
Dedicated Memory Models for
Continual Learning in the Presence of Concept Drift

Viktor Losing, Barbara Hammer
Bielefeld University
Universitaetsstr. 25

33615 Bielefeld, Germany
vlosing@techfak.uni-bielefeld.de,
bhammer@techfak.uni-bielefeld.de

Heiko Wersing
Honda Research Institute Europe

Carl-Legien-Str. 30
63073 Offenbach, Germany

heiko.wersing@honda-ri.de

Abstract

Data Mining in non-stationary data streams is gaining more attention recently,
especially in the context of Internet of Things and Big Data. It is a highly chal-
lenging task since the different types of possibly occurring concept drift undermine
classical assumptions such as data independence or stationary distributions.
We propose the Self Adjusting Memory (SAM) model, which can deal with het-
erogeneous concept drift, i.e different types and rates, using biologically inspired
memory models and their coordination. The idea is to construct dedicated models
for the current and former concepts and apply them according to the given situation.
This general approach can be combined with various classifiers meeting certain
conditions, which we specify in this contribution. SAM is easy to use in practice
since a task specific optimization of the meta parameters is not necessary.
We recap the merits of our architecture with the k Nearest Neighbor classifier and
evaluate it on artificial as well as real world benchmarks. SAM’s highly competitive
results throughout all experiments underline its robustness as well as its capability
to handle heterogeneous concept drift.

1 Introduction

An ever growing field of real world applications generates data in streaming fashion at increasing rate,
requiring large-scale and real-time processing. Streaming data is prevalent in domains such as health
monitoring, traffic management, financial transactions, social networks [1] and is the foundation of the
Internet of Things [2] technology. Supplementing streaming data with non-stationary environments
leads to one of the recent key areas in data mining research: Learning in streams under concept drift.
Here, algorithms are challenged by a variety of possible forms of concept drift under strict limitations
in terms of memory consumption and processing time.
In recent years, a few algorithms have been published able to handle specific types of concept drift.
Adaptive Sliding Windowing (ADWIN) [3] by Bifet et al. monitors the error history and detects
significant changes, which is particularly effective for abrupt drift. In [4] Bifet et al. combine ADWIN
with a dynamic sliding window technique, termed Probabilistic Adaptive Windowing (PAW), and the
k Nearest Neighbor (kNN) classifier [5]. Whenever a change is detected the window is accordingly
shrinked. ADWIN was also coupled with a modified Online Bagging [6] approach named Leveraging
Bagging (LVGB) in [7]. Jaber et al. presented with Dynamic Adaption to Concept Changes (DACC)
[8] also an ensemble algorithm, which performed well for incremental concept drift. A classifier of
the worst half of the pool is randomly removed after a predefined number of examples and replaced
by a new one. Predictions are solely done by the best classifier within the pool. Learn++.NSE [9]
by Elwell et al. processes incoming examples in chunks with a predefined size. A base classifier is
trained for each chunk and added to the ensemble. In contrast to other methods, members are not

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications at Bielefeld University

https://core.ac.uk/display/211834894?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: Illustration of the general approach (on the left). The STM contains only the current
concept, while the LTM preserves only knowledge which is consistent in regard to the STM.
The SAM architecture is depicted on the right. Incoming examples are stored within the STM.
The cleaning process keeps the LTM all-time consistent with the STM. Whenever, the STM is
reduced in size, its discarded knowledge is transfered into the LTM. Accumulated knowledge within
the LTM is compressed each time the available space is exhausted. Both models are considered
during prediction.

continuously learning but preserve their initial state. This fact is used to revive former members in
the presence of reoccurring concept drift.
Even though some methods can be used for several types of drift by an according setting of their meta
parameters, this requires explicit prior knowledge about the task at hand. Furthermore, in real world
applications, data usually do not change only in one specific form, but instead multiple, sometimes
even concurrent, types of concept drift are taking place at various rates. One example is the field of
personalized assistance, in which individual user behavior is taken into account to provide appropriate
assistance in various situations [10]. But, individual behavior in particular can change in arbitrary
ways. Systems anticipating only certain forms of concept drift, will perform sub-optimal at best, or
fail completely at worst, when unexpected forms of change occur.
Our Self Adjusting Memory (SAM) is able to cope with heterogeneous concept drift and can be
easily applied in practice without any parametrization. It exhibits several analogies to the structure of
the human memory as knowledge is explicitly partitioned among a short- and long-term memory.
Thereby, it omits a common weakness of state of the art approaches which simply discard former
knowledge and, therefore, have to relearn old concepts in case of reoccurence.
We recap the benefits of SAM by applying it in combination with the kNN classifier. An extensive
evaluation on common benchmarks demonstrates the gain of our approach in comparison to current
state of the art methods. It exclusively achieves highly competitive results throughout all experiments,
demonstrating its robustness and the capability to handle different types of concept drift.

