering.
Because it was found that given sample assemblies rarely contain more than
five large clusters, indicating large amounts of contamination, the number
of maximal clusters, set to kmax = 5, is a robust choice. In the following, the
number of clusters for the dip statistic, as estimated by the Davies-Bouldin
index is denoted as kdip.

Based on this clustering, it is possible to clean an assembly by exporting
the given cluster as an individual fasta file. This can be achieved either
manually using the interactive web interface (Figure 3.7) or automatically as
explained in the following section.

Step 7: Taxonomy annotation and automatic cleansing

In the case of zero external information, the manual cleansing of an assembly
cannot be avoided. However, in many cases, at least a small percentage of
the contained sequences can be taxonomically annotated. This information
can be used to annotate more sequences by the means of the discovered
cluster structure. Here, the underlying assumption is that if a taxonomy is
found in a given cluster, the whole cluster can be labelled by it. However, it
has to be accounted for the occurrence of multiple taxonomies.

For this to work, first an optimal clustering Copt has to be selected. The
one with the highest contamination confidence νdip or νcc is taken with
corresponding number of clusters kopt. Next, for each cluster, taxonomies
annotated by Kraken, rRNA genes, or other tools are evaluated. Taxonomy
confidences for each cluster are calculated with respect to the number of
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Fig. 3.6.: Illustration of labelling contaminants and clean contigs using taxonomy
inference. The target taxonomy is phylum A. Assuming the rRNA
of phylum A is not present, cluster 2 can still be assumed to be clean,
because all other clusters can be labelled as contaminants. Assuming,
clusters 1 and 3 are unlabelled, the taxonomy given by rRNA in cluster 2,
lets conclude that clusters 1 and 3 are contaminants.

base pairs annotated with a given taxonomy in one cluster versus in all other
clusters:

ft,i =
nt

ni

ξt,i =
1
2

 ft,i +
ft,i

∑
kopt
j=1 ft,j

 (3.6)

First, the within-cluster frequency ft,i for taxonomy t and cluster i are calcu-
lated, with nt, ni being the number of base pairs annotated with t and the
total number of base pairs in cluster i, respectively. The confidence ξt,i of
how well cluster i is annotated with t is then given by the weighted sum
of the within-cluster frequency ft,i and its proportion in the whole sample.
Consequently, the taxonomy confidence is maximal if a cluster is annotated
with only one taxonomy and the same taxonomy does not appear in any
other cluster.

Next, given a cluster t that is partially annotated with multiple taxonomies i,
all unknown contigs are assigned the taxonomy with the highest confidence
ξt,i. This way, all contigs in a given assembly can be assigned a taxonomy as
long as in each cluster at least one contig can be annotated using external
knowledge. Furthermore, in many cases, analysts know to some extent what
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Fig. 3.7.: Acdc interactive result interface. For each sample shown in the left-hand
side table, visualizations are shown on the right-hand side. Individual
clusters can be exported in fasta format by clicking on the respective
cluster color on the bottom right.

taxonomy they are searching for. This information can be used to annotate
contaminants and clean contigs. A target taxonomy can be given by any
taxonomic rank. For example, if the target is known to be a specific taxonomy
(for example based on prior 16S rRNA analysis), all clusters annotated with
a different taxonomy can be assumed to be contaminants. An example is
given by Figure 3.6. Given a known target phylum A, clean and contaminant
contigs can be identified in two ways. First, assuming that cluster 1 and 3
have no taxonomy assigned at all, and one contig in cluster 2 was annotated
with rRNA indicating the target phylum, then based on the core assumption
of acdc (one cluster equals one OTU), clusters 1 and 3 can be assumed to be
contaminants. Second, if cluster 2 is assumed to be not annotated at all, but
clusters 1 and 3 are found to be of phyla different from A, both are labelled
as contaminants and the only remaining cluster 2 is assumed to be clean.

Step 8: Result visualization

Besides a fully automated mode, acdc provides contamination screening
results as interactive web pages. An exemplary result of twenty simulated
SCS samples is shown in Figure 3.7. For each sample on the left hand
side, represented as rows, confidences νcc and νdip are shown. A sample is
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marked clean when both νcc < 0.25 and νdip < 0.25. If either DIP or CC
found more than 75 percent of all folds to be contaminated, the sample is
marked appropriately. In case of no clear result, a sample is marked with a
warning status symbol. A third column with the number of species reported
by Kraken is shown. The user is able to inspect each sample for CC, DIP
and Kraken. On the right hand side, the sample is visualized using t-SNE
by default. In the unlikely event of a wrong cluster assignment, the number
of clusters k can be selected manually, with the most likely k being selected
by default. For Kraken, the assignments are fixed and can be inspected by
hovering on each data point. The interface allows for manual cleansing.
For that task, contigs from each cluster can be exported by clicking on the
corresponding color in the panel below. Locations of predicted 16S rRNA
gene sequences as reported by RNAmmer are indicated by an orange star.
A click on it will show the corresponding sequence. All information shown
in the interactive interface are also exported as a file in YAML format. This
allows for the easy integration in existing large-scale sequencing and quality
assurance pipelines.

3.3 Results

3.3.1 Computational performance

Acdc has low computational requirements. The steps as shown in Fig-
ure 3.2 can be broken down into individual runtime complexities. The data
pre-processing step, i.e. calculating oligonucleotide frequencies is done in
O
(
ninput

)
, ninput being the input assembly size. Accelerated t-SNE as re-

ported in Van Der Maaten, 2014 uses O (n · log n) time complexity, with n
being the number of input points generated in the previous step. In the case
of contamination (significant multimodality), the dip computations can be
stopped early, reducing runtime complexity to O (R · n). In the case of no
contamination, its runtime is in O

(
R · n2). Hence, the combined runtime

complexity of detecting contamination in acdc is quadratic in the case of
a clean sample, and linearithmic in the case of contamination. Acdc’s de-
contamination algorithm has quadratic runtime complexity because of the
involved hierarchical clustering.
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Practically, input data sizes are in the order of a few megabytes, as the inputs
are already assembled contigs, not on the raw data, i.e. reads. Given that,
using a quad-core consumer laptop, runtimes ranged from a few seconds to
ten minutes per sample, depending on the actual size and contamination
state. As stated above, the computationally most expensive step is the
calculation of the dip statistic which has quadratic runtime in its worst case
and has to be run for all bootstrap folds. This is sped up by parallelization.

3.3.2 Evaluation data sets

The evaluation of acdc can be divided into supervised (database-driven)
and unsupervised detection analysis. While the former is restricted to only
the method to classify sequences and the size of the underlying database,
the latter requires more careful assessment. In order to obtain accurate
results, it is necessary to use data with correct ground truth. As the manual
assignment of contamination is biased, the simulation of single-cell samples
or the analysis of existing samples with references are vital. To cover a broad
range of contaminant varieties, acdc was tested on several simulated and
real single-cell sequence data sets:

simulated: 20 single-cell genomes were simulated with varying amounts
of contamination and contaminant relatedness. By manually selecting com-
plete genomes from the NCBI database (Geer et al., 2009), clean and contam-
inated data sets, each containing up to 3 genomes were generated. Species
were chosen such that they are related on different taxonomic ranks, expect-
ing that distantly related species can be better separated than very similar
species. For each level, 3 assemblies were generated, containing 1 – 3 species.
The simulation of reads was done using ART (Huang et al., 2012) followed
by subsequent assembly using SPAdes (Bankevich et al., 2012). A more
detailed description of this data set can be found in Table A.3.

mix: Nine samples containing 6 draft genomes and 3 single chromosomes
were obtained from various sequencing projects (Table A.4). All samples are
known to be contaminated, however, an exact quantification of contaminated
sequences is missing due to the novelty of the data. A detailed description
of these data can be found in the supplementary material.
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benchmark: Sequence data from 30 single-cell genomes with low levels of
contamination were obtained (Clingenpeel et al., 2014a; Clingenpeel et al.,
2014b). Containing cross-contamination between 3 species (Escherichia coli,
Meiothermus ruber, Pedobacter heparinus), the median per-sample contaminant
proportion of 3% is very small (min = 1%, max = 30%).

mdm: Furthermore, 201 single-cell samples from the microbial dark matter
(MDM) project (Rinke et al., 2013) were taken to test the capability of acdc
on non-contaminated data. These data were manually curated.

Acdc was compared to the state-of-the-art contamination detection tool
ProDeGe (Tennessen et al., 2015) both in terms of supervised and unsuper-
vised detection capabilities. ProDeGe has been optimized to obtain a high
precision in the context of a known taxonomic level and database support.
It integrates a linear classification model to extend predicted genes to all
k-mers, displaying excellent behavior in aggressively curating according
samples. Unsupervised inspection is restricted to linear PCA only. In con-
trast, acdc has been optimized to provide good F-measures (i.e. precision
and recall) in curating, and it addresses database independent de novo de-
tection of contamination, thus providing a tool highly complementary to
ProDeGe.

