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Colloidal suspensions are susceptible to gravitationally induced phase separation. This can be mitigated
by the formation of a particle network caused by depletion attraction. The effectiveness of this network in
supporting the buoyant weight of the suspension can be characterized by its compressional modulus. We
measure the compressional modulus for emulsion networks induced by depletion attraction and present a
model that quantitatively predicts their gravitational stability. We also determine the relationship between
the strength of the depletion attraction and the magnitude of the compressional modulus.
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Any colloidal suspension is susceptible to gravitation-
ally induced sedimentation or creaming, which can lead to
phase separation of the particles, even if they are otherwise
stable against aggregation or coalescence. This is particu-
larly important for commercial products, where gravita-
tional stability can ultimately limit shelf life. Gravitational
stability can be enhanced by density matching the particles
to the suspending fluid, by restricting the particle size so
that their Brownian motion helps keep them suspended, or
by increasing the viscosity of the suspending fluid to slow
phase separation. However, these methods are often not
feasible. An alternate method that is frequently used is to
cause a weak attraction between the particles, resulting in a
solidlike network or gel of the particles themselves, which
helps support their buoyant weight [1]. The network can
still easily yield under shear, allowing the suspension to
flow. A convenient means of inducing the requisite inter-
particle attraction is through the depletion interaction [2],
caused by the addition of nonadsorbing particles or poly-
mer to the suspension. Indeed, polymers added to the sus-
pension to increase its viscosity to slow the phase separa-
tion may also induce a depletion attraction, leading to gela-
tion, and thereby providing an alternate means of stabiliza-
tion. The ability of the network to support its buoyant
weight is characterized by its compressional modulus [1],
from which we determine the stress the network can sup-
port as a function of the particle volume fraction, �. The
�-dependence of the stress is analogous to the equation of
state for equilibrium particles, where osmotic pressure
balances buoyant stress [3], and this has been measured
for hard spheres [4,5]. The compressional modulus has also
been measured for networks of strongly attractive particles
[1]. The gravitationally induced instability of weak
depletion-attraction-induced networks has also been exten-
sively investigated [6–8]. However, for these systems there
has been no investigation of the compressional modulus, its
relationship to depletion attraction, and its role in gravita-
tional stability with changing �. Understanding these ef-
fects is essential to fully exploit this means of stabilization.

In this Letter, we measure the volume-fraction depen-
dence of the compressional modulus of a depletion-
attraction-induced emulsion network and use this to deter-
mine the gravitational stability of the suspension. We
calculate the time evolution of the height-dependent vol-
ume fraction of the suspension, and obtain excellent agree-
ment with the data. We gain insight into the origin of the
effect by determining the relationship between the
depletion-attraction and the compressional modulus.

We use a colloidal suspension composed of a nearly
monodisperse emulsion of paraffin oil in water at a vol-
ume fraction of �0 � 0:2, stabilized with a commercial
nonionic surfactant (Lutensol TO8). We use two different
emulsion samples with hydrodynamic radii of R �
360 nm or R � 170 nm, and with polydispersities of
�30% of the mean, as measured with dynamic light scat-
tering (DLS). The density mismatch of the oil is �� �
0:16 g=cm3. To induce a depletion interaction, we add
either a nonabsorbing polymer or one of two different
surfactants to a concentration cm, above the critical micelle
concentration (cmc �0:08 mM). The depletant polymer is
polyvinylpyrrolidon (PVP) with molecular weight of
106 g=mol and r � 25 nm as measured by DLS. The first
surfactant (Lutensol TO8) has a micelle size of r �
4:5 nm, while the second (Lutensol A8) has r � 6 nm, as
measured by DLS.

To determine the strength of the depletion attraction, we
use static light scattering to measure the osmotic com-
pressibility [9] of the polymer and micelles as functions
of concentration, using literature values of dn=dcm
[10,11], where n is the index of refraction. We integrate
this to obtain the osmotic pressure, �o, and calculate the
maximum strength of the depletion interaction between oil
drops, U � �oVdep, where Vdep � 2�Rr2 [12].

