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Abstract: Human-machine interfaces to control prosthetic devices still suffer from scarce dexterity
and low reliability; for this reason, the community of assistive robotics is exploring novel solutions to
the problem of myocontrol. In this work, we present experimental results pointing in the direction
that one such method, namely Tactile Myography (TMG), can improve the situation. In particular,
we use a shape-conformable high-resolution tactile bracelet wrapped around the forearm/residual
limb to discriminate several wrist and finger activations performed by able-bodied subjects and
a trans-radial amputee. Several combinations of features/classifiers were tested to discriminate
among the activations. The balanced accuracy obtained by the best classifier/feature combination
was on average 89.15% (able-bodied subjects) and 88.72% (amputated subject); when considering
wrist activations only, the results were on average 98.44% for the able-bodied subjects and 98.72%
for the amputee. The results obtained from the amputee were comparable to those obtained by the
able-bodied subjects. This suggests that TMG is a viable technique for myoprosthetic control, either
as a replacement of or as a companion to traditional surface electromyography.

Keywords: tactile myography; tactile sensing; assistive robotics; human-machine interfaces;
upper-limb prosthetics

1. Introduction

Upper-limb amputations are a serious impediment in a world where the large majority of daily
tasks are operated by hands. In spite of the remarkable body of research conducted in the scientific
communities of assistive robotics, sensors, machine learning and biomedical engineering in the past
couple of decades, we are still far from the ideal solution to provide a reliable form of control of
upper-limb prostheses. According to comprehensive reviews [1–3], rejection rates reach disastrous
levels for all kinds of upper-limb prosthetic devices (body-powered, self-powered and/or passive
devices). Reported mean rejection rates are on average one third for pediatric and one fourth for adult
patients, with about 1900 traumatic upper-limb amputations per year in Europe and maintaining an
estimated total population of 94,000 upper-limb amputees [4]. At the same time, notice that one third of
upper-limb amputees still does use a passive prosthesis [5] and that at least one recent study [6] makes
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a decisive point for body-powered devices against self-powered ones. For a somewhat contradictory
survey, see, e.g., [7].

The main reasons for this impasse include the lack of dexterity and long reaction times of the
prosthetic device and, most crucially, poor reliability of the Human-Machine Interface (HMI) used to
control it [1–4,8]. In practice, the standard prosthetic user of a self-powered prosthesis is still unable to
hold an object exactly the way and for the time (s)he wants.

Given the state of the art of myoelectric control, even an expensive multi-fingered hand
prosthesis such as Touch Bionics’s i-LIMB Quantum [9] can provide little more than a body-powered
one-degree-of-freedom (1-DOF) gripper. The appropriateness of such expensive solutions, as opposed
to less expensive and less dexterous, but more reliable body-powered 1-DOF grippers definitely comes
into question.

The community is therefore looking for new solutions to improve the reliability of myocontrol;
in particular, multi-modal sensing techniques to non-invasively gather the user’s intent [10–12] are
being explored. One such idea is that of detecting the deformations that occur on the surface of the
forearm/residual limb, denoting muscular activity, and in turn representing intended wrist, hand and
finger activations. From now on, we will denote as activation any action voluntarily performed by a
human subject, which is also the desired target of a hand/wrist prosthesis; for instance, wrist flexion
implies the activation of some of the muscles in the forearm and should correspond to the flexion of the
prosthetic wrist. This informal definition has the advantage that it abstracts away from whether it is a
muscle isometric contraction or the result of a movement and from whether it is being performed by
able-bodied or by amputated subjects. Amputees in particular can still perform muscle contractions,
which obviously lead to no movement and no generation of torque. Pioneering work by, among others,
Craelius [13] has already shown that relevant information can indeed be obtained by embedding a
small number of force sensors in a silicon sleeve or a semi-rigid cuff. A straightforward extension to
this idea is that of employing tactile sensing, which is a high-density form of force sensing; the resulting
technique is called Tactile Myography (TMG), analogous to surface Electromyography (sEMG).

