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Abstract—Convolutional neural networks have recently shown
great success in computer vision. They are able to automatically
learn complicated mappings, often reaching human or super-
human performance. However, a lack of labeled data can pre-
clude the training of such networks. This is the case in the
reconstruction of 3-dimensional human heads from 2-dimensional
photographs. Approaching the problem backwards, starting from
3-dimensional heads and using photo-realistic rendering, one can
create any number of training data to tackle the problem. This
way, fine control over the data allows for new insights into how a
convolutional neural network interprets data and how variability
in the training and test data affect its performance. We perform
a systematic analysis in order to determine how the presence
of different types of variability in the training data affects the
generalization properties of the network for 3-dimensional head
reconstruction.

Index Terms—convolutional, neural, network, reconstruction,
interpretability

I. INTRODUCTION

Virtual human heads that are 3-dimensional representations
of actual people’s heads have applications in fields as diverse
as entertainment, business and security: They are used in
movies to create the appearance of actors taking part in
computer generated scenes. In video games – especially in
online multiplayer experiences – they can heighten the sense
of immersion and community. In virtual conference rooms,
they enable more direct and comfortable communication.
Finally, in video surveillance, they can increase robustness and
performance. [1]

Creating a virtual copy of an actual, real head, is no trivial
process. While it is possible for an artist to manually create
such a head, this is difficult and time consuming. Modern
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scanning pipelines employ expensive, multi-camera setups
to take a set of photographs simultaneously from different
angles. These photographs are used to generate a point cloud,
which is then approximated by a 3-dimensional mesh in a
computationally expensive procedure. [2]

In recent years, convolutional neural networks have ex-
perienced a surge in success and popularity, mostly due to
advances in hardware, and the availability of training data for
classification problems. [3] They have rivaled and at times
exceeded human performance in classification tasks. [4, 5, 6]
If there were enough training data available, one might be able
to train a neural network to re-create human heads in virtual
space.

Recently, there have been advances in generating synthetic
data, i.e. photo-realistic renderings, to train neural networks
that solve related tasks, e.g. face scanning and garment scan-
ning. [7, 8, 9, 10, 11] Unfortunately, theses networks are little
more than black boxes and it remains unclear what effects the
variabilities introduced into the training data have and whether
they suffice to achieve acceptable levels of generalization.
Furthermore, they depend on inputs preprocessed by other
means, specifically on images where the object of interest has
already been separated from the background, or on detected
points of interest, e.g. the eyes, mouth, or nose; even though
these are tasks that convolutional neural networks have been
shown to excel at. [12, 13] Lastly, those networks that replicate
human faces, are limited to exactly that – they only consider a
small portion of the human head, and only so that it may, in the
end, be used to re-create the input image, but not an animation
or virtual avatar. We believe that considering the entire head
is especially interesting, since it can never be shown in its
entirety in a single image, and so a network must learn to
predict correlations between visible and invisible parts of the
human head.
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Figure 1: Samples from the training data generated generated according to the scenario none.

Figure 2: Samples from the training data generated generated according to the scenario angle.

In photo-realistic renderings, as opposed to real-world pho-
tographs, we have complete control over the images, from the
high-level content to modalities such as background, lighting
and lens properties. In this paper, we take advantage of the fact
that neural networks can successfully be trained on synthetic
data, by systematically analyzing how changes in the training
data affect a network’s ability to generalize, and use this to
further our understanding of how invariances are learned by
the network. Furthermore, we investigate how well a solution
that is truly end-to-end – i.e. takes an image as input that has
not been specially preprocessed and outputs a virtual head –
fares with regards to changes in the variability present in its
input.

The remainder of this paper is structured as follows: In
Section II, we present a gentle introduction of how heads
are represented in Computer Graphics, before outlining in
Section III how the task of reconstructing a 3-dimensional
head from a photograph can be solved by deep learning. In
Section IV, we describe how photo-realistic renderings can be
used to systematically analyze the generalization properties
of a network with regard to different types of variability. In
Section V we present our experimental results, and the paper
concludes with a discussion and outlook in Section VI.

II. REPRESENTATION

In order to turn a 2-dimensional image of a head into a 3-
dimensional head, we first need to determine how to represent
the head in 3 dimensions. For this, we choose a polygonal
mesh with which we approximate the head’s surface. The
shape of the mesh is determined by the positions of its vertices
in R3, represented by a vector v ∈ R3n where n is the number
of vertices in the mesh. We call such a vector v a configuration
of the mesh. Figure 5 shows one possible mesh configuration.

