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ABSTRACT
In this paper we present a first exploratory study investi-
gating the effects of a contingently self-interrupting vs non-
self-interrupting virtual agent in a smart home environment
who transmits information to a human interaction partner.
We tested the hypothesis that self-interruptions are a strat-
egy for keeping the user’s attention, as measured by post-
interaction information recall. Interestingly, our experiment
does not allow us to confirm this hypothesis. In fact, users
found the self-interruption strategy to be less-likeable. From
our observations, we draw suggestions for future implemen-
tations of attention-retainment strategies.

CCS Concepts
•Human-centered computing → Human computer
interaction (HCI); •Computing methodologies→ In-
telligent agents;

Keywords
incremental processing; multi-modal systems; attention; gaze;
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1. INTRODUCTION
A strategy that is often recommended to teachers for re-

gaining the attention of distracted students is to just inter-
rupt themselves mid-sentence and only continue speaking
when attention has returned (e.g., [20]). Does this also work
for embodied agents? We investigated this question in the
context of a smart home setting, where control is partially
embodied in a virtual agent. Smart homes are among the
most emerging interaction scenarios of current and future
research. The most obvious challenges of such interactions
are (1) the complexity of the technology that the user wants
to control, rendering the interaction topic complex, and (2)
the embeddedness of the interaction in other activities that
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may be more important to the user and lead to distrac-
tions [12]. However, interaction with(in) a smart home pro-
vides a range of advantages over other interactions: (1) it
is massively embodied, i.e., the environment has a range of
actuators at its disposal to communicate with the user, and
(2) the interaction is much more contextualized, providing
important context information, e.g., through knowledge of
the time of day and location of the interaction which are
powerful cues to predict the user’s intention.

One fundamental research question is, therefore, to bet-
ter understand how an embodied interaction entity, such
as a smart apartment, can - through the interface of a hu-
manoid robot avatar - support the guidance of the user’s
attention during interactions while the user is subject to
distractions from the environment. More concretely, we in-
vestigate a scenario where a smart home supported by a
range of multi-modal, embodied informational cues, about
it’s features is providing verbal explanations via an embod-
ied virtual robot while the user gets distracted through var-
ious different events.

In a similar scenario, a car driving situation, [10] have sug-
gested a dedicated attention strategy, that allows the user’s
attention to focus on a distracting difficult driving maneu-
ver. This is achieved by a self-interrupting dialogue which
continues speech production when the distraction is over. It
turned out that this approach yielded significantly increased
memory performance as opposed to a system that ignored
difficult driving situations and continued speaking.

In an exploratory study we wanted to investigate in how
far such an attention strategy is transferable to a smart home
setting and whether the specific characteristics of the inter-
action, i.e., the high degree of embodiment, have an effect on
the user’s memory performance as well as her/his subjective
evaluation of the system. In our work we define attention as
a state where the user shares the visual focus of attention of
the agent or focuses on the agent itself. More specifically, a
user is attentive when her/his visual focus of attention lies on
the same target as the current focus of dialogue as provided
by the dialogue manager or on the interaction partner.

2. STATE OF THE ART
Although there is an increasing amount of studies in the

area of attention and the use of eye-gaze, still relatively few
studies explicitly address on how to best apply these findings
to human-agent interaction (HAI) and to implement them
in incremental dialogue systems.

In task-oriented human-robot interaction (HRI) the eye-
gaze of the robot has been shown to convey important in-
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formation about its level of understanding and is beneficial
in HRI [19]. For example, anticipatory eye-gaze to a target
position indicates that the robot has understood what the
goal of an action is [22]. At the social level, joint attention
indicates engagement in an interaction [15]. Consequently,
looking away (if not caused by a reference within the interac-
tion) can be interpreted as leaving the interaction [4]. Using
gaze for tracking the user’s level of engagement have thus
been proposed as an important feature of HRI [4, 9, 16]. In
human-human interaction the important role of eye-gaze is
quiet well evaluated, e.g., by [1, 7] – to only mention a few
– but also the importance of eye-gaze or head movements as
turn-taking or addressee signal in human-agent interaction
has been shown in quite a number of interaction scenarios.