In the experiment we hereby report about, we applied TMG to 10 able-bodied participants,
as well as to a trans-radial amputee, and assessed its effectiveness to discriminate (classify) several
wrist, hand and finger activations. We developed a shape-conformable bracelet using our custom
high-density tactile sensors [14]. The bracelet can be strapped around the forearm or the residual
limb. During wrist, hand and finger activations, our bracelet yields a high-resolution image of the
related forearm/residual limb deformations, which cause pressure changes that are captured by the
tactile sensors. During two experiments, we associated the features extracted from such images with
the images from a visual stimulus and fed them to classification algorithms. In the first experiment,
ten able-bodied subjects were instructed to track the stimulus, which showed repeated, simple wrist,
hand and finger activations. In the second experiment, a very similar protocol was requested from a
left trans-radial amputated subject.

The experimental results reveal that the classification accuracy is on average 89.15% for the
able-bodied subjects and 88.72% for the amputee for finger and wrist movements; such values are in
line with, or superior to, what can be found in previous literature in similar experiments (see, e.g., [15]).
The results obtained by the amputee are comparable to those obtained by the able-bodied subjects,
a surprising fact given that the subject had been amputated eight years before the experiment and,
during this time, has been using no prostheses at all.

Related Work

The need for novel sensors to improve the accuracy and stability of myoelectric control has been
advocated multiple times (e.g., in [11,12]) as a substitute and/or complement to the more traditional
technique of sEMG. There is no agreement so far as to which technique or combination of techniques
yields the best overall results (Guo and colleagues, as well as Ravindra and Castellini, already discussed
this topic [15,16]). There is a drive in the community to hold on to surface techniques, since invasive



Technologies 2018, 6, 38 3 of 15

methods such as needle EMG and direct connection to the nerves are still not practical for clinical
use [4]. One such idea, and a very practical one given its alleged ease of production, low cost and
high effectiveness (so far just in the laboratories) consists of detecting the changes in the volume and
position of the muscles (bulging) while human subjects move and exert forces. Early experiments using
pneumatics to detect muscle bulges date back to as early as 1966 [17]. From about 2000 on, this very
idea has been developed with various names and slightly different kinds of sensors and housings:
in [13,18], pressure vector decoding or residual kinetic imaging is defined, employing myopneumatic
(pressure) sensors embedded in a silicone sleeve or in a bracelet; in [19,20], Force Myography (FMG)
or surface muscle pressure is introduced, which exploits the same principle, but using very affordable
Force-Sensing-Resistors (FSRs). The same research group has recently applied FMG to gait control [20]
and brain injury rehabilitation [21]. Gait control was also realized in this way in an earlier paper by
Lukowicz et al. [22]. FMG has been further extensively developed, tested and compared against sEMG
and ultrasound imaging [15], assessed when fused with sEMG [23], and tested on amputees [24] with
good-to-excellent classification accuracy. All in all, detection of muscle bulging using a small number
of force or pressure sensors is well established in controlled conditions.

We define Tactile Myography (TMG) as the extension of FMG to high density (high resolution).
The most interesting examples of TMG, both realized via a resistive pressure-sensing approach,
are found in [25] and in [26]. Radmand et al. [26] propose a 14 × 9 tactile array with a spatial
resolution of 10 mm embedded in a rigid plastic socket and demonstrate excellent classification rates
on able-bodied subjects. Furthermore, they collect data for several different body postures, an issue
which is usually detrimental to any machine-learning-based myocontrol approach. (Notice that in
Radmand et al.’s work, what we here denote as TMG is called HD-FMG for High-Density FMG. In this
paper, we rather stick to the acronym TMG to denote this approach.) In the work by Kõiva et al. [25],
which can be considered an early, preliminary version of this very paper, values of root-mean-squared
error are obtained by TMG when regression is applied, which are in line with related literature
employing FMG, sEMG and ultrasound imaging. TMG should show the same higher quality and
stability of signals with respect to sEMG that FMG enjoys [15,23], with the advantage of potentially
providing more information thanks to the higher resolution.

If we consider the output of a tactile sensor array as an image (i.e., each sensor output represents
the intensity of a pixel), image processing algorithms can be applied to extract discriminative
information from the pressure map. For example, Scale-Invariant Feature Transform (SIFT) is a
well-established method designed for object recognition from images [27] that has been implemented
in tactile-based object shape recognition [28]. Gradient-based features extracted from Regions of
Interest (ROI) and Histograms of Oriented Gradients (HOG) have been utilized to discriminate
finger positions from ultrasound images [29–31] and could potentially be applied to sensor arrays.
In all these cases, the extracted features were used in combination with a classifier or a regression
method to model the intent of the subject. Another approach is to learn the features and perform
classification directly from the raw pressure maps, without handcrafted feature design. In this context,
deep learning algorithms are becoming increasingly useful given their classification performance on
image processing [32,33].

