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M
olecular self-assembly is a power-
ful route for creating functional
structures in a spontaneous and

parallel fashion, that is, without the need

to manipulate individual molecules one by

one.1 On surfaces, self-assembly is con-

trolled by the delicate balance between

intermolecular andmolecule�surface inter-

actions, providing a highly effective key for

tuning structure formation. In the past, an

impressive range of molecular structures

has been created,2 including perfect two-

dimensionaloverlayers,3unidirectional rows,4,5

clusters,5,6 and porous networks7 with surface

structures and surface reconstructions having

significant influenceon themolecular arrange-

ments.8 These studies have, however, mostly

been limited to metallic substrates as many

classical surface-sensitive tools such as scan-

ning tunneling microscopy or photoelectron

spectroscopy are limited to conducting sub-

strates. Besides this practical aspect of experi-

mental accessibility, dielectric substrates pose

another, more fundamental challenge for mo-

lecular self-assembly: most dielectric surfaces

studied so far exhibit only very weak and
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ABSTRACT Molecular self-assembly on surfaces is dictated by the delicate

balance between intermolecular and molecule�surface interactions. For many

insulating surfaces, however, the molecule�surface interactions are weak and

rather unspecific. Enhancing these interactions, on the other hand, often puts a

severe limit on the achievable structural variety. To grasp the full potential of

molecular self-assembly on these application-relevant substrates, therefore,

requires strategies for anchoring the molecular building blocks toward the

surface in a way that maintains flexibility in terms of intermolecular interaction

and relative molecule orientation. Here, we report the design of a site-specific anchor functionality that provides strong anchoring toward the surface,

resulting in a well-defined adsorption position. At the same time, the anchor does not significantly interfere with the intermolecular interaction, ensuring

structural flexibility. We demonstrate the success of this approach with three molecules from the class of shape-persistent oligo(p-benzamide)s adsorbed

onto the calcite(10.4) surface. These molecules have the same aromatic backbone with iodine substituents, providing the same basic adsorption mechanism

to the surface calcium cations. The backbone is equipped with different functional groups. These have a negligible influence on the molecular adsorption on

the surface but significantly change the intermolecular interaction. We show that distinctly different molecular structures are obtained that wet the surface

due to the strong linker while maintaining variability in the relative molecular orientation. With this study, we thus provide a versatile strategy for

increasing the structural richness in molecular self-assembly on insulating substrates.
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unspecific binding toward molecular building blocks.
This weak interaction severely hampers the formation
of substrate-templated, self-assembled structures on
prototypical insulating surfaces held at room tempera-
ture. Instead, high molecular mobility,9 clustering at
step edges,10 and molecular bulk crystal formation11

have been observed frequently. Thus, molecular self-
assembly on insulating surfaces requires an increased
molecule�surface interaction. Therefore, it is highly
desirable to design molecules with specific anchor
groups that provide a linker toward the surface. Several
attempts have been made in this direction, most of
them based on the electrostatic anchoring of mol-
ecules bearing a high dipolemoment to an ionic crystal
surface.9,12�14 When designing specific anchor groups,
an important aspect needs to be considered: while
strong binding toward the surface is desired for creat-
ing a stable wetting layer, the subtle balance between
intermolecular and molecule�surface interactions is
mandatory for maintaining structural flexibility. This
fact can create conflicting interests as a strong binding
and a well-defined adsorption position are usually
incompatible with structural flexibility that is fine-
tuned via the intermolecular interactions.
Here, we present a linking strategy based on the

development of a versatile molecule from the class of
shape-persistent oligo(p-benzamide)s that provides
stable and site-specific anchoring of the molecular
building block toward the surface of a bulk insulator,
namely, calcite(10.4). Due to their inherently extended
chain structure15 and their ability to form hydrogen
bonds between chains,16�18 shape-persistent oligo(p-
benzamide)s are promising candidates for use as
supramolecular building blocks and the creation of
molecular rods.18 The building block is specially de-
signed to allow for electrostatic interaction of iodine
atoms with the surface calcium ions, thus ensuring a
strong and site-specific anchoring. At the same time, the
iodine atoms do not significantly interfere with the
intermolecular interaction that is encoded in the func-
tional groups attached to the molecular core. Three
oligo(p-benzamide)s are investigated that differ in their
functionalization.While the adsorption position is found
to be dictated by the iodine�calcium interaction, the
relative orientation of the molecules with respect to
each other is steered by the functionalization. This
enables designing a variety of different molecular struc-
tures that are governed by the intermolecular interac-
tion, despite the well-defined adsorption position. With
this study, we demonstrate the successful linking of an
organic building block to an insulating surface while at
the same time maintaining structural flexibility.

