
Pan-genome Search and Storage

by

Guillaume Holley

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor rerum naturalium
at the Faculty of Technology, Bielefeld University

February 2018

Referees:
Professor Doctor Jens Stoye
Doctor Faraz Hach
Doctor Rayan Chikhi

ACKNOWLEDGEMENTS

I would like to thank everyone who has been directly or indirectly involved in
this thesis. I thank Jens Stoye for welcoming me as his student in the Genome
Informatics group and providing me the guidance I needed to achieve this thesis.
I am thankful to Roland Wittler for supporting my ideas and helping me out the
numerous times I entered his office and said “Do you have five minutes?” while
knowing pertinently it would take much longer. I also thank Faraz Hach from
who I have learned a lot during my research visit in Vancouver.
My gratitude goes to the entire population of the U10 and V10 floors scattered
in multiple groups, to the former members of the AGGI group I have met dur-
ing the past few years and to the badminton gang. A big thank goes to all
DiDy students for all these ping-pong games, cool retreats, dinners at the chinese
restaurant, cinema and board game evenings. A special thank goes to Nina, my
“office wife”, for sharing an office (and temporarily a house) with me and reading
thoroughly this thesis. I could not have found a better office mate (thank you
again Roland!) with whom I could play ping-pong, discuss scientific issues and
share all my jokes of questionable quality. I would like to extend this thank to
Tina who did not back down when she started to use the rustic first version of
my code. This acknowledgement would be incomplete without thanking Pierre
Peterlongo for introducing me to the awesome field of computational biology and
sharing his contagious passion of the de Bruijn graph.
I would like to thank all my friends met before and during my time in Bielefeld. I
cannot thank enough Monika and Kerstin for being such good friends, for helping
me in so many occasions, for all these geocaching afternoons and sushi dinners.
I am also especially grateful to Sebastien, Jean-Baptiste and Paul for staying in
touch after I arrived in Bielefeld while we did not see each others for a long time.
I am thankful to my family for the enormous support provided during all these
years and for visiting me numerous times. Particularly, I thank my parents who
taught me creativity and perseverance. Who would have guessed that installing

v

an old computer in my room fifteen years ago would have resulted in the present
thesis?
Clearly, nothing of this would have been possible without the overwhelming sup-
port and the unlimited patience of Violette. The past few years have been a hell
of an adventure and I am so glad we did it together.
Finally, I would like to acknowledge funding from the International Research
Training Group GRK/1906 “Computational Methods for the Analysis of the Di-
versity and Dynamics of Genomes”, also known as DiDy, during three years and
funding from the Bielefeld Genome Informatics group and Faculty of Technology
scholarship for the past few months.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . v

LIST OF FIGURES . x

LIST OF TABLES . xiv

ABSTRACT . xv

CHAPTER

I. Introduction . 1

1.1 Biological Background . 1

1.1.1 Preliminaries 1

1.1.2 DNA Sequencing 3

1.1.3 de novo Read Assembly 6

1.1.4 Comparative Genomics 6

1.1.5 Pan-genomes 7

1.2 Computational Background 10

1.2.1 Preliminaries 11

1.2.2 Graphs . 11

1.2.3 Trees . 13

vii

1.2.4 Hash Tables . 19

1.2.5 Bloom Filters 23

1.2.6 Burrows-Wheeler Tranform 26

1.2.7 FM-Index . 29

1.3 Thesis Overview . 30

II. Methods and Tools for Pan-genome Indexing 31

2.1 Introduction . 31

2.2 Reference-based Methods 32

2.3 Alignment-based Methods 35

2.4 Graph-based Methods . 36

2.5 de Bruijn graph Methods 37

2.6 k-mer based Methods . 40

III. Pan-genome Indexing . 42

3.1 Introduction . 42

3.2 The Bloom Filter Trie . 43

3.2.1 Uncompressed Container 44

3.2.2 Compressed Container 45

3.2.3 Color Set . 49

3.3 Operations . 49

3.3.1 Container Insertion 50

3.3.2 Tree Insertion 52

3.3.3 Container Look-up 53

viii

3.3.4 Tree Look-up 54

3.4 Successors and Predecessors Traversing 55

3.5 Evaluation . 58

3.5.1 P. aeruginosa Dataset 61

3.5.2 Human Tissues Dataset 63

3.6 Conclusion . 65

IV. Pan-genome Storage . 67

4.1 Introduction . 67

4.1.1 Existing Approaches 68

4.1.2 Contributions 70

4.2 The guided de Bruijn Graph 70

4.3 Compression . 73

4.3.1 Read Clustering and Merging. 74

4.3.2 Spanning Super Read Encoding 76

4.3.3 Partition Encoding 77

4.3.4 Meta Data and gdBG Compression 80

4.4 Update and Decompression 80

4.5 Results . 80

4.6 Conclusion . 86

V. Conclusion . 87

5.1 Perspectives . 88

BIBLIOGRAPHY . 91

ix

LIST OF FIGURES

Figure

1.1 Representation of a DNA molecule. Each strand is shown with
a different grey color and their respective extremities are an-
notated with “3’” and “5’” to indicate their orientation. Nu-
cleotides located on the strands are illustrated with a white color
and are annotated with the symbol of the nucleobase they rep-
resent. Grey colored links between nucleotides represent the hy-
drogen bonds. 2

1.2 Comparison of sequencers based on their sequencing capacity
and the length of the reads they produce (Nederbragt, 2016). . . 4

1.3 Annual sequencing cost of the human genome. The plot was
produced by the National Human Genome Research Institute
and is available at www.genome.gov/sequencingcostsdata/. 5

1.4 Representation of a pan-genome with 3 strains. 8

1.5 Trie of strings “aa”, “aba”, “abb”, “ba” and “bba” for an alpha-
bet A = {a, b}. 15

1.6 Compaction methods for tries of strings “aa”, “aba”, “abb”, “ba”
and “bba” for an alphabet A = {a, b}. 16

1.7 Suffix trie (a) and tree (b) of string “abaab$”. 17

1.8 Suffix array of string “abaab$” for alphabet order $ < a < b. . . 18

1.9 Burst trie of strings “aa”, “abb”, “ba” and “bba” for an alphabet
A = {a, b}. Leaves have a capacity of two suffixes. Inserting
string “aba” in the burst trie of (a) triggers a bursting of the left
leaf, resulting in the burst trie setup shown in (b). A terminal
symbol is added at the end of each string in order to handle the
case of one string which is the prefix of another string. 20

x

1.10 Hash table with collisions. 21

1.11 Hash table with chaining. 22

1.12 Open addressing methods. 23

1.13 Insertion of two items e1 and e2 into a BF. 24

1.14 Query of two items. Item e3 is a true negative and item e4 is a
false positive. 24

3.1 Insertion of six suffixes (that are here complete k-mers) with
different colors into a BFT with k = 12, l = 4 and ϕ = 5.
In (a), the first five suffixes are inserted at the root into an
uncompressed container uc. When a sixth suffix “gcgccaggaatc”
is inserted, uc exceeds its capacity and is burst, resulting in the
BFT structure shown in (b) with one compressed container and
four uncompressed containers. Note that in practice, container
vertices might have more than one container and suffixes might
have more than one color. 45

3.2 BF of four edge labels “aggc”, “ctca”, “gccc” and “gcgc” with
f = 2 hash functions h1 and h2. 46

3.3 Tree representation of four edge labels “aggc”, “ctca”, “gccc”
and “gcgc”. 47

3.4 Exact representation of four edge labels “aggc”, “ctca”, “gccc”
and “gcgc” in a compressed container with |labelp| = 2 and
|label s| = 2. 48

3.5 Insertion of edge label “gtat” in a compressed container with
four edge labels “aggc”, “ctca”, “gccc” and “gcgc”. Inserted or
changed parts are highlighted. Array edge is not represented. . . 52

3.6 Traversed paths for predecessors preda of k-mer x = “aggctat-
gctca” such that preda = a⊙ x(1, |x| − 1) for all a ∈ A. Content
of vertices is only shown for the root, other vertices only have one
traversed container and are represented with an empty rounded
box. Color set vertices are not represented. 57

3.7 Traversed paths for successors succa of k-mer x = “aggctatgctca”
such that succa = x(2, |x| − 1) ⊙ a for all a ∈ A. Content of
vertices is only shown for the leaves, other vertices have only one
traversed container and are represented with an empty rounded
box. Color set vertices are not represented. 58

xi

3.8 Internal representation of a compressed container with five edge
labels “aggc”, “ctca”, “gccc”, “gcgc”, “gtat”, adapted as “ggca”,
“tcac”, “cccg”, “cgcg”,“tatg”, respectively, for predecessor and
successor traversal. Array edge is not represented. 59

3.9 Insertion of edge label “tggc” adapted as “ggct” in a compressed
container with edge labels “aggc”, “ctca”, “gccc”, “gcgc” and
“gtat”. Array edge is not represented. Inserted parts are high-
lighted. 59

4.1 The gdBG of sequence S = “cgtaagtaat” as constructed by Al-
gorithm 5 with k = 3. 72

4.2 The gdBG of sequence S = cgtaagtaat using 3-mers overlapping
on k − l = 1. The last symbol of S is not encoded in the gdBG
as it cannot be part of a k-mer. 73

4.3 Minimizer clustering of 4 reads. Minimizers of length 2 are un-
derlined. For the sake of convenience, the reverse-complement is
not considered. 74

4.4 Merging of two reads into a super read. Minimizers of length
2 are underlined. For the sake of convenience, the reverse-
complement is not considered. 75

4.5 Merging of three super reads into an SSR “acgttgatt”. Minimizers
of length 2 are underlined with a dashed line. Secondary min-
imizers (for merging) are underlined with a plain line. For the
sake of convenience, the reverse-complement is not considered. . 75

4.6 Extraction of 4-mers overlapping on k − l = 2 from two similar
SSRs, ssr1 and ssr2. 76

4.7 The gdBG of SSRs ssr1 = “acgtac” and ssr2 = “tccttc” using
4-mers (l = 2). Dotted edges are false implicit edges. The
labeled solid edge exists by using the starting overlap of ssr2
after the traversal of ssr1, as described in Section 4.3.2. 79

4.8 Compression ratios in paired-end mode (left) and single-end mode
(right). 82

4.9 Disk sizes in paired-end mode (left) and single-end mode (right). 82

4.10 DARRC disk size distribution in paired-end mode (left) and
single-end mode (right). 83

xii

4.11 Compression times in paired-end mode (left) and single-end mode
(right). 84

4.12 Decompression times in paired-end mode (left) and single-end
mode (right). 84

4.13 Compression main memory peaks in paired-end mode (left) and
single-end mode (right). 85

4.14 Decompression main memory peaks in paired-end mode (left)
and single-end mode (right). 85

xiii

LIST OF TABLES

Table

1.1 BWT computation of string “abaab$”. The computed BWT is
highlighted. 27

1.2 Reconstruction of a string from the BWT string “bba$aa”. The
reconstructed string is highlighted. 28

1.3 FM-Index of the BWT string “bba$aa”. 29

3.1 BFT and SBT construction evaluation for 473 P. aeruginosa
isolates. Best results are highlighted. 61

3.2 SBT and BFT querying evaluation for sequences of length 100 bp
from the sequencing experiment ERR431077. Best results are
highlighted. 62

3.3 Evaluation of k-mer extraction and branching queries for a BFT
constructed from 473 P. aeruginosa isolates. 63

3.4 BFT and SBT construction evaluation for 2,652 human tissue
RNA-Seq experiments. Best results are highlighted. 64

3.5 SBT and BFT querying evaluation for the GENCODE sequences
database. Best results are highlighted. 65

3.6 Evaluation of k-mer extraction and branching queries for a BFT
constructed from 2,652 human tissue RNA-Seq experiments. . . 65

4.1 Naive representation of a partition set composed of integers
12534, 12567 and 28911. 79

4.2 Delta and Vbyte encoded representation of the same partition
set used in Table 4.1. 79

xiv

ABSTRACT

Pan-genome Search and Storage
by

Guillaume Holley

High Throughput Sequencing (HTS) technologies are constantly improving and
making genome sequencing more affordable. However, HTS sequencers can only
produce short overlapping genome fragments that are erroneous and cover the
sequenced genomes unevenly. These genome fragments are assembled based on
their overlaps to produce larger contiguous sequences. Since de novo genome as-
sembly is computationally intensive, some species have a reference genome used
as a guide for assembling genome fragments from the same species or as a basis
for comparative genomics methods. Yet, assembling a genome is an error-prone
process depending on the quality of the sequencing data and the heuristics used
during the assembly. Furthermore, analyses based on a reference are biased to-
wards the reference. Finally, a single reference cannot reflect the dynamics and
diversity of a population of genomes. Overcoming these issues requires to move
away from the single-genome reference-centric paradigm and take advantage of
the multiple sequenced genomes available for each species. For this purpose,
pan-genomes were introduced as sets of genomes from different strains of the
same species. A pan-genome is represented by a multi-genome index exploiting
the similarity and redundancy of the genomes it contains. Still, pan-genomes are
more difficult to analyze than single genomes because of the large amount of data
to be stored and indexed.
Current data structures for pan-genome indexing do not fulfill all requirements
for pan-genome analysis. Indeed, these data structures are often immutable while

xv

the size of a pan-genome grows constantly with newly sequenced genomes. Fre-
quently, these data structures consider only assemblies as input, while unassem-
bled genome fragments abound in databases. Also, indexing variants and sim-
ilarities between the genomes of a pan-genome usually requires time and mem-
ory consuming algorithms such as sequence alignments. Sometimes, pan-genome
analysis tools just assume variants and similarities are provided as input. While
data structures already exist for pan-genome indexing, no solution is currently
proposed for genome fragment compression in a pan-genome context. Indeed, it
is often of interest to transmit and store all genome fragments of a pan-genome.
However, HTS-specific compression tools are not dynamic and cannot update a
compressed archive of genome fragments with new fragments of a genome with-
out decompression. Hence, those tools are poorly adapted to the transmission
and storage of genome fragments in a pan-genome context.
In this thesis, we aim to provide scalable solutions for pan-genome indexing and
storage. We first address the problem of pan-genome indexing by proposing a
new alignment-free, reference-free and incremental data structure that considers
genome fragments as well as assemblies in input: the Bloom Filter Trie (BFT).
The BFT is a tree data structure representing a colored de Bruijn graph in which
k-mers, words of length k from the input genomes, are associated with sets of
colors representing the genomes in which they occur. The BFT makes extensive
use of Bloom filters to navigate in the tree and optimize the graph traversal. A
“bursting” method is employed to perform an efficient path and level compaction
of the tree. We show that the BFT outperforms a data structure that has similar
features but is based on an approximation of the set of indexed k-mers.
Secondly, we address the problem of genome fragments compression in a pan-
genome context by proposing a new abstract data structure, the guided de Bruijn
graph. It augments the de Bruijn graph with k-mer partitions such that the graph
traversal is guided to reconstruct exactly the genome fragments when decompress-
ing. Different techniques are proposed to optimize the storage of fragments in
the graph and the partition encoding. We show that the BFT described previ-
ously has all features required to index a guided de Bruijn graph and is used in
the implementation of our compression method named DARRC. The evaluation
of DARRC on a large pan-genome dataset compared to state-of-the-art HTS-
specific and general purpose compression tools shows a 30 % compression ratio
improvement over the second best performing tool of this evaluation.

xvi

CHAPTER I

Introduction

1.1 Biological Background

Section 1.1.1 introduces the preliminary biological notions that will be used
in defining the problems this thesis aims to solve. Section 1.1.2 describes how ge-
nomic data are acquired and Section 1.1.3 details the complexity of transforming
these data in order to analyze them. Then, Section 1.1.4 shows which analyses
can be carried out on these data and what are the current limitations. Finally,
Section 1.1.5 presents a new representation of genomic data from different sources
to overcome these limitations.

1.1.1 Preliminaries

DNA (DeoxyriboNucleic Acid) is the foundation of the genetic support for
life. It was discovered and isolated by Friedrich Miescher in 1869, but the paper
of Watson and Crick (1953) is considered as the work that pioneered the study
of DNA. It is a macromolecule, a large group of atoms tied together by chemical
bonds, composed of two strands forming a double helix shape. A DNA strand is a
chain of nucleotides, each being composed of a nucleobase that is either Adenine
(symbol “a”), Cytosine (symbol “c”), Guanine (symbol “g”) or Thymine (symbol
“t”), plus a deoxyribose group and a phosphate group. Nucleotides are chained
in a strand via their deoxyribose group binding to the phosphate group of the
next nucleotide in the chain. The 5’ end extremity of a strand is the nucleotide
with a non-bound phosphate group and the 3’ end extremity of a strand is the

1

nucleotide with a non-bound deoxyribose group. The strand extremities define
its orientation: from the 5’ end to the 3’ end. Two strands of a DNA molecule are
maintained together through hydrogen bonds connecting the nucleotides of each
respective strand: Adenine is always paired with Thymine through two hydrogen
bonds and Cytosine is always paired with Guanine through three hydrogen bonds.
Two paired nucleotides from different strands of the same DNA molecule form a
base pair (abbreviated bp) and each nucleotide of a pair is the complement of the
other. The length of a DNA molecule is then the number of base pairs it contains.
In a DNA molecule, each strand is the reverse-complement of the other strand:
The sequence of nucleotides from a strand can be obtained by “reading” the other
strand in the reverse direction (from the 3’ end to the 5’ end) and complementing
each nucleotide read. A DNA molecule is schematically illustrated in Figure 1.1.

a

a

a

a

a

t

t

t

t

g

g

g

c

c

c

t

gc

5'

5'

3'

3'

Figure 1.1: Representation of a DNA molecule. Each strand is shown with a
different grey color and their respective extremities are annotated with “3’” and
“5’” to indicate their orientation. Nucleotides located on the strands are illus-
trated with a white color and are annotated with the symbol of the nucleobase
they represent. Grey colored links between nucleotides represent the hydrogen
bonds.

A gene is a sequence of nucleotides which encodes a function such as metabolism,
the process by which an organism maintains life. A locus is the position of a gene
on a chromosome, a structure in which DNA is packed. A genome encodes all
genetic information of an organism through its DNA mainly contained in chromo-

2

somes, but also through extrachromosomal DNA contained in other structures
(mitochondria, chloroplasts and plasmids). Each cell of an organism contains
a copy of the genome which length varies greatly among different organisms. A
genome is said to be diploid if it contains two sets of chromosomes, one copy from
each parent, such as in the human genome. To the contrary, a genome having
only one set of chromosomes from one parent corresponds to a haploid genome.
Heredity refers to the process of inheriting genetic traits from the parents. Dur-
ing this process, the DNA of the inherited genome is permanently altered and
such alterations are called mutations. An allele is one of the possible forms of a
gene that has been mutated. Polymorphism refers to a recurrent variation of a
genome within a population of genomes and a Single Nucleotide Polymorphism
(SNP) is a polymorphism of a single nucleotide at a given position of a genome
within a population of genomes. A species is the most basic category of biological
classification and refers to a group of similar organisms able to breed with each
other. A strain is a variant within a species.

1.1.2 DNA Sequencing

DNA sequencing is the process of determining the order of nucleotides in
a DNA strand. It is performed by a sequencer, an instrument able to “read”
the DNA of a genome. Yet, sequencers cannot read the full length of the DNA
in a genome but, instead, only fragments from several copies of the sequenced
genome corresponding to overlapping nucleotide sequences called reads. The read
length depends on the sequencing technology and ranges currently between a few
dozen to a few thousand of base pairs. A paired-end read refers to a pair of
nucleotide sequences read by a sequencer from different ends of the same DNA
fragment. The coverage of a genome with respect to a set of reads indicates the
expected number of reads covering a specific base of the sequenced genome. The
coverage can be uneven depending on the sequenced genome and the sequencing
technology.

Sequencing machines produce sequencing errors for which the rate, the dis-
tribution and the type (insertion, deletion and substitution of a nucleotide) vary
upon the sequencing technology. Also, other attributes are used to characterize
DNA sequencers such as the sequencing capacity (number of bases produced per

3

run), the throughput (number of bases produced in a given amount of time) and
the cost of the machine. A comparison of sequencers based on their sequencing
capacity and the length of the reads they produce is given in Figure 1.2 (Neder-
bragt, 2016).

Figure 1.2: Comparison of sequencers based on their sequencing capacity and the
length of the reads they produce (Nederbragt, 2016).

The first widely used sequencing technology, also called first generation se-
quencing, was developed by Sanger et al. (1977). It is characterized by reads up
to 750 bp long (Schuster, 2008), a low error rate of 0.001 % to 1 % (Hoff, 2009)
and a low sequencing capacity (Nederbragt, 2016). The length of the reads and
their accuracy made this technology very successful for several decades but its
cost was prohibitive and prevented its use to sequence long genomes. The second
generation of sequencing technology, also known as Next Generation Sequenc-
ing (NGS) or High Throughput Sequencing (HTS) was introduced in 2005 as

4

highly parallel sequencing methods with a high throughput, multiple orders of
magnitude more than with Sanger sequencing. Reads produced by HTS tech-
nologies are characterized by a shorter length than reads produced by Sanger
sequencing and a low error rate of 0.01 % to 1 % (Glenn, 2011). The availability
of such technologies marked the beginning of a new era in genomics because of
its afforable price (Loh et al., 2012) making sequencing more accessible to the
scientific community. Figure 1.3 shows that the cost of sequencing the human
genome in 2001 (International Human Genome Sequencing Consortium, 2001;
Venter et al., 2001) was estimated to 100 million dollars while ten years later,
this price was 10,000-fold smaller. Finally, the third generation of sequencing
technologies encompasses new methods such as Single Molecule Real Time se-
quencing and nanopore sequencing. Reads produced by these technologies are
long, a few thousand of base pairs, but noisy as the error rate ranges from 13 %
to 38 % (Rhoads and Fai Au, 2015). More detailed reviews of sequencing tech-
nologies are given in (Shendure and Ji, 2008; Thudi et al., 2012; Rhoads and
Fai Au, 2015).

Figure 1.3: Annual sequencing cost of the human genome. The plot was pro-
duced by the National Human Genome Research Institute and is available at
www.genome.gov/sequencingcostsdata/.

5

1.1.3 de novo Read Assembly

The de novo read assembly problem (Compeau et al., 2011) is the problem
of reconstructing a genome as a sequence of nucleotides per chromosome from a
set of reads only. To this end, genome assembly software use the overlaps of the
reads to assemble them into larger sequences forming an assembly. This problem
has been largely studied in computational biology because of its complexity and
necessity. Indeed, genome analysis relies mainly on assembled genomes. Assem-
bling reads that are erroneous, potentially short and with an uneven coverage
that may be low or equal to zero in some regions of the sequenced genome is very
challenging. Also, the sequenced genome can be difficult to assemble as it might
contain repeated regions. Furthermore, finding overlaps requires to store and
index the reads to assemble, a very time and memory consuming tasks as a single
run of sequencing can generate up to billions of reads. Hence, the completeness
and quality of an assembly depends upon all these factors as well as on the as-
sembly algorithms that can create mis-assemblies. A more detailed description
of the theory and practice of read assembly is given in (Simpson and Pop, 2015).

1.1.4 Comparative Genomics

The field of comparative genomics consists in the comparison of genomes
to understand what are their similarities and differences. The answer to this
question is of main interest to study the evolution of a species and, therefore,
shed light on vital life mechanisms. Comparing a set of genomes to a reference
genome has been a standard in computational biology for many years. Indeed,
it is more time and memory efficient to compare all genomes of a set to a ref-
erence genome than performing all possible pairwise comparisons of genomes
from the set. Yet, reference-centric comparisons are biased towards the refer-
ence: Dolle et al. (2017) established that in the latest human reference genome
GRCh38, 3.2 Mbp were removed and 13.7 Mbp were added from the previous
reference GRCh37. Thus, results obtained from a comparison with the human
reference GRCh37 might be different with the updated reference GRCh38. With
the computing power growth, the increased capability of external storage, and
the improvements made in the domain of HTS technologies, multiple reference
genomes are nowadays available for the same species. However, reference-centric

6

analysis methods cannot account for the very large and diverse variability among
individuals of a same species. As an example, the 1000 Genomes Project (1000
Genomes Project Consortium, 2015) has sequenced more than 2,504 individuals
from 26 populations representing a large set of 88 million variants. An ideal
analysis of a newly sequenced human genome would benefit from a compari-
son with all 2,504 human genomes of such a project. In contrast to the hu-
man species which has a low degree of polymorphism, Ciona savignyi is a sea
squirt species which has a very high degree of polymorphism, known to be one
of the highest of any species (Leffler et al., 2012). Hence, a single genome of
C. savignyi cannot be the representative of its species. Also, Mosquera-Rendón
et al. (2016) mention that most of the issues in the development of an effective vac-
cine against Pseudomonas aeruginosa, an important pathogen in multiple types
of infections, is because each strain of the species exhibits different mechanisms
responsible for its pathogenesis. A study from Tettelin et al. (2005) indicates
the same obstacles with the pathogen Streptococcus agalactiae. Therefore, devel-
oping an efficient vaccine against P. aeruginosa and S. agalactiae is unfeasible
using reference-centric analysis methods. Consequently, linear references do not
fulfill the requirements necessary for these problematics and must be augmented
with information of multiple genomes.