Vertegaal et al. analyzed different gaze patterns in multi-
party conversations and found that ”user’s eye gaze can form
a reliable source of input for conversational systems that
need to establish whether the user is speaking or listening
to them” [21]. They also suggest that the ”predictive func-
tion of gaze might be transformed into a more generic in-
dicator of joint interest: subjects were keeping in touch by
looking at the same object” [21]. The rickel gaze model for
human-agent interaction consists of different types of gaze
– motivated from human-human interaction – to reflect the
inner state of the agent’s cognitive processing [11].

Skantze and Gustafson evaluated mutual gaze as an inter-
action control mechanism in a multi-party human-human-
computer dialogue setting [18]. They presented an attention
and interaction model that allows the user to switch atten-
tion between the system and other humans. Skantze et al.
monitor users’ attention by tracking their head movements,
which directly influences the speech production of the sys-
tem, i.e., the system stops speaking if it loses the attention of
the user. They compared this approach with a push-to-talk
scenario but there where no clear consensus which system
was the best. Also Yu et al. used head movements of the
user as attention signal to coordinate the robot’s speech pro-
duction, but they did not evaluated the effect on the users’
attention or subjective ratings [24].

In a robot teaching context, Palinko et al. evaluated
the role of gaze as implicit signal for turn-taking in a dic-
tating scenario and showed that gaze as synchronization
cue has an impact on task performance in a two-party set-
ting [14]. An in-car scenario, Kousidis et al. showed that
self-interruptions and repetitions of an information giving
system leads to increased memory performance [10]. Self-
interruptions were initiated in situations where the user was
involved in another, potentially dangerous task such as switch-
ing lanes or overtaking somebody. While these works focus
on self-interrupting agents and attention in task-oriented
HAI interaction (e.g., dictating or providing directions) they
do not evaluate how this strategy affects the subjective rat-
ings of the agent.

Another strategy for maintaining a user’s attention that
has been proposed by Bohus and Horvitz consists of intro-
ducing hesitations (or filled pauses). They report on in-
creased engagement levels when using hesitations in a human-
robot interaction scenario [5]. While focusing on a task-
oriented interaction (i.e., providing directions) it was not
evaluated how this strategy affected cognitive performance.
Also, its effect on subjective ratings was not assessed.

3. ATTENTION MODEL IN OUR SYSTEM
In our model we define attention while the system or agent

is speaking as a state where the human interlocutor’s visual
focus of attention (VFoA) is consistent with the focus of dis-
course (FoD) as determined by the system’s belief of the on-
going dialogue. The user’s VFoA can be recognized through
visual perception of his/her eye-gaze, whereas the FoD is
provided by the dialogue management and defined as the
physical reference of the topic that is currently being talked
about (e.g., a referenced object in the environment or direc-
tion) or the interaction partner. Figure 1 shows a schematic

Figure 1: Our attention model defines attention as
state where the visual focus of attention (VFoA)
is consistent with the focus of discourse (FoD) and
triggers different actions. Image c©Birte Carlmeyer

graphical representation of our attention model as part of
the overall dialogue management. It consists of two different
parts. The first part contains various modalities to highlight
the current focus of discourse. If the agent wants to shift
the current focus of discourse to another object, this can be
done by verbalizing it (e.g., ”to your left side”) or looking
or pointing at the new focus of discourse. In the context of
our smart environment, the agent is also able to use other
modalities such as ambient or spot light. The second part of
our attention module consists of different repair strategies
to recover the visual attention of the interaction partner. If
the human interaction partner is attentive, meaning his/her
VFoA is consistent with the FoD of the current interaction
state, the agent will start or continue with the interaction,
i.e. speaking. Otherwise the agent needs to reacquire atten-
tion through a dedicated re-acquisition action. One strategy
in our model is an immediate break-off of the speech syn-
thesis. If the human interlocutor’s visual focus of attention
shifts away from the FoD (i.e., a referenced object or the in-
teraction partner itself) the agent stops speaking. As soon
as the interlocutor is attentive again the agent continues
speaking. Another strategy belongs to the attention guid-
ing. In case that the human does not react to a change of the
discourse – meaning the human does not look (even once)
at the new focus of discourse – the agent stops and repeats
the last highlighting strategy.