2. Materials and Methods

2.1. Experimental Setup

Two similar experiments were performed: the first involved the able-bodied subjects, whereas
the second involved the amputated subject. The same experimental setup, described in detail in
the following sections, was used for both experiments (see Figure 1). The setup was intentionally
maintained as simple as possible, and in the end, it only consisted of the aforementioned tactile bracelet
and of a monitor on which a visual stimulus was displayed.
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Figure 1. A bird’s eye view of the experimental setup. The tactile bracelet was wrapped around the
subject’s residual limb (around the forearm in the case of intact subjects); a 3D hand model was shown to
the subject on an extra monitor; data visualization, stimulus control and data recording were performed on
a laptop.
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Two similar experiments were performed: the first involved the intact subjects, whereas the second108
involved the amputated subject. The same experimental setup, described in detail in the following Sections,109
was used for both experiments (see Figure 1). The setup was intentionally maintained as simple as possible,110
and in the end it only consisted of the afore-mentioned tactile bracelet and of a monitor on which a visual111
stimulus was displayed.112

Tactile bracelet113

The tactile bracelet (Figure 2) is composed of up to 10 tactile sensor boards and a single mainboard114
which collects the tactile data from the sensor boards and optionally provides motion tracking capabilities.115
To enable optimal covering of different arm circumferences, the amount of connected sensor boards is116
variable by design.117

Each tactile sensor is based on a resistive working principle in which the interface resistivity between118
two surfaces changes according to the applied load. This is achieved using conductive tracks as electrodes119
and conductive foam or rubber as the sensor material, which is a technique first introduced by Weiss120
and Wörn in (Weiss and Wörn, 2005). Figure 2 (b) illustrates this basic working principle and depicts121
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Figure 1. Experimental setup. The tactile bracelet was wrapped around the subject’s residual limb
(around the forearm in the case of able-bodied subjects); a 3D hand model was shown to the subject on
an extra monitor; data visualization, stimulus control and data recording were performed on a laptop.
Image included with consent.

2.1.1. Tactile Bracelet

The tactile bracelet (Figure 2) is composed of up to 10 tactile sensor boards and a single main
board, which collects the tactile data from the sensor boards and optionally provides motion tracking
capabilities via embedded inertial-measurement-unit. To enable optimal covering of different arm
circumferences, the amount of connected sensor boards is variable by design.

(a) (b)

Figure 2. (a) The tactile bracelet prototype with 10 tactile sensor modules. Soft conductive elastomer
material (foam) combined with a shape-conformable modular design was designed to make the bracelet
comfortable to wear. (b) Working principle of the tactile bracelet sensors: the resistance of a single
resistive cell, measured between the two electrodes, is the sum of the foam volumetric resistance and
the contact resistances between the foam and the electrodes. The resistance changes according to the
load applied to the foam.

Each tactile sensor is based on a resistive working principle in which the interface resistivity
between two surfaces changes according to the applied load. This is achieved using conductive tracks
as electrodes and conductive foam or rubber as the sensor material, which is a technique first introduced
by Weiss and Wörn in [34]. Figure 2b illustrates this basic working principle and depicts the three parts
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that contribute to the sum of the final sensor resistance, Rt: the variable contact interface resistances,
Rs1 and Rs2, and a constant sensor material volume resistance, Rv. In its simplest form, the tactile sensor
electrodes can be produced by using a common printed circuit board (PCB). A number of possible
sensor materials can be considered, such as elastomer foam with added carbon particles (as used
in typical electrostatic discharge (ESD) packaging foam), conductive fabrics and conductive rubber.
For improved respiration of the skin and for optimal sensor characteristics, in the bracelet, we opted
for porous conductive foam. In the first experiment, 6 mm-thick polyurethane foam (Warmbier
4451.W [35]) was used; in the second, we opted for thinner (3 mm), but stiffer and thus more robust
polyolefin foam (Polyform PE PF554 [36]).

