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Abstract

Powerful metric learning algorithms have
been proposed in the last years which do
not only greatly enhance the accuracy of
distance-based classifiers and nearest neigh-
bor database retrieval, but also enable the
interpretability of these operations by assign-
ing explicit relevance weights to the single
data components. Starting with the work
[2], it has been noticed, however, that this
procedure has limited validity in the impor-
tant case of high data dimensionality or high
feature correlations: the resulting relevance
profiles are random to a large extend, lead-
ing to invalid interpretation and fluctuations
of its accuracy for novel data. While the
work [2] proposes a first cure by means of L2-
regularization, it only preserves strongly rele-
vant features, leaving weakly relevant and not
necessarily unique features undetected. In
this contribution, we enhance the technique
by an efficient linear programming scheme
which enables the unique identification of

a relevance interval for every observed fea-
ture, this way identifying both, strongly and
weakly relevant features for a given metric.

1 Introduction

Popular machine learning and data retrieval
techniques crucially rely on a distance com-
putation for the given data, including the k-
nearest neighbor classifier, prototype based
classification, unsupervised self-organizing
maps, k-means clustering, or neighborhood-
based retrieval. Often, the standard Eu-
clidean metric is used as a default for these
methods, and the techniques fail provided
the chosen distance is not appropriate for the
given task. Due to this fact, metric learning
has made great strides in recent years: the
aim of metric learning is to autonomously ad-
just the parameters of a given distance func-
tion such that it better suits the intended
task. A large variety of methods covers tech-
niques for k-nearest neighbor classifiers, met-
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ric learning in regression, metric learning in
prototype based classification, metric learn-
ing based on side information, learning meth-
ods for unsupervised clustering, hybrid tech-
niques, etc. see e.g. [3–8]. Some approaches
can be accompanied by theoretical guaran-
tees as concerns their generalization ability,
or limit behavior for online learning [9–14].
These techniques greatly enhance the perfor-
mance of the methods for applications, since
they enable practitioners to tailor the met-
ric according to the given data and task at
hand. The methods have in common that the
by far most popular distance measure which
is used for this purpose is given by a gen-
eral quadratic form, corresponding to a linear
transformation of the feature space. Albeit
first techniques consider more general data
structures [10, 15], a quadratic form is used
in the majority of the techniques.

Besides an improved performance, a
quadratic form has the benefit that it lends
itself to an improved interpretability of the
result: its diagonal corresponds to the rele-
vance of the feature dimensions for the lin-
ear transformation underlying the quadratic
form, such that this relevance profile can
give hints about the importance of the ob-
served features. This fact has been heavily
used in the context of biomedical data anal-
ysis, for example [16–18]. It underlines the
increasing importance of the interpretabil-
ity of machine learning techniques, to enable
not only excellent black-box behavior, but to
also allow an interaction of human experts
to benefit from the findings buried in the
models [19–24]. When interpreting machine
learning models based on their parametriza-

tion, however, certain minimum conditions
have to be fulfilled, a crucial one being the
uniqueness of the observed parameters. This
is not guaranteed for metric learners pro-
vided high data dimensionality or large fea-
ture correlations are present, as first observed
in the contribution [2]: feature correlations
cause the fact that there exist changes in the
quadratic form which do not change the re-
sulting mapping. These effects are widely in-
duced by a random initialization of the ma-
trix, hence, relevance profiles which display
spurious relevance peaks in large parts result.
The approach [2] also proposed a first cure for
this observation, a L2-regularization of the
quadratic form, which is standard if the lin-
ear data transformation underlying the ma-
trix is directly learned from given data e.g.
via Thikonov regularization (also known as
ridge regression), but which is not yet part of
most metric learning algorithms.

Albeit the proposed regularization yields
unique results, it diminishes the inter-
pretability of the relevance profiles in the fol-
lowing sense: L2-regularization accounts for
the fact that all so-called strongly relevant
features (which cannot be replaced by oth-
ers without a performance loss) correspond
to peaks in the relevance profile. So-called
weakly relevant features, which contribute to
the classification but which could be substi-
tuted by alternatives, share their relevance,
hence they are no longer distinguishable pro-
vided a large number of correlated features
is present. Hence interpretability as con-
cerns this potentially useful feature contri-
butions is lost. The problem of weakly rel-
evant features constitutes a classical hard
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problem of feature selection, which is particu-
larly complex provided sets of features rather
than single features carry certain informa-
tion [25–27]. One key technique which has
been pioneered in the frame of the popular
lasso refers to L1-regularization rather than
L2-regularization [28]: L1-regularization fa-
vors sparse signals, resulting in minimal, but
not necessarily unique feature sets which also
include some weakly relevant signals. Based
on this insight, recently, an efficient method
has been proposed which identifies relevance
intervals for all given features for a linear
mapping based on L1-optimization [29].