4. STUDY SETUP & METHOD
In this section we describe the study setup and applied

evaluation methods. Therefore we first expand on the ex-
perimental setup, the different conditions, and then on the
data recording and annotation.



4.1 Experimental setup

Figure 2: Experimental setup. Left: person inter-
acting with the agent. Right: ground view of the
experimental apartment. Image c©Birte Carlmeyer

We evaluated the effect of a verbally self-interrupting agent
in a human-agent interaction in a smart home environment.
The agent was providing information about itself and the
smart environment through a sequence of 23 sentences with
four different foci of discourse (the agent itself, the kitchen
unit, the living room with an interactive table and the ceil-
ing). Accordingly, we defined different areas of visual focus
of attention (agent, kitchen, living, ceiling, other).

We provided three audio-visual external distractions in
the apartment in order to distract the user’s attention from
the system. The first two distractions were blinking lights
and a sound in the apartment, while the third was achieved
by the experimenter re-entering the room.

Figure 2 shows the experimental setup. The participants
were facing a monitor, which was showing a simulation of the
robot platform Flobi[13], an anthropomorphic robot head.
Using a camera on top of the monitor, the simulated Flobi
was able to detect faces in front of it and focus on them
to establish shared attention. The human-agent interaction
had three phases of verbal action (monologue) by the agent
in both conditions: Phase 1 : Greeting. Phase 2 : Informa-
tion about the agent itself, the kitchen, the living room and
the ceiling of the intelligent apartment. Phase 3 : Request
to move on to fill out questionnaire at the computer in the
living room to the right of the participant.

Flobi‘s verbalizations were predefined and the start of the
interaction was triggered from an adjoining room by a wiz-
ard who observed the participant through the camera. To al-
low verbal self-interruptions, we used the incremental speech
synthesis module of InproTK[3] and its integration in the
PaMini dialogue manager [6] which supports immediate in-
terruption and continuation of speech synthesis. To assess
the gaze direction of currently observable persons the gaze
detector from Schillingmann et al. [17] was used.

The questionnaire consisted of two parts: a memory task
and subjective ratings about Flobi. The memory task con-
sisted of ten multiple choice questions about the information
previously stated by Flobi during Phase 2. Four of the ten
questions addressed information which was not only verbally
described by Flobi, but also additionally presented embodied
via a corresponding actor in the apartment. In the second
part the participants had to provide subjective ratings of
the agent through a set of 24 adjectives on a Likert scale
ranging from 1 to 7 to evaluate five key concepts in human-
robot interaction: anthropomorphism, animacy, likeability,
perceived intelligence, and perceived safety (based on [2]).

The experimental procedure was as follows: After sign-
ing a consent form, the subjects were led to the experiment
room. They entered the room alone, only with the instruc-
tion to go into the kitchen, look at the agent, listen carefully
and afterwards fill out a questionnaire on the computer. The
interaction started as soon as the participant stood in front
of Flobi. The disturbances were always triggered at prede-
fined points of the interaction. At the end of the interaction
the participants went to the table and filled out the ques-
tionnaire on a computer.