Each sensor board in the tactile bracelet had 4 × 8 tactile pixels (taxels) in a 5-mm grid that
were sampled using two 16-channel 12-bit resolution analog-to-digital converters (ADCs) in parallel
(Figure 3). The digitalized data were provided internally on an Serial Peripheral Interface (SPI) bus.
With a board width of 20 mm, an adult can typically fit all 10 sensor boards around the circumference of
the arm, resulting in a high resolution tactile image of 10 × 4 × 8 = 320 taxels. The data of the bracelet
is streamed out over USB using virtual serial port communication (USB-CDC). The tactile data from the
bracelet were captured at 80 frames per second. The host software rearranges the stream of incoming
taxel data and can visualize it as a two-dimensional tactile array. A wide double-sided hook-and-loop
band was selected for mounting the sensor and data collector boards around an arm. This made quick
individual sensor positioning and overall bracelet circumference and tension adjustment possible,
while simultaneously providing a sturdy attachment. Appropriate fasteners were designed and 3D
printed to attach the printed circuit boards to the hook-and-loop band.

(a) (b)

Figure 3. A single sensor module printed circuit board (PCB) with 32 tactile cells. (a) The electrode side
showing the 4 × 8 arrangement of the M-shaped electrodes in a 5 mm grid. The non-conductive areas
on the left and on the right of the electrode grid are reserved for attachment of the sensor elastomer
with a double-sided tape. (b) The digitization circuitry is located directly on the backside to keep the
analog signal path at a minimum.

2.1.2. Visual Stimulus

Each participant was asked to try to mimic a sequence of wrist/hand/finger activations performed
by a realistic 3D hand model on a computer monitor. The model anatomically matches a human hand
and enforces independent flexion of each finger, as well as the activation of the three DOFs of the
wrist, with values normalized between 0 and 1. Each DOF activation rose from 0 to 1 and back with a
sinusoidal pattern, realistically simulating the flexion of fingers, the rotation of the thumb, the flexion
of the wrist, and so on (for our purposes, positive and negative activations of the wrist were treated as
separate activations, e.g., the wrist flexion would be treated as a different activation from the wrist
extension, since different muscle groups are required to perform them).

The values of the DOF activations of the visual stimulus were used as the ground truth against
which the tactile features were matched. In our study, we only used static hand positions. Data collected
during the transition and adaptation phases between one activation and the following were not
considered in the analysis. This is an instance of the so-called realistic setup or on-off goal-directed
stimulus, already successfully employed, e.g., in [30,37]. This method has the drawback of potentially
reducing the precision in the prediction of the intended activations due to the delay required by the
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subject to adapt; nevertheless, it is an accepted way to associate an intended activation with a specific
input signal pattern; in the case of amputees, it actually is the only possible way, since amputees cannot
produce a reliable ground truth in principle.

Figure 4a depicts the timing of the visual stimulus, as well as the data recording.

(a) (c)
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Data recording
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Holding
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position of the 3D hand model 
during one movement cycle 

Transition and adaptation Transition and adaptation

Data recording
2s

(b)

Thumb
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Little Finger
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Flexion
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One movement cycle

Legend:

Wrist
Extension

Wrist
Supination

Sequence of finger and wrist movements

Figure 4. (a) Schematic representation of the sequence of the visual stimuli and the data collection
timing. (b) The sequence of stimuli. (c) Example of averaged tactile patterns per movement of one
able-bodied subject. Tactile Modules 1–4 were positioned on the ventral part of the forearm, while
Modules 5–10 covered the dorsal part. Higher forces applied to sensors are depicted in blue, while
lower forces are shown in red (reproduced and adapted with permission from [25]).

2.2. Participants

Ten able-bodied participants (two left-handed and eight right handed, 27.3 ± 5.66 years old) and
one trans-radial left hand male amputee were recruited for this study. The amputee was 68 years
old and underwent surgery in 2007 following a work-related incident involving explosive materials.
He reported no usage of any prosthesis whatsoever since the amputation and stated that he could
distinctly move each phantom finger without phantom-limb pain. The residual limb was about 20.5 cm
long and was in good condition (no skin rash, no abnormal redness, no reported pain or exfoliation).
All participants were informed, both in writing and orally, about the procedure and possible risks
and gave written informed consent before each experiment began. The experiments were performed
according to the World Medical Association (WMA) Declaration of Helsinki and were preliminarily
approved by the Work Council of the German Aerospace Center (DLR).