In this contribution, we take the approach
published in [29] as a starting point and we
extend this technology towards the setting of
relevance weights for metric learners. The
key observation is that a quadratic form cor-
responds to an implicit linear transformation
of the data, such that a vectorial extension
of the approach [29] allows us to quantify the
relevance of a feature dimension for a given
distance computation. In the following, we
will formally introduce this approach, and we
will investigate its performance for two pop-
ular matrix learners for different data sets
including artificial data with known ground
truth as well as a variety of benchmarks.

2 Feature Relevance

Assume a mapping f : Rd → Y is given such
as a classifier with Y being the set of possible
output classes. One very important way of
interpreting any such mapping is offered by
a judgment of the relevance of the given fea-

tures for this mapping, i.e. a question related
to feature selection. Here, a crucial distinc-
tion is offered by the notion of strongly rele-
vant features, i.e. features which are of cen-
tral relevance for the mapping f and which
cannot be skipped without loss of informa-
tion, and weakly relevant features, i.e. fea-
tures which are of relevance for the mapping,
but could be substituted by alternatives [27].
Formally, a feature Xi is strongly relevant
provided the output f(x) depends on the fea-
ture Xi even if all other features are known.
A feature is weakly relevant if there exists
a subset S of the other features, such that
the output f(x) depends on Xi provided S is
known, but the feature is not strongly rele-
vant. In all other cases, the feature is irrele-
vant.

While strongly relevant features can be de-
tected e.g. based on efficient estimates of the
mutual information, weakly relevant features
are harder to detect since they require the in-
vestigation of all subsets of features. In the
context of a linear or generalized linear map-
ping f , a popular technology for feature se-
lection is offered by lasso and variants [30].
Assume f(x) = ωTx. Then lasso relies on a
L1-regularized optimization of the mapping
parameters

min
1

2
·

n∑
i=1

(f(xi)−yi)2 such that
d∑

j=1

|ωj| ≤ s

(1)
for a sparsity constant s > 0. The con-
straint can be integrated into the objective
as a penalty term with a fixed weighting.
Ridge regression penalizes the L2 instead of
L1 norm, and elastic net addresses a mixture
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of both objectives [30], where, depending on
the weighting of the penalty, different degrees
of sparsity can be enforced. It is possible to
infer the relevance of a given feature Xi from
the size of the resulting weight |ωi|, whereby
a varying penalty also can shed some light on
the question whether the feature is weakly /
strongly relevant.

Inspired by this observation, we will use L1
regularization for the valid interpretation of
relevance terms of a given mapping. Thereby,
we separate the question of how to train
the mapping and how to interpret the fea-
ture relevance. This strategy, together with
a slight reformulation of the regularization,
enables us to derive intervals for the possi-
ble relevance range of a given feature. The
first step is to reduce the problem of feature
relevance determination for a metric learner
to the equivalent question for a linear data
transformation.

3 Metric learning as lin-

ear data transformation

Metric learning has been introduced in dis-
tance based machine learning models as a
means to autonomously adjust the underly-
ing distance measure to the given task at
hand [3, 6]. Here, we focus on two popular
metric learning schemes only. Since the pro-
posed technique for metric interpretation is
separated from the metric learning step it-
self, the proposed regularization for feature
relevance determination can be used for ev-
ery metric adjustment scheme which arrives

at a general quadratic form, as utilized in the
following.

We rely on a distance measure which is
given by a general quadratic form

d : Rd×Rd → R, (xi,xj) 7→ (xi−xj)TΛ(xi−xj)
(2)

with the positive semi-definite matrix Λ =
ΩTΩ. Large margin nearest neighbor
(LMNN) [31] adjusts this matrix in such a
way that the k-NN error induced by this dis-
tance is optimized. More precisely, it fixes
the k nearest neighbors for every given data
point, and adjusts the matrix Ω such that
points with the same label in this neighbor-
hood are close, while points with a different
label are separated by a distance term with
a margin at least one. Generalized matrix
learning vector quantization (GMLVQ) relies
on a prototype-based winner-takes-all scheme
rather than lazy learning [9]. Together with
the prototype locations, the matrix Ω is ad-
justed such that the distance of a given data
point with correct labeling versus its distance
to a prototype with incorrect labeling is min-
imized.