1.1.5 Pan-genomes

The term pan-genome stems from the greek prefix pan which is a combining
form of “all” or “every”. It was first mentioned by Sigaux (1999) to study genome
and transcriptome alterations in the context of cancer evolution. However, the
analysis of multiple S. agalactiae genomes by Medini et al. (2005) laid the foun-
dation for the concept of pan-genomes as we know it nowadays. In the study of
Medini et al. (2005), a pan-genome is defined as the global gene repertoire of a
species and is composed of two parts.

The core genome is defined as genes present in all strains of the species. Yet,
some studies such as (Mosquera-Rendón et al., 2016) relax this definition to genes
present in almost all strains of the species. These so-called housekeeping genes
encode vital functions for survival and are the genomic basis for the phylogeny
of the species. Evidences from the P. aeruginosa pan-genome study (Mosquera-

7

Rendón et al., 2016) show that its core genome encodes its pathogenicity through
genes involved in lung infections and antibiotic resistance genes present in 95% to
100% of the strains studied. A similar conclusion from Donati et al. (2010) was
established from the pan-genome of Streptococcus pneumoniae: 31 proteins out
of 47 analyzed proteins that are surface-exposed, known to be involved with host
interaction or with virulence are conserved in the core genome of S. pneumoniae.

The accessory genome, also called dispensable genome, is the pool of genes
that are not present in the core genome. These genes account for the diversity of
the species by encoding functions non-essential for their survival. They are often
the result of environmental adaptation or are acquired from different organisms
of the same environment through gene transfer. Mosquera-Rendón et al. (2016)
highlight that each strain of the P. aeruginosa pan-genome exhibits a large variety
of resistance mechanisms to the immune system in its accessory genome.

Genes specific to a strain of the pan-genome are sometimes distinguished as
singleton genes (Blom et al., 2009), hence forming the singleton genome. A graph-
ical representation of a pan-genome is provided in Figure 1.4.

core
genome

accessory
genome

accessory
genome

accessory
genome

singleton
genome

singleton
genome

singleton
genome

Strain A

Strain B Strain C

Figure 1.4: Representation of a pan-genome with 3 strains.

The proportion of core genome, accessory genome and singleton genome is
variable from one species to another. An analysis of the Escherichia coli pan-
genome of Lukjancenko et al. (2010) shows that the E. coli accessory genome is
predominant and represents about 90% of its pan-genome. Similarly, the acces-
sory genome of P. aeruginosa (Mosquera-Rendón et al., 2016) composes 85% of

8

its pan-genome. In contrast, the accessory genome of the S. pneumoniae pan-
genome (Donati et al., 2010) represents an average 16% of its pan-genome, a
number supported by Medini et al. (2005) establishing the accessory genome of
the group B of Streptococcus to 18% of its pan-genome and the singleton genome
to 1.5% of its pan-genome.

Tettelin et al. (2005) were the first to model the growth of a pan-genome as a
function of the number of unique genes acquired per additional genome analyzed.
The goal is to predict how many genomes are necessary to fully characterize the
core and accessory genomes of a species. For this purpose, regression analysis
is used to estimate statistically the pan-genome growth parameters from known
data. In (Tettelin et al., 2008), two non-linear regression analyses were performed
using the data from different species: a power law regression whose function
makes the output vary as a power of the input and an exponential regression
whose function makes the ouput vary as an exponent of the input. Results show
that the power law regression was more adapted than the exponential one. This
conclusion is also supported by the data of the P. aeruginosa pan-genome study
from Mosquera-Rendón et al. (2016). Another model is the finite supragenome
model (Hogg et al., 2007) which attempted to improve the method of Tettelin
et al. (2005) by considering an unequal sampling probability of genes in the
population. Donati et al. (2010) compared the power law regression model to
the finite supragenome model and showed that for a large number of genomes
analyzed (>40), the power law regression was more appropriate to model the
pan-genome growth.

More specifically, the Heap’s law belonging to the class of power laws is well
suited to model the pan-genome growth. It is generally used to describe the
growth of unique attributes in a set of entities. For example, Heap’s law is used in
linguistics to model the size of a vocabulary VH (number of unique words present
in a set of documents) as a function of the number of documents n considered.
It is defined as follows:

VH(n) = Knγ

in which parameters K and γ are determined empirically.

Power law regression helps to determine the completeness of a pan-genome
by estimating the number of genomes necessary to fully describe the species’

9

pan-genome. A pan-genome is said to be closed if it can be determined with an
estimated finite number of genomes (Tettelin et al., 2005). The opposite is an
open pan-genome in which each new strain analyzed is estimated to contribute
with new genes to the pan-genome. An open pan-genome is usually the sign of
an extremely adaptive species that is inclined to new evolutionary opportunities.
More theoretically, a parameter γ ≤ 1 in the power law regression indicates that
the number of new genes converges to a constant as expected in a closed pan-
genome. To the contrary, γ > 1 indicates an infinite number of genes in the
pan-genome, potentially with a very slow gene discovery rate if γ = 1 (Tettelin
et al., 2008).

An outline of pan-genomes in different application domains as well as a de-
scription of pan-genomic approaches from a computational perspective are pro-
vided in (Computational Pan-Genomics Consortium, 2016).

1.2 Computational Background

The purpose of this section is to outline all computational notions that will
be used throughout this thesis. Notations and preliminary notions are first intro-
duced in Section 1.2.1, followed by a description of graphs and their variants in
Section 1.2.2. Then, Section 1.2.3 details a specific type of graph, a tree, and pro-
vides an overview of trees specialized in string indexing with their variants. Hash
tables are presented afterwards in Section 1.2.4 as a data structure type for index-
ing elements. The description of Bloom filters and their variants in Section 1.2.5
is derived from the description of hash tables. Finally, Section 1.2.6 presents the
Burrows-Wheeler Transform and Section 1.2.7 presents the FM-Index as a string
indexing method and data structure, respectively. Note that in the figures of this
section, grey colored labels and arrows are for illustration but are not stored in
practice.

10

1.2.1 Preliminaries

A string S is a sequence of symbols drawn from a finite non-empty set of
symbols called the alphabet A. Its length is denoted by |S|. A string of length 0
is an empty string. A substring of S is a string occurring in S: it has a starting
position i, a length l and is denoted by S(i, l). A prefix of S is a substring
starting at position 1 while a suffix of S is a substring finishing at position |S|.
The concatenation operator ⊙ joins together two strings such that S = p⊙ s for
(potentially empty) prefix p and suffix s.

A repeat is a substring that occurs at least twice in a string, i.e., S(i, l) = S(j, l)

for two positions i ̸= j in a string S and l > 0. A repeat is left maximal if it can-
not be extended to the left without introducing a mismatch, i.e., i = 1 or j = 1

or S(i − 1, 1) ̸= S(j − 1, 1) for all pair of positions i ̸= j with S(i, l) = S(j, l).
Reciprocally, it is right maximal if it cannot be extended to the right without in-
troducing a mismatch, i.e., i = |S|−l+1 or j = |S|−l+1 or S(i+l, 1) ̸= S(j+l, 1)

for all pair of positions i ̸= j with S(i, l) = S(j, l). A maximal repeat is left and
right maximal. A Maximal Exact Match (MEM) is a tuple (i, S1, j, S2, l) repre-
senting a maximal substring match of two strings S1 and S2, i.e., S1(i, l) = S2(j, l)

with S1(i, l) and S2(j, l) being maximal over S1 and S2.

An array is an organization of elements in a contiguous space. Each element of
an array A has a position i and is denoted by A[i]. Arrays are directly addressable:
each element is accessible in O(1) time through its position in the array. A range
of elements between positions i < j (inclusives) is denoted by A[i..j]. A dynamic
array can be reallocated to change its size.
A list is an abstract data structure representing a sequence of ordered values.
The most common implementation of a list is the linked list which is represented
by a sequence of elements, each containing a value and a pointer to the next
element of the list.

1.2.2 Graphs

Definition 1. A graph G = (V,E) is an abstract data structure composed of a
set of vertices V and a set of edges E such that each edge e ∈ E connects two
vertices of V .

11

A graph is directed if each edge has a start vertex and an end vertex such
that the edge points away from the start vertex. The edge in-degree, reciprocally
out-degree, of a vertex v is the number of edges ending on, reciprocally starting
from, vertex v. The edge degree of a vertex is the sum of the edge in-degree and
out-degree of this vertex. A vertex is branching if it has an edge in-degree > 1 or
an edge out-degree > 1. A path is a sequence of vertices such that each pair of
consecutive vertices in the sequence has an edge connecting them in the graph. A
path is branching if it contains at least one branching vertex. A bubble is formed
by two paths sharing only the same first vertex and the same last vertex. A
graph is cyclic if it contains at least one cycle, i.e., a path starting and ending on
the same vertex. A graph is connected if there exists a path between all pairs of
vertices.

1.2.2.1 de Bruijn Graphs

A de Bruijn graph (dBG) is a directed graph G = (V,E) in which each ver-
tex v ∈ V represents a k-mer, a string of length k over A. A directed edge e ∈ E
from vertex v to vertex v′ representing k-mers x and x′, respectively, exists if
and only if x(2, k − 1) = x′(1, k − 1). Each k-mer x has |A| possible succes-
sors x(2, k−1)⊙a and |A| possible predecessors a⊙x(1, k−1) with a ∈ A. Note
that in the original definition of the dBG, all possible k-mers for an alphabet A
are represented in the graph. However, the definition of dBG used in the compu-
tational biology literature is less strict and only a subset of all possible k-mers are
represented in the graph. These k-mers are extracted from the sequences the dBG
is built from. A compacted de Bruijn graph merges all maximal non-branching
paths of η vertices from the dBG into single vertices representing words of length
k + η − 1. A colored de Bruijn graph (cdBG) is a graph G = (V,E,C) in which
(V,E) is a dBG and C is a set of colors such that each vertex v ∈ V maps to a
subset of C.
A lightweight representation of dBGs and cdBGs does not store edges since they
are implicitly given by vertices overlapping on k − 1 symbols. However, implicit
edges can falsely connect vertices that share an overlap of k−1 but do not overlap
in the sequences the graph was built from.

The dBG is a long-studied abstract data structure used in computational

12

biology. It is particularly useful for the problem of de novo read assembly in
which it is necessary to find a Hamiltonian cycle in the graph, a path starting
and ending on the same vertex that visits each vertex exactly once. Although
heuristics exist to extract Hamiltonian cycles from a graph, the read assembly
problem is yet to be solved because a Hamiltonian cycle is only one possible
reconstruction of the original genome the graph was built from. Furthermore,
the Hamiltonian cycle formulation of the assembly problem has no immediate
practical application due to coverage gaps and genomic variants.

1.2.3 Trees

Definition 2. A tree T = (VT , ET) is an acyclic connected graph.

A tree is a special type of graph. In a tree T , vertices are separated in two
groups. On one hand, the internal vertices of T are characterized by an edge
degree > 1. On the other hand, the leaves are vertices with an edge degree of ex-
actly 1. If the tree is rooted, a vertex called the root is designated. A rooted tree
may be directed in which case the edges point from the root towards the leaves.
Thus, we can define the notion of children and parents for each vertex of a di-
rected rooted tree T . The children of a vertex v ∈ VT , denoted by children(v, T),
is a set of vertices that can be reached by an edge starting at v. Reciprocally, the
parent of a vertex v ∈ VT , denoted by parent(v, T), is the vertex having an edge
that ends at v. The root of a rooted tree does not have a parent and the leaves
of a rooted tree do not have children. The depth of a vertex v ∈ VT is denoted
by depth(v, T) and is the number of edges between the root of T and v. The
height of T , denoted by height(T), is the number of edges on the longest path
from the root of T to one of its leaves. The level i ≥ 1 of T is defined as the
set of vertices with a depth of i − 1. A k-ary rooted tree T is a tree for which
all vertices v ∈ VT have |children(v, T)| ≤ k (a 2-ary rooted tree is also called a
binary tree). A subtree T ′ of a tree T is a tree for which the vertices and edges
are connected subsets of the ones in T .
A search tree is a tree used to index elements, known as keys, potentially associ-
ated with values. There exists a large variety of search trees such as the binary
search tree, the B-tree and the Red-or-Black tree. A more detailed description of
those trees is given by Cormen et al. (2009). In the following, we will focus on a

13

subset of search trees named tries.

The premises of the trie were first introduced by De La Briandais (1959)
but the concept of tries was mostly completed by Fredking (1960). The name
“trie” comes from the word retrieval in an attempt to name this subset of search
trees specialized in indexing sets of variable length strings. Strings are especially
challenging to index in a memory-efficient manner compared to other key types
because of their different and potentially long lengths. Also, strings offer a po-
tential for redundancy to exploit as they usually come from natural language
texts in which repetitions are expected to occur. Finally, indexing and retrieving
strings might require type-specific operations such as prefix search. Note that
tries do not restrict the key type to strings. For example, tries are typically used
in routers for fast IP address lookup in which an IP address is a series of four 8
or 32 bits integers.

Definition 3. A trie T = (VT , ET) is a directed rooted tree in which each edge
is labeled with a single symbol of an alphabet A such that for any vertex v ∈ VT ,
all edges starting at v are labeled with a different symbol. A path from a ver-
tex v ∈ VT to a vertex v′ ∈ VT represents a substring of length depth(v′, T) −
depth(v, T), which is the concatenation of all symbols on the edges of this path.

The string obtained from the concatenation of all symbols on the edges of a
path from the root to a vertex v is the prefix of a string stored in T and is denoted
by prefix (v, T). A subtrie of T rooted at vertex v represents a set of suffixes
denoted by suffixes(v, T) such that for each suffix s in this set, prefix (v, T) ⊙ s
is a string that is stored in T . If the vertex v is a leaf, then |s| = 0. Thus,
tries inherit the dynamics of trees such that it is not necessary to know before
insertion how many strings will be stored in a trie. An example of a trie is given
in Figure 1.5.

A trie can be implemented using various data structures such as a linked list
or an array. The choice of the supporting data structure for a trie is of main
importance, as well as the implementation design that must be chosen carefully.
Indeed, a trie can consume significant memory if implemented in a naive way,
such as representing edges with pointers to memory locations, a typical imple-

14

a b

a b

a b

a b

aaa

aba abb

ba

bba

Figure 1.5: Trie of strings “aa”, “aba”, “abb”, “ba” and “bba” for an alphabet
A = {a, b}.

mentation based on linked lists. This design scatters vertices over the memory
of a computer (main memory or disk memory) and forces the Central Process-
ing Unit (CPU) to visit dispersed locations of the memory in a short time while
traversing a trie for example. At each traversed vertex, the CPU copies the data
located at the memory address to a small multi-layer high-speed memory called
cache which is located near the CPU. The first assumption made by a CPU is
that memory accessed is likely to be modified: operations carried out in the cache
are much faster than in Random Access Memory (RAM) and a lot faster than
on disk. Secondly, a CPU assumes the data locality property: It is likely that a
memory location close of the one accessed at the first place is going to be read
and eventually modified. If the content of a memory location to be accessed is
not already present in one layer of the cache, the processor must fetch it – a so-
called cache-miss. Cache-misses are the main bottleneck in applications with no
data locality. Hence, a naive pointer-based implementation of a trie is inefficient
because it is cache-oblivious and each indexed symbol is the label of an edge
using a 64 bits pointer on current computer architectures. A trie has a dynamic
structure and inserting new elements triggers the insertion of new vertices and
edges. If the supporting data structure is cache friendly and memory efficient but
requires to move large chunks of memory for each new edge or vertex inserted,
the data structure will be time inefficient. Finally, even though shared prefixes
are stored in a single trie path, the same suffixes must be stored multiple times
if their corresponding prefixes are different.

In order to improve the memory efficiency of tries and decrease the number
of cache-misses while traversing them, the radix trie was proposed. A radix trie

15

employs a path compaction method which merges a path of n > 1 vertices having
each at most one child into one vertex whose in-going edge is labeled with a
substring of n symbols. A binary radix trie is also referred to as a PATRICIA
trie from Morrison (1968).

An orthogonal compaction method was presented by Andersson and Nilsson
(1993) as a level compaction method. Level-compaction applies to a k-ary sub-
trie t for which each internal vertex v from level i = 1 (the root) to level j > i

has |children(v, t)| = k children. For such a subtrie t, each path from the root
to a vertex v at level j + 1 is replaced by a directed edge from the root to v.
This edge is labeled with the concatenation of the symbols on the path. Path
and level compactions are illustrated in Figure 1.6.

a b

a b

a b

a ba

aa

aba abb

ba bba

(a) Path compressed trie

aa ba

a b
aaa

aba abb

ba

bba

ab bb

(b) Level compressed trie

Figure 1.6: Compaction methods for tries of strings “aa”, “aba”, “abb”, “ba” and
“bba” for an alphabet A = {a, b}.

Path and level compactions were combined by Nilsson and Karlsson (1999)
in a data structure named the LC-trie. A more detailed review of tries is given
by Askitis and Sinha (2010).

1.2.3.1 Suffix Tries and Suffix Trees

A trie as described above indexes a set of strings such that a prefix search
can be performed in a natural top-down traversal of a trie. In order to perform
a substring search, a suffix trie is required. Introduced by Weiner (1973), a
suffix trie of a string S indexes all |S| suffixes of S. A prefix search can then be
performed over the trie indexing the suffixes and therefore, simulate a substring
search. As each suffix s of S has a length of at most |S| symbols, the total number
of substrings in S is O(|S|2) and corresponds to the number of vertices in the

16

suffix trie of S.

The suffix tree is a path compacted suffix trie which has at most |S| − 1

internal vertices. Each internal vertex of the tree except the root has at least two
children. To ensure this property, an extra symbol “$” called terminal symbol is
added at the end of S to guarantee that no suffix is the prefix of another suffix.
Labels on the edges are not stored explicitly as they all relate to the same string:
Each label of an edge can be instead replaced by its start position in S and a
reference to the child list of the vertex pointed by the edge. Hence, instead of the
quadratic space of the suffix trie, the suffix tree reduces the space usage to O(|S|)
and can be built in linear time using the McCreight (1976), Ukkonen (1995) and
Farach (1997) algorithms.

A vertex v of a suffix tree T represents the prefix of one or multiple suffixes. A
suffix link starting at a non-root vertex v for which prefix(v, T) = a⊙s connects
to a vertex v′ for which prefix(v′, T) = s with a ∈ A and s is a (potentially
empty) string. Suffix links are not part of the suffix tree but are used by the
McCreight (1976) and Ukkonen (1995) algorithms. The Generalized Suffix Tree
(GST) is a suffix tree of at least two strings. It is built from a collection of N > 1

strings S1 ⊙ ...⊙ SN : Each string Si finishes with a different terminal symbol $i
such that $1 < ... < $N . Suffix trees are useful for numerous applications such as
finding MEMs and MUMs.

b

a

a

$ a

a b $

b

$

$

b$

baab$

b

$ a

a$

b

$

aab$

abaab$

ab$

(a) Suffix trie

b

aab$

$ a

ab$ b $$

b$ baab$aab$$aab$

abaabab
(b) Suffix tree

Figure 1.7: Suffix trie (a) and tree (b) of string “abaab$”.

17

As a standard suffix tree uses O(|S| log |S|) bits for a string S over an al-
phabet A, the high memory cost of such a data structure for long strings has
motivated the need for more lightweight data structures in order to get closer to
the O(|S| log |A|) bits required to store S itself. Hence, multiple proposals have
been made for a Compressed Suffix Tree (CST) (Sadakane, 2007; Fischer et al.,
2009; Ohlebusch et al., 2010; Russo et al., 2011). The most lightweight repre-
sentation of a CST was proposed by Russo et al. (2011) and uses |S|Hk + o(|S|)
bits for a string S with Hk being the empirical entropy of S. This representa-
tion supports all operations of the suffix tree in O(log |S| log log |S|) time, except
returning the child of a vertex corresponding to a searched symbol which is in
O(log |S| · (log log |S|)2) time.

The suffix array by Manber and Myers (1993) is the counterpart of the suffix
tree. It is an array of the sorted suffixes of a string S in which suffixes are
represented by their start position in S. The lexicographic order of the suffixes
mimics a depth-first traversal order of the suffix tree. A suffix array interval is
an interval of positions in the suffix array corresponding to a set of contiguous
suffixes starting with a given prefix p. Such an interval represents the subtree
of a suffix tree T for which the root has prefix(root, T) = p. A suffix array,
just as the suffix tree, can be built in O(|S|) time and uses O(|S|) space. As a
suffix array does not cover all functionalities of a suffix tree, an Enhanced Suffix
Array (ESA) (Abouelhoda et al., 2004) augments the suffix array with at least
one additional structure, the Longest Common Prefix (LCP) array, in order to
enable all operations supported by a suffix tree. In practice, the suffix array
and the ESA are preferred to the suffix tree as they can be implemented more
efficiently. The suffix array and the ESA also improve the data locality compared
to the suffix tree because an array is stored contiguously in memory.

1

2

3

4

5

6

SA

6

3

4

1

5

2

$

aab$

ab$

abaab$

b$

baab$

Figure 1.8: Suffix array of string “abaab$” for alphabet order $ < a < b.

18

1.2.3.2 Burst Tries

Path and level compactions of tries are efficient methods in a limited number
of cases, more specifically if a long unique substring or all possible equal-length
substrings are rooted from a vertex. The burst trie is a compacted trie designed
by Heinz et al. (2002). It is based on the simple idea that the main cause of mem-
ory and time inefficiency in tries is because of subtries suffixes(v, T) in which each
path from v to a leaf is not branching. Therefore, a more efficient representation
of such subtries of suffixes is needed. In the burst trie, edges starting from an
internal vertex v are stored in an array of length |A| contained in v. Each element
of such an array represents the label a ∈ A of the edge it stores. An edge exists
at the position represented by label a ∈ A only if the edge points to a child for
which all s ∈ suffixes(v, T) have s(1, 1) = a. Leaves of the burst trie are dynamic
arrays representing sets of suffixes with a limited capacity. When the capacity
of a leaf suffix set is exceeded during an insertion, a burst is triggered. Burst-
ing a leaf replaces it with a new internal vertex storing edges labeled with the
first symbol of every suffix the leaf contained. These edges point to new leaves
containing the remaining symbols of the suffixes. An example of bursting is pro-
vided in Figures 1.9. Askitis and Sinha (2010) proposed multiple variants named
the HAT-trie, the hybrid HAT-trie and the HAT+-trie which explore different
splitting techniques as well as different data structures for the leaves. Those vari-
ants are expected to be more space-efficient than the HAT-trie while having the
disadvantage to be slower to construct and search.

Edge label arrays in vertices of the burst trie are directly addressable. The
drawback of this representation is that empty elements occupy memory. Also,
even though suffixes are grouped together into leaf suffix sets, multiple locations
of the memory representing internal vertices still need to be visited in order to
reconstruct the prefixes.

1.2.4 Hash Tables

A hash table is an implementation of the so-called associative array or dic-
tionary, also known as a “key-value” data structure. The purpose of such data
structures is to associate information to elements, known as values and keys re-

19

aa$
abb$

ba$
bba$

a$
bb$

a b

a$
ba$

(a) Burst trie before inserting “aba”

ba$
bba$

a b

a$
ba$a b

a$
b$$

aba$
abb$

aa$

(b) Burst trie after inserting “aba”

Figure 1.9: Burst trie of strings “aa”, “abb”, “ba” and “bba” for an alphabet
A = {a, b}. Leaves have a capacity of two suffixes. Inserting string “aba” in the
burst trie of (a) triggers a bursting of the left leaf, resulting in the burst trie setup
shown in (b). A terminal symbol is added at the end of each string in order to
handle the case of one string which is the prefix of another string.

spectively, such that those values can be retrieved from the keys alone. One of the
main differences with tree-like data structures accomplishing a similar purpose
is that basic key-value operations (inserting, getting and removing a key-value)
are expected to be carried out in constant time. Formally, n keys from a uni-
verse U have to be inserted and in most of the use cases, n ≪ |U |. Therefore,
creating a direct addressing array of size |U | is not a suitable solution. Instead,
a hash table H is an array of length m with m ≪ |U | and each key e to in-
sert will be mapped to an element of H through a hash function h such that
h(e) : e 7→ {1, ..,m}. For the sake of convenience, we assume in the following a
set representation based on a simplified hash table model in which the keys to
insert are unique and there are no values. A key e is stored and can be found
in the element H[h(e)], while removing e from H deletes the content of H[h(e)].
All these operations take O(1) time and H uses O(n+m) space.