3.3.3 Supervised analysis

Both ProDeGe using the BLAST algorithm and acdc using Kraken with the
“MiniKraken DB” were tested on the simulated and benchmark data sets.
These are the only two data sets for which entries for known contaminants
existed in both used databases. Both tools showed nearly identical high
performance (F1 > 0.95) in identifying contaminant sequences and didn’t
require any further evaluation.

3.3.4 Unsupervised analysis

The evaluation of unsupervised detection performance was carried out a) by
testing the ability to detect the correct contamination state of a given sample,
and b) by measuring the ability to correctly identify clean and contaminant
contigs.
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Data set Ident. clean samples Ident. contaminated samples

simulated 4/7 (3 warnings) 11/13 (1 warning, 1 clean)

mix 0/0 8/9 (1 warning)

benchmark 0/0 22/30 (6 warnings, 2 clean)

mdm
150/201

(39 warnings, 12 contaminated) 0/0

Tab. 3.1.: Acdc evaluation of contamination detection performance. Entries depict
the number of correctly identified clean and contaminated samples with
additional information about false predictions in parentheses.

a)
Acdc correctly identified the majority of both contaminated and clean
genome assemblies throughout all data sets (Table 3.1). This result demon-
strates the ability of acdc to single out contaminated versus clean genome as-
semblies, specifically without any reference to a database in de novo settings.
For this part of the evaluation, it was not possible to compare to existing
methods because they either do not have the functionality to distinguish
clean and contaminated samples (ProDeGe), or operate reference-based
only (CheckM). Warnings are sometimes issued for assemblies with unclear
contamination state. Here, further inspection often revealed the presence of
small outlier clusters throughout a small number of bootstraps. In the rare
case of strongly imbalanced and additionally overlapping clusters, acdc is
not able to detect contamination because of missing structure in the data.
Further, if the contaminant is too related to the target (e.g. different strains
from the same species), genomic signatures differ only by a very small
percentage of all base pairs, making it impossible for acdc to detect them.

b)
Acdc was compared1 to ProDeGe in terms of precision/recall performance
with respect to the number of correctly identified clean base pairs in each
sample. For this task, the functionality to export clean sequences common
in both tools was used. Since the evaluation is performed for the setting of
limited prior biological information, no taxonomy is provided for ProDeGe,
restricting the use of reference sequences from databases. Results in Table 3.2

1For the comparison the ProDeGe online version at https://prodege.jgi.doe.gov/ was
used.
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Data set Precision
ProDeGe

Recall
ProDeGe

F1
ProDeGe

Precision
acdc

Recall
acdc F1 acdc

simulated
(kingdom) no result no result no result 1.00 1.00 1.00

simulated
(phylum) no result no result no result 0.99 0.98 0.99

simulated
(class) no result no result no result 1.00 0.99 0.99

simulated
(order) no result no result no result 0.99 0.98 0.99

simulated
(family) no result no result no result 1.00 1.00 1.00

simulated
(genus) 0.22 0.32 0.22 0.95 0.97 0.96

simulated
(species) 0.50 0.33 0.36 0.38 0.77 0.46

benchmark
(E.coli) 1.00 0.88 0.93 0.97 0.99 0.98

benchmark
(M.ruber) 1.00 0.73 0.83 0.99 0.99 0.99

benchmark
(P.heparinus) 1.00 0.70 0.81 1.00 1.00 1.00

Tab. 3.2.: Precision, recall and F1-scores of predicted clean base pairs for both
ProDeGe and acdc on the simulated and benchmark data sets. Each row
contains average values of the given sub data set. Bold values depict the
best performing entry. Entries marked as “no result” either produced
an empty clean fasta file or did not finish computation.
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were averaged over different samples from the simulated and benchmark
data sets. Both ProDeGe and acdc correctly identified clean contigs in the
benchmark data set with high precision. However, on average acdc was
able to recall 22% more clean sequences on the data set, due to the more
aggressive design of ProDeGe. Next, ProDeGe was not able to identify the
majority of clean sequences in the simulated data set without taxonomic
information. In those cases, mostly all contigs were marked as contaminants,
resulting in an empty clean sequences file. This fact can be attributed both
to ProDeGes behavior of selecting contaminants with high specificity Ten-
nessen et al., 2015 and to its missing ability to distinguish between clean
and contaminated samples. Results of 4 samples could not be obtained,
because computation didn’t provide any output. On the same data, acdc
was able to correctly identify the majority of clean sequences with high
precision and recall. For samples that contain closely related species, it is
difficult to split clean and contaminated sequences. For example, in the
simulated data, samples from the same genus contain species with an av-
erage nucleotide identity (ANI) of 73%. This fact led to a slight drop in
performance. Sequences containing strains from the same species (ANI in
the simulated samples: 95%) didn’t contain enough distinct information to
be correctly identified, showing the limits of acdc’s reference-free detection
capabilities.

3.3.5 Assessing the purity of metagenome bins

As shown in the previous chapter, the production of 100% pure bins still
constitutes a problem for state-of-the-art unsupervised binning tools. Conse-
quently, an unsupervised detection of impurities in MAGs is required. For
that task, operating in the same way as for SAGs, acdc can be applied to
MAGs as well. In order to investigate its ability to detect impure bins, acdc
was exemplarily applied to all bins of the CAMI-93 data set from last chapter,
for both the gold standard binning which can be assumed to contain pure
bins only, and the suboptimal, "estimated binning" found by the clustering
procedure described in that section 2.3.5. The latter should contain both
pure and impure bins. In the following, purity is based on contamination
confidences, i.e. pure bins should have low confidence while for impure
bins confidence should be high.
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Fig. 3.8.: Distributions of confidences νcc and νdip for all bins in both the gold
standard and the estimated binning from last chapter for the CAMI-93
metagenome.

Results are depicted in Figure 3.8 which shows histograms of the contami-
nation confidences νcc and νdip for all bins in both the gold standard and the
estimated binning. First, looking only at the gold standard binning at the
top, it is visible that most bins are indeed clean (contamination confidences
concentrated near zero), with few contaminated bins. Contrary, in the esti-
mated binning the number of impure bins outweighs the clean ones. This
confirms the above assumption. Interestingly, the gold standard binning
could not be detected as fully clean. A closer analysis of the 14 impure bins
revealed that contamination in nearly all cases was caused by very small
clusters (< 5% of total bin size). A BLAST (Camacho et al., 2009) analysis of
the contaminant contigs indicated the presence of DNA from three bacterio-
phages and five plasmids throughout the impure bins. One bin contained
contigs from three different species of the same phylogenetic order. The 37
impure bins from the estimated binning contained contaminants represented
by clusters that were more distinct and larger than contaminants in the gold
standard binning. This is the expected observation, because contaminants
are mostly made of sequences from distinct species.

3.4 Discussion
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3.4.1 Influence of assembly size and quality

Depending on the sequencing quality, the assembly supplied to acdc may be
of different quality, too. One measure of assembly quality is the N50 value,
the median length of all contigs. A low N50 value indicates that a larger
number of contigs are small. In some cases, there may even be hundreds of
contigs that are smaller than the minimum contig length of acdc (default:
100 bp). If the contamination is present in smaller contigs only, acdc cannot
detect it. Furthermore, if the assembly itself is rather large, the estimated
window size w is large as well (section 2.2.1). In that case, the assembly may
also contain contigs that are smaller than the window size but still larger
than the minimum contig length. Such contigs are still included in acdc’s
detection procedure and result in one data point per contig. Because of the
different lengths of these contigs, they capture different characteristics of
the genome. Hence, such contigs introduce a certain amount of noise in
the calculated representation and, due to the possibly different signature,
may be mistaken for contamination. A similar effect could be observed
when the assembly is very small. Acdc’s set of parameter was chosen to
work well for typical sizes of prokaryotic genomes, starting from 2 Mbp. If
an assembly is much smaller, w will be small as well. This would result
in capturing local genome signatures such as from individual genes. Such
local features can differ greatly within one genome, and possibly lead to
unwanted effects such as the formation of individual clusters that may be
mistaken for contamination. In contrast, the estimated window width for
normally sized prokaryote genomes is large enough to smoothen out such
effects.

