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Abstract—We use goal babbling to bootstrap a parametric
model of speech production for a complex 3D vocal tract model.
The system learns to control the articulators for producing five
different vowel sounds. Ambient speech influences learning on
two levels: it organizes the learning process because it is used
to generate a space of goals in which exploration takes place. A
distribution learned from ambient speech provides the system
with targets during exploration.

Previous research with this vocal tract model showed that
visual information have to be included for acquiring the vowel
[u] via reward-based optimization. We model the learning
process instead with goal-directed exploration where all tar-
gets are learned in parallel. As some vowels require more
exploratory noise in the articulators than others, we propose
a mechanism to adapt the noise amplitude depending on the
system’s competence in different regions of the goal space.
We demonstrate that this self-aware learning leads to more
stable results. The implemented system succeeds in acquiring
vocalization skills for rounded as well as unrounded vowels
using only a single modality.

I. INTRODUCTION

Learning how to speak can be interpreted as a motor
coordination problem: Infants explore the capabilities of their
vocal tract in order to discover articulatory trajectories that
produce the desired speech sounds. Although it is still largely
a mystery how infants achieve this, there is consensus that
babbling plays a crucial role in early speech learning [1], [2]:
By producing speech sounds and observing the outcomes,
infants gradually learn to coordinate their articulators.

To model this development computationally, a system
can be equipped with a vocal tract model. Executing this
forward model the system can generate speech signals from
articulatory configurations in a similar way as infants use
their articulators. Acquiring articulatory control can then
be defined as learning an inverse model to estimate from
the acoustics which articulatory configuration is required to
reproduce this sound.

Findings in developmental psychology suggest that in-
fants explore the space of possible motor configurations
not randomly, but with targets in mind [3], [4], [5]. Ac-
cordingly, many developmental models of speech acquisition
implement vocal learning as an imitative process [6], [7],
[8]. Applying active motor exploration, these studies acquire
the articulatory configurations to successfully imitate a set

of speech sounds in a babbling phase. But speech sounds
are learned sequentially. Due to redundancies in the motor
system (a number of articulatory trajectories might result
in the same speech sound), this approach bears the risk
that no inverse model can be trained from the collected
acoustic-articulatory pairs [9]. The Elija model [10] removes
redundancies after the babbling phase by consolidating the
learned motor patterns based on the acoustic consequences.
[6] and [7] connect articulation and acoustics via a map of
acquired speech sounds.

Goal babbling is an exploration mechanism first intro-
duced for kinematic motor control learning and resolves
such redundancies by learning to achieve several targets in
parallel and directly bootstrapping the inverse model during
exploration [11], [12]. Goal babbling achieves high efficiency
by organizing exploration in the so called goal space, the
space of (here: acoustic) outcomes.

Studies by Moulin-Frier et al. [13], [14], [15], [16] have
applied the idea of goal babbling to the speech domain. By
using formant frequencies as goals, they could demonstrate
the emergence of articulated speech sounds [16] and the
bootstrapping of vowel sounds [13]. In a recent work [17],
Liu and Xu used goal babbling to control F0 for Chinese
language. A limitation in these works is the low-dimensional
acoustic representation that is required to make goal babbling
efficient. Actually, speech is a very high-dimensional signal,
as it exposes high variability in the spectral as well as in the
temporal domain.

In [18], we presented an approach to overcome this limita-
tion by generating a goal space from high-dimensional acous-
tic features via dimension reduction. This method follows
the idea that infants’ learning is influenced by the ambient
language which they perceive from their environment [19],
[5]. Here, we extend this model and use it to learn artic-
ulatory control for imitating five vowel sounds with the 3D
articulatory speech synthesizer VocalTractLab (VTL) [20]. In
VTL, the vocal tract shape is determined by 20 articulatory
(and additional glottis) parameters. It is physiologically more
natural and produces better intelligible sound than the Diva or
the Praat articulatory synthesizer that most speech acquisition
models use [6], [10], [16], [17], [18], [21]. It causes also



a higher redundancy in the motor system, and therefore
learning to control its articulators can be assumed to be closer
to the problem infants face during their development.

