
RESEARCH ARTICLE

Computational exploration of cis-regulatory

modules in rhythmic expression data using

the “Exploration of Distinctive CREs and

CRMs” (EDCC) and “CRM Network Generator”

(CNG) programs

Pavlos Stephanos Bekiaris☯, Tobias Tekath☯, Dorothee Staiger, Selahattin Danisman*

RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany

☯ These authors contributed equally to this work.

* selahattin.danisman@uni-bielefeld.de

Abstract

Understanding the effect of cis-regulatory elements (CRE) and clusters of CREs, which

are called cis-regulatory modules (CRM), in eukaryotic gene expression is a challenge

of computational biology. We developed two programs that allow simple, fast and reliable

analysis of candidate CREs and CRMs that may affect specific gene expression and that

determine positional features between individual CREs within a CRM. The first program,

“Exploration of Distinctive CREs and CRMs” (EDCC), correlates candidate CREs and

CRMs with specific gene expression patterns. For pairs of CREs, EDCC also determines

positional preferences of the single CREs in relation to each other and to the transcriptional

start site. The second program, “CRM Network Generator” (CNG), prioritizes these posi-

tional preferences using a neural network and thus allows unbiased rating of the positional

preferences that were determined by EDCC. We tested these programs with data from a

microarray study of circadian gene expression in Arabidopsis thaliana. Analyzing more than

1.5 million pairwise CRE combinations, we found 22 candidate combinations, of which sev-

eral contained known clock promoter elements together with elements that had not been

identified as relevant to circadian gene expression before. CNG analysis further identified

positional preferences of these CRE pairs, hinting at positional information that may be rele-

vant for circadian gene expression. Future wet lab experiments will have to determine which

of these combinations confer daytime specific circadian gene expression.

Introduction

Temporal and spatial regulation of gene expression is a common process in eukaryotic organ-

isms. Transcription factor-mediated control of gene expression has been studied for decades

and involves complex interplays between DNA and proteins. Transcription factors bind to

CREs, i.e. short sequences that are usually situated upstream of coding sequences, and affect

the set-up of the transcriptional machinery. Today large numbers of CREs are known, e.g. in
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humans [1,2], yeast [3], and plants [4,5]. However, CREs not only function as single elements,

they also combine with other CREs. The sum of all CREs that convey specific gene expression

is called cis-regulatory module (CRM) [6]. The gene expression patterns regulated by CRMs

are highly dependent on the composition of these CRMs, i.e. the number of repeats of a spe-

cific CRE [7], the combination of CREs present [8], the spacing between CREs [9,10], and the

CREs’ positions within the CRM [9,10]. In plants, CRMs control the expression of genes that

are involved in the cell cycle, photosynthesis, development of the male germline, stress

response, and circadian gene expression [5,11–13].

Circadian gene expression denotes rhythmic expression of a gene that follows a rhythm of

about 24 hours (from ‘circa diem’ = ‘about a day’). The circadian clock, a biological timekeeper

that consists of proteins controlling each other in regulatory feedback loops, maintains this

rhythm even under free-running conditions, i.e. when there is no external rhythm, a Zeitgeber,
indicating the begin of a day. In Arabidopsis, up to 90% of all genes display rhythmic behavior

under at least one light/temperature regime [14]. Rhythmic expression under free-running

conditions has been shown in up to 36% of all genes [15], covering a plethora of physiological

processes including photosynthesis [16], starch metabolism [17], growth [18], flowering time

determination [19,20] and regulation of the plant immune system [21,22].

Several CREs are known to confer circadian gene expression. The evening element (AAAATA

TCT) was identified based on its over-representation in circadianly regulated genes that exhibited

maximum expression in the subjective evening [23,24]. The morning element (AAAAAATCT)

was identified in a mutational analysis of the PSEUDO-RESPONSEREGULATOR 5 promoter, a

clock gene that is involved in repression of the core clock genes CIRCADIANCLOCKASSOCI-
ATED 1 (CCA1) and LATE ELONGATED HYPOCOTYLduring the day [25,26]. Michael and col-

leagues conducted bioinformatics analyses of microarray experiments in which Arabidopsis was

subjected to 11 different rhythmic conditions (e.g. photocycles, thermocycles, short days, long

days). Here they identified the protein box (ATGGGCC), the telobox (AAACCCTT) and the

starch box (AAGCCC) elements as CREs that confer midnight-specific gene expression and that

are conserved between Arabidopsis, rice and poplar [14]. The so-called Hormone-up-in-Dawn

(HUD) element (CACATG) was found to be over-represented in genes that respond to brassinos-

teroid and auxin treatments and in genes that are expressed preferentially at dawn [27].

The identification of CREs that correlate with specific gene expression has long been estab-

lished [28–31]. For example, Bussemaker and colleagues detected new regulatory motifs in the

upstream regions of genes by correlating the presence of these motifs with genome-wide gene

expression in Saccharomyces cerevisiae [28]. Another tool, called ‘in silico expression analysis’,

determines which genes contain a given CRE and compares the expression of these genes in

microarray data [31]. With the help of this program, the authors were able to determine that a

CGACTTTT sequence was involved in the response of Arabidopsis to infection with the fun-

gus Botrytis cinerea [31]. In another approach, the MEME suite [30] was used to detect over-

represented CREs in rhythmically expressed genes and further gene expression profiles were

compared with a neural network approach [32]. The respective calculations were so computa-

tion intensive that a supercomputer was used for this study [32]. Most programs focus on the

detection and analysis of single CREs, although it is long established that CREs affect gene

expression in a combinatorial manner. Studies to identify and analyze CRMs are less straight-

forward. For this, Hidden Markov models have been successfully used in simulated and real

data sets of fruitflies and humans [29]. Also, Hidden Markov Models have been used to iden-

tify CRMs by analyzing correlations between binding sites and multispecies comparisons in

yeast and fruitfly experimental data [33]. CRMs were further detected using position weight

matrices [34,35], Monte Carlo methods [36], phylogenetic approaches [37], and chromatin sig-

natures and neural networks, respectively [38].

The EDCC and CNG programs for the exploration of cis-regulatory modules

PLOS ONE | https://doi.org/10.1371/journal.pone.0190421 January 3, 2018 2 / 29

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0190421


We propose a simpler approach to determine candidate CREs and CRMs that may confer

specific gene expression. This approach reliably analyzes the potential of millions of CRMs in a

relatively short time. It uses programs that run on a table-top computer and can be used by

users with minimal bioinformatics knowledge. These two programs are called “Exploration of

Distinctive CREs and CRMs” (EDCC) and “CRM Network Generator” (CNG). EDCC corre-

lates the presence and positions of known CREs/CRMs with gene expression data, and CNG

further assesses the importance of positional features within CRMs that were determined by

EDCC. We tested the performance of these programs using data from a circadian microarray

experiment of Arabidopsis thaliana seedlings [14]. EDCC identified both known and candidate

CREs and CRMs in circadian gene expression control. CNG analysis shows that some of the

identified CRE pairs occur at specific locations in the promoters of downstream genes, indicat-

ing functional CRMs in circadian gene expression.

Results

Principle of EDCC analysis

We designed two programs to analyze whether user-determined CREs and CRMs correlate

with specific expression patterns and thus, whether they may be involved in regulation of the

specific gene expression (Fig 1). The first program, EDCC, correlates candidate CREs and

CRMs with gene expression patterns, and compares this with the expression pattern of all

genes under different experimental conditions. For pairs of CREs, EDCC further determines

whether they are positioned at a specific distance to each other, whether they are positioned in

a specific order towards the transcriptional start site (TSS), and whether the two CREs are

positioned at a specific distance to the TSS.

EDCC uses three initial data sets: gene expression data, promoter sequences of the respec-

tive genes, and a list of CREs and CRMs defined by the user. The gene expression data needs

to be categorized over the different treatments that the user wants to analyze. Only genes that

are differentially expressed between treatments will be included in the analysis. EDCC catego-

rizes each gene according to its maximum gene expression, and each gene is categorized in

only one condition. EDCC then plots the percentage of genes per category, which results in

the background distribution (Fig 2A). Queried with a CRE/CRM, EDCC determines the pro-

moters that contain the motifs and the expression category that the respective genes belong to.

EDCC then plots the percentage of genes that contain the CRE/CRM per category, resulting in

a distribution of expression maxima (DEM) which is specific for each given CRE/CRM (Fig

2B). This DEM is then compared to the background distribution. A CRE/CRM that has no

effect on gene expression in the analyzed conditions should lead to a DEM that is similar to

the background distribution (Fig 2B). Inversely, a CRE/CRM that affects genes towards expres-

sion under a specific treatment or condition should lead to a shift between the DEM and the

background distribution (Fig 2B). EDCC determines a threshold at which a CRE/CRM is iden-

tified as a candidate by calculating the DEMs of a large number of random CREs and deter-

mining the standard deviation from the mean for each category. A CRE that correlates with a

DEM that differs from the background by at least one standard deviation in one or more con-

ditions is identified as a candidate CRE (Fig 2C). EDCC also allows for more conservative

approaches by increasing the threshold to a multifold of the standard deviation.