4.2 Conditions and Dependent Variables
During all trials the agent highlighted the current focus of

discourse verbally, through gaze movements and in case of
embodied topics through the corresponding actuator (e.g.,
ambient light or facial expressions). In the experimental
condition the agent reacted with self-interruptions when the
participant’s VFoA did not match the FoD according to the
attention model. The agent would continue speaking ex-
actly at the break-off point of the sentence when the user’s
VFoA moved back to the agent. Furthermore, the attention
guiding strategy was repeated when necessary. In the con-
trol group the agent ignored the changes in the participant’s
VFoA, and neither stopped speaking nor repeated itself. In
order to assess the memory performance of the participants
we counted the number of correct answers to the content-
related questions of the questionnaire. For the subjective
rating we evaluated the answers of the second part of the
questionnaire.

4.3 Data Recording and Annotation
All interactions were recorded via two network-enabled

Basler cameras and one Rode NT55 omni-directional mi-
crophone mounted at the ceiling of the apartment to cover
the whole interaction area. Moreover, we collected various
system events such as generated dialogue acts and detailed
information of the gaze recognition results. For annotation
purposes, the two top-down videos, the audio stream and
system events were merged into one ELAN[23] file (for fur-
ther information about this process refer to [8]).

The study has been carried out with German native speak-
ers. In total, we recorded 31 trials with 14 female and 17
male participants in total. The average age was 25.1 with a
standard deviation of 4.3. 16 participants were in the con-
dition with self-interruption (8f, 8m) and 15 in the control
group (6f, 9m). Most of them had very little or no experi-
ence with robotic systems.

5. RESULTS
In this section we first explore the memory performance

of the participants and then the subjective ratings of the
agent. For the statistical analysis we chose an alpha level of
0.05.

5.1 Memory Performance
We first explore the memory performance of the partic-

ipants. No significant effects in the results of a χ̃2 test
between the two conditions could be found. The overall er-
ror rate for the experimental condition with self-interruption
was 18.1% whereas the subjects in the control condition an-
swered in 19.3% of the cases incorrectly. Also, no significant
differences between the correct answers to the questions re-
garding the three utterances during which the disturbances



were given, could be found. Thus, we could not confirm the
positive memory effect of self-interruption. In general, the
relative low degree of errors indicate that the difficulty of
the questions was appropriate.
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Figure 3: Cognitive performance in memory task for
the different kind of questions.

In order to address the more exploratory question, in how
far the embodiment of information affected the memory per-
formance, we compared the error rate for each condition
for the different kind of memory questions (cf. Figure 3).
These results show a significant difference between embodied
and non-embodied within the with self-interruption condi-
tion (χ̃2=5,503, p=0,019) and indicates that the embodied
information was better recalled than the non-embodied if
the agent uses self-interruptions. This would point towards
interesting effects regarding the potential of information ex-
change in a smart home. However, this needs to be investi-
gated further with embodiment as dependent variable using
the same questions in both conditions.

5.2 Subjective Ratings
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Figure 4: Subjective ratings of the virtual agent.
Error bars represent the standard error.

We further wanted to know whether the self-interruptions
had any effect on the subjective ratings of Flobi. Figure 4
shows the results of the subjective ratings in the two condi-
tions. The ANOVA about the subjective ratings revealed
a significant effect of self-interruption: while in the con-
trol group Flobi received very high scores for the likeabil-

ity questions (Like, Friendly, Kind, Pleasant and Nice), the
participants in the experimental condition rated the agent
significantly less likable (Friendly F=7.296, p=0.011; Kind
F=11.393, p=0.002; Pleasant F=13.338, p=0.001; Nice
F=4.732, p=0.037).

We further found a significant effect of condition on the
rating of the perceived intelligence of the agent (Competent
F=5.573, p=0.025; Intelligent F=9.582, p=0.004). While
the experimental group rated the intelligence of the agent
with 4 the control group’s rating was significantly higher
(5.5). For other ratings no significant effects were found.
Thus, overall, the self-interruption had a very negative effect
on the perception of Flobi.