2.3. Experimental Protocol

Each able-bodied participant would sit comfortably in front of the monitor showing the visual
stimulus. The experiment consisted of ten repetitions of a sequence of six activations each, namely
rotation (i.e., opposition) of the thumb, flexion of the index finger, flexion of the little finger, flexion
of the wrist, extension of the wrist and supination of the wrist (Figure 4b). This specific choice of
activations was motivated by the following three factors: (a) to experiment with activations that are
routinely encountered in daily living; and at the same time, (b) to keep the duration of the experiment
reasonably short for both able-bodied and amputated participants; and to select (c) the activations that
could correspond to the DOFs available in current commercial multi-fingered prosthetic hands that can
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connect with prosthetic wrists. In order to produce activations that would require a reasonable amount
of force/torque, the participants were instructed to press with their fingers on the bare table (thumb
rotation, index flexion and little finger flexion) and to simply flex, extend and supinate the wrist to
their limit with the arm lifted from the table. The preliminary results of this experiment, as well as
more details on the experimental setup are described in a previous publication [25].

The amputee followed a similar experimental protocol. He was introduced to the experiment,
seated comfortably in front of the monitor as shown in Figure 1 and was similarly asked to mimic the
visual stimulus. The protocol consisted of three trials, each consisting of, in turn, five repetitions of
the same sequence of activations as described previously for the able-bodied participants (Figure 4b).
The first trial was performed with the residual limb, i.e., the bracelet was placed on the participant’s
residual limb, and he was asked to try to perform the activations seen on the screen with his residual
limb; the second trial was performed with his intact limb and was therefore a shortened version of the
protocol for able-bodied subjects; lastly, the third trial was again performed with the residual limb.
This protocol is motivated, on the one hand, by the need to keep the amputee’s protocol as similar
as possible to that of the able-bodied subjects, in order to provide comparable results; on the other
hand, we wanted to check if any learning effect would appear between the first and the third trial.
The complete experiment lasted about 30 min.

2.4. Data Analysis

Tactile data were acquired from the tactile bracelet at a sampling rate of 80 samples per second;
the values of the visual stimulus were synchronized by linearly interpolating the timestamps of the
respective data channels. The data from the tactile sensors were filtered with a 1st-order Butterworth
bandpass filter with cutoff frequencies at 0.01 and 1 Hz to remove high-frequency disturbances,
heart rate and signal drift due to memory effects of the foam. Figure 4c shows a typical pattern
obtained for each movement required in the experimental protocol (average of all movements for one
able-bodied subject).

Different methods were applied for feature extraction, including Harris corner extraction [38],
the structural similarity index [39] on bicubic interpolated data and Region of Interest (RoI)
gradients [30,40,41], which yielded the highest classification accuracies in a preliminary round of
experiments. As opposed to the RoIs used in [30,40], which were round-shaped and overlapped
one another by about 10%, in this case, due to the lower resolution of the tactile data with respect
to the ultrasound images used in those papers, we adopted a simpler strategy, defining each RoI
as a non-overlapping 4 × 4 taxel square. Then, like in the aforementioned papers, for each RoI,
we computed three parameters of interest α, β and γ linearly approximating the taxel intensities.
(More in detail, for each RoI i, αi and βi represent the mean intensity gradient along the x and y axis,
while γi is an intensity offset. Further details can be found in [30].) The feature extraction method
was uniform for all subjects and, once again, in line with previous references, was not targeted at any
anatomical feature. This reduces the preparation time of the experiment.

A portion of the collected data was then reduced to three dimensions using principal component
analysis (PCA) and visualized for qualitative assessment (see Figure 5, where samples collected during
each stimulated movement are visualized in different colors; notice that in some cases, a sample set
is not visible since its cluster gets overshadowed by other ones; that is the case of thumb rotation in
Figure 5e for instance). The more separated the clusters of data appear in three dimensions, the better
are the classification results; in particular, wrist movements are supposed to be more distinguishable
from one another in the feature space than when also considering finger movements.

For comparison, graphs in the first column (Figure 5a,c,e) show the full set of movements, while
those in the second column (Figure 5b,d,f) show only the wrist movements. Figure 5a,b show data
gathered from the able-bodied subject with the most separable classes (Fisher’s separateness index);
Figure 5c,d show those obtained from the able-bodied subject least separable classes; and Figure 5e,f
show those obtained from the amputee during the third trial.
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Figure 5. Three-dimensional principal component analysis (PCA)-reduced visualization of the samples
obtained from the able-bodied subjects with the highest (a,b) and lowest cluster separateness (c,d) and
from the third trial of the amputee (e,f). (a,c,e) show the full set of stimulated movements, while (b,d,f)
only show wrist-related movements and the resting position. (notice that the PCA coefficients were
recalculated from the left to the right column).

