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A B S T R A C T

Sensory discriminations, such as judgements about visual motion, often benefit from multisensory evidence.
Despite many reports of enhanced brain activity during multisensory conditions, it remains unclear which
dynamic processes implement the multisensory benefit for an upcoming decision in the human brain.
Specifically, it remains difficult to attribute perceptual benefits to specific processes, such as early sensory
encoding, the transformation of sensory representations into a motor response, or to more unspecific processes
such as attention. We combined an audio-visual motion discrimination task with the single-trial mapping of
dynamic sensory representations in EEG activity to localize when and where multisensory congruency facilitates
perceptual accuracy. Our results show that a congruent sound facilitates the encoding of motion direction in
occipital sensory - as opposed to parieto-frontal - cortices, and facilitates later - as opposed to early (i.e. below
100 ms) - sensory activations. This multisensory enhancement was visible as an earlier rise of motion-sensitive
activity in middle-occipital regions about 350 ms from stimulus onset, which reflected the better discrimin-
ability of motion direction from brain activity and correlated with the perceptual benefit provided by congruent
multisensory information. This supports a hierarchical model of multisensory integration in which the
enhancement of relevant sensory cortical representations is transformed into a more accurate choice.

1. Introduction

Multisensory integration can improve perceptual performance
across a wide range of tasks. While there is an emerging consensus
that the underlying neural correlates likely involve multiple stages of
the sensory decision making pathways, it remains a challenge to
uncover the dynamic processes that implement the multisensory
benefit for an upcoming decision in the human brain (Bizley et al.,
2016; Kayser and Shams, 2015; Rohe and Noppeney, 2014, 2016). For
example, many studies have shown that judgements about visual
motion can be influenced by simultaneous sounds (Alais and Burr,
2004; Beer and Roder, 2004; Lewis and Noppeney, 2010; Schmiedchen
et al., 2012) or vestibular information (Fetsch et al., 2010; Gu et al.,
2008), even so when the multisensory stimulus is not directly task
relevant (Gleiss and Kayser, 2014b; Kim et al., 2012; Sekuler et al.,
1997). In particular, congruent multisensory evidence enhances visual
motion discrimination performance over incongruent multisensory
information (Meyer and Wuerger, 2001; Meyer et al., 2005; Soto-
Faraco et al., 2003; Soto-Faraco et al., 2002). Yet, it remains difficult to
attribute these perceptual benefits to specific neural processes, such as
the encoding of visual motion in occipital cortices, the transformation

of sensory representations into a motor response in parieto-frontal
regions, or to more unspecific changes in sensory-response gain such as
attentional effects (Beer and Roder, 2004; Bizley et al., 2016; Lewis and
Noppeney, 2010; Talsma et al., 2010).

Electrophysiological studies in monkeys have illustrated in great
detail how neural populations in visual motion regions, such as the
Medial Superior Temporal Area (MSTd), combine directional informa-
tion from the visual and vestibular senses to yield a more precise and
reliable estimate of the perceived motion direction (Fetsch et al., 2013;
Fetsch et al., 2012; Gu et al., 2008). These neurons weigh the two
sensory inputs in proportion to each senses reliability, in a similar way
as the behavioural benefits arise from the combination of visual and
vestibular information (Angelaki et al., 2009; Fetsch et al., 2009).
While this could be taken to suggest that multisensory benefits for
visual motion discrimination in the human brain are similarly arising
from an enhancement of the encoding of visual motion in occipital
regions, we still have a limited understanding of when and where the
underlying neural processes operate. While fMRI studies support a
central role of visual motion cortex in mediating multisensory benefits
(Alink et al., 2008; Lewis and Noppeney, 2010; Scheef et al., 2009),
studies on other tasks such as spatial localization have provided a more
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nuanced picture, one in which multiple occipital and parietal regions
contribute distinctively to multisensory integration (Rohe and
Noppeney, 2014, 2016). For example, while studies using planar
motion have implied the hMT complex (but see (Baumann and
Greenlee, 2007)), a study on motion in depth has pointed to a role of
area V3A (Ogawa and Macaluso, 2013) and regions within the IPS
(Guipponi et al., 2013). Given the frequent focus on mapping activa-
tions rather than sensory representations (Kriegeskorte et al., 2006),
and given that many prior studies have relied on the relatively slow
fMRI-BOLD response, these studies do not provide a detailed under-
standing of where and when during a trial perceptually relevant
multisensory benefits emerge and are transformed into perceptual
benefits on a single trial basis (Bizley et al., 2016; Zhang et al., 2016).

Exploiting the temporal resolution of EEG or MEG, a few studies
have investigated the neural mechanisms of audio-visual interactions
in the context of motion perception. Studies focusing on auditory
cortical activity have shown that the congruency of visual information
can affect auditory brain activity already at latencies of around 100 ms
(Stekelenburg and Vroomen, 2009; Zvyagintsev et al., 2009) while
occipital evoked responses were affected by cross-modal attention
around 200 ms post-stimulus onset (Beer and Roder, 2005), and
occipital oscillatory activity was affected by Audio-visual motion
congruency already around 100 ms (Gleiss and Kayser, 2014b).
However, these EEG/MEG studies also focused on mapping generic
activations rather than mapping sensory representations, and the use
of trial-averaged activity made it difficult to link neural mechanisms to
the perceptual single trial benefits.

We hence reasoned that EEG-based neuroimaging combined with
the single trial mapping of task-relevant sensory representations could
provide important insights about the neural processes mediating the
multisensory enhancement of motion discrimination. In particular we
exploited an information-mapping approach, in which we used single

trial decoding to select EEG activations that are relevant to the subjects’
behaviour and task, rather than studying single electrode ERPs. Our
specific aims were to test whether acoustic information enhances the
quality of early or later visual representations in occipital cortex, or
manifests mostly in decision-related processes in parieto-frontal re-
gions and immediately before the response. To this end we combined a
standard motion discrimination task with single-trial EEG analysis to
map the relevant dynamic representations of visual motion direction.
We then asked when in time during a trial EEG activations carrying the
task-relevant visual information were modulated by multisensory
congruency and whether these activations localized to sensory cortices,
or fronto-parietal association regions.