By optimizing Ω, both methods do not
only increase the classification accuracy, but
they also offer an interpretation of the fea-
ture relevance in terms of its diagonal Λii =∑

j Ω2
ji or related terms, since the metric (2)

corresponds to the linear data transformation

x 7→ Ωx. (3)

Hence interpretation of the matrix relevance
terms reduces to the interpretation of this lin-
ear mapping.
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In the following, we will employ the unique
eigendecomposition of the matrix Λ as the
linear data mapping Ω, i.e. the eigenvectors
scaled with the square root of the eigenvalues.

4 Linear Bounds

Given the parameters Ω that define a linear
mapping Ωx of a general quadratic form (2),
we are interested in the interpretation of the
mapping parameters Ω. First, we decompose
the problem into one-dimensional mappings
based on the following observation: Each row
ω of Ω constitutes an independent mapping
of the data into a one-dimensional subspace.
Hence we can interpret each of these rows in-
dependently. After having obtained relevance
bounds for the individual mappings ω, we can
sum the absolute values of them in order to
obtain relevance bounds for the whole map-
ping Ω.

In a particular mapping, the parameter
value |ωj| is often directly interpreted as the
relevance of feature Xj, provided the input
features have the same scaling. However, this
can be highly problematic, as pointed out
in [2], because features in high-dimensional
data are often correlated, and thus the ab-
solute value of ωj can be misleading. In [2],
the authors formalize mapping invariances for
the given data to underline this observation,
which we will briefly recap here.

For given data vectors xi in a matrix X,
the central notion of invariance is defined as
follows: Given a mapping f(x) = ω>x, we
define that the parameters ω are equivalent

to ω′ iff
ω>X = (ω′)>X (4)

i.e. the data mapping remains unchanged un-
der a substitution of ω by ω′. Note that
this formulation addresses the behavior of the
mapping for given data, without referring to
a predefined criterion, such as the accuracy.
The conditions for which ω is equivalent to
ω′ are exactly described in [2]: two vectors ω
and ω′ are equivalent iff the difference vector
ω − ω′ is contained in the null space of the
data covariance matrix XX>. The covariance
matrix has eigenvectors vi with eigenvalues
λ1 ≥ . . . ≥ λI > λI+1 = . . . = λd = 0 sorted
according to their size, whereby I denotes the
number of non zero eigenvalues.

Therefore, before interpreting the mapping
parameters, the proposal in [2] is to choose
one canonic representation ω′ of the equiva-
lence class induced by a given ω: the vector
ω′ results by dividing out the null space, such
that ω becomes ω′ = Ψω where the matrix

Ψ = Id−
d∑

i=I+1

viv
>
i

corresponds to a projection of ω to the eigen-
vectors with nonzero eigenvalues only, in-
duced by the eigenvectors vi of the covari-
ance matrix XX>. Hence, the eigenvectors
with eigenvalue zero are divided out. In [2],
the authors show that choosing a representa-
tive in this way corresponds to a vector in the
equivalence class with the smallest L2 norm.

It is therefore no longer possible to as-
cribe a misleading high value ωj to an irrele-
vant feature, e.g. due to unfavorable effects in
the data. Instead, only relevant features are
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expressed in the mapping parameters. Al-
though this approach provides a unique rep-
resentative of every equivalence class, it is
problematic regarding direct interpretability
of the values: Sets of correlated features share
their total relevance, which can lead to large
groups of weakly expressed relevance. This
is undesirable, since a single feature may be
weighted consistently low, only because it is
highly correlated to a large number of others,
despite the fact that the information provided
by this feature (or any equivalent one) might
be of high relevance for the linear mapping
outcome.

Hence, we propose an alternative approach
to determine representatives which are equiv-
alent to a certain parameter vector ω, while
allowing for an intuitive direct interpreta-
tion of the weights as feature relevances. In
essence, instead of choosing the representa-
tive with smallest L2 norm, we will use the L1

norm. Unlike the former, the latter induces a
set of equivalent weights which have minimal
L1 norm. This is beneficial, since we can in-
fer the minimum and maximum relevance of
each feature by looking at the minimum and
maximum weighting of the feature within this
set. In the following, we will formalize this
concept.