RESULTS AND DISCUSSION

The molecules designed for this study are variations
of 2-hydroxy-4-iodo-N-(4-iodophenyl)benzamide. Their
structuralmodels are shown in Figure 1a�c. Thedifferent

molecules are named according to their functionaliza-
tion. Due to the aromatic backbone of two iodobenzene
units connected via an amide bond, the building block
molecule (Figure 1a) is referred to as oligo iodo benza-
mide (OIB). The two other molecules are OIBal with an
added hexyloxyl group (Figure 1b) and OIBca equipped
with an additional carboxylic acid group at the end of the
hexyloxyl chain (Figure 1c).
We investigate the self-assembly of these three mol-

ecules at roomtemperature (RT). Themoleculeswereeach
depositedunder ultrahigh vacuumconditions onto freshly
prepared calcite(10.4) single-crystal surfaces. The surface
unit cell of calcite(10.4) is rectangular with dimensions of
5 Å� 8.1Å (Figure 1d). Each unit cell contains two carbon-
ate groups that are rotated with respect to the surface
normal andwith respect to each other. The comparatively
high surface energy of γS = 590mJ/m2 enables molecular
wetting, making this insulating surface an ideal candidate
for the study of molecular self-assembly.19

The imaging technique used for this study is noncon-
tact atomic force microscopy (NC-AFM) in frequency
modulation mode. All NC-AFM images presented are
topography (z) or detuning (Δf) data where bright color
corresponds to higher attractive tip�sample interaction.
Before we present the observed structures of the

three different molecules, we discuss the expected
interaction of the core building block with the calcite
substrate. On the basis of the previous success of
electrostatic anchoring,9,12�14 we make use of electro-
negative atoms that provide electrostatic attraction
toward the surface calcium cations. The common core
constituted by OIB is equipped with two iodine atoms
at a center-to-center distance of 13.5 Å. It can be
expected that the adsorption position is governed by
a common motif, namely, that both iodine atoms are
preferred to be centered directly above surface calcium
ions, thereby maximizing the attractive molecule�
substrate interaction. When positioning one of the
iodine atoms on top of a surface calcium cation,

Figure 1. (a�c) Skeleton formulas and ball models of the
oligo(p-benzamide) molecules used in this study. (d) Model
of the calcite(10.4) surface with a rectangular surface unit
cell of a � b = 8.1 Å � 5.0 Å. The carbonate groups are
rotated such that one oxygen atom lies above, one in, and
one below the plane spanned by the calcium ions.
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possible adsorption positions for the second iodine atom
lie on a circlewith a radius of 13.5 Å. The three Ca ions that
lie closest to the circle, representing the three best molec-
ular adsorption configurations in terms of iodine�calcium
match, are presented in Figure 2. Table 1 summarizes the
Ca�Ca distances, angles, and deviations from the I�I
distance for these three best adsorption geometries. In
the best two configurations (positions 1 and 2), the I�I
distance fits excellently to the distance of the underlying
calcium ions with deviations smaller than 5% (0.4 and
0.6 Å) while the third best choice (position 3) is already
significantly less favorable with a deviation of ∼10%
(1.3 Å). Note that for each adsorption configuration there
is anequivalentmirroredconfigurationwith themirror axis
along [42.1].
This purely electrostatic picture clearly favors two

adsorption configurations (positions 1 and 2 in Figure 2),
and we will demonstrate that indeed only these adsorp-
tion positions are adopted by themolecules in our study,
justifying the simple electrostatic approach taken here.
As OIB, OIBal, and OIBca incorporate the same iodo-

benzene backbone, themolecular adhesion to the surface
isexpected tobevery similar for all investigatedmolecules.
The different functional groups contribute onlymarginally
here, as will be confirmed later by our NC-AFM data. The
functional groups will, however, influence the cohesion of
the molecules on the surface as will be discussed indivi-
dually for each molecule in the following sections.