To better understand the potential role of attention-related pro-
cesses in multisensory perception we also extracted parietal alpha
activity and related this to the observed behavioural benefits and the
neural encoding processes. The power of parietal alpha has been linked
to visual spatial attention and the excitability of visual cortices (Romei
et al., 2010; Thut et al., 2006; VanRullen, 2016), with higher (lower)
power being potentially indicative of reduced (increased) attentional
focus. As previous work has suggested that alpha power can change
with multisensory congruency (Gleiss and Kayser, 2014b), we sought to
replicate this effect, and to test whether a change in alpha band activity
contributes to multisensory perceptual benefits at the single trial level,
for example by modulating the contribution of sensory information to
perceptual choice.

2. Materials and methods

Data were obtained from 18 healthy adult participants (8 males;
mean age of 21.3 years) following written informed consent and
briefing about the purpose of the study. All had self-reported normal
hearing and vision, declared no previous history of neurological
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Fig. 1. Experimental paradigm and behavioural data. A) Subjects performed a speeded visual motion discrimination task (left- or right-wards). Random dot motion was presented at
four coherence levels (coh 1–4) titrated around each participant's perceptual threshold. Visual stimuli were accompanied by acoustic motion implemented by changing levels of sound
intensity between ears, either moving in the same (congruent) or opposite direction (incongruent) as the visual stimulus. B) Perceptual accuracy increased significantly with motion
coherence and was significantly higher during congruent trials. C) Reaction times did not change significantly with coherence or congruency. D) Parameters derived from drift-diffusion
models fit to behavioural data, with significant congruency effects in drift rates and their variability. Variability = Inter-trial variability. Boxplots: medians and percentiles across
participants (n=18).
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disorders and were right-handed (Oldfield, 1971).The study was
conducted in accordance with the Declaration of Helsinki and was
approved by the local ethics committee (College of Science and
Engineering, University of Glasgow).

2.1. Experimental design and stimulus material

Subjects discriminated the direction (left- or rightwards) of visual
motion presented in a random dot display (Fig. 1A). Stimuli were
presented following the onset of a fixation dot (0.7-1.1 s uniform delay)
and lasted 1.2 s. Individual trials were separated by 1.5-2 s intervals.
Random dot patterns (1400 dots, white, presented on a neutral grey
screen, 4 cd/m2 background luminance) were centred on the fixation
spot and covered 15° of visual angle (with the centre 1° devoid of dots).
Individual dots were 0.2° large, moved at 6°/s in a random direction
and 8% of dots were randomly replaced after each frame (16 ms). A
small percentage of dots moved coherently in the same direction (left
or right). This fraction could take four different values titrated around
each participant's perceptual threshold. These thresholds (around 71%
correct responses) were determined in a separate session using three
interleaved 2-down 1-up staircases. During the actual experiment the
coherence level was adapted (in steps of 1%) over epochs of 35 trials to
adjust for changes in performance over time (Gleiss and Kayser,
2014b). Across subjects coherence thresholds were comparable (10.7
± 1.4%; mean ± s.e.m) and varied on average by 1.3% over time
(subject averaged standard deviation). The four coherence values used
during the experiment were defined as [0.55, 0.85, 1.15, 1.45] times
the subject specific threshold. As a result, the range of motion
coherence spanned from challenging to relatively easy, as confirmed
by the variation in average performance from about 60% to nearly 90%
correct across conditions (Fig. 1B). Visual stimuli were presented on a
21" Hansol 2100A CRT monitor at a refresh rate of 85 Hz. These visual
stimuli were accompanied by a dynamic acoustic stimulus mimicking
motion in either the same or the opposite direction as the visual
motion. Hence, the acoustic direction cue was either congruent or
incongruent with the visual direction. Sounds were composed from
white noise (at 44.1 kHz sampling rate) whose amplitude was linearly
modulated from 0 to the maximal level in opposite directions on left
and right ears during the 1.2 s stimulus period. This change in inter-
aural level difference induces the percept of continuous acoustic
motion (Meyer and Wuerger, 2001; Moore, 2003). Sounds were
presented with a peak amplitude of 65 dB(A) SPL r.m.s. level; on-
and offsets were cosine ramped (8 ms). The reliability of the onset
timing of sounds and random dot patterns was verified using an
oscilloscope. Both stimuli reliably appeared within one refresh cycle of
the screen (~11 ms).

The different conditions (left-, rightwards motion), four visual
coherence levels, and two Audio-visual congruencies were pseudo-
randomized and balanced across trials. Trials were presented in blocks
of 240 and each subject completed 1200 trials, resulting in 150 trials
per condition of interest (four coherence levels x two levels of
congruency). Subjects were instructed ‘to discriminate the direction
of visual motion and to respond as quickly and accurately as possible
and to ensure they respond within the stimulus period’ by pressing a
left or right arrow key on a keyboard, using the same hand for both
keys. To achieve a stable speed-accuracy trade-off subjects performed
40 (or when necessary more) training trials during which they received
feedback on accuracy and response time. Negative feedback on
response time was given when responding too early (below 0.3 s) or
after the stimulus disappeared (later than 1.2 s).

2.2. EEG recordings

Experiments were performed in a dark and electrically shielded
room. Acoustic stimuli were presented binaurally using a Sennheiser
headphone and stimulus presentation was controlled from Matlab

(Mathworks) using routines from the Psychophysics toolbox (Brainard,
1997). Sound levels were calibrated using a sound level meter (Model
2250; Bruel & Kjær, Denmark). EEG signals were continuously re-
corded using an active 64 channel BioSemi system (BioSemi, B.V., The
Netherlands) using Ag-AgCl electrodes mounted on an elastic cap
according to the 10/20 system. Four additional electrodes were placed
near the outer canthi and below the eyes to obtain the electro-
oculogram (EOG). Electrode offsets were kept below 25 mV. Data were
acquired at a sampling rate of 500Hz using a low pass filter of 208Hz.