2 Streaming setting

Our focus is data stream classification under supervised learning for incremental / on-line algorithms.
A potentially infinite sequence S = (s1, s2, . . . , st, . . .) of tuples si = (xi, yi) arrives one after
another. As t represents the current time stamp, the learning objective is to predict the target
variable yt ∈ {1, . . . , c} for a given set of features xt ∈ Rn. The prediction ŷt = ht−1(xt) is done
according to the previously learned model ht−1. Before proceeding with the next example, the
applied learning algorithm generates a new model ht = train(ht−1, st) based on the current tuple st
and the previous model ht−1. Algorithmic performance is measured via the Interleaved Test-Train
error E(S) = 1

t

∑t
i=1 1(hi−1(xi) 6= yi).

3 Architecture of the Self Adjusting Memory (SAM)

The basic idea of the SAM architecture is to combine dedicated models for the current concept
Pt(x, y) and all former ones Pt−1(x, y), . . . , P1(x, y) in such a way that the prediction error is
minimized. We construct two different memories: The Short-Term Memory (STM), containing data
of the current concept and the Long-Term Memory (LTM), maintaining knowledge of past concepts.
This approach is illustrated by Figure 1 on the left. We share the general assumption of new data being

2

more relevant for current predictions. Hence, we remove those information from former concepts
which is in conflict with the current one, but we explicitly preserve the rest in compressed fashion.
We avoid any parametrization, by exploiting the minimization of the error on recent data at various
steps. Our architecture is depicted on the right of Figure 1 and described in the following.

3.1 Model definition

Memories are represented by sets MST, MLT, MC. The STM represents the current concept and is a
dynamic sliding window containing the most recent m examples of the data stream

MST = {(xi, yi) ∈ Rn × {1, . . . , c} | i = t−m+ 1, . . . , t}.
The LTM preserves all former information which is not contradicting those of the STM in a com-
pressed way. In contrast to the STM the LTM is neither a continuous subpart of the data stream nor
given by exemplars of it, but instead a set of p points

MLT = {(xi, yi) ∈ Rn × {1, . . . , c} | i = 1, . . . , p}.
The combined memory (CM) is the union of both memories

MC = MST ∪MLT .

Every set induces a classifier C : Rn 7→ {1, . . . , c}, CMST , CMLT , CMC . Weights wST, wLT, wC are
representing the accuracy of the corresponding model on the current concept. The prediction of our
complete model relies on the sub-model with the highest weight.
The hyperparameters of the model consist of the minimal length of the STM Lmin as well as the
maximum number of stored examples Lmax (STM & LTM combined). Furthermore, the meta
parameters of the chosen classifier model have to be set, in our case the k for kNN. These can be
robustly chosen and do not require a task specific setting1.

3.2 Model adaption

The adaption comprises the size m of the STM, the data points in the LTM and the weights of the
sub-models. We denote a data point at time t as (xt, yt), the corresponding memories as MSTt

, MLTt
,

MCt
and the sub-model weights as wSTt

, wLTt
, wCt

.

Adaption of the Short Term Memory The STM is a dynamic sliding window, whose role is to
exclusively contain data of the current concept. Therefore, its size has to be reduced, whenever the
concept changes such that examples of the former concept are dropped. This is done by adjusting the
size such that the Interleaved Test-Train error of the remaining STM is minimized. This approach
relies on the fact that a model trained on internally consistent data yields less errors and we assume
the remaining instances to represent the current concept or being sufficiently ”close” to it.
To compare only a logarithmic number, we use bisection for the selection of the window size. Tested
windows are Wl = {(xt−l+1, yt−l+1), . . . , (xt, yt)} where l ∈ {m,m/2,m/4, . . .} and l ≥ Lmin.
We adopt the window with the minimum error

MSTt+1 = argmin
S∈{Wm,Wm/2,...}

E(S).