To monitor the gravitational stability, we record images
of the emulsions as they cream, and measure the position of
the interface between the emulsion and the clear fluid
subnatant. We use 23-mm diam cylindrical vials, and con-
firm that the size does not impact the results by varying the
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diameter by a factor of 2. We also confirm that the curved
meniscus does not affect the results by repeating the ex-
periment using a sample filled to the top of a sealed vial.
We vary the initial height, H0, of the emulsion from 5 to
57 mm, and monitor the time evolution of the height, H�t�,
measured from the top of emulsion as shown in the left
inset of Fig. 1. When the depletion attraction is not too
large, the taller samples initially cream slowly, and then
exhibit delayed collapse [6], where the sample precipi-
tously creams to a more compressed state, shown for
samples with R � 360 nm and r � 4:5 nm (solid points
Fig. 1). Less tall samples cream monotonically, reaching a
new steady-state height, with no delayed collapse (open
points Fig. 1).

Varying H0 allows us to vary the buoyant stress in the
emulsion. Since the sample is a gel, the emulsion at the top
of the sample is subject to the full buoyant stress of all the
suspensions below. As the sample creams, the volume
fraction at the top must increase from its initial value,
�0, to the final value, �1, reflecting the local compressive
strain. The ability of the sample to withstand this compres-
sion is determined quantitatively by the compressional
modulus, K��� � ��@�=@� [1]; this reflects the change
of � with applied stress, �, and is similar to the bulk
modulus of the network alone but for a uniaxial stress.
We can determine K(�1) by measuring �1 in the steady
state at the top of the sample as a function ofH0, which sets
the magnitude of the stress, � � ��g�0H0. After the
sample reaches steady state we measure �1 by skimming
a small amount of sample from the top within 2 mm,

weighing it, drying it, and reweighing it. The magnitude
of � increases dramatically with �1 for all samples, as
shown in Fig. 2. The specific behavior depends on both r
and cm, but, in each case, the data appear to diverge as �1
approaches �c � 0:64, the maximum value for random
close packing of uniform spheres. To account for this
divergence, we fit the data with the functional form

 ���1� � ��
�1 ��g

�c ��1
; (1)

where the stiffness parameter, �, is a constant that depends
on r and cm. We have included a minimum concentration
required for gelation, �g � 0:03, which we determine
empirically from the initial creaming behavior and find
to be independent of r and cm in our experimental range;
samples with �0 � �g cream much more rapidly, presum-
ably because the attraction induces clusters that do not gel
but instead rapidly cream. We obtain excellent agreement
with the data as shown in Fig. 2. To highlight the diver-
gence as �1 approaches �c, we scale each data set by its
value of�, and plot the results as a function of�c ��1 on
a logarithmic plot. The data all overlay on a single master
curve, exhibiting nearly linear behavior, as shown in the
inset in Fig. 2. The solid line through the data is a fit using
the form in Eq. (1). This functional form allows us to
determine the compressional modulus directly,

 K��1� � ��1
��c ��g�

��c ��1�2
: (2)

FIG. 1 (color online). Time evolution of the heights of an
emulsion gel with various initial height H0 but the same com-
position, �0 � 0:2, cm � 0:06 g=ml, r � 4:5 nm, and R �
360 nm. H0 are 5, 9, 12, 26, 39 and 57 mm from bottom to
top, respectively. Left inset: Picture of a sample. Right inset:
Measured H�t� compared with the values calculated with the
nonlinear poroelastic model for the samples that do not exhibit a
delayed collapse.

FIG. 2 (color online). Gravitational stress as a function of �1
in the steady state at the top of emulsion gels with: r � 4:5 nm
and cm � 0:016 g=ml (�), r � 6 nm and cm � 0:016 g=ml (�),
r � 4:5 nm and cm � 0:06 g=ml (�), r � 6 nm and cm �
0:06 g=ml (�). For all samples, R � 360 nm. Lines are fits to
Eq. (1) with � � 1:8, 1, 0.6, and 0.4 Pa for �, �, �, and �,
respectively. Inset: Log-log plot of gravitational stress normal-
ized with � as a function of �c ��1, where �c � 0:64.
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Knowledge of K��1� also allows us to predict the full
height dependence of �1. We balance the differential
stress with the buoyant weight across a length dz,

 d� � �
K��1�
�1

d�1 � ��g�1dz: (3)

We integrate Eq. (3) by separation of variables, using
Eq. (2) for K��1�, yielding
 

�c��1��0�

��c��1���c��0�
� ln

�1��c��0�

�0��c��1�
�

��g�z�H��2
c

���c��g�
;