Although it has been used for neurocomputational model-
ing of speech acquisition ([22], [7]), goal babbling has not yet
been applied to this vocal tract model. Recently, Murakami
et al. [8] applied reinforcement learning to learn the vowels
[a], [i] and [u] with VTL. They observed that learning
the rounded vowel [u] is difficult due to a plateau in the
reward function, but including visual cues (as children might
perceive from a caregiver) makes learning possible. However,
also blind children learn to speak, so visual information is a
support, but not crucial to the learning progress itself. Sighted
children might have advantages in early consonant articu-
lation [23], but Pérez-Pereira and Conti-Ramsden conclude
in a recent research overview that “the development of the
sounds of speech in blind children do not appear to differ
greatly in terms of the pattern nor the rate of development
found in sighted children, with the possible exception of
early production of sounds that have clear visual articulation”
(p. 71) [24].

We demonstrate in this study that visual features are not
required for learning to produce rounded vowels, but rather,
a sufficient amount of noise in the motor system helps to
overcome nonlinearities in the learning process. Our system
bootstraps an inverse model for producing five vowel sounds
by applying skill babbling [25], a recently introduced goal
babbling variant that makes exploration more efficient. After
evaluating the system’s performance with different levels of
exploratory noise in the space of articulator configurations,
we show that a competence-based decrease of motor noise
causes a transition from global to more focused local explo-
ration and leads to more stable learning results.

II. A MODEL FOR LEARNING ARTICULATORY CONTROL

Learning in our model is organized in two major stages: a
training phase in which a low-dimensional representation of
ambient speech sounds is derived, and a babbling phase in
which the system explores how to acquire articulatory control
to produce the speech sounds present in the ambient speech.

Fig. 1 depicts how the forward and inverse model are
defined between the acoustic and articulatory speech re-
presentations. The forward model realizes the mapping from
articulation to acoustics. The inverse model maps acoustic
targets to articulatory configurations. The high-dimensional
acoustic space P and articulatory space Q are not connected
directly, but linked via a goal space X which is generated
during the training phase (see Sec. II-B) as a low-dimensional
representation of the acoustic space. As a result of the training
phase, the forward mapping x “ fpqq from an articulatory
configuration q to a position in goal space x synthesizes
the speech sound for the given articulatory configuration,
computes its acoustic features and maps this representation
into the goal space.

In the following babbling phase (see Sec. II-C) the system
iteratively tries to reach targets within the goal space and
retrains the inverse model according to this new experience.

This bootstraps the inverse model q “ gpx, θq by adjusting
the parameters θ such that all feasible positions of the goal
space x can be achieved by a corresponding articulatory
configuration q.

Sec. II-A describes how the ambient speech sounds were
generated, Sec. II-B and Sec. II-C explain the training and
babbling phase, respectively. While ambient speech sounds
were generated only once, the training and babbling phase are
repeated in each experimental run. Sec. II-D and Sec. II-E
explain algorithmic details required to adapt the original goal
babbling to the problem of speech acquisition.

A. Generation of Ambient Speech

We generated a set of ambient speech sounds using the
articulatory synthesizer VTL1 itself to ensure that the system
is able to achieve the targets derived from ambient speech.
The correspondence problem that occurs if ambient speech
from a different source is used (e.g. a human tutor), is not
tackled in this study.

We generated 100 acoustic variations for each of the 6
vowel sounds (the sound produced by the “neutral” vocal
tract shape “schwa” (denoted as [@]) and five vowels [a],
[e], [i], [o] and [u]) by adding Gaussian distributed noise σ
to the defined vocal tract shapes of the VTL default speaker
(JD2) after normalizing the ranges for each articulator to
r´1, 1s. Due to the different sensitivity of the articulators
we set σ “ 0.1 for hyoid (HX, HY), jaw (JX, JA) and lip
(LP, LD) parameters and σ “ 0.01 for the more sensitive
velum (VO), tongue tip (TTX, TTY), tongue center (TCX,
TCY), body (TBX, TBY) and tongue side elevation (TS1-
TS4) parameters (for details about the parameters see [20]).
Other vocal tract and the glottis parameters do not change
for the given vowel set, so they were fixed to default values.

B. Training Phase: Goal Space Generation from Ambient
Speech

While a low-dimensional representation of these ambi-
ent speech sounds could be achieved by extracting low-
dimensional features such as formant frequencies, these fea-
tures limit the amount of speech sounds that the system’s
perception can possibly discriminate. By learning an embed-
ding from a set of speech sounds representing the ambient
language, we profit from the possibly high discriminability
and still create a low-dimensional space that can be used for
goal-directed exploration. Additionally, this approach models
that the system’s perception is biased by ambient speech [18].

