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Bacterial biofilms provide cues for the settlement of marine invertebrates such as coral larvae, and are therefore important for the resilience
and recovery of coral reefs. This study aimed to better understand how ocean acidification may affect the community composition and diver-
sity of bacterial biofilms on surfaces under naturally reduced pH conditions. Settlement tiles were deployed at coral reefs in Papua New
Guinea along pH gradients created by two CO2 seeps. Biofilms on upper and lower tiles surfaces were sampled 5 and 13 months after deploy-
ment. Automated Ribosomal Intergenic Spacer Analysis was used to characterize 240 separate bacterial communities, complemented by
amplicon sequencing of the bacterial 16S rRNA gene of 16 samples. Bacterial biofilms consisted predominantly of Alpha-, Gamma-, and Delta-
proteobacteria, as well as Cyanobacteria, Flavobacteriia, and Cytophagia, whereas taxa that induce settlement of invertebrate larvae only ac-
counted for a small fraction of the community. Bacterial biofilm composition was heterogeneous, with on average only �25% of operational
taxonomic units shared between samples. Among the observed environmental parameters, pH was only weakly related to community com-
position (R2 � 1%), and was unrelated to community richness and evenness. In contrast, biofilms strongly differed between upper and lower
tile surfaces (contrasting in light exposure and grazing intensity). There also appeared to be a strong interaction between bacterial biofilm
composition and the macroscopic components of the tile community. Our results suggest that on mature settlement surfaces in situ, pH
does not have a strong impact on the composition of bacterial biofilms. Other abiotic and biotic factors such as light exposure and inter-
actions with other organisms may be more important in shaping bacterial biofilms on mature surfaces than changes in seawater pH.

Keywords: amplicon sequencing, bacterial communities, CO2 vents, community fingerprinting, coral reefs, ocean acidification, natural labora-
tory, settlement tiles.

Introduction
The colonization of bare substrata by reef organisms is a crucial

process affecting the resilience and recovery of tropical coral reefs.

The settlement of coral larvae is especially important to replenish

coral cover after reef disturbance (Webster et al., 2004; Witt et al.,

2011a) and to prevent a shift from coral to algal dominance

(Hughes et al., 2003; Hoegh-Guldberg et al., 2007). Crustose cor-

alline algae (CCA) and their adherent bacterial biofilms play a

major role in the mediation of coral larval settlement (Negri

et al., 2001; Harrington et al., 2004). Bacterial biofilms can also

enhance settlement rates in the absence of CCA (Webster et al.,

2004). Certain bacterial strains, e.g. Pseudoalteromonas or
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Roseobacter, produce chemical compounds that trigger the settle-

ment of coral larvae (Negri et al., 2001; Tebben et al., 2011; Sneed

et al., 2014; Tebben et al., 2015). Therefore, changes in the com-

munity composition of bacterial biofilms, specifically those

related to settlement-inducing bacteria, have the potential to af-

fect the rate and success of coral larval settlement (Webster et al.,

2011; Sneed et al., 2015).

Ocean acidification (OA), one of the major threats to coral

reefs, can alter the composition of bacterial biofilms on various

reef substrata (Witt et al., 2011a; Webster et al., 2012, 2013). In

incubation experiments, Witt et al. (2011a,b) showed that bacter-

ial biofilms on glass slides differed in community composition

after short-term exposure to CO2-enriched seawater, with de-

creases in the relative abundance of Roseobacter. Webster et al.

(2012) detected an effect of reduced pH treatments on the bacter-

ial community associated with natural reef substrata, including

CCA, after 6 weeks of incubation. After further experiments,

Webster et al. (2013) hypothesized that declines in settlement

rates with decreasing pH may be a result of changes in the com-

position of the bacterial community associated with CCAs.

To go beyond the scope of laboratory experiments, which are lim-

ited to observations of organisms outside their natural environment,

naturally CO2-rich sites are increasingly being used as analogues for

future OA scenarios (Hall-Spencer et al., 2008; Fabricius et al., 2011;

Enochs et al., 2015). At these sites, the whole ecosystem is exposed to

reduced pH conditions, providing the opportunity to assess the im-

pact of pH changes in a natural environment. First observations

from naturally CO2-rich sites supported the conclusion that distinct

bacterial biofilm communities develop under reduced pH conditions

in temperate rocky shore environments (Lidbury et al., 2012).