Testing EDCC on circadian microarray data

We tested EDCC with data of a circadian microarray experiment, in which Arabidopsis seed-

lings were entrained for nine days in a 12 h dark/12 h light cycle and then transferred into con-

tinuous light [14]. Seedlings were harvested every four hours for 48 hours, beginning at
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Zeitgeber Time 0 (ZT0), i.e. the hour at which the lights are switched on. Gene expression for

each time point was determined using an Affymetrix Arabidopsis ATH1 gene chip (E-MEXP-

1304) [14]. We identified circadianly expressed genes using ARSER [39] and categorized the

genes into six categories according to the respective peak expression times. We found that

3561 genes (10% of the TAIR10 genome annotation) were expressed circadianly under these

experimental conditions. A majority of these exhibited peak expression between ZT8 and

ZT12 (26%), i.e. before the subjective dusk (Fig 3A). This was followed by the category ZT20-

ZT0 (18%), i.e. just before dawn, with all other categories exhibiting lower percentages (Fig

3A). This background distribution was queried with random CREs of 5–8 bp lengths to deter-

mine the standard deviation and hence the threshold for further EDCC analyses. To test the

optimum number of CREs for background models, we queried EDCC with 10, 50, 100, 500,

and 1000 random CREs, respectively, and analyzed the difference between the background dis-

tribution and the DEM of the randomized CREs. This difference decreased with a higher

Fig 1. Flowchart of EDCC and CNG analyses. The flowchart shows which data input is needed for EDCC

and CNG analyses, the principle behind their functions and the outputs of the two programs. Further detailed

graphics explain the calculations of EDCC and CNG in Supporting figures S1 and S2 Figs, respectively.

https://doi.org/10.1371/journal.pone.0190421.g001
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number of queries (Fig 3B). As the difference between 100 and 1000 queries was negligible, we

decided to further use 100 random CREs to determine EDCC thresholds (Fig 3C).

Testing EDCC with known circadian clock CREs

After having established a random background with thresholds for the circadian microarray

experiment, we tested CREs that are known to confer circadian gene expression, i.e. the evening

element, the morning element, the three midnight elements and the HUD-domain [14,23,25,27].

Genes containing the evening element and the telobox element (AAACCCTT) exhibited DEMs

that differed from the background at ZT8-12 (evening) and ZT16-20 (midnight), respectively

(Fig 4). As the evening element indeed confers evening specific gene expression [23], this indi-

cates that EDCC is able to correctly identify CREs that may be involved in circadian gene expres-

sion and the time point that is affected by the CRE. The evening element is marked “candidate”

in the EDCC analysis even when using a threshold of three standard deviations, correctly indicat-

ing the strength of the evening element as a CRE conferring evening specific circadian gene

Fig 2. Principle of EDCC analysis. A) Presented is the background distribution of gene expression across

five generic categories. B) DEM of two exemplary CREs compared to the background distribution. Genes

containing CRE1 (red) do not correlate with a shift in the DEM, whereas genes containing CRE 2 (green) do.

C) Addition of standard deviations after analysis of random CREs allows establishing thresholds for the

determination of candidate CREs.

https://doi.org/10.1371/journal.pone.0190421.g002
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expression. EDCC also correctly identifies the telobox element as a CRE that confers midnight

specific gene expression between ZT16 and ZT20 [14]. All other tested CREs were not indicated

as candidates by EDCC, which means that the EDCC analysis is more conservative than other

types of analysis.

Fig 3. EDCC analysis of circadian microarray data. A) Distribution of maximum gene expression times of

circadianly genes expressed in Arabidopsis seedlings [14], which was used as background distribution for the

EDCC analysis. Distribution is shown as percentage of all circadianly expressed genes. Maxima are

categorized in six categories, i.e. ZT0-ZT4 (morning), ZT4-ZT8 (midday), ZT8-ZT12 (evening), ZT12-ZT16

(early night), ZT16-ZT20 (midnight), ZT20-ZT0 (before dawn). B) Decrease of standard deviations of

randomized CREs in percent plotted against the number of randomized CREs used (10, 50, 100, 500, and

1000 random CREs, respectively). C) Mean DEM of random CREs after 100 iterations, including standard

deviations.

https://doi.org/10.1371/journal.pone.0190421.g003
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Testing EDCC performance with 1755 single CREs

We then tested EDCC performance using 1755 CREs that are known in plants [5]. We only

counted CREs that were present in at least 10 promoters to prevent a false positive effect on the

DEM. We ran the analysis five times and found 182.8 candidate CREs on average, i.e. 10.4% of all

queries were identified as candidate CREs for at least one time point (S1 Table). Although EDCC

creates a new random background in each run, 98% of the CREs that were found overlapped in

all five iterations. We also calculated the quartile dispersion coefficient [40] and found a 0.27%

variation between runs, indicating that the results generated by EDCC are extremely consistent.

We then ran the same test under more conservative conditions. In the first approach, we

increased the number of promoters that a CRE must be present in to 15, 20, and 30, respec-

tively, and ran each test five times. This led to smaller numbers of candidate CREs (Fig 5A; S2

Table). In each case, the overlap among the five iterations of the analysis was large, i.e. 98%,

100%, and 100%, respectively. In the second approach, we increased the threshold to two,

three or four standard deviations, respectively. This dramatically reduced the number of candi-

date CREs (Fig 5B). Also here, we found a high overlap between the individual runs. At a dis-

tance of minimum three standard deviations, we found only one consistent candidate CRE:

GACGTGTA, which has been described as an abscisic acid (ABRE) binding response element

[41]. The list of CREs that were found to be candidates in all five analyses with a threshold of

two standard deviations is given in Table 1. Non-surprisingly, the evening element was one of

the candidates that were identified by the EDCC analysis. Further candidate elements that

have been found are involved in light-controlled or circadian gene expression, e.g. MYB tran-

scription factor binding sites, which are involved in the light responsiveness of enzymes of the

flavonol biosynthetic pathway in Arabidopsis [42], and GATA and G box motifs, which belong

to the earliest promoter elements found in light-regulated and circadian clock regulated genes

[43,44]. Also a binding site for TCP transcription factors was found (Table 1). These transcrip-

tion factors have recently been shown to bind to clock genes and affect their expression [45–

47]. Abscisic acid (ABA) response elements, which are similar to the G box, have been found

several times by the EDCC analysis (Table 1). ABA signaling has been found to be connected

to the circadian clock in several studies [48–50]. In case of non-annotated CREs, we used

agriGO to determine the enrichment of gene ontology (GO) terms [51] (Table 1).

Analysis of pairwise CRE combinations

We then analyzed the simplest type of CRMs: pairwise combinations of CREs. Here, we com-

bined each of the 1755 CREs with each other, leading to 1,540,890 tested combinations,

Fig 4. DEM for genes containing the evening and telobox elements compared to randomized background. Shaded areas indicate one to

three standard deviations distance from the background.

https://doi.org/10.1371/journal.pone.0190421.g004
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including homotypic combinations. Analogous to the tests with single CREs, we first estimated

the conditions under which the test needed to be conducted. Under the least conservative con-

ditions (10 occurrences, one standard deviation threshold), we found on average 192,010.6

candidate combinations (12.46% of all combinations). Increasing the number of minimum

occurrences to 15, 20 and 30 led to a decrease of candidate CRMs analogous to the case in sin-

gle CREs (Fig 6A). A stepwise increase of the threshold distance from the background from

one to six standard deviations led to a strong decrease in the number of candidate CRMs,

respectively (Fig 6B). Under the most restrictive conditions—at minimum six standard devia-

tions and minimum 30 hits in promoters—only one combination remained: the evening ele-

ment together with a Dc3 Promoter-Binding Factor-1 and 2 (DPBF1&2) element, which first

has been described as an ABA responsive element in the promoter of the carrot Dc3 gene [67].

21 candidate CRMs were found with a threshold of five standard deviations and a mini-

mum occurrence of 30 promoters in all five repetitions of the EDCC analysis (Table 2).

The evening element was present in six candidate CRMs. The evening element was found in

combinations with the LEAFY consensus site motif [68], the DPBF1&2 binding site motif

Fig 5. Number of candidate CREs under different EDCC settings. A) Graph depicting the decrease of

candidate CREs when increasing the minimum number of promoters a CRE has to be present in. B) Graph

depicting the decrease of candidate CREs when increasing the thresholds from one to four standard

deviations (sd).

https://doi.org/10.1371/journal.pone.0190421.g005
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described above, an undefined motif (AATNCCNC), elements that were found in genes that

are involved in glucosyltransferase activity (ATGGCNNC), calmodulin regulated protein

kinase activity and ATPase activity (GAANGAGA), and in auxin signaling (ACACATG),

respectively (Table 2). Other candidate CRE combinations contained G boxes together with

an element that is overrepresented in metal homeostasis genes, and the ABRE-like motif

(GACGTGTA) together with an undefined motif (CNANAGAA). Also here, unannotated

CREs were subjected to GO term analysis using agriGO [51].