We extracted the first three formant frequencies via Praat
(averaged over the course of the utterance) and 13 Mel-
frequency cepstral coefficients (MFCCs) (including log en-
ergy) and the MFCC derivatives from the middle of the
speech signal. The resulting 42-dimensional acoustic feature
vectors were normalized dimension-wise, such that formant
frequencies and MFCCs have equal influence, and then
projected to a 2-dimensional space in two steps. First, it is
projected to 10 dimensions via Principal Component Analysis

1VocalTractLab 2.1 Linux API (released in September 2014), see:
http://vocaltractlab.de/index.php?page=vocaltractlab-download
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Fig. 1. Training phase: the goal space is generated from ambient speech. Babbling phase: the inverse model gpxq is trained to estimate an articulatory
configuration q for a desired target x˚ in goal space such that the forward model fpqq embeds the produced acoustics close to x˚.

(PCA). Then, to achieve good separation between different
sound classes, Linear Discriminant Analysis (LDA) is applied
on the 10-dimensional features, taking into account the vowel
class information. We motivate the usage of a supervised
embedding technique by the remarkable sensitivity of young
infants to sound contrasts [26]. An example of the resulting
goal space is displayed in Fig. 1.

Using these mappings, the system can now project any
acoustic signal to the two-dimensional goal space. In other
words, the system is tuned to the ambient speech and
perceives acoustics in terms of the variability present in the
ambient speech. Targets for exploration in the babbling phase
are drawn from the distribution of ambient speech in the goal
space as described in Sec. II-D.

C. Babbling Phase: Bootstrapping Speech Sounds

Goal babbling is a method to bootstrap an inverse model
for a motor coordination task. The idea is to organize the
exploration in the goal space, i.e. in the space of outcomes.
In each goal babbling iteration, there is an exploration step
where the system tries to reach a new target within this goal
space and an adaptation step where the recent experience is
integrated into the inverse model.

The original goal babbling algorithm [11] (which we used
in [18]) draws targets along linear paths in goal space. Re-
dundancies are resolved during learning by using a weighted
regression scheme. However, in the case that for each step
a full motion has to be executed, this exploration method is
relatively inefficient. Reinhart, therefore, recently proposed
skill babbling [25] which combines goal-directed exploration
with episodic learning in mini-batches, such that the inverse
model can be updated more efficiently in each episode. Skill
babbling proceeds similar to goal babbling ([11], [27], [28])
by iteratively exploring and adapting the inverse model, but
instead of trying to reach a single target, it explores a batch
of targets in each iteration.

Skill babbling also integrates an explicit and continuously
updated model of the workspace in the learning process.
This workspace model represents the part of the goal space

where the system can already achieve targets. The workspace
model tracks the learner’s progress and could e.g. guide the
exploration by selecting new targets.

In [18] we demonstrated that original goal babbling is
applicable for learning articulatory control with the Diva syn-
thesizer, but VTL is much more high-dimensional and causes
more redundancy. Besides, the generation of sounds takes
approx. 5 to 6 times longer than with the Diva synthesizer.
For these reasons we use skill babbling in this paper which
we describe in the following:

The inverse model is initialized with a default action q0

and the corresponding goal space position x0 “ fpq0q which
correspond to the neutral sound [@]. Now, in each iteration t
the system explores a batch of K new targets (exploration
step) and adapts the inverse model accordingly (adaptation
step).

In the exploration step, at first, a target seed xseed is
drawn from the target distribution (see Sec. II-D). Noise in
the goal space (σgoal “ 0.05) is added to this target seed to
generate a batch of K slightly varied targets that the learner
should explore in this iteration:

x˚
k “ N pxseed, σgoalq, k “ 1 . . .K (1)

Then the loop depicted on the right side of Fig. 1 is
executed: The inverse model tries to reach the targets x˚

k

by estimating the corresponding actions (Eq. 2), adding
exploratory noise σact in action space (Eq. 3) and producing
and observing the outcomes via execution of the forward
model (Eq. 4):

q̂k “ gpx˚
kq, @k (2)

qk “ N pq̂k, σactq, @k (3)

xk “ fpqkq, @k (4)

In the following adaptation step, weights wk are com-
puted (see Sec. II-E) for the action/outcome-pairs pqk,xkq.