However, data from naturally CO2-rich sites are still scarce, and have

so far been limited to short-term observations. Bacterial biofilms on

mature surfaces that have undergone long-term successions, and

may thus represent the majority of surfaces available for settlement

on coral reefs, are underexplored. Furthermore, potential interactions

between bacterial biofilm composition and macro-organisms, such

as algae and macro-invertebrates, which are part of such mature sur-

faces, are not yet well understood.

Here, we studied bacterial biofilms on settlement tiles in two trop-

ical coral reef systems, where volcanic CO2 seeps locally reduce sea-

water pH, thus mimicking conditions expected under OA (Fabricius

et al., 2011). The aims of the study were (I) to describe the compos-

ition and diversity of the bacterial communities on both the upper

and lower sides of mature settlement tiles that were deployed on the

reef for 5–13 months, (II) to assess the importance of water pH in

shaping bacterial biofilm composition, and (III) to elucidate the rela-

tionship between bacterial community composition, abiotic environ-

mental factors, and biotic interactions with other organisms that are

part of the successional development on natural reef surfaces. We

used a combination of high sample throughput and high resolution

molecular techniques to describe bacterial biofilm communities, as

well as data on the macroscopic tile community and the carbonate

system of the water surrounding the tiles provided in Fabricius et al.

(2015) for an integrated assessment of bacterial biofilms and the fac-

tors shaping their composition and diversity.

Material and methods
Sampling
Polyvinyl chloride (PVC) settlement tiles (11.5 cm� 11.5 cm)

were deployed along pH gradients created by CO2 seeps at two

coral reefs in Papua New Guinea: Upa Upasina on Normanby

Island (9.82 S, 150.82 E) and Dobu Island (9.74 S, 150.86 E;

Supplementary Figure S1). Sites and tile deployments were

described in detail in Fabricius et al. (2011). Briefly, 45 tiles per

reef were attached horizontally �2 cm above the reef substrate, in

December 2011 (Supplementary Figure S2A and B). Tiles were

deployed typically>5 m apart along the reef slopes, at 3 m depth.

A subsample of 30 tiles per reef was sampled for the analysis of

bacterial biofilms. These 30 tiles covered pH gradients ranging

from pHT (pH total scale) 7.6 to 8.0 at Upa Upasina, and from

pHT 7.4 to 8.0 at Dobu Island. At Upa Upasina, the range of pH

values was covered rather evenly, whereas at Dobu Island pHT

values were either lower than 7.8 at the CO2 seeps (20 tiles) or ap-

proximately 8.0 or higher at the reference site (10 tiles).

Furthermore, the reference site at Dobu Island was farther from

the seep site (�2 km) than at Upa Upasina (�500 m;

Supplementary Figure S1). Both at 5 and 13 months after deploy-

ment, a previously unsampled 2 cm� 2 cm square area was

scraped off of the lower and upper sides of each tile with a sterile

scalpel immediately after collection, to sample the bacterial bio-

film communities on the tiles. Samples were stored in RNAlater

(Ambion) in Eppendorf tubes for later DNA extraction. Patches

on the settlement tiles with a high density of macro-invertebrates

were avoided during the sampling of the biofilm. Data on the car-

bonate chemistry (pH, pCO2, dissolved inorganic carbon (CT),

total alkalinity (AT), calcite and aragonite saturation states

Supplementary Table S1) that each tile was exposed to are pub-

lished in Fabricius et al. (2015). Additionally, the percentage

cover of the main taxonomic groups on the surfaces of the whole

tiles was available as described in Fabricius et al. (2015). The

taxonomic groups sampled for the upper tile sides were: Crustose

coralline algae (CCA), turf algae, green filamentous algae, and

brown biofilm; and for the lower tile sides: CCA, turf algae, red

algae (Peyssonnelia), other macroalgae, cyanobacterial biofilm,

foraminifera, bryozoans, sponges, ascidians, bivalves, and

polychaetes.

Molecular analyses
DNA was extracted from 240 biofilm samples using the

UltraClean Soil DNA extraction kit (MoBio) following the manu-

facturer’s instructions. For a high sample throughput screening of

bacterial diversity and community composition, automated

Ribosomal Intergenic Spacer Analysis (ARISA; Fisher and

Triplett, 1999) was conducted with all samples as previously

described (Ramette, 2009; Hassenrück et al., 2015, 2016).

Operational taxonomic units (OTUs) generated by ARISA are

referred to as OTUARISA. A table with relative OTUARISA abun-

dances is available at Pangaea (https://doi.pangaea.de/10.1594/

PANGAEA.860795).