Mutational analysis of a CRE pair: An example

Finding the evening element represented in six of the 21 CRE pairs led us to an interesting

question: is it possible that EDCC identifies a CRE pair as a candidate only because one of

the two CREs would be identified as a candidate in any case? This might lead to false positive

CRE pairs. We tested whether the evening element/DPBF1&2 binding element (ACACATG)

pair is specific by generating mutations within both CREs and subjecting these to EDCC analy-

sis. We generated one million unique CRE pairs including 0 to 16 mutations from the original

pair each. Of the one million pairs, only 13 pairs performed comparably to the original pair

in the EDCC analysis. All other mutant combinations did not correlate with a shift in peak

expression times. Of the 13 mutations, none included a mutated evening element, indicating

that mutation of the evening element may have a stronger effect on evening-specific gene

Table 1. Single CREs that were identified as candidates with a threshold of at least two standard deviations.

single

sequence

interesting timepoints sum of

matches

Annotation or agriGO enrichment Reference

AAAATATCT ZT8-ZT12 267 evening element [23]

AACCTACC ZT20-ZT0 63 MYB binding site promoter [52]

AATATTTTTATT ZT4-ZT8 36 AT1BOX AT-1 box (AT-rich element) [43,53,54]

AAWGTATCSA ZT20-ZT24 32 Wound-responsive element [55]

ATCCAACC ZT4-ZT8 81 MYB1 binding site motif [56]

ATCCTACC ZT16-20, ZT20-ZT24 33 MYB1 binding site motif [56]

CAATGATTG ZT8-12, ZT16-ZT20 35 ATHB5 binding site motif [57]

CACCTACC ZT8-ZT12, ZT20-ZT0 42 MYB1 binding site motif [56]

CACGCAAT ZT8-ZT12 33 Sequence found in auxin responsive genes of Soybean [58]

CAGAAGATA ZT16-ZT20 44 GATA motif binding factor [59]

CCAGGTGG ZT16-ZT20 38 Class I TCP binding site in rice [60]

GACGTGTA ZT16-ZT20 48 ABRE-like binding site motif [41]

GATGAYRTGG ZT12-ZT16 39 opaque-2 binding site of maize b-32 type I ribosome-inactivating

protein gene

[61]

GCGGCAAA ZT16-ZT20 37 E2F binding site in tobacco Ribonucleotide reductase gene promoter [62]

MAGGTAAGT ZT8-ZT12 56 cis-element in exon-intron splice junctions of plant introns [63]

MCACGTGGC ZT4-ZT8 80 G box/Conserved sequence upstream of light-regulated genes [64]

NCCCGCCA ZT16-ZT20 68 enriched in GOs DNA replication, DNA-dependent DNA replication,

DNA metabolism etc

TAACTCGTT ZT4-ZT8, ZT8-ZT12, ZT16-ZT20,

ZT0-ZT4

32 MYB2 binding site motif [65]

TAACTGGTT ZT12-ZT16 55 MYB2 binding site motif [65]

TACGTGGA ZT4-ZT8 63 ABRE-like binding site motif [41]

TACGTGTC ZT16-ZT20 59 ABRE-like sequence found in rice [66]

Annotations are from AtCOEcis [5], alternatively enriched GO terms according to agriGO [51] are given.

https://doi.org/10.1371/journal.pone.0190421.t001
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expression than mutation of the DPBF1&2 element. This also indicated that indeed the even-

ing element may be more important for the specific gene expression conferred by the CRE

pair than the DPBF1&2 element. We were further able to determine which nucleotides of the

DPBF1&2 element correlated with a better performance in the EDCC analysis, i.e. positions 1,

4, 5 and 6 of the ACACATG sequence (Fig 7). It is however not possible to finally decide

whether one of the two elements is irrelevant for a possible function as a CRM without resort-

ing to wetlab experiments, which were beyond the scope of this study.

Gene ontology analysis of pairwise CRE combinations

The EDCC output includes a list of Arabidopsis Genome Initiative (AGI) identifiers for all

those genes that contain a CRE or CRM in their promoters. A GO analysis was conducted

Fig 6. Analysis of pairwise CRE correlation with circadian gene expression. A) Graph depicting the

decrease in candidate CRMs when increasing minimum number of promoters the CRM must be present in. B)

Graph depicting the decrease of candidate CRMs with increasing thresholds (sd: multifold of standard

deviation from background).

https://doi.org/10.1371/journal.pone.0190421.g006
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Table 2. Candidate CRMs in circadianly expressed genes.

no. sequence

combination

interesting

timepoints

sum of

matches

annotation+citation element 1 annotation+citation

element 2

1 AAAATATCT,
ATGGCNNC

ZT8-ZT12 31 evening element [23] enriched in GO glucosyltransferase activity

2 AAAATATCT,
CCAGTG

ZT8-ZT12 38 evening element [23] LFY consensus binding site motif [68]

3 AAAATATCT,
GAANGAGA

ZT8-ZT12 56 evening element [23] enriched in GO calmodulin regulated protein

kinase activity and ATPase activity

4 AATNCCNC,
AAAATATCT

ZT8-ZT12 52 undefined evening element [23]

5 ACACATG,
AAAATATCT

ZT8-ZT12 30 DPBF1&2 binding site motif [67] evening element [23]

6 ACACCGG,
AAGNGTNG

ZT12-ZT16 30 DPBF1&2 binding site motif [67] enriched in GO calmodulin regulated protein

kinase activity

7 ACANTACN,
ATCCAACC

ZT4-ZT8 44 undefined MYB1 binding site motif [52]

8 ACANTACN,
MCACGTGGC

ZT4-ZT8 34 undefined G box; Conserved sequence upstream of light-

regulated genes [64]

9 AGNGATAN,
MCACGTGGC

ZT4-ZT8 33 enriched in metal ion homeostasis G box; Conserved sequence upstream of light-

regulated genes [64]

10 ANCACATG,
AAAATATCT

ZT8-ZT12 36 enriched in auxin stimulus evening element [23]

11 ATACGTGT,
TAACAAA

ZT0-ZT4 40 Z-DNA-forming sequence found in the

Arabidopsis chlorophyll a/b binding protein gene

(cab1) promoter; Involved in light-dependent

developmental expression of the gene [69]

MYBGAHV Central element of gibberellin (GA)

response complex (GARC) in high-pI alpha-

amylase gene in barley (H.v.) [70]

12 ATGNTTCA,
ACGTGGC

ZT16-ZT20 39 enriched in GO protein serine/threonine kinase

activity

enriched in GO glucan biosynthesis, chloroplast

part

13 CATGCATG,
AGNAACAA

ZT4-ZT8 34 RY-repeat motif; Binding site of FUS3; TRAB1,

bZIP transcription factor, interacts with VP1 and

mediates ABA-induced transcription [71]

n/a

14 CATGCATG,
NGCNTGAA

ZT4-ZT8 30 RY-repeat motif; Binding site of FUS3; TRAB1,

bZIP transcription factor, interacts with VP1 and

mediates ABA-induced transcription [71]

n/a

15 CCNNCACN,
GTGATCAC

ZT0-ZT4 32 n/a PIATGAPB found in the Arabidopsis thaliana

GAPB gene promoter; Mutations resulted in

reductions of light-activated gene transcription

[72]

16 CNANAGAA,
GACGTGTA

ZT16-ZT20 32 n/a ABRE-like binding site motif [41]

17 CTCATTTN,
AGATCCAA

ZT4-ZT8 30 n/a AG-motif found in the NtMyb2 gene promoter;

AGP1binding site [73]

18 GACGTGTA,
CNNACANC

ZT16-ZT20 30 ABRE-like binding site motif [41] n/a

19 TCNTNAGA,
CAAAACGC

ZT16-ZT20 31 n/a CDA1ATCAB2 CDA-1 binding site in DtRE (dark

response element) f of chlorophyll a/b-binding

protein2 gene in Arabidopsis [74]

20 TGTCACA,
TGAGTCA

ZT4-ZT8 31 motif found cucumisin gene promoter in melon

fruits [75]

Required for endosperm-specific expression [76]

21 TGTGNGNA,
TAGTGGAT

ZT4-ZT8 32 enriched in GO external encapsulating structure

organization and biogenesis, cell wall

biogenesis

negative regulatory region in promoter region of

Brassica napus (B.n.) extA extensin gene [77]

Candidate CRE pairs are present in at least 30 promoters and correlate with DEMs that deviate from the background by at least five standard deviations.

Annotations are as given by AtCOEcis [5], alternatively, enriched GO terms according to agriGO [51] are given, n/a depicts CREs without annotation or

enriched GO term.

https://doi.org/10.1371/journal.pone.0190421.t002
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with the genes that contain the 21 candidate CRMs [14]. Amongst the biological processes, the

sequence combinations no. 3, 8, 9, 11 and 16 were most interesting, as they included processes

that are known to be under the control of the circadian clock, i.e. shoot morphogenesis, photo-

synthesis, the regulation of defense response and the response to light stimuli (Table 3). Inter-

estingly, six of the 21 combinations were enriched in the GO term chloroplast, i.e. the gene

products of genes containing these CRE are more often located in the chloroplast than

expected.

Fig 7. Position weight matrix of nucleotides in the DPBF1&2 element that correlate with a shift in the DEM when combined with

the evening element. The size of the letters at each position indicate which bases lead to a decrease in the performance of the CRE pair

when mutated prior to the EDCC analysis. That means that changing the adenine on position 5 to any other nucleotide led to a decreased

correlation of the mutated CRE pair with time point specific gene expression in almost all cases.

https://doi.org/10.1371/journal.pone.0190421.g007
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Comparison with other approaches

There are few approaches that work similarly to EDCC and CNG. However, circadian gene

expression has been subject of earlier studies on CREs and CRMs. In an earlier analysis, Ding

and colleagues used a frequent mining pattern [78] based approach to identify sequence com-

binations that frequently co-occur in Arabidopsis and poplar promoters [79]. We compared

the 21 combinations we found to correlate with a shift in the DEM of circadianly expressed

genes and compared these with the combinations which were found by Ding and colleagues.