These are used to update the parameters θ of the inverse
model gpx, θq. For learning the inverse model, we use in-
cremental weighted regression as described in [27] and [25],
but with local radial basis functions (basis function radius
0.15) instead of linear functions. Basis function centers are
added in goal space according to vector quantization. When
updating the inverse model in time step t with a new training
sample k, the weighted square error wt,k ¨}qt,k´gpxt,k, θq}

2

is minimized by gradient descent (learning rate 0.9).
Additionally, a model of the explored workspace can be

trained by clustering achieved targets in the goal space with
prototypical hyper-spheres (see [29], [25]). We integrate this
in Sec. IV to adapt σact during exploration.

Fig. 2 summarizes the overall babbling phase.

Target
distribution

goal space
noise σgoal

action
space
noise σact

Workspace
Model

Evaluation Weighting

Action/Outcome
pairs {(qk, xk)}

Target
seed xseed

+ Inverse Model

+

Forward Model

Actions {qk}Targets {xk
*}

{(qk, xk, wk)}

Fig. 2. Skill babbling algorithm for articulatory control as described in
Sec. II with adaptive noise control from Sec. IV (dashed lines).

D. Selecting Targets from a Target Distribution

In original skill babbling, the system should discover the
complete space of achievable goals. Targets are, therefore,
provided by the workspace model that tracks the learner’s
progress in different regions of the goal space.

When babbling articulations, it is not necessary to reach
every position in goal space, in fact the goal space is unlikely
to be continuous and there might be regions between the
target clusters that are undefined, i.e. not reachable. To
represent the part of the goal space that is interesting for
the learner, a Gaussian Mixture Model (GMM) [30] of the
distribution of targets in ambient speech is trained as

P pxq “
N
ÿ

n“1

πnN px|µn,Σnq, (5)

with prior probabilities πn, the number of target clusters
N “ 6 and µn and Σn being the mean and covariance
parameters of the Gaussian mixture components obtained
from GMM training (displayed as ellipses in Fig. 1). This
target distribution serves as a target selection mechanism.

In this paper we stick to fixed prior probabilities πn “
1{N . A competence-based active selection of targets (as we
demonstrated in [18]) can increase learning speed, but does
not affect whether learning succeeds in general.

E. Weighting Scheme

For adapting the inverse model, the generated training
examples from one batch are weighted according to three
weighting schemes: wk “ wtar

k ˚ wamb
k ˚ wsal

k , wk P r0, 1s.
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The weight wtar measures how close the desired targets
x˚
k and the actual outcomes xk are in goal space.

wtar
k “ 1´

dk
maxl“1...Ldl

(6)

dk “

#

}x˚
k ´ xk} if }x˚

k ´ xk} ď 1.5

1.5 otherwise
(7)

wtar is normalized across the K samples produced in
one batch. A weight of 0 is always assigned to the worst
example, better approximations receive higher weights. This
emphasizes “relatively good” examples and leads to more
efficient training especially in the beginning of the learning
process. To account for cases where several productions are
unsuccessful (e.g. if no phonation occurs), a threshold of 1.5
is defined in (7).

To make sure that learning concentrates on regions of
interest (i.e. regions where ambient speech resides), we use
a second weighting scheme wamb, that gives a higher weight
to regions that are close to the ambient speech.

For vowels, some degree of linearity in the goal space
can be assumed, thus, we do not use the distance alone, but
calculate a higher-order distance D from an ordered list to
the M closest GMM target clusters rd1, . . . , dM s (from close
to distant). M can be any value between 1 (taking only the
closest cluster into account) and N (consider the distances
to all target clusters).

D “
ź

m“1...M

dM´m`1
m (8)

A smaller D is better, as it means that the goal space
position has a lower distance to the close targets. We calculate
the weight accordingly as:

wamb “ maxp0, 1´Dq (9)

We use M “ 4 here. As this measure does not depend
on the currently explored target, Fig. 3 shows the values of
wamb for a raster of points in the goal space from Fig. 1.

Finally, wsal measures the salience of the speech sound.
Louder signals are preferred over sounds that are low in
amplitude to avoid that unarticulated sounds are integrated
into learning. We use a simple implementation that captures
the signal’s loudness:

wsal
k “

#

minp1, sk
1.5sref

q if sk ě 0.5sref

0 otherwise
(10)
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Fig. 4. Competences after training for different levels of articulatory
noise. Dashed lines mark the competences achieved with adaptive noise
(see Sec. IV).

