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Figure 1: Overview of our system. User actions are captured by an RGBD sensor and recognized using convolutional neural
networks (CNNs) and Bayesian inference. Based on this, the user is given action-speci�c feedback via a head-mounted display.
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1 INTRODUCTION
Recent advances in the development of optical head-mounted dis-
plays (HMDs), such as the Microso� HoloLens, Google Glass, or
Epson Moverio, which overlay visual information directly in the
user’s �eld of vision, have opened up new possibilities for aug-
mented reality (AR) applications. We propose a system that uses
such an optical HMD to assist the user during goal-oriented activi-
ties (e.g. manufacturing work) in an intuitive and unobtrusive way
(Essig et al. 2016). To this end, our system observes and recognizes
the user’s actions and generates context-sensitive feedback. Fig-
ure 1 shows an overview of our approach, exempli�ed with the task
of assembling a bird house.
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Figure 2: Dense classi�cation of background, hand, and ob-
ject pixels using a fully convolutional neural network.

User actions captured by a static RGBD sensor are recognized
in our system by combining information about local interactions
and global progress extracted from the sensor data. We use deep
learning to detect local hand-object interactions and to estimate the
overall state in the activity progress. �e user’s action is recognized
by combining this local and global information in a probabilistic
state machine using Bayesian inference. Based on this recognition,
the user is presented with action- and context-sensitive prompts in
real-time, which provide assistance for performing the next step or
recovering from errors.

2 LOCAL INTERACTION DETECTION
To accurately localize hand-object interactions, we adapt the ap-
proach of (Long et al. 2015) and train a fully convolutional net-
work (FCN) to densely discriminate between hand and object pixels.
�e FCN (illustrated in Figure 2) uses the VGG-16 architecture
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Figure 3: Object tracking examples. Le�: input image, cen-
ter: hand-object labeling, right: model �tted to point cloud.

(Simonyan and Zisserman 2014) as a downsampling encoder that
extracts features from the input image, which are then incremen-
tally upsampled in the decoder to produce class probability maps.

�e resulting pixel-wise class predictions are used in combina-
tion with depth-based foreground masking to densely label the
input data. Based on these labels, we detect hand-object contacts
and track the object’s rigid transformation while it is being manip-
ulated, following the model-based approach of (Tagliasacchi et al.
2015). Figure 3 illustrates the pixel labeling and object tracking.

3 GLOBAL STATE ESTIMATION
An activity is composed of N discrete states S = {S1, . . . , SN }
in our system. To provide the user with context-sensitive feed-
back, our method estimates which of these states is currently most
likely active. �is is done using a CNN �ne-tuned from VGG-16
(Simonyan and Zisserman 2014), which computes a probability dis-
tribution P = (p1, . . . ,pN ) over all known states given the current
input sensor image. Figure 4 illustrates the state estimation CNN ar-
chitecture. Figure 5 shows some example images of states involved
in the process of assembling a bird house.

4 ACTION RECOGNITION
In order to generate meaningful context-sensitive feedback, the
frame-wise local and global information must be contextualized in
the overall activity. To this end we use a state machine, which spec-
i�es the connections between states S, as well as state transition
probabilities Pji = P(Si | Sj ). �ese state transition probabilities
are obtained in a data-driven manner using structural-dimensional
analysis of mental representations (Essig et al. 2016).

�is probabilistic statemachine representation is used in conjunc-
tion with the output probabilities P of the global state estimation
CNN to robustly recognize and update the current activity state.
�e prediction for the new state Si given the current state Sj and
the observed sensor data D is computed using Bayesian inference:

P(Si | D, Sj ) =
P(D | Sj , Si )P(Si | Sj )∑N

k=1 P(D | Sj , Sk )P(Sk | Sj )
=

piPji∑N
k=1 pkPjk

�e state prediction argmaxi P(Si | D, Sj ) and the detected interac-
tions are then used to select a feedback message from a prede�ned
table to assist the user to proceed with the activity.
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Figure 4: Global activity progress state estimation from an
input sensor image using a convolutional neural network.
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Figure 5: Examples for states that are distinguished during
the global activity progress state estimation.

5 CONCLUSION
Experiments with study participants using our assistance system
in a bird house assembly scenario showed generally positive re-
sults regarding the usefulness of the context-sensitive AR feedback.
Our action recognition approach can be generally applied to goal-
oriented tasks involving hand-object interactions, given suitable
training data for the deep learning components, and a state-based
description of the target activity.

�e current implementation of our action recognition system
runs in real-time on a laptop with an i7 CPU, 16 GB RAM, and a
GTX 1070 GPU. Future work includes optimizing our CNNs for size
and e�ciency to allow for a completely mobile implementation, as
well as the construction of a large-scale database of activities.
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