Here, we found that 4 out of 21 CRMs are over-represented in Arabidopsis and poplar pro-

moters (Table 4). Note that Ding and colleagues only used CREs from the PLACE database

Table 3. Gene ontology (GO) analysis of pairwise CRE combinations.

no. sequence combination GO Biological Process GO Cellular Component

1 AAAATATCT,ATGGCNNC N/A plastid, chloroplast, intracellular part, plastid part

2 AAAATATCT,CCAGTG metabolic process, response to cadmium ion,

response to inorganic substance

N/A

3 AAAATATCT,GAANGAGA shoot morphogenesis, regulation of cellular process N/A

4 AATNCCNC,AAAATATCT N/A N/A

5 ACACATG,AAAATATCT N/A N/A

6 ACACCGG,AAGNGTNG response to stress, glycoside metabolic process, N/A

7 ACANTACN,ATCCAACC N/A N/A

8 ACANTACN,MCACGTGGC photosynthesis, cystein metabolic process chloroplast thylakoid membrane

9 AGNGATAN,MCACGTGGC regulation of defence response chloroplast part

10 ANCACATG,AAAATATCT N/A N/A

11 ATACGTGT,TAACAAA response to light stimulus, organic acid biosynthetic

process

N/A

12 ATGNTTCA,ACGTGGC cellular carbohydrate metabolic process N/A

13 CATGCATG,AGNAACAA N/A N/A

14 CATGCATG,NGCNTGAA N/A cell wall; external encapsulating structure

15 CCNNCACN,GTGATCAC cellular protein catabolic process chloroplast thylakoid membrane

16 CNANAGAA,GACGTGTA response to external stimulus, photosynthesis light

reaction, alcohol metabolic process

chloroplast stroma

17 CTCATTTN,AGATCCAA catalytic activity N/A

18 GACGTGTA,CNNACANC cellular protein complex assembly, photosynthesis

light reaction, response to external stimulus, cellular

amino acid biosynthetic process

chloroplast part

19 TCNTNAGA,CAAAACGC N/A N/A

20 TGTCACA,TGAGTCA ubiquitin-dependent protein catabolic process; ligase

activity

N/A

21 TGTGNGNA,TAGTGGAT N/A plasma membrane

https://doi.org/10.1371/journal.pone.0190421.t003

Table 4. Overlap between EDCC analysis and combinations found in an earlier analysis.

Combination found in this study Combination found by Ding et al.

MCACGTGGC/ACANTACN MCACGTGGC/CcaTACatt

CATGCATG/AGNAACAA CATGCATG/gctaAACAAt

CCNCACN/GTGATCAC CCnnnnnnnnnnnncCACg/GTGATCAC
CAAACACC/GTGATCAC

TCNTNAGA/CAAAACGC TCaTcttctt/CAAAACGC

Partially overlapping CREs contain large and small letters. The large letters indicate nucleotides that are identic between the CRE analysed by EDCC and

the CRE analysed by Ding et al [79].

https://doi.org/10.1371/journal.pone.0190421.t004
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[80], which is a subset of the AtCOEcis database that we used for this study [5]. Thus, it is likely

that more combinations that we found in our analysis are over-represented in Arabidopsis

promoters.

Another study found 10 CREs that correlated with diurnal and circadian gene expression in

Arabidopsis [32]. For this they used MEME [30] but as the analysis with MEME is very com-

putation intensive, the authors had to use a supercomputer [32]. We analyzed the 10 CREs

they found using EDCC, and identified only CCACGTG as a candidate. EDCC determined

that the motif deviates from the background at ZT0-ZT4 (at the start of the day), whereas the

authors of the previous study only identified two sets of genes that contained this motif but dis-

playing different expression patterns.

Both comparisons indicate that EDCC may be more conservative than other approaches to

correlate gene expression with presence of CREs.

Analyzing positional attributes of candidate CRE combinations

EDCC determines three positional features between CREs: Over-representation of specific dis-

tances between two CREs, the distance of the closest of two CREs to the TSS, and a specific

order of the two CREs in respect to the TSS. Depending on the number of identified ‘candi-

date’ CRE pairs, this leads to a large number of positional features that need to be evaluated by

the user. To prevent user-bias, we introduced a neural network generator that categorizes the

positional features and allows for unbiased scoring of the data: CNG.

CNG is able to classify a large amount of CRE pairs at once by using two-class neural net-

works. We used the 21 candidate CRE pairs that were identified in the previous EDCC analysis

to perform the CNG analysis (S3 Table). CNG was run eight times resulting in 7.125 networks,

respectively.

One exemplary CNG network includes eight CRE pairs, of which six showed significant

overrepresentation of a specific order between the two CREs and the TSS (Fig 8A). None of

the combinations showed a preference for a specific distance between the individual CREs (Fig

8B), and most combinations are positioned close to the TSS (Fig 8C). CNG summarizes the

analysis of all three positional features in a scatterplot matrix, in which each point represents a

specific CRE pair (Fig 9). One of the pairs that showed strong order preference and a tendency

to be close to the TSS consists of a G box (MCACGTGGC) [64] and an undefined ACAN-

TACN motif. Genes containing this CRE pair are enriched in the GO term photosynthesis.

Four of the genes containing this combination belong to the photosystems I and II, respec-

tively. These were the genes PHOTOSYSTEM I SUBUNIT G, PHOTOSYSTEM I SUBUNIT H2,

PHOTOSYSTEM II SUBUNIT P-1, and PS II OXYGEN-EVOLVING COMPLEX 1 (Fig 10A).

They all exhibit their maximum expression between ZT4 and ZT8, i.e. in the middle of the sub-

jective light phase (Fig 10B). In the promoters of these and 30 other genes, the G box motif is

positioned closer to the TSS than the ACANTACN motif (p = 3.86�10−5).

Discussion

EDCC correctly identifies known circadian clock promoter elements

Although a plethora of programs exist that allow deciphering of the influence of cis-regulatory

elements on gene expression, most programs are either complicated to handle or cannot be

used for large data sets, especially if statistical calculations are included. For example, the anal-

ysis of more than 1.5 million pairwise CRE combinations would suffer from a large multiple

comparison error, or require large computing power. Here, we introduce the EDCC and CNG

programs, which allow simple and fast identification of a large number of CREs and CRMs

which may influence gene expression.
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Fig 8. Representative output of the CNG analysis. A) Distribution of p-values for binomial order test. B)

Distribution of p-values for distance G-test. C) Distribution of Bowley skewness analysis.

https://doi.org/10.1371/journal.pone.0190421.g008
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EDCC determines whether the presence of a CRE or CRM in promoters correlates with a

specific expression pattern. For this, the expression data needs to be categorized into different

treatment conditions prior to the EDCC analysis. EDCC compares the DEM of genes contain-

ing queried CREs/CRMs with the background distribution. With each analysis, EDCC runs a

large set of random CREs and determines their standard deviation from the background. This

standard deviation serves as the threshold at which a queried CRE is marked as a candidate.

Fig 9. Scatterplot matrix summarizing the representative neural network analysis of three positional attributes. Each dot represents one CRE pair.

Filled dots represent gene pairs that indicate the G box/ACANTACN pair, which is present in four photosystem genes and correlated with midday specific

gene expression.

https://doi.org/10.1371/journal.pone.0190421.g009
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In our study of CREs and CRM in circadian gene expression [14] we were able to identify

only two of the known CREs as candidates, i.e. the evening element [23] and one of the known

three midnight elements [14]. The morning element [25], two of the midnight elements [14]

Fig 10. Positions of ACANTACN and G box motifs in photosystem subunit gene promoters and correlation with circadian gene expression. A)

Positions of ACANTACN (white arrows) and the G box MCACGTGGC (black arrows) CREs in promoters of photosystem subunit genes. Blue arrows

indicate CDS in 5’-3’ direction (introns are ignored), thicker blue lines indicate 5’ and 3’ UTRs. Thin blue line represents 1000 bp upstream region of the TSS.

B) Circadian gene expression of the same photosystem genes as given by DIURNAL [81].

https://doi.org/10.1371/journal.pone.0190421.g010
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and the HUD-domain [27] were not found in the EDCC analysis. This means that i) EDCC is

generally conservative and may generate false negatives, ii) the given positive controls have a

small effect on circadian gene expression, and/or iii) the positive control CREs would have

been discovered when using another circadian microarray experiment. As we mainly wanted

to avoid discovery of false positive CREs, we were satisfied with the performance of EDCC on

the positive control queries and continued to analyze all CREs given in the AtCOEcis database

[5].

EDCC finds both known and unknown CREs and CRE combinations that

correlate with circadian gene expression

We used EDCC to analyze 1755 CREs with circadian microarray data and to identify candidate

elements that correlate with gene expression at a specific time of the day. In one of the most

conservative approaches we found 21 candidate CREs, which included the evening element

[23], MYB1 and MYB2 binding site motifs [52,56,65], a wound responsive element [55], a

TCP binding site [60], a GATA motif [59], ABA response element binding sites [41,66], and a

G box element [64]. Whereas the Myb-domain transcription factors CCA1 and LATE ELON-

GATED HYPOCOTYL are involved in the regulation of the core clock, the homologs MYB1

and MYB2 have not been shown to be involved in circadian gene expression yet. Furthermore,

MYB1 and MYB2 were both found to influence ABA signaling and responses [82,83]. ABA is

a phytohormone that is essential in plant developmental processes as well as plant stress

responses. Genes that are expressed rhythmically during a day-night cycle are overrepresented

among ABA responsive genes [84] and ABA response to drought is gated by the circadian

clock core component TIMING OF CAB EXPRESSION 1 [48,50,85]. Conversely, ABA treat-

ment lengthens the circadian expression period of circadian clock genes [86]. Thus, it is fitting

that the EDCC analysis identifies ABA response elements as candidate CREs in the regulation

of circadian gene expression. Class I TCP transcription factors have been identified to control

circadian gene expression, especially via binding to the promoter of the core clock gene CCA1
[45–47,87]. In sum, these findings point out that EDCC indeed is able to identify candidate

CREs that may confer specific gene expression.