1.2.4.1 Collisions

The previously described hash table design is minimal and creates collisions,
i.e., two keys e1 and e2 collide if e1 ̸= e2 and h(e1) = h(e2). Figure 1.10 illustrates
a hash table in which two keys are colliding.

A hash function that minimizes the number of collisions is chosen indepen-

20

1

2

3

4

5

6

7

8

9

m

(used keys)

U
(universe of keys)

H

e2
e5e1

e3
e4

e2

e5

e1 e3

e4

h(e2)

h(e5)

h(e1)

h(e3)

h(e4)

Figure 1.10: Hash table with collisions.

dently from the keys, i.e., through randomization. As the set of all such functions
is very large, universal hashing is an approach that can design a smaller class of
hash functions: A τ -universal hash function has a collision probability between
two random distinct keys e1 and e2 of prob(h(e1) = h(e2)) ≤ τ

m
with m being the

size of the hash table. A more detailed description of universal hashing is given
by Cormen et al. (2009).

Chaining is a collision resolution method: each element of H does not contain
a single key anymore but a chain of keys stored in a list. Inserting a key in H

remains a O(1) time operation, but finding or deleting a key takes O(1 + n/m)

expected time because the expected list length of each element is n/m. In the
worst case, the hash function h maps all keys to the same element and finding or
deleting a key in H takes Θ(n) time. An example of a hash table with chaining
is given in Figure 1.11.

1.2.4.2 Open Addressing

Open addressing methods resolve collisions in hash tables by providing al-
ternate locations, also known as probing, to keys that are colliding. Hash tables
using open-addressing are self-contained in contrast to hash tables using chaining
as they do not store the values outside the hash table. A first open addressing
method is linear probing and inserts a key e in element H[b] which is the first non-
occupied element from H[h(e)] with b ≥ h(e). If no element at position b ≤ m is

21

1

2

3

4

5

6

7

8

9

m

(used keys)

U
(universe of keys)

H

e2
e5e1

e3
e4

e2

e5

e1 e3

e4

h(e2)

h(e5)

h(e1)

h(e3)

h(e4)

Figure 1.11: Hash table with chaining.

available, the hash table can be extended to contain |H| > m elements. Finding
e consists in iterating over the elements of H from position h(e) with an incre-
ment of i = 1 until e is found or an empty element is encountered, in which
case e is not present. Therefore, inserting and finding a key in H takes Θ(|H|)
worst case time. Removing a key from a hash table using linear probing is more
complex than from a chained hash table. Indeed, simply removing a key from its
element H[b] creates an empty element that might cause the search of a different
key e′ stored in an element at position b′ > b to stop prematurely. It is there-
fore necessary to store a supplementary information for each element indicating
if it is empty because it does not contain a key or because the key it contained
was removed, in which case a search going through this element would continue.
Quadratic probing is similar to linear probing but uses a quadratic increment to
iterate over the elements of the hash table in case of a collision. Finally, the
double hashing method combines two hash functions in the probing:

h(i, e) = ((h1(e) + i · h2(e)) mod m) + 1

If element H[h(i, e)] is already occupied, i is incremented until an empty element
is found. Compared to linear and quadratic probing, double hashing allows to
avoid long ranges of occupied elements in the hash table. The different open
addressing methods are illustrated in Figure 1.12

Although hash tables are advantageous because of the key-value association
handled by constant time operations, hash functions with good hashing perfor-

22

1

2

3

4

5

6

7

8

9

m

H

e6

e2

e5

e1

e3

e4

h(e6)
i = 1

i = 1

i = 1

(a) Linear probing

1

2

3

4

5

6

7

8

9

m

H

e6

e2

e5

e1

e3

e4

h(e6)
i = 1

i = 2

(b) Quadratic probing

1

2

3

4

5

6

7

8

9

m

H
e6
e2

e5

e1

e3

e4

h1(e6)

h2(e6)

h(1,e6)

h(2,e6)

(c) Double hashing

Figure 1.12: Open addressing methods.

mance can be long to compute in practice because of their complex randomiza-
tion machinery, particularly in the context of cryptographic applications. Fur-
thermore, not all elements of a hash table are used if the hash table size was
pre-/re-allocated without a priori knowing the number of keys to insert. Finally,
when a hash table contains a number of keys n converging to the size of the hash
table, collisions occur more often during insertion and open addressing methods
spend more time finding empty elements, making the hash table time inefficient.

1.2.5 Bloom Filters

Introduced by Bloom (1970), a Bloom filter (BF) is a space and time efficient
data structure that records the approximate membership of elements in a set.
Based on the hash table principle, look-up and insertion times are constant. The
BF is composed of a binary array B of m elements, initialized with 0s, in which
the presence of n items is recorded. A set of f hash functions h1, ..., hf is used
such that inserting an item into B and testing for its presence are then

Insertbf(e,B) : B[hi(e)]← 1 for all i = 1, ..., f

and

MayContain(e,B) :

f∧
i=1

B[hi(e)],

23

respectively, in which
∧

is the logical conjunction operator. These two operations
are illustrated in Figures 1.13 and 1.14 respectively.

1

2

3

4

5

6

7

8

9

m

(used keys)

U
(universe of keys)

B

1

1

1

1

1

0

0

0

0

0

e2

e1

h3(e2)

h1(e2)

h1(e1)

h3(e1)

h2(e2)

h2(e1)

Figure 1.13: Insertion of two items e1 and e2 into a BF.

1

2

3

4

5

6

7

8

9

m

(used keys)

U
(universe of keys)

B

1

1

1

1

1

0

0

0

0

0

e2

e1

h3(e3)

h1(e3)

h1(e4)

h3(e4)

h2(e3)

h2(e4)
e3

e4

e3 not present

e4 present

Figure 1.14: Query of two items. Item e3 is a true negative and item e4 is a false
positive.

Kirsch and Mitzenmacher (2006) demonstrated that two hash functions com-
bined in a double hashing technique can be applied to BFs in order to simulate
more than two hash functions and obtain similar hashing performance. The
BF does not support deletion as an element of B set to 1 might have been set
by different hash functions for different items. The BF does not generate false
negatives but may generate false positives, as MayContain can report the pres-
ence of items which are not present but a result of independent insertions. In
contrast to a hash table, a BF never overflows because it is always possible to

24

insert new items. However, the number of false positives scales exponentially
with the number of inserted items. Indeed, the false positive ratio φ (Kirsch and
Mitzenmacher, 2006) is

φ ≈
(
1− e

−fn
m

)f

.

The number of hash functions that minimizes the false positive ratio is

f =
m

n
ln 2 ≈ 0.7

m
n ,

and, given f and φ, the optimal size of a BF is

m =
n ln φ

(ln 2)2
.

The union and intersection of two sets represented by BFs with the same param-
eters are

B1 ∩B2 = B1 ∧B2,

and
B1 ∪B2 = B1 ∨B2,

respectively, in which ∨ is the logical disjunction operator. Such union and
intersection are computed in O(|B|) time. Note that the false positive ratio of
the intersection of two BFs B1 and B2 is upper-bounded by the smallest false
positive ratio of B1 and B2. It is because the number of bits set to 1 in the
BF intersection is at most the smallest number of bits set to 1 in B1 and B2.
To the contrary, the false positive ratio of the union of two BFs B1 and B2 is
lower-bounded by the greatest false positive ratio of B1 and B2. It is because the
the number of bits set to 1 in the BF union is at least the greatest number of
bits set to 1 in B1 and B2.

One main drawback of BFs is their poor data locality. Indeed, for one item,
multiple and potentially distant locations of the BFs have to be visited and mod-
ified. In practice, these locations are first copied from main memory to cache
and are then copied back from cache to main memory if modified. Such transfers
affect the cache efficiency and slow down the running time.

BFs, as hash tables, have been extensively studied and applied in numer-
ous domains, resulting in a large number of variants. Among the most popular

25

variants, Fan et al. (2000) proposed the Counting Bloom Filter (CBF) which sup-
ports deletions by maintaining a counter in each element of B instead of a binary
value. Counters are initialized with 0s and the operation Insertbf increments the
counters instead of setting them to 1. Similarly, the deletion operation decre-
ments the counters. The CBF is more memory consuming due to the counter
size which, furthermore, must be extended when the maximum value they can
hold is exceeded. Almeida et al. (2007) proposed the Scalable Bloom filter which
is designed with a maximum false positive ratio but without a priori knowledge
of the number of items to insert. It is made of a series of BFs for which the size
is determined by a geometric progression. However, potentially all BFs of the
series have to be queried to determine if an item is present. Putze et al. (2009)
overcame the data locality problem of BFs with the Blocked Bloom Filter (BBF),
an array of smaller BFs individually fitting into one or multiple cache lines. To
insert or look-up an item, a supplementary hash function is used to determine
which BF to load. As some BFs might be overloaded while some others might
be sparse, it is difficult to establish the expected false positives ratio of a BBF.
The authors of the data structure advise to use a BBF size 30% higher than a
standard BF for the same parameters.

1.2.6 Burrows-Wheeler Tranform

The Burrows-Wheeler Transform (BWT) by Burrows and Wheeler (1994) is a
method to index and compress a string. The key idea of the BWT is to rearrange
an input string S such that symbols with similar context are aggregated together.
The transformation of S, denoted bwt(S), can be reversed to recover S without
any additional information. Although bwt(S) has the same length as S, its runs
of same symbols makes it more compressible than S by compression methods
such as move-to-front encoding followed by run-length encoding. Similarly to
the GST (Section 1.2.3.1), it is possible to build the BWT of multiple strings
by concatenating strings that end with different terminal symbols. The BWT is
based on a lexicographic sorting of all cyclic permutations of an input string S
as rows of a matrix. The last column of the matrix, identified by the label L,
corresponds to the computed BWT. Note that the first column of the matrix,
identified by label F, corresponds to the characters of S given in lexicographic
order. An example is given in Table 1.1, in which the cyclic permutations of a

26

string “abaab$” are first computed (Table 1.1a) and are then sorted (Table 1.1b).
The computed BWT corresponds to the concatenation of the last symbol of
all sorted permutations. The example of Tables 1.1a and 1.1b shows that the
computed BWT contains two runs of two symbols while the input string only
contains one run of two symbols.

F L
a b a a b $
$ a b a a b
b $ a b a a
a b $ a b a
a a b $ a b
b a a b $ a

(a) Cyclic permutations

F L
$ a b a a b
a a b $ a b
a b $ a b a
a b a a b $
b $ a b a a
b a a b $ a

(b) Sorted cyclic permutations

Table 1.1: BWT computation of string “abaab$”. The computed BWT is high-
lighted.

The BWT construction algorithm previously described is inefficient and uses
O(|S|2) space to compute bwt(S). Instead, bwt(S) can be computed in O(|S|)
space by keeping in each row of the matrix a pointer to the corresponding permu-
tation in the original string. Burrows and Wheeler, in the original BWT paper,
noticed that by using a terminal symbol in S, the sorting step after computing
the cyclic permutations of S is equivalent to sorting the suffixes of S. As de-
scribed in Section 1.2.3.1, this is achieved in O(|S|) space and time using a suffix
tree or array.

Reconstructing a string S from bwt(S) can be achieved naively with an iter-
ative algorithm in O(|S|2) time and space. This algorithm is described first to
give an intuition on how the reconstruction operates. A more efficient algorithm
running in linear time and space is explained afterwards. The naive algorithm
starts from an empty matrix and for each iteration, fills the first empty column
of the matrix with bwt(s) and sorts lexicographically all the rows of the matrix.
The reconstruction stops when all columns of the matrix are used and the recon-
structed string is in the row which has the terminal symbol as last symbol. An
example is provided in Table 1.2.

A more efficient reversing is based on the fact that each symbol in a row
of column F is preceded in S by the symbol in the same row of column L.

27

L
b
b
a
$
a
a

(1) Prepend

L
$
a
a
a
b
b

(2) Sort

L
b $
b a
a a
$ a
a b
a b

(3) Prepend

L
$ a
a a
a b
a b
b $
b a

(4) Sort

L
b $ a
b a a
a a b
$ a b
a b $
a b a

(5) Prepend

L
$ a b
a a b
a b $
a b a
b $ a
b a a
(6) Sort

L
b $ a b
b a a b
a a b $
$ a b a
a b $ a
a b a a
(7) Prepend

L
$ a b a
a a b $
a b $ a
a b a a
b $ a b
b a a b

(8) Sort

L
b $ a b a
b a a b $
a a b $ a
$ a b a a
a b $ a b
a b a a b

(9) Prepend

L
$ a b a a
a a b $ a
a b $ a b
a b a a b
b $ a b a
b a a b $

(10) Sort

F L
b $ a b a a
b a a b $ a
a a b $ a b
$ a b a a b
a b $ a b a
a b a a b $

(11) Prepend

F L
$ a b a a b
a a b $ a b
a b $ a b a
a b a a b $
b $ a b a a
b a a b $ a

(12) Sort

Table 1.2: Reconstruction of a string from the BWT string “bba$aa”. The recon-
structed string is highlighted.

This ensures a property named LF-Mapping: the occurrence of the i-th sym-
bol a in F matches the occurrence of the i-th same symbol a in L. Therefore,
bwt(S) can be reversed unambiguously in a back-to-front manner using columns F
and L only. As column F can be computed from column L, reversing bwt(S)

takes O(|S|+ |A|) space and time. The LF-Mapping property also enables pat-
tern matching directly in the BWT of a string S. It is done by iteratively match-
ing pattern P in bwt(S) from the end to the beginning of P . At each iteration
i = 1, ..., |P |, the symbol at position P (|P |−i+1, 1) is searched within an interval
corresponding to the suffix P (|P |− i+1, i). The iterations stop when P has been
entirely matched or when the symbol P (|P |− i+1, 1) cannot be found within the

28

current interval, in which case it indicates P is not present. This method known
as backward search is more detailed in (Li and Durbin, 2009). The LF-Mapping
property on which relies the backward search is rarely used as it is, but instead
with the support on the FM-Index described in the following section.

1.2.7 FM-Index

The BWT is not only useful for compression but also for indexing because
of its connections with the suffix array. The FM-Index (Ferragina and Manzini,
2000) has been conceived as a direct application of the BWT by proposing a
constant time LF-Mapping over the BWT of a string S. This allows to locate
and count the occurrences of a pattern P in S with sublinear complexities. The
FM-Index is made of a vector C and a matrix Occ. The vector C counts for each
symbol a ∈ A of bwt(S) the number of occurrences of lexicographically lower
symbols in bwt(S). Matrix Occ represents a function indicating, for a symbol
a ∈ A and a position pos in bwt(S), the occurrence number of a in L(1, pos − 1).
Examples are given in Tables 1.3a and 1.3b.

$ a b
0 1 4

(a) Vector C

1 2 3 4 5 6
$ 0 0 0 1 1 1
a 0 0 1 1 2 3
b 1 2 2 2 2 2

(b) Matrix Occ

Table 1.3: FM-Index of the BWT string “bba$aa”.

Given C and Occ, the LF-Mapping at position i in bwt(S) is LF-Mapping(i) =
C[L[i]] +Occ(L[i], i). Using the constant time LF-Mapping from the FM-Index,
counting the occurrences of a pattern P in S and locating them takes O(|P |)
time. As the matrix Occ can be large, only a subset of the columns is stored in
practice and the values of the non-stored columns are recomputed on the fly if
needed. More details about the FM-Index and compression techniques to reduce
its size are provided in (Ferragina et al., 2004).

29

1.3 Thesis Overview

Pan-genomes are a new opportunity in comparative genomics to better under-
stand life compared to single-genome reference-based methods. Yet, they consti-
tute a tremendous challenge regarding our capacity to simultaneously explore and
analyze data from different sources. On the basis of Sections 1.1 and 1.2 detailing
the biological and computational background of this thesis, Chapter II describes
the current state-of-the-art for pan-genome indexing through the data structures
used in pan-genome analysis methods. From this literature, the first aim of this
thesis is to establish a list of missing or inadequate features in data structures
used to index pan-genomes. Based on this list, we present in Chapter III a new
data structure for pan-genome indexing: the Bloom Filter Trie (BFT). We show
that the BFT outperforms a data structure providing the same features but based
on an approximation of the data indexed.

The second aim of this thesis is to show that the problem of pan-genome read
storage has never been addressed before and current techniques for compressed
storage of reads are not adapted. Hence, Chapter IV defines first the character-
istics that a pan-genome read compression method must have. Then, a new tool
for pan-genome read compression named DARRC is detailed. We show that the
BFT is adapted for the task of pan-genome read compression and is the support-
ing data structure of this tool. DARRC outperforms all tested tools based on
individual and independent genome compression.

30

CHAPTER II

Methods and Tools for Pan-genome Indexing

2.1 Introduction

Along the years, the definition of pan-genome has acquired a broader mean-
ing than its original definition by Medini et al. (2005). It nowadays also refers to
a collection of sequences from different genomes (Computational Pan-Genomics
Consortium, 2016). Such a collection can be analyzed naively by indexing sepa-
rately each sequence it is composed of. This representation is however wasteful
in memory since core genome and accessory genome need to be stored as many
times as they occur in the strains. Furthermore, such a representation would re-
quire analyzing each genome separately, leading to time inefficient methods. If a
pan-genome is composed of similar genomes, it is naturally more efficient to index
variants of a collection of genomes with respect to a reference. Such methods will
be reviewed in Section 2.2. Yet, computing similarities or variants is a complex
task achieved by aligning sequences of the pan-genome. As a consequence, much
attention has been paid to methods that either provide scalable sequence align-
ments for many similar genomes or extract directly from a sequence alignment the
shared and unique regions of the pan-genome (Section 2.3). This exercise is not
trivial and is the reason for the design of graph-based methods (Section 2.4) that
take advantage of the similarity and difference not only with a reference but also
with other indexed genomes. A special case of graph-based methods are the de
Bruijn graph methods (Section 2.5) which are alignment-free and reference-free.
Other methods reviewed in Section 2.6 enable large scale indexing and querying
of genomic databases. Note that the following sections focus only on sequence-
based data structures and methods for pan-genome indexing and querying at

31

the DNA level in contrast to gene-based methods. Other tools for computational
pan-genomics are reviewed in (Computational Pan-Genomics Consortium, 2016).
This chapter is based on (Zekic et al., 2018) and is a collaboration with Tina Zekic
and Jens Stoye.

2.2 Reference-based Methods

Among the reference-based methods, Wandelt et al. (2013) proposed the Ref-
erentially Compressed Search Index (RCSI), a tool that uses referential in-
dexing to index a pan-genome and to search for exact or inexact matches. The
reference is first indexed using a CST (Section 1.2.3.1) and the other genomes
are then encoded as ordered lists of subsequence matches to the reference, called
referential match entries. The index is built with respect to a maximum query
length and a parameter representing the maximum number of edit distance op-
erations allowed during an inexact search. RCSI exploits the seed-and-extend
paradigm (Rasmussen et al., 2006) based on the pigeonhole principle stating that
for a sequence S, a pattern P and at most M mismatches, there exists at least
one matching substring, called seed, of length

⌊
|P |

M+1

⌋
between S and P . When

queried, the reference is first searched for matching seeds that are then extended.
Matches found are transferred onto the referential match entries using a hash-
ing structure to identify genomes in which matches are found with at most M
mismatches.

Another approach of referential indexing is to index variants instead of simi-
larities. The Multiple Genome Index (MuGI) from Danek et al. (2014) applies
this approach by maintaining a database of variants. Additionally, the occurrence
positions of k-mers in the genomes are stored in arrays, sorted by lexicographic
order of k-mers. The seed-and-extend paradigm employs the k-mer arrays for the
exact or inexact matching algorithms such that genomes can be searched without
scanning the reference, hence offering faster queries than other state-of-the-art
data structures while using less memory during the search. MuGI requires less
memory than RCSI to build the index but its search algorithms can handle only
mismatches, while RCSI also supports insertions and deletions. Also, MuGI con-
siders that variants are provided as input, which allows to keep the reference
non-indexed while RCSI computes the subsequence matches itself by indexing

32

the reference.

The Journaled String Tree (JST) from Rahn et al. (2014) is another data
structure for indexing similar genomes based on encoding genome variants with
respect to a reference. The novelty of this work is that it can be “plugged-
in” with existing sequential pattern matching algorithms instead of proposing a
new search method. A JST is composed of a reference and an array of branch-
nodes representing variants of one or multiple genomes forming branches with
respect to the reference. Each genome is referentially compressed as a journaled
string consisting of an insertion buffer and a binary search tree. The insertion
buffer is a string which is the concatenation of genome subsequences not present
in the reference (insertions). The binary search tree maintains positions and
lengths of inserted or shared subsequences with respect to the reference. Pattern
matching algorithms scanning a sequence in a left-to-right manner can be used
in combination with the JST: as soon as a branch-node occurs in the reference,
the state of the search algorithm is saved for later processing and the algorithm
processes the occurring branch that is extracted from the corresponding journaled
strings. Experiments with exact and inexact pattern matching algorithms show
better running time and memory consumption compared to a naive scheme where
sequences are processed in a sequential manner. However, MuGI shows better
performance during the search, mainly due to its fully indexed search, while JST
supports only sequential search.

Self-indexes, like the FM-Index (Section 1.2.7) and the CST, are data struc-
tures that compress and index data while providing random access to the indexed
data as well as pattern matching functionalities. Mäkinen et al. (2010) introduced
a new family of self-indexes (Navarro, 2012) for storage, retrieval and search of
highly similar sequence collections. The central idea of this approach is that pre-
vious self-indexes could not capture the high similarity of multiple sequences that
differ only by few variants. Hence, the newly proposed family extends existing
self-indexes to achieve greater compression than the high-order entropy of the se-
quence collection. The approach is then used to introduce new basic structures,
including an advanced suffix array sampling scheme, that are adapted afterwards
to a CST. This representation of a collection of highly repetitive sequences uses
O(n log N

n
+ ω log2N) bits on average in which N is the total length of the se-

quence collection, n is the length of the reference and ω is the total number of

33

mutations. Exact pattern matching of a pattern P is achieved in O(|P | logN)

time. The provided basic structures require each sequence to be pairwise aligned
with the reference of the collection to provide basic query operations.

BWBBLE (Huang et al., 2013) builds an augmented reference by including
all variants detected between a set of genomes to a reference. For this purpose,
a linear augmented reference is built and its BWT (Section 1.2.6) is computed
such that it can then be used by an aligner based on the FM-Index. SNPs are
handled by making use of the International Union of Pure and Applied Chemistry
(IUPAC) nucleotide code in which each symbol represents either one nucleotide
or multiple possible nucleotides. More complex variants such as indels (insertions
or deletions) are linearized: One of the indel is incorporated in the augmented
reference and its surrounding characters in the augmented reference are padded
to the extremities of the other indels. These other indels are then concatenated
to the augmented reference using a special separation symbol. Exact and inexact
matching algorithms with the augmented reference use an extension of the BWT-
based backward search (Sections 1.2.6 and 1.2.7) that handles IUPAC nucleotide
symbols. As a IUPAC nucleotide symbol can represent multiple nucleotides, a
query can match several different substrings in the augmented reference and, thus,
different suffix array intervals. While being more accurate with the augmented
reference than BWA with a single reference (Li and Durbin, 2009), the aligner is
slower and uses significantly more memory.

Durbin (2014) describes another data structure based on the BWT, the po-
sitional Burrows-Wheeler Transform (pBWT), to represent a haplotype se-
quence collection with w binary allelic variable sites for efficient haplotype match-
ing and compact storage. The proposed algorithms derive first a reverse prefix
ordering of the sequences instead of the classical lexicographic ordering of suffixes
in the suffix array. This new ordering ensures that locally maximal sequences are
adjacent. Consequently, forward search of the sequences can be used to find
all set-maximal matches from a new sequence or a sequence from the collection.
Both matchings can be computed in linear time, O(w) time in the former case
and O(wN) time in the latter case. The pBWT is highly compressible and uses
the FM-Index for the forward search.