2.3. General data analysis

Data analysis was carried out offline with MATLAB (The
MathWorks Inc., Natick, MA), using the FieldTrip toolbox
(Oostenveld et al., 2011) and custom written routines similar to
previous work (Kayser et al., 2016). Data from different blocks were
pre-processed separately by band-pass filtering (1 Hz-70 Hz), re-sam-
pling to 150Hz and de-noising using ICA. ICA components reflecting
eye movement induced artefacts, highly localized muscle activity or
poor electrode contacts were identified and removed following defini-
tions provided in the literature (Hipp and Siegel, 2013; O'Beirne and
Patuzzi, 1999). To determine periods contaminated by blinks or eye
movements we computed horizontal, vertical and radial EOG signals
(Keren et al., 2010) and rejected trials in which potential eye move-
ments were detected based on a threshold of 3 standard deviations
above mean of the high-pass filtered EOGs, or during which the peak
amplitude on any electrode exceeded ± 120 μV. We also excluded trials
in which reaction times where shorter than 0.3 s or longer than the trial
(1.2 s). Together this led to the rejection of 9.2 ± 3% of trials (mean ±
s.e.m). For subsequent analysis the EEG signals were referenced to the
common average reference.

2.4. Fitting drift diffusion models

We fit the behavioural data (accuracy, reaction times) with a drift-
diffusion model for sensory decision making (Ratcliff et al., 2009;
Ratcliff et al., 2016). We used a fitting procedure based on partial
differential equation describing the diffusion process, as implemented
in the fast-dm toolbox using the Kolmogorov-Smirnov procedure (Voss
and Voss, 2007). We obtained three model parameters related to the
width of the interval between the start of the process and the decision
threshold (termed ‘decision bound’ – A), the influence of the stimulus
on the diffusion process (‘drift rate’ – k), and the duration of all extra-
decisional parts of the response time (‘nonresponse time’ – t0). The
drift rate was allowed to vary across conditions (congruency and visual
coherence), while the residual time and the bound were assumed to be
independent of coherence but were allowed to vary with congruency.
We thereby assumed that the decision criterion and processes not
related to the decision making process (peripheral sensory processing,
motor latencies) are not affected by the coherence of the visual
stimulus, while all three parameters were included to potentially
explain differences in behavioural performance with multisensory
congruency. Parameters relating to inter-trial variability of nonre-
sponse times and drift-rates were left free to vary across congruency
conditions. We also assumed that the starting point and the speed of
execution of responses did not differ between the two choice options.
These assumptions seem justified given that median reaction times did
not differ between choices (0.657 ± 0.032 and 0.656 ± 0.030 mean ±
s.e.m. across subjects for left and right buttons, sign-test p=0.48,
Z=0.7), nor did the fraction of correct responses (73.7 ± 1.8 and 74.2 ±
1.3% correct, p=0.81, Z=0.23).

2.5. EEG single trial discriminant analysis

We used multivariate linear discriminant analysis to localize EEG
activations sensitive to EEG activity reflecting the task-relevant visual
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information (motion direction) or the subject's choice at the single trial
level. We used a regularized linear discriminant analysis (Blankertz
et al., 2011; Parra et al., 2005) to identify a projection of the multi-
dimensional EEG data, x(t), that maximally discriminated between the
two conditions of interest (motion direction, choice), across all
coherence levels and regardless of Audio-visual congruency. Each
projection was defined by a projection vector, w, which describes a
one dimensional combination of the EEG data, Y:

∑Y t w x c( )= (t)+
i

i i
(1)

with i summing over all channels, and a constant c. The regularization
parameter was optimized in preliminary tests using cross-validation
and kept fixed for all subsequent analyses. The discriminant analysis
was applied to the EEG activity in 80ms sliding windows. We searched
for discriminant components sensitive to visual motion direction in the
data aligned to stimulus onset and aligned to the response, and for
discriminant components sensitive to choice in the data aligned to
response. Classification performance was quantified using the area
under the receiver operator characteristic (Az) based on 6-fold cross
validation. Given potentially unequal trial numbers for each condition,
we repeated the discriminant analysis 100-times using a random
subset of 80% of the available trials for each condition, averaging the
resulting Az and projection vectors. We derived scalp topographies for
each discriminant component by estimating the corresponding forward
model, defined as the normalized correlation between the discriminant
component and the EEG activity (Parra et al., 2005).

The discriminant activity provides a sensitive and aggregate repre-
sentation of the underlying task relevant activity (Kayser et al., 2016;
Parra et al., 2005; Philiastides et al., 2014). In particular, Y(t) can be
exploited as a measure of the single trial sensory evidence (or choice-
selective signal), as larger values (either positive or negative) corre-
spond to a better separability of the two conditions of interest. We
exploited this to investigate the temporal evolution of the relevant
discriminant components by obtaining single trial projections of the
discriminant activity by applying the weights extracted at time points of
interest (tpeak) to all trials and time points. Previous work suggests that
the underlying signals exhibit a ramping behaviour, whereby they
slowly rise prior to tpeak (O'Connell et al., 2012; Philiastides et al.,
2014). Indeed, we found this to be the case for both visual motion and
choice discriminants (Fig. 2B). We compared the strength of the
sensory (or choice) evidence in these discriminant components by
comparing their amplitude (ignoring the difference in sign arising from
the two motion / choice directions) between congruent and incon-
gruent trials, after normalizing out effects of coherence. We repeated
this analysis twice, once using all trials in order to be able to direct
compare neural and behavioural parameters, and once using only trials
with correct performance to rule out potential confounds of accuracy.

To extract an index of when during the trial the evidence reflected
by each discriminant component started to rise we computed ‘ramp
onset’ times based on the trial averaged single subject data. These onset
times were defined as the first time point at which the temporal
cumulative sum of Y(t) (in the time range of 250 ms prior to tpeak)
crossed zero from negative to positive. Ramp onset times were defined
as the difference between the times of threshold crossing to the time
point 250 ms prior to tpeak, and hence were positive by construction.
We note that the precise value of this onset time is ambiguous, as it
depends on the threshold and the time window chosen for analysis.
However, within and between subject comparisons of conditions are
meaningful.

We tested the relevance of the discriminant component for subject's
behaviour at the single trial level using logistic regression. The
regression model predicted choice based on the task-relevant variable
(motion direction), the discriminant activation Y, and in a separate
model the interaction of Y with alpha power.