The qualitative examination of these graphs indicated that the wrist movements appeared well
separated in all cases (even for the worst cases) and that the finger movements tended to cluster worse
than the wrist movements. Furthermore, the data collected from the amputee during the third trial
were hardly distinguishable from those of the able-bodied subjects.

Given this analysis, we chose to use two very simple classification methods, namely a
k-Nearest-Neighbors classifier (k-NN) using the Euclidean distance and the Nearest-Cluster-Centroid
classifier (NCC) using both the Euclidean and the Mahalanobis distances. The choice of k-NN and
NCC was substantiated by their simplicity (in comparison to Artificial Neural Networks (ANN)) and
fast training, which can be easily implemented for on-line analysis. For the k-NN classifier, we chose
k = 1, which had the highest accuracy results across k-values between 1 and 10. The classes to be
discriminated were either the seven movements (thumb rotation, index flexion, flexion of the little
finger, wrist flexion, wrist extension, wrist supination and rest) or the four wrist movements (wrist
flexion, wrist extension, wrist supination and rest). Since we had 20 RoIs on each tactile image and
three features were extracted from each RoI, each image sample was represented by a 60-dimensional
feature vector.

For the first experiment, only the last five repetitions of the movement sequence were used for
further analysis (the first prototype of the tactile bracelet with a soft foam was more susceptible to
the memory effect of the foam). The three selected classifiers (k-NN, NCC with Euclidean distance
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and NCC with Mahalanobis distance) were trained using leave-one-repetition-out cross-validation
for each subject. The training set was composed of four repetitions and tested on the last repetition.
As the resting position was performed more often than the other movements, the mean and standard
deviation of the balanced accuracy were computed for each subject.

In the second experiment, the same classifiers used in the first experiment were applied on the
three trials performed by the amputee. For each trial, leave-one-repetition-out cross-validation was
applied, using 4 repetitions as the training set and one as the testing set. The mean and standard
deviation of the balanced accuracy were calculated for each trial.

3. Results

3.1. Experiment #1 (Able-Bodied Subjects)

Figure 6 shows in the first row the classification accuracy obtained in the first experiment.
Figure 6a shows that the k-NN and the NCC with Euclidean distance outperformed the NCC with
Mahalanobis distance in the classification of all movements for all able-bodied subjects. Only in three
cases (Subjects 6, 7 and 10) did the k-NN yielded lower accuracies than the NCC with Euclidean
distance. The accuracy of the k-NN varied between 70.40% and 100% with a mean accuracy of
89.15% over all subjects. To know if the difference in the performance of the classifiers is significant,
Kruskal–Wallis one-way analysis of variance was performed as the mean accuracies of the different
classifiers are not normally distributed. A significant difference was obtained between the three
classifiers (H(30) = 12.26, p = 0.0022). For further analysis, a multiple comparison test was performed
showing that the accuracy means over all able-bodied subjects using NCC with Mahalanobis distance
are significantly different than the accuracy means over all subjects using k-NN or NCC with Euclidean
distance. However, there is no significant difference between the results using k-NN and NCC with
Euclidean distance.

The classification of wrist movements, including the resting position, showed high accuracies
overall (Figure 6b). The k-NN seems to perform better than the other classifiers, obtaining an
accuracy between 95.13% and 100%. The mean accuracy over all subjects was 98.44% for k-NN,
97.77% for NCC with Euclidean distance and 94.53% for NCC with Mahalanobis distance. However,
the Kruskal–Wallis one-way analysis of variance showed in this case that there is no significant
difference in the performance of the different classifiers (H(30) = 2.41, p = 0.3).
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Figure 6. Classification accuracies obtained by all able-bodied subjects (a,b) and the amputee (c,d)
using different classifiers. NCC, Nearest-Cluster-Centroid.

3.2. Experiment #2 (Amputee)

The second row of Figure 6 shows the classification accuracy obtained in the second experiment,
i.e., on the data obtained from the amputee. Figure 6c shows that the highest accuracies applied to all
movements were obtained in the third trial, which was performed with the amputated arm. The mean
accuracy of the k-NN was 84.37% in Trial 1 and 84.40% in Trial 2. The same classifier achieved 93.07%
mean accuracy in the third trial.