3.4.2 Influence of horizontal gene transfer and
repeats

There were few mdm samples that have been identified as contaminated. They
displayed a quite distinct cluster structure. Further manual investigation
on a small subset of these samples revealed the presence of true contami-
nation which was not identified during manual curation. Furthermore, the
sequence of a bacteriophage was identified. Other analyzed samples not
presented in this work included plasmids, represented as distinct clusters.
Hence, the found structures highlight biologically interesting phenomena.
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Horizontally transferred genetic material (HGT) such as from bacteriophages
or plasmids often have genomic signatures that significantly differ from
their host. Along with phylogenetic analysis, this property can be used to
detect HGT (Koonin et al., 2001). Consequently, HGT may manifest itself
in pronounced clusters that may be mistaken for contamination. Although,
in acdc, not all HGT directly leads to the formation of distinct structures,
mostly due to the following reasons:

• Given the HGT length is smaller than the used window size, the impact
on the resulting signature may be negligible.

• If the formed HGT cluster is smaller than the aggressive threshold, it
is discarded as an outlier.

• If the HGT is located in a much larger contig, because of contig re-
assignment, the respective data points will be assigned to the cluster
of the originating contig.

The same observations can be made for repeating DNA elements which
have a signature that strongly differs from the originating genome. Given
the assembly in question was generated by a sequencing technology that is
able to resolve terminal or tandem repeats, again depending on the above
mentioned points, such may form distinct clusters.

3.5 Summary

Building on the previous chapter, the software tool acdc uses oligonucleotide
frequencies to detect and remove contamination in single-cell genome data.
Operating both in the presence and absence of references from databases,
acdc was able to predict the contamination state in the large majority of
samples from four unrelated data sets, containing a total of 258 single-cell
genome assemblies. Additionally, clean and contaminant sequences were
correctly identified with high recall and precision. In the absence of a given
target taxonomy which is required by similar methods (i.e. ProDeGe), acdc
was still able to correctly predict contamination based on state-of-the-art
techniques from unsupervised machine learning. Complementary to other
tools, the presented software does neither require the prediction of (marker)
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genes nor existing knowledge from databases to detect contaminants and
to separate contaminant from clean sequences. Although, supplemental
database information will aid identification, for example of closely related
species. These findings make acdc an ideal tool to complement state-of-
the-art contaminant detection and cleansing methods such as ProDeGe or
CheckM in the context of de novo analysis with limited taxonomic informa-
tion or limited availability of reference sequence information.

Furthermore, early results on the application of acdc for detecting impurities
in MAGs, showed promising results and will be pursued in the future. A
number of results indicate that acdc may also be used to detect the pres-
ence of horizontal gene transfer. Due to the limited ability to detect such
sequences in de novo assemblies of unknown species, acdc could be used as
a guidance. To that extent, a modification of default parameters could bring
improvements. Last, the current approach of using oligonucleotide frequen-
cies as a vectorial representations cannot resolve species-level contamination,
even with an optimal choice of window parameters. To overcome this limi-
tation, in the future, alternative representations may be investigated. Here,
Local Binary Patterns (Kouchaki et al., 2016) or space-filling Hilbert Curves
(Gu et al., 2016) constitute promising candidates.
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4.1 Background

Flow cytometry (FCM) is a technology that is commonly used for the rapid
characterization of cells of the immune system at the single cell level. Based
on antigens presented on the cell surface, cells of interest are targeted by a
set of fluorochrome-conjugated antibodies (markers). They pass through
a laser beam one-by-one at over 10 000 cells per minute (Shapiro, 2005).
Scattered light of different wavelengths for each marker is measured and
recorded by sensitive detectors. This subsequently creates a unique intensity
profile that allows for differentiation of cell types, a process commonly
known as "sorting". FCM can be used to physically sort single cells from a
metagenome using targeted enrichment (Blainey, 2013). The most common
use of FCM, however, is in a clinical setting, such as for the diagnosis of
cancer and heterogeneous immunodeficiencies. It is also widely used in
research, for example in immunophenotyping where it holds great promise
for assessing the immune status of patient populations. Within a blood or
tissue sample, the most common measurement of interest is cell frequency
(i.e. the proportion of a cell population), either absolute or relative to a parent
population. Variations in cell frequencies can give important information
about the immune status, for example they enable easy diagnosis of acute
leukemia (Brown and Wittwer, 2000), or allow association of cell types with
a biological variable, i.e. phenotype or clinical outcome (Aghaeepour et al.,
2016).
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Fig. 4.1.: Density plot for two channels "CD-3" against "SSC-A". Each dot repre-
sents a cell and corresponding one-dimensional densities are attached
at the top and left. The shown data is an example of gating T-cells from
lymphocyte singlet cells. Axis values correspond to intensity values.
Knowing that T-cells (right cluster) express CD3, they can be delineated
from other lymphocytes (left cluster). The corresponding density esti-
mates for both channels are shown along the left and top axis. The CD3
threshold is located in a valley between the density peaks from both
populations.
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The accurate determination of cell population frequencies is a key aim in
FCM analysis. Using differential expression of one or more markers, it is
possible to delineate cell populations of interest, a process commonly known
as “gating”. This task usually comprises the manual inspection of bivari-
ate density plots using marker channels that were selected from biological
knowledge. The latter includes information about differences in expression
levels of certain cell types and constitutes strong prior information for gating.
Subsequently, for each sample, cell populations are identified by drawing
regions of interest or setting channel thresholds (Figure 4.1). While some
populations are easy to gate, populations with very small cell proportions
(rare populations) can be challenging. Large populations can obscure rare
ones, such that they do not necessarily appear as clusters or well pronounced
density peaks, hence are difficult to detect. Gating is a labour-intensive and
highly subjective process (Saeys et al., 2016). This is mainly due to the man-
ual exploration of a large number of intensity plots and inconsistent views
on at which position exactly to set gates. Furthermore, in large FCM studies,
thousands of samples have to be gated, making it difficult to consistently
gate all of them manually. In contrast, automated methods offer little to no
bias and comparable variability (Aghaeepour et al., 2013; Finak et al., 2016).
Thus, there has been substantial interest in developing methods that ease
the process of identifying cell populations as much as possible, and a large
variety of tools have been developed (Kvistborg et al., 2015; Saeys et al.,
2016; Aghaeepour et al., 2013).

In general, automated tools for FCM gating can be distinguished into unsu-
pervised and supervised ones. While the former do not require information
about the target population to gate, i.e. discover hidden structures, the latter
require characteristics such as cell membership as examples from which
gates on unseen samples can be inferred. Common to both approaches is the
required capability to resolve clusters in a high-dimensional space. For this
task, there has been interest in the application of dimensionality reduction
and clustering techniques, for example as presented in the past two chapters.
A particular example is given by "viSNE" (Amir et al., 2013). Such methods
are applicable for small, targeted FCM studies with a comparably small
number of samples and cells per sample. Unfortunately, in complex FCM
studies comprising a large number of markers and populations to gate, cells
do not necessarily form distinct clusters that would be easily discoverable.
An example is given by Figure 4.2 which shows the t-SNE (Van Der Maaten,
2014) representation of 19 marker channels of a large population of CD45
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Fig. 4.2.: T-sne plot of a population of 345 637 CD45 cells (dots), colored by the
child populations "Granulocyte Pre" and "not(Granulocyte Pre)" cells.
Both populations do not form two distinct clusters in this representation.

cells. Although there is some clear structure, it is visible that both child
populations are not distinct from each other. Consequently, an approach
solely based on dimensionality reduction and clustering cannot gate both
complex populations. Additionally, due to the large number of cells per
sample (usually > 1× 105 cells), running t-SNE can take multiple hours per
sample, making it highly resource-intensive for a large number of samples.
Hence, more sophisticated techniques are required.

Several automated gating tools are based on techniques from machine learn-
ing. They aim to eliminate the traditional approach of inspecting bivariate
channels plots by considering all channels at once instead of only two at a
time. While these methods have shown very good performance on many
data sets (Mair et al., 2016), they still suffer from two major drawbacks,
especially pronounced for large sets of highly diverse FCM samples. First,
in order to describe populations of interest, the fine-tuning of a set of hyper-
parameters is crucial and common to all tools, in particular in the context
of small populations where the underlying machine learning task is quite
challenging. Depending on the method, practitioners might not have the
required knowledge to set those optimally (Kvistborg et al., 2015). In the
presence of high sample diversity, fine-tuning such parameters is essential
and might take a significant amount of time. Due to the difficulties in finding
an optimal set of parameters, it is also complicated to compare such tools.
Second, when incorporating machine learning, interpretability of results is
limited (Lisboa, 2013), leading to a lack of general understanding of how
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such methods work. Hence, it is problematic to verify gates from a biolog-
ical standpoint (Kvistborg et al., 2015). Another aspect of FCM studies is
quality checking of results, an essential step in the accurate identification
of populations, and ensures that no wrong conclusions are drawn from the
data in later steps. For that reason, and also because of the familiarity with
the traditional approach of inspecting bivariate density plots, for quality
checking, manual gating is the current standard practice.