Different heads are given by different configurations of the
mesh, and we require that for all configurations, the semantics
of each vertex should be the same, e.g. a vertex on the tip of
the nose should always remain on the tip of the nose. This
ensures – among other advantages – that different heads can
be mixed to obtain intermediate heads. More to the point,
if v1, . . . , vk are configurations that represent different heads,
a convex combination of the vi typically also represents a
plausible human head.

Directly modifying vertex positions to create a new mesh
can be problematic due to the high dimensionality of the
configuration: when the mesh has n vertices, its shape is
determined by a vector v ∈ R3n, so a value of around
n = 25 000 results in around 75 000 degrees of freedom.
On the one hand, this leads to computational difficulties.
On the other hand, it makes mesh deformations extremely
challenging for humans to understand. Both problems can be
alleviated by a parameterized head model that determines a
mesh configuration from only a couple of input parameters. A
popular method to obtain such a model on the basis of sample
configurations v1, . . . , vk is to apply Principal Component
Analysis (PCA) on the configurations vi in order to find mv

principal directions in which the meshes differ from their
mean, where mv ≤ k. Then, a new configuration is defined
by mv parameters pv ∈ Rmv :

v = µv +Xv · pv, (1)

where µv denotes the mean of v1, . . . , vk and Xv denotes their
first mv principal components. These principal components
represent typical variations between human heads.

The mesh representation described so far does not contain
color information. This information is typically given by a
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Figure 3: Samples from the training data generated generated according to the scenario angle/bg.

Figure 4: Samples from the training data generated generated according to the scenario all.

texture map, which is rendered on top of the 3-dimensional
mesh. Since textures are represented by images with hundreds
of thousands of pixels, it is beneficial to create a texture
model using the same PCA-based method as used for mesh
configurations – plausible textures are given by

t = µt +Xt · pt, (2)

where µt is the mean of a set of known textures, Xt are the
first mt principal components, and pt ∈ Rmt .

This method has been pioneered for human faces by Blanz
and Vetter [14].

We refer to the concatenation of pv and pt as p ∈ Rm, so
m = mv +mt. Together with the model given by µv, Xv, µt

and Xt, these m parameters fully define a 3-dimensional head.

III. RECONSTRUCTION BY MACHINE LEARNING

Using the head model introduced in Section II, we can
phrase the problem of 3-dimensional head reconstruction as
a regression problem, where the input is a photograph of a
human head and the output is a vector p = (pv, pt) such that
Equations (1) and (2) are good approximations of the shape
and texture of the head in three dimensions, respectively.

Convolutional neural networks have been shown to excel
in problems where information is extracted from images. [15,
16, 17] Unfortunately, they require large amounts of training
data, which is hard to acquire in this case. Approximating
ground-truth 3-dimensional representations using photogram-
metry, which is the state of the art approach, requires a
three-step processing pipeline: photographs of the subject are
taken simultaneously from multiple angles, using an expensive
multi-camera setup, where the subject must be physically
present. The photos are used to produce a point cloud, which
is then approximated by a mesh. Both of the latter steps

are computationally expensive. [18, 2] Furthermore, privacy
concerns may limit the number of people willing to supply
this type of data. Together, these considerations make the
collection of a sufficient amount of training data prohibitive
to training a convolutional neural network on the regression
problem described above.

A recent solution to problems of this type is to use artifi-
cially generated images as a training set. [7, 8, 9, 10, 11] In
our head reconstruction application, this entails the following
steps:

1) Randomly select a target parameter vector p ∈ Rm.
2) Generate one or more photo-realistic images of the mesh

and texture described by p.
3) Add the generated images to the training set with the

vector p as the target.
In Figure 6, we visualize the connections between parameters,
configurations and renderings.

IV. STRUCTURED INVESTIGATION OF INVARIANCES

While neural networks have shown admirable performance
in diverse computer vision tasks, the resulting models are hard
to interpret, and it usually remains unclear how sensitive they
are to variation not present in the training data. For example,
the model may eventually be deployed on pictures taken under
different lighting conditions or with new cameras, leading to
variability in application that the model was not trained on.

This point becomes even more pronounced when training
on synthetic images: it is generally not feasible to model in
the training data all types of variability that the network may
encounter when deployed. Since the model should still perform
well under real-world conditions, it needs to be robust to the
types of variation not accounted for in the training data, but
present in real-world images.
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Fortunately, photo-realistic rendering also opens the door
to a structured investigation of these questions. Because the
images are artificially generated, we have full control over
all types of variation that occur in the training data – as op-
posed to real-world photographs, where completely controlling
conditions such as angle and lighting requires sophisticated
setups. We propose to exploit this advantage by comparing the
performance of neural networks trained on datasets that differ
only regarding isolated types of variability. By considering
several networks, trained to solve the same task, but with an
exposition to different types of variability during training, we
are able to investigate

• how different types and levels of variation affect a net-
work’s performance,

• how a network extrapolates what it has learned to vari-
ability unseen during training, and

• which types of variability absolutely need to be intro-
duced into training data or controlled for in deployment.