Tab. I
AVERAGE OF PERFORMED ITERATIONS AND % OF UNARTICULATED

PRODUCTIONS WITH FIXED EXPLORATORY MOTOR NOISE

noise level 0.1 0.15 0.3 0.5 0.75 1

I iterations 499 478 411 329 486 499
unarticulated 16.7% 8.3% 2.5% 0% 0.8% 0.8%

In this formula, sk is the median of the absolute normalized
amplitude of a speech sound corresponding to the observation
xk in goal space, and sref is a reference value for an
articulated sound, calculated beforehand by averaging across
the sounds from the ambient speech set.

III. BABBLING A SET OF SPEECH SOUNDS

We executed the training and babbling phases 20 times
for different amplitudes of exploratory motor noise. In each
trial the system learns for a maximum of 500 iterations. If
the error falls below 0.1 for all targets for 5 subsequent
iterations2, we stop earlier to save computation time. In each
iteration the system tries to achieve K “ 10 targets, Gaussian
distributed with σgoal “ 0.05 around the target seed (Eq. 1).
Parameter values were set to the values specified in the
previous section.

To evaluate the learning progress, we compute the learner’s
competence by letting it imitate the cluster centers µn of the
target distribution P pxq and points in the vicinity to evaluate
how stable the learned mapping is:

µn `

ˆ

0.05
0

˙

, µn `

ˆ

0
0.05

˙

, µn ´

ˆ

0.05
0

˙

, µn ´

ˆ

0
0.05

˙

.

The competence for a reproduction x of a target x˚ is
computed in accordance with e.g. [14] as:

comppx,x˚q “ expp´}x´ x˚}q (11)

2Due to instabilities there might be outliers where the error drops only
for one iteration. To prevent the algorithm from stopping in these cases, a
number of subsequent iterations are evaluated.

The amplitude of articulatory exploration noise σact was
set to 0.1, 0.15, 0.3, 0.5, 0.75 and 1. Tab. I lists the average
number of performed iterations and the percentage of unartic-
ulated productions that occurred after training. Unarticulated
productions are unsuccessful productions where incorrect
vocal tract configurations cause click or hissing noise or
no phonation occurred due to a vocal tract closure. Fig. 4
displays which competences were achieved with these noise
levels for the six vowel sounds. Unarticulated productions
(mostly [o] or [u]) were left out in these statistics, because
its acoustic features cannot be computed reliably. Apparently,
with a lower noise level the learner well achieves [a], [e] and
[i], but cannot learn [o] and [u]. Increasing the noise level
to up to 0.5 improves the system’s competences for these
more difficult vowels. On the contrary, a decrease can be
observed for the competences of [a], [e] and [@]. The best
results were obtained with a noise level of 0.5, where the
algorithm also converges the fastest and all produced vowels
were articulated.

To see why a higher noise level is required for learning
[o] and [u], we analyzed the learning problem by determining
the degree of nonlinearity in the goal space. More precisely,
we measured how the acoustic representation changes when
interpolating linearly between the articulatory configurations.
We defined 20 equidistant linearly interpolated vocal tract
shapes between [@] and each vowel and calculated the
according goal space positions by executing the forward
model. Fig. 5 depicts these goal space positions (top left:
full goal space, top right: zoom on the region around the
neutral shape). Apparently, when trying to achieve [o] and
[u] the learner cannot take the direct way to the goal, but has
to make a “detour”. The bottom plot shows how the distance
decreases between the goal space position of the interpolated
sound and the goal space position of the target vowel shape.
This distance decreases monotonically for [a], [e] and [i], but
for [o] and [u] the error increases slightly before decreasing.
“Jumping” over this hill requires a sufficient amount of motor
noise. This explains why a higher noise amplitude leads to
better learning of the rounded vowels.

However, with a higher noise level, the system babbles and
constantly tries out new ways to achieve the targets; it does
not fine-tune the results. This negatively affects the learning
of easy vowels like [a] and also the imitation of the neutral
sound [@].

IV. ADAPTIVE NOISE CONTROL

The results from Sec. III suggest that different targets
require different levels of motor noise. But how to determine
an appropriate noise level?