Cleaning and Transfer The dropped data, resulting from the shrinking of the STM, is transferred
into the LTM. However, to keep the LTM consistent with the STM we ”clean” the dropped data
beforehand. This process filters instances which are contradicting those in the STM. Instances
contradict each other when they have different labels but their Euclidean distance is smaller than an
adaptive distance threshold. To provide all-time consistency we further ”clean” the LTM according to
every incoming example. A formal definition is given in [11].

Compression of the LTM In contrast to the FIFO principle of the STM, instances are not fading
out as soon as the size limit of the LTM is reached. Instead, we condense the available information
to a sparse knowledge representation via clustering to preserve information as long as possible. For
every class label ĉ we group the corresponding data points in the LTM to |MLTĉ

|/2 clusters2. This
process is repeated each time the size limit is reached leading to a self-adapting level of compression.

1We used for all experiments k = 5, Lmin = 50, Lmax = 5000.
2We used kMeans++ [12] because of its efficiency and scalability to larger datasets.

3

Model weight adaption The weight of a memory is its accuracy averaged over the last mt samples,
where mt = |MSTt | is the size of the current STM. The weight of the LTM at time stamp t equals

wLTt =
|{i ∈ {t−mt + 1, . . . , t} |CMLTi

(xi) = yi}|
mt

and analogously for STM and CM.

Classifier choice Our approach repeatedly modifies the memories by adding new instances or
selectively removing contradicting ones. Hence, a model is required which allows an efficient
incremental and decremental adaptation. The kNN algorithm is a natural fit to SAM but also other
methods such as the Naive Bayes [13] or the incremental and decremental SVM [14] are valid choices.
We already conducted some experiments with the Naive Bayes algorithm using non-stationary data in
the domain of text classification and the first results are very promising.

4 Experiments

We couple the SAM architecture with the kNN classifier and evaluate it in comparison to
well-known state of the art algorithms for handling concept drift in streaming data. Next
to the methods already discussed in section 1, we compare against a distance weighted
kNN classifier with a sliding window of fixed size (kNNS). The evaluation was done
with common artificial and real world benchmarks, which are extensively described in [11].

Table 1: Error rates of all experiments. The
lowest rate for each dataset is marked bold.
Dataset L++.NSE DACC LVGB kNNS PAW SAM

SEA Concepts 14.48 15.68 11.69 13.83 13.39 12.50
Rotating Hyperplane 15.58 18.20 12.53 16.00 16.16 13.31
Moving RBF 44.50 54.34 44.84 20.36 24.04 15.30
Interchanging RBF 27.52 1.40 6.11 45.92 8.56 5.70
Moving Squares 65.90 1.17 12.17 68.87 61.01 2.30
Transient Chessb. 1.98 43.21 17.95 7.36 14.44 6.25
Mixed Drift 40.37 61.06 26.29 31.00 26.75 13.33

Artificial ∅ 30.05 27.87 18.80 29.05 23.48 9.81
Artificial ∅ Rank 4.00 4.57 2.86 4.29 3.57 1.71

Weather 22.88 26.78 21.89 21.53 23.11 21.74
Electricity 27.24 16.87 16.78 28.61 26.13 17.52
Cover Type 15.00 10.05 9.07 4.21 6.76 4.8
Poker Hand 22.14 20.97 13.65 17.08 27.94 18.45
Outdoor 57.80 35.65 39.97 13.98 16.30 11.25
Rialto 40.36 28.93 39.64 22.74 24.96 18.58

Real world ∅ 30.90 23.21 23.50 18.03 20.87 15.40
Real word ∅ Rank 5.33 4.17 3.17 2.33 4.00 2.00

Overall ∅ 30.44 25.72 20.97 23.96 22.27 12.39
Overall ∅ Rank 4.62 4.38 3.00 3.38 3.77 1.85

Window based approaches were allowed to store
up to 5000 samples but never more than 10% of
the whole dataset. No dataset specific hyperpa-
rameter tuning was done.
The error rates of all experiments are shown in
Table 1. SAM significantly outperforms the oth-
ers by having nearly half the error rate in aver-
age compared to the second best method LVGB.
Even more important is the fact that whereas other
methods struggle at some datasets our approach
delivers robust results without any hiccup. All
concept drift types are handled better or at least
competitive.
Our results confirm the fact that kNN is in gen-
eral a very competitive algorithm in the streaming
setting. It is quite surprising that the simple slid-
ing window approach kNNS performs comparably
well or even better than more sophisticated meth-
ods such as DACC or L++.NSE.