Furthermore, a subset of 16 samples from the lower tile side

from both sampling times and reefs covering reference and

reduced pH conditions was selected for 16S amplicon sequencing

to obtain a taxonomic profile of the bacterial biofilm community

on the settlement tiles. Paired-end sequences (2� 300 bp) of the

V3–V4 hypervariable region of the bacterial 16S rRNA gene were

generated on the Illumina MiSeq platform using the universal

bacterial primers S-D-Bact-0341-b-S-17 and S-D-Bact-0785-a-A-

21 (CeBiTec, Bielefeld; Klindworth et al., 2013). Amplicon

sequences were quality trimmed, clustered into OTUs, and taxo-

nomically classified using the Silva Ribosomal Database (Quast
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et al., 2013) as described previously (Supplementary Table S2;

Hassenrück et al., 2016). For the further analysis, singleton OTUs

and OTUs that were unclassified on domain level or affiliated

with chloroplast and mitochondrial sequences were removed. An

overview of the output of the amplicon sequencing is provided in

Supplementary Table S3. Further curation of the taxonomic as-

signment of specific OTUs was done using the online BLAST tool

on the NCBI (National Center for Biotechnology Information)

website with the 16S ribosomal refseq database (accessed 19.05.

2016). Sequences are available at ENA (European Nucleotide

Archive; project accession number PRJEB14127). OTUs gener-

ated by amplicon sequencing are referred to as OTUAmplicon. A

table with OTUAmplicon abundances is available at Pangaea

(https://doi.pangaea.de/10.1594/PANGAEA.860795). Bacterial

taxon names are further used to designate sequence affiliation to

the respective taxon, while abundance of bacterial taxa refers to

sequence proportion.

Statistical analysis
To visualize patterns in bacterial community composition, non-

metric multidimensional scaling (NMDS) plots were calculated

based on the Bray–Curtis dissimilarity matrix of relative

OTUARISA abundances. Analysis of similarity (ANOSIM) was

conducted to test for differences in community composition be-

tween reefs, sampling times, tile sides, and pH categories. pH

categories were defined by pHT values of >7.95 (reference),

7.95–7.80 (intermediate), and <7.80 (low). At Dobu Island, no

samples were available for the intermediate pH category. Pairwise

comparisons were corrected for multiple testing (Benjamini and

Hochberg, 1995). Furthermore, the contribution of pH values to

explaining variation in bacterial community composition based

on ARISA, while accounting for other parameters (reef, tile side,

and sampling time), was tested using redundancy analysis (RDA)

and variation partitioning. Water column parameters that were

highly correlated with pH, i.e. dissolved organic carbon concen-

tration (CT), pCO2, calcite and aragonite saturation state, were

excluded from the RDA models. Total alkalinity (AT) did not

strongly correlate with pH but did not improve the RDA models.

Prior to the RDA the bacterial community table was corrected for

compositionality effects of proportional data using a centred log

ratio (clr) transformation (Fernandes et al., 2014). The signifi-

cance of the individual parameters of the RDA models was as-

sessed using restricted permutation tests. Bacterial community

richness (based on OTUARISA number) and evenness (based on

the inverse Simpson index; see Oksanen et al., 2015) were tested

with the same models.

Patterns in bacterial community composition between ARISA

and sequencing data of the same samples were compared using

Mantel tests based on Bray–Curtis and Jaccard dissimilarity

matrices.

To investigate interactions between abiotic and biotic factors

influencing the composition of the bacterial biofilm, the direc-

tional relationships between water pH, bacterial community com-

position, and the macroscopic community on the settlement tiles

were evaluated using path analysis (Legendre and Legendre, 1998;

Bienhold et al., 2012; Sawall et al., 2012). Path analysis allows a

mathematical assessment of the likelihood of ecological scenarios,

i.e. path models, based on a priori hypotheses about direct and in-

direct causal dependencies between blocks of variables (Legendre

and Legendre, 1998). Here, path models were constructed

separately for upper and lower tile sides and the two sampling

times using z-transformed pH values, clr-transformed bacterial

OTUARISA data, and clr-transformed percentage tile cover. To

generate the a priori hypotheses about the original path models,

the effects of water pH, reef and tile cover on bacterial commu-

nity composition were tested in separate RDAs per tile side and

sampling time (Supplementary Table S4). The original path mod-

els included the following effects between variables: water pH on

tile cover, water pH on bacterial communities, tile cover on bac-

terial communities (and vice versa). To account for effects of un-

known parameters that may differ between reefs, alternative

models including an effect of reef on bacterial communities and

on tile cover were calculated. In summary, the models included

water pH and reef as exogenous variables and bacterial commu-

nity composition and tile cover as endogenous variables. The cor-

relation between the variables was assessed using the RV

coefficient (Robert and Escoufier, 1976). Unexplained variation

of endogenous variables was represented by the coefficient of

non-determination (Legendre and Legendre, 1998). The

goodness-of-fit of the path models was evaluated with the Chi-

square test, as well as the Akaike and Baysian Information

Criterion (AIC and BIC, respectively). The best models were se-

lected based on a non-significant Chi-square test and the min-

imum AIC.