FlowDensity (Malek et al., 2015) takes another point of view and tries to
automate the threshold selection based on density shape features. The
algorithm works in an unsupervised fashion. When customizing thresholds
on a per-population level, one or more channels are inspected, and density
features such as differences in extrema, slope changes, or the number of
peaks are examined, generally based on a pre-determined manual gating
hierarchy. Gates in the form of channel thresholds are estimated, from which
sub-populations can be extracted (Figure 4.1). Provided hyper-parameters
are appropriately chosen, flowDensity offers a state-of-the-art tool for the
accurate identification of cell populations that matches what would have
been obtained through manual analysis (Finak et al., 2016). Once the rules
for each population are set, thresholds are automatically and individually set
for each new data file, similar to the manual tweaking that operators tend to
do, but in a data-driven fashion. As a result, flowDensity results are robust,
reproducible and the approach performs better than the manual alternative
it is designed to match (Aghaeepour et al., 2013). However, undertaking
a supervised setup does require a significant time component in order to
obtain the optimal results.

In this chapter, I present a novel software tool called “flowLearn” (avail-
ability: section A.1.2). Using density features, it works the same way as
flowDensity, but does not require a practitioner to manually tune hyper-
parameters for an optimized outcome. Rather, it works in a semi-supervised
mode, and requires the gating of one or few characteristic samples by a hu-
man expert in the form of thresholds. These thresholds are then transferred
to all samples in an automated way by means of so called derivative-based
density alignments. In contrast to methods with a high-dimensional under-
standing of FCM data, the presented method does not have to deal with the
problem of noise inherent to such spaces. It reduces the problem complexity
by relying on traditional, prior biological knowledge.
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Besides this highly efficient and effective mode, it also opens the way to-
wards a quality control of samples which have already been gated: By
comparing optimal (manually verified) and predicted gates, it can identify
samples that stand out, for example due to biological variation or differences
in laboratory sample preparation and analysis. Furthermore, it can be used
to spot problems in existing gating hierarchies, offering the possibility to be
used to identify problematic gates.

The absence of difficult-to-set hyper-parameters, combined with the use of a
small amount of example gates makes this approach tractable. Results are
easy to interpret and verify, and offer user-interactive adjustments on the
predicted gates in specific circumstances. Using two large and diverse data
sets for which accurately set and verified gates exist, and by comparing to
two other recent state-of-the-art methods, DeepCyTOF (Li et al., 2017) and
FlowSOM (Van Gassen et al., 2015), flowLearn’s superiority is demonstrated
for the classical and practically very relevant setting of comparably low
dimensional data and imbalanced populations. It exhibits high to very high
accuracy in terms of predicted cell frequencies and F1-measures of identified
populations, having low computational complexity.

4.2 Methodology

4.2.1 Pipeline

FlowLearn is based on four main steps that are depicted in Figure 4.3:

1. Input to the tool is a set of related FCS files (samples)

2. On each sample, it solves the task of extracting sub-populations from
a given parent-population. To achieve this, marker channel densities
of the desired population are calculated and a pairwise comparison of
all densities is performed.

3. Based on the resulting distances, one or more prototype(s) (red) are
selected, for which manual gating is performed.
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Fig. 4.3.: FlowLearn pipeline to gate one population in four consecutive steps.

4. Each prototype density is aligned to all other densities which makes it
possible to predict thresholds by transfer between the aligned densities
(blue).

A more detailed procedure on how to apply flowLearn to a set of samples
and populations is given by Algorithm 1. Given that, in the following, the
four steps will be described in-depth.

1: Input FCM data

A dataset S = {s1, s2, . . . , sN} is defined as a collection of N related sam-
ples generated using the same panel of antibodies (markers). Each sample
contains a set of cells with marker-based measurements of fluorescent in-
tensities, and any subset of cells is called a population. In the following,
a population with M cells is assumed, and each cell has measurements in
the form of marker intensities. A marker channel for sample si is defined
as the set Ci = {c1

i , . . . , cM
i } of marker intensity measurements for all M

cells. The set of marker channels is experiment-specific, and used across
all samples. Furthermore, a sample-specific channel threshold ti splits up

4.2 Methodology 77



Algorithm 1 Applying flowLearn to gate all populations in a given set of FCS
files: First, densities are calculated once for all channels. Second, prototype
densities are identified and manually gated. Third, all other densities are
aligned to the prototypes and thresholds are transferred. This is repeated
for each population of interest, starting with all cells.

Input: set of N FCS files, gating hierarchy H
1: parentPopulation← all cells
2: childPopulation← next in H
3: while not all populations in H gated do
4: for all FCS files si do . Calculate densities once
5: Zi ← cells matching parentPopulation in si
6: for all channels j do
7: dj

i ← density on j-th channel for cells in Zi
8: end for
9: end for

10: for all considered channels j do . Predict thresholds
11: Dj ← distances between all densities dj

i , ∀ samples i
12: Pj ← np prototype densities, w.r.t. Dj
13: let expert set reference threshold(s) on each density in Pj
14: for all non-prototype densities m do
15: p← nearest prototype w.r.t. Dj
16: a← DDTW alignment between m and p
17: transfer reference threshold(s) from p to m using a
18: end for
19: end for

20: gate childPopulation using reference and predicted thresholds
21: parentPopulation← childPopulation
22: childPopulation← next in H
23: end while
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a given channel into two distinct sub-populations Ci1 and Ci2 , such that
Ci = Ci1 ∪ Ci2 and Ci1 ∩ Ci2 = ∅. A gate is defined by a set of thresholds
for one or more channels and can delineate sub-populations from a given
parent population. Last, a gating hierarchy is the consecutive extraction of
sub-populations, starting with one root population that usually contains all
cells in the FCS file. It is assumed that the gating hierarchy for a dataset is
known, meaning that for each parent population, the set of channels to gate
is given.

2: Density estimation

Given a parent cell population, from which sub-populations should be
gated, for each sample and channel to gate, flowLearn uses kernel density
estimation (such as in Venables and Ripley, 2013) to generate a unique
density profile over a regular grid of G = 512 points (Algorithm 1, lines 4–9).
For the purpose of gating, a density profile has to fulfill two main properties.
First, cell populations have to be sufficiently captured by individual density
peaks. Second, the density should be smooth enough such that alignment
techniques in later steps do not fail, i.e. variations not caused by the presence
of a cell population should not be captured. More formally, all cells from
a given marker channel are binned to an equally spaced grid with G bins.
Next, a Gaussian kernel function K is used to calculate a density e for each
bin x:

e(x) =
1

G · h
G

∑
j=1

K
(

x− xj

h

)
(4.1)

The bandwidth h is determined by Silverman’s rule of thumb (Silverman,
1986). Empirical observations showed that this choice captures cell popu-
lations well, but in some cases also captures unwanted noise. To account
for that, the density is smoothed to avoid the matching of spurious density
peaks in subsequent alignments. While a more careful choice of bandwidth
may help, a simpler solution is given by the use of smoothing splines (Hastie
et al., 2009) that allow for a more direct control over the smoothness. This is
achieved by finding a cubic spline function d that minimizes

G

∑
j=1

(d(x)− e(x)) + λ ·
∫

d′′(x)2dx (4.2)
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Here, the parameter λ controls the degree of smoothness in terms of the
second derivative of d. While λ = 0 allows for any function d, choosing
larger values increases smoothness. Further empirical observations showed
that, in flowLearn, a default value of λ = 0.4 resulted in the best performance
on all data sets.

In the following, a smoothed density for channel Ci is denoted as di = g(Ci),
where g estimates and smoothens a density from a given channel and parent
population in sample si. In the resulting distributions, pronounced cell
populations are visible as density peaks (Figure 4.1). All further processing
is done on the N densities for each channel only. For clustering in the next
step, pairwise L1 distances between all densities are calculated as well.

3: Example gates

The alignment (step 4) of two channel densities can be inaccurate if they are
very different from each other. In that case, thresholds might be transferred
wrongly. To prevent this, flowLearn selects prototypes that define sample
groups (Algorithm 1, line 12). Parameterized with the number of prototypes
np, it clusters all densities for each channel and selects np samples that
represent each set accurately. It was found empirically that for this task, a
k-medoids clustering (Friedman et al., 2001) with k = np worked best. In this
approach, similar densities are characterized by their absolute difference (L1

distance). Experiments using other distances for clustering, for example the
alignment distance, showed worse results. The number of prototypes should
be chosen according to the sample diversity in the data set, and desired
gating accuracy. While often np = 1 shows very good results (section 4.4) ,
with increasing complexity, np should be increased accordingly. It is worth
to note that, first, np can be different for different channels, depending on
the data complexity, and second, prototypes for different channels are not
necessarily from the same sample.