4.1 Formalizing the Objective

Given a parameter vector ω of a mapping, we
are looking for equivalent vectors of the form

ω′ = ω +
d∑

i=I+1

αivi (5)

where real-valued parameters αi add the null
space of the mapping to the vector ω. Simi-
lar to the approach in [2], we choose minimum
vectors only, in order to avoid arbitrary scal-
ing effects of the null space. However, we use
the L1 norm instead of the L2 norm:

µ← min
α

∥∥∥∥∥ω +
d∑

i=I+1

αivi

∥∥∥∥∥
1

. (6)

The minimum value µ is unique per defini-
tion. However, uniqueness of the correspond-
ing vector ω+

∑d
i=I+1 αivi is not guaranteed.

To illustrate this fact, we refer to a simple ob-
servation: assume identical features Xi = Xj

and a weighting ωi and ωj. Then any weight-
ing ω′i = t·ωi+(1−t)ωj and ω′j = (1−t)ωi+tωj

yields an equivalent vector with the same L1

norm.

Based on this observation, we can formal-
ize a notion of minimum and maximum fea-
ture relevance for a given linear mapping: the
minimum feature relevance of feature Xj is
the smallest value of a weight |ω′j| such that
ω′ is equivalent to ω and |ω′|1 = µ. Analo-
gously, the maximum feature relevance of fea-
ture Xj is the largest value of a weight |ω′j|
such that ω′ is equivalent to ω and |ω′|1 = µ.
Thus, we arrive at the following mathemati-
cal optimization problems:

ωj ← min
α

∣∣∣∣∣ωj +
d∑

i=I+1

αi(vi)j

∣∣∣∣∣ (7)

s.t.

∥∥∥∥∥ω +
d∑

i=I+1

αivi

∥∥∥∥∥
1

= µ
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and

ωj ← max
α

∣∣∣∣∣ωj +
d∑

i=I+1

αi(vi)j

∣∣∣∣∣ (8)

s.t.

∥∥∥∥∥ω +
d∑

i=I+1

αivi

∥∥∥∥∥
1

= µ.

where (vi)j refers to entry j of vi. As solu-
tions, we obtain a pair (ωj, ωj) for each fea-
ture Xj indicating the minimum and maxi-
mum weight of this feature for all equivalent
mappings that share the same L1 norm. In
the special case of linear mappings with the
objective of mapping invariance, this strongly
resembles the concept of strong and weak fea-
ture relevance.

However, this framework does not realize
the notion of strong and weak feature rele-
vance in a strict sense. The reason is that
we aim for scaling terms as observed in the
linear mapping, which are subject to L1 regu-
larization. Consequently, a set of two features
with the same information content as a sin-
gle feature are not treated as identical by this
formulation. Instead, our formulation prefers
the single feature because of the smaller scal-
ing of the respective weight. A qualitative
feature selection objective would treat such
variables identically.

Natural relaxations of our optimization
problems are possible, as follows: By incorpo-
rating also eigenvectors which correspond to
small eigenvalues in Eq. (5), we can enable an
approximate preservation of mapping equiv-
alence. Further, we can approximate the
equality in Eq. (6) by allowing values below
(1 + ε)µ instead of exactly µ, for some small

ε > 0. Such relaxations with small thresholds
ε are strongly recommended for practical ap-
plications, where noise in the data has to be
considered. We will refer to these straightfor-
ward approximations in our experiments.

4.2 Reformalization as Linear
Programming Problem

To obtain a solution algorithmically, we re-
formulate our optimization problems as lin-
ear programming problems (LP). Problem
(7) can be rephrased as the following equiv-
alent LP, in which we introduce a new vari-
able ω̃k for every k, which takes the role of
|ωk +

∑d
i=I+1 αi(vi)k|:

ωj ← min
ω̃,α

ω̃j, (9)

s.t.
d∑

i=1

ω̃i ≤ µ

ω̃k ≥ ωk +
d∑

i=I+1

αi(vi)k,∀k

ω̃k ≥ −

(
ωk +

d∑
i=I+1

αi(vi)k

)
, ∀k,

where µ is computed in (6) and the vari-
ables ω̃i must be non-negative due to the con-
straints. For the optimum solution, we can
assume that equality holds for one of the two
constraints for every k. Otherwise, the so-
lution could be improved due to the weaker
constraints and the minimization of the ob-
jective. To rephrase problem (8), we use the
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equivalent formulation

max
ω̃,α

∣∣∣∣∣ωj +
d∑

i=I+1

αi(vi)j

∣∣∣∣∣ , (10)

s.t.
d∑

i=1

ω̃i ≤ µ

ω̃k ≥ ωk +
d∑

i=I+1

αi(vi)k,∀k

ω̃k ≥ −

(
ωk +

d∑
i=I+1

αi(vi)k

)
,∀k,

where new variables ω̃k are introduced as
well. Again, these serve as the absolute value
|ωk +

∑d
i=I+1 αi(vi)k|: any solution for which

equality does not hold for one of the con-
straints can be improved due to the weaker
constraints and maximization as the objec-
tive. Since an absolute value is optimized,
this is not an LP yet. To obtain its solution,
one can simply solve two LPs, where the pos-
itive and negative value of the objective is
considered, respectively:

ω±j ← max
ω̃,α
±

(
ωj +

d∑
i=I+1

αi(vi)j

)
,

and we add the corresponding non-negativity
constraint

±

(
ωj +

d∑
i=I+1

αi(vi)j

)
≥ 0

At least one of these LPs has a feasible so-
lution, and the final upper bound can be de-
rived thereof as the maximum value

ωj = max{ω+
j , ω

−
j }
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Figure 1: Two relevant features of the xor
data set (left). Average classification error
rates of GMLVQ with regularized metrics for
the xor data set (right).

For each linear mapping, this formulation
requires to solve 3d LP problems containing
2d constraints and d − I variables. For this
purpose, standard solvers can be applied.

5 Experiments

In this section we apply our proposed meth-
ods to four data sets from different domains.
After describing the data, we explain the ex-
perimental setup and, finally, depict the re-
sults. For the evaluation, we employ the fol-
lowing data sets.

• The xor data set is artificially generated
and consists of 4 clusters belonging to
2 classes constituting the XOR problem.
One dimension is present 3 times with
the addition of noise (features 1-3) and
two identical irrelevant features are in-
cluded (5-6). An image with features 1
and 4 is depicted in Fig. 1 (left).

• The wine data set consists of 256 features
which are near-infrared spectra measur-
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ing the alcohol content of 124 wine sam-
ples [32]. The set is split into 94 train-
ing and 30 test samples, where samples
number 34,35 and 84 are discarded as
outliers, similar to [33]. Additionally,
we switch the role of training and test
set to obtain a more challenging prob-
lem in terms of interpretation. Since
this is originally a regression problem, we
transform it into a classification problem
by binning alcohol levels into 3 classes of
similar size.

• The tecator data set [34] consists of 100
features that represent absorbances de-
duced from a spectometer. The goal is
to predict the fat content of 215 meat
samples. The set is split into 172 sam-
ples for training and 43 samples for eval-
uation, where we again switch the role
of training and test set. Similarly as for
the wine data, we bin the target variable
into three classes to obtain a classifica-
tion problem.

• The adrenal data set [16, 35] consists of
147 patients characterized by 32 steroid
markers. The goal is to predict whether
a patient has a benign or a malignant
adrenal tumor. For this purposes, we
split the data set into a training set con-
taining 110 instances for training and 37
instances for evaluation.

5.1 Experimental setup

As a pre-processing step, we apply a z-score
transformation to all our data sets, by remov-
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Figure 2: Spectra of the data sets wine (left)
and tecator (right).

ing the mean and standard deviation of the
training data from each data set. It is impor-
tant that the features in each data set have
the same scaling so that we can interpret the
weights of linear mappings.

We train the GMLVQ model always using
one prototype per class, except for the xor
data set, where we use two. For the LMNN
model, we use the parameters suggested by a
parameter search procedure provided by the
original authors.

A crucial parameter in our framework is
the size of the assumed null space of the
data. In order to obtain a sensible choice for
this parameter, we first train a metric learn-
ing algorithm and then utilize the following
scheme:

1. Create a set S of candidate values for the
size of the null space. This can simply
be all possible values, or a guess based
on the eigenspectrum of the data.

2. For each element in S, apply our pro-
posed interpretation framework to the
previously learned metric, resulting in 2d
relevance mappings for each row of the
trained metric.
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3. Compute the classification accuracy on
the train and test set for each of these
2d mappings and average them. Select
the size of the null space as the one with
a small test error along with the largest
null space.