34

2.3 Alignment-based Methods

Panseq (Laing et al., 2010) is an online tool for pan-genome analysis relying
on Pairwise Sequence Alignment (PSA), Multiple Sequence Alignment (MSA)
and Local Sequence Alignment (LSA) for its different modules described in the
following. The Novel Region Finder module extracts novel regions out of a set
of input sequences by iteratively adding them to a database if there are no
PSA matches with sequences already in the database. The Core and Acces-
sory Genome Finder module eliminates first the singleton genome of the input
sequences by creating a pool of input sequence segments that match at least two
genomes. Segments are then broken into fragments of user-specified length such
that an LSA determines if they are part of the core or accessory genome. Core
genome sequences are built for each input sequence by concatenating its core
genome fragments. The core genome is provided as an MSA of the core genome
sequences while the accessory genome is provided as a binary matrix indicating
the presence of each fragment in the input sequences. Finally, the Loci Selector
module constructs a locus set based on the unique number of fingerprints and
the discriminatory power of the loci among the input sequences.

The Harvest suite (Treangen et al., 2014) uses a variant of whole genome
alignment for rapid core genome extraction of higly similar microbial genomes
(≥ 97 % average nucleotide similarity). The suite is composed of two tools:
Parsnp for core genome MSA and Gingr for dynamic visualization of large scale
MSA as well as core genome SNPs tree exploration. The first tool relies on
the fact that core genome MSA has a lower complexity than MSA because it
focuses only on regions shared by all genomes. Parsnp starts by indexing an input
genome using a CST which is then queried with the remaining genomes in order to
identify in a first step multiple Maximum Unique Matches (multi-MUMs) present
in all input genomes and in a second step Locally Collinear Blocks of multi-
MUMs. Gaps between collinear multi-MUMs are then aligned. Additional post-
processing steps are performed to filter out unreliable SNPs and build the core
genome SNPs tree. Parsnp was compared to whole-genome alignment methods,
k-mer based methods and read mapping methods. Results show that its accuracy
is a compromise between whole-genome alignment methods and read mapping
methods but depends on the input data (draft or finished assemblies). However,
Parsnp has the advantage to run in a small fraction of the other methods’ running

35

times.

Nguyen et al. (2015) formulated the pan-genome construction problem as
a genome rearrangement problem in which the arrangement and orientation of
sequence alignment blocks for a set of genomes partitioned by homology must be
optimized. Its complexity has been shown to be NP-hard and a heuristic using
Cactus graphs (Paten et al., 2011) was provided.

2.4 Graph-based Methods

The Variant-based Graph (VG) representation of a collection of genomes
was introduced in the tool GenomeMapper (Schneeberger et al., 2009) for
sequence alignment against multiple genomes. This representation follows a sim-
ilar principle as reference indexing methods with the exception that the under-
lying data structure does not index variants with respect to a reference but in-
stead implements a fully indexed multi-genome reference in the form of a graph.
GenomeMapper fragments each input genome into blocks of equal length main-
tained in a block table. Blocks corresponding to shared regions in the genomes
are stored only once and each block is connected to its neighboring blocks, thus
forming a graph in which bubbles are formed by blocks of divergent sequences.
In addition, a k-mer hash-based index is built to map each k-mer occurring in
the input genomes to a list of blocks and positions in the blocks. This index is
used to identify seeds for the alignment.

The Generalized Compressed Suffix Array (GCSA) (Sirén et al., 2011,
2014) is a self-index data structure which indexes an MSA of genomes into a
finite automaton. The latter is encoded using a generalization of the BWT to
finite automata, achieving in the expected case for a constant-size alphabet A an
O(n·(1+ |A|

ω
)O(logn)) bits representation. Possible applications are read alignment,

split-read alignment using splicing graphs, probe and primer design as well as
alignment to assembly graphs. GCSA has been improved into GCSA2 (Sirén,
2017) which is the core data structure of a VG toolkit, vg (vg team, 2015),
providing sequence alignment and read mapping over a multi-genome reference
using the seed-and-extend paradigm.

HISAT2 (Kim et al., 2016) is a VG alignment tool for populations of genomes

36

based on HISAT (Kim et al., 2015). It uses a Hierarchical Graph FM-Index
(HGFM) composed of a main Graph FM-Index (GFM) based on GCSA to repre-
sent the general population of genomes and a large number of small GFMs, each
representing a small genomic region.

PanCake (Ernst and Rahmann, 2013) is an extension of string graphs, known
from genome assembly (Myers, 2005), which achieves compression based on PSA.
PanCake graph vertices represent a reference subsequence and a set of tuples
called feature instances. Such a tuple contains a chromosome identifier, the po-
sition of a subsequence located in the identified chromosome and similar to the
reference subsequence, as well as compressed information necessary to reconstruct
the subsequence. Feature instances from the same chromosome are ordered in
a doubly linked list, such that the entire chromosome can be reconstructed by
iterating over the list and concatenating the reconstructed subsequences. New
genomes to be inserted in the data structure are pairwise aligned with the chro-
mosomes already inserted in the graph. One application of PanCake graphs is
core and singleton genomes extraction: Singleton regions are the vertices that
contain a unique feature instance, while core regions are the vertices containing
at least one feature instance from every genome stored in the graph.

2.5 de Bruijn graph Methods

A usual step following the dBG (Section 1.2.2.1) construction is to compact
it in order to decrease the memory requirements and simplify the graph for fur-
ther analysis. As building a compacted dBG requires to build the uncompacted
dBG first, much attention has been focused on algorithms enabling the direct
construction of the compacted dBG without its uncompacted counterpart.

SplitMEM (Marcus et al., 2014) makes use of the dBG to extract shared
regions of a set of similar genomes. The algorithm directly builds the compacted
dBG in O(N log g) time and O(N + |G|) space with g being the length of the
longest genome and |G| the size of the compacted dBG. To this end, SplitMEM
exploits the relations between dBG and suffix tree (Section 1.2.3.1) with the use of
suffix skips, a generalization of suffix links that allow to connect internal vertices
of a suffix tree by trimming multiple characters at the beginning of a suffix. The

37

augmented suffix tree allows to identify first all MEMs of length at least k in
the genomes. As MEMs can overlap and be nested, they are split using suffix
skips in order to build the set of repeatNodes, substrings occurring at least twice
in the pan-genome. Then, uniqueNodes, unique substrings of the pan-genome
that link repeatNodes, as well as outgoing edges for each vertex, are identified.
Core or accessory genome extraction can be performed with core genome defined
as subsequences of the pan-genome occurring in at least 70 % of the indexed
genomes.

Baier et al. (2016) improved SplitMEM with two algorithms, one using the
CST and the other using the BWT. The CST algorithm follows the same two steps
as SplitMEM: first, identifying repeatNodes based on left and right maximality
of repeats, then identifying uniqueNodes that link repeatNodes, as well as edges
of the graph. It runs in O(N) instead of O(N log g) time, as suffix skips are
not required to identify repeatNodes and a non-comparison sorting algorithm is
used to identify uniqueNodes and edges of the dBG. Instead, the BWT algorithm
computes the complete compacted dBG in a single backward pass over the pan-
genome and runs in O(N log |A|) time for an alphabet A.

TwoPaCo (Minkin et al., 2016) is a highly parallel method to build the com-
pacted dBG of many similar whole genome sequences. It reduces the problem
of finding maximal non-branching paths in the dBG to finding in the input se-
quences the positions of junctions, k-mers that are branching and k-mers that
start or finish an input sequence. For this purpose, the algorithm considers first
a set of candidate junction positions in the input sequences. For each such po-
sition i, the two (k + 1)-mers starting at positions i and i − 1 are inserted into
a data structure D. Then, each such position i is processed again by querying
D for all possible successors and predecessors of the k-mer starting at position
i. If the k-mer has an edge in-degree of 1 and an edge out-degree of 1, it is not
a junction. TwoPaCo uses this method in a first pass with a BF (Section 1.2.5)
as data structure D to be memory efficient and select the candidate junction
positions. Those positions are then used as input for the second pass with a hash
table (Section 1.2.4) as data structure D to remove the false positive junctions
generated by the BF. Because the two-pass method can still be memory inten-
sive, k-mers are divided into partitions and the two-pass method deals with each
partition once at a time. The expected running time is O(Nf + k · (|G|+ σϕψ))

38

with f being the number of hash functions used in the BF, σ being the number
of non-junctions in G, ϕ being the probability of a non-junction to be a false
positive and ψ being the average number of times a false positive junction occurs
in an input sequence. The expected memory is O(Max(m, k · (δ + σϕ))) with m

being the number of bits in the BF and δ being the number of junctions.

BCALM (Chikhi et al., 2015) and by extension its highly parallel version
BCALM 2 (Chikhi et al., 2016) are methods to compact efficiently the dBG from
reads and whole genome sequences. The approach used is the inverse of the one of
TwoPaCo: Instead of identifying junction k-mers, BCALM 2 progressively com-
pacts the dBG such that junction k-mers naturally arise from it. In BCALM 2,
k-mers are first partitioned in clusters with regard to their minimizer Roberts
et al. (2004), the lexicographically smallest of their p-mers with p < k. Each
k-mer x is attributed to the cluster corresponding to the minimizer minp of its
prefix x(1, k − 1). It is also attributed to the cluster corresponding to the min-
imizer mins of the suffix x(2, k − 1) if minp ̸= mins. This ensures that k-mers
with the same left or right minimizer are in the same cluster. Then, the clusters
are compacted in parallel based on their respective (k − 1)-length overlaps and
minimizers. Each such compaction produces a set of strings with each string of
length k + η − 1 being the compaction of η k-mers. Each compacted string of
cluster min might have a left (reciprocally right) lonely end, a (k − 1)-length
prefix (reciprocally suffix) for which min is not the minimizer. These strings are
candidates to merge with strings of other clusters in a reuniting step.
Note that TwoPaCo and BCALM 2 build the compacted dBG of single or mul-
tiple genomes, but neither index the dBG nor store the dataset identity from
which the k-mers originate.

The usage of cdBGs (Section 1.2.2.1) in a pan-genome context was introduced
by the de novo assembler Cortex (Iqbal et al., 2012). In a pan-genomic context,
colors of the cdBG represent genomes in which the k-mers occur. Cortex can
perform assembly of single genomes and populations of genomes that scale to
eukaryotic genome sizes, and its algorithms can genotype simple and complex
variants. Bubble calling and path divergence algorithms make extensive use of
the colors to aggregate information from different samples and accurately identify
the variant types. The cdBG data structure of Cortex is a hash table in which
hashed k-mers are associated to various information such as colors and coverage.

39

Vari (Belk et al., 2016) is also a succinct data structure for indexing a pan-
genome as a cdBG. It uses the BOSS representation (Bowe et al., 2012) of succinct
dBGs based on an adaptation of the FM-Index. The BOSS representation of a
dBG G is defined by the edge-BWT of G and two bitvectors. The edge-BWT of G
is the sequence of edge labels sorted according to the edges’ co-lexicographic order
of their starting nodes. The bitvectors register the positions of specific edges for
each node. Vari builds the BOSS representation of the union of individual dBGs
and stores additionally a two-dimensional binary array containing the colors of
each edge. Vari was compared to Cortex on multiple sets of similar whole genome
sequences by constructing the cdBG and performing a bubble calling algorithm.
Results show that Vari outperforms Cortex regarding the memory efficiency while
Cortex is the most time efficient algorithm.

2.6 k-mer based Methods

As q-gram indexes, also called k-mer indexes, require large amount of mem-
ory and are often used for sequence alignment purposes, Claude et al. (2010)
proposed two compressed q-gram indexes dedicated to highly repetitive sequence
collections. The first method divides a sequence collection of total length N

into blocks of length l and establishes an index that associates every occurring
q-gram to a list of blocks in which it appears. The sequence collection is encoded
using a grammar-based compressor that can efficiently encode long repetitions
and provides linear time decompression. Lists of blocks are first delta-encoded
to limit the size of each number in the list. Then, each number is encoded
using a variable-length encoding technique that assigns a shorter encoding to
smaller numbers. Finally, LZ-77 (Ziv and Lempel, 1977) compresses the pre-
viously encoded list to take advantage of its internal repetitions. Search time
for a q-gram is in O(N · (1 − (1 − l

N
)occ)) average time and O(Min(l · occ,N))

worst-case time, with occ being the occurrence number of a searched q-gram. The
second proposed index is a grammar-compressed self-index based on a Straight-
Line Program (SLP), a grammar generating a unique string. Indexing a col-
lection of sequences based on SLPs of minimum size can achieve some com-
pression, but computing it is an NP-complete problem. Instead, the authors
proposed to use a grammar-based compressor that does not exactly generate an
SLP but provides a good heuristic for this problem. This self-index requires

40

γ · (log r + log γ + logN
|A|) + r · (3 log r + logN) bits where γ is the length of the

final compressed stream, r is the number of rules and A is the grammar used.
Worst-case running time is in O((q · (q + logN) + occ) logN log r).

The Sequence Bloom Tree (SBT) from Solomon and Kingsford (2016) is
a data structure for large scale querying of genomic experiments. It is designed
as a binary tree with BFs as vertices. Leaves of the tree approximately repre-
sent genomic experiments: k-mers are extracted from each such experiment and
inserted into the BF of the corresponding leaf. An internal vertex is the union
of its two children BFs, i.e. a BF in which an element is set to 1 if the element
at the same position in at least one of the two children is 1. As BFs generate
false positives, leaves do not represent dBGs but approximations of k-mer pools
instead. Although the BF size must be the same for all vertices of the tree, BFs
are compressed using RRR Raman et al. (2007) such that over-sized BFs have a
higher compression ratio. An SBT is queried with a pattern P by decomposing it
into k-mers which are in turn used to query the SBT in a top-down manner. For
each vertex v of an SBT t traversed during the querying, the subset of k-mers
that are present according to the vertex BF is determined. This subset is then
used to query children(v, t). It enables to prune the search for branches that do
not contain the queried k-mers. A match of pattern P in a genomic experiment
represented by leaf v is reported if θ · (|P | − k + 1) k-mers from P are reported
present in v with 0 ≤ θ ≤ 1 being a user-defined threshold. Because of the
false positives and the heuristics used for the pattern matching, the number of
experiments in which P occurs is a subset of the ones reported by the SBT.

41

CHAPTER III

Pan-genome Indexing

3.1 Introduction

As described in Chapter II, efficient tools have been proposed to index and an-
alyze pan-genomes. However, such methods and data structures do not cover all
expected features for pan-genome analysis. Most of them operate only on draft
or finished assemblies as input, while such assemblies are available only for a
small fraction of species. Furthermore, hundreds or thousands of such assemblies
might be required to characterize the pan-genome of a species, a number far much
larger than what is available in most cases. By the end of February 2017, the Na-
tional Center for Biotechnology Information (NCBI) Genome database (NCBI,
2017) contained 23,004 assembled genomes for which about 85 % only have one
assembly available. However, unassembled reads abound in databases and rep-
resent the vast majority of data available. By the end of February 2017, the
NCBI Sequencing Read Archive (SRA) database (NCBI, 2007) contained about
9.8 petabases of reads. Also, methods using an assembly as reference introduce a
bias in the analysis towards the reference. Finally, it has been shown that assem-
bly errors can lead to an over-estimation of the number of genes inferred from
an assembled genome (Denton et al., 2014). It might cause an over-estimation
of the size and growth of the core, accessory and singleton genomes. Hence, an
ideal data structure indexing a pan-genome should be reference-free and consider
assemblies as well as reads as input to take advantage of all the data available in
genomic databases.

Most methods presented in the previous chapter also use time or memory
costly algorithms to compute variants and similarities between the input genomes,

42

often relying on sequence alignments. Some of these tools simply leave to the user
the burden of obtaining a reference and a set of variants with respect to this refer-
ence. Rather, a data structure for pan-genome indexing should be capable of com-
puting variants without using sequence alignment methods. More importantly,
almost all methods we are aware of consider that pan-genomes are immutable de-
spite the fact that they are continuously growing with newly sequenced genomes.
Indeed, large scale sequencing projects such as the 1000 Genomes Project (1000
Genomes Project Consortium, 2015) might take years to complete and regularly
release new sequenced genomes. Because methods indexing and analyzing pan-
genomes are not incremental, any new genome added to the pan-genome causes
its entire index to be recomputed.

In this chapter, we propose a new lightweight data structure for indexing
a pan-genome as a cdBG (Section 1.2.2.1), the Bloom Filter Trie (BFT). It is
alignment-free, reference-free, incremental and considers assemblies as well as
reads in input. The BFT provides insertion and look-up operations for strings of
fixed length associated with a set of colors. The data structure is described in the
next section, followed by the operations it supports. Then, a description of the
traversal method of a cdBG stored as a BFT is provided. Finally, experimental
results showing the performance of the data structure are presented. The work
described in this chapter was published in (Holley et al., 2015, 2016) and is joint
work with Roland Wittler and Jens Stoye. Note that in the figures of this chapter,
grey colored labels and arrows are for illustration but are not stored in practice.

3.2 The Bloom Filter Trie

The Bloom Filter Trie (BFT) is a data structure based on the burst trie
(Section 1.2.3.2) that implements a cdBG (Section 1.2.2.1). Each input genome
represented by a set of assembled sequences or by a set of reads is first decomposed
into its constituent k-mers. These k-mers are inserted into the BFT with colors
representing the genomes in which they occur.

In the following, let bft = (Vbft , Ebft) be a trie that we name BFT. The BFT
is created for a certain value of k in which we assume that k is a multiple of
an integer l such that k-mers can be split into k

l
equal-length substrings. The

43

BFT has two types of vertices: container vertices and color set vertices. A
container vertex is a list of containers which are compressed or uncompressed.
Such a list starts with zero or more compressed containers and finishes with
at most one uncompressed container. A color set vertex contains a color set
and is a leaf of the BFT. An edge (v, v′) ∈ Ebft starting from the compressed
container of a container vertex v and pointing to a vertex v′ ∈ children(v, bft)

represents a substring of length l. Thus, the maximum height of a BFT bft is
heightmax (bft) =

k
l

since a k-mer is the concatenation of k
l

substrings of length l,
each of which is represented by at most one edge in a path starting from the root.
Such a path ends with a color set vertex. Indeed, a color set vertex is always
located at depth j = heightmax(bft) while a container vertex is always located at
a depth i < j. A k-mer may be represented by a path having less than heightmax

edges because its suffix may be stored in an uncompressed container, together
with the color set of the k-mer. The bursting method replaces an uncompressed
container by a compressed one in order to represent the indexed k-mers more
efficiently. This method is adapted from the burst trie and is described in the
following sections with a more detailed description of the BFT.

3.2.1 Uncompressed Container

An uncompressed container of a container vertex v in a BFT is used to index
a small number of k-mer suffixes and their colors. It is a limited capacity set of
tuples <s, color p⊙s> where p⊙s is a k-mer from which p is the prefix represented
by the path from the root to v, s is the suffix and color is the color set associated
to the k-mer p ⊙ s. Tuples are lexicographically ordered in the uncompressed
container according to their suffixes. The set of tuples is implemented with a
dynamic array.
When the number of suffixes stored exceeds the capacity ϕ of the uncompressed
container, it is burst into a compressed container to represent more efficiently the
suffixes and colors it contains. In this process, each suffix s of the uncompressed
container is split into a prefix spref of length l and a suffix ssuf of length |s| − l
such that s = spref ⊙ ssuf . Prefixes are stored in a new compressed container
replacing the uncompressed one in vertex v. Such prefixes are the labels of edges
starting from the compressed container and ending on new children containing
new uncompressed containers storing the suffixes and their color sets. Suffixes

44

sharing a common prefix are stored in the same child. In the following, we refer
to the prefixes of k-mer suffixes stored in compressed containers as edge labels.
An example of a BFT and a bursting is given in Figure 3.1.

aggctatgctca
aggctgcattgt
ctcatttgataa
gccctgcattgt
gcgctatgctga

uc

(a)

cc1

tatgctca
tgcattgt

uc1
tttgataa

uc2
tgcattgt

uc3
caggaatc
tatgctga

uc4

aggc ctca gccc gcgc

(b)

Figure 3.1: Insertion of six suffixes (that are here complete k-mers) with different
colors into a BFT with k = 12, l = 4 and ϕ = 5. In (a), the first five suffixes
are inserted at the root into an uncompressed container uc. When a sixth suf-
fix “gcgccaggaatc” is inserted, uc exceeds its capacity and is burst, resulting in
the BFT structure shown in (b) with one compressed container and four uncom-
pressed containers. Note that in practice, container vertices might have more
than one container and suffixes might have more than one color.

3.2.2 Compressed Container

A bursting replaces an uncompressed container by a compressed one, used to
store q ≤ ϕ edge labels in compressed form (in Figure 3.1(b), q = 4) and their
corresponding edges pointing to children containing the suffixes. A compressed
container is composed of multiple layers. The first layer is a BF (Section 1.2.5)
used for the approximate membership of edge labels while the second layer is
based on an exact representation of the edge labels. Although those two layers
contain redundant information, the primary purpose of the first layer is to ac-
celerate container insertion and look-up as it can be queried in constant time

45

rather than linear time for the second layer. BFs of compressed containers are
denoted by bf and each such BF is a bit array of length m associated with f hash
functions. An example of a BF for the edge labels of Figure 3.1b is provided in
Figure 3.2.

0 10 0 1 1 0 0 1 10 1

h1(aggc)

h2(gcgc)

h1(gcgc)
h2(gccc)

h1(gccc)
h2(aggc)

h2(ctca)

h1(ctca)

bf

Figure 3.2: BF of four edge labels “aggc”, “ctca”, “gccc” and “gcgc” with f = 2
hash functions h1 and h2.

As a BF is a one-sided data structure that generates false positives when
queried, it is necessary to have an exact representation of the edge labels in a
second layer of the compressed containers. An ideal index for this task is a path
and level compacted tree, but as described in Section 1.2.3, tree representations
can be highly memory inefficient and they must be designed with special care.
For this purpose, we propose a representation of an edge label tree relying on
a hierarchy of arrays. It is based on a method called quotienting from Bender
et al. (2012) that was first suggested by Knuth (1998). In his book “The Art
of Computer Programming: Sorting and Searching”, Knuth describes a simple
form of hashing called division hashing in which the hash fingerprint of a key e is
h(e, i) = (⌊ e

i
⌋ mod m) + 1 and corresponds to the quotient of the key e divided

by an integer i. This method is generally not used with hash tables because
of its poor hashing performance. Bender et al. (2012) reused this concept as
the core method of the Quotient filter, an approximate membership query data
structure supporting all operations of the BF as well as deletion and resizing.
In the Quotient filter, the division hashing is used differently: a key e is first
hashed with a universal hash function and its computed z bits fingerprint is
partitioned into its λ leftmost bits, the quotient, and the µ rightmost bits, the
remainder, such that z = λ + µ. Naturally, the quotient is a binary prefix of
the fingerprint and the remainder is a binary suffix of the fingerprint. While
all remainders are stored in the Quotient filter, the same quotients are stored
only once with additional information to retrieve all remainders of each quotient.
Although efficient, the Quotient filter cannot be used to index edge labels in
compressed containers, because only the hash fingerprint is stored and not the

46

keys themselves. Furthermore, false positives occur in such a data structure if
and only if two different keys hash to the same fingerprint. Instead, the BFT
uses the quotienting method in the compressed containers by directly splitting
each edge label label into a prefix labelp and a suffix label s with respective binary
representations α (the quotient) and β (the remainder) of length λ and µ bits.
The alphabet we consider is the DNA alphabet A = {a, c, g, t} for which each
symbol can be stored using two bits. Edge label prefixes and suffixes are indexed
in a three level tree: Edges between the first and second level index the prefixes
while edges between the second and third level index the suffixes. An example of
such a tree (cf. Figure 3.1b) is provided in Figure 3.3.

ag gc

gc ca cc gc

ct

aggc ctca gccc gcgc

Figure 3.3: Tree representation of four edge labels “aggc”, “ctca”, “gccc” and
“gcgc”.

To represent such a tree, three structures pref , suf and clust are used:

• pref represents the root of the edge label tree and its out-going edges. It is a
bit array of length 2λ, initialized with 0s and used to record prefix presence
exactly. Here the binary representation α of a prefix labelp is interpreted as
an integer such that pref [α] = 1 records the presence of labelp in the edge
label tree;

• suf represents the leaves of the edge label tree and their in-going edges.
It is an array of q suffixes label s sorted in ascending lexicographic order of
label ;

• clust represents the vertices at the second level of the edge label tree. It is
an array of q bits, one per suffix of array suf , that represent cluster starting
points. A cluster is a list of consecutive suffixes in array suf sharing the
same prefix. It represents a set of leaves in the edge label tree sharing the

47

same parent. Each cluster has an index 1 ≤ icluster ≤ 2λ and a start position
icluster ≤ poscluster ≤ q in the array suf . Position poscluster in array clust is
set to 1 to indicate that the suffix in suf [poscluster] starts a cluster because
it is the lexicographically smallest suffix of its cluster. A cluster contains
n ≥ 1 suffixes and, therefore, each position poscluster < i < poscluster + n in
array clust is set to 0. The end of a cluster is implicitly indicated by the
beginning of the next cluster or if poscluster ≥ q.