(4)

where H is the final height of the sample. This allows us to
calculate the full profile of the height dependence of �1,
using the values of � obtained from the fits in Fig. 2. To test
this prediction, we compare the results with experimental
measurements, which are obtained by extracting small
volumes of the sample at different heights using a long
syringe, and determining their �1. The agreement is ex-
cellent, as shown by the comparison between the data
points and the lines in Fig. 3 for samples with R �
360 nm, cm � 0:16 g=ml and for r � 4:5 and 6 nm. We
obtain equally good agreement with this functional form
for all other emulsions, where we vary R, cm, and r, and use
only the single fitting parameter, �. We also obtain excel-
lent agreement between the measured and calculated val-
ues of H and � at the top of the sample, as shown in the
inset to Fig. 3.

We can also use the compressional modulus to deter-
mine the evolution of the height of the sample as it begins
to cream. Provided there is no sudden collapse, this evo-
lution is described by the theory for poroelasticity [13],
which accounts for the relative flow of fluid through the
network. However, since the relative change of the volume
fraction, �, is large, we extend the theory to account for
changes in �. The stress across any region of the sample,
@�=@z, reflects a balance of the gravitational stress with
the pressure, p, due to fluid flow through the network, and
the elastic stress of the gel due to depletion,

 � ��g� �
@p
@z
�
K���
�

@��z�
@z

: (5)

We note that Eq. (3) is a steady-state case of Eq. (5), at
which there is no fluid flow and the pressure gradient is
zero. The pressure due to the fluid flow is given by Darcy’s
law, which relates the fluid velocity to the pressure gradient
[13]. However, since � is changing, we must also ensure
continuity, giving

 

@�
@t
�
@
@z

�
�����
�

@p
@z

�
� 0; (6)

where ���� is the permeability of the network, and � is the
fluid viscosity. Combining Eqs. (5) and (6) results in a
diffusion advection equation for p,

 

@p
@t
�
K���
�

@
@z

�
�����
�

@p
@z

�
�

��g�����
�

@p
@z
� 0:

(7)

Here the second term is a diffusive contribution, reflect-
ing the effect of the compressional modulus to evenly
spread the suspension, while the third term is the advective
contribution, reflecting the tendency to cream due to the
gravitational stress. To solve Eq. (7), we use a constant
initial pressure gradient @p=@zjt�0 � ��g�0 throughout
the sample and take @p=@zjz�0 � 0 at the top of the
sample, while pz�H � 0 remains constant at the bottom
of the emulsion. We approximate the permeability as
���� � �0��0=��2=�3�df� [13], where df is the network
fractal dimension. From the initial velocity of the creaming
profiles, we estimate �0 � 5	 10�13 m2 [13] and from
analysis of images of the network using either box count-
ing or the structure factor, obtained by Fourier transform-
ing the image [14], we estimate df � 1:8. We solve
Eqs. (6) and (7) numerically, calculate the height of the
sample from conservation of material,

RH�t�
0 �dz � �0H0,

and obtain excellent agreement with the measured data, as
shown by the solid lines in the right inset in Fig. 1, pro-
vided there is no delayed collapse, which is not described
within this picture.

The behavior of these gels is characterized by their
compressional modulus, which determines the stress they
can support, ����. There is a direct analogy with equilib-

FIG. 3 (color online). Height profiles of �1 for emulsion with
R � 360 nm, r � 4:5 nm, cm � 0:16, and H0 � 70 mm (�),
and R � 360 nm, r � 6 nm, cm � 0:16, and H0 � 57 mm (�).
The lines are fits to Eq. (4). Inset: Comparison between calcu-
lations and measurements of final volume fractions (filled sym-
bols) at the top of emulsion gels and final heights (empty
symbols). Symbols are the same as in Fig. 2. The dashed line
corresponds to the exact match between calculation and mea-
surement.
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rium hard-sphere colloidal particles, where the equation of
state determines the � dependence of their osmotic pres-
sure, ���� [4,5]. This can be determined from the height
dependence of � [4]. By contrast, particle gels are not in
equilibrium, so their height dependence can not determine
an equation of state; instead it reflects the steady-state
behavior of the network. For the network, ���� is analo-
gous ����, but again is not an equilibrium quantity.
Interestingly, however, both ���� and ���� exhibit the
same divergence with volume fraction, ��c ���

�1 [15].
For hard spheres, this divergence reflects the consequences
of the repulsive interaction between particles, as they are
increasingly crowded together [16]. It presumably reflects
the same effects for the networks; even though there is an
attractive interaction between particles, when � becomes
increasingly large, the repulsive interaction dominates.
Finally, the emulsion droplets are themselves deformable;
however, their deformability scales as the Laplace pres-
sure, �=R, where � is the surface tension. Since �=R�
104 Pa while � is typically no larger than 100 Pa, drop
deformation is unlikely to play a role in the behavior.