2.6. Time frequency analysis

Time frequency representations of the oscillatory power were
obtained using wavelet analysis in FieldTrip. Frequencies ranged from
4 Hz to 80 Hz, in steps of 1 Hz below 16 Hz and steps of 2 Hz above,
using a 5 Hz wavelet width. Trial-averaged representations were base-
line normalized to a pre-trial period (-0.5 to -0.1 s before stimulus
onset) and were expressed as ratio of stimulus to baseline periods.
Given potentially unequal trial numbers, we computed the condition
difference in normalized power by choosing a random subset of 80% of
the available trials per condition, averaging the normalized differences
across 100 repeats. We applied this analysis to pre-selected occipito-
parietal electrodes of interest (PO3, PO4, Pz, POz), averaging the power
difference across electrodes within each subject. These electrodes were
selected based on the prominence of alpha effects around these
locations in previous literature (Gleiss and Kayser, 2014a, b; Romei
et al., 2012; Romei et al., 2008). For further analysis we extracted the
single trial baseline-normalized alpha power in a specific time-
frequency window of interest derived from the group-level analysis of
the congruency effect (Fig. 3A; 9-13 Hz; -0.36 s to -0.28 s).

2.7. Source analysis

To obtain an estimate of the brain regions generating the discrimi-
nant component activations of interest we performed a source localiza-
tion analysis. We first obtained single trial source signals of the
response-aligned data using a linear constrained minimum variance
beamformer in Fieldtrip (7% normalization, using the covariance
matrix obtained from -0.7 to -0.1 s prior to response). A standardized
head model based on the average template brain of the Montreal
Neurological Institute was used as single subject MRI data were not
available. Lead-fields were computed using a 3D grid with 6 mm
spacing. We then computed the correlation of single voxel signals with
the linear discriminant signal, Y(t), over trials at the single subject
level. This is analogous to obtaining the forward scalp distribution via
the correlation of sensor activity and discriminant activity (Haufe et al.,
2014; Parra et al., 2005). Correlation volumes were z-transformed and
we computed the median correlation across subjects. We further
analysed the activity at two source locations of interest, by extracting
the single-trial source activity at two local peaks of the correlation maps
(Fig. 4A).

2.8. Statistical analyses

The analysis of behavioural data was based on the Scheirer-Ray-
Hare non-parametric two-way ANOVA. Correlations were based on
Spearman's rank correlation and bootstrap confidence intervals (95%
level) were calculated using the robust correlation toolbox (Pernet
et al., 2012). Significance testing of discriminant performance (Az), of
congruency effects in discriminant activity, and of differences in
oscillatory power at the group-level were based on a cluster-based
permutation procedure, which shuffled condition labels and corrected
for multiple comparisons along time (and frequency) (Maris and
Oostenveld, 2007; Nichols and Holmes, 2002) (detailed parameters:
2000 iterations; clustering bins with abs(t) > 1.5, or with Az above the
95% percentile of the distribution across bins; minimal cluster size of at
least 4 neighbours; computing the cluster-mass within each cluster;
performing a two-sided test at p < 0.05 on the clustered data). Where
necessary, single subject contrasts were obtained first using t-statistics.
For the logistic regression model we derived group-level t-values based
on single subject regression betas. We provide exact p values where
possible, but values below 10−5 are abbreviated as such.
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3. Results

3.1. Behavioural results

Subjects performed a motion discrimination task based on a visual
random dot display. They were instructed to respond as accurately and
fast as possible (Fig. 1A). In each trial the visual stimulus was
accompanied by a sound, which provided an acoustic motion cue either

moving in the same or opposite direction as the visual display. As
expected, response accuracy significantly improved with the coherence
of visual motion (four levels; χ2(3)=77, p= < 10−5, Fig. 1B). Accuracy
was also significantly higher during congruent compared to incon-
gruent trials (χ2(1)=12, p=0.0004), and there was no interaction
between these factors (χ2(3)=0.2, p=0.96). Reaction times decreased
with coherence, but neither the effects of coherence (χ2(3)=4.3, p=0.22;
Fig. 1C) nor of congruency (χ2(1)=0.01, p=0.91) were significant; there
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was also no interaction (χ2(3)=0.01, p=0.99). Median reaction times
varied between 0.44 and 0.82s across subjects, with an overall median
of 0.66 s. To further corroborate the lack of an effect of congruency on
reaction times we compared, for each subject and coherence, the shape
of the reaction time distribution between congruencies using
Kolmogorov-Smirnov tests. Across the 4×18 tests there were only
three comparisons that reached an uncorrected p < 0.05, but when
accounting for multiple comparisons there was no significant effect
(Benjamini & Hochberg FDR procedure at p < 0.05). The scatter plots
in Fig. 1B,C illustrate the multisensory benefit for accuracy in the
absence of significant a change in reaction times.

3.2. Drift diffusion models predict faster accumulation during
congruent trials

We fit the behavioural data with a diffusion model for sensory
decision making, testing the effect of Audio-visual congruency on drift
rates, decision bounds, and nonresponse times. Across subjects drift
rates increased significantly with motion coherence (Fig. 1D; χ2(3)=12,
p=0.005) and were significantly higher during congruent compared to
incongruent trials (χ2(1)=14, p=0.0001); there was no interaction
(χ2(3)=3.5, p=0.39). We did not find significant effects of congruency
on decision bounds (Wilcoxon test: Z(17)=-0.8, p=0.37) and nonre-
sponse times (Z(17)=-1.1, p=0.26). We also analyzed the inter-trial
variability of the drift rate and the nonresponse times. This revealed no
significant effect for the nonresponse time (Fig. 1D; Z(17)=-0.4,
p=0.67), but a significantly higher variability of the drift rate in the
incongruent condition (Z(17)=-3.3, p=0.0021). Given that increases in
drift rate generally predict decreases in reaction times, which we did
not observe at the group level, we analyzed the decision bound and
nonresponse times in more detail. Across subjects congruency effects in
these parameters were significantly anti-correlated (r=-0.67, p=0.002,
CI [-0.82 -0.38]), suggesting that in addition to a consistent change in
the accumulation process multisensory congruency also had hetero-
geneous influences on other aspects of the sensory decision process.
Nevertheless, these modelling results suggest that the most consistent
influence of congruent multisensory information arises from an
enhancement of the temporal accumulation of visual evidence, embo-

died by the drift rate of the diffusion model. This conclusion is also
consistent with predictions made by a previous study, which suggested
that sensory accumulation in multisensory conditions is based on a
combination of drift rates of the two unisensory stimuli, and is largest
in congruent multisensory environments (Drugowitsch et al., 2014).
We hence expected to see a change in the EEG signatures of visual
representations with multisensory congruency.