Our system organizes learning in a goal space, so it can
monitor its own progress to a certain degree: it can observe
whether it succeeds in reaching goals in different regions of
the goal space 3. The amplitude of motor noise can be adapted
with this information. A reasonable schema would be to be
more “adventurous” (i.e. explore within a wider range) if

3Note that the system’s perception is not perfect, but limited by the
accuracy of the learned forward model.
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linearly interpolated articulatory configurations between the neutral (0) and
the five vowel shapes (1).

new targets should be achieved. For reaching targets that can
already be mastered to some extent, it is better to stay closer
to the estimated motor command and focus on a more fine-
grained, local exploration. Infants might use such information
during learning as well, at least there is evidence that they
are already aware of targets, as they perform goal-directed
movements very early in their development [3], [4], [5].

Tracking the competence progress in different regions of
the goal space has been implemented by Oudeyer et al. to
model intrinsic motivation (e.g. [12], [16]): the system selects
a target where it expects the highest competence progress.
Instead of influencing the target selection mechanism, we
here adapt the amplitude of exploratory motor noise.

The workspace model (introduced in Sec. II-C) represents
our system’s internal model of the already achieved part of
the goal space. It can be used to measure how confident the
system is about successfully reproducing a sound [25]. Using
this information, the amplitude of motor noise can be adapted
depending on the desired target.

Prototypical hyper-spheres with centers ci and identical
radii pγ “ 0.1q cluster the goal space. The distance of a
target x to the workspace model is measured as the distance
to the closest prototype:

dWSpxq “ minip}ci ´ x}q (12)

We update the workspace model during the adaptation step
of goal babbling similar to [25]: If a target x˚

k is achieved, a
new prototype with ci “ xk is added if dWSpxkq ą γ and
the reproduction was successful, i.e. the weight wk is above
a threshold (0.5). In each iteration, the level of articulatory
noise is now determined depending on the task seed x˚:

σact “ α ¨ p1´ expp´4 ¨ dWSpx
˚qqq (13)

In this way, the articulatory noise amplitude increases for
targets far away from the discovered part of the goal space

and decreased for targets that are close to already achieved
goal space positions. The factor α controls the maximum
amount of noise.

Varying α in steps of 0.05 between 0.45 and 0.7, we
repeated the experiments from Sec. III with adaptive ar-
ticulatory noise. The best results could be achieved with
α “ 0.55 and are displayed with dashed lines in Fig. 4.
With this configuration, a high competence is achieved for
all vowels. No unarticulated productions occurred and the
average number of performed iterations was with 262 much
lower than in the previous experiments (cf. Tab. I).

Fig. 6 compares the mean competence increase in the
adaptive model (bottom) with the model with a fixed noise
amplitude of 0.5 (top). How the articulatory noise is adapted
during the course of learning is displayed in Fig. 7. The
adaptive mechanism achieves results similar to a fixed noise
amplitude of 0.5, but maintains a higher competence level
for easy vowels like [a] and [@]. With adaptive noise control
there is also less variation between subsequent iterations, so
the stop criterion (goal space distance ă 0.1 for 5 subsequent
iterations) is fulfilled earlier. This might be the reason why
in average 20% less iterations were performed.

We confirmed these observations in a perceptive evaluation
by listening to the vowel sounds that the system can produce
after learning4. With adaptive noise of α “ 0.55 and with
fixed noise of σact “ 0.5, all vowels were intelligible except
for some cases where [o] and [u] were confused, likely due
to the proximity of their target clusters in goal space. This
confusion is more frequent in the case of adaptive noise,
probably because fewer iterations were conducted.

V. CONCLUSION & OUTLOOK

We presented an approach to acquire vocalization skills
with goal-directed exploration. By adapting the amplitude
of exploratory motor noise, all vowels can be well learned:
high noise in the beginning promotes the learning of [o] and
[u], a competence-based noise reduction ensures that high
competence is maintained for already acquired sounds. The
level of motor noise is determined in dependency of the
already achieved goal space and the desired target.

In future studies we examine whether extending the goal
space to a 3D representation makes learning of [o] and
[u] more accurate. We also plan to extend the system to
the learning of syllables by learning trajectories instead of
articulatory configurations.
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Fig. 6. Competence per vowel class during exploration (averaged over 20
trials) for learning with fixed (top) and adaptive (bottom) noise, measured
by Eq. 11 after each iteration. The vertical lines indicate when 30%, 60%
and 90% of the learning trials converged.
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Fig. 7. Adaptive noise allotted to targets from the six target distribution
clusters in each time step, averaged over 20 trials.
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