Despite the apparent similarity with repulsive hard
spheres, the attractive interaction does, nevertheless, play
a critical role in the behavior. In the case of hard-sphere
suspensions, both ���� and K��� scale as the thermal
energy, kBT=R3. By contrast for the emulsion gels, ����
and K��� scale with the stiffness parameter, �. This con-
stant should reflect the attractive interaction between
neighboring particles. Since it has units of stress, we expect
it to scale as the force between two neighboring particles
divided by the area of the interparticle bond. From dimen-

sional analysis, the force scales with the bond energy
divided by the width of the bond, U=r, while the area
scales with R2, and

 ��U=rR2: (8)

We obtain excellent agreement with this prediction for
all experimental samples, using both micelles and polymer
as depletants, as shown in Fig. 4. Physically, this behavior
implies that the compressional modulus reflects two ef-
fects: Squeezing the particles together must require local
rearrangements in particle positions, which is counteracted
by the attractive interaction, reflected through the con-
tribution of �. In addition, the particles are themselves
squeezed together, which is counteracted by the local
repulsive interaction, reflected by the ��c ���

�2 scaling.
The agreement between the data using polymer and mi-
celles as depletants confirms the generality of this
behavior.

The results presented here provide a means to quantita-
tively predict stability of depletion-attraction colloidal gels
against gravitationally induced phase separation. They
highlight the role of the attractive interaction between
particles. However, they do not address the important issue
of delayed collapse, which can also impact stability.

Partial support for this work came from the Harvard
MRSEC (No. DMR-021385) and the NSF (No. DMR-
0602684).

*Present address: Department of Physics, University of
Osnabrück, 49076 Osnabrück, Germany.

[1] R. Buscall, Colloids Surf. 5, 269 (1982).
[2] V. Prasad et al., Faraday Discuss. 123, 1 (2003).
[3] W. B. Russel et al., Colloidal Dispersions (Cambridge

University Press, Cambridge, New York, 1989).
[4] M. A. Rutgers et al., Phys. Rev. B 53, 5043 (1996).
[5] R. Piazza et al., Phys. Rev. Lett. 71, 4267 (1993).
[6] W. C. K. Poon et al., Faraday Discuss. 112, 143 (1999).
[7] L. Starrs et al., J. Phys. Condens. Matter 14, 2485 (2002).
[8] N. A. M. Verhaegh et al., Physica (Amsterdam) 264A, 64

(1999).
[9] W. Brown, Light Scattering: Principles and Development

(Oxford University, New York, 1996).
[10] R. R. Balmbra et al., Trans. Faraday Soc. 60, 979 (1964).
[11] W. H. Richtering et al., J. Phys. Chem. 92, 6032 (1988).
[12] P. Walstra, in Encyclopedia of Emulsion Technology,

edited by P. Becher (Marcel Dekker, New York, 1996),
Vol. 4.

[13] S. Manley et al., Phys. Rev. Lett. 94, 218302 (2005).
[14] D. ben-Avraham and S. Havlin, Diffusion and Reactions in

Fractals and Disordered Systems (Cambridge University
Press, Cambridge, England, 2000).

[15] L. V. Woodcock, Ann. N.Y. Acad. Sci. 371, 274 (1981).
[16] K. E. Davis and W. B. Russel, Phys. Fluids A 1, 82 (1989).

FIG. 4 (color online). Scaling of the stiffness parameter, �,
predicted by Eq. (8). The samples with TO8 micelles (5) have
R � 360 nm and r � 4:5 nm with cm � 0:06, 0.13, and
0:16 g=ml from a lower value to higher one. Those with A8
micelles (4) have R � 360 nm and r � 6 nm with cm � 0:06
and 0:16 g=ml. The sample with small particles (�) has R �
170 nm and r � 4:5 nm with cm � 0:16 g=ml. The final sample
with PVP (
) has R � 360 nm and r � 25 nm with cm �
0:016, 0.03, 0.04, and 0:08 g=ml.
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