3.3. Extracting EEG signatures of sensory encoding and choice

Our goal was to localize EEG activations sensitive to the direction of
visual motion or to the subsequent choice, and to probe whether and
when these are affected by multisensory congruency. To this end we
applied linear discriminant analysis to single trial data. As reaction
times varied between participants we searched for motion-sensitive
components in the data aligned to both stimulus onset and to response.
Discriminant performance for extracting motion sensitive components
was not significant in the onset-aligned data, but in the data aligned to
response (Fig. 2A; randomization statistics with FWE p < 0.01 along
time): discriminant performance was significant in two time epochs
(M1: -0.25 to -0.2 s, Tsum=2.0, p < 0.01; M2: -0.1 s to 0 s, Tsum =9.0, p
< 10-5). The fact that motion selective discriminant components were
significant only in the response-aligned data suggests that these
components are probably associated more with late and choice-
relevant processes rather than early sensory activations. Discriminant
analysis for choice revealed one significant time epoch (C1: -0.42 s to
0 s, Tsum=10.1, p < 10-5). The scalp projections of these three discri-
minant components (at their peak times) are shown in Fig. 2A. We next
asked whether multisensory congruency influences the sensory or
choice evidence reflected by these discriminant components.

3.4. Multisensory congruency enhances visual motion evidence

To analyse the time course of these discriminant components we
obtained single trial projections of the respective discriminant activa-
tions. These are shown in Fig. 2B (left for the visual motion component
derived at tpeak=-0.23 s, ‘M1’; right for the choice component derived at
tpeak =-0.08 s, ‘C1’), normalized for the effect of visual coherence, and
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only for correct responses to rule out influences of performance on
these components. As expected, these discriminant components ex-
hibited a ramp-like behaviour over a period of about 200 ms before
tpeak (O'Connell et al., 2012; Philiastides et al., 2014). Importantly,
when contrasting congruent and incongruent conditions we found a
significant difference for the motion component M1 (cluster-based
randomization statistics, FWE p < 0.01; Tsum=32, p < 10-5): motion
evidence was significantly stronger and started to rise earlier during
congruent trials in a window between -0.34 s and -0.25 s. Importantly,
this congruency effect at the same latencies also persisted when we
analyzed all correct and incorrect trials together (Tsum=28, p < 10-5).

To further confirm this multisensory enhancement we extracted
ramp onset times for these rising discriminant signals, defined based
on all (i.e. correct and incorrect) trials. Ramp onset times differed
significantly between congruencies, confirming an earlier rise of motion
representations during congruent over incongruent trials (Fig. 2C;
median values: congruent 70ms, incongruent 42 ms; Wilcoxon test:
Z(17)=2.3, p=0.02). Not surprisingly, the stronger discriminant activity
during congruent trials also resulted a better discriminability of visual
motion direction based on the EEG activity (Az averaged over the
significant time window and coherence levels, congruent: 0.55 ± 0.006;
incongruent: 0.53 ± 0.004, mean ± s.e.m.; sign-test p=0.0075).

To directly test whether the single trial evidence provided by this
discriminant component (M1) was predictive of subject's choice we
entered the discriminant activation and the actual motion direction
into a logistic regression of choice, after normalizing Y within each
coherence level (Fig. 2E). Not surprisingly, the effect of motion
direction was highly significant (t(17)=21, p < 10-5). More importantly,
the effect of discriminant component was significant around a similar
time window as the congruency effect (-0.31 s to -0.23 s; Tsum=36, p <
0.001), indicating that this EEG signature has a significant impact on
subjects’ responses beyond the influence of the physically visible
stimulus. In line with this result we also found that the shift in the
ramp onset times was significantly correlated with the change in drift
rate predicted by the diffusion model across subjects (r=0.69,
p=0.0015, CI [0.31, 0.89]). The shift in ramp onset times was also
significantly anti-correlated with the change in the inter-trial variability
of the drift rate (r=-0.49, p=0.035, CI [-0.80, -0.01]). As a result, an
earlier onset of the motion-sensitive discriminant component in
congruent multisensory conditions was associated with a more reliable
(in a trial by trial sense) and faster accumulation of sensory evidence in
the drift diffusion model fitted to behavioural performance.

To probe whether the enhancement of visual motion representation
by multisensory congruency was specific to the motion component M1,
we also obtained projections of the motion component M2 (derived at
tpeak =-0.05 s). There was no significant effect of congruency at any
time point in these projections. Furthermore, the ramp onset times
extracted from these did not differ between congruencies (Fig. 2C;
median values: congruent 42 ms, incongruent 60ms; Wilcoxon test:
Z(17)=-1.3, p=0.19). We also did not find a significant effect of
congruency on the projections of the choice-sensitive component (C1;
tpeak =-0.05s; Fig. 2B left for the time course; median ramp onsets:
congruent 75ms, incongruent 74ms; Wilcoxon test: Z(17)=0.9,
p=0.32). The two later components (M2, C1) seem to index similar
processes, given that they emerge around the same time and have
similar topographies. Yet, these discriminant components are unlikely
to be purely motor-plan related, given that subjects used the same hand
for both responses and that EEG cannot discriminate activations
related to different fingers of the same hand. Furthermore, the
topography does not seem to be consistent with the well-known
lateralised motor potential. All in all, this suggests that Audio-visual
congruency influences the dynamic evolution of visual motion repre-
sentations about 300ms prior to the response, but does not specifically
enhance later motion sensitive discriminant components or choice
selective signals immediately before the response.

To obtain a better understanding of the time point during a trial at

which this congruency effect emerges, we obtained single trial projec-
tions of the motion component M1 when aligned to stimulus onset
(Fig. 2D). To this end we applied the discriminant weights obtained
from the response-aligned discriminant analysis to the time series of
the onset-aligned data. This revealed a significant congruency effect
around 0.31 s to 0.37 s post stimulus onset (Tsum=13, p=0.001).
Together with the response-aligned data (effect around 300 ms pre-
response) and the typical reaction times (around 660ms) this suggests
that the multisensory EEG signature emerges at latencies intermediate
between stimulus onset and response.