Next, having the prototypes identified, it is the task of an expert analyst to set
gates as accurate as possible, resulting in prototype thresholds (Algorithm 1,
line 13). A gate that delineates two populations can be given by lower and
upper thresholds for at least one channel. In Figure 4.1, the T-cell population
(right cluster) is defined by a lower threshold on the CD3 channel, meaning
that all cells with higher CD3 intensity belong to the target population.
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The CD3 threshold is located in a valley between the density peaks from
both populations. If necessary, an upper threshold can be set as well, even
though it is not necessary in this particular example. Also, here the SSC-A
channel is irrelevant for gating. A gate can be defined by more than one
channel, where two channels are usually chosen for the ease of visualization
and interpretability. A limitation is that prototype thresholds have to be
perpendicular to the channel axes, though current efforts are focused on
addressing this.

4: Alignment and gate transfer

Given a prototype sample with density dp, a known prototype threshold tp,
and another sample’s density di, flowLearn is a function f (di, dp, tp) = t̂i ≈ ti,
where ti is the unknown true threshold in di. In order to estimate t̂i, it is
necessary to align di and dp. For this task, Dynamic Time Warping (DTW,
Sakoe and Chiba, 1978; Ratanamahatana and Keogh, 2004) is a common
choice. Given a distance matrix D, in which the entry Dm,n corresponds
to the quadratic difference between the m-th and n-th element of di and
dp, respectively, DTW finds a warping path w through D. The k-th entry
wk = Dm,n corresponds to the alignment of the respective elements in di and
dp. The goal is to find

w∗ = arg min
w

1
K

√√√√ K

∑
k=1

wk (4.3)

The optimal path w∗ has to fulfill boundary, continuity and monotonicity
constraints and can be found elegantly using Dynamic Programming (Sakoe
and Chiba, 1978). An example of an optimal warping path is given by
Figure 4.4.

In flowLearn (Algorithm 1, lines 14–18), instead of using distances between
absolute density values, local derivatives are used instead. This technique
is commonly known as Derivative Dynamic Time Warping (DDTW, Keogh
and Pazzani, 2001) and offers improvements of the original DTW algorithm
for the current application. DDTW puts more focus on aligning shapes.
More specifically, because of differences in the size of cell populations, the
associated density peaks can locally differ in height, which constitutes a
problem for regular DTW: because it only compares absolute height values,
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Fig. 4.4.: Example of a DTW alignment between two sequences A(x) = sin(x),
B(x) = sin(x + 3

4 cos(x)). The warping path shows how the stretched
peaks in B are matched with those in A.

local differences make it difficult to align the corresponding density regions
(Keogh and Pazzani, 2001). This effect can be remedied by considering
derivatives instead. In the case of aligning FCM densities, this is the pre-
ferred way, because thresholds are mostly characterized by density features
such as extrema or slope changes (Malek et al., 2015). For DDTW, flowLearn
uses the average of two slopes as a robust estimate (Keogh and Pazzani,
2001) of the local derivative of a density d:

d′i =
(di − di−1) + (di+1 − di−1) /2

2
(4.4)

Last, to disallow arbitrary warping paths that would align large parts of one
density to only small parts of another one (singularities), flowLearn uses a
step pattern (Myers, 1980) to restrict the direction of the warping path and
effectively constraints its slope.

Once the alignment between two densities is calculated, thresholds can be
transferred. Illustrated in Figure 4.5, each point in the red-dashed prototype
density dp is matched with a point in the solid-black test density di. This
makes it possible to transfer the known thresholds tp to predicted thresholds
t̂i. The resulting threshold prediction on the right contains both ti (red) and
t̂i (blue) with a nearly perfect match. Using flowLearn, it is also possible to
gate rare populations by the alignment of density tails. Rare populations
usually result in flat parts of the density, although peaks do not need to be
very pronounced in order to be aligned, when there is another, larger density
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Fig. 4.5.: Example of how thresholds are transferred using DDTW alignments.
Top: The red-dashed prototype density dp is aligned to the solid-black
test density di. The transfer of threshold location is indicated by an arrow.
Bottom: Test density di with predicted (blue) and true (red) thresholds, t̂i
and ti, respectively. Both thresholds match up well.

peak that can be aligned properly. Only a few cells of another rare population
are needed in order for the density to extend into a tail, containing the rare
population. That the tail is aligned correctly follows directly from the correct
alignment of the adjacent, larger peak.

It is worth mentioning that, in the context of FCM gating, the idea of align-
ment has already been proposed in the technology dubbed per-channel basis
normalization (Hahne et al., 2010). Here, specific density landmarks are
identified and aligned. By using parameter-less shape matching for arbitrary
shapes, flowLearn improves upon this. In particular, it can take into account
rare populations, which are not easily captured by using parameterized
density models as in per-channel basis normalization.

4.2.2 Evaluation measures

FlowLearn is evaluated by assessing its performance per predicted popula-
tion: For that task, two measures are used. First difference percentages in
median cell frequencies

d f =
median| fi − f̂i|

median fi
(4.5)

are calculated, where for each sample i, fi and f̂i are cell frequencies of
a given population with regard to the ground truth and predicted gates,
respectively. Second, F1-measures for all ground truth and predicted popu-
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lations are calculated: Given one sample and population, for one or more
channels, true and predicted thresholds, ti and t̂i, define a gate. Furthermore,
a sub-population is defined by all cells that fall within the gate, i.e. have
larger/smaller density than the lower/upper threshold for each involved
channel. For the sub-population, the true and predicted set of cells, S and Ŝ,
are known. Then the performance on this particular population and sample
is defined by

F1 = 2 · precision · recall
precision+ recall

(4.6)

where precision and recall are calculated in terms of S and Ŝ. While analysts
are mostly interested in the accuracy of cell frequencies, using the F1-score
for evaluation provides an additional, more informative measure. It is worth
to note, that even though thresholds might differ significantly, the agreement
of population memberships as measured by the F1-score can still be high.
This is the case when thresholds differ in regions with only a low number of
cells.

4.2.3 Quality checking cell population thresholds

Thresholds might be predicted wrongly either because of sample diversity
(i.e. failed alignments with too different prototypes), or because of gates that
were set wrongly in the first place. The prediction capabilities and evaluation
measures of flowLearn can alternatively be used as a tool for detecting
such irregularities in a given set of samples and already existing gates.
Samples with deviant F1-scores can be an indication of unexpected biological
variation, differences in reagent preparation and analysis, or wrongly set
thresholds. FlowLearn give clues to an expert to further analyze identified,
possibly problematic samples or gates. Given an input dataset with existing
gates in the form of channel thresholds, quality checking is performed as
follows. Similar to Algorithm 1, for each analyzed population:

1. Use flowLearn to identify np prototype densities.

2. Let flowLearn gate all other non-prototype samples.

3. Compare predicted populations with ones defined by existing gates.
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4. Samples with significant deviation from the average F1-score suggest
problems or give hint to unexpected biological variation.

FlowLearn provides the functionality to identify such outlier samples. Con-
sidering the distribution of F1-scores in a given population, it uses the
rule of thumb (Upton and Cook, 1996) that outliers are given by samples
with F1 < Q1 − 1.5 · IQR, where Q1 is the 25%-quantile and IQR is the inter-
quartile-range of the distribution of F1-values.

4.2.4 Implementation and computational
complexity

FlowLearn is available as an R-package. By default, using the density
function, flowLearn uses a smoothed Gaussian kernel density estimate with
a granularity of G = 512 points. This setting is a good compromise between
speed and accuracy: For coarse densities, the alignment is fast, however
prediction accuracy will suffer. The subsequent spline fitting is performed
using R’s smooth.spline function. For prototype selection, the function pam
of the package cluster is used. FlowLearn provides separate methods to
identify prototype densities and to predict other samples from there. This
way, it can be integrated into existing analysis pipelines.

Computational time complexity of the gating of one population can be
broken down into multiple steps. First, density calculation and spline fit-
ting (Algorithm 1, lines 4–9) is performed in O (N · (M + G log G)) and
O (N · G), respectively. The distance matrix calculation and subsequent
prototype selection (Algorithm 1, lines 11–12) is done in O

(
N2). By us-

ing warping constraints, DDTW takes place in O
(

N · G2). Consequently,
flowLearn has quadratic time and memory complexity with respect to the
number of samples, however practical requirements are very low.
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4.3 Study design and evaluation data
sets

To demonstrate flowLearn’s capabilities to accurately identify populations
on a large number of samples, it was evaluated on two distinct data sets
(Mice, FlowCAP). Both data sets were used in real-world applications, con-
tain diverse samples, and were augmented with carefully set gates in the
form of channel thresholds. For each sample and cell population in both
data sets, flowLearn identified np prototypes, and predicted gates on the
remaining test samples using only the prototypes as a reference. For each
population, median cell frequencies and F1-scores are reported to assess
flowLearn’s performance on these data. Furthermore, the results on the
Mice data set were compared with two recent state-of-the-art gating tools for
identifying cell populations, DeepCyTOF (Li et al., 2017) and FlowSOM (Van
Gassen et al., 2015). Next, the two evaluation data sets are introduced.