We also employ the term ’regularized rele-
vance profile’ when we refer to the resulting
relevance bounds of our approach.

Since the null space is often large, we will
recall in the following the size of the effective
dimension which is the number of dimensions
minus the size of the null space. Additionally,
due to noise, we soften the minimum norm
conditions in (9) and (10) by allowing solu-
tions smaller then 1.01 · µ, in the following.

As concerns the complexity of the metric
learning scheme for high-dimensional data,
the computation of a full rank matrix Λ ∈
Rd×d can be costly. However, Λ can be forced
to have a low rank [5]. This can be done by
defining Λ = ΩTΩ with Ω ∈ Rl×d, where
l ≤ d restricts the rank.

5.2 Synthetic Data

In order to demonstrate the problem of di-
rectly interpreting linear weights of a trained
metric as relevances, we employ the synthetic
data set xor.

We train a GMLVQ method that results in
a zero prediction error on the training and
test set. The resulting three mappings of the
metric with the largest scaling are depicted
in the first row of Fig. 3. Basically, only one
of these mappings has a high scaling so that
the classification model uses approximately a

one-dimensional subspace to solve the classi-
fication task.

A direct interpretation of this linear vector
|ω3| would suggest that feature 4 is the most
important one, features 1 and 3 have only half
the relevance and features 2,5 and 6 are not
useful for the task. However, for this data
set we know that features 1-3 have the same
explanatory power and if considered alone,
each of them is as important as feature 4. It
follows that, for this example, a direct inter-
pretation of the linear weights is misleading,
particularly for the weakly relevant features.

In order to obtain a valid interpretation for
the relevance of the features, we apply our
proposed framework. We estimate the clas-
sification accuracy of the regularized map-
pings for all possible sizes of the null space
as described in subsection 5.1. The resulting
curves are depicted in Fig. 1 (right). It is ap-
parent from the Figure, that the smallest ef-
fective dimension size with a zero test error is
3, although the test error for 2 dimensions is
only slightly larger. Nevertheless, we employ
3 for our proposed framework. The resulting
relevance bounds are shown in the second row
of Fig. 3, where black bars depict weakly and
white bars strongly relevant features.

The results show that the bounds for the
first two one-dimensional mappings |ω1| and
|ω2| have vanished. Formally speaking, this
implies that the same mappings can be obtain
with an almost zero L1 norm, meaning that
these two mappings map the training data
to zero. More interestingly are the resulting
bounds for |ω3|: The framework has identi-
fied feature 4 as a strongly relevant feature
and has found that features 1-3 can be re-
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Figure 3: Results of our proposed approach
for the xor data set. The first row shows the
original linear mappings, the second row de-
picts the resulting upper (in black) and lower
bounds (in white).

placed but that each of them can explain as
much of the target variable as feature 4. This
explanation is precisely how we generated the
data. Features 5 and 6 have almost 0 upper
bounds, merely reflecting noise.

In order to have a comparison to rele-
vance interpretation in literature, we apply
the methods Lasso, Elastic Net and Ridge
Regression to our resulting mapping by defin-
ing ŷi = ω>xi. Then, we can apply the for-
mulation in equation (1) for Lasso and ac-
cording ones for Elastic Net and Ridge Re-
gression to obtain an interpretation for the
feature weights based on these methods. The
results are depicted in Fig. 4 for the Lasso
(left), Elastic Net (middle) and Ridge Re-
gression (right). We interpret only |ω3| this
way, since, as we saw previously, this map-
ping contains the relevant information for dis-
criminating the classes.

The progress of the coefficient weights for

Table 1: Classification error rates ranging be-
tween 0 and 1 for all data sets. If not specified
differently, the classification model is GM-
LVQ.

xor wine tecator GMLVQ on adrenal LMNN on adrenal

train er 0.00 0.00 0.07 0.04 0.00
test er 0.00 0.29 0.16 0.03 0.05

all three frameworks implies that feature 4
is particularly relevant. However, the results
differ for the three weakly relevant features
1-3: Elastic net and Ridge regression require
all three features equally weighted and hence
do not show that each of them can actually
be neglected. The Lasso identifies feature 1
as particularly important, followed by feature
3 and 2. This order seems arbitrary and is an
artifact of the noise which was added to all
three features. Hence, we argue that these
frameworks cannot provide the same infor-
mation as our formalization.