All statistical analyses were conducted in R (R Core Team,

2015) using the packages vegan (Oksanen et al., 2015),

FactoMineR (Husson et al., 2016), and sem (Fox et al., 2015).

Significance was evaluated at a significance level of 0.05.

Results
Bacterial community fingerprinting
The biofilm material collected from 4 cm2 of the settlement tiles

varied considerably in amount, shape and composition

(Supplementary Figure S2C–F). Some samples only contained

very little material, whereas others were filled with approximately

0.5 ml of brown, red or green algal material with occasional traces

of calcareous substances. The macroscopic community on the

whole tiles was dominated by crustose coralline algae, especially

at reference pH conditions, the red algae Peyssonnelia sp., and

turf algae (Supplementary Figure S3).

ARISA of the bacterial communities on the settlement tiles de-

tected a total of 451 OTUARISA with an average of 143 OTUARISA

per sample (25th percentile: 127, 75th percentile: 163). We did

not detect an effect of pH, tile side or sampling time on OTU

number or evenness. However, the bacterial communities were

slightly more diverse at Dobu Island with 147.6 6 2.5 OTUARISA

(mean 6 standard error) and an inverse Simpson of 48.1 6 1.4,

compared to 139.7 6 2.6 and 33.7 6 1.3 at Upa Upasina, respect-

ively (Table 1).

NMDS showed a highly heterogeneous composition of the

bacterial communities with on average only 25% shared

OTUARISA between any two samples (Figure 1). In the first two

NMDS dimensions the strongest visible patterns in bacterial com-

munity composition were between upper and lower tile sides.

A weak pattern by pH category was mainly recognizable in the

NMDS dimensions two and three (Figure 1). ANOSIM confirmed

that at a given sampling time and tile side, the bacterial commun-

ities were different between pH categories (Supplementary Table

S5). However, the separation of the bacterial communities be-

tween pH categories was weak, especially at Upa Upasina, with

980 C. Hassenrück et al.
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ANOSIM R values of less than 0.5. The differences in bacterial

community composition between reference and low pH catego-

ries at Dobu Island were more pronounced with an ANOSIM R

between 0.51 and 0.88, except for samples from the lower tile side

after 13 months deployment (Supplementary Table S5).

Furthermore, differences in bacterial community composition be-

tween reefs were detected among samples from the same pH cat-

egory with ANOSIM R values ranging from 0.38 to 0.75. These

differences were in some cases more pronounced than differences

in bacterial community composition between pH categories at

the same reef (Supplementary Table S5).

Redundancy analysis showed that the observed environmental

parameters (pH, reef, tile side, and sampling time) explained only

a small, yet significant, fraction of the variation in bacterial com-

munity composition (R2¼8.8%; Table 1). Among these param-

eters, tile side was the most important one explaining 5% of the

variation, compared to less than 1.5% attributed to the other

observed parameters, including pH (Table 1).

Path analysis
We evaluated the interactions between abiotic and biotic factors

influencing the composition of the bacterial biofilms by con-

structing directional path models to assess the relationships be-

tween water pH, bacterial community composition (ARISA

data), and the macroscopic community (tile cover) on the settle-

ment tiles. On the lower tile side, the best model showed signifi-

cant path coefficients from water pH to tile cover and from tile

cover to bacterial community composition at both sampling

times (Figure 2). The direct path from water pH to bacterial com-

munity composition was not statistically significant as expected

based on RDA (Supplementary Table S4), and was discarded in

the final path model. Reversing the path from tile cover to bacter-

ial community composition or including reef as exogenous vari-

able did not improve the path models for the lower tile side.

On the upper tile side, the directional relationships between

water pH, tile cover and bacterial community composition were

more difficult to assess. The fit of the best model was poorer

Table 1. Contribution and significance of observed environmental
factors to explaining the variation in bacterial richness (OTUARISA

number), evenness (inverse Simpson index) and community
composition on the settlement tiles, based on redundancy analysis
and variation partitioning.