The exact representation of the edge labels shown in Figure 3.3 is shown in
Figure 3.4.

aa ac ag at ca cc cg ct ga gc gg gt ta tc tg tt
0 10 0 0 0 0 0 0 0 0 0 0 01 1pref

1 1 1 0clust

gc ca cc gcsuf

Figure 3.4: Exact representation of four edge labels “aggc”, “ctca”, “gccc” and
“gcgc” in a compressed container with |labelp| = 2 and |label s| = 2.

Each compressed container has a third and last layer which is the array edge.
It contains q edges, one for each edge label stored, i.e., one for each suffix of
array suf . Each of these edges points to a child.
Arrays suf , clust and edge are dynamic such that function Insertarray(e, pos , A)

inserts an item e at position pos of the array A by reallocating it and shifting every
item having an index i ≥ pos by one position in O(|A|) time. The dynamic nature
of those arrays allows to store contiguously in memory all children accessible
through the edges of a compressed container. In practice, only two pointers must
be stored per compressed container, one for all container vertices and one for all
color set vertices, to access all children of a compressed container. Therefore, the
size of edges in a BFT is negligible.
The size of q edge labels indexed in a compressed container is m+2λ+ q · (µ+1)

bits. The prefix length |labelp|, its bit length λ and the BF size m are chosen
such that the set of edge labels stored in a compressed container does not occupy
more memory than their original representation in an uncompressed container,
i.e., m+ 2λ ≤ q · (λ− 1). Each edge label inserted after a bursting occupies only
µ + 1 extra bits. When the average size per edge label stored is close to µ + 1

48

bits, the arrays pref , suf and clust can be recomputed by increasing |labelp| and
decreasing |label s|, such that 2λ′

+q ·µ′ < 2λ+q ·µ, where λ′ and µ′ are the values
of λ and µ, respectively, after resizing.

3.2.3 Color Set

A color set is represented by a dynamic bit array color initialized with 0s.
Each color has an index icolor such that colorx[icolor] = 1 records that k-mer x
has color icolor . Color sets can be compressed by storing sets that are identical
for multiple k-mers once. To this end, a list of all color sets occurring in the
BFT is built and sorted in decreasing order of total size which we define as the
number of k-mers sharing a color set multiplied by its size. Then, by iterating
over the list, each color set is added incrementally to an external array if the
integer encoding its position in the array uses less space than the size of the color
set itself. Finally, each color set present in the external array is replaced in the
BFT by its position in the external array.

3.3 Operations

The BFT supports all operations necessary for storing, traversing and search-
ing a pan-genome. Here we describe the most basic ones of them, insertion and
look-up of k-mers and their colors, as well as how the sets of colors are compressed.
The traversal of the graph is discussed in the next section.

The operations described in the following use three auxiliary functions:

• HammingWeight(α, pref) counts the number of 1s in pref [1..α] and corre-
sponds to the number of prefixes represented in array pref that are lexico-
graphically smaller than or equal to a prefix labelp with binary representa-
tion α of length λ bits. This requires O(2λ) time.

• Select(i, clust) returns the position of the i-th entry 1 corresponding to the
start position of cluster i in array clust of length q. If the entry is not found,
the function returns q+1 as a position. While Select could be implemented

49

in O(1) time (Ferragina and Manzini, 2000), we use a more naive but space
efficient O(q) time implementation.

• Insertcc_arrays(bv , s, pos , cc) performs two tasks. First, it inserts a binary
value bv and a suffix s at position pos of arrays clust and suf , respectively,
in compressed container cc. Then, it creates a new edge pointing to a
new child and inserts this edge at position pos of array edge in compressed
container cc. This function takes O(q) time with q being the number of
edge labels in the compressed container cc. It returns the end vertex of the
edge stored in edge[pos].

3.3.1 Container Insertion

This section describes the functions inserting a k-mer suffix into an uncom-
pressed container and inserting an edge label into a compressed container. These
functions are used in the next section to describe how to perform a k-mer insertion
in a BFT.

The function Insertuc inserts a k-mer suffix s into an uncompressed con-
tainer uc. Because these containers are lexicographically sorted, the function
simply performs a binary search to find the position where s must be inserted.
Insertuc takes O(log ϕ+ ϕ) time with ϕ being the capacity of uc, and returns the
color set associated with s such that new colors can be added into the set.

Inserting an edge and its label label = labelp ⊙ label s with binary representa-
tion α ⊙ β into a compressed container cc is achieved with the function Insertcc

provided in Algorithm 1. First, line 1 records the presence of label in bf in
O(f) time. Next, line 3 records the exact presence of prefix labelp by setting the
value of pref [α] to 1. While those two insertions are simple, inserting label s into
its cluster is a more complicated task, especially in the case where the cluster
already exists as it must be expanded. First, line 4 computes in O(2λ) time the
Hamming weight i of labelp, i.e., the index id cluster of the (potentially new) cluster
in which suffix label s will be inserted. From the index id cluster , line 5 computes
the cluster start position poscluster using Select. If pref [α] = 1 prior to insertion,
it means a cluster of n ≥ 1 suffixes already exists for prefix labelp. Thus, lines 8
to 10 compute the insertion position pos of label s in cluster id cluster such that

50

after the insertion of label s into suf , suffixes of the cluster remain lexicograph-
ically sorted. In lines 11 to 18, suffix label s is inserted into suf [pos] such that
poscluster ≤ pos ≤ poscluster + n. If pos = poscluster , label s starts its cluster: a
bit 1 is inserted into clust [pos] and clust [pos + 1] is set to 0. Otherwise, a 0 is
inserted into clust [pos]. If pref [α] ̸= 1 prior to insertion, cluster id cluster is a new
cluster: a bit 1 is inserted into clust [poscluster] to create a new cluster, and label s

is inserted into suf [poscluster] in line 20. Lines 5 to 20 take O(q) time. Hence,
function Insertcc takes O(f + 2λ + q) time. The function returns the end vertex
of the edge labeled with label . Note that if label is already present in the con-
tainer, lines 12 and 17 ensure that it is not inserted a second time in addition to
line 19 which returns the end vertex of its edge. The returned vertex is used by
Algorithm 2 to recursively insert k-mer suffixes in subtries of the BFT.

Algorithm 1 Insertcc(labelp ⊙ label s, cc)

1: Insertbf(labelp ⊙ label s, cc.bf)
2: prev ← cc.pref [α]
3: cc.pref [α]← 1
4: i← HammingWeight(α, cc.pref)
5: pos ← Select(i, cc.clust)
6: if prev = 1 then
7: prev ← pos
8: if pos ≤ |suf | and cc.suf [pos] < label s then pos ← pos + 1

9: while pos ≤ |suf | and cc.clust [pos] = 0 and cc.suf [pos] < label s do
10: pos ← pos + 1

11: if pos > |suf | then return Insertcc_arrays(0, label s, pos , cc)
12: else if cc.suf [pos] ̸= label s then
13: if prev = pos then
14: cc.clust [pos]← 0
15: return Insertcc_arrays(1, label s, pos , cc)
16: else return Insertcc_arrays(0, label s, pos , cc)

17: else if cc.clust [pos] = 1 and prev ̸= pos then
18: return Insertcc_arrays(0, label s, pos , cc)
19: else return cc.edge[pos]

20: else return Insertcc_arrays(1, label s, pos , cc)

As an example, the internal representation of the compressed container shown
in Figure 3.1b after insertion of the edge label “gtat” is given in Figure 3.5. The
presence of prefix “gt” is recorded in pref [12]. Then, its cluster index and start
position are computed as 4 and 5, respectively. Consequently, after reallocation
of arrays suf and clust , suffix “at” is inserted in suf [5] and clust [5] is set to 1 to

51

indicate suf [5] starts a new cluster.

aa ac ag at ca cc cg ct ga gc gg gt ta tc tg tt
0 10 0 0 0 0 0 0 1 0 0 0 01 1pref

1 1 1 0clust 1

gc ca cc gcsuf at

0 10 0 1 1 0 0 1 11 1

h1(aggc)

h2(gcgc)

h1(gcgc)
h2(gccc)

h1(gccc)
h2(aggc)

h2(ctca)

h1(ctca)

bf

h1(gtat)

h2(gtat)

Figure 3.5: Insertion of edge label “gtat” in a compressed container with four
edge labels “aggc”, “ctca”, “gccc” and “gcgc”. Inserted or changed parts are
highlighted. Array edge is not represented.

3.3.2 Tree Insertion

Function TreeInsert described in Algorithm 2 inserts a k-mer into a BFT bft .
Such an insertion is performed recursively by traversing bft from the root in a top-
down manner. In each traversed container vertex v, either an edge and its label
are inserted into a compressed container, or a k-mer suffix into an uncompressed
container using the functions of Section 3.3.1. For this purpose, TreeInsert iterates
over the containers of v from the head to the tail of the container list and the
insertion of the edge label label into a compressed container is only triggered
if its BF reports label as present in the container. If it is indeed present in
the container, the insertion continues recursively on the end vertex of the edge
labeled with label in the container. At this point, label might not be present in
the container because it is a false positive of the BF. False positives of compressed
container BFs are “recycled”, which is a nice property of the BFT: the BF remains
unchanged, i.e., it is not necessary to perform line 1 of Algorithm 1, and only
pref , suf , clust and edge are updated as described in lines 2 to 20 of Algorithm 1.
It allows to limit the number of burstings and compressed containers in a BFT.
Algorithm 2 is initially called as TreeInsert(x, l, root , bft) to insert a k-mer x into
a BFT bft with root being the root vertex of bft . In the worst case, all container

52

vertices on a traversed path represent all possible edge labels and the BFs have a
false positive ratio of 0. In such case, each traversed container vertex has

⌈
|A|l
ϕ

⌉
containers. The longest path of a BFT has k

l
container vertices. Therefore, the

worst case time of TreeInsert is O
(

k
l
·
(⌈

|A|l
ϕ

⌉
·f +2λ+ q

))
. The function returns

the color set associated to the inserted k-mer such that colors can be inserted in
it.

Algorithm 2 TreeInsert(s, l, v, bft)
1: for each container cont in v do
2: if cont is compressed then
3: if MayContain(s(1, l), cont .bf) then
4: vchild ← Insertcc(s(1, l), cont)
5: if vchild is a color set vertex then return vchild.color
6: else return TreeInsert(s(l + 1, |s| − l), l, vchild, bft)
7: else return Insertuc(s, cont)

3.3.3 Container Look-up

Similarly to the previous sections, we describe here the functions looking
for a k-mer suffix in an uncompressed container and looking for an edge in a
compressed container. These functions are used in the next section to describe
how to perform a k-mer look-up in a BFT.

Searching for a k-mer suffix s in an uncompressed container uc is performed
by the function Containuc which is similar to the function Insertuc. A binary search
of suffix s is performed in O(log ϕ) time, where ϕ is the capacity of uc. It returns
the set of colors associated with the suffix s in uc if it is found or an empty set
otherwise.

The function Containcc, testing whether an edge label label = labelp ⊙ label s

with binary representation α⊙ β is stored in a compressed container cc, is given
in Algorithm 3. Line 1 verifies the presence of label in bf and its prefix labelp

in the array pref in O(f) time. If labelp is present, line 2 computes in O(2λ)
time the Hamming weight i of labelp, i.e., the index of the cluster in which suffix
label s is possibly situated. Line 3 locates the rank of i, i.e., the start position of
the cluster, and lines 4 to 7 compare the suffixes of the cluster to label s. Lines 3
to 7 are computed in O(q) time. Algorithm 3 has therefore a worst case time of

53

O(f +2λ + q). If label is found, the algorithm returns the end vertex of the edge
labeled with label . Otherwise, a vertex containing an empty color set is returned.

Algorithm 3 Containcc(labelp ⊙ label s, cc)

1: if MayContain(labelp ⊙ label s, cc.bf) and cc.pref [α] = 1 then
2: i← HammingWeight(α, cc.pref)
3: start ← Select(i, cc.clust)
4: pos ← start
5: while pos ≤ |suf | and (pos = start or cc.clust [pos] = 0) do
6: if cc.suf [pos] = label s then return cc.edge[pos]
7: else if cc.suf [pos] < label s then pos ← pos + 1
8: else pos ← |suf |+ 1
9: return a vertex containing ∅

3.3.4 Tree Look-up

The function TreeContain, testing whether a k-mer x is present in a BFT bft , is
given in Algorithm 4. Each container vertex v is the root of a subtrie representing
k-mer suffixes. The BFT look-up function traverses bft top-down from the root
and, for a container vertex v, queries its containers from the head to the tail of the
container list for the k-mer suffix xsuf = x(l · depth(v, t) + 1, |x| − l · depth(v, t)).
If the queried container is compressed, its BF is queried for xsuf (1, l) using the
function MayContain in O(f) time. In case of a positive answer, the function
Containcc is used for an exact membership of xsuf (1, l). The usage of MayContain
before Containcc allows to reduce the querying time of this container from O(f +
2λ+q) to O(f) if the BF reports xsuf (1, l) as not present. If xsuf (1, l) is found, the
traversing procedure continues recursively on the corresponding child. Otherwise,
the absence of xsuf (1, l) indicates the absence of x in bft since xsuf (1, l) cannot
be in another container of v because of the tree insertion process explained in
Section 3.3.2. If the container is uncompressed, the presence of xsuf is detected
using the function Containuc. As an uncompressed container has no children,
a match indicates the presence of the k-mer. Algorithm 4 is initially called as
TreeContain(x, l, root , bft) and its worst case time is O

(
k
l
·
(⌈

|A|l
ϕ

⌉
· f +2λ+ q

))
.

If the queried k-mer is found, its color set is returned. Otherwise, an empty color
set is returned.

54

Algorithm 4 TreeContain(s, l, v, bft)
1: for each container cont in v do
2: if cont is compressed then
3: if MayContain(s(1, l), cont .bf) then
4: vchild ← Containcc(s(1, l), cont)
5: if vchild is a color set vertex then return vchild.color
6: else return TreeContain(s(l + 1, |s| − l), l, vchild, bft)
7: else return Containuc(s, cont)

8: return ∅

3.4 Successors and Predecessors Traversing

The BFT is an implementation of the cdBG used to index a pan-genome. In
order to analyze a pan-genome indexed with a BFT, it is necessary to traverse
the cdBG it represents. For example, the traversal can be used to extract all
paths of the cdBG for which the k-mers have all colors in their color sets. Such
paths belong to the core genome.

Let bft be a BFT representing a cdBG G. For a k-mer x, visiting all its pre-
decessors or successors in G, denoted by pred(x,G) and succ(x,G), respectively,
implies the look-up of |A| different k-mers in bft . Such a look-up would visit in
the worst case |A| ·heightmax (bft) container vertices in bft . This section describes
how to reduce the number of vertices and containers visited in bft during the
traversal of a vertex in G.

Observation 1. Let G be a cdBG represented by a BFT bft and x a k-mer corre-
sponding to a vertex of G. All k-mers of succ(x,G) share x(2, k−1) as a common
prefix and therefore share a common subpath in bft starting at the root. How-
ever, all k-mers of pred(x,G) have different first symbols and, therefore, except
for the root of bft do not share a common subpath. Hence, the maximum number
of visited container vertices in bft for all k-mers of succ(x,G) is heightmax (bft)

and for all k-mers of pred(x,G) is 1 + |A| · (heightmax (bft)− 1).

Lemma 1. Let G be a cdBG represented by a BFT bft , x a k-mer in bft and
v a container vertex of bft that terminates the shared subpath of the k-mers in
succ(x,G). If depth(v, bft) = heightmax (bft)−1, the suffixes of succ(x,G) may be
stored in any container of v. If not, they are stored in the uncompressed container
of v.

55

Proof. In a BFT bft representing a cdBG G, a container vertex v is the root of
a subtrie storing k-mer suffixes of length l · (heightmax (bft)− depth(v, bft)) with
l = k

heightmax (bft)
. Let s be the suffix of a k-mer from succ(x,G) that is rooted

at a vertex v ∈ Vbft . If depth(v, bft) ̸= heightmax (bft) − 1 but s is rooted at
a compressed container in v, then this compressed container stores s(1, l), and
s(l+1, |s|−l) is rooted in one of its children. As the divergent symbol between the
k-mer suffixes of succ(x,G) is in position |s|− 1, this symbol is in s(l+1, |s|− l),
rooted at one child of this compressed container. Therefore, v does not terminate
the common subpath shared by succ(x,G) k-mers.

Observation 1 and Lemma 1 prove that the only two cases where a look-up
of pred(x,G) or succ(x,G) must search in different containers of a vertex are:

• searching at the root of bft for k-mers of pred(x,G),

• if depth(v, bft) = heightmax (bft) − 1, searching at vertex v for suffixes of
succ(x,G).

Restricting the hash functions used in the compressed containers to take only
positions 2 through l − 1 of edge labels into account allows to limit the search
space.

Lemma 2. Let bft be a BFT in which the f hash functions hi of bf have the form
hi(label) : label(2, l−1)→ {1, ..,m} for i = 1, ..., f . Then, for a vertex container v
of bft and an edge label label , all possible edge labels label ′ = a1⊙label(2, l−1)⊙a2
are contained in the same container of v.

Proof. Assume a k-mer suffix s inserted into a container vertex v of bft . A look-up
for s analyzes the containers of v from the head to the tail of the container list. In
the worst case, s can be rooted, according to BFs, from all compressed containers
as a true positive or as a false positive. However, a look-up stops either on the
first compressed container claiming to contain the edge label label = s(1, l), or on
the uncompressed container. Therefore, as the hash functions of the BFs consider
only label(2, l − 1), a look-up will stop on the same container for any edge label
label ′ = a1 ⊙ label(2, l − 1)⊙ a2.

56

Figures 3.6 and 3.7 illustrate how the containers of container vertices are
traversed for the insertion of k-mer “aggctatgctca” predecessors and successors,
before and after restricting the BF hash functions.

cc1 cc2 cc3 uc1
v1

v5

v3 v4

v6

v2

preda
predgpredt predc

predt

predg

preda

predc
gagg aagg

ctat

tagg

ctat

(a) Before restricting the BF hash func-
tions. Multiple containers are tra-
versed at the root vertex v1.

cc1 cc2 cc3 uc1
v1

v5v3 v4v2

preda

predg
predt

predc

predt

predg

preda predc

v8v7v6

gaggaagg

ctat

taggcagg

ctat ctat

(b) After restricting the BF hash func-
tions. Only one container is traversed
for each container vertex.

Figure 3.6: Traversed paths for predecessors preda of k-mer x = “aggctatgctca”
such that preda = a⊙x(1, |x|−1) for all a ∈ A. Content of vertices is only shown
for the root, other vertices only have one traversed container and are represented
with an empty rounded box. Color set vertices are not represented.

As a consequence of Lemma 2, all edge label label stored or to store in arrays
pref , suf and clust of BFTs are modified such that label ′ = label(2, l)⊙ label(1, 1),
which guarantees that any label ′′ = label ′(1, l− 2)⊙ a2 ⊙ a1 are in the same con-
tainer. Furthermore, suffixes stored in array suf are required to have a minimum
length of two symbols to ensure that symbols a1 and a2, the variable parts be-
tween the different label ′′, are stored in array suf . Hence, as any label ′′ share
label ′(1, l − 2) as a prefix, they share the same cluster in arrays suf and clust .
Suffix prefixes label ′′ = label ′(1, l − 1)⊙ a1 also have consecutive suffixes in their
cluster. As an example, Figure 3.8 shows the compressed container of five edge
labels “aggc”, “ctca”, “gccc”, “gcgc” and “gtat” adapted for predecessor and suc-
cessor traversal. Figure 3.9 illustrates the same compressed container in which
the edge label ”tggc” is inserted. The edge label ”tggc” is, as the prefix “aggc”

57

cc1 cc2 cc3 uc1

v1

v7

succa
succgsucct

succc

v8

succasucccsucct
succg

atgc

ggct

(a) Before restricting the BF hash func-
tions. Multiple containers are tra-
versed at the leaf v8.

cc1 cc2 cc3 uc1

v1

v7

succa
succgsucct

succc

v8

succasuccc
succt
succg

atgc

ggct

(b) After restricting the BF hash func-
tions. Only one container is traversed
for each container vertex.

Figure 3.7: Traversed paths for successors succa of k-mer x = “aggctatgctca”
such that succa = x(2, |x| − 1) ⊙ a for all a ∈ A. Content of vertices is only
shown for the leaves, other vertices have only one traversed container and are
represented with an empty rounded box. Color set vertices are not represented.

is already present in the container, a predecessor for a k-mer x with x(1, 3) =

“ggc”.

3.5 Evaluation

In this section, we compare the BFT implementation written in C, version
0.8.5, to the SBT (Section 2.6) implementation written in C++, version 0.3.5.
Indeed, the SBT presents the same characteristics as the BFT: it is alignment-
free, reference-free, incremental and considers assemblies as well as reads in input
by decomposing each input experiment into k-mers. The BFT implementation is
available at https://github.com/GuillaumeHolley/BloomFilterTrie.
All evaluations were carried out using a single thread on a server with 378 GB

58

aa ac ag at ca cc cg ct ga gc gg gt ta tc tg tt
0 00 0 0 1 1 0 1 0 1 1 0 00 0pref

1 1 1 1clust 1

cg cg ca tgsuf ac

01 0 0 11 0 0 1111

h1(gg)

h2(cg) h1(cg)

h2(cc)

h1(cc)

h2(gg)

h2(tc)

h1(tc)

bf

h1(ta)
h2(ta)

Figure 3.8: Internal representation of a compressed container with five edge la-
bels “aggc”, “ctca”, “gccc”, “gcgc”, “gtat”, adapted as “ggca”, “tcac”, “cccg”,
“cgcg”,“tatg”, respectively, for predecessor and successor traversal. Array edge
is not represented.

aa ac ag at ca cc cg ct ga gc gg gt ta tc tg tt
0 00 0 0 1 1 0 1 0 1 1 0 00 0pref

1 1 1 1clust 10

cg cg ca tgsuf acct

01 0 0 11 0 0 1111

h1(gg)

h2(cg) h1(cg)

h2(cc)

h1(cc)

h2(gg)

h2(tc)

h1(tc)

bf

h1(ta)
h2(ta)

Figure 3.9: Insertion of edge label “tggc” adapted as “ggct” in a compressed
container with edge labels “aggc”, “ctca”, “gccc”, “gcgc” and “gtat”. Array edge
is not represented. Inserted parts are highlighted.

of RAM and two 8-core Intel Xeon E5-2630 v3 2.4 GHz processors. All input
files were placed on a mechanical hard drive also used to write the output files.
Because this hard drive was shared among users of the employed server, all times
reported in the following evaluations are user times which do not include time
spent to wait for disk input and output operations, to the contrary of wall-clock

59

times. Note that this is at the advantage of the SBT implementation which is
mainly disk-based while the BFT implementation is mainly RAM-based (the disk
is used to perform color sets compression as described in Section 3.2.3).

The BFT implementation takes as input a list of k-mers for each experiment
to index such that users can employ the tool of their choice to extract k-mers
from sequencing experiments. Then, extracted k-mers are inserted into a BFT.
The capacity ϕ of uncompressed containers influences the compression ratio as
well as the time for insertion and look-up. We chose a value of ϕ = 248, as it
showed a good compromise in practice. Also, the edge label length l determines
the size of several internal structures of the BFT and how efficiently they can
be stored. We selected l = 9, as this limits the internal fragmentation of the
memory.

The SBT implementation takes as input FASTQ or FASTA files and ex-
tracts their k-mers with the tool Jellyfish (Marçais and Kingsford, 2011) which
is directly integrated in the implementation. For each sequencing experiment to
index, its constituent k-mers are extracted and inserted into a BF that is a leaf of
the SBT. Once all leaves are constructed, they are used by the implementation to
build the internal vertices. Then, all vertices are compressed using RRR (Raman
et al., 2007).
Because the SBT implementation integrates k-mer counting and leaf construc-
tion into a single operation without the possibility to distinguish each step, we
discarded the time to construct the leaves from the SBT construction time. It
allows to be as fair as possible by not reporting the time spent by Jellyfish to
count the k-mers. Hence, SBT construction time includes the time to construct
the internal vertices from the leaves and the time to compress all vertices of the
SBT.
Configuring the SBT implementation is not straightfoward. While the data struc-
ture is incremental, all its BFs must have the same size designed with respect to a
number of k-mers to insert and a number of hash functions in the BFs. However,
the number of k-mers per experiment of a dataset may be fluctuent. Furthermore,
in order to avoid saturation of 1s in the BFs composing the lowest levels of the
data structure, Solomon and Kingsford (2016) advise to compute the total count
of k-mers for a subset of the experiments to insert and design the BFs’ bit size
with respect to this number. However, it is unclear how this simplistic approach

60

scales with new insertions in the SBT. For all computed SBTs in the following,
we used one hash function for the BFs as in (Solomon and Kingsford, 2016), and
computed the total count of k-mers for a subset of the experiments representing
about 3.8 % of each dataset, as in the evaluation performed in (Solomon and
Kingsford, 2016).