OIB. Figure 3a shows the situation after depositing
OIB onto the calcite surface at RT. We observe the
formation of ordered, single-layered islands with an
apparent height of about 3 Å. Considering the molec-
ular dimensions, this height indicates that the mol-
ecules adsorb in a flat-lying manner on the surface.
Following individual islands over several scan frames,
we notice that their outline is changing with time,
showing that the molecules at the edges of the islands
are mobile at RT. Note that this observation is made even
with very gentle tip�sample interaction strength. Apart
from islands, we also observe mobile molecular species
which are only visible as streaks in the island-free areas on
the surface. Apparently, well-ordered islands and mobile
molecules that attach at and detach from island edges
coexist at RT. However, apart from cluster decorations on
the island edges, as shown in Figure 3b, we never observe
any second-layer growth. The absence of a second layer
indicates the formation of a stablemolecularwetting layer
on the surface and sufficiently strong adhesion energy.

High-resolution NC-AFM imaging of single islands
as depicted in Figure 3b reveals that the islands consist
of bright rows that are arranged in two domains I and II.
Upon closer investigation, we find that the two do-
mains constitute mirror images of each other, each
enclosing an angle of 50� with the substrate [42.1]
direction, which acts as themirror axis. Considering the
fact that themolecules lie flat on the surface, we expect
intermolecular hydrogen bond formation between the

hydroxyl group and the carbonyl oxygen atom to
be the driving force for the molecular arrangement
on the surface. This interaction results in the formation
of rows of molecules aligned side-by-side. The bright
rows in the two domains have a repeat distance of
approximately 16 Å, which is considerably smaller than
the total length of the molecule of 17.5 Å. This finding
indicates that the molecule's main axis forms an angle
smaller than 90� with respect to the row direction. We
find an excellent side-by-side alignment of the mol-
ecules at an angle of about 72�with respect to the row
direction, as depicted in Figure 3c. From this molecular
alignment and the known directions of the underlying
calcite crystal, we determine the angle of the molecule
with respect to the [42.1] direction to about 22�, which
is in excellent agreement with the angle of 22.4� that is
expected for the optimum adsorption position 1. Thus,
we conclude that the simple picture of electrostatic
interaction between the iodine atoms and the surface
calcium cations is, indeed, correct for the OIB backbone.

Interestingly, the molecular islands can easily be
destroyed during the scanning process. Depending on
the interaction strength between tip and sample,
islands can even be removed during the acquisition
of a single image. In contrast to areas inside the island,
where each molecule binds to two neighboring part-
ners, the edge-located molecules have only one single
binding partner. Thus, the disintegration process al-
ways starts at the edges of the molecular islands.
The energy needed to separate one molecule from
the island edge is most likely reduced at least to half
the molecular binding strength inside the island. The
relatively low cohesion of the molecules especially at the

Figure 2. Determination of preferable adsorption positions
for OIB on calcite(10.4). The black disks represent the iodine
atoms with their covalent diameter. The three configura-
tions that provide the best match of the distances between
themolecule's iodine and the substrate's calcium atoms are
drawn. For angles and distances, see Table 1.

TABLE 1. Structural Fit of the OIB Adsorption Positions

from Figure 2

position angle toward [42.1] Ca�Ca distance/Å deviation from I�I distance/Å

1 22.4� 13.1 �0.4
2 51.0� 12.9 �0.6
3 0� 12.2 �1.3
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island edges is, of course, highly undesirable when
considering application-relevant conditions. While a suc-
cessful anchoring of the molecules via the iodine atoms
could be achieved, that is, the molecular adhesion is
sufficiently strong, the intermolecular cohesion appears
to be too weak. We, therefore, vary the intermolecular
interaction by using functionalized OIB derivatives.

OIBal. We will now discuss how the structure for-
mation is influenced by adding an alkyl chain to theOIB
backbone, resulting in OIBal. Figure 4a gives an over-
view image after depositing OIBal molecules onto the
calcite(10.4) surface at RT. Very similar to OIB, islands
with a height of 3 Å are formed, again indicating a flat-
lying adsorption position. In contrast to the structures
formed by OIB, however, we neither observe strike
artifacts due tomobilemolecular species in addition to
island structures nor are the self-assembled islands
decorated by clusters. This already indicates a stronger
molecule�molecule interaction between OIBal mol-
ecules. A detailed analysis of images of the OIBal
islands reveals the existence of two distinct domains I
and IIwithacommonorientationalong the [01.0] direction
of the underlying substrate (Figure 4b). High-resolution
images reveal an internal network structure of these
domains (Figure 4c). The repeat distance along the
[01.0] direction is 15 ( 1 Å in both domains, which is