3.5. Changes in alpha power facilitate sensory encoding benefits

Previous studies have reported changes in parieto-occipital alpha
power with multisensory congruency. Given that parietal alpha has
been linked to visual spatial attention and the excitability of visual
cortices these findings have been interpreted as attentional contribu-
tions to multisensory perceptual benefits. Hence we asked whether
there was a similar effect of congruency on parietal alpha power in the
present data. We computed time-frequency representations in re-
sponse aligned data and quantified the congruency effect over pre-
selected occipito-parietal sensors (Fig. 3A). As expected (Gleiss and
Kayser, 2014a, b), alpha power was significantly higher during
congruent compared to incongruent trials, between -0.4 s and -0.12 s
and 8-14 Hz (Tsum=237.4, p=0.03). However, the distribution of
changes in alpha power with congruency was highly variable, and only
10 of 18 participants exhibited higher power during congruent trials
(Fig. 3B). To obtain a more specific understanding of whether and how
alpha power contributes to shaping subjects’ single trial behaviour, we
included an interaction of alpha power with the discriminant compo-
nent (M1) in the regression of choice. This interaction was significantly
negative in a time window of -0.24 s to -0.20 s (Fig. 2E; Tsum=-16.5, p
< 0.001), hence subsequent to the peak in the motion evidence
reflected by this discriminant component. This suggests that reduced
alpha power subsequently reinforces the impact of the encoded motion
evidence on behavioural responses during the formation of choice.

3.6. Motion sensitive discriminant components localize to visual
motion regions

We performed a source localization analysis to obtain a better
understanding of the brain regions from which the visual motion
sensitive discriminant component (M1) arises. We computed trial by
trial correlations between single voxel activity and the discriminant
activation at the single subject level at each point during the trial, in
analogy to the definition of forward scalp distribution of linear
discriminant components (c.f. Methods) (Haufe et al., 2014; Parra
et al., 2005). Group-level median correlation maps (extracted at tpeak
=-0.23 s) revealed two clusters of positive correlations (Fig. 4A). These
localized to an inferotemporal source (MNI [-40 -29 -11]; AAL atlas
label: Temporal Inf L), and an occipital source (MNI [-29 -94 -11]; AAL
atlas label: Occipital Mid L). Given that we observed a significant
congruency effect in the discriminant activation both when aligned to
response (Fig. 2B), and when aligned to stimulus onset (Fig. 2D), we
repeated the source localization analysis using the stimulus-aligned
data. This confirmed the same two sources as obtained from the
response-aligned analysis. Furthermore, while these maps suggest a
left-lateralization of the source correlation, a statistical comparison of
group-level correlation values of the left occipital source with the
corresponding values extracted from the right hemisphere did not
reveal a statistically significant difference (Wilcoxon test; median
values 0.078 for left and 0.009 for the right hemispheres; Z=1.9,
p=0.058).

To quantify the sensitivity to multisensory congruency of these
sources we further analysed the respective single trial signals. Group
level statistics for a congruency effect (cluster-based randomization
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statistics, FWE p < 0.01) revealed no effect at the inferotemporal
source, but a significant congruency effect at the occipital source,
which emerged around the same time as the congruency effect in the
discriminant component extracted from the sensor data (-0.39 s to
-0.28 s; Tsum=47, p < 10-5). Finally, to test whether these source signals
were linked to the perceptual benefit we correlated the congruency
effects in accuracy (congruent minus incongruent) with the congruency
difference in the source activations around the time of the peak
differences (averaged in -0.38 s to -0.34 s; Fig. 4C) across subjects.
This correlation was significant for the occipital (r=0.53, p=0.023, CI
[0.05, 0.86]) but not the inferotemporal source (r=-0.05, p=0.81, CI
[-0.53, 0.41]), suggesting that multisensory benefits for the neural
representation of visual motion evidence in occipital cortex directly
relate to the perceptual benefit.

4. Discussion

Our results show that a congruent sound facilitates the encoding of
visual motion direction in occipital sensory regions. This was evident as
an earlier rise of the visual motion sensitive discriminant component in
congruent compared to incongruent trials about 350 ms following
stimulus onset, and about 300 ms prior to the response. This earlier
emergence of task relevant sensory representations reflected the better
discriminability of visual motion direction from brain activity.
Furthermore, the respective discriminant activation was significantly
predictive of subjects’ single trial choice and the congruency effect in
occipital brain activity was predictive of the respective accuracy benefit
provided by congruent over incongruent multisensory evidence.
Together this reveals the multisensory facilitation of later sensory
processing stages in occipital regions that subsequently drive percep-
tual choice.

4.1. Congruent acoustic information enhances occipital sensory
representations

The when and where of multisensory integration has been attrib-
uted to a wide range of regions in the brain. While older studies had
pointed to high level parietal and prefrontal association regions, many
studies in the last decade have suggested that multisensory interactions
occur already at the earliest cortical or even subcortical stages
(Ghazanfar and Schroeder, 2006; Kayser and Logothetis, 2007;
Schroeder and Foxe, 2002). In particular, many studies have argued
that behaviourally relevant multisensory interactions can occur around
primary-like sensory cortices and at very early latencies relative to
stimulus onset (Ibrahim et al., 2016; Murray et al., 2016; Schroeder
and Foxe, 2005; van Atteveldt et al., 2014). However, recent studies
suggest that there may be no generic answer to this question, as
multisensory processing likely involves a distributed set of task- and
function-specific regions (Bizley et al., 2016; Werner and Noppeney,
2010). In line with this hypothesis, two recent fMRI studies have
illustrated how the computational nature of Audio-visual interactions
changes from low-level sensory to high-level parietal cortices (Rohe
and Noppeney, 2014, 2016).