Source of variation Adjusted R2 df F P

Richness
Complete model 0.030 4,191 2.494 0.041

Reef 0.021 1,191 5.057 0.030
pH �0.004 1,191 0.180 0.678
Tile side 0.009 1,146 2.391 0.132
Sampling time �0.002 1,146 0.663 0.427

Evenness
Complete model 0.181 4,191 11.750 0.001

Reef 0.131 1,191 31.813 0.001
pH 0.002 1,191 1.517 0.236
Tile side 0.000 1,146 0.985 0.306
Sampling time �0.006 1,146 0.009 0.925

Community composition
Complete model 0.088 4,191 5.703 0.001

Reef 0.012 1,191 3.598 0.001
pH 0.010 1,191 3.193 0.001
Tile side 0.051 1,146 11.576 0.001
Sampling time 0.013 1,146 3.489 0.001

Significance was assessed using restricted permutations. R2: explained vari-
ation, df: numerator and denominator degrees of freedom, F: test statistic, P:
p-value.
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Figure 1. Non-metric multidimensional scaling (NMDS) plot of the bacterial communities on the upper and lower surfaces of the settlement
tiles after 5 and 13 months, based on Bray–Curtis dissimilarity of the ARISA data set. Average percentage of shared OTUARISA: 25%. The range
of pH values covered per pH category at each reef is shown as bars along a pH scale.
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compared to the models for the lower tile side, especially after

13 months of deployment, with lower path coefficients and higher

coefficients of non-determination (Figure 2). Unlike on the lower

tile sides, it seemed that on the upper tile side water pH was dir-

ectly influencing bacterial community composition, which then

had an effect on tile cover. However, after 13 months of deploy-

ment path models including instead paths from water pH to tile

cover and from tile cover to bacterial community composition

were equally as likely as the one displayed in Figure 2.

Furthermore, including reef in the path models improved the

model fit according to the BIC, although the AIC increased

(Figure 2).

Taxonomic composition of bacterial communities
The bacterial community on the lower tile side of the settlement

tiles was dominated by Alphaproteobacteria (28%),

Gammaproteobacteria (22%), Cyanobacteria (8.5%),

Flavobacteriia (7.0%), Deltaproteobacteria (6.6%), and

Cytophagia (4.7%; Figure 3). At class-level resolution the bacter-

ial community was similar across all sequenced samples, although

at the CO2 seep at Dobu Island, a higher prevalence of

Epsilonproteobacteria and Proteobacteria Incertae Sedis was de-

tected (Figure 3). Among these two bacterial classes most se-

quences were related to the genera Sulfurovum and Sulfurimonas,

and Candidatus Thiobios, respectively. Additionally, the gam-

maproteobacterial family Thiotrichaceae displayed a higher se-

quence proportion at the CO2 seep at Dobu Island. Furthermore,

a large proportion of the bacterial community could not be classi-

fied at a high taxonomic resolution, with more than 50% of the

sequences unclassified at genus level.

Generally, patterns in bacterial community composition were

comparable between ARISA and sequencing data (Bray–Curtis

dissimilarity: Mantel test, r¼ 0.504, p¼ 0.001; Jaccard dissimilar-

ity: Mantel test, r¼ 0.461, p¼ 0.001). At OTUAmplicon resolution

the composition of the bacterial community was as heteroge-

neous as in the ARISA data set with a similarly low number of

shared OTUs of approximately 20% shared OTUAmplicon.

Bacterial taxa mediating the settlement of invertebrate larvae,

such as bacterial strains of the genera Alteromonas, Vibrio,

Pseudoalteromonas, Erythrobacter, Acinetobacter, Photobacterium,

Shewanella, Bacillus, Pseudomonas, and Colwellia, were of particu-

lar interest (Table 2). OTUAmplicon closely related to bacterial spe-

cies comprising potentially settlement-inducing strains generally

only accounted for a small proportion of the sequences per sam-

ple with approximately 1% or less. The exceptions were tiles from

the reference site at Dobu Island, where they constituted 6–14%

of the sequences after 13 months of deployment (Table 2).

Among these putative settlement-inducing genera, Alteromonas,
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Figure 2. Final models of the path analyses to test for directional relationships between water pH, bacterial community composition, and
the macroscopic tile communities (represented by percentage tile cover) on the settlement tiles for each tile side and sampling time. Values
associated with arrows: path coefficients, values associated with factors: coefficient of non-determination (unexplained variation). n: number
of observations, X2: goodness-of-fit test statistic, df: degrees of freedom, P: p-value of goodness-of-fit test, AIC: Akaike Information Criterion,
BIC: Baysian Information Criterion. Significance of path coefficients: p< 0.001 (***), p< 0.01 (**), p< 0.05 (*), p< 0.1 (�). For the upper tile
side, alternative models were calculated including “Reef” as exogenous variable (dotted arrows and values in parentheses).
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Pseudoalteromonas and Vibrio were most abundant on the settle-

ment tiles (Table 2).