exactly 3 times the repeat distance of the underlying
calcite surface in this direction. This clearly emphasizes
the template effect of the calcite substrate due to the
anchoring of the iodine to the surface calcium cations.
From the high-resolution image in Figure 4c, a model
can be extracted that confirms the favorable adsorption
position 1 of themolecular backbone (Figure 4d) exactly
as in the case of OIB (see Figure 3c). The observed angle
of 22� of the molecular axis with respect to the [42.1]
substrate direction constitutes a strong confirmation of
adsorption configuration 1. Due to the additional alkyl
chain, the OIBalmolecules are forced to arrange in a less
dense packing compared to OIB.

As a result, OIBalmolecules form dimers connected
via overlapping alkyl chains due to van der Waals
interaction. Due to their very high flexibility, the inter-
digitated alkyl chains do not necessarily have to
lie completely parallel to the surface but could protrude
from the surface. The dimers arrange along the calcite
[01.0] direction as shown in themodel in Figure 4d. The
back-to-back arrangement of themolecules is stabilized
by the formation of two hydrogen bonds between the
carbonyl oxygen atoms and adjacent hydrogen atoms
in the neighboring molecule. Note that this is dif-
ferent from OIB, where the side-by-side alignment was
stabilized by only one hydrogen bond. For geometric

Figure 3. (a,b) NC-AFM topography (z) data of OIB on calcite(10.4) at RT. The dashed lines in (a) indicate step edges of the
underlying calcite substrate.Mirroreddomains in (b) are labeled I and II. Theirmain orientations are indicated bydashed lines,
and the mirror axis is given by the dash-dotted line. The image is corrected for linear drift.20 Inset of (b): Dissipation image
revealing the row structure of domain I. The inset is magnified by a factor of 2 compared to (b). (c) Proposed molecular
adsorption model. The hydrogen bond between two molecules is indicated by the shaded region in the inset.
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reasons, OIB molecules cannot be in a back-to-back
configuration that allows for two hydrogen bonds be-
tween each pair of molecules because void regions
would be created. OIBal molecules, in contrast, can
arrange at a distance that allows for the formation of
two hydrogen bonds in the back-to-back configuration
since the alkyl chains serve as the necessary spacers that
bridge these voids (see inset of Figure 4d). The required
area per OIBalmolecule is 152 Å2 compared to 101 Å2 for
OIB. The dimer rows in both OIBal domains have a
common orientation along [01.0] and a row distance of
20( 1 Å. The adsorption position is mirror symmetric to
the substrate [42.1] direction which readily explains the
existence of the two domains. Additionally, two neigh-
boring rows can be shifted with respect to each other,
resulting in two possible arrangements, as shown in
Figure 4d. This leads to frequent domain transitions
and varying domain sizes.

The OIBal islands appear more stable than those
formed by OIB molecules, as only slight rearrangements
of the islandedgesareobserved. Thisfindingcorroborates
the above made statement of a stronger molecule�
molecule interaction on the surface in the case of OIBal
as compared to OIB. Even at tip�sample interactions
larger than typical imaging conditions, it was not possible
to deliberately destroy the OIBal islands by scanning. This

is in sharp contrast to what was observed for OIB, where
the low intermolecular cohesion is heavily interferingwith
the acquisition of high-resolution images. The higher
cohesion of OIBal can be explained by the aforemen-
tioned interdigitationof thealkyl chains. It hasbeenshown
that the van der Waals interaction between two alkyl
chains is on the order of 0.08 eVper pair of interactingCH2

units, resulting in a total binding energy of about 0.5 eV in
the case of two interacting hexyl chains in an OIBal
dimer.21,22 The interactiondue tooverlappinghexyl chains
is considerably larger than the single hydrogen bond
(∼0.3 eV) between two OIB molecules, which is in ex-
cellent agreement with the experimental observation of
less stable islands in the case of OIB.