In the following, we present our results for convolutional
neural networks trained to estimate the parameters of a 3-
dimensional head model from a single rendering of a human
head. The types of variation introduced include lighting, angle,
position, lens properties, background, and hair.

V. EXPERIMENTS

Data Synthesis and Training

For our experiments, we create a model, as described above,
which takes m = 36 parameters as input and outputs a mesh
with a texture. For any sample, we draw a ground-truth vector
q uniformly from [−1, 1])m, which we store as the ground
truth and refer to as the unscaled parameters. We multiply each
entry in q by 1.6 times the respective principal component’s
standard deviation to obtain parameters p for the model. Note
that the principal components, i.e. the columns in Xv and Xt,
are of unit length. Thus, in order to regenerate the approximate
volume spanned by the original data, multiplication with the
standard deviation in necessary. Further multiplication by 1.6
slightly extends said volume, increasing the expressiveness
while retaining realism.

Figure 5: A mesh configuration of a human head.

parameters

configuration

image

parameters

model

rendering

network

Figure 6: Overview over the pipeline. The head model is used
to turn (random) parameters into configurations. These are
used to render images. During the rendering, further variability
is introduced. A convolutional neural network is trained on the
rendered images, so that it learns to estimate parameters for a
given input image.

To draw the images, we setup a scene in Blender [19] and
render using Cycles. We introduce variability into the data by
modifying certain characteristics according to the following
scenarios, which we name by the variability they encompass:

• none: All heads are rendered from the same angle
(roughly 45°) in front of a a solid gray background. See
Figure 1.

• angle: Heads are drawn from angles randomly picked
between 90° to the left and right, in front of the same solid
gray background as in the scenario none. See Figure 2.

• angle/bg: Heads are drawn like in the scenario angle, but
overlayed on top of randomly scaled parts of randomly
chosen photographs. See Figure 3.

• all: In addition to variability in the scenario angle/bg,
heads are randomly drawn with or without facial hair
and/or scalp hair, the light color and intensity are changed
randomly, the camera lens’s focal length is changed
randomly, and the head is translated randomly, varying
its position in the image plane and its distance from the
camera. See Figure 4.

For each scenario, we create around 200 000 samples and
then train a neural network to estimate the unscaled parameters
q with a single rendered image as input. Each neural network is
based on the architecture of ResNet-50 [20] with 50 parameter
layers, where the last layer is replaced by a fully connected
layer with m output neurons, one for each parameter. The loss
is calculated as the squared euclidean distance between the
estimated and the actual parameters. Training is performed for
1 000 000 iterations using Caffe [21], starting with the original
weights available for ResNet-50. The learning rate starts at
0.0001 and is reduced via an inverse decay with gamma 0.1
and a power of 0.75. Additionally, a momentum of 0.9 is
used. We render images as 224 by 224 pixels to adhere to the
original network and subtract its mean image from each input.
Note that even though ResNet-50’s weights were obtained
solving a classification problem [3], the early layers do not
change noticeably during training.

The configuration and texture are calculated from the un-
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scaled parameters in a simple and direct manner, so we
calculate the error directly on the unscaled parameters. This
allows us consider configuration and texture as one.

naive none angle angle/bg all
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Figure 7: Distributions of errors for each net, applied to
2000 unseen images from the scenario all. A pseudo-network
dubbed naive is included that always predicts zero for every
parameter (recall that they are sampled uniformly between
−1.0 and 1.0), to serve as a baseline. The presented violin
plots are similar to more common box plots but include an
approximation of the samples’ histograms. The horizontal lines
are the median and quartiles.

Results

We refer to each network by the name we have given the
training data, i.e. the scenario the network has trained on.

General Performance: To compare the networks and judge
how they generalize to variability they have not seen during
training, they are presented with 2000 images from the sce-
nario all and the error is logged. We present the resulting
error distributions in Figure 7. The networks that have been
trained on data without variability in the background, i.e. none
and angle, perform worse than guessing the mean (p = 0).
An explanation for this could be that the input is so different
from what the networks have previously encountered, that they
extrapolate wildly. The network that has seen varying back-
grounds during training, but not all variability, i.e. angle/bg,
manages to perform slightly better than guessing the mean,
showing how gradually increasing the variability present in
the training data can also gradually improve the network’s
performance on data with yet more variability, and so its
ability to generalize to unseen variability. In particular, it ap-
pears that background variability is essential for generalization
performance. The network all performs best. Although the
error does not reach zero, the results produce heads that look
indistinguishable (see Figure 9). Note that differences on the
less important principal components are difficult for humans
to recognize by casual observation.