In the context of motion perception both intracranial recordings
and functional imaging studies in humans have demonstrated that
multisensory information can enhance sensory representations in
occipital motion cortex (Alink et al., 2008; Poirier et al., 2005;
Sadaghiani et al., 2009). While electrophysiological studies have
described the computational rules by which MSTd neurons combine
visual and vestibular information in great detail (Angelaki et al., 2009;
Fetsch et al., 2013), less is known about the multisensory response
properties of the human motion cortex. Some studies have shown that
non-visual directional evidence can directly modulate hMT responses
(Alink et al., 2012; Baumann and Greenlee, 2007; Bedny et al., 2010;
Poirier et al., 2005; Saenz et al., 2008; Scheef et al., 2009; van
Kemenade et al., 2014), and one study suggested that perceptual

benefits may arise directly from the enhancement of hMT responses
(Lewis and Noppeney, 2010). However, it remained unclear whether
multisensory activations in motion cortex arise early in time relative to
stimulus onset, and hence likely reflect bottom up mechanisms related
to the stimulus-driven encoding of sensory information (Kayser and
Logothetis, 2007; Schroeder and Foxe, 2002; Werner and Noppeney,
2010). Alternatively, multisensory activations could arise at longer
latencies and hence possibly result from top-down feedback mechan-
isms that relate multisensory information back to early sensory cortices
(Nath and Beauchamp, 2011; Vetter et al., 2014).

We here capitalize on the mapping of sensory representations
rather than generic response amplitudes in functional imaging data
(Kayser et al., 2016; Kriegeskorte et al., 2006; Philiastides et al., 2014).
Our approach differs from previous EEG studies in that we did not
quantify multisensory effects on individual ERPs, which potentially
capture many different neural processes. Rather, we relied on single
trial discriminant analysis to select relevant EEG components that
carry task-relevant sensory representations, here about the direction of
visual motion. Our results corroborate the importance of occipital
cortices in mediating the acoustic facilitation of visual motion dis-
crimination. We directly demonstrate that the underlying visual
representations are significantly predictive of subjects’ single trial
choice, and that their multisensory facilitation is predictive of the
accuracy benefit. While the precision of EEG source localization is on
the order of a few centimetres (Song et al., 2015), our results never-
theless constrain the origin of the multisensory benefit to occipital
sensory representations rather than parieto-frontal regions. Our find-
ings hence support an origin of multisensory encoding benefits within
sensory-specific cortices in opposition to domain general and amodal
regions (Ghazanfar and Schroeder, 2006; Hanks et al., 2015; Murray
et al., 2016; Raposo et al., 2014). At the same time our results also
demonstrate an origin within a high-level occipital region, in opposi-
tion to primary visual cortices. Our results localize the neural correlates
of multisensory enhancement to intermediate epochs of the trial, about
350 ms from stimulus onset and about 300 ms before the response.
This contrasts with suggestions of low latency multisensory interac-
tions, such as changes in the N100 amplitude or latency (Giard and
Peronnet, 1999; Roa Romero et al., 2015; Stekelenburg and Vroomen,
2007, 2009; van Wassenhove et al., 2005; Zvyagintsev et al., 2009) or
similar effects with latencies shorter than 100ms from stimulus onset
(Giard and Peronnet, 1999; Murray et al., 2004).

We interpret our results as support for a hierarchical model of
multisensory integration. In such a model the earliest multisensory
effects reflect changes in sensory saliency or expectancy, driven by the
synchronous and possibly redundant information arriving to different
senses (Kayser et al., 2010; Schroeder and Foxe, 2005; Schroeder et al.,
2008; Talsma et al., 2010). Later effects, in contrast, reflect computa-
tionally specific mechanisms relating to the combination of feature-
specific information which are implemented in the respective sensory
cortices carrying the task-relevant representations. These later inter-
actions are shaped by task-demands, the relevance and suitability of
each modality for the specific task (Bizley et al., 2016; Kayser and
Shams, 2015; Rohe and Noppeney, 2014; Werner and Noppeney,
2010). While the earlier interactions likely emerge automatically and in
a bottom-up manner, the later interactions are dependent on feedback
from higher association regions, which guide multisensory influences
in sensory cortices contingent on task requirements. This task-depen-
dency of multisensory interactions may in part also contribute to
differences in the timing and location of the neural correlates of
behavioural benefits observed in the literature. A neural origin within
motion-sensitive regions in the present study is likely given the task
nature (motion direction discrimination) and it is possible that the use
of a different visual stimulus (e.g. static stimuli, or speech) or a
different task (e.g. shape discrimination, or phosphene detection) could
result in neural correlates that emerge at a different latency or in other
sensory cortices (Giard and Peronnet, 1999; Romei et al., 2012; Romei
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et al., 2009; Stekelenburg and Vroomen, 2007; van Wassenhove et al.,
2005).

We here used an acoustic motion stimulus created using intensity
differences between the ears based on sounds presented via head-
phones. The use of headphones can induce an apparent spatial
mismatch between the acoustic and visual stimuli. This lack of co-
localization can reduce the perceptual integration benefit, and may
hence influence the observed neural correlates (Beer and Roder, 2004;
Frassinetti et al., 2002; Meyer et al., 2005; Rohe and Noppeney, 2016;
Soto-Faraco et al., 2002). To complicate matters further, the influence
of Audio-visual disparity on behavioural integration itself may be task
dependent. Studies on the detection of coherent motion (Meyer et al.,
2005) or flashes of dim light (Frassinetti et al., 2002) reported a
tolerance of up to 20 degrees of Audio-visual disparity, while studies on
stimulus localization in the context of causal inference suggest a more
narrow binding window (Kording et al., 2007; Rohe and Noppeney,
2015, 2016). As a result, it remains possible that potentially earlier
integration effects could be observed under conditions where the
apparent spatial discrepancy in the sensory environment, and hence
the need for the brain to analyse the causal structure of the environ-
ment in great detail, is reduced.