Discussion
In this study, we documented the composition of bacterial bio-

films on settlement tiles deployed along natural pH gradients at

two coral reefs in Papua New Guinea. The most striking feature

of the bacterial biofilm communities was their highly heteroge-

neous composition. This high degree of heterogeneity compli-

cated the detection of patterns in bacterial community

composition. The amount of variation in community compos-

ition explained by the observed environmental parameters, pH,

reef, tile side and sampling time, was below average for studies on

microbial community composition (Hanson et al., 2012).

However, our model only included few environmental param-

eters and it is likely that other biotic or abiotic factors may con-

tribute to further explain patterns in the composition of these

bacterial communities.

Of the observed environmental parameters, tile side was the

most important factor in explaining patterns in community com-

position. Tile side can act as proxy for various environmental par-

ameters, predominantly light exposure and grazing pressure, but

also current velocities or proximity to the substrate, to which the

settlement tiles were attached. Light exposure has been docu-

mented to have a major influence on community development in

settlement experiments before (Lidbury et al., 2012; Sawall et al.,

2012). Here, light exposure of the upper tile surfaces was similar

between sites, as all tiles were affixed at a depth of 3 m, and sea-

water concentrations of nutrients and particulate matter did not

differ significantly between the sites (Smith et al., accepted). The

increased light availability on the upper tile side would favour the

growth of photosynthetic algae and cyanobacteria, potentially re-

sulting in a different trophic structure and therefore a different

community composition (Ylla et al., 2009; Sawall et al., 2012).

Furthermore, numerous scrape marks indicated frequent fish

grazing on the exposed upper tile side (Fabricius et al., 2015).

We detected only a minor effect of water pH on bacterial bio-

film composition. Although the pH effect was statistically signifi-

cant, its biological relevance is questionable since pH only

explained 1% of community variation. These results were sup-

ported by the weak separation of bacterial communities between

pH categories, with ANOSIM R values either not statistically sig-

nificant or below values that are generally considered to show a

strong separation of bacterial communities (Shade et al., 2007;

Zinger et al., 2011). At Dobu Island, the distinction between ref-

erence and low pH communities was stronger than at Upa

Upasina. However, it is possible that at Dobu Island the pH effect

is enhanced by the larger geographic distance between reference

and CO2 seep sites of approximately 2 km compared to 500 m at

Upa Upasina. Furthermore, at similar pH values, there were dif-

ferences between bacterial biofilm communities between the two

reefs, suggesting a regional variability in bacterial community
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Figure 3. Taxonomic composition of the bacterial biofilm on the lower tile sides. The dotplot shows clr-transformed sequence proportions
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composition that may complicate a generalization of findings re-

garding pH effects on bacterial biofilm communities. Such differ-

ences in community composition between reefs may also explain

the slightly higher richness and evenness of the bacterial biofilm

at Dobu Island.

The weak pH effect on bacterial community composition that

we detected was in agreement with OA studies on planktonic bac-

teria, which reported only limited effects of reduced pH on bac-

terial community composition (Newbold et al., 2012; Lindh et al.,

2013; Oliver et al., 2014). In contrast, our results did not agree

with the majority of previous observations on OA effects on bac-

terial biofilm development and composition including those

from naturally CO2-rich systems, which pointed to a rather

strong effect of pH on bacterial community development and

composition (Witt et al., 2011a; Lidbury et al., 2012; Webster

et al., 2012). However, the duration of previous experiments was

much shorter than the period of deployment here. Therefore, the

relative importance of the environmental parameters governing

community dynamics may change after the first months of

settlement.

We also detected a weak effect of sampling time on bacterial

community composition. The time period between the start of

the experiment and the first sampling spanned 5 months, which

was most likely sufficient for the formation of a fully established

bacterial biofilm community, especially in warm tropical waters

(Witt et al., 2011b; Sawall et al., 2012). Any further changes in

community composition may represent the temporal variability

of already established bacterial communities in response to

changes in the environment. Furthermore, due to the long dur-

ation of the experiment, the settlement tiles continued to be

colonized by macro-organisms, such as algae and macro-

invertebrates, whose presence and succession patterns may influ-

ence the development of the bacterial biofilm. It is known that

different reef organisms host distinct bacterial communities

(Barott et al., 2011; Morrow et al., 2012; Sneed et al., 2015), sug-

gesting that there may be strong biotic interactions between bio-

film bacteria and other members of the tile community. These

biotic interactions may result in the formation of microenviron-

ments, with small-scale environmental conditions unrelated to

water column chemistry, and may be more important than large-

scale abiotic factors in shaping bacterial community composition.