4.3.1 Mice data

As part of a large study to identify gene-immunophenotype associations
in mice (Brown and Moore, 2012), 2665 FCS files from mice bone marrow
sample were gated, first manually and then using flowDensity, and indepen-
dently verified. By looking at the variability of resulting cell proportions, the
flowDensity gates were found to be superior to manual gates. Hence, flow-
Density gates were used as the gold standard for this study. In the following
experiments, these curated thresholds are referred to as true gates. The mean
cell frequencies of 16 cell populations (relative to the parent population)
range from 0.2% to 50%, covering a wide biological diversity, including very
rare populations.

4.3.2 FlowCAP data

FlowLearn was evaluated on a second dataset from the FlowCAP (Flow
Cytometry: Critical Assessment of Population Identification Methods) con-
sortium (Finak et al., 2016). FlowCAP provides the means to objectively test
methods for the identification of cell populations, and puts out state-of-the-
art data sets with which it is possible to compare tools to manual analysis by
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experts. In the context of the FlowCAP-III competition, seven participating
centers were given the task to analyze three samples. For each sample,
three replicates were analyzed, and for each replicate, sub-populations in
four datasets (B cells, T cells, Regulatory T cells (T-reg), Dendritic Cells
(DC)) were identified independently from each center. Manual gating was
performed by a central site. For each dataset, a total of 63 FCS files were
available for evaluation. Since flowLearn currently uses channel thresholds,
only populations with rectangular gates were used, 48 in total. Mean cell
frequencies (relative to the parent population) range from 0.4% to 70%. Even
though, all centers were advised to follow reagent and analysis standardiza-
tion, technical variation between centers was still large (Finak et al., 2016),
leading to a greater sample diversity in this data set. This effect is also pro-
nounced in the densities estimated by flowLearn, i.e. the sample diversity is
captured in the densities as well.

4.4 Results

4.4.1 Mice data

For each population of the Mice data set (2665 samples of clean CD45 cells), a
small number of np ∈ {1, 2, 5, 10, 50} prototypes were gated (using flowDen-
sity and manual curation). These thresholds were transferred to all samples
by the described flowLearn protocol. Those thresholds are referred to as the
predicted ones. Figure 4.6 shows the result of np = 1, where results on all
2664 test samples per population are represented by boxplots. Distributions
of true and predicted cell frequencies match up well, with mean d f = 0.05
(min d f = 0.0001, max d f = 0.22), taken over all populations. Also, pre-
dicted gates are accurate with respect to extracted cell populations, specif-
ically it is median(F1) > 0.99 for the majority (9/16) of populations and
median(F1) > 0.90 for the large majority (15/16). Rare populations such as
T cells (4% of parent) and Plasma cells (0.2% of parent) show high perfor-
mance. For some populations, a minority of samples with lower F1-scores
exist, including outliers (represented as dots) with poor F1-score. Choos-
ing the number of prototypes np > 1 increases performance significantly
(Figure 4.7), especially for populations with initially low performance. Ex-
emplary, for the HFC population, choosing np = 10 increases the result to
median(F1) = 0.94.
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Mice DC T-cells T-reg B-cells
np 1 7 7 7 7

min d f 0.0001 0.01 0.001 0.001 0.002
mean d f 0.05 0.11 0.13 0.14 0.08

max d f 0.22 0.62 0.13 0.14 0.22
Tab. 4.1.: For each dataset, minimum, average and maximum difference percent-

ages in predicted cell frequencies.

4.4.2 FlowCAP data

On the FlowCAP data, flowLearn was run using np ∈ {1, 4, 7, 11, 20} proto-
type(s). As the data set contained only 63 samples, np = 7 prototypes were
chosen, i.e. one prototype per center. Table 4.1 shows a statistic for difference
percentages in cell frequencies for all datasets. The average differences were
low, ranging from 5 to 14 percent. While for some populations, differences
were negligible, for other populations, differences were large. Furthermore,
a summary of F1-scores is shown in Figure 4.7, where the minimum and
average population median (F1)-scores, depending on np is displayed for
each dataset. Performance depended on both the population and more
strongly on the chosen number of prototypes. Considering all datasets, for
np = 7 (number of centers), 11/48 populations achieve median(F1) > 0.99
and median(F1) > 0.90 for 36/48 populations. Results on other populations
are not as good when only few prototypes (np < 7) are chosen, and are
generally not as good as on the Mice data set. In general, choosing more pro-
totypes yields higher F1 values (Figure 4.7). Especially for populations that
perform poorly, increasing np significantly increases performance. Detailed
results for all FlowCAP datasets can be found in section A.8.

4.4.3 Runtime

For the Mice data (16 populations), gating and evaluating all 2665 samples
using one prototype took one hour (1.3 seconds per sample). By exploit-
ing parallelism, practical runtimes are low. When using np prototypes,
flowLearn will perform np alignments per sample per population. Increas-
ing np also linearly increases runtime. Again, for the Mice data, using np = 2
took 62 minutes (np = 10: 66 min, np = 50: 111 min). In all experiments,
using a Dell M3800 laptop (Intel® Core™ i7-4712HQ processor), resident
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Fig. 4.7.: Minimum (circle) and mean (triangle) population performances for all
datasets, depending on the chosen number of prototypes.

memory usage never exceeded 5 GB of RAM. These results indicate that
flowLearn can be run on recent consumer laptops without problems.

4.4.4 Comparison to nearest-neighbor gating

To assess the influence of the use of DDTW alignments on the result, flowLearn
was compared to nearest-neighbor gating, exemplary for populations from
the Mice dataset (similar results were obtained on all FlowCAP datasets)
and different numbers of prototypes. More specific, the thresholds were
transferred statically, i.e. no alignment was performed and threshold values
were simply copied from the nearest prototype. Table 4.2 shows the aver-
age and maximal increase in F1-score and decrease of its standard deviation
when comparing flowLearn to nearest-neighbor gating. The average F1 score
over all populations is already good without any alignment, i.e. median ∆F1

is small. However, for some difficult to gate populations, the increase is
large (max ∆F1 = 12.2%), especially for the choice of very few prototypes.
In the case of a larger number of prototypes, the benefit of using alignments
is small. More prototypes increase their average similarity to neighboring
samples such that a static threshold transfer gives better results.
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np max ∆F1 median ∆F1 max ∆σ median ∆σ
1 +12.2% +1.0% −36.8% −17.8%
2 +6.4% +0.7% −56.1% −11.9%
5 +4.7% +0.4% −65.1% −14.9%

10 +4.9% +0.3% −43.8% −15.5%
50 +3.1% +0.1% −33.7% −7.8%

Tab. 4.2.: Increase of F1 score and decrease of standard deviation σ per population
for different numbers of prototypes, when comparing flowLearn to
nearest-neighbor gating.

For all choices of prototype counts, there is a large decrease in standard
deviation of F1-scores. Given that most populations have good performance
already, this observation indicates that especially poorly performing samples
throughout all populations can strongly benefit from correct alignments.
Furthermore, when replacing the prototypes selected by flowLearn with ran-
domly selected ones, performance decreases and variability increases in all
settings. This indicates that not only the number of prototypes is important
but also the correct selection thereof. Last, besides nearest-neighbor gating,
several other machine learning techniques such as generalized linear models
and support vector machines were tested and delivered comparable results.
One important disadvantage of such methods is the limitation to multiple
prototypes which are needed for training the model. Because of kernelized
approaches, such techniques do not work with only one prototype, as this is
the case with flowLearn.

4.4.5 Comparison to DeepCyTOF and FlowSOM

FlowLearn was compared to two recent state-of-the-art methods for popula-
tion identification, DeepCyTOF (Li et al., 2017) and FlowSOM (Van Gassen
et al., 2015). DeepCyTOF exhibited very high F1-scores on multiple data sets,
being better than all best-performing methods on data from the FlowCAP-I
competition (Aghaeepour et al., 2013). In a recent study (Weber and Robin-
son, 2016), FlowSOM outperformed 18 competing tools. Both methods were
run on the Mice data set and results were compared to the ones obtained by
flowLearn (Figure 4.8). Since these methods return disjoint clusters (only
one cluster ID per cell), suitable populations are given by all leaf populations
in the gating hierarchy. The F1-scores were evaluated in the same manner
as for flowLearn. DeepCyTOF predicted seven out of ten populations with
median F1 > 0.75, with mean F1 = 0.79. FlowSOM was able to achieve
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Fig. 4.8.: F1-scores obtained by running flowLearn, DeepCyTOF, and FlowSOM
on the leaf populations of the Mice data set.

median F1 > 0.75 for four out of ten considered populations. Other popula-
tions were subpar. The FlowSOM average performance over all considered
populations and samples, mean F1 = 0.53, is similar to results obtained
previously (Weber and Robinson, 2016). Using the same populations, and
using np = 1 only, flowLearn achieved mean F1 = 0.94, demonstrating
flowLearn’s superiority on this data.