In a next step, we used EDCC to analyze over 1.5 million pairs of CREs that were created by

pairing each of the 1755 CREs with each other. We found a plethora of potential CRE pairs

that correlate with daytime specific gene expression. The strongest effect was seen in the co-

occurrence of the evening element with the DPBF1&2 binding site motif (ACACATG).

Although first defined in carrots [67], a similar site (ACACNNG) has been found in Arabidop-

sis, where the motif is bound by the bZIP class transcription factor ABA-INSENSITIVE 5

(ABI5) [88], again pointing out the close association of ABA signaling with the circadian

clock. No indications exist as yet to what the function of this pairwise combination is, and it

would be one of the first CRE pairs to study in wetlab experiments after the EDCC analysis.

Some positions within a CRE are less important for its function than others, leading to anno-

tated CREs containing ambiguity code. When mutating the evening element/ DPBF1&2 bind-

ing site motif pair, we found that all positions of the evening element were important for

EDCC to define the pair as a candidate. For the DPBF1&2 binding site motif, we found several

variations which allowed us to indicate specific positions that are important for its presumed

function. It would be interesting to determine whether these positions are indeed important

for the evening element/ DPBF1&2 binding site motif pair to confer daytime specific gene

expression, however this was beyond the scope of this study. This example also highlights

another potential of EDCC: the EDCC program is able to analyze CREs with ambiguity code.

For this, EDCC first analyzes the component CREs (e.g. AAAGA and AAAAA when
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calculating of AAARA) and then summarizes the results. EDCC would thus also be able to

determine which of the component CREs correlates stronger with a specific expression pat-

tern, allowing the identification of important positions. We have not tested this, but it would

be an interesting future experiment.

When applying less restrictive conditions to the analysis of 1.5 million CRE pairs, EDCC

identified more candidate CRE pairs. These often included at least one CRE that was previ-

ously found in circadian or light-responsive gene regulation, e.g. the evening element [23], a G

box [89], a Z-DNA-forming sequence [90], or a dark responsive element [74]. In a previous

study, Ding and colleagues used a frequent pattern mining approach to determine which CRE

pairs are over-represented in Arabidopsis and poplar promoters [79]. When comparing our

CRE pairs with those, we found that four CRE pairs were similar. Hence, these four combina-

tions not only coincide often in plant promoters, they also correlate with specific peak circa-

dian expression times of the respective genes. In summary, the EDCC program was able to not

only detect CREs that are known to control circadian gene expression, further analysis also

allowed to detect secondary CREs that are likely to influence circadian gene expression in

combination with the previously known CREs. After validating these in wetlab approaches, it

will be interesting to analyze, how they influence expression of target genes and what kinds of

protein complexes bind to these.

CNG scoring of positional CRE/CRM offers an unbiased approach to

analyzing large-scale EDCC outputs

EDCC not only determines interesting secondary CREs, it also calculates positional features,

as CRE positions are an important feature of CRE-mediated gene control [9,10,91]. The posi-

tional features calculated are: the distance of two CREs to each other, the distance of a CRM to

the TSS, and the orientation of two CREs regarding which one is closer to the TSS. To prevent

user-bias, we created the CNG program, which scores these positional features using a neural

network. We used the CNG program to analyze CRE pairs that were found by EDCC. In a rep-

resentative network scored by CNG we found the combination of a G box element with a

ACANTACN sequence. This combination was found in 34 gene promoters and correlates

with gene expression in the middle of the subjective day. One of the reasons that this combina-

tion was included by CNG is that the ACANTACN element is mostly positioned 5’ of the G

box. We found this combination to be very prominent in the promoters of four photosystem

subunit genes that are all expressed in the middle of the day. This indicates that this CRE com-

bination indeed may affect day time specific gene expression. To our knowledge, this is the

first description of this potential CRE pair and it would be interesting to validate these findings

in wetlab experiments.

Possibilities of EDCC and CNG and comparison with other approaches

The EDCC and CNG analysis have certain limitations, which will be discussed here. First of

all, EDCC is designed to work with gene expression data, in which each gene exhibits maxi-

mum gene expression in one expression category. Circadian data was an ideal test case, as cir-

cadianly expressed genes exhibit a defined peak in contrast to other treatments or conditions.

We see possible applications of this program in deciphering regulation of organ growth pro-

cesses. For example, the identity of Arabidopsis floral organs is controlled by the presence of

different MADS box transcription factors, each controlling different sets of genes (for a review,

see [92]). These may be identified using the EDCC and CNG programs. In principle, any

expression data that follows an OR logic, is suitable to be analyzed with the programs pre-

sented here. Furthermore, we have limited the analysis of CRMs to pairs of CREs. EDCC is in
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principle able to analyze combinations with more than two individual CREs, however the

determination of positional features would not be possible yet. For example, the order of the

two CREs in relation to the TSS is calculated using a binomial order test. A variation of EDCC

with a multinomial test would be able to conduct the analysis. Also, the number of positional

features that are calculated by EDCC can be increased. Such possible features are e.g. the num-

ber of repeats of a CRE, non-traditional positions like introns or downstream sequences, and

the orientation of CREs, amongst others. EDCC is already able to include orientations of the

CREs, but for this study we allowed CREs to appear in all possible orientations.

Whereas many programs were developed to identify CREs and CRMs in data sets, we

designed a program that works with a user-identified list of CREs and CRMs. The simple

approach of EDCC to correlate CREs/CRMs with gene expression data is reliable without

being hindered by multiple comparison errors or by a lack in computing infrastructure. EDCC

and CNG both run on PCs using free software (R and Phython), allowing non-experts fast

identification of candidate CREs that may confer specific expression under different treat-

ments and conditions.

Ultimately, the EDCC analysis provides a starting point for further in depth analysis of

CRMs in gene expression. We showed that EDCC correctly identifies candidate CREs that are

known for their effect on circadian gene expression. EDCC further identified candidate single

CREs and CRE pairs that were not known to affect circadian gene expression. Some of the

pairs are found in specific positions upstream of the respective genes. In the future, wetlab

experiments need to show whether the presence and positions of these CREs are also function-

ally linked to circadian gene expression.

Material and methods

Exploration of Distinctive CREs and CRMs (EDCC)

EDCC compares the expression of genes containing a queried CRE with the background dis-

tribution of all genes that are affected by specific treatments or conditions. The CNG program

scores the positional features that EDCC determines for candidate CRE pairs, avoiding user

bias. Both EDCC and CNG are available for download under the link https://sourceforge.net/

projects/edcc/. A manual is given in S1 File.

EDCC and CNG both provide graphical user interfaces (GUI). Additionally, EDCC pro-

vides an additional command line interface. The application is licensed under Apache License

Version 2.0. EDCC is written in Python 3 and CGN in Python 3 and R, which makes them

compatible with Microsoft Windows, macOS and Unix-like systems.

EDCC allows combining multiple CREs of interest in one query, by using the separator (,).

Combinations of two CREs are further analyzed in respect to their positional attributes. The

EDCC/CNG programs are able to include complementary and inversed sequences to the

query CREs when specified by the user. All combined queries are split into single CREs before

being validity checked, expanded and matched against the selected database (S3 Fig). Expan-

sion means that query CREs that contain ambiguity code are broken down into their compo-

nent CREs (e.g. AAAGCC and AAAACC in case of a AAARCC query). K-mer based indexing

is used to maintain a high speed of the analysis. Peak expression times of promoters that

match with the queries are extracted from an expression database (see below). If the initial

query consisted of multiple CREs and was therefore split prior to the analysis, the results of all

CRE are combined.

EDCC identifies whether a given query correlates with a DEM that differs from the back-

ground. The background contains all genes that are differentially expressed under the experi-

mental conditions. The threshold is calculated using a user-determined number of random
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CREs (by default 100). EDCC calculates a DEM for each random CRE and determines a stan-

dard deviation for each expression category based on these DEMs. One standard deviation is

the minimum threshold that is recommended in the EDCC analysis. As the random back-

ground is calculated in each run of EDCC, each run may produce slightly different results. To

eliminate randomly occurring extreme variations, a default total of 100 backgrounds are pro-

duced per run and a query is termed ‘candidate’ when it deviates from the majority of the

runs, respectively.

CREs that only occur in few promoters may exhibit distribution biases. Hence, the number

of minimum matches a query has to meet is user-determined, but we do recommend using

CREs that occur in at least 10 to 30 promoters. The default setting is 20 promoters.

Analysis of positional features of CRE pairs

EDCC calculates three different positional features per candidate CRE pair:

Distance test. A two-sided Kolmogorov-Smirnov test is used to determine whether two

CREs prefer a specific distance towards each other. The distribution of expected distances is

generated using a stochastic approach: at first, the probability that a CRE occurs in a promoter

is calculated. Then for each CRE as many random numbers are generated as expected to occur

in 1000 bp, which represents the length of the analyzed promoter regions. The probabilities of

the CREs are subtracted from each other and the smallest absolute difference between the

probabilities is taken by EDCC to determine the distance of the CRM elements in a promoter.

This procedure is performed 10,000 times to calculate the distribution of expected distances.

Order test. To determine whether CRE pairs occur predominantly in a given order in

relation to the TSS, a binomial test is performed with the null hypothesis that each possible

order of the two given CREs occurs with the same probability. The formula for this test is

given below:

p Xð Þ ¼
n!

ðn � XÞ!X!
� ðpÞX � ðqÞn� XÞ

Here, p and q are equal to 0.5, n is the total of pairwise occurrences and X is the number of

occurrences of one possible order.