Indeed, the high heterogeneity of the bacterial biofilm may be

caused by close associations with other organisms on the settle-

ment tiles. Reef organisms also metabolically modulate the sea-

water chemistry in their vicinity, taking up CO2 through

photosynthesis and releasing metabolites (Kleypas et al. 2011).

The boundary layers, in which the biofilms develop, may there-

fore experience very different pH conditions to those measured

within the water column.

The further exploration of the relationships between bacterial

community composition and the macroscopic tile community

using path models strongly supported the importance of such bi-

otic interactions. On the sheltered lower side of the settlement

tiles, the same directional relationships were observed at both

Table 2. Relative sequence abundance [%] of putative settlement-inducing bacterial OTUAmplicon on the lower sides of the eight settlement
tiles selected for sequencing, after 5 and 13 months of deployment at a range of pH conditions.

Upa Upasina Dobu Island

pHT pHT

8.00 8.00 7.87 7.72 8.01 7.98 7.71 7.60

5 months
Alteromonas 0.04 0.15 0.02 0.03 0.39 0.23 0.06 0.33
Vibrio 0.15 0.20 0.12 1.21 0.91 0.75 0.58 0.43
Pseudoalteromonas 0.02 0.06 0.02 0.15 0.42 0.72 0.15 0.04
Erythrobacter 0.24 0.13 0.20 0.31 0.27 0.19 0.20 1.51
Acinetobacter <0.01 0.01 0.02 0.31 <0.01 0.03 0.01 0.01
Photobacterium 0.03 0.06 0.03 0.05 0.05 0.02 0.05 0.04
Shewanella 0 <0.01 <0.01 0.02 0.01 0.20 0.01 0
Bacillus 0.01 0.01 <0.01 0.01 0.01 0.04 0.01 <0.01
Pseudomonas 0 0.01 <0.01 <0.01 0 0 0 0
Colwellia 0 <0.01 0 0 0 0 0 0
Total [%] 0.49 0.64 0.42 2.08 2.07 2.17 1.06 2.37

13 months
Alteromonas 0.16 0.27 0.24 0.27 2.20 6.11 0.33 0.37
Vibrio 0.30 0.18 0.27 0.40 1.71 1.73 0.83 0.44
Pseudoalteromonas 0.05 0.06 0.22 0.16 1.55 5.56 0.30 0.27
Erythrobacter 0.21 0.06 0.04 0.07 0.26 0.26 0.03 0.20
Acinetobacter <0.01 0.04 0.01 1.48 0.02 0.10 <0.01 <0.01
Photobacterium 0.02 0.02 0.04 0.02 0.03 0.02 0.07 0.02
Shewanella <0.01 0.02 0.01 <0.01 0 <0.01 0 <0.01
Bacillus 0.01 0.02 0.01 0.01 0.04 0.05 0.02 0.01
Pseudomonas 0 <0.01 0 0 0.01 0 0 0
Colwellia 0 0 0 0 0 <0.01 0.01 0
Total [%] 0.76 0.66 0.83 2.40 5.83 13.84 1.59 1.32

The representative sequences of the OTUAmplicon exhibited a high sequence similarity to bacterial species identified as potentially settlement-inducing for vari-
ous invertebrate larvae in Huggett et al. (2006), Tebben et al. (2011), Tran and Hadfield (2011), Sneed et al. (2014), and Sharp et al. (2015).
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sampling times, suggesting that these interactions were already

well established after 5 months of deployment. While the macro-

scopic community on the lower tile sides seemed to be influenced

by pH, direct pH effects on bacterial community composition

were unlikely, but may rather be mediated by changes in the

macroscopic tile community. On the exposed upper tile side, dir-

ect pH effects on bacterial community composition, which in

turn influences the macroscopic tile community, were statistically

more likely. However, these path models still contained a large

proportion of unexplained variation. Furthermore, although the

relationship between bacterial community composition and the

macroscopic tile community was well supported, the analysis of

these interactions may have been biased. Due to the need to pre-

serve the biofilms as quickly as possible, data on the cover of

macro-organisms within the 4 cm2 squares were not obtained,

and the available data on total macro-organism cover may have

underestimated their role. Especially on the heterogeneous lower

sides, the 4 cm2 square that was sampled for the analysis of the

bacterial biofilm may not have been representative for the whole

tile community. Therefore the correlation between the bacterial

community composition and the macroscopic tile community

only constitutes an approximation. Still, we were able to gain a

better insight into the ecological dynamics on the settlement tiles

and the role of pH in such dynamics.