Furthermore, runtimes of DeepCyTOF, FlowSOM and flowLearn were com-
pared. On the Mice data, using ten populations, not including the one-time
investment for training the deep network, DeepCyTOF was able to classify
each sample in an average of one second. Using the same populations,
FlowSOM was able to gate one sample in an average of 11 seconds which is
in accordance with results reported in (Van Gassen et al., 2015). On the same
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data, flowLearn predicted 2664 samples for one population in 1.37 minutes.
For comparability, predicting ten populations with flowLearn takes 13.7
minutes, 0.31 seconds per sample. This does not include the time spent for
providing manual gates to flowLearn.

4.5 Discussion

On two state-of-the-art data sets, flowLearn achieves median(F1)-measures
exceeding F1 > 0.99 for 20/64 (31%), and F1 > 0.90 for 51/64 (80%) of
all analyzed populations. It predicts populations with low bias and vari-
ance, using only few examples (Mice: np = 1, FlowCAP: np = 7). Hence,
it is possible to gate very few training files to obtain excellent results for
most cell populations for thousands of additional files. However, there
are populations, for which it is difficult to predict gates (F1 < 0.9). Possi-
ble causes were identified: First, it was found that flowLearn can identify
possible sample-based irregularities, in particular samples with densities
that are significantly different from all other densities in a given dataset.
Such differences might exist due to either biological diversity or anomalous
sample reagent preparation and analysis. For example, the HFC popula-
tion of the Mice data set has many wrongly predicted samples with low
F1-score (Figure 4.6). Here, flowLearn identified all samples with F1 < 0.56
as outliers. In all included box plots, these are shown as individual dots.
By visualizing sample densities from that population, and coloring each
sample by F1-score in Figure 4.10, it is visible that samples with F1-score
below the identified threshold form a distinct region, but not necessarily
a separate cluster. Furthermore, a closer look at wrongly predicted HFC
samples explains their poor performance. While in the large majority of
samples, the HFC population is very well pronounced, in samples with low
F1-score, it is either completely missing or pronounced only very weakly.
This leads to wrongly set thresholds in the training data, or failed DTW
alignments. Detecting such irregularities confirms flowLearn’s capabilities
of being used as an appropriate tool for quality checking.

Next, the sub-optimal performance of some populations in the FlowCAP
data set was analyzed. Here, all datasets exhibit a wide diversity in terms
of samples, centers and gates (Finak et al., 2016). It was observed that this
variability has impact on the ability of flowLearn to correctly predict gates.
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Fig. 4.9.: Differences in samples and gates in the FlowCAP data set, exemplary
for one channel of the CD4 Effector population: Density plots show the
HFC density from two samples (top left, top right). It is visible that the
true thresholds (red) are much different from each other. The alignment
between the two densities is shown on the right.

An example is shown in Figure 4.9, which shows the same T-cell / CD4
Effector population from two different FCS files and that densities and gates
for the displayed channel are very different from each other. Despite the
difference in both densities, the alignment looks correct. However, because
of the difference in threshold locations, a threshold transfer will incorrectly
predict the resulting gate. Similar effects on most other low-performing
populations from the FlowCAP data set were observed. Reasons for wrongly
predicted gates include differences in thresholds, failed alignments due to
large differences in samples, and also few failed alignments even though
samples were similar.

To prevent wrong alignments due to large sample differences, flowLearn’s
clustering approach is essential and picks prototypes that are representa-
tive for all other samples. In some cases (especially in the presence of high
sample diversity) it can happen that a prototype is wrongly aligned to all
other samples, resulting in reduced prediction performance. The number
of prototypes is important as well. It was shown that flowLearn can ac-
curately predict gates using only one prototype, but again, when there is
high sample diversity, performance can be improved significantly by using
more. The data might be generated in experiments in which samples can
be categorized, for example into healthy/diseased or wild type/knockout,
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Fig. 4.10.: T-SNE projection of Mice densities (HFC population) from one channel,
colored by F1-score according to predictions using np = 1. Samples
with low performance cluster together.

or samples were analyzed in different centers. In such cases where there is
prior knowledge about the data, the number of prototypes should be chosen
accordingly. Generally, performance depends on the heterogeneity of the
observed densities. At present, the number of prototypes is set manually
within the pipeline, but this choice could be automated in order to guarantee
a sufficient sample homogeneity within every single prototype cluster.

Last, when compared to two recent state-of-the-art methods, DeepCyTOF
and FlowSOM, flowLearn showed superior performance in terms of F1-
scores. While all methods aim to solve the same problem of identifying cell
populations, it is worth to highlight that depending on the application, one
might be better suited than another. FlowSOM has the advantage that it
does not require any prior knowledge about the data at hand, in particular
no manual gating is needed. Being completely unsupervised, however it is
expected that it cannot perform as well as its (semi-)supervised counterparts.
Both DeepCyTOF and FlowSOM can be used for high-dimensional data such
as from mass cytometry. In the case of DeepCyTOF, if addressing the difficult
problem of automatically finding good hyper-parameters and network archi-
tectures (Klein et al., 2016), it may be used for end-to-end machine learning,
i.e. directly inferring biological variables from a given set of cells, without
gating (Mair et al., 2016). In contrast, flowLearn automates the prevalent
paradigm of gating using channel thresholds for lower-dimensional data.
As shown in section 4.4.4, the selection of markers and channels constitute a
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strong biological prior. This condition gives our tool an advantage over other
tools that have to search a much larger function space. At the same time,
being based on channel thresholds makes our results interpretable and ad-
justable, an advantage that is not directly given for other tools. Furthermore,
DeepCyTOF and FlowSOM return assignments of disjoint cell populations.
In a gating hierarchy, cells can have multiple labels, and assignment with
such methods is difficult. Last, it is worth to note that in the right hands,
by carefully choosing method parameters, both DeepCyTOF and FlowSOM
may yield better results. In contrast, flowLearn’s parameters are robust and
tuning is not necessary.

4.6 Summary

In this chapter, I have presented flowLearn, a software tool that is able
to accurately identify FCM cell populations. In a quality checking setting,
flowLearn can also be used to identify both anomalous samples and aberrant
thresholds from existing gatings. Using simple density alignments, on two
diverse data sets it demonstrated good to excellent performance on a wide
variety of populations, including very rare ones. This can be achieved using
as few as only one gated sample, keeping invested resources for gating at
a minimum level. Furthermore, on a large set of bone marrow samples,
I have shown that flowLearn is superior to DeepCyTOF and FlowSOM,
two top-performing methods according to recent comparisons. On highly
diverse FCM samples such as from different datasets or centers, flowLearn
shows its limitations, although in general, choosing more prototypes can
increase performance significantly. The correct choice of reference densities
is essential for prediction.

In the future I will investigate more options to choose better prototypes,
for example by including alignment properties or using averaged densities
instead of the current prototype-based approach. It would also be beneficial
to include confidence measures for the suitability of a given prototype, for
example based on alignment distances. With that, one could judge the
number of needed prototypes as well. Furthermore, the use of alignments
of two-dimensional densities is of high interest and would enable the usage
of arbitrarily shaped gates. Being based on the R ecosystem, flowLearn
is ready to be included into existing FCM analysis pipelines, and offers
improvements thereof in terms of gating quality and resource investment.
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5Conclusion

In this thesis, I discussed three topics concerning the computational analysis
of biological data, in particular clustering and classification problems. First,
in metagenomics, I presented a machine learning pipeline for taxonomy-
independent, sequence composition based binning of contigs to their origi-
nating and mostly unknown genomes. Specifically, a suitability analysis of
various techniques, algorithms and their parameters was performed. First,
it was shown how the setting of window parameters in oligonucleotide fre-
quency computation heavily influences the resulting representation. Second,
the choice of non-linear dimensionality reduction techniques was demon-
strated to be essential when the goal is to obtain a data representation that
focuses on compact and separated clusters. And last, favorable algorithms
to separate such clusters into individual taxonomic units were evaluated,
resulting in a fully automated pipeline. I showed on both theoretical and
real-world metagenomes of varying sizes that the proposed method works
well. It is difficult though, to achieve high binning performance using
a taxonomy-independent, sequence composition based approach only. It
is therefore desirable to further integrate techniques to refine a particular
binning or, more importantly, combine different approaches and integrate
auxiliary knowledge. This can open the way towards accurate and precise
tools for de-novo binning.