Bowley skewness of CRM positions. We defined the position of a CRM as the smallest

distance of its constituent CREs to the TSS. As CRMs are predominantly positioned near the

TSS, we expected that the distribution of the single positions of a CRM in the affected promot-

ers is left-skewed. The skewness is calculated with Bowley‘s coefficient of skewness. The value

range lies between -1 and 1. Positive values indicate a right-skewed distribution; negative val-

ues a left-skewed distribution. The skewness coefficient is calculated as follows:

S ¼
Q3 þ Q1 � 2Q2

Q3 � Q1

where Q1 is the first, Q2 the second and Q3 the third quartile of the position‘s distribution.

CRM Network Generator (CNG)

CNG uses an artificial two-class neural network to categorize and weigh positional features

that were determined by EDCC (S2 Fig), thus precluding bias when manually assessing the

EDCC output [33]. Via the CNG GUI, the user can change most parameters of the neural net-

work generation. All neural networks created by CNG are feedforward networks that take the

numeric results from the three statistical tests of EDCC as input. The networks consist of a
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neuron with a sigmoid activation function for the input and a Heaviside activation function

for the output [93].

The CNG is trained with three types of neural network training data: the output of EDCC

(i.e. the sequences of interest), sequences that exhibit p-values of 1 and Bowley skewness of -1,

0, and 1 (the negative control), and random sequences. The random sequences are used to

ensure that the network categorization does not become too broad within the numeric data

range of the positive sequences, as very broad categorizations could simply include all positive

sequences without performing categorizations based on their properties.

The network training follows an evolutionary approach in order to get a more start values-

independent categorization than with classical backpropagation [79,94]. In order to be more

controllable in respect to the small number of inputs and outputs, the CNG training method

only evolves the weights and biases of a neural network, but not its structure. Each evolution-

ary training process of networks is separated in “cycles“, which are separated again in

“rounds”. The currently trained networks are scored each round (see below). Afterwards, the

networks are sorted according to their score, and the best rated networks are selected for the

next round. Mutated variants of the currently best rated networks and new randomly created

networks are generated and scored together with the best networks of the previous round. The

mutations can be either single incremental or disruptive changes of the biases or the weights,

or crosses of two of the best rated networks. One CNG cycle ends when the score of the best

network does not increase for a user-defined number of rounds. The best network of the last

round of a cycle is saved internally and can be visualized later.

In the next cycle, the newly generated networks are forced to include positive sequences

that have not been categorized before to ensure that the new networks are not identical to pre-

vious ones, and to increase the total number of categorized sequences. The CNG analysis ends

when all positive sequences were categorized at least once in a generated network.

Scoring of neural networks

The score of a network depends on the quantity of positive, negative and random sequences

that are included in the network. If a network includes one of the negative sequences in its cat-

egorization, it gets the lowest score. If this is not the case, the network‘s score is calculated by

dividing the number of positive sequences with the number of random sequences. If two or

more networks have the same rating, the networks including more sequences are rated higher

to avoid too narrow categories. The user can change most of the training process settings via

the CNG user interface. This includes the fixed number of neurons of the hidden layer as well

as all other numeric parameters to set or change the bias and the weights of the hidden layer‘s

and the output layer‘s neurons during the training process. Each ongoing or finished training

process, as well as each generated neural network, can be saved in a binary format. The binary

files of training processes can be reloaded by the CNG.

Visual output of the CNG

The CNG user interface shows the results of an ongoing or finished neural network training

process. These are documented in HTML files which include textual information and plots.

The subsequently generated index file is the starting point for the visualization. It shows all set-

tings of the training process as well as an overview of all generated networks. Each generated

network is also described and visualized in its own HTML file. The binary files of the training

process and the single networks are automatically created with the HTML report. The index

HTML file also shows the differences of the categorized sequences of the networks. This is

done by generating a distance matrix of all generated networks. A value of 1 means that no
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sequences can be found in both categories, whereas a value of 0 means that all sequences of the

smaller category are included in the larger category. This distance matrix is visualized as a 2D

plot using the “symmetric SMACOF” multidimensional scaling method [95]. Additionally, the

index file also shows whether a correlation between each of the input data of the categorized

sequences of each particular network was detected using Spearman‘s correlation coefficient.

The HTML files describing the single networks show a scatterplot of the input data, boxplots

of the single data, the categorized sequences as well as a table containing the all included CREs

and the genes in which they occur. The gene identifiers are provided in separate text files.

These gene identifier lists allow subsequent analyses, such as GO analyses.

Experimental data

The programs were tested using published data of a circadian microarray experiment

(E-MEXP-1304) [14]. In this experiment Arabidopsis seedlings were grown for 9 days in a 12

hours light/12 hours dark regime and subsequently transferred to continuous light. Samples

were taken every four hours for 48 hours after transfer to continuous light. We analyzed the

continuous light experiment with the ARSER package and a significance cut-off of q = 0.05

[39]. Genes that exhibited circadian gene expression were categorized according to their peak

expression time (ZT0-ZT4, ZT4-ZT8, ZT8-ZT12, ZT12-ZT16, ZT16-ZT20, ZT20-ZT0). Arabi-

dopsis sequence data including 1000 bp upstream of the TSS for all coding and non-coding

genes represented in TAIR10 was used to query for CREs, respectively [96]. We used 1755

CREs as given in the AtCOEcis database to test the programs [5]. These 1755 CREs include

known motifs from PLACE [80] and AGRIS [4] and de novo motifs that were identified by

homology between Arabidopsis and poplar [5]. Based on this collection we created a dataset in

which each CRE was paired with a second CRE (disregarding the order), resulting in a query

dataset of 1,540,890 CRE combinations.

Supporting information

S1 Fig. Schematic representation of EDCC analysis. Legend indicates input data, processes,

and output of the EDCC analysis.

(TIF)

S2 Fig. Schematic representations of two-class neural networks generated by CNG. Neu-

rons are shown as circles, numeric inputs as rectangles. All of these networks take the Bowley

Skewness of a CRM’s positions, the p value of the distance test of the CRM and the p value of

the order test of the CRM as numeric input. The activation function of the n neurons in the

sole hidden layer of these networks is the sigmoid function tð Þ ¼ 1

1þe� t. For each of these neu-

rons, the parameter for the activation function is the sum of the neuron‘s bias value with t. t is

the sum of the weighted numeric inputs. Each hidden layer neuron has its own weight w for

each numeric input. The output layer consists of one neuron. This neuron has the Heaviside

function h as activation function. As parameter for h, the sum of the neuron‘s bias b and t is

used. In this case, t is the sum of the weighted outputs of the hidden layer‘s neurons.

(TIF)

S3 Fig. Expansion of a CRE by EDCC. Handling of ambiguity code by EDCC. First, the ambi-

guity code is unscrambled into the component four bases. In the second step, complementary

and inverse CREs are determined. Then, EDCC analysis is performed for each component

CRE and the results united.

(TIF)
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S1 Table. Candidate single CREs identified by EDCC. 1755 CREs [5] were analyzed for cor-

relation with a shift in circadian peak expression time. The table depicts all CREs that were

found as candidates in five runs and occurred at least 10 times in Arabidopsis promoters.

(PDF)

S2 Table. Candidate single CREs under conservative settings. EDCC analysis of 1755 CREs

for correlation with a shift in circadian peak expression time in Arabidopsis. The number of

minimum occurrences was increased to 15, 20, and 30, respectively. Given are all CREs that

were found as candidates in five runs.

(PDF)

S3 Table. Candidate CRE pairs that were used for CNG analysis. Given are 21 CRE pairs

that have been found to correlate with a shift in peak expression time of circadianly expressed

genes in Arabidopsis. All listed pairs occurred in at least 30 promoters and deviated from the

background by at least five standard deviations in all five EDCC runs.

(PDF)

S1 File. EDCC and CNG manual. The manual is also available as.html file under https://

sourceforge.net/projects/edcc/files/edcc_cng.zip/download.

(DOCX)
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induced by magnesium deficiency in Arabidopsis thaliana reveal the alteration of circadian clock gene

expression in roots and the triggering of abscisic acid-responsive genes. New Phytol. 2010; 187: 119–

131. https://doi.org/10.1111/j.1469-8137.2010.03258.x PMID: 20406411

50. Seung D, Risopatron JPM, Jones BJ, Marc J. Circadian clock-dependent gating in ABA signalling net-

works. Protoplasma. 2012; 249: 445–457. https://doi.org/10.1007/s00709-011-0304-3 PMID: 21773710

51. Du Z, Zhou X, Ling Y, Zhang Z, Su Z. agriGO: a GO analysis toolkit for the agricultural community.

Nucleic Acids Res. 2010; 38: W64–W70. https://doi.org/10.1093/nar/gkq310 PMID: 20435677

52. Sablowski RW, Moyano E, Culianez-Macia FA, Schuch W, Martin C, Bevan M. A flower-specific Myb

protein activates transcription of phenylpropanoid biosynthetic genes. EMBO J. 1994; 13: 128–137.

PMID: 8306956

53. Castresana C, Garcia-Luque I, Alonso E, Malik VS, Cashmore AR. Both positive and negative regula-

tory elements mediate expression of a photoregulated CAB gene from Nicotiana plumbaginifolia.