Performance on one Sample: In order to gain insight into
how the networks process their inputs, we present each net-
work with a sample randomly chosen from the scenario all and

show the results in Figure 9. We approximate the importance
of each pixel in the input by calculating the gradient via
backpropagation with regards to a change in the first (i.e. most
important) parameter, and refer to this importance as saliency.
Furthermore, we use the estimated parameters and the ground
truth to render the corresponding heads without any added
variability for a visual comparison. The networks that have
been trained on data with monochromatic backgrounds, none
and angle, are thrown off by the background present in the
input. The network all, which has encountered all variability
during training, gracefully handles the background and focuses
on defining areas of the head, e.g. the eyes, nose, mouth, and
the visible ear. Again, angle/bg shows similar performance to
all but does not reach the same level of quality.

−1.0 −0.5 0.0 0.5 1.0
6.6
6.8
7.0
7.2
7.4
7.6
7.8

none

−1.0 −0.5 0.0 0.5 1.0
6.0
6.2
6.4
6.6
6.8

angle

−1.0 −0.5 0.0 0.5 1.0
3.15
3.20
3.25
3.30
3.35
3.40
3.45

angle/bg

−1.0 −0.5 0.0 0.5 1.0
1.9
2.0
2.1
2.2
2.3
2.4
2.5

all

Figure 8: Each network has been applied to 2000 unseen
images from the scenario all, where we know the exact angle
from which the head has been rendered. Plotted are moving
averages of the error against the angle.

Performance w.r.t. Angle: To further understand how the
networks handle variability, we determine the error (as above)
with respect to the angle from which the head visible in
the input is rendered. See Figure 8 for the results. The
network none has an obvious sweet spot around the angle
from which its training data has been rendered, which is
to be expected. It is however noteworthy that it appears to
somehow generalize so that images rendered from a similar
but opposite angle are handled better than frontal renderings –
the network implicitly uses some knowledge about symmetry
which was not explicitly contained within its training data.
It might retain this property from having previously been
trained on different data for classification, where invariance
with regards to symmetry can also be of value. The network
all shows the behavior one might expect from a human artist.
It performs best when the head is rendered from an angle in
between a frontal view and a profile, with no preference for
either side.

VI. DISCUSSION

We have demonstrated how photo-realistic renderings of
artificial data can be used to analyze the effect of proper-
ties of the training data on the behavior of convolutional
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Input Saliency Estimate Ground Truth

Input Saliency Estimate Ground Truth

Input Saliency Estimate Ground Truth

Input Saliency Estimate Ground Truth

Figure 9: Each network’s performance on one random sample from the scenario all. First column: input image. Second column:
brighter pixels indicate a greater influence on the output. Third column: rendering of the output according to the scenario none.
Fourth column: rendering of the ground truth according to the scenario none. Rows correspond to the networks none, angle,
angle/bg, and all, respectively.
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neural networks. For the application of 3-dimensional head
reconstructions, we have investigated how the presence of
variability in background and angle in the training set impacts
the ability of a neural network to generalize to test data
with high variability, and how the performance of differently
trained networks depends on the level of deviation from
previously seen scenarios. The results show that when con-
fronted with unlearned variability, a network may extrapolate
wildly, achieving worse results than a naive guess of the
training mean, which highlights the importance of carefully
considering how the distributions of training and application
data may differ, especially when training a neural network
on synthetic data. We have seen that the given problem can
be solved in an end-to-end fashion, where the neural network
learns to separate a head from the background.

We were able to observe how a neural network can make use
of symmetry even if it has not explicitly seen its relevance to
the given problem. This is akin to the finding of Gatys, Ecker,
and Bethge [22], where a convolutional neural network trained
for image classification includes knowledge that can be used
to explicitly separate the content of an image from its artistic
style.

This type of experiment opens the door to exploring how
the architecture of a network influences its ability to learn
invariances, or to generalize naturally to unseen variability.
In future work, we plan to investigate this relationship, as
well as the possibility of dataset augmentation by synthetic
images when an invariance cannot be sufficiently represented
or learned using available data. Furthermore, we would like
to take advantage of how well invariances can be learned by
adding variability that occludes parts of head, such as glasses
or jewelery, to make head reconstruction more convenient.

Finally we would like to investigate the link between biases
in the training data – e.g. an underrepresentation of certain
races, or a strong correlation between hair length and gender
– and the biases of models learned from this data.
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