The BFT and SBT were used to index and query two pan-genome datasets,
a bacterial dataset and a human tissue dataset, for which the evaluations are
shown in Sections 3.5.1 and 3.5.2, respectively. For each querying evaluation, we
used two different thresholds θ = 0.7 and θ = 0.9 indicating the ratio of k-mers
from a query that must be present in an indexed sequencing experiment to have
the query reported as present in this experiment.

3.5.1 P. aeruginosa Dataset

The dataset used for this evaluation is composed of 473 clinical isolates of
P. aeruginosa sampled from 34 patients (NCBI BioProject PRJEB5438), result-
ing in 338.61 Gbp of sequences. For each data structure, we inserted all 36-mers
with a minimum number of 3 occurrences in each sequencing experiment of the
dataset. As the size of BFs used by the SBT implementation must be specified
prior to the k-mer insertion and should be the same for all vertices, we computed
from 18 isolates a total count of 123,994,112 36-mers that the SBT implemen-
tation used as the BFs’ bit size. From this size and the maximum number of
36-mers extracted from a file of the dataset, a BF in a leaf of the SBT has a
maximum false positive ratio of 6.2 % in this evaluation. In total, 3,270,528,926
36-mers were inserted in both data structures. The construction evaluation is
shown in Table 3.1.

Table 3.1: BFT and SBT construction evaluation for 473 P. aeruginosa isolates.
Best results are highlighted.

BFT SBT
Insertion time 127.74 min > 6.69 min
Main memory usage peak 3.82 GB 0.51 GB
Disk usage peak 3.82 GB 13.64 GB
Disk size 0.68 GB 4.83 GB

61

The difference of construction times between BFT and SBT can be explained
by the fact that SBT construction time does not include the time spent to build
the leaves. Also, the user time was measured instead of wall-clock time. In-
deed, the BFT implementation is RAM-based while the SBT implementation is
disk-based, suggesting that in terms of wall-clock time, the SBT construction is
several times slower than its reported user time. A more accurate construction
comparison using a dedicated hard drive, measuring wall-clock time and distin-
guishing k-mer counting from leaf construction would provide more insights into
the real time performance of each data structure during construction.
While the SBT used about 3.57 times more disk space than the BFT during the
construction, the BFT used about 7.46 times more main memory than the SBT.
The disk size indicates that BFT is more suitable for long-term disk storage as
it uses 7.1 times less disk space than the SBT.

We queried both constructed data structures with a subset of 1,000 and 10,000
sequences of length 100 bp from the sequencing experiment ERR431077. As the
average size of an SBT vertex is 5.23 MB, we configured the SBT implementation
to load the SBT in main memory by batch of 150 vertices such that the main
memory consumption of both data structures is equivalent. The results of the
querying evaluation are shown in Table 3.2.

Table 3.2: SBT and BFT querying evaluation for sequences of length 100 bp from
the sequencing experiment ERR431077. Best results are highlighted.

Time Main memory peak
BFT SBT BFT SBT

1,000 queries θ = 0.7 1.66 s 47.66 s 786.70 MB 815.97 MB
θ = 0.9 1.71 s 30.76 s 786.59 MB 833.77 MB

10,000 queries θ = 0.7 4.58 s 390.17 s 786.75 MB 898.28 MB
θ = 0.9 4.01 s 328.16 s 786.62 MB 895.52 MB

Results show that for a similar main memory usage, the BFT is 18 to 85
times faster to query than the SBT. The main memory usage of the BFT dur-
ing querying is lower than during construction because its color sets are already
compressed while during construction, the raw color sets are stored in main mem-
ory before being compressed. An interesting result of this evaluation is that for
a fixed number of queries but different thresholds θ (ratio of k-mers that must
be present in the queries to report the query as present), the querying time of

62

the BFT is stable while the querying time of the SBT varies greatly. It can be
explained by the difference between the BFT and SBT indexing methods: The
BFT indexes colors with respect to the k-mers while the SBT indexes the k-mers
with respect to the colors. Hence, each k-mer is queried multiple times in the
SBT but is queried only once in the BFT.

Finally, a last evaluation for this dataset demonstrates the operations pro-
vided by the BFT which are absent from the SBT because it is based on an
approximation of the indexed k-mers. For this evaluation, we first extracted all
k-mers stored in the BFT and then, used these k-mers as queries to compute
the number of branching k-mers in the cdBG represented by the BFT. Table 3.3
reports the time and main memory usage of both operations.

Table 3.3: Evaluation of k-mer extraction and branching queries for a BFT con-
structed from 473 P. aeruginosa isolates.

Time Main memory peak
Extracting k-mers 7.40 s 786.39 MB
Branching queries 146.84 s 786.71 MB

In this evaluation, 55,355,097 36-mers were extracted and 1,518,746 of them
are branching in the cdBG represented with the BFT.

3.5.2 Human Tissues Dataset

In this evaluation, we reused the dataset of the SBT evaluation in (Solomon
and Kingsford, 2016). It is composed of 2,652 human tissue (blood, brain and
breast) RNA-Seq experiments from the SRA database. This dataset represents
about 5 TB of SRA files or about 2.7 TB of FASTA files compressed with Gzip (Ziv
and Lempel, 1977). Because the k-mer length must be a multiple of a l = 9 in the
BFT, we extracted k-mers of length k = 18 in order to be as close as possible to
the original SBT evaluation in which k = 20 was used. Also, we reused the k-mer
abundance thresholds computed in (Solomon and Kingsford, 2016) to discards
k-mers that do not occur enough and which are then considered as sequencing
errors. Hence, for a FASTA file file from the dataset and its corresponding
size Size(file), the k-mer abundance threshold is 1 for Size(file) ≤ 300 MB, 3
for 300 MB < Size(file) ≤ 500 MB, 10 for 500 MB < Size(file) ≤ 1 GB, 20 for

63

1 GB < Size(file) ≤ 3 GB and 50 for Size(file) > 3 GB. Using these abundance
thresholds, 15,755,778,039 18-mers were extracted. We reused as well the size
of BFs mentioned in (Solomon and Kingsford, 2016). Using this size and the
maximum number of 18-mers extracted from a file of the dataset, a BF in a leaf
of the SBT has a maximum false positive ratio of 3.8 % in this evaluation. The
construction evaluation is shown in Table 3.4.

Table 3.4: BFT and SBT construction evaluation for 2,652 human tissue RNA-
Seq experiments. Best results are highlighted.

BFT SBT
Insertion time 19.3 h > 4.89 h
Main memory usage peak 144.21 GB 18.5 GB
Disk usage peak 144.21 GB 1,174.65 GB
Disk size 13.11 GB 92.46 GB

Similarly to the P. aeruginosa dataset, the difference of construction times
between BFT and SBT can be explained by the fact that SBT construction time
does not include the time spent to build the leaves. Also, user time was measured
instead of wall-clock time.
While SBT used about 8.15 times more disk than BFT, the BFT used about 7.8
times more RAM than SBT. The disk size of both data structures confirms the
result from the P. aeruginosa dataset evaluation: The BFT is more adapted for
long-term disk storage than SBT as it uses 7 times less disk space than the SBT.

Then, the SBT and BFT were queried with a subset of 1,000 and 10,000
transcript sequences from the GENCODE (Harrow et al., 2012) database, ver-
sion 25 (GENCODE group, 2013). These transcript sequences are transcripts
from the reference chromosomes of the human genome. Because the average size
of an SBT vertex in this evaluation is 17.85 MB, we configured the SBT imple-
mentation to load the SBT in main memory by batch of 800 vertices to have
a similar main memory consumption to the BFT. The results of this querying
evaluation are shown in Table 3.5. Results show that for a similar main memory
usage, the BFT is 9.51 to 52.66 times faster to query than the SBT and confirm
the results obtained from the querying evaluation of the P. aeruginosa dataset
in Section 3.5.1.

Finally, we extracted all k-mers stored in the BFT and used these k-mers as

64

Table 3.5: SBT and BFT querying evaluation for the GENCODE sequences
database. Best results are highlighted.

Time Main memory peak
BFT SBT BFT SBT

1,000 queries θ = 0.7 39.95 s 655.07 s 14.11 GB 14.51 GB
θ = 0.9 39.94 s 379.89 s 14.04 GB 16.67 GB

10,000 queries θ = 0.7 109.98 s 5,792.04 s 14.11 GB 15.33 GB
θ = 0.9 102.42 s 2,944.09 s 14.11 GB 16.19 GB

queries to compute the number of branching k-mers in the cdBG represented by
the BFT. Table 3.6 reports the time and main memory usage of both steps. In
this evaluation, 836,937,335 18-mers were extracted and 138,625,655 of them are
branching in the cdBG represented with the BFT.

Table 3.6: Evaluation of k-mer extraction and branching queries for a BFT con-
structed from 2,652 human tissue RNA-Seq experiments.

Time Main memory peak
Extracting k-mers 1.58 min 13.92 GB
Branching queries 35.89 min 13.92 GB

3.6 Conclusion

We proposed a novel alignment-free, reference-free, incremental data structure
called the Bloom Filter Trie (BFT) to index a pan-genome as a colored de Bruijn
graph (cdBG). It accepts assemblies and reads as input to take advantage of all
sequencing data representations. The BFT is based on a burst trie and stores
k-mers with their colors representing the sequencing experiments in which the
k-mers occur. A new representation of vertices is proposed to compress and
index shared substrings of k-mers. It uses different types of containers to quickly
verify the presence of substrings. The containers use Bloom filters to navigate in
the trie and accelerate the cdBG traversal. The BFT was compared to a data
structure presenting the same features but based on an approximation of the
indexed k-mers. Using two pan-genome datasets, we showed that the BFT has
a smaller disk size, can be queried multiple times faster and propose additional

65

operations such as the extraction of k-mers and the traversal of the cdBG. Future
work concerns a more advanced compression scheme of the color sets.

66

CHAPTER IV

Pan-genome Storage

4.1 Introduction

As the number of sequenced genomes grows exponentially (Land et al., 2015),
storing and accessing these data is a problem of main importance. For example,
the SRA public database was endangered in 2011 because of budgetary con-
straints (Genome Biology Editorial Team, 2011). In order to reduce storage and
transmission costs, raw sequencing data are often compressed using general pur-
pose compression tools such as gzip based on LZ-77 (Ziv and Lempel, 1977) or
bzip based on the BWT (Section 1.2.6). Although these classic tools compressed
most of the public data, they are not optimized for HTS compression (Holland
and Lynch, 2013; Deorowicz and Grabowski, 2013; Giancarlo et al., 2014; Hos-
seini et al., 2016; Numanagić et al., 2016). The FASTQ format represents raw
sequencing data and each record of this format has three major components: (i)
unique identifier, (ii) read sequence and (iii) quality scores. A large variety of
HTS-specific compression tools were proposed (Jones et al., 2012; Hach et al.,
2012; Bonfield and Mahoney, 2013; Roguski and Deorowicz, 2014; Saha and Ra-
jasekaran, 2014; Rozov et al., 2014; Grabowski et al., 2015; Patro and Kingsford,
2015; Kingsford and Patro, 2015; Benoit et al., 2015) to compress either FASTQ
files or only the read sequences. While these tools are very efficient, they are
not adapted to the context of large-scale sequencing projects that produce tens
to several thousand of genomes per species. A pan-genome is characterized by a
high degree of similarity and redundancy between the genomes (Section 1.1.5) but
all HTS-specific compression tools can only consider redundancy and similarity
within a single genome and not in a collection of genomes. Hence, a tool for pan-

67

genome read compression must compress reads and the identity of the genomes
they belong to while taking advantage of the similarity and redundancy within
a pan-genome. Also, large-scale sequencing projects such as the 1000 Genomes
Project (1000 Genomes Project Consortium, 2015) may take years to complete,
making pan-genomes continually growing. Therefore, a tool for pan-genome read
compression must also be incremental such that an archive containing the com-
pressed reads of a pan-genome can be updated with compressed reads of a new
genome.

In the following, Section 4.1.1 presents the existing approaches for compress-
ing reads from a single genome and Section 4.1.2 provides an overview of our
contributions to pan-genome read compression. Section 4.2 describes an abstract
data structure for read indexing inspired from the colored de Bruijn graph (Sec-
tion 1.2.2.1): the guided de Bruijn graph (gdBG). The methods using the gdBG
for compression and the preprocessing operated on the reads to optimize the
compression ratio are detailed in Section 4.3. The decompression and update
operations are explained in Section 4.4. Finally, Section 4.5 shows the evaluation
of our tool and single-genome read compression tools on a pan-genome dataset.
Note that in the figures of this chapter, grey colored labels and arrows are for
illustration but are not stored in practice.

4.1.1 Existing Approaches

HTS-specific compression tools are divided into two categories: reference-
based and de novo. Reference-based methods generally provide high compression
ratio by encoding similarities or differences between the read sequences and a
reference usually by mapping the read sequences to the reference. In the following,
we use interchangeably the terms “read sequences” and “reads”. Reference-based
compression tools require a reference available for the species from which the
reads are generated or a similar genome. Note that only a small fraction of
sequenced species that are accessible in public databases have such a reference
available. Furthermore, the reference used for compression must be provided with
the compressed archive for decompression, adding extra storage and transmission
costs. On the other hand, de novo compression tools perform similarity search
within a set of reads in order to exploit its redundancy.

68

BARCODE (Rozov et al., 2014) is a reference-based method that makes use
of BFs (Section 1.2.5) to compress reads. It inserts perfectly matching reads to a
reference into a BF that generates false positives. To reduce the number of false
positives, BARCODE subsequently inserts them into cascading BFs (Salikhov
et al., 2014) to tell apart false positives from true positives. The reference is
then used during decompression to query the BFs. Kpath (Kingsford and Patro,
2015) constructs a dBG (Section 1.2.2.1) from the reference and encodes each
read as a path within the graph. The paths within the graph are then encoded
via arithmetic coding (Witten et al., 1987). The beginnings of such paths are
stored separately in a trie and encoded with LZ-77. QUIP (Jones et al., 2012)
uses a lossless compression algorithm based on adaptive arithmetic encoding of
the identifier, read and quality score streams of the FASTQ format. A reference
and a sequence alignment of the reads can be used to improve compression of
the reads. QUIP can also perform assembly-based compression in which it builds
reference sequences by assembling a small portion (user defined) of the reads us-
ing a dBG and then mapping the reads back to the reference sequences. Similar
methods are used in FASTQZ and FQZCOMP (Bonfield and Mahoney, 2013).
SCALCE (Hach et al., 2012) uses core substrings as a measure of similarity in
order to cluster similar reads together. Those core substrings are generated via
Locally Consistent Parsing (LCP) (Sahinalp and Vishkin, 1996). SCALCE com-
presses the reads in each cluster with gzip. ORCOM (Grabowski et al., 2015)
re-orders reads by similarity as well: it creates clusters of reads that share the
same minimizer (Roberts et al., 2004), i.e., the lexicographically smallest p-mer
of each read with p usually between 8 and 15. Reads of the same cluster are
then merged and compressed. Similar to ORCOM, Mince (Patro and Kingsford,
2015) uses the minimizer approach for clustering. However, it builds the clusters
in two steps. A cluster is represented by a k-mer and a set of q-mers from the
reads it contains with q < k. For each read to process, a set of candidate clusters
is first established from the k-mers it is composed of. The read is then assigned
to the candidate cluster that maximizes the number of q-mers they share. If the
read has no candidate cluster, it is assigned to a new cluster corresponding to its
minimizer of length k. FQC (Saha and Rajasekaran, 2014) clusters reads using a
k-mer hashing method. Clusters are used to build lists of potentially neighboring
reads that share an overlap. From each neighboring list, a consensus sequence is
built and used as a reference for compressing the reads of the list. DSRC 2 (Ro-
guski and Deorowicz, 2014) compresses the different streams of FASTQ files with

69

different methods: arithmetic coding, Huffman coding (Huffman, 1952), as well
as 2 bits per base in the case of the DNA sequence stream. Finally, LEON (Benoit
et al., 2015) encodes the reads as paths of a dBG represented with a BF. The
dBG is built from solid k-mers of the reads, i.e., k-mers occurring multiple times
in the reads. A read is anchored in the graph if it contains at least one solid
k-mer and encoded as a list of graph bifurcations from this anchor.

4.1.2 Contributions

In this chapter, we present a new Dynamic Alignment-free and Reference-free
Read Compression method (DARRC). The main contribution of this work is the
guided de Bruijn graph (gdBG) inspired from the cdBG (Section 1.2.2.1) which
allows a unique traversal to reconstruct the reads it was built from. The gdBG is
indexed using the BFT (Chapter III) which enables the update of the gdBG with
reads of other similar genomes. Additional methods are presented to optimize the
encoding of the reads. On a large P. aeruginosa dataset, DARRC outperforms all
other tested tools. It provides a 30% compression ratio improvement in single-
end mode compared to the best performing state-of-the-art HTS-specific and
general purpose compression method in our experiments. The work presented
in this chapter was published in (Holley et al., 2017) and is a joint-work with
Roland Wittler, Jens Stoye and Faraz Hach.

4.2 The guided de Bruijn Graph

The read assembly problem shows that different traversals of dBGs are pos-
sible. In the worst case, the number of possible paths between two vertices in a
graph is infinite if the graph is cyclic, and exponential otherwise. Given a dBG
built from a sequence and a starting vertex for the traversal, the dBG must be
augmented with information to guide its traversal in order to reconstruct the
sequence it was built from.

Definition 4. Given a dBG G built from a sequence S, a partition part(G,S) is
a subgraph G′ of G such that G′ is a path graph that reconstructs a subsequence
of S.

70

A path graph (V,E) is a non-branching connected graph with |E| = |V | − 1.
A guided de Bruijn graph (gdBG) is a cdBG G = (V,E, P) built from a se-
quence S. The set of colors, now denoted as P , represents partitions guiding the
traversal of G to reconstruct S. Self-overlapping k-mers, for which the prefix of
length k − 1 is equal to the suffix of length k − 1, require a special treatment
to avoid looping on themselves within the same partition. Algorithm 5 creates a
gdBG G from a sequence S using vertices of length k. It returns all information
necessary to reconstruct S: the gdBG encoding S and the k − 1 length prefix
of the first k-mer of S starting the graph traversal for decoding. Note that self-
overlapping k-mers terminate their partition such that the next inserted k-mers
start a new partition (line 9). The algorithm requires O(|S|) time and O(|G|)
space where |G| = |V |+ |P | if the gdBG uses an implicit representation of edges.

Algorithm 5 Encode(S, k)
1: p← 1 ▷ partition index
2: G← the empty graph
3: for i← 1, . . . , |S| − k + 1 do
4: x← S(i, k)
5: Y ← {y | y successor of x in G with p ∈ G[y]}
6: if Y ̸= ∅ then p← p+ 1

7: if x ∈ G then G[x].add(p) ▷ add p to vertex x in G
8: else G.add(x, p) ▷ insert vertex x with p in G

9: if x(2, k − 1) = x(1, k − 1) then p← p+ 1

10: return (G,S(1, k − 1))

Algorithm 6 decodes a sequence S from a gdBG G using vertices of length k

starting with k-mer prefix x. Algorithm 5 guarantees that for any k-mer and one
of its partitions, this k-mer can only have zero or one successor in the graph with
the same partition. Therefore, Algorithm 6 traverses the graph by searching, for
each traversed vertex, the successor with the same partition. If it is not found, the
partition index is incremented and the traversal continues. As for Algorithm 5,
the algorithm requires O(|S|) time and O(|G|) space.

Figure 4.1 represents a simple cyclic dBG built from a sequence contain-
ing a repetition. An infinite number of sequences could be extracted from the
dBG because of the cycle. However, by augmenting the dBG with partitions,
Algorithm 6 will traverse the cycle only once during the reconstruction of the
sequence. Indeed, when Algorithm 5 tries to insert k-mer “agt” with partition 1,
a successor with the same partition is found. Therefore, k-mer “agt” is inserted

71

Algorithm 6 Decode(G, x, k)
1: p← 1
2: z ← k-mer y in G with y(1, k − 1) = x and p ∈ G[y]
3: x← z
4: S ← z
5: Z ← {z}
6: if z(2, k − 1) = z(1, k − 1) then p← p+ 1

7: while Z ̸= ∅ and p ∈ P do
8: Z ← {z | z successor of x in G with p ∈ G[z]}
9: if Z contains exactly one k-mer z then

10: S ← S ⊙ z(k, 1)
11: x← z
12: if x(2, k − 1) = x(1, k − 1) then p← p+ 1

13: else
14: p← p+ 1
15: Z ← {x}
16: return S

with partition 2 such that the cycle is not contained in one partition.

cgt
{1}

gta
{1,2}

taa
{1,2}

aat
{2}

agt
{2}

aag
{1}

Figure 4.1: The gdBG of sequence S = “cgtaagtaat” as constructed by Algo-
rithm 5 with k = 3.

An important property of gdBGs using implicit edges is that no false implicit
edge can be traversed during the decoding.

Proposition 1. Let G be a gdBG built from a sequence S using an implicit
representation of edges. An edge between vertices v and v′ corresponding to k-
mers x and x′ respectively, such that x(2, k − 1) = x′(1, k − 1) but x⊙ x′(k, 1) is
not a substring of S is called a false implicit edge. Algorithm 6 does not consider
any false implicit edge when traversing G to reconstruct S.

Proof. If a false implicit edge connects vertices not sharing a partition, Algo-
rithm 6 will not consider this edge as only successors with the same partition

72

are traversed. If a false implicit edge connects vertices v and v′ which share a
partition, the edge out-degree of v is at least 2 and the edge in-degree of v′ is at
least 2: one true implicit edge each and at least one false implicit edge each. As
these vertices are branching, Definition 4 guarantees that v and v′ are not in the
same partition.

Algorithm 5 does not distinguish true implicit edges from false implicit edges,
ensuring that Definition 4 is always respected during the encoding.

Furthermore, partitions allow to apply the following generalized definition of
edges in dBGs to gdBGs:

Definition 5. In a dBG, a directed edge from vertex v to vertex v′ representing
k-mers x and x′, respectively, exists if and only if x(l + 1, k − l) = x′(1, k − l)
with l ≥ 1.

For a sequence S to encode in a gdBG and l > 1,
⌊
|S|−k+1

l

⌋
k-mers will be

inserted instead of |S|−k+1. However, the graph can contain more partitions as
each vertex has now |A|l possible successors and predecessors. Figure 4.2 gives
the gdBG encoding the same sequence as in Figure 4.1 using a k-mer overlap of
k − 2 instead of k − 1. The resulting gdBG contains only half the number of
vertices than the one in Figure 4.1.

cgt
{1}

taa
{1,3}

agt
{2}

Figure 4.2: The gdBG of sequence S = cgtaagtaat using 3-mers overlapping on
k− l = 1. The last symbol of S is not encoded in the gdBG as it cannot be part
of a k-mer.

4.3 Compression

Section 4.2 presented methods to encode a sequence as a gdBG and to decode
it. In this section, we describe how to use this methodology to compress reads.
To improve compression efficiency, we preprocess the reads.

73

4.3.1 Read Clustering and Merging.

A simple form of read assembly extended from ORCOM (Grabowski et al.,
2015) is performed to reduce the input data. It clusters reads according to their
minimizer, then merges reads sharing an overlap within each cluster and finally
merges reads sharing an overlap but originating from different clusters. These
three steps are described in the following.

4.3.1.1 Clustering

The minimizer (Roberts et al., 2004) of a read r is the lexicographically small-
est of its p-mers with p≪ |r|. The canonical minimizer of r is the lexicographi-
cally smaller minimizer of r and its reverse-complement r. The following method
is based on the simple assumption that reads sharing a minimizer are likely to
share a longer overlap and therefore be similar. Thus, the canonical minimizer m
is computed for each read r such that r or r is assigned to its cluster m. An
example of clustering is illustrated in Figure 4.3.

acgtcc tcctgg
cgtcct

ctggtt
ac cc ct

Figure 4.3: Minimizer clustering of 4 reads. Minimizers of length 2 are underlined.
For the sake of convenience, the reverse-complement is not considered.