EMBO J. 1988; 7: 1929–1936. PMID: 2901343

54. Ueda T, Pichersky E, Malik VS, Cashmore AR. Level of expression of the tomato rbcS-3A gene is mod-

ulated by a far upstream promoter element in a developmentally regulated manner. Plant Cell. 1989; 1:

217–227. https://doi.org/10.1105/tpc.1.2.217 PMID: 2535544

55. Palm CJ, Costa MA, An G, Ryan CA. Wound-inducible nuclear protein binds DNA fragments that regu-

late a proteinase inhibitor II gene from potato. Proc Natl Acad Sci U S A. 1990; 87: 603–607. PMID:

2405385

56. Menkens AE, Cashmore AR. Isolation and characterization of a fourth Arabidopsis thaliana G-box-bind-

ing factor, which has similarities to Fos oncoprotein. Proc Natl Acad Sci U S A. 1994; 91: 2522–2526.

PMID: 8146148

57. Johannesson H, Wang Y, Engström P. DNA-binding and dimerization preferences of Arabidopsis

homeodomain-leucine zipper transcription factors in vitro. Plant Mol Biol. 2001; 45: 63–73. https://doi.

org/10.1023/A:1006423324025 PMID: 11247607

58. Ulmasov T, Liu ZB, Hagen G, Guilfoyle TJ. Composite structure of auxin response elements. Plant Cell.

1995; 7: 1611–1623. https://doi.org/10.1105/tpc.7.10.1611 PMID: 7580254

59. Yin Y, Chen L, Beachy R. Promoter elements required for phloem-specific gene expression from the

RTBV promoter in rice. Plant J. 1997; 12: 1179–1188. https://doi.org/10.1046/j.1365-313X.1997.

12051179.x PMID: 9418055

60. Kosugi S, Ohashi Y. PCF1 and PCF2 Specifically Bind to cis Elements in the Rice Proliferating Cell

Nuclear Antigen Gene. PLANT CELL ONLINE. 1997; 9: 1607–1619. https://doi.org/10.1105/tpc.9.9.

1607 PMID: 9338963

61. Lohmer S, Maddaloni M, Motto M, Di Fonzo N, Hartings H, Salamini F, et al. The maize regulatory locus

Opaque-2 encodes a DNA-binding protein which activates the transcription of the b-32 gene. EMBO J.

1991; 10: 617–624. PMID: 2001677

62. Chabouté M-E, Clément B, Sekine M, Philipps G, Chaubet-Gigot N. Cell Cycle Regulation of the

Tobacco Ribonucleotide Reductase Small Subunit Gene Is Mediated by E2F-like Elements. Plant Cell.

2000; 12: 1987–2000. PMID: 11041892

63. Brown JW. A catalogue of splice junction and putative branch point sequences from plant introns.

Nucleic Acids Res. 1986; 14: 9549–9559. PMID: 3808952

64. Giuliano G, Pichersky E, Malik VS, Timko MP, Scolnik PA, Cashmore AR. An evolutionarily conserved

protein binding sequence upstream of a plant light-regulated gene. Proc Natl Acad Sci U S A. 1988; 85:

7089–7093. PMID: 2902624

65. Martin C, Paz-Ares J. MYB transcription factors in plants. Trends Genet. 1997; 13: 67–73. https://doi.

org/10.1016/S0168-9525(96)10049-4 PMID: 9055608

66. Hattori T, Terada T, Hamasuna S. Regulation of the Osem gene by abscisic acid and the transcriptional

activator VP1: analysis of cis-acting promoter elements required for regulation by abscisic acid and

VP1. Plant J. 1995; 7: 913–925. https://doi.org/10.1046/j.1365-313X.1995.07060913.x PMID: 7599651

The EDCC and CNG programs for the exploration of cis-regulatory modules

PLOS ONE | https://doi.org/10.1371/journal.pone.0190421 January 3, 2018 27 / 29

https://doi.org/10.1016/j.celrep.2014.06.033
http://www.ncbi.nlm.nih.gov/pubmed/25043187
https://doi.org/10.1038/ncomms13181
http://www.ncbi.nlm.nih.gov/pubmed/27734958
https://doi.org/10.1038/emboj.2009.297
https://doi.org/10.1038/emboj.2009.297
http://www.ncbi.nlm.nih.gov/pubmed/19816401
https://doi.org/10.1111/j.1469-8137.2010.03258.x
http://www.ncbi.nlm.nih.gov/pubmed/20406411
https://doi.org/10.1007/s00709-011-0304-3
http://www.ncbi.nlm.nih.gov/pubmed/21773710
https://doi.org/10.1093/nar/gkq310
http://www.ncbi.nlm.nih.gov/pubmed/20435677
http://www.ncbi.nlm.nih.gov/pubmed/8306956
http://www.ncbi.nlm.nih.gov/pubmed/2901343
https://doi.org/10.1105/tpc.1.2.217
http://www.ncbi.nlm.nih.gov/pubmed/2535544
http://www.ncbi.nlm.nih.gov/pubmed/2405385
http://www.ncbi.nlm.nih.gov/pubmed/8146148
https://doi.org/10.1023/A:1006423324025
https://doi.org/10.1023/A:1006423324025
http://www.ncbi.nlm.nih.gov/pubmed/11247607
https://doi.org/10.1105/tpc.7.10.1611
http://www.ncbi.nlm.nih.gov/pubmed/7580254
https://doi.org/10.1046/j.1365-313X.1997.12051179.x
https://doi.org/10.1046/j.1365-313X.1997.12051179.x
http://www.ncbi.nlm.nih.gov/pubmed/9418055
https://doi.org/10.1105/tpc.9.9.1607
https://doi.org/10.1105/tpc.9.9.1607
http://www.ncbi.nlm.nih.gov/pubmed/9338963
http://www.ncbi.nlm.nih.gov/pubmed/2001677
http://www.ncbi.nlm.nih.gov/pubmed/11041892
http://www.ncbi.nlm.nih.gov/pubmed/3808952
http://www.ncbi.nlm.nih.gov/pubmed/2902624
https://doi.org/10.1016/S0168-9525(96)10049-4
https://doi.org/10.1016/S0168-9525(96)10049-4
http://www.ncbi.nlm.nih.gov/pubmed/9055608
https://doi.org/10.1046/j.1365-313X.1995.07060913.x
http://www.ncbi.nlm.nih.gov/pubmed/7599651
https://doi.org/10.1371/journal.pone.0190421


67. Kim SY, Chung H-J, Thomas TL. Isolation of a novel class of bZIP transcription factors that interact with

ABA-responsive and embryo-specification elements in the Dc3 promoter using a modified yeast one-

hybrid system. Plant J. 1997; 11: 1237–1251. https://doi.org/10.1046/j.1365-313X.1997.11061237.x

PMID: 9225465

68. Wagner D, Sablowski RW, Meyerowitz EM. Transcriptional activation of APETALA1 by LEAFY. Sci-

ence. 1999; 285: 582–584. PMID: 10417387

69. Yadav V, Kundu S, Chattopadhyay D, Negi P, Wei N, Deng X-W, et al. Light regulated modulation of Z-

box containing promoters by photoreceptors and downstream regulatory components, COP1 and HY5,

in Arabidopsis. Plant J. 2002; 31: 741–753. https://doi.org/10.1046/j.1365-313X.2002.01395.x PMID:

12220265

70. Gubler F, Kalla R, Roberts JK, Jacobsen JV. Gibberellin-regulated expression of a myb gene in barley

aleurone cells: evidence for Myb transactivation of a high-pI alpha-amylase gene promoter. Plant Cell.

1995; 7: 1879–1891. PMID: 8535141

71. Nag R, Maity MK, DasGupta M. Dual DNA Binding Property of ABA insensitive 3 Like Factors Targeted

to Promoters Responsive to ABA and Auxin. Plant Mol Biol. 2005; 59: 821–838. https://doi.org/10.1007/

s11103-005-1387-z PMID: 16270233

72. Chan CS, Guo L, Shih MC. Promoter analysis of the nuclear gene encoding the chloroplast glyceralde-

hyde-3-phosphate dehydrogenase B subunit of Arabidopsis thaliana. Plant Mol Biol. 2001; 46: 131–

141. PMID: 11442054

73. Sugimoto K, Takeda S, Hirochika H. Transcriptional activation mediated by binding of a plant GATA-

type zinc finger protein AGP1 to the AG-motif (AGATCCAA) of the wound-inducible Myb gene NtMyb2.