5 Conclusion

In this paper we presented the Self Adjusting Memory (SAM) architecture, especially designed to
handle heterogeneous concept drift within streaming data. It explicitly separates the current concept
from former ones and preserves both in dedicated memories. Thereby, it omits a common weakness
of available methods which simply discard former knowledge and, therefore, have to relearn concepts
in case of reoccurring concept drift. Our method is easy to use in practice since it requires no
task-specific meta-parameterization.
We compared SAM with current state of the art methods on various artificial and real world bench-
marks. As the only algorithm in the field, it demonstrated consistently accurate results for heteroge-
neous concept drift.

4

References
[1] Min Chen, Shiwen Mao, and Yunhao Liu. Big data: A survey. Mobile Networks and Applica-

tions, 19(2):171–209, 2014.

[2] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of Things: A Survey. Computer
networks, 54(15):2787–2805, 2010.

[3] Albert Bifet and Ricard Gavalda. Learning from Time-Changing Data with Adaptive Windowing.
In SIAM International Conference on Data Mining (SDM), volume 7, page 2007. SIAM, 2007.

[4] Albert Bifet, Bernhard Pfahringer, Jesse Read, and Geoff Holmes. Efficient Data Stream
Classification via Probabilistic Adaptive Windows. In Proceedings of the 28th Annual ACM
Symposium on Applied Computing, SAC ’13, pages 801–806, New York, NY, USA, 2013. ACM.

[5] Sahibsingh A Dudani. The Distance-Weighted k-Nearest-Neighbor Rule. Systems, Man and
Cybernetics, IEEE Transactions on, (4):325–327, 1976.

[6] Nikunj C. Oza. Online Bagging and Boosting. In IEEE International Conference on Systems,
Man and Cybernetics 2005, volume 3, pages 2340–2345. IEEE, 2005.

[7] Albert Bifet, Geoff Holmes, and Bernhard Pfahringer. Leveraging Bagging for Evolving Data
Streams. In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pages 135–150. Springer, 2010.

[8] Ghazal Jaber, Antoine Cornuéjols, and Philippe Tarroux. Online Learning: Searching for the
Best Forgetting Strategy under Concept Drift, pages 400–408. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013.

[9] Ryan Elwell and Robi Polikar. Incremental learning of concept drift in nonstationary environ-
ments. IEEE Transactions on Neural Networks, 22(10):1517–1531, 2011.

[10] Silvia Schiaffino, Patricio Garcia, and Analia Amandi. eTeacher: Providing personalized
assistance to e-learning students. Computers & Education, 51(4):1744–1754, 2008.

[11] Viktor Losing, Barbara Hammer, and Heiko Wersing. KNN Classifier with Self Adjusting
Memory for Heterogeneous Concept Drift. In 16th International Conference on Data Mining
(ICDM). IEEE, 2016.

[12] David Arthur and Sergei Vassilvitskii. k-means++: The Advantages of Careful Seeding. In
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages
1027–1035. Society for Industrial and Applied Mathematics, 2007.

[13] Harry Zhang. The Optimality of Naive Bayes. In Proceedings of the Seventeenth International
Florida Artificial Intelligence Research Society Conference, Miami Beach, Florida, USA, pages
562–567, 2004.

[14] Tomaso Poggio and Gert Cauwenberghs. Incremental and Decremental Support Vector Machine
Learning. Advances in Neural Information Processing Systems, 13:409, 2001.

5

	Introduction
	Streaming setting
	Architecture of the Self Adjusting Memory (SAM)
	Model definition
	Model adaption

	Experiments
	Conclusion