4.3.1.2 Intra-cluster Merging

Within each cluster, the reads are sorted by decreasing position of their min-
imizer, in which reads sharing the same minimizer position are sorted lexico-
graphically. For each read r and its minimizer m at position pm, all reads r′

with minimizers at positions p′m ≤ pm are considered for merging, in decreasing
order of positions p′m to maximize the overlap lengths. To merge reads r and r′,
they are first anchored at the position of their minimizers such that they overlap
on o = p′m + Min(|r| − pm, |r′| − p′m) symbols. Reads are merged into a super
read (Zimin et al., 2013) if r(pm − p′m, o) = r′(1, o) with at most d mismatches.
The same process is applied to the created super read in order to merge it with

74

the remaining reads of the cluster. For each super read, we encode all of its read
meta data in separate streams: position, length, reverse-complement information
and mismatches. An example of intra-cluster merging (cf. Figure 4.3) is shown
in Figure 4.4.

acgtcc
tcctgg

cgtcct ctggtt
ac cc ct

cgtcctgg

Figure 4.4: Merging of two reads into a super read. Minimizers of length 2 are
underlined. For the sake of convenience, the reverse-complement is not consid-
ered.

4.3.1.3 Inter-cluster merging

As an extension of the previous steps used by ORCOM, we additionally per-
form a process similar to the intra-cluster read merging described previously to
merge super reads from multiple clusters. For each super read sr and its mini-
mizer m at position pm, a new minimizer m′ is computed in sr(pm +1, |sr| − pm)
and sr. All super reads of cluster m′ are considered for a merging with sr or
sr. Merging two or more super reads creates a Spanning Super Read (SSR). The
same process is applied to the created SSR until no super reads can merge with
it. An example of inter-cluster merging (cf. Figure 4.4) is provided in Figure 4.5.

acgtcc ctggtt
ac cc ct

cgtcctgg

Figure 4.5: Merging of three super reads into an SSR “acgttgatt”. Minimizers
of length 2 are underlined with a dashed line. Secondary minimizers (for merg-
ing) are underlined with a plain line. For the sake of convenience, the reverse-
complement is not considered.

4.3.1.4 Paired-end Reads

Each mate of a pair is considered as a single read that is clustered and merged
using the previously described methods. However, the clustering and merging

75

steps keep track of the position of the mates in the SSRs. This information is
used afterwards to store in each read meta data whether the read is the first mate
of its pair. In such case, the position of its corresponding mate in the SSRs is
stored as well.

4.3.2 Spanning Super Read Encoding

Encoding a set of SSRs using a gdBG requires to extract k-mers from the
SSRs. If edges represent overlaps of length k − 1, all k-mers of the SSRs are
extracted. If edges represent overlaps of length k − l with l > 1, k-mers are
extracted every l positions. As a consequence, similar SSRs can have different
sets of k-mers. An example is given in Figure 4.6, in which two similar SSRs, ssr1
and ssr2, do not share any k-mers because they are extracted every l = 2 positions
from the first position of each SSR. By shifting the k-mer extraction start position
by one position in the second SSR, as shown with ssr2′, two extracted k-mers are
shared with the first SSR.

ssr1 = a c g t c c t g a a t

a c g t
g t c c

c c t g
t g a a

ssr2 = g a c g t c c g g a a

g a c g
c g t c

t c c g
c g g a

ssr2
′ = g a c g t c c g g a a

a c g t
g t c c

c c g g
g g a a

Figure 4.6: Extraction of 4-mers overlapping on k− l = 2 from two similar SSRs,
ssr1 and ssr2.

In order to keep the growth of the gdBG small when inserting a new SSR,
we determine the k-mer extraction start position, called start position in the
following, that maximizes the number of k-mers already stored in the gdBG. To
this end, we maintain in memory a k-mer index recording all k-mers extracted.
As the cost in time and memory of such an index is prohibitive, we use a BF
having constant time insertion and look-up instead of a BFT having linear time
insertion and look-up. Algorithm 7 is a greedy approach making use of the
BF to iteratively detect for each SSR of a set R its optimal start position and
updating the BF with all novel k-mers. To encode all SSRs completely, it not
only returns the k-mers to insert into a gdBG, because these do not necessarily
cover the entire SSRs. It also returns the head and tail of each SSR, which are the

76

uncovered prefix and suffix, respectively, not encoded in the gdBG. Additionally,
to provide an entry point into the gdBG for the decoding, it returns the starting
overlap of each SSR, which is the k − l length prefix of the first k-mer. More
precisely, we denote by x and y the first and last k-mers extracted, respectively,
from an SSR ssr with posx and posy as their respective occurrence positions
in ssr. Then, the head of ssr is the prefix ssr(1, posx − 1), the tail of ssr is
the suffix ssr(posy + k, |ssr| − posy − k + 1), and the starting overlap of ssr is
ssr(posx, k − l). SSR heads, tails and starting overlaps are encoded in separate
streams and compressed separately from the gdBG.

4.3.3 Partition Encoding

4.3.3.1 Encoding

Partition sets associated with k-mers in gdBGs are represented as lists of
sorted integers. A naive way to store a partition set is to use a fixed number
of bytes for each partition. For example, 4 bytes is a standard size for integers
on current computer architectures. In order to decrease the memory footprint
while keeping the lists indexed, partitions are first delta encoded by storing the
difference between each integer and its predecessor in the list (or 0 if the integer is
in first position). The resulting values are called deltas. However, it only decreases
the minimum number of bits necessary to encode the partitions but not their final
representation. Consequently, deltas are Vbyte encoded (Williams and Zobel,
1999): each byte used to encode a delta has one bit indicating whether the byte
starts a new delta or not, allowing to remove unnecessary bytes from each delta.
Thus, partitions use a variable number of bytes proportional to the minimum
number of bits necessary to encode their deltas. An example of a partition set
naively represented is described in Table 4.1. The table summarizes the minimum
number of bits (log) necessary to encode the partitions, their binary code and the
number of bytes they use. Table 4.2 describes the same set represented with a
delta and Vbyte encoding: it uses 5 bytes instead of 12 in the naive representation.

77

Algorithm 7 ExtractKmers(k, l, R)
1: function ExtractPosition(r, k, l, B)
2: bestcount ← 0
3: bestpos ← 1
4: for i← 1, . . . , l do
5: pos← i
6: count← 0
7: while pos ≤ |r| − k + 1 do
8: if MayContain(r(pos, k), B) then count = count+ 1

9: pos = pos+ l

10: if count > bestcount then
11: bestcount ← count
12: bestpos ← i
13: return (bestpos, bestcount)

14:
15: function ExtractKmers(k, l, R)
16: K ← ∅ ▷ ordered set of extracted k-mers
17: L← ∅ ▷ ordered set of SSR heads and tails
18: O ← ∅ ▷ ordered set of SSR starting overlaps
19: B ← empty Bloom filter
20: for each ssr ∈ R do
21: a← ExtractPosition(ssr, k, l, B)
22: b← ExtractPosition(ssr, k, l, B)
23: if a.bestcount > b.bestcount then
24: ssr′ ← ssr
25: pos← a.bestpos
26: else
27: ssr′ ← ssr
28: pos← b.bestpos
29: L← L ∪ {ssr′(1, pos− 1)}
30: O ← O ∪ {ssr′(pos, k − l)}
31: while pos ≤ |ssr′| − k + 1 do
32: K ← K ∪ {ssr′(pos, k)}
33: if MayContain(ssr′(pos, k)), B) = false then
34: Insert(ssr′(pos, k)), B)

35: pos← pos+ l

36: L← L ∪ {ssr′(pos+ k, |ssr′| − pos− k + 1)}
37: return (K,L,O)

4.3.3.2 Recycling

As a small delta produces a small encoding, partition integers are recycled
instead of naively using the next higher integer for every new partition as, for the

78

Table 4.1: Naive representation of a partition set composed of integers 12534,
12567 and 28911.

Partitions log Binary code Number of bytes
12534 13.61 00000000 00000000 00110000 11110110 4
12567 13.62 00000000 00000000 00110001 00010111 4
28911 14.82 00000000 00000000 01110000 11101111 4

Table 4.2: Delta and Vbyte encoded representation of the same partition set used
in Table 4.1.

Partitions log Binary code Number of bytes
∆1 = 12534 13.61 01100000 11101101 2
∆2 = 12567−∆1 = 33 5.04 01000011 1
∆3 = 28911−∆1−∆2 = 16344 14.00 11111110 10110001 2

sake of convenience, described in Algorithm 5. Partition sets a and b can share
the same partition integer if they are not neighbors in the graph, i.e., no k-mer
suffix or prefix of a overlaps a k-mer prefix or suffix of b, for suffixes and prefixes
of length k − l. A trivial example is provided in Figure 4.7 in which k-mer cttc
uses the same partition integer as k-mer acgt because they are not neighbors in
the graph.

acgt
{1}

gtac
{2}

tcct
{2}

cttc
{1}

tc

Figure 4.7: The gdBG of SSRs ssr1 = “acgtac” and ssr2 = “tccttc” using 4-mers
(l = 2). Dotted edges are false implicit edges. The labeled solid edge exists
by using the starting overlap of ssr2 after the traversal of ssr1, as described in
Section 4.3.2.

As there can be a large number of partitions in the graph, verifying the
connectivity of one partition to all other partitions is often impractical. We
propose instead a heuristic that verifies the connectivity only to the last t par-
titions inserted, t being a user-defined threshold, such that these t partitions
are the only candidates for recycling. Using partition recycling requires to save
the partitions traversal order which cannot be incremental anymore as proven in
Algorithms 5 and 6.

79

4.3.4 Meta Data and gdBG Compression

Steps described previously generate meta data specific to one input file such as
read lengths and positions in SSRs. These meta data are first encoded in separate
streams and are then compressed using an LZ-type algorithm, LZMA (Pavlov,
1999). After all k-mers and partitions are inserted in the gdBG, the latter is writ-
ten to disk. As it must be loaded in memory for every update and decompression,
the gdBG is compressed with Zstd (Collet, 2015), a compression method based
on Huffman coding and Asymmetric Numeral Systems (Duda, 2013) that favors
compression and decompression speed over compression ratio.

4.4 Update and Decompression

In order to update a compressed archive with a new input file, only the gdBG
previously created is decompressed and loaded in memory, as meta data are not
used for the update. A fast procedure iterates over all k-mers of the gdBG and
inserts them into the BF of Algorithm 7 instead of starting with an empty BF
in order to optimize the choice of the k-mer extraction start positions in the
SSRs. The gdBG is then updated with the new k-mers and partitions. The
starting partition index is greater than the partition indexes already present in
the gdBG, ensuring that each input file is encoded with a unique set of partitions.

Decompressing a read file starts with decompressing its meta data and the
gdBG it is encoded in. The gdBG is then loaded in memory and Algorithm 6 is
used to traverse the gdBG, but only following those partitions that are specific to
the read file to decompress. This way, single files can be decompressed separately.
As Algorithm 6 decodes SSRs, meta data are used afterwards to extract the actual
reads. If reads are paired-end, meta data are also used to reorganize them such
that corresponding mates of the same pair are together in the decompressed file.

4.5 Results

DARRC is implemented in C and uses the BFT library for its gdBG. The BFT
provides time and space efficient functionalities that are required by DARRC.

80

These functionalities include: (i) the ability to update the BFT with new k-
mers and colors without recomputing the index, (ii) k-mers extraction from the
BFT and (iii) prefix search over the set of k-mers within the BFT. The soft-
ware is available at https://github.com/GuillaumeHolley/DARRC. We com-
pared DARRC to three state-of-the-art de novo DNA sequence compression tools:
ORCOM (Grabowski et al., 2015), LEON (Benoit et al., 2015) and Mince (Patro
and Kingsford, 2015). DARRC was also compared to the same LZ-type algorithm
used to compress its meta data, LZMA (Pavlov, 1999). Experiments were carried
out on a server with 378 GB of RAM and two 8-core Intel Xeon E5-2630 v3 2.4
GHz processors. All input files were placed on a dedicated mechanical hard drive.
Compressed archives and decompressed files, during compression and decompres-
sion, respectively, together with temporary files such as read clusters were written
to a RAM-based partition when the tools allowed to specify an output directory.
As the current version of DARRC does not take advantage of parallelism, all
software were run using a single thread, except Mince which requires a minimum
of four threads. All de novo DNA sequence compression tools were run using
their default parameters. LZMA was run with the same compression level as
the one used to compress DARRC meta data. DARRC default parameters are
minimizers of length 9 for the clustering, 5 mismatches allowed per read merging
and 36-mers overlapping on 11 symbols for the gdBG. ORCOM, LEON, Mince
and LZMA compressed all files in separate archives while DARRC updated the
same archive iteratively with the files to compress: each iteration decompressed
and reloaded the necessary data from the data written to disk in the previous
iteration. The dataset used for the experiment consists of 473 clinical isolates
of P. aeruginosa sampled from 34 patients (NCBI BioProject PRJEB5438), re-
sulting in 338.61 Gbp of high coverage sequences. Reads are 100 bp paired-end
reads generated by Illumina HiSeq 2000. Pair mates were placed in different files
for every isolate. The experiment was run in single-end mode and paired-end
mode for all tools such that in the single-end mode, every mate file is considered
as a single-end read file. The appropriate single-end and paired-end modes were
used for DARRC and Mince. The mates were concatenated for the paired-end
experiment of ORCOM as the tool neither preserves the order of the reads nor
stores the paired-end information. LEON and LZMA do not have an explicit
paired-end mode but keep the original order of the reads, thus the mate files
of every isolate were concatenated for the paired-end experiments of LEON and
LZMA.

81

0 100 200 300 400

0
10

20
30

40
50

Number of isolates

C
om

pr
es

sio
n

ra
tio

DARRC
Mince
LEON

ORCOM
LZMA

0 100 200 300 400

0
10

20
30

40
50

Number of isolates

DARRC
Mince
LEON

ORCOM
LZMA

Figure 4.8: Compression ratios in paired-end mode (left) and single-end mode
(right).

0 100 200 300 400

0
10

20
30

40
50

60

Number of isolates

D
isk

siz
e

(G
B)

DARRC
Mince
LEON
ORCOM
LZMA

0 100 200 300 400

0
10

20
30

40
50

60

Number of isolates

DARRC
Mince
LEON
ORCOM
LZMA

Figure 4.9: Disk sizes in paired-end mode (left) and single-end mode (right).

Compression ratios in paired-end mode and single-end mode are shown in
Figure 4.8. DARRC clearly outperforms all the other tested tools in both modes.
In paired-end mode and single-end mode, DARRC uses about 0.261 bits per base
and 0.204 bits per base, corresponding to a 57 % and 30 % compression ratio

82

0 100 200 300 400

0
2

4
6

8
10

Number of isolates

D
isk

siz
e

(G
B)

Meta data gdBG

0 100 200 300 400

0
2

4
6

8
10

Number of isolates

Meta data gdBG

Figure 4.10: DARRC disk size distribution in paired-end mode (left) and single-
end mode (right).

improvement compared to the second best results, respectively. The paired-end
compression ratio of ORCOM compared to its single-end compression ratio shows
that the tool is not adapted to paired-end read compression. Corresponding disk
sizes are shown in Figure 4.9. The distributions of DARRC meta data and gdBG
disk sizes are displayed in Figure 4.10. The gdBG represents about 10 % and 13 %
of the data written to disk in paired-end mode and single-end mode, respectively.

DARRC compressed more than two times faster than LZMA but used the
most time to decompress, as shown in Figures 4.11 and 4.12, respectively. The
compression time overhead of DARRC is explained by the fact that at each it-
eration, the gdBG must be decompressed, loaded in memory and updated with
new k-mers and partitions.
Main memory usage during compression and decompression is shown in Fig-
ures 4.13 and 4.14, respectively. All tools performed compression and decom-
pression using a maximum of 3.4 GB of main memory, an amount nowadays
available on most desktop computers and laptops. Even by updating the same
archive iteratively, DARRC compression used an amount of main memory similar
to the memory footprint of the other tested tools.

83

0 100 200 300 400

0
10

00
30

00
50

00

Number of isolates

T
im

e
(m

in
)

DARRC
Mince - 4 threads
LEON
ORCOM
LZMA

0 100 200 300 400
0

10
00

30
00

50
00

Number of isolates

DARRC
Mince - 4 threads
LEON
ORCOM
LZMA

Figure 4.11: Compression times in paired-end mode (left) and single-end mode
(right).

0 100 200 300 400

0
50

0
10

00
15

00
20

00

Number of isolates

T
im

e
(m

in
)

DARRC
Mince - 4 threads
LEON
ORCOM
LZMA

0 100 200 300 400

0
50

0
10

00
15

00
20

00

Number of isolates

DARRC
Mince - 4 threads
LEON
ORCOM
LZMA

Figure 4.12: Decompression times in paired-end mode (left) and single-end mode
(right).

84

0 100 200 300 400

0
1

2
3

4

Number of isolates

M
em

or
y

(G
B)

DARRC
Mince
LEON

ORCOM
LZMA

0 100 200 300 400

0
1

2
3

4
Number of isolates

DARRC
Mince
LEON

ORCOM
LZMA

Figure 4.13: Compression main memory peaks in paired-end mode (left) and
single-end mode (right).

0 100 200 300 400

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Number of isolates

M
em

or
y

(G
B)

DARRC
Mince
LEON

ORCOM
LZMA

0 100 200 300 400

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Number of isolates

DARRC
Mince
LEON

ORCOM
LZMA

Figure 4.14: Decompression main memory peaks in paired-end mode (left) and
single-end mode (right).

85

4.6 Conclusion

We presented DARRC, a dynamic alignment-free and reference-free read com-
pression method that can incrementally update compressed archives with new
genome sequences without full decompression of the archives. DARRC uses a
new abstract data structure, the guided de Bruijn graph, that allows a unique
traversal of the de Bruijn graph to reconstruct the sequences it is built from. We
showed that, on a large pan-genome dataset, our method outperforms several
state-of-the-art DNA sequence compression methods and a general purpose com-
pression tool regarding the compression ratio while achieving reasonable running
time and main memory usage. Furthermore, we showed that the compression
ratio of DARRC is attractive even with only few files compressed. Future work
concerns the parallelization of the software, particularly the read clustering and
merging phase which offers a lot of potential for multi-threading.

86

CHAPTER V

Conclusion

In this thesis, we explored new solutions for the problems of pan-genome
indexing and storage. After introducing biological notions and providing a retro-
spective on the acquisition of genomic data, we established the current limitations
of single-genome reference-centric methods in comparative analysis. These limi-
tations can be overcome by using a pan-genome — a set of genomes from different
strains of the same species — as a reference instead of a single genome that cannot
represent an entire population of genomes. Then, we provided a description of
pan-genomes and their characteristics. Next, we reviewed the literature of data
structures and methods to index and analyze pan-genomes at the DNA sequence
level in Chapter II.
In Chapter III, we showed the current limitations and inadequacies of data struc-
tures for pan-genome indexing mentioned in the literature. We established that
the colored de Bruijn graph is an ideal representation of a pan-genome because
it is alignment-free and reference-free. However, current data structures to rep-
resent colored de Bruijn graphs are neither incremental nor time and memory
efficient. Therefore, we proposed to represent a pan-genome as a colored de
Bruijn graph with a new lightweight data structure, the Bloom Filter Trie, which
is alignment-free, reference-free, incremental and considers assemblies as well as
reads as input. The Bloom Filter Trie is based on a burst trie to efficiently rep-
resent k-mer suffixes in the deeper levels of the trie. The usage of Bloom filters
allows to efficiently navigate in the trie while optimizing the traversal of the col-
ored de Bruijn graph. We evaluated the Bloom Filter Trie in comparison to a
data structure presenting similar features on two pan-genome datasets, a bac-
terial dataset and a human tissue dataset. We showed that while the two data
structures have different construction advantages, the Bloom Filter Trie has the

87

smallest disk size, is faster to query and propose supplementary functionalities
over the other data structure.
In Chapter IV, we discussed that pan-genomes are challenging to store because
of the increasing amount of data produced by large scale sequencing projects.
Compression is a solution to this problem, but no compression tool is currently
taking advantage of the genome similarity and redundancy within a pan-genome.
Furthermore, current compression tools are not dynamic and produce compressed
archives that cannot be updated with new data. For this purpose, we proposed
a new abstract data structure — the guided de Bruijn graph — which augments
k-mers stored in the graph with a partition information. The guided de Bruijn
graph is used to insert k-mers of the reads to compress and the partitions are used
during decompression to guide the traversal of the graph to exactly reconstruct
the compressed reads. We also described different techniques to optimize the stor-
age of reads in the graph and the partition encodings. As the guided de Bruijn
graph is inspired from the colored de Bruijn graph, we used the Bloom Filter Trie
as the main data structure to implement this compression tool named DARRC.
We evaluated DARRC in comparison to other state-of-the-art HTS-specific and
general purpose compression tools on a bacterial dataset. We show that DARRC
outperforms the other tools with a 30 % compression ratio improvement over the
second best performing tool of the evaluation.

5.1 Perspectives

A first interesting perspective is that large scale sequencing projects are flour-
ishing because they benefit from the diversity of sequencing technologies and the
decrease of sequencing cost. Hence, the size of pan-genomes, currently up to a
few thousand sequenced genomes, is going to increase at a very fast pace within
the next few years. Indeed, Stephens et al. (2015) estimate that the human pan-
genome will be composed of 100 million to 2 billion sequenced genomes by 2025.
For example, the 100,000 Genomes Project (100,000 Genomes Project, 2012) un-
dertaken in 2012 is expected to have sequenced 100,000 human genomes by 2017,
while a US-based project (Ledford, 2016) aims to sequence two million individu-
als within ten years. Hence, data structures for pan-genome indexing should be
ready to handle this massive amount of data.
Besides indexing, the analysis of a pan-genome based on efficient data struc-

88

tures as presented in this thesis is an important next step. A first application of
such a pan-genome index is conducted by Tina Zekic at the Bielefeld University
and consists in the extraction of core, accessory and singleton genomes directly
from a colored de Bruijn graph represented with a Bloom Filter Trie. This work
can be used in the context of ancestral genome reconstruction (Luhmann et al.,
2016) to sheld light on ancient species from which damaged DNA has been recov-
ered. Indeed, the assembly of these data is usually difficult because of the short
length and degraded quality of the reads. Such reads from ancient species can
be included in the pan-genome of extant strains to assist comparative genomics
methods aiming to extract conserved regions between ancient and extant strains,
as defined by the core genome. These conserved regions then allow to analyze
genome rearrangements in a phylogenetic context.
A third interesting perspective is the emergence of third generation sequencing
technologies. The Oxford Nanopore (Mikheyev and Tin, 2014) is a third gener-
ation sequencer that has the size of a large USB stick and costs around 1,000 $.
Its small size and cost indicate an upcoming fast deployment of this sequencing
technology all around the world. Third generation sequencing technologies pro-
duce long reads that can disambiguate repeats in genome assembly and variant
calling. However, such reads usually have a high error rate that can be corrected
with the help of short and more accurate reads produced by HTS technologies.
As these technologies are complementing each other, pan-genome indexes should
neither be limited to one type of representation — assemblies or reads — nor
should they be limited by the sequencing technology used to produce reads. To
the contrary, the future of pan-genome indexing resides in the unification of all
types of sequencing data into a single index such that comparative methods can
take advantage of all features proposed by each sequencing technology. An exam-
ple of such unification is the preliminary work of Ehsan Haghshenas from Simon
Fraser University, who is performing hybrid single variant detection using long
and short reads. The core idea of this work is to map long reads to a colored de
Bruijn graph of short reads represented with a Bloom Filter Trie. The colors can
be used to distinguish short reads from different strains to enhance the chances of
mapping a long read to the graph. An orthogonal concept is to include long and
short reads in the same colored de Bruijn graph represented with a Bloom Filter
Trie such that long reads can assist the assembly of repeated regions. While such
a representation is made possible by using the guided de Bruijn graph presented
in Chapter IV, the high k-mer diversity of long noisy reads makes it challenging

89

to index them efficiently.
Finally, the work presented in this thesis shows that the Bloom Filter Trie is
adapted to pan-genome indexing and compression. The next logical step is to
combine both approaches into a single one enabling sequence queries directly on
a compressed archive of DARRC without having to decompress the sequences
beforehand and index them with a BFT afterwards. Besides the considerable
amount of compute time and memory saved, it would allow to perform large
scale complex methods such as read alignment and variant calling using multiple
genomes at once.

90

BIBLIOGRAPHY

91

BIBLIOGRAPHY

1000 Genomes Project Consortium (2015). A global reference for human genetic
variation. Nature, 526(7571):68–74.

100,000 Genomes Project (2012). Genomics England. https://www.
genomicsengland.co.uk/. [Online; accessed 16-February-2017].