Plant J. 2003; 36: 550–564. https://doi.org/10.1046/j.1365-313X.2003.01899.x PMID: 14617085

74. Maxwell BB, Andersson CR, Poole DS, Kay SA, Chory J. HY5, Circadian Clock-Associated 1, and a

cis-Element, DET1 Dark Response Element, Mediate DET1 Regulation of Chlorophyll a/b-Binding Pro-

tein 2 Expression. Plant Physiol. 2003; 133: 1565–1577. https://doi.org/10.1104/pp.103.025114 PMID:

14563928

75. Yamagata H, Yonesu K, Hirata A, Aizono Y. TGTCACA Motif Is a Novel cis-Regulatory Enhancer Ele-

ment Involved in Fruit-specific Expression of thecucumisin Gene. J Biol Chem. 2002; 277: 11582–

11590. https://doi.org/10.1074/jbc.M109946200 PMID: 11782472

76. Washida H, Wu C-Y, Suzuki A, Yamanouchi U, Akihama T, Harada K, et al. Identification of cis-regula-

tory elements required for endosperm expression of the rice storage protein glutelin gene GluB-1. Plant

Mol Biol. 1999; 40: 1–12. https://doi.org/10.1023/A:1026459229671 PMID: 10394940

77. Trindade LM, Horvath BM, Bergervoet MJE, Visser RGF. Isolation of a Gene Encoding a Copper Chap-

erone for the Copper/Zinc Superoxide Dismutase and Characterization of Its Promoter in Potato. Plant

Physiol. 2003; 133: 618–629. https://doi.org/10.1104/pp.103.025320 PMID: 12972661

78. Han J, Cheng H, Xin D, Yan X. Frequent pattern mining: current status and future directions. Data Min

Knowl Discov. 2007; 15: 55–86. https://doi.org/10.1007/s10618-006-0059-1

79. Ding J, Hu H, Li X. Thousands of Cis-Regulatory Sequence Combinations Are Shared by Arabidopsis and

Poplar. Plant Physiol. 2012; 158: 145–155. https://doi.org/10.1104/pp.111.186080 PMID: 22058225

80. Higo K, Ugawa Y, Iwamoto M, Higo H. PLACE: A database of plant cis-acting regulatory DNA elements.

Nucleic Acids Res. 1998; 26: 358–359. https://doi.org/10.1093/nar/26.1.358 PMID: 9399873

81. Mockler TC, Michael TP, Priest HD, Shen R, Sullivan CM, Givan SA, et al. The Diurnal Project: Diurnal

and Circadian Expression Profiling, Model-based Pattern Matching, and Promoter Analysis. Cold

Spring Harb Symp Quant Biol. 2007; 72: 353–363. https://doi.org/10.1101/sqb.2007.72.006 PMID:

18419293

82. Wang T, Tohge T, Ivakov A, Mueller-Roeber B, Fernie AR, Mutwil M, et al. Salt-Related MYB1 Coordi-

nates Abscisic Acid Biosynthesis and Signaling during Salt Stress in Arabidopsis1. Plant Physiol. 2015;

169: 1027–1041. https://doi.org/10.1104/pp.15.00962 PMID: 26243618

83. Baek D, Chun HJ, Kang S, Shin G, Park SJ, Hong H, et al. A Role for Arabidopsis miR399f in Salt,

Drought, and ABA Signaling. Moleucles Cells. 2015; 39: 111–118. https://doi.org/10.14348/molcells.

2016.2188 PMID: 26674968

84. Mizuno T, Yamashino T. Comparative Transcriptome of Diurnally Oscillating Genes and Hormone-

Responsive Genes in Arabidopsis thaliana: Insight into Circadian Clock-Controlled Daily Responses to

Common Ambient Stresses in Plants. Plant Cell Physiol. 2008; 49: 481–487. https://doi.org/10.1093/

pcp/pcn008 PMID: 18202002

85. Lee HG, Mas P, Seo PJ. MYB96 shapes the circadian gating of ABA signaling in Arabidopsis. Sci Rep.

2016; 6: 17754. https://doi.org/10.1038/srep17754 PMID: 26725725

The EDCC and CNG programs for the exploration of cis-regulatory modules

PLOS ONE | https://doi.org/10.1371/journal.pone.0190421 January 3, 2018 28 / 29

https://doi.org/10.1046/j.1365-313X.1997.11061237.x
http://www.ncbi.nlm.nih.gov/pubmed/9225465
http://www.ncbi.nlm.nih.gov/pubmed/10417387
https://doi.org/10.1046/j.1365-313X.2002.01395.x
http://www.ncbi.nlm.nih.gov/pubmed/12220265
http://www.ncbi.nlm.nih.gov/pubmed/8535141
https://doi.org/10.1007/s11103-005-1387-z
https://doi.org/10.1007/s11103-005-1387-z
http://www.ncbi.nlm.nih.gov/pubmed/16270233
http://www.ncbi.nlm.nih.gov/pubmed/11442054
https://doi.org/10.1046/j.1365-313X.2003.01899.x
http://www.ncbi.nlm.nih.gov/pubmed/14617085
https://doi.org/10.1104/pp.103.025114
http://www.ncbi.nlm.nih.gov/pubmed/14563928
https://doi.org/10.1074/jbc.M109946200
http://www.ncbi.nlm.nih.gov/pubmed/11782472
https://doi.org/10.1023/A:1026459229671
http://www.ncbi.nlm.nih.gov/pubmed/10394940
https://doi.org/10.1104/pp.103.025320
http://www.ncbi.nlm.nih.gov/pubmed/12972661
https://doi.org/10.1007/s10618-006-0059-1
https://doi.org/10.1104/pp.111.186080
http://www.ncbi.nlm.nih.gov/pubmed/22058225
https://doi.org/10.1093/nar/26.1.358
http://www.ncbi.nlm.nih.gov/pubmed/9399873
https://doi.org/10.1101/sqb.2007.72.006
http://www.ncbi.nlm.nih.gov/pubmed/18419293
https://doi.org/10.1104/pp.15.00962
http://www.ncbi.nlm.nih.gov/pubmed/26243618
https://doi.org/10.14348/molcells.2016.2188
https://doi.org/10.14348/molcells.2016.2188
http://www.ncbi.nlm.nih.gov/pubmed/26674968
https://doi.org/10.1093/pcp/pcn008
https://doi.org/10.1093/pcp/pcn008
http://www.ncbi.nlm.nih.gov/pubmed/18202002
https://doi.org/10.1038/srep17754
http://www.ncbi.nlm.nih.gov/pubmed/26725725
https://doi.org/10.1371/journal.pone.0190421


86. Hanano S, Domagalska MA, Nagy F, Davis SJ. Multiple phytohormones influence distinct parameters

of the plant circadian clock. Genes Cells. 2006; 11: 1381–1392. https://doi.org/10.1111/j.1365-2443.

2006.01026.x PMID: 17121545

87. Giraud E, Ng S, Carrie C, Duncan O, Low J, Lee CP, et al. TCP Transcription Factors Link the Regula-

tion of Genes Encoding Mitochondrial Proteins with the Circadian Clock in Arabidopsis thaliana. Plant

Cell. 2010; 22: 3921–3934. https://doi.org/10.1105/tpc.110.074518 PMID: 21183706

88. Kim SY, Ma J, Perret P, Li Z, Thomas TL. Arabidopsis ABI5 Subfamily Members Have Distinct DNA-

Binding and Transcriptional Activities. Plant Physiol. 2002; 130: 688–697. https://doi.org/10.1104/pp.

003566 PMID: 12376636

89. Gendron JM, Pruneda-Paz JL, Doherty CJ, Gross AM, Kang SE, Kay SA. Arabidopsis circadian clock

protein, TOC1, is a DNA-binding transcription factor. Proc Natl Acad Sci U S A. 2012; 109: 3167–3172.

https://doi.org/10.1073/pnas.1200355109 PMID: 22315425

90. Puente P, Wei N, Deng XW. Combinatorial interplay of promoter elements constitutes the minimal

determinants for light and developmental control of gene expression in Arabidopsis. EMBO J. 1996; 15:

3732–3743. PMID: 8670877

91. Cai X, Hou L, Su N, Hu H, Deng M, Li X. Systematic identification of conserved motif modules in the

human genome. BMC Genomics. 2010; 11: 567. https://doi.org/10.1186/1471-2164-11-567 PMID:

20946653

92. Immink RGH, Kaufmann K, Angenent GC. The “ABC” of MADS domain protein behaviour and interac-

tions. Semin Cell Dev Biol. 2010; 21: 87–93. https://doi.org/10.1016/j.semcdb.2009.10.004 PMID:

19883778

93. Kilian J, Siegelmann HT. The Dynamic Universality of Sigmoidal Neural Networks. Inf Comput. 1996;

128: 48–56. https://doi.org/10.1006/inco.1996.0062

94. Ding S, Li H, Su C, Yu J, Jin F. Evolutionary artificial neural networks: a review. Artif Intell Rev. 2013;

39: 251–260. https://doi.org/10.1007/s10462-011-9270-6

95. de Leeuw J, Mair P. Multidimensional Scaling Using Majorization: SMACOF in R. J Stat Softw. 2009;

31. Available: https://ideas.repec.org/a/jss/jstsof/v031i03.html

96. Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, et al. The Arabidopsis Information

Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 2011; 40: D1202–

D1210. https://doi.org/10.1093/nar/gkr1090 PMID: 22140109

The EDCC and CNG programs for the exploration of cis-regulatory modules

PLOS ONE | https://doi.org/10.1371/journal.pone.0190421 January 3, 2018 29 / 29

https://doi.org/10.1111/j.1365-2443.2006.01026.x
https://doi.org/10.1111/j.1365-2443.2006.01026.x
http://www.ncbi.nlm.nih.gov/pubmed/17121545
https://doi.org/10.1105/tpc.110.074518
http://www.ncbi.nlm.nih.gov/pubmed/21183706
https://doi.org/10.1104/pp.003566
https://doi.org/10.1104/pp.003566
http://www.ncbi.nlm.nih.gov/pubmed/12376636
https://doi.org/10.1073/pnas.1200355109
http://www.ncbi.nlm.nih.gov/pubmed/22315425
http://www.ncbi.nlm.nih.gov/pubmed/8670877
https://doi.org/10.1186/1471-2164-11-567
http://www.ncbi.nlm.nih.gov/pubmed/20946653
https://doi.org/10.1016/j.semcdb.2009.10.004
http://www.ncbi.nlm.nih.gov/pubmed/19883778
https://doi.org/10.1006/inco.1996.0062
https://doi.org/10.1007/s10462-011-9270-6
https://ideas.repec.org/a/jss/jstsof/v031i03.html
https://doi.org/10.1093/nar/gkr1090
http://www.ncbi.nlm.nih.gov/pubmed/22140109
https://doi.org/10.1371/journal.pone.0190421