Based on the results of metagenomic binning, I presented a second topic,
namely single-cell genome contamination detection. Here, similar to bin-
ning, the task is to separate different species in a given de-novo assembly.
However, due to the much lower and possibly imbalanced number of in-
cluded species, it is inherently different. I created the software acdc as a
fully automated tool to detect and remove contaminants with possibly un-
known taxonomy. In particular, the method combines reference-based and
mostly reference-free algorithms to find foreign DNA not belonging to a
target organism. Using different models of cluster validity assessment, the
tool provides interpretable confidence measures to an end-user who can
further inspect results using an interactive interface or apply the software
in a fully automated fashion, for example by integrating it into existing
quality assurance pipelines. In both cases, auxiliary database knowledge can
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be included to improve detection and removal accuracy. On a large set of
single-cell assemblies, acdc was shown to achieve high performance in terms
of precision and recall. Furthermore, it may be used to find impurities in
metagenome-assembled genomes, as demonstrated on data from the CAMI
challenge. It can also detect the presence of horizontally transferred, genetic
material such as DNA from phages or plasmids. Currently, in collaboration
with the Joint Genome Institute, we are evaluating the possibility to include
acdc into their single-cell sequencing production pipeline. In the future, it
may be viable to look at different methods for the representation of genomic
sequences, since the current approach is not able to resolve inter-species dif-
ferences. Here, both single-cell contamination detection and metagenomics
may benefit from such improvements.

As it can be used to isolate single cells from metagenomes, flow cytometry as
the third part of this thesis can be seen as a connecting element. A crucial task
in FCM analysis is the delineation of cell populations from a given parent
population. For this task, I developed flowLearn as a semi-supervised utility
that allows for the fast and precise identification of cell populations. While
for FCM gating, multivariate methods render a promising future, the current
paradigm of bivariate gating still constitutes a strong biological prior. In that
setting, the manual tuning of thresholds is time-consuming and subjective.
In contrast, with flowLearn I showed that the use of density alignments
with prototypes can serve as an automation of this process. Depending on
the complexity of the gated population, often only one prototype has to
be manually gated in order to automatically predict the same population
on thousands of other samples with good to excellent performance. This
was demonstrated on a large and diverse set of FCM samples. Furthermore,
it was shown that flowLearn outperformed two current state-of-the-art
tools for gating. However, gates based on thresholds may not be suitable
for populations that do not allow for rectangle gates. To overcome this
limitation, the use of two-dimensional alignments is a promising extension
of flowLearn in the future.

The application of a variety of techniques from machine learning to the three
presented topics emphasizes the importance of a good choice of involved
methods and parameters. While the presented grouping problems appear
very similar to each other, seemingly unimportant specifics can change
major parts of the approach for solving them. For example, clustering
single cells for contamination detection is related to metagenomic binning
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as both problems can be broken down to the assignment of sequences to
clusters. However, due to the different numbers of involved genomes in both
problems, the clustering task is inherently different and requires problem-
specific choices of methods and tuning of parameters. In flow cytometry,
cell populations can be seen as high-dimensional clusters as well. But the
application of dimensionality reduction for that task works only to a small
extent. Hence, the accurate identification of cell populations required a more
thorough choice of the pipeline. In the same way, the integration of auxiliary
data requires careful attention. It is the question, how to integrate more
information, for example for metagenomics, such that it will help to craft
high-precision binning tools. These points underline that there seldom is a
silver bullet in machine learning. Nonetheless, machine learning has shown
good results not only in the context of this thesis.

With ideas for metagenomic binning, the development of acdc, and flowLearn,
based on various machine learning techniques, this thesis provided possible
solutions for open problems around grouping methods for the annotation
and sorting of single cells. It was demonstrated that the contributions per-
form well on many kinds of data and I hope that an adoption of the tools
will enable analysts to more efficiently advance research in their respective
fields.
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A
Appendix

A.1 Software Availability

A.1.1 Acdc

Acdc source code is available on GitHub (https://github.com/mlux86/acdc).
A web version of acdc has been provided within the Bielefeld University
Bioinformatics Services (BiBiServ) infrastructure
(https://bibiserv.cebitec.uni-bielefeld.de/acdc).
Evaluation data and accompanying acdc results are available from Bielefeld
University (http://doi.org/10.4119/unibi/2904577).

A.1.2 FlowLearn

FlowLearn is available as an R package on GitHub
(https://github.com/mlux86/flowLearn).
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A.2 List of genomes used in the NCBI-9
data set

NCBI accession Species

NC_014471.1 Ignisphaera aggregans DSM 17230

NC_009954.1 Caldivirga maquilingensis IC-167

NC_011766.1 Desulfurococcus kamchatkensis 1221n

NC_017461.1 Fervidicoccus fontis Kam940

NC_018719.1 Candidatus Nitrososphaera gargensis
Ga9.2

NC_014222.1 Methanococcus voltae A3

NC_007681.1 Methanosphaera stadtmanae DSM
3091

NC_021355.1 Methanobrevibacter sp AbM4

NC_018706.1 Acinetobacter baumannii TYTH-1
Tab. A.1.: List of genomes used in the NCBI-9 data set
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A.3 Results on the CAMI data

Fig. A.1.: Data representation using t-SNE of the CAMI-30 low complexity
metagenome, colored by gold standard binning.

Fig. A.2.: Data representation using t-SNE of the CAMI-93 medium complexity
metagenome, colored by gold standard binning.
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A.4 Acdc parameters

Method Parameter description

Data
pre-processing

Given a target of n data points (by default, n = 1000),
the window width is fixed as w = ∑i li/n, where li is
the length of contig i. Default choices of ∆w = w/2 and
k = 4 (tetramer frequencies) are robust. For contigs
with li < w, the window width is taken as large as
possible (w = li).

t-SNE The parameter θ = 0.5 is a trade-off between speed and
accuracy. The perplexity is set to perp(n) = blog(n)2c.
It can be seen as an effective neighborhood size that
controls the graininess of clusters. A small number of
data points n receives a small perplexity whereas with
growing n the perplexity saturates.

DIP The significance level which is uncritical as it is α = 0 in
the large majority of significant cases. Furthermore, the
DIP split threshold, i.e. the percentage of data points,
for which multimodality was detected, can be seen as
a control of detection precision. A default value of
qdip = 0.001 was found to work very well throughout
all tested data sets.

CC The number of clusters found depends on the underly-
ing graph. In acdc, the graph is constructed by connect-
ing each data point to its m mutual nearest neighbors.
The parameter m can be interpreted as a rough guide
for the minimum number of data points contained in
a separate cluster. To be able to detect also very small
contamination, a default value of m = 9 is used.

Bootstrapping The number of bootstraps is set to B = 10. Setting B to
a larger number will result in more accurate confidence
estimations at the cost of a longer runtime.

Kraken The only parameter required by Kraken is the database
to be used. It can be specified as a parameter to acdc
as well.

RNAmmer 16S rRNA gene sequence prediction using RNAmmer
does not require any parameters.

Tab. A.2.: Description of parameters for various techniques used in acdc.
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A.5 Evaluation of the optimal number of
nearest neighbors m

Fig. A.4.: Evaluation of different values of m. Here, on a set of 201 clean assemblies,
the default value of m = 9 in acdc is robust and determined as the 90%-
quantile of the distribution of m′ for which the underlying graph does
not dissolve into individual connected components anymore.
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A.6 Description of the simulated data set

Level of relatedness Species (NCBI accession)

Kingdom

• Acetobacter pasteurianus (NC_013209)

• Ammonifex degensii (NC_013385)

• Borrelia crocidurae (NC_017808)

Phylum

• Peptoclostridium difficile (NC_017174)

• Bacillus cereus (NC_016779)

• Faecalitalea cylindroides (NC_021019)

Class

• Staphylococcus haemolyticus (NC_007168)

• Pediococcus claussenii (NC_016605)

• Listeria monocytogenes (NC_021823)

Order

• Enterococcus faecium (NC_017960)

• Pediococcus claussenii (NC_016605)

• Weissella koreensis (NC_015760)

Family

• Lactococcus garvieae (NC_015930)

• Streptococcus dysgalactiae (NC_022532)

Genus

• Streptococcus agalactiae (NC_021486)

• Streptococcus mutans (NC_017768)

• Streptococcus gallolyticus (NC_017576)

Species

• Streptococcus suis (NC_012926)

• Streptococcus suis ST3 (NC_015433)

• Streptococcus suis TL13 (NC_021213)
Tab. A.3.: Description and availability of the simulated data set.
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A.8 Results on the FlowCAP data set
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