Thus, by comparing the results of OIBal with those
of OIB, we can conclude that while adhesion to the
surface is very similar for bothmolecules, their cohesion
differs significantly. Functionalization of OIB with an
alkyl chain of sufficient length changed the type and
strength of the molecular interaction, switching from a
single hydrogen bond connecting two OIB molecules
to van der Waals interaction and double hydrogen
bonding for OIBal. The adjustment of the molecule
design has a significant influence on the molecular
structure formation, resulting in a distinct change in
island morphology, density, and relative orientation of

Figure 4. (a�c) NC-AFM topography (z) images of OIBal on calcite(10.4) at RT. Domains are labeled I and II. Images (b) and (c)
are corrected for linear drift.20 (d) Proposed adsorption model. Hydrogen atoms are omitted for clarity. Translation of dimer
rows along [01.0] causes two different arrangements of the row with respect to each other as indicated by the dashed
connections of four iodine atoms in each domain. Inset: hydrogen bonds between two OIBal dimers are indicated by the
shaded regions; the van der Waals interaction between the alkyl chains is indicated by the dashed area.
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the molecules within the islands, despite the fact that
the molecular adsorption position with respect to the
underlying calcite substrate remained unchanged.

OIBca. Introducing a carboxylic acid group at the
end of the OIBal alkyl chain yields the molecule OIBca.
For this molecule, dimerization via the formation of
hydrogen bonds between two carboxylic acid groups
should be favorable. Since both CdO 3 3 3H�O hydrogen
bonds have a binding strength of about 0.3 eV, this dimer
connection should be even stronger than the overlap-
ping alkyl chains within an OIBal dimer (∼0.5 eV).

Figure 5a shows the molecular structures that are
formed after deposition of OIBca on the calcite(10.4)
surface at RT. Ordered islands with a height of about
3 Å form and coexist with mobile molecular species
similar to the situation found after OIB deposition. In
contrast to OIB, however, we do not observe decora-
tion of the island edges.

High-resolution images reveal the existence of at
least three different domains on the surface (Figure 5a,b).
The molecular rows in domain I are oriented parallel to
the substrate [42.1] direction, whereas the rows in
domains II and III enclose an angle of (29 and (34�
with that direction, respectively. In contrast to OIB, the
different domains are not mirror images of each other.
The coexistence of different domain structures indicates

competing intermolecular interaction types of similar
interaction strength. This is different from the well-
defined configurations revealed for OIB and OIBal. In
contrast toOIB andOIBal, OIBca presumably forms stable
dimers that are connected at the end of two flexible alkyl
chains, altogether resulting in much more flexible and
space-consuming dimer units. This readily explains the
structural complexity in the case of OIBcabut at the same
time precludes us from drawing a simple adsorption
model for all configurations that are observed. We will,
therefore, only exemplarily discuss a possible structural
arrangement of OIBca molecules in domain I. Figure 5c
shows a high-resolution image of domain I, revealing its
inner structure. Two alternating row types, running par-
allel to the [42.1] direction are observed within the
domain. Every second row has a clearly discernible
corrugation with a periodicity of 7.8( 0.5 Å along [42.1],
precisely matching the calcite repeat distance in that
direction (a-type row). In contrast, every other row
appears somewhat blurry (b-type row). A model for
domain I is given in Figure 5d. The corrugation in the
type-a rows is readily reproduced by OIBca dimers, and
the equidistant spots can be assigned to the molecule's
iodine atoms occupying adsorption sites above calcium
cations.While themolecular backbone is firmly anchored
to the surface, the alkyl chains connecting the dimers are

Figure 5. (a�c) NC-AFMtopography (z) and frequency shift (Δf) imagesofOIBcaoncalcite(10.4) at RT. Threedifferentdomains are
labeled I�III. (b) Detailed image revealing the internal structure of domains I and II. (c) Detailed image showing a domain I area.
Images (b) and (c) are corrected for linear drift. The corrugated rows are marked with a dashed arrow and the blurry rows with a
dash-dotted arrow. (d) Adsorption model for OIBca in position 2. Inset: carboxylic acid dimer is indicated by a shaded ellipse.
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still flexible enough, likely leading to the blurry b-type
rows. Themolecular orientationon the substratematches
that of the favorable adsorption position 2 presented in
Figure 2. Thus, domain I confirms the favorable adsorp-
tion motif that was found for OIB and OIBal.

The images obtained for OIBca demonstrate that
adding a flexible intermolecular linker results in yet
another molecular arrangement. In good agreement
with the flexibility of the linker, coexisting equivalent
structures are revealed that are governed by the inter-
molecular cohesion,while theadhesionmechanism to the
surface is unaffected by the change in functionalization.