Abouelhoda, M. I., Kurtz, S., and Ohlebusch, E. (2004). Replacing suffix trees
with enhanced suffix arrays. J. Discrete Algor., 2(1):53–86.

Almeida, P. S., Baquero, C., Preguiça, N., and Hutchison, D. (2007). Scalable
bloom filters. Inform. Process. Lett., 101(6):255–261.

Andersson, A. and Nilsson, S. (1993). Improved behaviour of tries by adaptive
branching. Inform. Process. Lett., 46(6):295–300.

Askitis, N. and Sinha, R. (2010). Engineering scalable, cache and space efficient
tries for strings. The VLDB Journal, 19(5):633–660.

Baier, U., Beller, T., and Ohlebusch, E. (2016). Graphical pan-genome analysis
with compressed suffix trees and the Burrows-Wheeler transform. Bioinfor-
matics, 32(4):497–504.

Belk, K., Boucher, C., Bowe, A., Gagie, T., Morley, P., Muggli, M. D., Noyes,
N. R., Puglisi, S. J., and Raymond, R. (2016). Succinct Colored de Bruijn
Graphs. bioRxiv, page 040071.

Bender, M. A., Farach-Colton, M., Johnson, R., Kraner, R., Kuszmaul, B. C.,
Medjedovic, D., Montes, P., Shetty, P., Spillane, R. P., and Zadok, E. (2012).
Don’t thrash: how to cache your hash on flash. Proc. of the VLDB Endowment,
5(11):1627–1637.

Benoit, G., Lemaitre, C., Lavenier, D., Drezen, E., Dayris, T., Uricaru, R., and
Rizk, G. (2015). Reference-free compression of high throughput sequencing
data with a probabilistic de Bruijn graph. BMC Bioinform., 16(1):288.

Blom, J., Albaum, S. P., Doppmeier, D., Pühler, A., Vorhölter, F.-J., Zakrzewski,
M., and Goesmann, A. (2009). EDGAR: A software framework for the com-
parative analysis of prokaryotic genomes. BMC Bioinform., 10(1):154.

92

Bloom, B. H. (1970). Space/time trade-offs in hash coding with allowable errors.
Comm. ACM, 13(7):422–426.

Bonfield, J. K. and Mahoney, M. V. (2013). Compression of FASTQ and SAM
format sequencing data. PLoS One, 8(3):e59190.

Bowe, A., Onodera, T., Sadakane, K., and Shibuya, T. (2012). Succinct de
Bruijn graphs. In Proc. of 12th International Workshop on Algorithms in
Bioinformatics (WABI’12), volume 7534, pages 225–235.

Burrows, M. and Wheeler, D. J. (1994). A block-sorting lossless data compression
algorithm. Digital SRC Research Report 124.

Chikhi, R., Limasset, A., Jackman, S., Simpson, J. T., and Medvedev, P. (2015).
On the representation of de Bruijn graphs. J. Comp. Biol., 22(5):336–352.

Chikhi, R., Limasset, A., and Medvedev, P. (2016). Compacting de Bruijn graphs
from sequencing data quickly and in low memory. Bioinformatics, 32(12):i201–
i208.

Claude, F., Farina, A., Martínez-Prieto, M. A., and Navarro, G. (2010). Com-
pressed q-gram indexing for highly repetitive biological sequences. In Proc.
of the IEEE International Conference on BioInformatics and BioEngineering
(BIBE’10).

Collet, Y. (2015). ZSTD compression library. https://github.com/facebook/
zstd. [Online; accessed 20-December-2016].

Compeau, P. E., Pevzner, P. A., and Tesler, G. (2011). How to apply de Bruijn
graphs to genome assembly. Nat. Biotechnol., 29(11):987–991.

Computational Pan-Genomics Consortium (2016). Computational pan-genomics:
status, promises and challenges. Brief. Bioinform., page bbw089.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction
to algorithms. MIT Press.

Danek, A., Deorowicz, S., and Grabowski, S. (2014). Indexes of large genome
collections on a PC. PloS One, 9(10):e109384.

De La Briandais, R. (1959). File searching using variable length keys. In Proc. of
the Western Joint Computer Conference (IRE-AIEE-ACM’59), pages 295–298.

Denton, J. F., Lugo-Martinez, J., Tucker, A. E., Schrider, D. R., Warren, W. C.,
and Hahn, M. W. (2014). Extensive error in the number of genes inferred from
draft genome assemblies. PLoS Comput. Biol., 10(12):e1003998.

Deorowicz, S. and Grabowski, S. (2013). Data compression for sequencing data.
Algorithms Mol. Biol., 8:25.

93

Dolle, D.-D., Liu, Z., Cotten, M. L., Simpson, J. T., Iqbal, Z., Durbin, R.,
McCarthy, S. A., and Keane, T. M. (2017). Using reference-free compressed
data structures to analyse sequencing reads from thousands of human genomes.
Genome Res., 27(2):300–309.

Donati, C., Hiller, N. L., Tettelin, H., Muzzi, A., Croucher, N. J., Angiuoli, S. V.,
Oggioni, M., Dunning Hotopp, J. C., Hu, F. Z., Riley, D. R., et al. (2010).
Structure and dynamics of the pan-genome of Streptococcus pneumoniae and
closely related species. Genome Biol., 11(10):R107.

Duda, J. (2013). Asymmetric numeral systems: entropy coding combin-
ing speed of huffman coding with compression rate of arithmetic coding.
arXiv:1311.2540.

Durbin, R. (2014). Efficient haplotype matching and storage using the positional
Burrows–Wheeler transform (PBWT). Bioinformatics, 30(9):1266–1272.

Ernst, C. and Rahmann, S. (2013). PanCake: A Data Structure for Pangenomes.
In Proc. of the German Conference on Bioinformatics 2013 (GCB’13), vol-
ume 34, pages 35–45.

Fan, L., Cao, P., Almeida, J., and Broder, A. Z. (2000). Summary cache: a
scalable wide-area web cache sharing protocol. IEEE/ACM Trans. Netw.,
8(3):281–293.

Farach, M. (1997). Optimal suffix tree construction with large alphabets. In
Proc. of the 38th Symposium on Foundations of Computer Science (FOCS’97),
pages 137–143.

Ferragina, P. and Manzini, G. (2000). Opportunistic data structures with appli-
cations. In Proc. of the 41st Symposium on Foundations of Computer Science
(FOCS’00), pages 390–398.

Ferragina, P., Manzini, G., Mäkinen, V., and Navarro, G. (2004). An alphabet-
friendly FM-index. In Proc. of the International Symposium on String Pro-
cessing and Information Retrieval (SPIRE’04), volume 3246, pages 150–160.

Fischer, J., Mäkinen, V., and Navarro, G. (2009). Faster entropy-bounded com-
pressed suffix trees. Theor. Comput. Sci., 410(51):5354–5364.

Fredking, E. (1960). Trie Memory. Comm. ACM, 3(9):490–499.

GENCODE group (2013). GENCODE database. https://www.gencodegenes.
org. [Online; accessed 23-February-2017].

Genome Biology Editorial Team (2011). Closure of the NCBI SRA and im-
plications for the long-term future of genomics data storage. Genome Biol.,
12(3):402.

94

Giancarlo, R., Rombo, S. E., and Utro, F. (2014). Compressive biological se-
quence analysis and archival in the era of high-throughput sequencing tech-
nologies. Brief. Bioinform., 15(3):390–406.

Glenn, T. C. (2011). Field guide to next-generation DNA sequencers. Mol. Ecol.
Res., 11(5):759–769.

Grabowski, S., Deorowicz, S., and Roguski, L. (2015). Disk-based compression
of data from genome sequencing. Bioinformatics, 31(9):1389–1395.

Hach, F., Numanagić, I., Alkan, C., and Sahinalp, S. C. (2012). SCALCE:
boosting sequence compression algorithms using locally consistent encoding.
Bioinformatics, 28(23):3051–3057.

Harrow, J., Frankish, A., Gonzalez, J. M., Tapanari, E., Diekhans, M., Kokocin-
ski, F., Aken, B. L., Barrell, D., Zadissa, A., Searle, S., et al. (2012). GEN-
CODE: the reference human genome annotation for The ENCODE Project.
Genome Res., 22(9):1760–1774.

Heinz, S., Zobel, J., and Williams, H. E. (2002). Burst tries: a fast, efficient data
structure for string keys. ACM Trans. Inf. Syst., 20(2):192–223.

Hoff, K. J. (2009). The effect of sequencing errors on metagenomic gene predic-
tion. BMC Genom., 10:520.

Hogg, J. S., Hu, F. Z., Janto, B., Boissy, R., Hayes, J., Keefe, R., Post, J. C.,
and Ehrlich, G. D. (2007). Characterization and modeling of the Haemophilus
influenzae core and supragenomes based on the complete genomic sequences of
Rd and 12 clinical nontypeable strains. Genome Biol., 8(6):R103.

Holland, R. C. and Lynch, N. (2013). Sequence squeeze: an open contest for
sequence compression. GigaScience, 2:5.

Holley, G., Wittler, R., and Stoye, J. (2015). Bloom Filter Trie–A Data Structure
for Pan-Genome Storage. In Proc. of the 15th Workshop on Algorithms in
Bioinformatics (WABI’15), volume 9289, pages 217–230.

Holley, G., Wittler, R., and Stoye, J. (2016). Bloom Filter Trie: an alignment-
free and reference-free data structure for pan-genome storage. Algorithms Mol.
Biol., 11:3.

Holley, G., Wittler, R., Stoye, J., and Hach, F. (2017). Dynamic Alignment-free
and Reference-free Read Compression. In Proc. of 21st International Confer-
ence on Research in Computational Molecular Biology (RECOMB’17), volume
10229 of Lecture Notes in Computer Science, pages 50–65.

Hosseini, M., Pratas, D., and Pinho, A. J. (2016). A Survey on Data Compression
Methods for Biological Sequences. Information, 7(4):56.

95

Huang, L., Popic, V., and Batzoglou, S. (2013). Short read alignment with
populations of genomes. Bioinformatics, 29(13):i361–i370.

Huffman, D. A. (1952). A method for the construction of minimum-redundancy
codes. Proc. of the IRE, 40(9):1098–1101.

International Human Genome Sequencing Consortium (2001). Initial sequencing
and analysis of the human genome. Nature, 409(6822):860–921.

Iqbal, Z., Caccamo, M., Turner, I., Flicek, P., and McVean, G. (2012). De novo
assembly and genotyping of variants using colored de Bruijn graphs. Nat.
Genet., 44(2):226–232.

Jones, D. C., Ruzzo, W. L., Peng, X., and Katze, M. G. (2012). Compression of
next-generation sequencing reads aided by highly efficient de novo assembly.
Nucleic Acids Res., 40(22):e171.

Kim, D., Langmead, B., and Salzberg, S. L. (2015). HISAT: a fast spliced aligner
with low memory requirements. Nat. Methods, 12(4):357–360.

Kim, D., Langmead, B., and Salzberg, S. L. (2016). HISAT2 implementa-
tion. https://github.com/infphilo/hisat2. [Online; accessed 23-February-
2017].

Kingsford, C. and Patro, R. (2015). Reference-based compression of short-read
sequences using path encoding. Bioinformatics, 31(12):1920–1928.

Kirsch, A. and Mitzenmacher, M. (2006). Less hashing, same performance: Build-
ing a better Bloom filter. In Proc. of the European Symposium on Algorithms
(ESA’06), volume 4168, pages 456–467.

Knuth, D. E. (1998). The Art of Computer Programming: Sorting and Searching,
volume 3. Pearson Education.

Laing, C., Buchanan, C., Taboada, E. N., Zhang, Y., Kropinski, A., Villegas,
A., Thomas, J. E., and Gannon, V. P. J. (2010). Pan-genome sequence anal-
ysis using Panseq: an online tool for the rapid analysis of core and accessory
genomic regions. BMC Bioinform., 11(1):461.

Land, M., Hauser, L., Jun, S.-R., Nookaew, I., Leuze, M. R., Ahn, T.-H.,
Karpinets, T., Lund, O., Kora, G., Wassenaar, T., et al. (2015). Insights from
20 years of bacterial genome sequencing. Funct. Integr. Genomics, 15(2):141–
161.

Ledford, H. (2016). AstraZeneca launches project to sequence 2 million genomes.
Nature, 532(7600).

96

Leffler, E. M., Bullaughey, K., Matute, D. R., Meyer, W. K., Segurel, L., Venkat,
A., Andolfatto, P., and Przeworski, M. (2012). Revisiting an old riddle: what
determines genetic diversity levels within species? PLoS Biol., 10(9):e1001388.

Li, H. and Durbin, R. (2009). Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics, 25(14):1754–1760.

Loh, P.-R., Baym, M., and Berger, B. (2012). Compressive genomics. Nat.
Biotechnol., 30(7):627–630.

Luhmann, N., Thévenin, A., Ouangraoua, A., Wittler, R., and Chauve, C. (2016).
The SCJ Small Parsimony Problem for Weighted Gene Adjacencies. In Proc.
of the International Symposium on Bioinformatics Research and Applications
(ISBRA’16), volume 9683, pages 200–210.

Lukjancenko, O., Wassenaar, T. M., and Ussery, D. W. (2010). Comparison of
61 sequenced Escherichia coli genomes. Microb. ecol., 60(4):708–720.

Mäkinen, V., Navarro, G., Sirén, J., and Välimäki, N. (2010). Storage and re-
trieval of highly repetitive sequence collections. J. Comp. Biol., 17(3):281–308.

Manber, U. and Myers, G. (1993). Suffix arrays: a new method for on-line string
searches. SIAM J. Comput., 22(5):935–948.

Marçais, G. and Kingsford, C. (2011). A fast, lock-free approach for efficient
parallel counting of occurrences of k-mers. Bioinformatics, 27(6):764–770.

Marcus, S., Lee, H., and Schatz, M. C. (2014). SplitMEM: a graphical algorithm
for pan-genome analysis with suffix skips. Bioinformatics, 30(24):3476–3483.

McCreight, E. M. (1976). A space-economical suffix tree construction algorithm.
J. ACM, 23(2):262–272.

Medini, D., Donati, C., Tettelin, H., Masignani, V., and Rappuoli, R. (2005).
The microbial pan-genome. Curr. Opin. Genet. Dev., 15(6):589–594.

Mikheyev, A. S. and Tin, M. M. Y. (2014). A first look at the Oxford Nanopore
MinION sequencer. Mol. Ecol. Res., 14(6):1097–1102.

Minkin, I., Pham, S., and Medvedev, P. (2016). TwoPaCo: An efficient algo-
rithm to build the compacted de Bruijn graph from many complete genomes.
Bioinformatics, page btw609.

Morrison, D. R. (1968). PATRICIA – Practical Algorithm To Retrieve Informa-
tion Coded in Alphanumeric. J. ACM, 15(4):514–534.

Mosquera-Rendón, J., Rada-Bravo, A. M., Cárdenas-Brito, S., Corredor, M.,
Restrepo-Pineda, E., and Benítez-Páez, A. (2016). Pangenome-wide and molec-
ular evolution analyses of the pseudomonas aeruginosa species. BMC Genom.,
17:45.

97

Myers, E. W. (2005). The fragment assembly string graph. Bioinformatics,
21:ii79–ii85.

Navarro, G. (2012). Indexing highly repetitive collections. In Proc. of the 23rd
International Workshop on Combinatorial Algorithms (IWOCA’12), volume
7643, pages 274–279.

NCBI (2007). NCBI Sequencing Read Archive database. https://trace.ncbi.
nlm.nih.gov/Traces/sra/. [Online; accessed 23-February-2017].

NCBI (2017). NCBI Genome database. https://www.ncbi.nlm.nih.gov/
genome/. [Online; accessed 23-February-2017].

Nederbragt, L. (2016). Developments in NGS. https://figshare.com/
articles/developments_in_NGS/100940. [Online; accessed 20-December-
2016: 10.6084/m9.figshare.100940.v9].

Nguyen, N., Hickey, G., Zerbino, D. R., Raney, B., Earl, D., Armstrong, J.,
Haussler, D., and Paten, B. (2015). Building a pangenome reference for a
population. J. Comput. Biol., 22(5):387–401.

Nilsson, S. and Karlsson, G. (1999). IP-address lookup using LC-tries. IEEE J.
Sel. Area. Comm., 17(6):1083–1092.

Numanagić, I., Bonfield, J. K., Hach, F., Voges, J., Ostermann, J., Alberti, C.,
Mattavelli, M., and Sahinalp, S. C. (2016). Comparison of high-throughput
sequencing data compression tools. Nat. Methods, 13(12):1005–1008.

Ohlebusch, E., Fischer, J., and Gog, S. (2010). CST++. In Proc. of the Interna-
tional Symposium on String Processing and Information Retrieval (SPIRE’10),
volume 6393, pages 322–333.

Paten, B., Diekhans, M., Earl, D., John, J. S., Ma, J., Suh, B., and Haussler, D.
(2011). Cactus graphs for genome comparisons. J. Comput. Biol., 18(3):469–
481.

Patro, R. and Kingsford, C. (2015). Data-dependent bucketing improves
reference-free compression of sequencing reads. Bioinformatics, 31(17):2770–
2777.

Pavlov, I. (1999). LZMA compression library. http://www.7-zip.org. [Online;
accessed 20-December-2016].

Putze, F., Sanders, P., and Singler, J. (2009). Cache-, hash- and space-efficient
bloom filters. ACM J. Exp. Algorithmic, 14:9.

Rahn, R., Weese, D., and Reinert, K. (2014). Journaled string tree—a scalable
data structure for analyzing thousands of similar genomes on your laptop.
Bioinformatics, 30(24):3499–3505.

98

Raman, R., Raman, V., and Rao, S. S. (2007). Succinct indexable dictionaries
with applications to encoding k-ary trees, prefix sums and multisets. ACM
Trans. Algor., 3(4):43.

Rasmussen, K. R., Stoye, J., and Myers, E. W. (2006). Efficient q-gram filters
for finding all ε-matches over a given length. J. Comp. Biol., 13(2):296–308.

Rhoads, A. and Fai Au, K. (2015). PacBio Sequencing and Its Applications.
Genomics, Proteomics & Bioinformatics, 13(5):278–289.

Roberts, M., Hayes, W., Hunt, B. R., Mount, S. M., and Yorke, J. A. (2004).
Reducing storage requirements for biological sequence comparison. Bioinfor-
matics, 20(18):3363–3369.

Roguski, L. and Deorowicz, S. (2014). DSRC 2–Industry-oriented compression of
FASTQ files. Bioinformatics, 30(15):2213–2215.

Rozov, R., Shamir, R., and Halperin, E. (2014). Fast lossless compression via
cascading Bloom filters. BMC Bioinform., 15(9):S7.

Russo, L., Navarro, G., and Oliveira, A. L. (2011). Fully compressed suffix trees.
ACM Trans. Algor., 7(4):53.

Sadakane, K. (2007). Compressed suffix trees with full functionality. Theor.
Comput. Syst., 41(4):589–607.

Saha, S. and Rajasekaran, S. (2014). Efficient algorithms for the compression of
FASTQ files. In Proc. of the International Conference on Bioinformatics and
Biomedicine (BIBM’14).

Sahinalp, S. C. and Vishkin, U. (1996). Efficient approximate and dynamic
matching of patterns using a labeling paradigm. Proc. of the 37th Annual
Symposium on Foundation of Computer Science (FOCS’96).

Salikhov, K., Sacomoto, G., and Kucherov, G. (2014). Using cascading Bloom
filters to improve the memory usage for de Brujin graphs. Algorithm. Mol.
Biol., 9:2.

Sanger, F., Nicklen, S., and Coulson, A. R. (1977). DNA sequencing with chain-
terminating inhibitors. Proc. Natl. Acad. Sci. USA, 74(12):5463–5467.

Schneeberger, K., Hagmann, J., Ossowski, S., Warthmann, N., Gesing, S.,
Kohlbacher, O., and Weigel, D. (2009). Simultaneous alignment of short reads
against multiple genomes. Genome Biol., 10(9):R98.

Schuster, S. C. (2008). Next-generation sequencing transforms today’s biology.
Nat. methods, 5:16–18.

99

Shendure, J. and Ji, H. (2008). Next-generation DNA sequencing. Nat. Biotech-
nol., 26(10):1135–1145.

Sigaux, F. (1999). Cancer genome or the development of molecular portraits of
tumors. Bulletin de l’Academie nationale de medecine, 184(7):1441–7.

Simpson, J. T. and Pop, M. (2015). The Theory and Practice of Genome Sequence
Assembly. Annu. Rev. Genom. Hum. Genet., 16:153–172.

Sirén, J. (2017). Indexing Variation Graphs. In Proc. of the 19th Workshop on
Algorithm Engineering and Experiments (ALENEX’17), pages 13–27.

Sirén, J., Välimäki, N., and Mäkinen, V. (2011). Indexing finite language repre-
sentation of population genotypes. In Proc. of the 11th International Workshop
on Algorithms in Bioinformatics (WABI’11), volume 6833, pages 270–281.

Sirén, J., Välimäki, N., and Mäkinen, V. (2014). Indexing graphs for path
queries with applications in genome research. IEEE/ACM Trans. Comput.
Biol. Bioinf., 11(2):375–388.

Solomon, B. and Kingsford, C. (2016). Fast search of thousands of short-read
sequencing experiments. Nat. Biotechnol., 34(3):300–302.

Stephens, Z. D., Lee, S. Y., Faghri, F., Campbell, R. H., Zhai, C., Efron, M. J.,
Iyer, R., Schatz, M. C., Sinha, S., and Robinson, G. E. (2015). Big data:
astronomical or genomical? PLoS Biol., 13(7):e1002195.

Tettelin, H., Masignani, V., Cieslewicz, M. J., Donati, C., Medini, D., Ward,
N. L., Angiuoli, S. V., Crabtree, J., Jones, A. L., Durkin, A. S., et al. (2005).
Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae:
implications for the microbial “pan-genome”. Proc. Natl. Acad. Sci. USA,
102(39):13950–13955.

Tettelin, H., Riley, D., Cattuto, C., and Medini, D. (2008). Comparative ge-
nomics: the bacterial pan-genome. Curr. Opin. Microbiol., 11(5):472–477.

Thudi, M., Li, Y., Jackson, S. A., May, G. D., and Varshney, R. K. (2012).
Current state-of-art of sequencing technologies for plant genomics research.
Brief. Funct. Genomics, 11(1):3–11.

Treangen, T. J., Ondov, B. D., Koren, S., and Phillippy, A. M. (2014). The
Harvest suite for rapid core-genome alignment and visualization of thousands
of intraspecific microbial genomes. Genome Biol., 15(11):524.

Ukkonen, E. (1995). On-line construction of suffix trees. Algorithmica, 14(3):249–
260.

100

Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton,
G. G., Smith, H. O., Yandell, M., Evans, C. A., Holt, R. A., et al. (2001). The
Sequence of the Human Genome. Science, 291(5507):1304–1351.

vg team (2015). vg implementation. https://github.com/vgteam/vg. [Online;
accessed 23-February-2017].

Wandelt, S., Starlinger, J., Bux, M., and Leser, U. (2013). RCSI: Scalable sim-
ilarity search in thousand(s) of genomes. Proc. of the VLDB Endowment,
6(13):1534–1545.

Watson, J. D. and Crick, F. H. (1953). The structure of DNA. In Cold Spring
Harb. Symp. Quant. Biol., volume 18, pages 123–131.

Weiner, P. (1973). Linear pattern matching algorithms. In Proc. of the 14th
Annual Symposium on Switching and Automata Theory (SWAT’73).

Williams, H. E. and Zobel, J. (1999). Compressing integers for fast file access.
Comput. J., 42(3):193–201.

Witten, I. H., Neal, R. M., and Cleary, J. G. (1987). Arithmetic coding for data
compression. Commun. ACM, 30(6):520–540.

Zekic, T., Holley, G., and Stoye, J. (2018). Pangenome Storage and Analysis
Techniques. In Setubal, J., Stoye, J., and Stadler, P., editors, Comparative
Genomics, volume 1704 of Methods in Molecular Biology.

Zimin, A. V., Marçais, G., Puiu, D., Roberts, M., Salzberg, S. L., and Yorke, J. A.
(2013). The MaSuRCA genome assembler. Bioinformatics, 29(21):2669–2677.

Ziv, J. and Lempel, A. (1977). A universal algorithm for sequential data com-
pression. IEEE Trans. Inf. Theory, 23(3):337–343.

101

Printed on non-ageing paper °° ISO 9706