Similarly to the results obtained from the able-bodied subjects, the classification of the wrist
movements was more accurate (Figure 6d). In this case, the NCC with Mahalanobis distance performed
better in the first trial, but worse than the other classifiers considered in Trials 2 and 3. The mean
accuracy results of the k-NN for the intact arm in Trial 2 were 100% and 99.18% for the amputated arm
in Trial 3. For this experiment, no statistical analysis was performed as we only collected data from
one amputee.

4. Discussion

In this paper, we have proposed a further investigation into the usage of Tactile Myography
(TMG) for dexterous myocontrol, as a substitute or a companion to surface EMG. A few remarks
are necessary.
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4.1. Tactile Myography for Myocontrol

Myocontrol is the usage of bodily signals related to muscle activation to control assistive or
rehabilitation devices, prostheses being one of the paradigmatic examples [10]. As happens with
machine learning (ML) in general, ML-based myocontrol will work reliably only if repeatable and
distinct signal patterns for each desired action can be determined [42]. To this aim, the limitations of
sEMG are well known in the scientific community (see, e.g., [12]): besides being prone to problems
affecting the physical nature of the sensors (e.g., electrode displacement and lift-off), electromyography
suffers from the changes in the signal, which can be observed whenever muscle fatigue appears and/or
due to sweating, which alters the conductivity of the skin.

All in all, a question arises whether TMG is a valid replacement or a companion to sEMG. It seems
reasonable to claim that detecting deformations of the residual limb via pressure (using TMG and its
low-resolution counterpart, FMG) is not affected by conductivity of the skin or by fatigue, both inherent
problems to the very nature of electromyography [20,23]. The other problems remain on the table,
bound to the inevitable necessity that pressure/force sensors stay in place and in contact with the
skin. Besides this, force/pressure sensing enables the detection of contact forces, accelerations and
orientations, as well as the deformations in the subject’s body, which are due to skeletal structures
other than muscles (e.g., tendons). Such factors could be problematic for the detection of activation
patterns, but could also represent further valuable information to be exploited.

A thorough study comparing sEMG and TMG/FMG both from the point of view of the signals
generated and as a means for myocontrol, including the usage of either/both techniques in real life,
has yet to appear. Nevertheless, there are strong hints pointing at the feasibility of this marriage:
the potential is great. In particular, in [23], the signals of FMG and sEMG were qualitatively and
quantitatively compared, showing clearly a higher stability in time (less oscillatory behavior), and that
FMG signals are better separated in the input space. Furthermore, in [24], an extensive study on four
trans-radial amputees was performed, showing that eight FSR sensors suffice to reach classification
accuracy values that are comparable with the standard found in the literature for sEMG. Notice,
anyway, that both aforementioned studies employ FMG rather than TMG, that is, they rely on a few
force-sensing resistors scattered on the forearm of able-bodied subjects or embedded inside a socket
for amputees. On the other hand, as far as proper TMG is concerned, Radmand et al. [26] have already
shown that TMG “footprints” or “images” can be used to classify a relatively high number of hand
and wrist activations with remarkable precision. Their experiment was performed on 10 able-bodied
subjects, using a tactile sensor that has roughly half the density as the one we present, and is rigid.

A direct comparison of sEMG and TMG in conditions similar to those described here is not
available at the moment as far as we know; but in [43], such a comparison/combination of techniques
during an online task was carried out, in which TMG was shown to outperform sEMG.

4.2. What This Study Shows

To the best of our knowledge, this is the first study in which TMG (as opposed to FMG) has been
applied to an amputee, albeit for a short time and in lab-controlled conditions. The results however
show that high rates of classification can be obtained; moreover, in very similar conditions from a
pool of able-bodied subjects, our study showed that the amputee’s results were comparable to those
of the able-bodied subjects. In particular, the tactile bracelet we have presented, having 320 taxels
with a spatial resolution of 5 mm, was adapted to the forearm of 10 able-bodied subjects, as well as to
the residual limb of a left trans-radial amputee. It is worthwhile to note that we employed no signal
windowing at all: we used the signals as they came out of the device, with a first order bandpass filter;
therefore, the delay between the data acquisition and the feature extraction was negligible. On top
of this, the optimal combination of features and classifier is the simplest and fastest one, which lets
us claim that an online prediction would work with a barely noticeable delay between the intent of
the subject and the prediction itself. Of course, this is the subject of future assessment as we have no
online study so far.
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Notice that the experiment we have reported about in this paper cannot yet indicate how well
TMG would work in practice. The accuracy results obtained here might be insufficient; even values
around 98% would in some cases not be enough [6]. Moreover, the experimental protocol only
involved standard movements (i.e., no daily-living activity tasks), offline analysis and no additional
weight on the forearm when performing the movements, as would be the case while grasping.
All tests were performed on five repetitions only of the selected actions, which is hardly a good
measure of their variability in practice; this could also have influenced the choice of the best
feature/classifier combination.