The existence of the island structures of the threeOIB
derivatives readily demonstrates the subtle balance
between the diffusion barrier and the intermolecular
interaction: If the diffusion barrier would dominate,
functionalizationof themoleculewouldhaveamarginal
effect on the resulting structure. If the intermolecular
interactions would dominate, substrate templating would
be negligible. Thus, the structural variety observed here in
conjunction with the well-defined, substrate-dictated ad-
sorptionpositionsprovidesclearevidence that thebalance
between the diffusion barrier and the intermolecular
interaction is, indeed, subtle.

CONCLUSIONS

We demonstrate the systematic variation of molecular
cohesion for a set of molecules with identical adhesion

to an insulating substrate. To achieve this, we engi-
neered the functionalization of shape-persistent oligo-
(p-benzamide)s by introducing different functional
groups and investigating their effect on the structural
formation on the insulating calcite(10.4) surface. The
molecular core was designed to provide site-specific
electrostatic anchoring toward the surface, while at the
same time maintaining the flexibility to fine-tune the
resulting structure by adjusting the intermolecular
cohesion energy. The success of this strategy is based
on a clear separation of the molecule�substrate inter-
action from the molecule�molecule interaction. We
compare three rationally designedmolecules based on
the same molecular building block. The molecules
all adopt a well-defined adsorption position that
is governed by the same iodine�calcium interact-
ion motif, indicating the strength of the iodine
anchor. Despite the identical adsorptionmechanism,
distinctly different molecular structures could be
achieved by changing the molecule functional-
ization. The different functionalizations encode a
change in the orientation of the molecules with
respect to each other and, thus, result in entirely
different self-assembled structures. Our results show
that sufficient molecule�surface anchoring can be
achieved without restricting the structural flexibility
that is needed for the design of complex molecular
systems.

METHODS

Substrate. The calcite crystals were purchased from Korth
Kristalle GmbH (Altenholz, Germany) and were cut to a rectan-
gular cross section of 2� 4 mm2. They were degassed in situ at
550 K for 2 h to remove contaminants. For each experiment, the
crystal was freshly cleaved23 in situ and annealed at 500 K for 1 h
to remove surface charges.

Molecules. Synthesis procedures for OIB, OIBal, and OIBca as
well as NMR and UPLC-MS data can be found in the Supporting
Information. Using a quartz crystal microbalance setup, we
verified that all molecules were suitable for sublimation, while
at the same time determining their respective sublimation
enthalpies ΔHsub. The obtained values were ΔHsub = 1.48 (
0.08 eV for OIB, ΔHsub = 1.68 ( 0.08 eV for OIBal, and ΔHsub =
1.21 ( 0.01 eV for OIBca. All values were very close, which can
easily be explained by their common aromatic backbone. The
deviations were caused by the different molecular functionali-
zation, demonstrating the different interaction strength in the
bulk phase.

All molecules were deposited onto the surface under ultra-
high vacuum conditions by sublimation from a home-built
Knudsen cell. The maximum chosen sublimation temperatures
were Tsub = 421 K for OIB, Tsub = 353 K for OIBal, and Tsub = 398 K
for OIBca. During the deposition process, the substrate was kept
at RT. The samples were transferred into the AFM situated in the
same ultrahigh vacuum system immediately after deposition.

AFM Setup. Experiments were performed at RT in an ultrahigh
vacuum system at a base pressure lower than 1 � 10�10 mbar.
The system was equipped with an atomic force microscope
(VT AFM XA from Omicron, Taunusstein, Germany) using a
phase-locked loop detector and amplitude controller (easyPLL
Plus from Nanosurf, Liestal, Switzerland) for signal demodulation
and oscillation excitation. We used n-doped silicon cantilevers

(Nanosensors, Neuchâtel, Switzerland) with resonance frequen-
cies of about 300 kHz (type PPP-NCH), excited to oscillation with
amplitudes of about 10 nm.

Prior to their use, cantilevers were Arþ sputtered at 2 keV for
5 min to remove contaminants and the oxide layer.

Depending on the feedback loop settings, either frequency
shift (Δf) or topography (z) images were obtained. The image
type is given in the upper right corner in each image. The Δf
images are displayed such that bright corresponds to high
attractive interaction while dark corresponds to less attractive
or even repulsive interaction.
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