In order to find an explanation for the different judgments
we looked more closely at the subjective ratings of the condi-
tion with self-interruption. During inspection of the videos
we observed a strong effect of the attention module in the
self-interruption condition: there were two utterances that
referred to an object to the left and to the right of the user. If
the user was not looking at the object Flobi would repeat the
request to look left/right. Flobi would repeat this utterance
up to three times. Interestingly, in the with self-interruption
condition every participant received at least one repetition,
some others even two or three repetitions (whereas in the
control condition Flobi did not react at all to the user’s gaze
and thus did not repeat at all). We therefore divided the
with self-interruption group into these three (sub-)groups
and compared the subjective ratings. Figure 5 shows the
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Figure 5: Subjective ratings of the agent for the ex-
perimental condition, based on the number of repe-
titions. Error bars represent the standard error.

results of the three groups. The ANOVA about the subjec-
tive ratings for the three groups shows a significant effect
of condition on the ratings for Friendly (F=7.018, p=0.008)
and Nice (F=7.350, p=0.007) between the groups, with the
two-repetition group receiving the most positive ratings. For
other ratings no significant effects were found.

6. IMPLICATIONS
Although [10] could show that self-interruptions can help

to increase cognitive performance, our experiment could not
confirm this hypothesis in the interaction with an embodied
agent within a smart environment. However, a closer look at
the results revealed a range of factors that play an important
role and should be included in the attention model.



Embodied Information. The results showed a signif-
icant effect of embodiment of information on the memory
performance in the self-interruption but not in the control
condition. This is plausible, as in the embodied informa-
tion case the VFoA is an important cue to gather relevant
information whereas in the non-embodied information case
the VFoA does not necessarily indicate if the participant’s
attention is on the (verbally) given information. This has
implications on the attention model which needs to distin-
guish between embodied information and non-embodied in-
formation.

Insistence. The results (cf. figure 5) show that the at-
tention guiding strategy for a new focus of discourse has a
big impact on the subjective rating of the agent’s likeability.
Especially, if the participant does not look – or even want
to look – at the new focus of discourse and the agent tries
to enforce the visual attention repeatedly, this leads to a
significant increase in likeability if the participant complies
(after 2 repetitions) vs a decrease in likeability if the par-
ticipant does not want to comply (3 repetition case). The
consequence for the attention model is that it should include
a threshold for insistence on achieving the desired user at-
tention. Note that this threshold can be learned, and can
be dependent on user preferences as well as on information
type and relevance.

Speech Synthesis. In the questionnaires we received
comments about the perceived monotony of the synthesized
voice indicating the importance to provide a more variable
prosody to counteract a perceived rudeness of self-interruption.
We therefor plan to integrate a more adaptable speech syn-
thesis. For example, the agent could not only repeat the
last few utterances but also produce hesitations as proposed
by [5] or react with other subtle signals such as facial ex-
pressions. As the perceived rudeness will correlate with the
system’s insistence, the hesitation should be included as a
further factor into the attention system to ameliorate nega-
tive impacts on the subjective evaluations.

Validity. The questionnaires as well as the other obser-
vations indicate that the verbal attention guiding in com-
bination with the looking behavior of the agent has worked
very well, as in the self-interruption condition each partic-
ipant did indeed look once at each focus of discourse. An
intensive analysis of the looking behavior of the participants
will follow.

However, it remains unclear if the positive memory effect
of self-interruption in [10] occurred due to self-interruption
alone or was also caused by the fact that a part of the ut-
terance was repeated at the re-start of the interrupted ut-
terance. In our experiment the novelty effect of the virtual
agent in the smart environment may cover a less strong ef-
fect, rendering both participant groups equally attentive.
We will explore in further studies how the positive effect on
the memory performance can be replicated in our setting.

7. CONCLUSION
We presented a first exploratory human-agent interac-

tion experiment investigating the effect of a self-interrupting
agent in a smart home environment on the memory perfor-
mance of interaction partner and the subjective ratings of
the agent. While we were not able to replicate the results
from [10] we found a range of factors that need to adapted in
our attention model due to differences in the human-agent
situation.
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