Whereas community fingerprinting and path analysis facili-

tated a robust analysis of general patterns in bacterial community

composition and interactions that were based on a large number

of samples, amplicon sequencing provided more detailed infor-

mation on the taxonomic composition of the bacterial biofilm on

the lower tile sides. Because the sheltered lower tile sides were

ecologically of greater interest, with a higher heterogeneity of

macroscopic communities and a higher expected settlement rate

of invertebrate larvae compared to the upper tile sides (Maida

et al., 1994), only samples from the lower tile sides were selected

for sequencing. Generally, the bacterial biofilm composition was

consistent with previous observations from settlement tile experi-

ments and natural substrates from coral reefs (Kriwy and

Uthicke, 2011; Webster et al., 2011; Witt et al., 2011a; Sneed

et al., 2015). Many bacterial sequences could not be reliably clas-

sified at genus level, indicating that a large proportion of the bac-

terial community may consist of so far uncharacterized bacteria.

Putative settlement-inducing OTUAmplicon only accounted for a

small fraction of the sequences from most biofilm samples.

Assuming that settlement of invertebrate larvae is dependent on

the amount of settlement-inducing bacteria (Tebben et al., 2011),

the role of the bacterial biofilm in the mediation of larval settle-

ment may be minor. We further detected an increased prevalence

of certain sulfur-oxidizing taxa exclusively at the CO2 seep at

Dobu Island, such as the family Thiotrichaceaea, and the genera

Sulfurimonas, Sulfurovum, and Candidatus Thiobios, which are

typically found in sulfur-rich environments including hydrother-

mal vents (Rinke et al., 2006; Meyer and Kuever, 2007; Meier

et al., 2016). Unlike the CO2 seep at Upa Upasina, the seep at

Dobu Island emitted small amounts of hydrogen sulphide and

further contained microbial mats on the sediment in the immedi-

ate vicinity (<0.5 m) of some of the CO2 bubble streams

(Fabricius et al., 2011; Hassenrück et al., 2016). Therefore, add-

itionally to geographic distance between reference and seep sites,

the presence of sulfide may constitute a further reason for the ra-

ther strong differences in bacterial community composition along

the pH gradient at Dobu Island compared to Upa Upasina.

Furthermore, it may also explain the difference in bacterial com-

munity composition detected between the two reefs at similar

pH. Such differences are most likely not attributable to pH, and

suggest that in areas with extremely low pH values (pHT< 7.6)

the pH gradient at Dobu Island may be confounded by changes

in other environmental factors.

In conclusion, our results do not support strong effects of

reduced pH conditions, such as those expected under future OA,

on bacterial biofilms on 5 and 13 months old surfaces in tropical

coral reefs. Other abiotic and biotic factors such as light exposure

or the presence of macro-organisms on the settlement tiles may

be more important in shaping bacterial communities. However,

we have only begun elucidating the factors that determine the de-

velopment and composition of bacterial biofilms. Although we

did not detect strong pH effects on bacterial biofilms at the time

of sampling in this study, this does not preclude that other stages

in the development of bacterial biofilms during colonization

processes are not influenced by pH. Sampling of earlier succes-

sional stages, as well as a more detailed analysis of the interactions

between the members of the tile community, including coral re-

cruits, should be employed for a more comprehensive under-

standing of pH effects on bacterial colonization processes on

coral reefs, and potential repercussions on coral settlement.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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E. S., Vogel, N., et al. 2012. Near-future ocean acidification causes
differences in microbial associations within diverse coral reef taxa.
Environmental Microbiology Reports, 5: 243–251.

Webster, N. S., Smith, L. D., Heyward, A. J., Watts, J. E. M., Webb,
R. I., Blackall, L. L., and Negri, A. P. 2004. Metamorphosis of a
scleractinian coral in response to microbial biofilms. Applied and
Environmental Microbiology, 70: 1213–1221.

Webster, N. S., Soo, R., Cobb, R., and Negri, A. P. 2011. Elevated sea-
water temperature causes a microbial shift on crustose coralline
algae with implications for the recruitment of coral larvae. The
ISME Journal, 5: 759–770.
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