5.3 Near-Infrared spectral data

Spectral data have many correlated features
and hence a large null space. For such
data, it can be particularly misleading to di-
rectly interpret the weights of linear map-
pings. Hence, our method should be well
suited in this case.

First of all we train a GMLVQ model for
each of the two data sets wine and tecator
where we restrict the rank of the matrix Ω
to two since GMLVQ tends to utilize only a
low rank matrix in the end, usually. This
does not harm the training accuracy as can
be observed in Table 1 but tends to improve
the generalization. Subsequently, we apply
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Figure 4: Employing the xor data set, estimates of the coefficients for different values of
the L1 norm (x-axis) are shown. The methods lasso (left), elastic net (middle) and ridge
regression (right) are utilized.
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Figure 5: Average classification error rates
of GMLVQ with regularized metrics for the
wine (left) and tecator (right) data set, both
for set S.

our approach to compute relevance bounds
for the according learned metric. As previ-
ously, we determine a suitable size of the ef-
fective dimension using the scheme described
in subsection 5.1. The corresponding images
are shown in Fig. 5: left for the wine and
right for the tecator data set.

The smallest test error is obtained with an
effective dimensionality of 7 for the wine data
set and with an effective dimensionality of 9
for the tecator data set. It is particularly in-
teresting, that for the wine data set the regu-
larized metric achieves a better performance

then the original metric: while the training
error stays the same, the test error drops from
0.29 to 0.14, which is a factor 2. The result-
ing relevance bounds for the wine data set are
depicted in Fig. 6 and for the tecator data
set in Fig. 7. For the wine data, the training
procedure of the classifier yielded a rank one
matrix, hence we use only a one-dimensional
mapping for interpretation, in this case. For
the tecator data set, both mappings are uti-
lized, and the resulting relevance bounds for
both mappings are displayed in Fig. 8.

Interestingly, the relevance bounds for
both data sets contain only very few irre-
placeable features, while the upper bounds
are peaked, which implies that a few features
can already explain the mapping to a large
extent. Particularly for the wine data set,
much noise is removed from the original map-
ping, i.e. many features have a low upper
bound. Fig. 9 displays the original mapping
(top) and the averaged mapping over all ω, ω
(bottom). Here it is apparent that, while the
original mapping has many non-zero values,
the averaged regularized profile is extremely
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Figure 6: Results of our proposed approach
for the wine data set. The first row shows the
original linear mapping, while the second row
depicts the resulting upper relevance bounds.
The lower bounds are all zero, in this case.

sparse. Furthermore, the classification error
with the averaged map accounts to 0 on the
training and to 0.14 on the test set, which is
comparable to the averaged error of the reg-
ularized mappings ω, ω.

5.4 Biomedical data

For the adrenal data set we compare two met-
ric learning approaches: The GMLVQ and
LMNN. Both use the same functional form
for computing distances, hence, we can ap-
ply our approach to both trained relevance
matrices. First, we train both models with
the restriction to rank two relevance matri-
ces. This restriction did not harm the clas-
sification performance in our experiments, as
compared to training without this restriction.
The classification errors are depicted in Ta-
ble 1. Both approaches achieve a compara-
ble performance, where the LMNN model is
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Figure 7: Results of our proposed approach
for the tecator data set. The first row shows
the original linear mapping, the second row
depicts the resulting upper and lower rele-
vance bounds.

better on the training data while GMLVQ is
superior on the test data.

For these models, we compute the classifi-
cation errors based on different sizes of the ef-
fective dimension. These results are depicted
in Fig. 10. Good performances are achieved
with an effective dimensionality of 15 for the
GMLVQ model and of 20 for the LMNN al-
gorithm. The according relevance bounds for
both relevance matrices are shown in Fig. 11.

Both trained distance metrics agree on a
few features, such as 19, while they emphasize
often different ones. This might explain the
different error curves in Fig. 10 and the differ-
ent classification performance on the training
and test set.
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Figure 8: Summed lower and upper bounds
for the tecator data set.

6 Conclusion

In this contribution, we present an approach
to obtain a valid interpretation of the fea-
ture relevance from a trained metric learn-
ing model. The results show that this pro-
cedure does not only provide a meaningful
interpretation of the learned data transfor-
mation, but it can even improve the classifi-
cation performance, in cases of a particular
large null space.

In future work we will employ this proposal
to obtaining insights into specific data sets,
as well as to provide more information about
weakly relevant features.
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