Engaged in a simple, repetitive experiment involving muscle activations, both able-bodied subjects
and a trans-radial amputee produced corresponding tactile patterns, which led to a simple classifier
to obtain high accuracy percentages, ranging from 70%–100% across all trials. These values are in
line with, or even superior to, those found in the literature while using other techniques, among
which is the traditional choice for myocontrol, sEMG (see, e.g., [15] for an offline comparison among
such human-machine interfaces). In an excellent recent survey by Fang et al. [44], one sees that
classification results obtained from offline data gathered from a similar population of amputated
subjects (that is, trans-radials) hover in the best cases from 90% to close to 100%. Such numbers are
as well in agreement with the already mentioned articles by Cho et al. [24] and Radmand et al. [26].
A remark is necessary here though: one must be careful with such results, since it is well known
that off-line abstract performance rarely translates to practical usability [45]. See the Future Work
subsection for more about this.

We were able to distinguish single-finger activations and even discern thumb rotation, which is
even more interesting, since the muscles operating this activation are inside the hand. We speculate
that synergistic activations of non-intrinsic muscles might be responsible for this surprising result;
in the amputated subject, spontaneous re-innervation could also play a role. Let us remark that each
residual limb is unique, therefore high-resolution approaches such as TMG could definitely help
identify and explore the spots with the highest remaining activity.

The comparison of features and classification methods we performed show that the simplest
features and classifier works best. This is also visually clear if one inspects the PCA-reduced patterns
of Figure 5. Not surprisingly, wrist movements were easier to classify, whereas introducing finger
movements decreased the classification accuracy. The results also show that the principle enforced
by the tactile bracelet works to a good extent in the case of an amputated subject. To the best of
our knowledge, this is the first attempt to assess the usefulness and feasibility of TMG including an
amputated subject. Moreover, the amputated subject’s patterns are qualitatively indistinguishable
from those produced by the able-bodied subjects (Figure 5). The results suggest a learning effect
(Figure 6 second row, improving from about 84%–92%) in the case of the amputated subject.

4.3. Final Remarks and Future Work

In this work, we have been able to test only one amputated subject. We then put forward two
remarks about his results, without any pretense to statistical validity. On the one hand, our subject
had not been exposed to any such experiment before and used no prosthesis whatsoever since the
operation, which happened eight years before the experiment. Given the long time of no usage of
the muscles in the residual limb and the fact that he was not familiar with prosthetic devices, we find
his performance surprising. On the other hand, he claimed that he could feel and move his phantom
fingers, which might have helped him produce the required distinct movements. An analysis on more
amputated subjects, together with a screening of their physiological characteristics, must be performed
in order to get a clearer picture.

Regarding TMG in itself, a long-term evaluation is necessary to gather conclusive information
about the durability of the proposed tactile sensor system and the effects of sweating on the material
over longer time periods. TMG, which is high-resolution force sensing, provides many signals gathered
from a relatively small surface and may at first sight seem highly redundant; but one must imagine,
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in the final setup, that TMG would be applied on a residual limb whose muscle morphology is,
in general, unknown. That is where, we believe, the high resolution of TMG could help gain a better
accuracy and reliability with respect to FMG. Of course in that case, the control system must be apt to
work seamlessly with highly dimensional samples.

We argue that even more importantly, it is necessary to develop a novel way of assessing the
feasibility of an approach, be it mono- or multi-modal, which takes into account the complexity
of the situations an amputee encounters in real life. Each situation potentially induces changes in
the signals recorded by the interface, which must be taken into account [46]. Therefore, a specific
training-and-testing protocol must be devised, through which the effectiveness and usefulness
of novel approaches can be seriously assessed. Given this requirement, our main line of future
research goes in the direction of determining the optimal set of sensors through which to realize an
ever-improving myocontrol.
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