4.2. EEG-informed mapping of sensory decision processes

Our interpretation that multisensory information enhances late
occipital sensory representations is also in line with studies on purely
visual decision making. Several EEG studies have localized correlates of
the sensory and evidence accumulation processes driving choice
(Ratcliff et al., 2016). Patterns of ramping activity have been observed
within sensory and fronto-parietal regions during different tasks
(O'Connell et al., 2012; Philiastides et al., 2010; Philiastides and
Sajda, 2006; Polania et al., 2014; Tremel and Wheeler, 2015), with
some components likely reflecting the accumulation of evidence within
sensory cortices (Tremel and Wheeler, 2015). For example, in the
context of visual object processing, Philiastides and Sadja identified a
late (~300ms) ERP component attributed to lateral occipital cortex,
which correlated with the drift rate derived from diffusion models
(Philiastides et al., 2006; Philiastides and Sajda, 2006, 2007).
Similarly, intracranial recordings in animals have shown patterns of
ramping activity within motion sensitive cortex (Britten et al., 1996;
Shadlen and Kiani, 2013) and multisensory parietal regions (Hanks
et al., 2015) that are predictive of the animals choice, which, in a
multisensory context, can also carry information about the modality
composition of the stimulus (Raposo et al., 2014).

While our source localization results cannot dissect contributions
from motion cortex and more lateral occipital regions, the data
reinforce the notion of a late but sensory-specific multisensory
enhancement. The ramp onset times of the early motion discriminant
component changed with multisensory congruency, and this change
correlated with the congruency effect in drift rates: an earlier rise of the
EEG component was associated with higher and more reliable drift
rates. This EEG correlate of evidence accumulation emerged around
350 ms following stimulus onset, and just around the time at which the
sensory encoding stage ends and the decision process begins as
predicted by the diffusion model: the nonresponse times were around
480 ms (median), and assuming a 100 ms for motor action, this leaves
380 ms for early sensory encoding. The congruency effect in the
stimulus-aligned data emerged between 310 ms and 370 ms, hence
just prior to the onset of the decision process. The choice selectivity
observed in intracranial recordings from visual motion cortex (Britten
et al., 1996) and parietal regions (Hanks et al., 2015; Shadlen and
Kiani, 2013) usually emerges at latencies of around 50 ms to 200 ms
respectively. This is considerably earlier than the choice relevance of
the visual motion component that exhibited the multisensory con-
gruency effect in the present study (Fig. 2E). One reason for this
difference could be the nature of the different signals. However, a later

emergence of the behaviourally-relevant neural multisensory interac-
tion could also reflect the involvement of top-down processes that steer
the low-level sensory encoding contingent on task requirements,
sensory reliabilities, or other high-level inference processes (Rohe
and Noppeney, 2014, 2016).

The context sensitivity of multisensory perception predicted by the
inference perspective also raises another intriguing question regarding
the influence of task and temporal context. A well-known property of
decision making is that congruency effects, such as in the Stroop or
Eriksen flanker tasks, are stronger following a congruent than following
an incongruent trial (Gratton et al., 1992; Mayr and Awh, 2009;
Schmidt et al., 2007). While it remains unclear whether the origin of
these serial order effects is more on the cognitive (Botvinick et al.,
2004; Carter et al., 1998) or sensory side of neural processes (Mayr and
Awh, 2009; Schmidt and De Houwer, 2011), multisensory studies have
reported similar serial order effects, such as changes in the temporal
binding window or a bias in spatial localization estimates (Van der
Burg et al., 2013, 2015; Wozny and Shams, 2011b). These are often
interpreted in the context of sensory recalibration, as they could arise
from a shift in the representation of the encoded sensory likelihoods
(Wozny and Shams, 2011a). However, these multisensory effects could
possibly also originate from amodal and general decision making
processes. Future work is required to disentangle multisensory serial
congruency effects from amodal processes and to map these onto their
respective neural origins.

4.3. Attentional modulation of multisensory processing

Previous work has shown that multisensory integration and atten-
tional selection are deeply intertwined. Attention can facilitate the
binding across modalities by amplifying co-occurring objects, but can
also reduce the likelihood of integration in complex scenes by limiting
the range of objects that are likely to be bound (Beer and Roder, 2004,
2005; Macaluso et al., 2016; Talsma et al., 2006; Talsma et al., 2010).
We have recently reported that auxiliary multisensory effects, i.e.
multisensory benefits arising from stimuli that by themselves do not
offer task relevant information, can in part be explained by processes
typically associated with visual attention (Gleiss and Kayser, 2014a, b).
For example, the perceptual accuracy benefit for detecting visual
motion in a two interval task correlated with changes in parieto-
occipital alpha power (Gleiss and Kayser, 2014b), a prominent marker
of visual attention and the related control of visual excitability (Busch
and VanRullen, 2010; Romei et al., 2009; Thut et al., 2012; Thut et al.,
2006). The present results confirm a group-level increase of parieto-
occipital alpha power during congruent trials, which could be inter-
preted as a requirement for less attentional resources in a congruent
environment (Gleiss and Kayser, 2014b). However, single trial model-
ling revealed a contrasting picture, in which visual sensory representa-
tions have a stronger impact on subsequent choice when alpha power is
reduced (Fig. 2E). Hence, and not very surprising, on a single trial basis
increases in attention seem to be predictive of better performance.

These findings fit well with the hierarchical view of multisensory
integration. Previous work has suggested that the role of attention in
multisensory perception depends on whether multiple stimuli fit with
the assumption of a common origin, a property that is likely shaped not
only by spatio-temporal proximity but also the overall likelihood of
each experimental condition, e.g. congruency, to occur within a given
experimental paradigm (Talsma et al., 2010; Vatakis and Spence,
2007). Following this interpretation sensory information propagates
to high level sensory areas in the parietal lobe, which implement the
causal inference process (Rohe and Noppeney, 2014, 2016). The
outcome of this triggers the attentional amplification of the relevant
sensory representations in visual cortices at latencies that match the
recurrent amplification of sensory representations (Arnal and Giraud,
2012; Philiastides and Sajda, 2007). While our results provide direct
evidence for the late enhancement of occipital sensory representations,
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future work is required to place this into a context of a general
multisensory inference process (Deroy et al., 2016; Rohe and
Noppeney, 2014).

4.4. Conclusion

We used an information-mapping, rather than activation-mapping,
approach to investigate the neural correlates of multisensory integra-
tion. Using single trial analysis we extracted the task-relevant neural
representations and asked when during a trial and where in the brain
these are enhanced in a congruent multisensory context. Our results
point to sensory-cortical rather than fronto-parietal processes and to
activations that emerge relatively late during a trial. These findings
support the multisensory nature of sensory cortices and fit well with the
notion of a hierarchical organisation of multisensory processing in the
brain.
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